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SUMMARY PAGE

THE PROBLEM

Thermal stress can degrade performai~ce and health of naval and Marine Corps
personnel under operational conditions in cold weather. One problem related to this
degradation is dehydration associated with cold-induced diuresis. Fluid loss is also
a significant problem in the microgravity environment cf space flight. The possibility
that these two entirely different environmental changes or stresses might have common
pathways in their physiological effects was suggested as a comparative study to foster
better understanding of both mechanisms.

FINDINGS

A literature review of fluid loss in these two diverse environments revealed
several significant similarities in the physiological responses leading to the common
endpoint of fluid and electrolyte loss through diuresis and natriuresis. Differences
in the responses were also noted, although the data necessary to thor3ughly describe
these mechanisms are not yet available.

RECOMMENDATIONS

The advantages of using the cold-exposed model in future research to better
understand the responses to both environments was considered. Open communication and
exchange of data among the investigators concerned with these fluid-loss mechanisms is
recommended.
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INTRODUCTION

The possibility that two entirely different environmental changes or stresses--
namely cold tempei.tures and the microgravity of space flight--might have common
pathways in their physiological effects was suggested as a comparative study to foster
better understanding of both mechanisms (J.O. Houghton, CAPT, MC, US9I, personal
communication, 1987). A review of the literature confirmed the similaritiL3 of the
physiological reactions and adaptation to these stresses and also suggested some
interesting differences (1-3).

This report summarizes the mechanisms of fluid loss d r e to cold or microgravity
exposure and highlights points of comparison, Relevant questions include ihe role of
hydrostatic fluid factors, arginine vasopressin (AVP, previously known as antidiuretic
hormone or ADH), and renin-angiotensin system changes, as well as the possible role of
natriuretic peptides. Although our current interest is in dry, cold environments,
cold.',ater immersion may involve similar effects, as the buoyancy of water immersion is a
partdal analogue of microgravity (4).

The validity of a hypothesis that cold- and microgravity-induced diuresis might
share a common mechanism was partially tested in 1952 by Bader and his associates (5).
They found that cold-induced diuresis was significantly greater in human subjects when
supine as compared to standing. The diuresis was reducer6 after physical exercisc,
presumably because of a redistribution of bWood to tbe. muscles forom the central volume.
Although a change in hormonal secretion by the pituitary was postulated as a mechanism,
the recently discovered role of atrial natriaretic factor (ANF) in fluid balance
suggests a more complex, multifaceted en, crine involvement in the cold-induced tluid
loss. To elucidate the mechaniinm involved, we have begun to investigate the multiple
hormonal interrelationships in primates exposed to acute, dry cold. In the case of
microgravity, data from space crewmembers may yield an understanding of a common
physiological reaction to these quite different environmental stresses.

THEORY OF COLD-INDUCED FLUID LOSS

One of the early events in human reaction to cold exposure is a constriction of the
peripheral vasculature and a resultant increase in central blood volume. The latter may
stimulate carotid and cardiac pressoreceptors with the possible increase in ANF and the
suppression of vasopressmn secretion leadin* to diuresis. Peripheral vasoconstr'rtion
is under the control of both central and peripheral effecor mechanisms. Circulating
catecholamine levels i icrease in cold-exposed subjects (6,7) and appear to play an
important role in fluid losses that remains to be fully defined. In rats, 6-
hydroxydopamine prevents both the increase in mean arterial pressure and the diuresis
that results from cold exposure (8). This suggests that the cold-induced diuresis can
be eliminated by blocking the sympathetic nerve responses involving norepinephrine.

Although very little data are available on ANF, plasma renin activity (PRA),
angiotensin, or aldosterone during cold exposure, a strong consensus of early studies
(9-11) and more recent ones (8,12,13) indicates that cold exposure reduces circulating
levels of AVP. The stimulus for these changes in AVP secretion may be fluid shifts, or
it may be osmolality changes that result from the fluid. loss. Morgan et al. (8)
reported a water diuresis in the rat that was independent of solute excretion but
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mediated by suppressiou of vasopressin. Their results supported the hypothesis that
this reduction in AVP secretion by the pituitary was due to changes in blood pressure
(8), but other studies have suggested that AVP secretion during cowi exposure may depend
on changes in blood osmolality (14) or involve direct effects of blood temperature on
neurons in the. brain as well (12,13).

Based on the limited data available, the physiological events leading to cold-
induced diuresis may be summarized to include the following:

1 peripheral vasoconstriction
2 icreased central blood volume

stimulation of atrial and carotid pressi receptors
suppression of AVP release from the neurohypophysis
changes in other factors such as:
- increased metabolic clearance rate of AVP
- increased excretion of sodium (natriuresis)
- activity of renin-angiotensin-aldosterone system
- secretion of ANF (increase or decrease ?)
- increased secretion of catecholamines.

Although the physiology of ANF has been examined intensively, its possible role in
cold- or microgravity-induced diuresis, which is a logical hypothesis given the increase
in central blood volume, has received very little study. The ANF has important effects
on both kidney function and blood pressure control (15). It has multiple interactions
with the other fluid-balance controlling hormones, particularly the renin-angiotensin-
aldosterone system, and is thought to modulate the secretion of vasopressin (15). In
fact, ANF and the renin-angiotensin-aldosterone system may att in opposition or function
in a net -tive feedback manner in their effects on renal function, and blood pressure
contro' (16). Further, ANF has a number of significant vasoactive properties, which
include causing periperal vasodilation and decreasing mean arterial blood pressure (15).
These vasoactive properties may be even more physiologically impoi tant than the
natriuretic properties of this atrial peptide in the endocrine response to cold or
microgravity exposure. A i ecent study measured the effects of enhanced venous return on
ANF secretion and the activity of the renin-angiotensin-aldosterone system during
exercise and postural changes (17). The results suggest that ANF release during exer-
cise may be influenced by factors other than hemodynamic stimuli. During exercise, PRA
was altered more than AINF by blood volume displacement, and ANF increases did not
inhibit aldosterone secretion.

Water immersion (WI) of subjects has been used as a model to study fluid and
hormonal shifts that result from increases in central blood volume. In both human and
animal sult' cts, WI markedly increases ANF and decreases PRA, aldosterone, and
vasopressin (18). Another model used to test the physiological responses to increased
central blood volume is volume loading, either with hypotonic, isotonic, or hypertonic
solutions. The effects of volume loading on ANF andthe renin-angiotensin-aluostero~ie
system are similar to those of WI, but the effect differs depending on the osmolality of
the infused solution (14). Even as ANF levels change in association with the
natriuresis of acute volume expansion (19), changes in ANF alone do not appear to
account for the natriuresis resulting from volume expansion (20).
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In dealing with cold exposure, one recent study reported a decrease in ANF and an
increase in aldosterone in rats exposed to acute, dry cold (21). These data were
actually in contrast to the anticipated result that increased central blood volume would
cause an increase in ANF and a decrease in activity of the renin-angioterisin-aldosterone
system. Thus, the hormonal involvement in cold- or microgravity-induced fluid loss is
likely to be complex.

THEORY OF MICROGRAVITY-INDUCED FLUID LOSS

In 1979, Alvioli et al. (22) listed key events in the physiology of fluid shift in
space:

1) reflex peripheral vasodilation
2 suppression of the renin-anaiotenin-aldosterone system3jsuppressdion of antidiuretic; hormodne (ADH)increased secretion of humoral natriuretic substances

5 reduce-l thirst.

Leach described the body's reaction to the cephalad shift of fluid as a response by
the stretch receptors in the left atrium as though this fluid shift represented an
increase in totalblood volume. 'The result is a compensatory loss of water, sodium, and
potassium from the renal tubules k3,23-25). The mechanism is thought to be neural,
humoral, and hydrostatic in nature. The initiation of the mechanism of fluid loss in
microgravity is thought to be hydrostatic, as reported by Norsk in studies of central
venous pressure increases during short periods of weightlessness (1). Leach reports the
hormonal aspects of the mechanism of fluid loss in both Skylab and Space shuttle
crewmembers (1,3,23,24,26). She also discusses the possible importance in fluid loss of
the decreases in catecholamine production by the sympathetic nervous vystem that were
observed during space flight (3,23). The physiological mass measurements on Skylab tend
to add credence to this hypothesis. A rapid weight loss during the first few days in
space is quickly reversed postfiight, suggesting fluid loss as the mechanism (26). An
increase in ADH in blood and urine after return to Earth supports this hypothesis
nicely.

Early diuresis, predicted by the above theory, has been measured in bedrest studies
(27,28), which model the microgravity environment. The mechanism in space, however, has
been unclear due to the difficulty in obtaining early data, a marked reduction in water
intake, and possible masking by early motion sickness experienced by many crew members
(26). Leach and Rambant reportVd that the nine Skylab crewmen decreased water intake by
700 ml/day during the first 6 days .n flight (27). Urine volume decreased 400 ml/day
during the same period resulting in a net loss of fluid. Reporting on a 175-day flight
of the Salyut-6-Soyuz, Egorov observed in-flight increases in urinary output of sodium,
potassium, chloride, an in-flight decrease in ADH, and a reduced postflight excretion of
sodium (29).

Additional observations that verify fluid shift include photographic evidence of
periorbital puffiness, facial edema, and thickening of the eyelids. Other indications
include a fullness of veins in the head and neck (26) and an in-flight decrement in calf
girth np to 30% that rapidly reverts to preflight values upon return to Earth (30).
Leach describes the response to microgravity as having on early dynamic phase leading to
a resetting of set points and a stable adaptive stage ý25). The magnitude of the fluid
shift is thought to be 1.5-2 liters from the lower extremities. The rate peaks within
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24 h and reaches a plateau within 3-5 days. Soviet data have a similar pattern.
Gasenko reports a plateau on the 12th in-flight day but describes fluctuations in leg
volume N.Jth a wavelike course of loss and recovery over 140-, 175-, and 185-day missions
(28).

SIMILARITIES AND DIFFERENCES IN THE MECHANISMS

Table 1 lists the comparative qualities of the physiological mechanisms involved in
microgravity- and cold-induced fluid loss,

Table 1. Comparative Features of Cold- and Microgravity-induced Fluid Loss.

Cold-induced Microgravity-
Physiological action diuresis induced diurests

Reflex peripheral vasodilation no yes
Peripheral vasoconstriction yes no
Increased central blood voiume yes yes
Suppression of renin-angiotensin

aldosterone system ? yes
Suppression of ADH yes yes
Increased secretion of humoral

natriuretic substances ? ?
Reduced thirst ? yes
Role of catecholamines ? ?

Body fluid is redistributed, and the end result is a loss of both water and
electrolytes during exposure to cold or microgravity environments. The central
mechanism -ommon to the physiological responses to both these environments is an
increase in central blood volume. Whether or not intermediate physiologicai responses
to the two different environments are also similar remains to be seen. Further analysis
of these hormone concentrations in cold and microgravity environments is necessary to
resolve questions about their relative roles. Experiments are planned to further
investigate the role of AN.F in the fluid dynamics of crew response to microgravity in
space. We have an experimental effort in progress to determine the role of ANF and
other hormones in the mammalian response to cold, dry temperatures in a monkey model.
Our approach is to determine the basic patterns and interrelationships of fluid-balance
hormones and fluid-loss characteristics during cold exposure. Following a determination
of these responses, the mechanism of these changes will be explored by altering the
baseline physiological conditions through infusion of hormones, or volume loading, or by
other pharmacological means. The information gained from this approach will be helpful
in developing countermeasures to cold-induced fluid loss and in understanding the
similar response in space.
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