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SUMARY

The military services have a vital concern in assuring that aptitude
test scores used for enlistment selection and classification are appropriate
measures of applicants' true abilities. Substantial bonuses have been paid
to examinees with sufficiently high scores as enticements to enlist into
selected occupations. Also, failures in the services' training schools due
to a lower aptitude than that necessary for successful completion cost
thousands of dollars per individual. Therefore, cheating to improve scores
on an enlistment test is a threat to the integrity of the services'
selection and training systems. The goal of appropriateness measurement is
to identify individuals who have not been accurately assessed by a multiple-
choice test and, therefore, preserve the integrity of the test.

This effort investigated the utility of several appropriateness indices
in identifying cheaters who were very low or who were just below average In
verbal and quantitative aptitudes. The amount of cheating was 5, 10, or 15
items on tests of approximately 50 items in length. Real data as well as
data simulated to maximize realism were used in the investigation. Low
rates of identification were obtained for cheating on 5 items. This was
expected because on an item for which an examinee does not know the right
answer, it is very difficult to distinguish a correct response due to
cheating from a correct response due to a lucky guess. A small number of
lucky guesses is not unusual. Reasonably high rates of identification were
obtained when cheating occurred on 15 items.

The above findings were based on (a) the sample having a normal ability
distribution, (b) known probabilities of correct responses, (c) cheaters
having a fixed and known number of compromised items, and (d) a complete
knowledge of which test items were verbal and which were quantitative. Some
appropriateness indices worked reasonably well when actual examinee
responding deviated from the first three conditions. Condition d cannot be
violated; however, it is not necessary to develop a separate appropriateness
measure for verbal and for quantitative aptitudes. A method for extending
appropriateness measurement to two aptitude areas has already been developed
and can be used when the items belonging to each aptitude area are
designated.

It is concluded that the utilization of appropriateness indicr for
identification of examinees for retesting would be expected to improve the
quality of a large testing program.

ITIS ORA&I ED
V. DTIC TAB 0

Unannounced 0
Justifioatiom

By

Distrlbution/

Aveilabtlitv Codes

Avail and/or
Dit t Special



PREFACE

This effort was accomplished under Project 2922, Prototype Development
and Validation of Selection and Classification Instruments. It represents
the continuing effort of the Air Force Human Resources Laboratory to fulfill
its research and development responsibilities through development and
application of state-of-the-art methodologies in the area of enlisted
selection and classification.
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1. INTRODUCTION

Standardized psychological tests are administered to tens of millions
of examinees per year. One test, the Armed Services Vocational Aptitude
Battery (ASVAB), is administered to approximately 2.5 million examinees
annually. The scores that result from standardized tests affect the lives
of examinees by opening and closing doors to training programs, employment,
and education.

Appropriateness measurement was proposed by Levine anid Rubin (1979) as

a means for identifying individuals who have been mismeasured by a
standardized test. A general approach to specifying statistically optimal
methods for this task was recently presented by Levine and l)rasgow (1988).
Their approach can be used to determine appropriateness indices that are
optimal in the sense that no other statistic computed from the same data can
provide higher rates of detection of the specified testing anomaly at the
same false positive rate.

Drasgow, Levine, and McLaughlin (1987, in press) arid Drasgow, Levine,
McLaughlin, and Earles (1987) compared optimal appropriateness indices to
earlier, ronoptimal indices described by Drasgow, Levine, anid Williams
(1985), Hudner (1983), Sato (1975), Tatsuoka (1984), and Wright (1977). For

unidimensional tests, they found that the best nonoptimal indices sometimes
provided rates of detection of' aberrant response patterns that were almost
as high as the rates of optimal indices. In other cases, the best
nonoptimal indices were far less powerful than optimal indices. Multi-test
extensions of the nonoptimal indices were found to be less effective
relative to multi-test optimal indices for a test battery consisting of' two
unidimensional tests. In this case, nonoptimal indices rarely provided
rates of detection that were close to the detection rates of optimal
indices.

A number of difficulties arid uncertainties have limited applications of

optimal appropriateness indices. To date, formulas for optimal indices have
been derived for only a few types of mismeasurement. Soie of the formulas
that have been derived are quite complex. A considerable investment of time
and effort has been necessary to develop and program algorithms for
evaluating the complex formulas. Very little is known about the robustness
of optimal indices to violations of their underlying assumptions.

The research reported here was conducted in response to these problems.
In Study One, existing software was used to test specific hypotheses with

optimal indices. The performance of optimal indices was evaluated arid
compared to nonoptimal indices. Study Two examined the robustness of
optimal indices to four different violations of assumptions. Specifically,
multidimensional item responses were analyzed with a unidimersiornal model,

estimated item characteristic curves (ICCs) and option characteristic curves
(OCCs) were used rather than the true ICCs and OCCs, ability patameters were
sampled from a distribution related to the chi-square distribution with 10
degrees of freedom but optimal indices were computed assuming that ability



was niormal ly distributed, anid optimial indices were compute-d for, rorms of'
aberr-ance (e.g., cheating on 110% of' the test) that did riot match the way
aberradnce was simrulated (e.g., cheating on 303 of the test).

Appv~(iptiateness Indices

1'he piinirty focus of the r~esearch described ini this paper- is thle
evaluati on of' optimal appropriateness measur-ement. In thre next subsection,
a brief suRmary Of Optimal indices is provided; references to atrticles
containing technical details are also given. kesults for, two nori-uptinial
approriiacress indices were also) obtained in Study One. The f'irst of' these
two indices is the staridardized Vu, index, which was describeud by IDrasguw et
al . ( 1985). 'Ihe second muir-opt imal index, F2, is a starrdaimdized fit
statizstic Igivuri by Rudrier- ( 19HO)

Opt imral appiroptriateness i rid ices. Levine anid Dvasgow (1988) showed that
a Most power'ful appropriateness index for, a given form of' aberrancije on a
onidinrensional test is the l ikel ihood ratio (L11) statistic

-,A be iranit(U
LH(U)(1

-NormalI

Her~e P I t--n (u) denotes tire likelihood of' a vector, of' n itemr reuspons:es U

th 1 9 .. I I1 giveni a specif'ied foirm of aberrvance anid PNj 1 (U) denotes

telktel ihood of' u given the mrodel of normal r-esporidiiig.

To illustrate P (u and P (u), assumre thdt the item
--Nor'mal -Aberr~ant

r-esponses ar-e scored d ichotomous ly , the test i s unid imurs ionral , P.i (0) is tine

probability of a correct response to item i by nor-mal examnrarees with
ability 0, arid the ability density is NOe). Then the couiditionral likelihood
of U is

n U. 1-u.
p4~~la (Uu) = 11 P t (0 1 - (0)1 ' (2)

arid tht mir-ginial likelihood is

1)jina (U) I EN1 5l (uIM~(O)dO .(3)

Levine anid lDr'asgow ( 1988) show,2d that P AbrvrL(U) canI also be Coiiipoted as

2



PAberrant (u) = I PAberrant(ul()f()dO (4)

and presented methods that allow P Aberrant(ul) to be computed fairly

easily. A very efficient method for approximating the quantity in Equation
4 was devised by Levine (in preparation; see Drasgow, Levine, & McLaughlin,
in press, for an application). Although Levine's approximation was
developed in the context of a multidimensional test battery, it can also be
used for unidimensional tests.

For a composite of two unidimensional tests, the likelihood is

Ii P(U1 = u1101) P(U2 = u2 162) f(O)dO, (5)

where P(U : u1 10) is the likelihood of the n item responses u on test j,

I= 1,2, under either the normal or aberrant model. An interesting feature
of Levine's approximation for either the unidimensional (Equation 4) or
multidimensional (Equation 5) case is that the one- or two-dimensional
integrals are evaluated without quadrature, thereby avoiding extremely
intensive computations.

II. STUDY ONE
TESTING SPECIFIC HYPOTHESES

Purpose

Suppose a test administrator has the answer sheets from a set of
examinees whose test scores Just barely exceed a minimum threshold required
to be hired, promoted, or admitted to a training program. Further, suppose
it is known that some examinees earned their test scores honestly, while
other examinees obtained the answers to some items prior to the exam and
thus obtained passing scores by cheating. The task of the test
administrator is to use each examinee's pattern of item responses to
determine whether a passing score was obtained honestly.

Likelihood ratio

The test administrator should use the likelihood ratio given in
Equation I to decide whether a passing score was obtained honestly because
no other statistic computed from the item responses provides more accurate
classification. To apply Equation 1 to the problem faced by the test
administrator, P ormal(u) would be interpreted as the likelihood of a

response pattern u given that the examinee was responding honestly and
PAberrant(U) would be interpreted as the likelihood of u given that the

examinee was cheating. Stated simply, the likelihood ratio of Equation 1
compares the likelihood of u assuming that the examinee was cheating to the

3



I i kel ho110d 0 t' U aiLmIirIg th.it Wie examinlee was hones t ; a l arge l ikel ihood
r'atio nU :t thit the uxd~ni iie was i n fact cheat ilug.

For Ltc tcz t Admhrinistitur to Use Eq~rat ion 1, ther-e Mu~st be anl explicit
meanis for- cml ldt ing its nunnrjtor arid denominator, Inl t'is sujbs:ection, it
is sh;Iuwri hlw t2.-. ILs ig softtwif. cuir be osed f'or this purpos) :e.

A I it. H'uni t~leenrtary pro)bab iity can be used to s imp Iilfy the task of
evalIuat inrg EquaL ioii 1i. SpeCiliCally, Suppose a set A is a Subset of set B.
Then

P0 11 - P)(iA )/l-( 3) .(b

Equationl C, esr be derived t'ron the usual for'mula for conrdi tionral probability
P(AI B) = hA arid 10)/1(13) because P(A and B) = P~(A) when A is a subset of B.

Let . denlote the r'arrgc of tesit scores that are siubjutct to the test
administrator''s SCruLtinly. For example, wL might consist of' the set or test
scores that f'all into the 50th to 5l4th percentiles. In additionr, lt X be
the fune~t non that maps item responses into test scores. if number right
scoring is used, for example,

X(u) ii uj + + -Li

Let u* be a given sequence 01' responses such that XWu') is in Us. With
this notation, we can write the likelihood ratio that must be evaluated
by the test administrator as

P Abrat(u:zuIX(u) is inl ()
LB ~ ornul C -T (u *u X(u) is in ui)(7

Apply iri EquaL mini b to Equat ion 71 produces

I' ( u F' X MU) is ill W)-Aberranit -Abe rra'nt
1)u' -(I*~) P (X(U) is in w)
--Normia I -N ornia I

- Aber'ra ri (u-111

k ,UU* (8)

where k is a constant anid tintsi carl be ignored by Lte test adiiiiristratur. 01'
course, this formula (arid the sipecific kc) is valid only ror patturns ut with

4'



X(u) in w. For such u*, Pormal(UU) can now be evaluated by Equations 2

and 3, and P Aberrant(U) can be evaluated by Equation 4 and the methods

described by Levine and Drasgow (1988) and Drasgow, Levine, and McLaughlin
(in press).

Method

Overview. A study was conducted to examine the performances of optimal
and non-optimal appropriateness indices on the task faced by the
hypothetical test administrator. Both real and simulated data were analyzed
in the study. The results obtained from the analysis of simulated data
provide information about the performance of appropriateness indices under
idealized conditions where all model assumptions are satisfied; the analysis
of real data provides information about the indices' performances in
operational conditions.

Data were generated to simulate normal responding to a test battery

consisting of a test of verbal ability (V) and a test of quantitative
ability (Q). In addition, data from presumably normal examinees responding
to verbal and quantitative tests were analyzed. Response patterns with
total test scores (V+Q) falling into two score ranges (20th through 24th
percentiles and 50th through 54th percentiles) were selected. Compromise
samples were formed by modifying either simulated response patterns or
actual response patterns to simulate individuals who obtained total scores
in the two score ranges by cheating. Appropriateness indices were computed
for all response patterns, and rates of identification of the simulated
cheaters were determined at various false positive rates.

The real data set, item characteristic curves, and option
characteristic curves. The real data used in this study were from a sample
of 13,571 examinees who responded to the ASVAB, version 17A, under
operational conditions. To estimate item parameters, 3,392 examinees were
chosen by selecting examinees 1, 5, 9, ... 13,569. A verbal test of 50
items was formed by combining the 35 item Word Knowledge test and the 15
item Paragraph Comprehension test. A quantitative test was formed by
combining the 30 item Arithmetic Reasoning test and the 25 item Mathematics
Knowledge test. The quantitative test contained 54 items after one
Arithmetic Reasoning item was deleted because it was very easy (its item
difficulty parameter was not accurately estimated).

Three-parameter logistic item characteristic curves were estimated by
the method of marginal maximum likelihood with the BILOG (Mislevy & Bock,
1984) computer program. Non-parametric estimates of ICCs and option
characteristic curves based on Levine's (1985, 1989a, 1989b) Multilinear
Formula Score (MFS) theory were obtained using the ForScore computer program
(Williams & Levine, in preparation). Additional details about the non-
parametric estimates were given by Lim, Williams, McCuskor, Mead, Thomasson,
Drasgow, and Levine (1989). The estimated three-parameter logistic ICCs and
the estimated non-parametric 1'.s and OCCs were used In all subsequent
analyses of the real data.

To maximize the realism of the simulation portion of this study, ICCs

and OCCs that had been estimated from the ASVAB data set were used as the
"true" (i.e., simulation) ICCs and OCCs rather than an arbitrarily specified

5



set 0!' I t'iii r'i.illi ters'. This chu)Ice of [CCs arid O Cs iliicut.'6se the

comparability of tie resul Is obLtdlIied froni the siniulatioi ar id rjaI data.

Item response models. In the portion of' Study One that analyzed the
actual ASVAB data, examinet:s' itrin responses were scored eithcr
dichotomouu-ly or polychotonious ;ly, arid appropriateness indices were coriplited
with either the thr'ee-parametcr logistic ICCs or miitiii car lforl a scoring
ICCs arnd OCCs. Specifically, appropriateness indices were computed with the
following item scorinig and ite,m response models:

1. dichotumously scored responses analyzed with three-parameter
logist ic ICCs;

2. d i chotoniotis I y scored responses ana I yzed wit h mu I L i l inear fo'rr I a
scor iig ICCs;

3. polychotonroIIsly scored responses analyzed with miultilinear' furmula
scoring I('Cs arid OCC,.

For' the sImiIlation portioi of Study One, data were generated for each
of the three conditions listed above (e.g., three-parameter logistic ICCs
were used to gt.nerate dichotomous item responses). Apprupi'iateness irdices
were then computed with the model used to generate each sampl,,, which
yielded analyses of simulated data that were parallel to the analyses of'
real data.

Percer.i Iles. The fol lowing pr'ocedure was ased to determine the total
test scor'es corresponding to the 20th, 24th, 50th, and 5lth percntiles for
Study One. First, the estimated three-parameter logistic ICCts were used to
generate 100,000 response patterns by the process for' simulatilig normal
response patterns (see below). Next, number-right scores were coMiputed for'
each simulated verbal arid quanititative test. Nubei'-right scores on these
two tests were then separately standardized arid a total score was computed
as the sum of the two standardized scores. Final ly, the frequency
distr'ibution of the total score was tabulated arid used to determine the
values of' the total test score ,ssociation with specific percentiles.

Simulated normal r'esponse patterns. For each of the three iteni
response models listed above, a simulated normal response pattern (i.e., a
non-cheate:r) was created by sampliig 0 = [0,, 0,1 from the standardized
bivariate rimal distribution with correlation .7. 0, was used with the
simulation ICCs and OCCs f'or the verbal test to generate locally independent
item responses. Similarly, 0. was used to generate locally independent item
responses for' the quantitative test. Response patterns were repeatedly
generated until 4,000 simulated examinees were collected for' the low score
range (20th through 24th percentiles) normal sample arid l'u' the mderate
score range (50th through 514th percentiles) normal sample.

Heal normal response patterns. Real normal response patterns were
obtained by first selecting each response pattern that was iot iIcluded in
the sample used to estimate ICCs arrd OCCs (i.e., response patterns wer'e
taken from the magnetic tape containing 13,571 response patterns, but the
3,392 patterns used for item calibration were excluded). Next, a total test
score was coniptted for each r'.;punrse pattern in the manier dt.scribed
previously. Husponse patterns, with total test scores in either tLhe low

6



score range or the moderate score range were then written to separate files.
A total of' 480 response patterns had total test scores in the 20th through
24th percentiles and 533 response patterns had total test scores in the 50th
through 54th percentiles.

Spuriously high manipulation applied to simulated data. Cheating was
simulated by first generating a normal response pattern and then rescoring k
item responses to be correct, regardless of the original response. The
rescored items were randomly selected for each response pattern, and so
Levine and Drasgow's (1988) method for evaluating PAberrart(U) could be

applied directly.

Hesponse patterns were generated with 5, 10, or 15 items per test
rescored to simulate cheating. This process was continued until 2,000
response patterns with total scores in the low score range arid moderate
score range were collected. An attempt was made to generate 18 samples by
factorially crossing the three item response models, the three levels of
simulated cheating (5, 10, or 15 items per test), and the two score ranges
(20th through 24th percentiles and 50th through 54th percentiles); however,
the 15 item spuriously high manipulation consistently produced response
patterns with total scores that exceeded the 24th percentile. Consequently,
it was possible to obtain only 15 spuriously high samples.

Spuriously high manipulation applied to real data. Only response
patterns not used for item calibration and not in either normal sample were
subjected to the spuriously high manipulations. The 5, 10, and 15 item
spuriously high manipulations were applied to each of these response
patterns, and a response pattern was selected if its total score fell in
either the low or moderate score ranges. A total of 524, 635, and 654
response patterns were obtained for the moderate score range in the 5, 10,
and 15 item spuriously high conditions. For the low score range, 408 and
31( response patterns were obtained in the 5 and 10 item conditions. Again,
the 15 item spuriously high manipulation produced response patterns with
test scores above the 24th percentile.

Analysis. Optimal appropriateness indices were computed for the
samples of simulated and real normal response patterns using the Levine and
Drasgow (1988) algorithm for spuriously high responding to 5, 10, and 15
items per test. Correctly specified optimal indices were always computed;
for example, the optimal index for 10 spuriously high responses per test was
computed for aberrant response patterns that had been subjected to this
manipulation. The non-optimal indices were also computed for each normal
and aberrant sample.

After computing appropriateness indices, receiver operating
characteristic (ROC) curves were constructed. These curves depict the
proportions of the response patterns in an aberrant sample that can be
identified at various false positive rates. Of course, it is desirable to
have a high detection rate (i.e., a high proportion of aberrant response
patterns detected) at a lQw false positive rate.

7



Resu Its

Rates of' detection of simulated cheating for tihe low score range are
presented in Table 1 for' the simulated data. From Table 1 it is evident
that simulated cheating on five items per, test was very difficult to detect:
Only 26% of the simulated cheaters were detected by the most sophisticated
analysis when the false positive rate was 5%. The optimal index computed
for the three-parameter logist ic model was able to identify just 25%. Table
1 shows that cheating on 10 items per test was much easier, to identify; for
example, the optimal index for the MFS analysis of polychotomously scored
responses identified 67% of the simulated cheaters at a false positive rate
of 5%. The detection rates were 61% and 60% when the responses were scored
dichotomously and analyzed with MFS and three-parameter logistic optimal
methods.

Table 1 shows that the rion-optimal Qo and F2 indices had detection
rates modestly below the detction rates of optimal indices for
dichotomously scored responses. Their rates of detection rather
substantially trailed the rates provided by the MFS optimal index for
polychotomous scoring.

Table 2 presents results for actual ASVAB response pdtterns that had
been modified to simulate individuals who obtained scores in the 20th
through 24th percentile by cheating. Comparing the results for simulation
data sumtarized in Table 1 to the real data results in Table 2 shows
generally lower detection rates for real data. A word of caution is needed
here: It was not possible to use samples of the size that ensure
ineonsequcrutial sampling fluctuations (say, 4,000 normals arid 2,000
aberrants) from the ASVAB data set. Thus, the numbers contained in Table 2
are subject to rather large sampling errors. Candell and Levine (1989)
provide details about the expected sizes of sampling errors of ROC curves).

Two explanations for the lower, detection rates in 'able 2 are readily
available. First, model misspecif ications of various kinds may have had
detrimental effects. This explanation was examined in Sturdy Two, which was
conducted to evaluate the cornsequences of a variety of misspecifications. A
second explanation of the lower detection rates in Table 2 is that the
normal sample used to determine false positive rates was riot entirely
normal. This sample, which consisted of actual ASVAB response patterns,
might have contained a few truly aberrant response patters. As one check
of this latter hypothesis, the magnitudes of the likelihood ratios for 5%
false positive rates where determined for the normal samples used in tile
simulation analyses and in the ASVAB analyses. Optimal indices were
computed given the (incorrect) assumption that there were 10 spuriously high
responses per test. The likelihood ratios are:

Poly. MFS l)ichot. MFS 311L.

Simulation normal sample 2.10 2.21 2.19

ASVAB normal sample 5.36 4.2A 3.07
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Table 1. Sclected Rates of Detection of Spuriously High Response Patterns
with Total Test Scores in the 20th Through 24th Percentile, Simulation Data

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate lest Optimal Optimal Qo F2 Optimal 2 F2

5 Spuriously Hligh Responses Per Test

.001 V 00 01 00 00 00 00 00
Q 01 01 00 01 02 00 01
MT 01 01 01 01 03 02 02

.01 V 05 04 02 02 05 03 02
Q 07 05 04 04 06 05 05
M']' 10 08 05 06 08 06 07

.03 V 11 10 06 05 10 06 05
Q 14 12 10 11 13 11 11
MT 20 17 12 12 18 15 14

.05 V 15 14 09 09 13 10 09
Q 22 19 16 16 18 17 17
MT 26 24 18 19 25 20 20

.10 V 24 22 19 18 23 21 20
Q 34 30 27 28 30 29 29
MT 42 38 30 31 36 30 30

10 Spuriously lligh Responses Per lest

.001 V 05 04 03 01 03 02 02
Q 04 05 04 04 08 03 04
MT 10 15 10 10 19 11 09

.01 V 17 13 10 06 15 09 07
Q 25 19 17 15 19 18 15
M1', 44 34 25 26 37 26 26

.03 V 28 23 19 14 24 20 17
Q 42 35 32 32 33 31 29
MI 59 51 40 39 52 44 43

.05 v 35 29 24 21 31 27 23
Q 52 45 40 39 43 39 38
MT 67 61 50 49 60 51 50

.10 V 46 41 38 34 42 39 38
Q 67 61 56 55 60 55 55
MT 79 74 64 64 73 64 62
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Table 2. Selected Hates of Detection of' Spuriously High Response Patterns
with Total rest Scores in the 20th Through 24th Percentile, Real Data

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate lesL Optimal Optimal R, F2 Optimal 2. F2

5 Spuriously High Responses Per Test

.001 V 00 00 00 00 00 01 00
Q 02 00 00 01 01 00 00
MT 01 00 00 00 02 00 00

.01 V 04 03 01 00 .02 01 01
Q 03 04 02 03 03 04 05
MI 05 06 02 02 07 01 02

.03 v 10 10 04 02 09 04 02
Q 07 05 05 06 08 08 07
M'r 14 13 06 07 14 10 07

.05 V 14 15 08 04 14 07 03
Q 15 10 11 08 13 11 10
M1T 19 16 15 14 20 17 17

.10 V 26 21 12 12 21 13 11
Q 24 21 21 19 25 24 21
MT 32 33 24 22 31 26 21

10 Spuriously High Responses Per' Test

.001 V 02 02 01 00 01 01 00
Q 08 07 01 06 07 02 05
MT 14 00 00 00 05 00 00

.01 v 08 05 02 00 05 03 01
Q 17 14 15 12 16 20 20
M111 15 16 09 07 22 09 07

.03 V 16 15 09 05 16 10 05
Q 32 27 25 21 32 31 25
I 45 40 22 24 47 29 26

.05 V 28 23 15 07 19 14 07
Q 42 43 34 28 43 37 34
M 52 53 36 36 58 45 43

.10 V 40 37 25 21 32 27 17
Q 52 53 48 44 55 51 47
MI]' 68 68 55 53 66 59 52
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The likelihood ratio is the ratio of the likelihood u' a response
pattern given the model for, aberrant responding--10 spuriously high
responses per test--to the likelihood of the response pattern given the
model for normal responding. A large likelihood ratio indicates that the
model for aberrant responding "explains" the response pattern better than

the normal model. The likelihood ratios shown above imply that the model
for aberrant responding provides a good fit (relative to the model for
normal responding) for more nominally normal ASVAB response patterns than
simulation normal (and hence truly normal) respunse patterns. Note further
that the optimal index is targeted for a specific form of aberrance
(spuriously high responding), unlike goodness of fit indiets such as R. arid
F2 that tukL for any departure from normal responding. Thus, these results
are conristeint with the hypothesis that some ASVAIB vxmirmiets mly have
received coaching.

Detection rates for simulated data with total test scores in the
moderate score range are shown in Table 3. Again it was very difficult to
identify response patterns that had been subjected to the five items per
test spuriously high manipulation. One reason tor this difficulty is tldt
the version of the Levine and Drasgow (1988) algorithm used in this study
makes no assumptions about which items were compromised; all items were
assumed to be equally likely candidates for cheating. It seems likely that
higher detection rates would be obtained if more were known about the
relative likelihood of cheating on each item. For example, if new items
introduced in a test administration or otherwise known to be secure can be
assumed to have zero probability of spurious responses, then detection rates
can be significantly increased by utilizing a more general version of the
Levine and Drasgow algorithni. For another example, if the response options
for some items are reordered because it is suspected that some examinees
have memorized the answer key, the more general Levine arid Drasgow (1988)
algorithm can incorporate this additional information.

Table 3 shows moderate detection rates for cheating on 10 items per
test and high detection rates for cheating on 15 items per test.
Specifically, the best index identified 70% of the cheaters in this latter
condition when the false positive rate was 5%. The detection rates for the
two optimal indices computed with dichotomously scored responses were 62%
and 62%. The non-optimal indices detected roughly 40% at a 5% false
positive rate; the optimal index for polychotomous scoring achieved a
somewhat higher detection rate at a false positive rate of only 1%.

A generally similar, pattern of results was obtained in the analysis of
the actual ASVAB data. Table 14 shows that it is a difficult task to
identify cheating by near average ability examinees on a small to moderate
number, of' items (5 or 10 items). Even the best appropriateness indices

detect no more than 30% of such response patterns at a 5% false positive
rate. These aberrant response patterns are difficult to identify because a

substantial number of items were answered correctly before the spuriously
high manipulation was applied. Thus, the aberrance manipulation does not
produce a par'ticularly unusual response pattern, namely one with several

correct answers to hard items juxtaposed with incorrect ani-w rs to easy
items.
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Table 3. Selected Rates of Detection of Spuriously High Response Patterns
with Total Test Scores in the 50th Through 54th Percentile, Simulation Data

False
Pos. Polychot. MFS Dichot. MFS 3PL
Hate Test Optimal Optimal Q. F2 Optimal t, F2

5 Spuriously High Responses Per Test

.001 V 00 00 00 00 00 00 00
Q 01 01 00 01 01 01 01
MT 01 00 00 00 00 00 00

.01 V 03 03 02 01 03 02 01
Q 04 03 03 03 03 03 03
MTr 05 04 02 02 05 04 03

.03 V 07 07 04 03 08 05 03
Q 09 08 08 06 09 09 00
MI 12 09 07 07 10 09 09

.05 V 10 10 07 05 12 08 05

Q 13 13 10 11 14 12 12
MT 17 15 11 11 16 12 12

.10 V 19 19 14 12 21 15 13
Q 23 22 21 20 23 20 21
MT 28 26 20 19 27 21 21

10 Spuriously High Responses Petr Test

.001 V 01 01 00 U0 01 01 00
Q 03 03 01 01 02 02 01
MT 05 01 02 01 02 01 01

.01 V 07 06 02 01 05 03 01

Q 14 08 07 06 10 10 08
MT 18 12 06 07 14 08 07

.03 V 13 12 06 04 13 07 04
Q 26 20 16 15 21 20 19
MT 32 27 14 15 26 18 18

.05 V 18 17 10 07 18 10 06
Q 32 28 21 21 29 26 25
MT 41 36 21 23 35 24 25

.10 V 28 28 17 14 27 19 15
Q 46 42 36 36 44 37 37
MI 56 52 33 34 49 36 38
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Table 3 (concluded)

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate Test Optimal Optimal 20 F2 Optimal 2. F2

15 Spuriously High Responses Per 'rest

.001 V 07 05 01 00 05 03 00
Q 09 06 03 04 05 06 05
MI 21 08 06 03 07 05 05

.01 V 16 14 05 01 15 u8 01
Q 29 22 17 16 25 20 18
MT 46 33 17 16 36 23 19

.03 v 28 25 11 06 27 14 06
Q 48 39 31 30 41 34 36
MT 62 53 31 30 53 36 36

.05 V 34 30 17 10 34 20 11
Q 56 47 37 38 51 42 42
MT 70 62 40 41 62 44 44

.10 V 46 42 27 20 44 32 23
Q 69 61 52 53 65 53 54
MI' 82 74 54 54 75 57 59
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Table l4. Selected Rates of Detection of Spuriously High Response Patterns
with Total Test Scores in the 50th Through 514th Percentile, Real Data

False
Pos. Polychot. MFS lDjchot. MPS 3PL
Hate lest Optimal Optimal R. F2 Optimal Q. F2

5 Spuriously High Responses Per Test

.001 V 00 00 00 00 00 00 00
Q 00 00 00 00 02 00 00
HT 00 00 01 00 01 00 00

.01 V 00 01 01 01 U2 02 01
Q 03 01 02 01 03 02 02
MT 01 02 02 01 014 04 03

.03 V 02 06 04 02 05 05 u4
Q 08 09 07 06 09 06 06
WT 07 09 06 06 13 07 07

.05 V 07 10 07 06 08 08 06
Q 11 11 11 10 14 12 10
M'r 11 12 11 09 17 12 10

.10 V 16 15 11 10 15 13 09
Q 21 21 20 19 22 20 21
MT 20 24 20 18 23 20 20

10 Spuriously Hligh Responses Per Test

.001 V 00 00 00 00 00 00 00
Q 02 02 00 00 06 01 00
Mr 02 02 00 01 03 01 01

.01 V 01 02 01 00 03 01 00
Q 06 08 05 03 09 05 04
MT' 07 09 06 04 12 08 05

.03 V 06 08 04 03 10 07 05
Q 18 18 14 14 19 13 15
MTr 16 22 12 13 22 14 15

.05 V 12 15 08 06 13 10 07
Q 23 21 20 18 24 21 19
MT' 26 28 19 18 30 20 19

.10 V 22 23 14 10 23 16 11
Q 36 32 31 29 34 31 31
MTI 41 37 29 29 40 33 32
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'able 4 (concludeu)

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate res t Optimal Optimal 2. F2 Optimal k. F2

15 Spuriously High Responses Per Test

.001 V 02 02 02 00 01 03 00
Q 04 04 03 00 10 05 01
MT 08 04 03 02 09 04 04

.01 V 08 08 04 00 08 05 01
Q 20 16 12 07 18 12 10
MT 27 24 14 08 25 18 12

.03 V 16 22 09 04 23 12 08
Q 31 31 24 23 30 24 25
M]' 41 43 25 25 44 28 29

.05 V 27 27 15 09 29 18 10
Q 41 35 33 30 40 34 30
MT 50 53 36 33 54 39 36

.10 V 37 39 24 17 39 26 18
Q 57 51 44 43 53 44 46
9' 65 66 51 50 68 53 52
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The rates of' detection of' response patterns subjected to the 15 item
per test spuriously high manipulation are moderately high. For example,
about 50% of these patterns are detected at a 5% false alarm rate. This
higher detection rate is of course in part due to the severity of the
manipulation. But, an important additional ingredient is that prior to the
spuriously high manipulation the response patterns were indicative of fairly
low ability. Thus, the patterns contained some incorrect answers to easy
items. When the spuriously high manipulation resulted in correct answers to
some of the harder items, detection of the simulated cheating was possible.

Hates of detection are somewhat lower in Table L4 than in Table 3, which
again may be due to one of the forms of model misspecification examined in
Study Two or due to the inclusion of truly aberrant response patterns in the
nominally normal ASVAB sample. Likelihood ratios yielding a 5% false
positive rate were determined for the ASVAB and simulation normal samples
given the assumption of 10 spuriously high responses per test. The
likelihood ratios are:

Poly. MFS Dichot. MFS 3PL

Simulation normal sample 4.10 3.94 3.86

ASVAB normal sample 7.60 5.73 5.17

As with the lower ability range, the likelihood ratios sugeest that some
aberrant response patterns may have been included in the nominally normal
ASVAB sample.

Ill. STUDY TWO
ROBUSINESS OF OPTIMAL INDICES TO VIOLATIONS OF ASSUMPTIONS

Purpose

There are a variety of violations of the optimal indices' assumptions
that could create problems in operational settings. These violations
include:

1. the use of estimated ICCs and OCCs in place of the true ICCs and
OCCs;

2. violations of local independence that surely occur in real data;

3. differences between the assumed ability density in Equation 5 and
the true ability density.

In addition to these three forms of model misspecification, another kind of
misspecification is sure to occur in operational settings. The Levine and
Drasgow (1988) algorithm assumes that the number" of spuriously high or
spuriously low responses on each test is known. However, such information
is not usually available when a test is administered to examinees who may
have been coached In a variety of ways. Thus, a fourth model
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misspeci'ication consists of violations of the assumed number of spurious
responses per, test.

Each of these four, model miaspecificatiois was investigated in Study
Two. In each case, a misspeciried index was computed in addition to the
truly optimal index. Comparing the detection rates of the truly optimal
index to the misspecified index shows the impact of the misspecit'ication.

Method

Item characteristic cutves and option characteristic curves. Although
Study Two was entirely a simulation study, it was desirable to make the
simulation as realistic as possible. For this reason, the very accurate
estimates of item and option characteristic curves were obtained for the
ASVAB items from Study One.

To this end, response patterns I, 3, 5,... were initially selected from
the complete sample, yielding a total of 6,785 patterns. To reduce this
sample to a more manageable size, but still obtain very accur'ate ICC and OCC
estimates, some examinees with average abi]ities were excluded whereas all
examinees with extreme abilities were retained. (Estimation of ICCs arid
OCCs is typically very accurate for moderate ability ranges, but far less
accurate in extreme ability r'anges.) To avoid systematically violating
local independence, response patterns were excluded on the basis of their
scores on the 35 item General Science (GS) test rather than the verbal or
quantitative tests. Response patterns with GS number-right scores of 15,
17, or 19 were deleted. This left a sample of 5,301 patterns, as 503, 518,
and 463 patterns had scores of 15, 17, and 19, respectively.

As in Study One, marginal maximum likelihood estimates of the item
parameters of the three-parameter logistic model were obtained with the
BILOG (Mislevy & Bock, 1984) computer program and non-parametric estimates
of ICCs arid OCCs based on Levine's (1985, 1989a, 1989b) MFS theory were
obtained with the ForScore computer program. Fit plots showed very accurate
modeling of empirical proportions for the multilinear formula scorlng ICCs
and OCCs. Figure 1 shows a typical fit plot; the multilinear formula
scoring estimate of the ICC is given by the dashed line in the upper left
panel; the solid lines in the other three panels show conditional OCCs (OCCs
divided by [1-Pi(.)]) for the three incorrect options.

Samples and analyses. The following general process was used to
evaluate the effects of each of the four forms of misspecification described
above. First, a normal sample of 4,000 response patterns was generated with
the ICCs and OCCs described above. Then (except for the misspecified
aberrance condition) two samples of 2,000 aberrant response patterns were
generated, again with the ICCs and OCCs estimated from the sample of 5,301.
One sample contained normal response patterns that had been subjected to the
10 item per- test spuriously high manipulation, and the other sample
contained patterns subjected to the 10 item per test spUtriously low
manipulation. Four aberrant samples of 2,000 patterns were created for the
aberrance misspecification condition. Here samples were created with 5 and
15 item per test spuriously high manipulations and with 5 and 15 item per
test spuriously low manipulations.
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Figure 1. Fit Plots for an Item Characteristic Curve and Three Conditional
Option. Characteristic Curves Obtained with the ForScore Computer
Program.
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For three of the nispecifications, 0 = I0,,UI was sampled from the
standardized bivariate normal distribution with correlation .7. The
sampling of 0 values in the misspecified ability density condition is
described below. Note that there was no selection of response patterns as
in Study One; all normal and aberrant response patterns were included.

A separate analysis was conducted to evaluate each of the four forms of
misspecification. In each case, correctly specified optimal indices were
computed as well as incorrectly specified optimal indices.

The first form of misspecification consisted of computing optimal
indices with estimated ICCs and OCCs in place of the true ICCs and OCCs. To
examine the effects of this substitution, the multilirear formula scoring
ICCs and OCCs were used to simulate a test calibration sample of 3,000
response patterns. Then multilinear formula scorin~g ICCs and OCCs were
estimated from this sample of 3,000 using the ForScore prugram and three-
parameter logistic ICCs were estimated with the BILOG program. Finally,
optimal appropriateness indices were computed for the normal and aberrant
response patterns described above using the correct ICCs and OCCs as well as
the estimated (from the simulated calibration sample of 3,000) ICCs and
OCCs.

Note that the multilinear formula scuring ICCs and OCCs estimated from
the simulation sample of 3,000 response patterns differ From the simulation
ICCs and OCCs only to the extent of estimation error. In contrast, the
three-parameter logistic ICCs estimated from the sample of 3,000 differ from
the simulation ICCs both because of estimation errors and the fact that the
true ICCs were not exactly three-parameter logistic. It seemud reasonable
to incorporate this latter type of misspecification for the three-parameter
logistic because ICCs are not necessarily correctly modelled by curves in
the three-parameter logistic family.

The second form of mijspecification investigated in Study Two consisted
of violations of local independence. As described previously, item
responses were generated to simulate a two-dimensional test where the two
latent traits had a correlation of .7. The misspecified optimal indices

made the incorrect assumption that the entire item pool of 104 itcis was
unidimensional. Then optimal indices for a single long unidirnensional test
were computed in the misspecification condition; the correctly Specified
multi-test optimal indices were also computed

A misspecified ability density was the third form of misspeci'ication
studied. In earlier research (e.g., Drasgow, Levine-, McLaughlin, & Edrles,
1987), the ability density f(o) in Equation 5 has been taken as the standard
normal. This density is undoubtedly incorrect for a population of examinees
when there has been self-selection or 6ome other selection prior to
administration of the exam (e.g., when recruiters prescreen applicants).

To simulate ability density misspecification, two numbers X and Y were
sampled from a truncated chi-square distribution with 10 degrees of' freedom
(the bottom .01% and top 1.11% of the distribution were discarded since
multilinear formula scoring ICCs and OCCs were def'itiud only Cor Us less than

3 in absolute value). Then 0, was taken as IX - E(X)j/vVar(_X) (i.e., a

standardized version of the truncated chi-square). The dunsity of 0, is
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shown in Figure 2, along with the standard nr.' rral density. 0, was
constructed by first standardizing Y and then computing 0, z aO, + ( -a)z y

where z is the standardized Y and a = .4995 was chosen so that 0, and O,-y - _

had a correlation of .7. Finally, misspecified optimal indices were

computed with the incorrect assumption that (0,,01] was sampled from the
standardized bivariate normal distribution with correlation .7. Correctly
specified optimal indices were also computed.

The final misspecification concerned the number of aberrant responses
made by an examinee. Test administrators ordinarily do riot know how many
item responses might be aberrant. To evaluate the perforniaices of optimal

indices under these conditions, response patterns with 5 or 15 aberrant
responses per test were created, and then the optimal index for 10 aberrant
responses per test was computed as well as the correctly specified optimal
index.

Results

True versus estimated ICCs and OCCs. Table 5 presents selected

detection rates of spuriously high and spuriously low response patterns for

the ICC and OCC misspecification condition. From this table it is evident
that only minimal reduction in detection rates occurred as a result
estimation error. The greatest shrinkage was expected for the polychotomous
MFS analysis; here the detection rates for optimal indices computed for
true and estimated ICCs and OCCs were 85% arid 82% in the spuriously low
condition and 39% and 36% in the spuriously high condition when the false
positive rate was 5%. This small amount of shrinkage clearly indicates that
the effects of the estimation errors obtained with a calibration sample of

3,000 were generally inconsequential.

There is one discrepant value in Table 5: When the false positive rate

was .001, the detection rate for the polychotomous MFS multi-test optimal
index was much lower for, estimated ICCs arid OCCs in the spuriously low
condition. Although this result may be due to errors of' estimation of' the
ICCs and OCCs, it may also be due to the fact that Table 5 presents
empirical detection rates (i.e., the numbers in Table 5 would be different
if we replicated our analysis but used a different seed for the randomi
number generator). The cutting score for classification is determined from
only 4 normal response patterns when the false positive rate is .001; this

cutting score is likely to have considerable sampling error.

Very little decrement ii, Jetection rates is evident in the dichotomous
MFS analysis. This finding corroborates results obtained by Levine,
Drasgow, Williams, McCusker, arid Ihomasson (under review), who Found very
small estimation errors with their "ideal observer" methodology (i.e., an

observer who uses an optimal statistical procedure to distinguish response
patterns generated from true versus estimated ICCs).

Finally, the detection rates for the estimated three-parameter logistic
ICCs are nearly as high as the rates for the dichotomous analysis with the

true multilinear formula scoring ICCs. From this finding it appears that
the Joint effects of estimation errors and departures from the three-
parameter logistic parameter form were generally inconsequential. Note,
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Figure 2. Density Functions of the Resealed Chi-Square Distribution with
Ten Degrees of Freedom and the Standard Normal Distribution.
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Table 5. Selected Rates of Detection of Aberrant Response Patterns by the
Likelihood [atio Evaluated with True and Estimated Item Parameters

False
Pos. Polychot. MFS Dichot. MFS 3PL

IHatr ;'C , True Est. True Est. Est.

10 SpuriousJy Low Responses Per Test

.001 V 29 26 23 22 19

Q 18 13 06 06 07
MT 41 16 23 25 20

.01 V 56 51 38 38 38

Q 28 27 13 11 15
MT 69 64 47 47 43

.03 V 68 65 52 52 51
Q 40 37 23 23 22

MT 80 76 59 58 59

.05 V 75 73 59 58 57

Q 48 46 29 28 28
M1T 85 82 66 65 64

.10 V 85 84 71 70 69

Q 63 60 40 39 37
M'r 91 90 77 76 75

10 Spuriously High Responises Per Test

.001 V 02 02 01 01 02

Q 03 02 02 02 03
MT 05 05 03 05 04

.01 V 07 07 06 06 06

Q 12 12 09 10 10
MT1 19 18 13 13 14

.03 V 14 14 12 12 13

Q 24 22 19 19 18
MT 32 29 25 24 25

.05 V 19 18 17 15 18
Q 31 28 26 26 23
MT 39 36 31 30 32

.10 V 30 28 27 26 27
Q 43 40 39 37 36
, i 50 46 43 43 45
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however, that the detection rtes for both dichotontwus analyses fall short
of the polychotomous model detection rates. These differences are
especially large for the spuriously low response patterns.

Dimensional ity misspeci ficatiorn. Table 6 presents resuts for. the
misspecification condition in which two-dimensional item responses are
analyzed with a one-dimensional model. Results for the correctly specified
multi-test analyses are given beneath the column1s headed MT.

Substantial drops in rates of detection of both spuriously high and
spuriously low response patterns are apparent for, all three types of
analyses. For example, when the false positive rate is 3% there was a 17%
decrease in the rate of detection of spuriously low response patterns by the
polychotomous MFS analysis (i.e., 80% detection in the correct analysis
versus 63% in the misspecified analysis) and there were 18% decreases for
the dichotomous MFS analysis and the three-parameter logistic analysis. A

similar pattern of results occurs for the spuriously high response patterns.

The detection rates shown in Table 6 indicate that optimal
appropriateness measurement is affected by serious violations of
unidimensionality. Specifically, it is clear that detection rates are
markedly decreased by combining the simulated verbal and quantitative tests
and then performing a unidimensional analysis. This finding underscores the
importance of earlier research that developed optimal multi-test
appropriateness indices (Drasgow, Levine, & McLaughlin, in press; Levine, in
preparation).

Misspecified ability densities. Table 7 presents the results for the
response patterns created with ability parameters obtained from truncated

chi-square distributions but analyzed with the incorrect assumption that the

ability distribution was bivariate normal. A very high degree of robustness
to this form of misspecification can be seen in Table 7 for all item
response models and both types of aberrant response patterns.

The robustness to ability density misspecifications is a result of the
equations for the marginal likelihood of' a response pattern given in
Equations 3 and 4. From these equations it can be seen that the marginal
likelihood is the integral of the product of the conditional likelihood of
the response pattern and the ability density. For tests of moderate length
or longer-, the ability density is ordinarily very flat in relation to the
conditional likelihood. For, example, the maximum of the normal density is
about eight times larger than the minimum density on the interval [-2, 21.
In contrast, the maximum of the conditional likelihood may be 10"' or even
10' ° times larger than its minimum on the same interval (Levine & Drasgow,
1988, p. 170). Consequently, the value of the integral is determined
primarily by the conditional likelihood function for tests as long as the
verbal and quantitative tests simulated here.

Incorrect specification of the number of aberrant responses. The
results for, the final form of misspeciflcatlon are given in Table 8. Here
response patterns were generated with either 5 or' 15 aberrant responlses per
test generated; optimal indices were then computed with the correct
assumption about the number of aberrant responses or analyzed with the
incorrect assumption that 10 item per test were aberrant.
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Table 6. Selected Hates of Detection of Aberrant Response Patterns by the
Likelihood Ratio with Correct arid Incorrect Assumptions about Dimensionality

False
Pos. Polychot. MFS Dichot. MFS 3PL
Hate MT One Test MT One Test MT One Test

Data Generated with 10 Spuriously Low Responses Per Test

.001 41 11 23 05 24 05

.01 69 47 47 20 43 19

.03 80 63 59 41 54 36

.05 85 73 66 51 62 46

.10 91 85 77 67 73 62

Data Generated with 10 Spuriously High Responses Per Test

.001 05 00 05 02 05 00

.01 19 04 15 05 16 04

.03 32 14 25 13 25 13

.05 39 22 32 20 32 20

.10 50 36 46 32 46 33
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'Table 7. Selected Rates of Detection of Aberrant Response Patterns by the
Likelihood Ratio Evaluated with Correct and Misspecified Ability Densities

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate 'rest Correct Misspec. Correct Misspec. Correct Misspec.

10 Spuriously Low Responses Per Test

.001 V 31 31 20 19 19 18
Q 13 11 04 u3 04 04
KM' 38 42 20 19 22 20

.01 V 53 54 35 34 35 35
Q 26 26 10 10 12 11
MT 66 67 43 41 43 42

.03 V 64 64 49 49 48 47
Q 40 39 19 19 21 19
KI 81 80 58 57 57 56

.05 V 73 74 56 57 56 54
Q 48 47 24 25 27 26
MIT 86 86 67 64 66 64

.10 V 83 83 70 69 68 67
Q 61 61 38 38 40 39
MT 94 93 78 78 77 77

10 Spuriously High Responses Per 'rest

.001 V 02 00 02 02 U1 01
Q 02 01 02 01 01 01
MT 05 00 02 01 03 03

.01 V 08 07 07 06 05 05
Q 11 08 11 08 10 10
K' 18 14 14 12 13 12

.03 V 15 15 14 14 11 11
Q 22 21 21 20 21 19
MIT 31 28 28 26 24 26

.05 V 21 21 18 18 17 17
Q 32 30 28 26 26 26
MT 39 38 34 33 31 30

.10 V 31 31 28 27 26 25
Q 44 42 40 4u 38 36
M[' 54 52 49 48 46 45
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Table 8. Selected Rates of Detection by the Likelihood Ratio with
Correct and Incorrect Specifications of the Number of Aberrant Responses

False Polychot. MFS Dichot. MFS PL
Pos. Aberr. Assumption Aberr. Assumption Aberr. Assumption
Rate Test 5 10 15 5 10 15 5 10 15

Data Generated with 5 Spuriously Low Responses Per Test

.001 V 19 17 08 07 07 06
Q 09 04 01 00 02 01
MTr 18 15 11 05 09 05

.01 V 32 27 21 16 19 15
Q 15 12 07 06 08 06
MT 41 31 26 17 25 17

.03 V 44 37 32 26 29 23
Q 23 21 12 10 13 11
MT 53 44 37 28 33 26

.05 V 51 43 39 33 35 29
Q 29 27 16 15 17 14
MT 59 51 42 35 40 32

.10 V 62 57 49 42 48 42
Q 39 37 25 22 26 23
M' 68 64 54 48 52 45

Data Generated with 15 Spuriously Low Responses Per Test

.001 V 45 45 22 26 23 28
Q 19 23 06 07 09 09
MT 53 57 25 31 31 34

.01 V 65 69 48 52 43 48
Q 41 42 18 21 20 19
MT 83 87 60 65 53 56

.03 v 81 83 64 66 58 61
Q 55 58 32 32 28 30
Mr 91 92 72 75 67 69

.05 V 86 87 70 73 67 69
Q 65 67 39 39 37 38
MTl 94 94 79 80 75 78

.10 V 93 93 82 84 79 80
Q 76 77 51 54 48 50
MT 97 98 89 91 86 87
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Table 8 (concluded)

False Polychot. MFS Dichot. MFS 3PL
Pos. Aberr. Assumption Aberr. Assumption Aberr. Assumption
Rate Test 5 10 15 5 10 15 5 10 15

Data Generated with 5 Spuriously High Responses Per Test

.001 V 00 00 01 01 00 00
Q 00 00 00 01 00 00
M'' 00 00 01 01 00 00

.01 V 03 03 03 03 03 03
Q 05 04 04 04 04 04
Kr 07 06 07 06 05 05

.03 v 08 08 08 08 06 06
Q 11 10 10 08 10 08
MI' 15 13 13 11 12 11

.05 V 12 12 11 11 10 10
Q 15 14 13 13 14 13
MT 19 18 16 16 17 15

.10 V 22 20 19 19 17 17
Q 24 22 24 22 22 21
MT 30 27 28 26 27 24

Data Generated with 15 Spuriously High Responses Per Test

.001 v 05 06 03 04 03 04
Q 09 12 03 11 07 07
MI'J 11 07 06 14 09 10

.01 V 13 14 09 09 12 13
Q 24 26 16 19 16 20
K1' 35 37 23 27 26 29

.03 V 22 22 17 16 21 21
Q 39 40 28 31 27 31
MT 48 51 38 41 38 41

.05 V 28 30 22 23 26 27
Q 45 48 37 38 35 39
M1T 55 59 46 48 44 48

.10 V 40 42 35 35 36 36
Q 56 60 51 52 49 52
Kr 68 72 59 60 58 62
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Surprisingly modest drops in detection rates were obtained for this
form of misspecification. An examination of Table 8 indicates that the
least robustness occurred for the response patterns generated with five
spuriously low responses per test. At a 5% false positive rate, the drops
in detection rates were just 8% for the polychotumous MFS model, 7% for the
dichotomous MFS model, and 8% for the 3PL model.

Although further analyses would be needed to corroborate this
observation, it appears from Table 8 that a greater degree of robustness is
obtained when a response pattern is analyzed with a misspecified number of
aberrant responses that is smaller than the actual number of aberrant
responses. The converse analysis, in which the misspecified number of
aberrant responses is larger than the actual number of aberrant responses,
yielded somewhat larger drops in detection rates.

IV. CONCLIJSIONS AND DISCUSSION

The major purpose of the research described in this paper was to

explore the possibility of using optimal appropriateness indices to address
practical testing problems. To this end, it was shown that existing

algorithms for evaluating optimal indices could be tailored for a specific
problem (i.e., testing the hypothesis that a response pattern with a total

test score in a narrow range was obtained honestly or dishonestly) and
evaluated the performance of the resulting optimal test. An interrelated
set of simulations was also conducted to examine the robustness of optimal
tests to violations of assumptions.

There can be little doubt that some examinees may be tempted to cheat

when valued outcomes are contingent upon obtaining a test score exceeding
some cutoff value. Moreover, the use of cutoffs to determine allocation of
valued outcomes is very common: recruitment bonuses, minimum qualification
for military enlistment, professional licensing (e.g., nursing, attorney's
bar examinations), certification, and state and local public sector hiring.

A way that test administrators can combat cheating has been described
in this paper. The statistic given in Equation 8 provides a most powerful
test of the hypothesis that an examinee obtained a score barely exceeding
some cutoff by honest means against the alternative hypothesis that the
barely passing score was obtained by cheating on k items. Of course, the
optimal appropriateness index cannot replace careful proctoring during exam
administration, routine replacement of old test forms with new test forms,
and other security measures. Nonetheless, it does give the test
administrator an additional method for identifying cheating. Moreover, test
takers may be dissuaded from attempting to cheat if they know that their
responses will be examined for indications of cheating.

Tables I through 4 give rates of detection of simulated cheaters who
obtained scores in a moderately low (20th through 24th percentiles) or Just
above average (50th through 54th) score ranges. The results given in these
tables provide news that Is both bad and good. The bad news Is that it is
very difficult to distinguish between normal response patterns with test
scores in a narrow score range and patterns from examinees who cheated on a
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few items (5 or 10 per test) in order to obtain test scores in the same
range. This resuIt is not too surprising because some of the honest
examinees obtained test scores in the given score range by chance rather
than merit. Specifically, consider a plot of the frequency distribution of
0 or true score for people with observed scores between, say, the 50th and
54th percentiles for some unidimensional test. We would observe many people
with Os or" true scores that fall outside the 50th through 54th percentiles.
The point is that restricting observed scores to lie within some percentile
range does not guarantee that Os or true scores will fall in the same

percentile range. Some lower ability examinees obtained test scores in the
score range because they were lucky and some higher ability examinees
obtained test scores in the score range because they were unlucky.

Given just a response pattern, the effects of "luck" (i.e., a few extra

correct responses) and the effects of cheating on a few items (again, a few
extra correct responses) are very difficult to differentiate. Some of the
cheaters have Os in or even above the percentile range. Others have Os just

below the percentile range and would therefore have close to a 50% chance of
obtaining an observed score in the percentile range if they were retested
with a different test form. In sum, there is little practical need to
identify cheaters with Os that are close to or in the percentile range,

although ethical and policy considerations may deem otherwise.

Turning now to the good news from Study One, Tables 1 through 4 show

that it is possible to identify simulated cheating on a relatively large
number of items. For the lower, test score range, reasonably high rates of
detection were obtained with simulated cheating on 10 items per test.
Fairly good detection rates were also obtained with cheating on 15 items per

test for the just-above-average score range. Identifying individuals who
cheat on a large number of items is particularly important because these
people have Os that are far below noncheaters.

The results obtained in Study Two clearly suggest that optimal
indices can be used effectively in applied settings. Only one form of model
misspecification substantially decreased detection rates. This type of
misspecification would occur if a test administrator were to combine a
verbal test and a quantitative test and treat the composite as a long
unidimensional test. Such an event, perhaps based on the argument that
typical paper-and-pencil tests are "highly g saturated," would seriously

undermine attempts to identify aberrant response patterns. Instead, multi-
test optimal appropriateness indices (Drasgow, Levine, & McLaughlin, in
press) should be computed because they provide far" more effective
identification of aberrance in the context of a battery of several
unidimensional tests.

Three other forms of misspecification were found to have little or no
effect on detection rates in Study Two. Perhaps the most important of these
three types of misspecification concerns item parameter estimation errors.
In a practical setting, there is never access to the "true" item parameters;

at best there are only item parameters estimated from data provided by a
large and representative sample. Table 5 shows that there was little
decrement in detection rates due to estimation errors for, either MFS
estimation or 3PL estimation. These results corroborate and extend earlier
research on MFS estimation via the ForScore computer program (Drasgow,
Levine, Williams, McLaughlin, & Candell, In press; Lim et al., 1989;
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Williams & Levine, 1984, 1986) and 3PL estimation with the BILOG computer
program (Levine et al., under review; Lim & Drasgow, in press; Mislevy,
1986; Mislevy & Stocking, 1989). It was thus concluded that estimated item
parameters can be used effectively in place of the true parameters, provided
that the estimates were obtained from a large, representative sample.

Table 7 shows that even a rather badly misspecified ability density has
little effect on detection rates, at least for tests of the length simulated
in Study Two (50 and 54 items) and the one ability density in this study.
This result is convenient because it means that test administrators do riot
need to be concerned with density estimation. Misspecified ability
densities may have a significart effect on shorter tests where the ability
density exhibits considerable variation relative to the likelihood function.
In such cases it may be necessary to estimate the ability density (see, for
example, Levine, 1989a; Mislevy, 1984; or Samejima, 1981).

The final form of misspecification concerned the number of aberrant
responses. Table 8 presents the surprising result that an analysis assuming
10 spuriously low responses per test for response patterns that actually had
5 or 15 .puriously low responses per test was almost as effective as the
truly opLimal analysis. A similar finding was obtained for spuriously high
responses. These results provide a contrast between longer, paper-and-
pencil tests and short computerized adaptive tests (CATs): Candell and
Levine (1989) found larger drops in detection rates when the number of
aberrant responses was misspecified on a 15 item CAT.

The results from Studies One and Two lead to the following suggestion
for the use of appropriateness measurement in an applied setting. First,
the test administrator should make a Judgment about the minimum number k of
spuriously high or spuriously low responses that is needed in order to
constitute a nontrivial practical problem. An optimal appropriateness
index could be computed assuming k aberrant responses, perhaps using
existing algorithms and software. Finally, "esponse patterns with index
scores that exceed a threshold associated with some acceptable false
positive rate could be flagged, and the examinees retested.

Implicit in the above suggestion is the need for item parameters
estimated from a large and representative sample. The suggestion also
builds on the misspecification analyses that found ability density
misspecification to be unimportant and found robustness to misspecification
of the number of aberrant responses.

Finally, the utilization of appropriatetiess indices, perhaps in the
manner outlined above, would be expected to improve the quality of a testing
program. It would allow identification of same response patterns with
modest degrees of aberrance and effective detection of patterns with
substantial degrees of aberrance and might thereby deter cheating. It would
provide individual test takers with some assurance that their aptitudes had
been accurately measured. For these reasons it is reconmended that testing
programs seriously consider implementing appropriateness measurement.
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