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SUMMARY

The military services have a vital concern in assuring that aptitude
test scores used for enlistment selection and classification are appropriate
measures of applicants' true abilities. Substantial bonuses have been paid
to examinees with sufficiently high scores as enticements to enlist into
selected occupations. Also, failures in the services' training schools due
to a lower aptitude than that necessary for successful completion cost
thousands of dollars per individual. Therefore, cheating to improve scores
on an enlistment test is a threat to the integrity of the services'
selection and training systems. The goal of appropriateness measurement is
to identify individuals who have not been accurately assessed by a multiple-
choice test and, therefore, preserve the integrity of the test.

This effort investigated the utility of several appropriateness indices
in identifying cheaters who were very low or who were just below average in
verbal and quantitative aptitudes. The amount of cheating was 5, 10, or 15
items on tests of approximately 50 items in length. Real data as well as
data simulated to maximize realism were used in the investigation. Low
rates of identification were obtained for cheating on 5 items. This was
expected because on an item for which an examinee does not know the right
answer, it is very difficult to distinguish a correct response due to
cheating from a correct response due to a lucky guess. A small number of
lucky guesses is not unusual. Reasonably high rates of identification were
obtained when cheating occurred on 15 items.

The above findings were based on (a) the sample having a normal ability
distribution, (b) known probabilities of correct responses, (c¢) cheaters
having a fixed and known number of compromised items, and (d) a complete
knowledge of which test items were verbal and which were quantitative. Some
appropriateness indices worked reasonably well when actual examinee
responding deviated from the first three conditions. Condition d cannot be
violated; however, it is not necessary to develop a separate appropriateness
measure for verbal and for quantitative aptitudes. A method for extending
appropriateness measurement to two aptitude areas has already been developed
and can be used when the items belonging to each aptitude area are
designated.

It is concluded that the utilization of appropriateness indices for
identification of examinees for retesting would be expected to improve the
quality of a large testing program.
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PREFACE

This effort was accomplished under Project 2922, Prototype Development
and Validation of Selection and Classification Instruments. It represents
the continuing effort of the Air Force Human Resources Laboratory to fulfill
its research and development responsibilities through development and
application of state-of-the-art methodologies in the area of enlisted
selection and classification.
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1. INTRODUCTION

Standardized psychological tests are administered to tens of milliouns
of examinees per year. One test, the Armed Services Vocational Aptitude
Battery (ASVAB), is administered to approximately 2.5 million examinees
annually. The scores that result from standardized tests affect the lives
of examinees by opening and closing doors to training programs, employment,
and education,

Appropriateness measurement was proposed by Levine and Rubin (1979) as
a means for identifying individuals who have been mismeasured by a
standardized test. A general approach to specifying statistically optimal
methods for this task was recently presented by Levine and Drasgow (1988).
Their approach can be used to determine appropriateness indices that are
optimal in the sense that no other statistic computed from the same data can
provide higher rates of detection of the specified testing anomaly at the
same false positive rate.

Drasgow, Levine, and McLaughlin (1987, in press) and brasgow, Levine,
McLaughlin, and Earles (1987) compared optimal appropriateness indices to
earlier, nonoptimal indices described by Drasgow, Levine, and Williams
(1985), Kudner (1983), Sato (1975), Tatsuoka (1984), and Wright (1977). For
unidimensional tests, they found that the best nonoptimal indices sometimes
provided rates of detection of aberrant response patterns that were almost
as high as the rates of optimal indices. In other cases, the best
nonoptimal indices were far less powerful than optimal indices. Multi-test
extensions of the nonoptimal indices were found to be less effective
relative to multi-test optimal indices for a test battery consisting of two
unidimensional tests. In this case, nonoptimal indices rarely provided
rates of detection that were close to the detection rates of optimal
indices.

A number of difficulties and uncertainties have limited applications of
optimal appropriateness indices. 7To date, formulas for optimal indices have
been derived for only a few types of mismeasurement. Some of the formulas
that have been derived are quite complex. A considerable investment of time
and effort has been necessary to develop and program algorithms for
evaluating the complex formulas. Very little is known about the robustness
of optimal indices to violations of their underlying assumptions.

The research reported here was conducted in response to these problems.
In Study One, existing software was used to test specific hypotheses with
optimal indices. The performance of optimal indices was evaluated and
compared to nonoptimal indices. Study Two examined the robustness of
optimal indices to four different violations of assumptions. Specifically,
multidimensional item responses were analyzed with a unidimensional model,
estimated item characteristic curves (ICCs) and option characteristic curves
(OCCs) were used rather than the true ICCs and OCCs, ability parameters were
sampled from a distribution related to the chi-square distribution with 10
degrees of freedom but optimal indices were computed assuming that ability




was normally distributed, and optimal indices were computed for torms of
aberrance (e.g., cheating on 20% of the test) that did not match the way
aberrance was simulated (e.g., cheating on 30% of the test).

Appropriateness Indices

The primary focus of the research described in this paper is the
evaluation of optimal appropristeness measurement. In the next subscction,
a brief summary of optimal! indices is provided; references to articles
containing technical details are also given. [Kesults for two non-optimal
appropriateness indices were also obtained in Study One. ‘The first of these
two indices is the standardized %, index, which was descrited by Drasgow et
al. (1485). 'The second non-optimal index, F2, is a standardized fit
statistic given by Rudner (1983).

Optimal appropriateness indices. Levine and Drasgow (1988) shuwed that
a most powerful appropriateness index for a given form of aberrance on a
unidimensional test is the likelihood ratio (LR) statistic

LAberrant(U)
LH:T——_—T]—)— (1)
—Normal
Here I {u) denotes the likelihood of a vector ob n item responses u =
—Aberrant n
(4yy vy ooy u dogiven a specified form of aberrance and LNOPmdl(U) denotes

the likelihood of u given the model of normal responding.

o . R .
o illustrate LNorma](U) and EAberrant

respouses are scored dichotomously, the test is unidimensional, gi(e) is the

(u), assume that the jtem

probability of a correct response to item i by normal examinees with
ability 0, and the ability density is f(8). Then the conditional likelihood
of uis

n u; l-ui
Pnormay (U190 = IT] k(o) (1 - k(o) (2)
and the marginal likelihood is
[%mmd“u):flhmmm(MOUXMQO. (3)
Levine and Drasgow (1988) showcd that EAberranL(u) cdn also be computed as




(u) =1 P (ule)f(e)de (4)

EAberrant —Aberrant

and presented methods that allow P (u|®) to be computed fairly

Aberrant
easily. A very efficient method for approximating the quantity in Equation
4 was devised by Levine (in preparation; see Drasgow, Levine, & McLaughlin,
in press, for an application). Although Levine's approximation was
developed in the context of a multidimensional test battery, it can also be
used for unidimensional tests.

For a composite of two unidimensional tests, the likelihood is

I P(U1 = u1l91) P(U2 = u2|92) £(0)do, (5)

where P(UJ = uJIGJ) is the likelihood of the QJ item responses uJ on test j,

J = 1,2, under either the normal or aberrant model. An interesting feature
of Levine's approximation for either the unidimensional (Equation 4) or
multidimensional (Equation 5) case is that the one- or two-dimensional
integrals are evaluated without quadrature, thereby avoiding extremely
intensive computations,

I1T. STUDY ONE
TESTING SPECIFIC HYPOTHESES

Purpose

Suppose a test administrator has the answer sheets from a set of
examinees whose test scores just barely exceed a minimum threshold required
to be hired, promoted, or admitted to a training program. Further, suppose
it is known that some examinees earned their test scores honestly, while
other examinees obtained the answers to some items prior to the exam and
thus obtained passing scores by cheating. The task of the test
administrator is to use each examinee's pattern of item responses to
determine whether a passing score was obtained honestly.

Likelihood ratio

The test administrator should use the likelihood ratio given in
Equation 1 to decide whether a passing score was obtained honestly because
no other statistic computed from the item responses provides more accurate
classification. To apply Equation 1 to the problem faced by the test
administrator, gNormal(U) would be interpreted as the likelihood of a

response pattern u given that the examinee was responding honestly and
EAberrant(U) would be interpreted as the likelihood of u given that the

examinee was cheating. Stated simply, the likelihood ratio of Equation 1
compares the likelihood of u assuming that the examinee was cheating to the




Iikelihood o u assuming that the examinee was honest; a large likel ihood
ratio sugpusts that the examinee was in fact cheating.

For the test administrator to use kEguation 1, there must be an explicit
means for evaluating its numerator and denominator. 1o tris subsection, it
IS shown how caisting soltware can be ased for this purpuse.

A et from clementary probability can be used to simplify the task of
evaluating kquation 1. Specifically, suppose a set A is a subset of set B.
‘Then

POATB) = P(A)/P(B). (6)

Equation b can be Jerived rrom the usual formula for conditional probability
P(AIB) = (A and B)/P(B) because P(A and B) = P(A) when A is a subset of B.

Let « denote the rangu ol tust scores that are sub ject to the test
administrator's scrutiny. For exzample, w might consist of the set of test
scores that tall into the 50th to 54th percentiles. In addition, let X be
the function that maps item rcsponses into test scores. If number right
scoring is used, for example,

Xu) = uy o Uy * eev b U

Let u® be a given sequence of responses such that X(u®) is in w. With
this notation, we can write the likelihood ratio that must be evaluated
by the test administrator as

-ult D
EAbermnt(u‘u [X(u) is in w)

LiCu®) = -3 - T (17)
LNOrmdl(u-u [X(u) is in w)
Applyiny bkquation 6 to Equation 7 produces
’ Ry P , Co
Lit(u®) = Paberrant YUY Laperpan KW s Tnw)
o Top # ———
—Nor‘mal(u“u )/ ENopma](l(u) is in w)
»
} EAberran&iy:“_l - 8)
i (u:u®) =

ENormal

where K is a constant and thus can be ignored by the test adwinistrator. Of
course, this formula (and the specific k) is valid only for patterns u® with

l




X(u®) in w. For such u*%, (uzu®*) can now be evaluated by Equations 2
and 3, and EAber‘r‘ant

described by Levine and Drasgow (1988) and Drasgow, Levine, and MclLaughlin
(in press).

p
—Normal
(u) can be evaluated by Equation 4 and the methods

Method

Overview. A study was conducted to examine the performances of optimal
and non-optimal appropriateness indices on the task faced by the
hypothetical test administrator. Both real and simulated data were analyzed
in the study. The results obtained from the analysis of simulated data
provide information about the performance of appropriateness indices under
idealized conditions where all model assumptions are satisfied; the analysis
of real data provides information about the indices' performances in
operational conditions.

Data were generated to simulate normal responding to a test battery
consisting of a test of verbal ability (V) and a test of gquantitative
ability (Q). In addition, data from presumably normal examinees responding
to verbal and quantitative tests were analyzed. Response patterns with
total test scores (V+Q) falling into two score ranges (20th through 24th
percentiles and 50th through 54th percentiles) were selected. Compromise
samples were formed by modifying either simulated response patterns or
actual response patterns to simulate individuals who obtLained total scores
in the two score ranges by cheating. Appropriateness indices were computed
for all response patterns, and rates of identification of the simulated
cheaters were determined at various false positive rates.

The real data set, item characteristic curves, and option
characteristic curves. The real data used in this study were from a sample
of 13,571 examinees who responded to the ASVAB, version 17A, under
operational conditions. To estimate item parameters, 3,392 examinees were
chosen by selecting examinees 1, 5, 9, ... 13,569. A verbal test of 50
items was formed by combining the 35 item Word Knowledge test and the 15
item Paragraph Comprehension test. A quantitative test was formed by
combining the 30 item Arithmetic Reasoning test and the 25 item Mathematics
Knowledge test. The quantitative test contained 54 items after one
Arithmetic Reasoning item was deleted because it was very easy (its item
difficulty parameter was not accurately estimated).

Three-parameter logistic item characteristic curves were estimated by
the method of marginal maximum 1likelihood with the BILOG (Mislevy & Bock,
1984 ) computer program. Non-parametric estimates of ICCs and option
characteristic curves based on Levine's (1985, 1989a, 1989b) Multilinear
Formula Score (MFS) theory were obtained using the ForScore computer program
(Williams & Levine, in preparation). Additional details about the non-
parametric estimates were given by Lim, Williams, McCusker, Mead, Thomasson,
Drasgow, and Levine (1989). The estimated three-parameter logistic ICCs and
the estimated non-parametric Ivis and OCCs were used in all subsequent
analyses of the real data.

To maximize the realism of the simulation portion of this study, ICCs

and OCCs that had been estimated from the ASVAB data set were used as the
"true" (i.e., simulation) ICCs and OCCs rather than an arbitrarily specified
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set ol Item pavameters.  This choltee of [CCs and OCCs incruases the
comparability of the results obtuined from the simulation and real data.

ltem response medels.  In the portion of Study One that analyzed the
actual ASVAB data, examinevs' item responses were scored either
dichotomously or polychotomously, and appropriateness indices were computed
with either the three-parameter logistice ICCs or multilincar turmula scoring
ICCs and OCCs. Specifically, appropriateness indices were computed with the
following item scoring and item response models:

1. dichotumously scored responses analyzed with three-parameter
logistic 1CCs;

ro

dichotomously scored responses analyzcd with multilinear formula
scoring ICCs;

3. polychotomously scored responses analyzed with multilinear furmula
scoring ICCs and OCCs.

For the simulation portion of Study One, data were generated for each
of the three conditions listed above (e.g., three-parameter logistic 1CCs
were used Lo guncrate dichotomous item responses). Appropriateness indices
were then computed with the model used to generate each sampl.:, which
yielded analyses of simulated data that were parallel tu the analyses of
real data.

Percenciles. The following procedure was ased to determine the total
test scores corresponding to the 20th, 24th, 50th, and 5U4th percentiles for
Study One. First, the estimated three-parameter logistic [CUs were used to
generate 100,000 response patterns by the process for simulating normal
response patterns (see below). Next, number-right scores were computed for
each simulated verbal and Juantitative test. Number-right scores on these
two tests were then separately standardized and a total scure was computed
as the sum of the two standardized scores. Finally, the frequency
distribution of the total score was tabulated and used to determine the
values of the total test score association with specific percentiles,

Simulated normal responsc patterns. For each of the three iten
response models listed above, a simulated normal response pattern (i.e., a
non-cheatur) was created by sampling @ = [0,, 6,] from the standardized
bivariate normal distribution with correlation .7. 0, was used with the
simulation 1CCs and OCCs for the verbal test to generate locally independent
item responses. Similarly, 8, was used to generate locally independent item
responses tor the quantitative test, Response patterns were repeatedly
generated until 4,000 simulated examinees were collected for the low score
range (20th through 24th percentiles) normal sample and tor the moderate
score range {50th through 54th percentiles) normal sample.

Real normal response patterns. Real normal response patterns were
obtained by first selecting each response pattern that was not included in
the sample used to estimate ICCs and OCCs (i.e., response patterns were
taken from the magnetic tape containing 13,571 response patterns, but the
3,392 patterns used for item culibration were excluded). Next, a total test
score was computed for each response pattern in the manner described
previously. Hesponse patterns with total test scores in either the tow

6




score range or the moderate score range were then written to separate files,
A total of 480 response patterns had total test scores in the 20th through
24th percentiles and 533 response patterns had total test scores in the 50th
through Si4th percentiles.

Spuriously high manipulation applied to simulated data. Cheating was
simulated by first generating a normal response pattern and then rescoring k
item responses to be correct, regardless of the original response. The
rescored items were randomly selected for each response pattern, and so
Levine and Drasgow's (1988) method for evaluating P (u) could be

Aberrant
applied directly.

Response patterns were generated with 5, 10, or 15 items per test
rescored to simulate cheating. This process was continued until 2,000
resporise patterns with tectal scores in the low score range and moderate
score range were collected. An attempt was made to generate 18 samples by
factorially crossing the three item response models, the three levels of
simulated cheating (5, 10, or 15 items per test), and the two score ranges
(20th through 24th percentiles and 50th through 5lUth percentiles); however,
the 15 item spuriously high manipulation consistently produced response
patterns with total scores that exceeded the 24th percentile. Consequently,
it was possible to obtain only 15 spuriously high sampies.

Spuriously high manipulation applied to real data. Only response
patterns not used for item calibration and not in either normal sample were
subjected to the spuriously high manipulations. The 5, 10, and 15 item
spuriously high manipulations were applied to each of these response
patterns, and a response pattern was selected if its total score fell in
either the low or moderate score ranges. A total of 524, 635, and 654
response patterns were obtained for the moderate score range in the 5, 10,
and 15 item spuriously high conditions. For the low score range, 408 and
31" response patterns were obtained in the 5 and 10 item conditions. Again, i
the 15 item spuriously high manipulation produced response patterns with *
test scores above the 24th percentile,

Analysis. Optimal appropriateness indices were computed for the
samples of simulated and real normal response patterns using the Levine and
Drasgow (1988) algorithm for spuriously high responding to 5, 10, and 15
items per test. Correctly specified optimal indices were always computed;
for example, the optimal index for 10 spuriously high responses per test was
computed for aberrant response patterns that had been subjected to this
manipulation. The non-optimal indices were also computed for each normal
and aberrant sample.

After computing appropriateness indices, receiver operating
characteristic (ROC) curves were constructed. These curves depict the
proportions of the response patterns in an aberrant sample that can be
identified at various false positive rates. Of course, it is desirable to
have a high detection rate (i.e., a high proportion of aberrant response
patterns detected) at a law false positive rate.




Results

Rates of detection of simulated cheating tor the low score range are
presented in ‘lable 1 for the simulated data. From Table 1 it is evident
that simulated cheating on t'ive items per test was very ditficult to detect:
Only 26% of the simulated cheaters were detected by the most sophisticated
analysis when the false positive rate was 5%. The optimal index computed
for the three-parameter logistic model was able to identify just 25%. Table
1 shows that cheating on 10 itums per test was much easier to identify; for
example, the optimal index for the MFS analysis of polychotomously scored
responses identified 67% of the simulated cheaters at a false positive rate
of 5%. The detection rates were 61% and 60% when the responses were scored
dichotomously and analyzed with MFS and three-parameter logistic optimal
methods.

Table 1 shows that the non-optimal %, and F2 indices had detection
rates modestly below the detection rates of optimal indices for
dichotomously scored responses. 'Their rates of detcction rather
substantially trailed the rates provided by the MFS optimal index for
polychotomous scoring.

Table 2 presents results for actual ASVAB respouse patterns that had
been modified to simulate individuals who obtained scores in the 20th
through 24th percentile by cheating. Comparing the results for simulation
data summarized in Table 1 to the real data results in Table 2 shows
generally lower detection rates for real data. A word of caution is needed
here: It was not possible to use samples of the size that ensure
inconsequential sampling fluctuations (say, 4,000 normals and 2,000
aberrants) from the ASVAB data sct. Thus, the numbers contained in Table 2
are subject to rather large sampling errors. Candell and Levine (1989)
provide details about the expected sizes of sampling errors of ROC curves).

Two explanations for the lower detection rates in Table 2 are readily
available. First, model misspecifications of various kinds may have had
detrimental effects. This explanation was examined in Study Two, which was
conducted to evaluate the consequences of a variety of misspecifications. A
second explanation of the lower detection rates in Table 2 is that the
normal sample used to determine false positive rates was not entirely
normal. ‘This sample, which consisted of actual ASVAB response patterns,
might have contained a few truly aberrant response patterns. As one check
of this latter hypothesis, the magnitudes of the likelihvod ratios for 5%
false positive rates where determined for the normal samples used in the
simulation analyses and in the ASVAB analyses. Optimal indices were
computed given the (incorrect) assumption that there were 10 spuriously high
responses per test. The likelihood ratios are:

Poly. MFS Dichot. MFS 3PL.

Simulation normal sanple 2.10 2.21 2.19

ASVAB normal sample 5.36 b 24 3.07
B




Table 1. Sclected Rates of Detection of Spuriously High Response Patterns
with Tota! Test Scores in the 20th Through 24th Percentile, Simulation bata

False

Pos. Polychot. MFS Dichot. MFS 3PL

Rate ‘Test Optimal Optimal 2, F2 Optimal &, F2

5 Spuriously High Responses Per Test

.00 v 00 01 0u 0o 00 00 00
Q 01 01 00 01 02 00 01
MT 01 01 01 01 03 02 02

.01 v 05 o4 02 02 05 03 02
Q 07 05 04 04 06 05 05
MT 10 08 05 06 08 06 07

.03 v " 10 06 05 10 06 05
Q 14 12 10 " 13 " "
M 20 17 12 12 18 15 14

.05 v 15 14 09 09 13 10 09
Q 22 19 16 16 18 17 17
MT 26 24 18 19 25 20 20

.10 v 24 22 19 18 23 21 20
Q 34 30 27 28 30 29 29
MT 4o 38 30 31 36 30 30

10 Spuriously High Responses Per Test

.00 ) 05 ol 03 01 03 02 02
Q 04 05 o4 ol 08 03 ol
MT 10 15 10 10 19 1 09

.01 v 17 13 10 V6 15 09 07
Q 25 19 17 15 19 18 15
MT Ly 34 25 26 37 26 26

.03 v 28 23 19 it 24 20 17
Q 42 35 32 32 33 31 29
MT 59 51 4o 39 52 4y 43

.05 ) 35 29 24 21 31 27 23
Q 52 45 Lo 39 43 39 38
MT 67 61 50 49 60 51 50

.10 v L6 I 38 34 LP: 39 38
Q 67 61 56 55 60 55 55
MT 79 T4 64 64 73 6l 62




Table 2. Selected Rates of Detection of Spuriously High Response Patterns
with Total Test Scores in the 20th Through 24th Percentile, Real Data

False

Pos, Polychot. MFS Dichot. MFS 3PL

Rate Test Optimal Optimal 2, F2 Optimal ¢, F2

5 Spuriously High Responses Per Test

.00 v 00 00 00 00 00 o1 00
Q 02 00 00 01 01 00 ao
Ml 01 00 00 00 02 00 00

.01 v 04 03 01 00 L 02 o1 01
Q 03 oYy 02 03 03 o4 05
MY 05 06 02 02 07 01 02

.03 v 10 10 04 02 09 04 02
Q 07 05 05 06 08 08 07
MT 14 13 06 07 14 10 07

.05 v 14 15 08 o4 14 07 03
Q 15 10 1" 08 13 11 10
Mt 19 16 15 14 20 17 17

.10 v 26 21 12 12 21 13 1
Q 24 21 21 19 25 24 21
MT 32 33 24 22 31 26 21

10 Spuriously High Responses Per Test

.001 v 02 02 01 00 01 01 00
Q 08 07 01 06 o7 02 05
Mt 14 00 00 00 05 00 00

.01 v 08 05 02 00 05 03 01
Q 17 14 15 12 16 20 20
MT 15 16 09 07 22 09 07

.03 v 16 15 09 05 16 10 05
Q 32 27 25 21 32 31 25
Ml 45 4o 22 24 47 29 26

.05 v 28 23 15 07 19 14 07
Q 42 43 34 28 43 37 34
MT 52 53 36 36 58 4s 43

.10 v 4o 37 25 21 32 27 17
Q 52 53 48 by 55 51 47
M1 68 68 55 53 66 59 52
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The likelihood ratio is the ratio of the likelihood utf' a response
pattern given the model for aberrant responding--10 spuriously high
responses per test--to the likelihood of the respounse pattern given the
model for normal responding. A large likelihood ratio indicates that the
model for aberrant responding "explains" the response pattern better than
the normal model. The likelihood ratios shown above imply that the model
for aberrant responding provides a good fit (relative to the model for
normal responding) for more nominaily normal ASVAB response patterns than
simulation normal (and hence truly normal) response patterns. Note fturther
that the optimal index is targeted for a specific form of aberrance
(spuriously high responding), unlike goodness of tit indices such as 2, and
F2 that test for any departure from normal responding.  Thus, these results
are consistent with the hypothesis that some ASVAB examinees may have
received coaching.

Detection rates for simulated data with total test scores in the
moderate score range are shown in Table 3. Again it was very difficult to
identify response patterns that had been subjected to the five items per
test spuriously high manipulation. One reason tor this difficulty is that
the version of the Levine and Drasgow (1988) algorithm used in this study
makes no assumptions about which items were compromised; all items were
assumed to be equally likely candidates for cheating. ([t seems likely that
higher detection rates would be obtained if more were known about the
relative likelihood of cheating on each item. For example, if new items
introduced in a test administration or otherwise known to be secure can be
assumed to have zero probability of spurious responses, then detection rates
can be significantly increased by utilizing a more general version of the
Levine and Drasgow algorithm. For another example, if the response options
for some items are reordered because it is suspected that some examinees
have memorized the answer key, the more general Levine and Drasgow (1988)
algorithm can incorporate this additional information.

Table 3 shows modcrate detection rates for cheating on 10 items per
test and high detection rates for cheating on 15 items per test.
Specifically, the best index identified 70% of the cheaters in this latter
condition when the false positive rate was 5%. The detectiuon rates for the
two optimal indices computed with dichotomously scored responses were 62%
and 62%. The non-optimal indices detected roughly 40% at a 5% false
positive rate; the optimal index for polychotomous scoring achieved a
somewhat higher detection ratec at a false positive rate of only 1%.

A generally similar pattern of results was obtained in the analysis of
the actual ASVAB data. ‘lable U4 shows that it is a difficult task to
identify cheating by near average ability examinees on a small to moderate
number ot items (5 or 10 items). Even the best appropriateness indices
detect no more than 30% of such response patterns at a 5% talse positive
rate. These aberrant response patterns are difficult to identify because a
substantial number of items were answered correctly before the spuriously
high manipulation was applied. Thus, the aberrance manipulation does not
produce a particularly unusual response pattern, namely one with several
correct answers to hard items juxtaposed with incorrect answers Lo easy
items.

"




Table 3. Selected Rates of Detection of Spuriously High Response Patterns
with Total Test Scores in the 50th Through 54th Percentile, Simulation Data

False

Pos. Polychot. MFS Dichot. MFS 3PL

Rate Test Optimal Optimal 2, F2 Optimal ¢, F2

5 Spuriously High Responses Per Test

.00 v 00 00 00 00 00 00 00
Q 01 01 00 01 01 01 01
MT 01 00 00 00 00 00 00

.01 v 03 03 02 01 03 02 o1
Q 04 03 03 03 03 03 03
MT 05 oy 02 02 05 o4 03

.03 ) 07 07 oy 03 08 05 03
Q 09 08 08 06 09 09 00
MT 12 09 07 07 10 09 09

.05 v 10 10 07 05 12 08 05
Q 13 13 10 " 14 12 12
MY 17 15 1" n 16 12 12

.10 v 19 19 14 12 21 15 13
Q 23 22 21 20 23 20 21
MT 28 26 20 19 27 21 21

10 Spurious!ly High Responses Per Test

.001 v M 01 00 Lo 0 01 00
Q 03 03 01 01 02 02 01
MT 05 01 02 01 02 01 01

.01 v 07 06 7 01 05 03 01
Q 14 08 07 06 10 10 08
MT 18 12 06 07 1 08 07

.03 v 13 12 06 0y 13 o7 oy
Q 26 20 16 15 21 20 19
MT 32 27 14 15 26 18 18

.05 v 18 17 10 07 18 10 06
Q 32 28 21 21 29 26 25
M CR| 36 21 23 35 24 25

.10 ' 28 28 17 (L] 27 19 15
Q 46 42 36 36 by 37 37
MT 56 52 33 34 49 36 38
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Table 3 (concluded)

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate ‘lest Optimal Optimal 2, F2 Optimal ¢,
15 Spuriously High Responses Per Test
.001 v 07 05 01 00 05 03 00
Q 09 06 03 oy 05 06 05
M{ 21 08 06 03 o7 05 05
- .01 v 16 14 05 01 15 v8 01
Q 29 22 17 16 25 20 18
MT L6 33 17 16 36 23 i9
.03 v 28 25 1" 06 27 14 06
Q 48 39 31 30 41 34 36
M 62 53 31 30 53 36 36
.05 v 34 30 17 10 34 20 1
Q 56 47 37 38 51 42 y2
MT 70 62 Lo h 62 yy 4y
.10 v 46 y2 27 20 4y 32 23
Q €9 61 52 53 65 53 54
MT 82 T4 54 54 75 57 59




Table 4. Selected Rates of betection of Spuriously High Response Patterns
with Total Test Scores in the 50th Through Si4th Percentile, Keal Data

False

Pos. Polychot. MFS Dichot. MFS 3PL

Rate  Test Optimal Optimal 2, Fe Optimal ¢, F2

5 Spuriously High Responses Per Test

.001 v 00 00 00 00 00 00 00
Q 00 00 00 00 02 00 00
MT 00 00 01 00 01 00 00

.01 v 00 01 01 01 02 02 01
Q 03 01 02 01 03 02 02
MT 01 02 02 01 Ol ol 03

.03 ) 02 06 ol 02 05 05 ol
Q 08 09 07 06 09 06 06
MT 07 09 06 06 13 07 07

.05 ) 07 10 07 06 08 08 06
Q " " " 10 14 12 10
Mr 1" 12 " 09 17 12 10

10 ' 16 15 11 10 15 13 09
Q 21 21 20 19 22 20 21
Mr 20 24 20 18 23 20 20

10 Spuriously High Responses Per Test

.00 ) 00 00 00 00 00 00 00
Q 02 02 00 00 06 01 00
Mr 02 02 00 01 03 01 01

.01 v 01 02 01 00 03 01 00
Q 06 08 05 03 09 05 ol
MI 07 09 06 04 12 08 05

.03 v 06 08 ou 03 10 07 05
Q 18 18 14 14 19 13 15
Mr 16 22 12 13 22 14 15

.05 v 12 15 08 06 13 10 o7
Q 23 21 20 18 24 21 19
Ml 26 28 19 18 3V 20 19

.10 v 22 23 14 10 23 16 1
Q 36 32 31 29 34 31 31
Mr 41 37 29 29 40 33 32
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Table 4 (concluded)

False

Pos. Polychot. MFS Dichot. MFS 3PL

Rate Test Optimal Optimal 2, F2 Optimal 2, F2

15 Spuriocusly High Responses Per Test

.001 ' 02 02 02 00 01 03 00
Q 04 04 03 00 10 05 01
MT 08 04 03 02 09 o4 o4

.01 Y 08 08 o4 00 08 05 01
Q 20 16 12 07 18 12 10
M 27 24 14 08 25 18 12

.03 v 16 22 09 04 23 12 08
Q 3 31 24 23 30 24 25
MT 4 43 25 25 Ly 28 29

.05 v 27 27 15 09 29 18 10
Q k1 35 33 30 4o 34 30
MT 50 53 36 33 54 39 36

.10 v 37 39 24 17 39 26 18
Q 57 51 hy 43 53 4y 46
MY 65 66 51 50 68 53 52

15




The rates of detection ol response patterns subjected to the 15 jtem
per test spuriously high manipulation are moderately high. For example,
about 50% of these patterns are detected at a 5% false alarm rate. This
higher detection rate is of course in part due to the severity of the

manipulation. But, an important additional ingredient is that prior to the
spuriously high manipulation the response patterns were indicative of fairly
low ability. Thus, the patterns contained some incorrect answers to easy

items. When the spuriously high manipulation resulted in correct answers to
some of the harder items, detection of the simulated cheating was possible.

Rates of detection are somewhat lower in Table 4 than in Table 3, which
again may be due to one of the forms of model misspecification examined in
Study Two or due to the inclusion of truly aberrant response patterns in the
nominally normal ASVAB sample. Likelihood ratios yielding a 5% false
positive rate were determined for the ASVAB and simulation normal samples
given the assumption of 10 spuriously high responses per test. The
likelihood ratios are:

Poly. MFS Dichot. MFS 3PL
Simulation normal sampie 4,10 3.94 3.86
ASVAB normal sample 7.60 5.73 5.17

As with the lower ability range, the likelihood ratios suggest that some
aberrant response patterns may have been included in the nominally normal
ASVAB sample.

IIl. STUDY TWO
ROBUSINESS OF OPTIMAL. INDICES TO VIOLATIONS OF ASSUMP'I'IUNS

Purpose

There are a variety of violations of the optimal indices' assumptions
that could create problems in operational settings. These violations
include:

1. the use of estimated ICCs and OCCs in place of the true ICCs and
0CCs;

2. violations of local independence that surely occur in real data;

3. differences between the assumed ability density in Equation 5 and
the true ability density.

In addition to these three forms of model misspecification, another kind of
misspecification is sure to occur in operational settings. The lLevine and
Drasgow (1988) algorithm assumes that the number of spuriously high or
spuriously low responses on each test is known. However, such information
is not usually available when a test is administered to examinees who may
have been coached in a variety of ways., Thus, a fourth model
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misspecitication consists of viclations of the assumed number of spurious
responses per test.

Each of these four mode!l misspecifications was investigated in Study
Two. In each case, a misspecified index was computed in addition to the
truly optimal index. Comparing the detection rates of the truly optimal
index to the misspecified index shows the impact of the misspecitication.

Method

Item characteristic curves and option characteristic curves. Although
Study Two was entirely a simulation study, it was desirable to make the
simulation as realistic as possible. For this reason, the very accurate
estimates of item and option characteristic curves were obtained for the
ASVAB items from Study One,

To this end, response patterns 1, 3, 5,... were initially selected from
the complete sample, yielding a total of 6,785 patterns. To reduce this
sample to a more manageable size, but still obtain very accurate ICC and OCC
estimates, some examinees with average abilities were excluded whereas all
examinees with extreme abilities were retained. (Estimation of 1CCs and
OCCs is typically very accurate for moderate ability ranges, but far less
accurate in extreme ability ranges.) To avoid systematically violating
local independence, response patterns were excluded on the basis of their
scores on the 35 item General Science (GS) test rather than the verbal or
quantitative tests. Response patterns with GS number-right scores of 15,
17, or 19 were deleted. This left a sample of 5,301 patterns, as 503, 518,
and U463 patterns had scores of 15, 17, and 19, respectively.

As in Study One, marginal maximum likelihood estimates of the item
parameters of the three-parameter logistic model were obtained with the
BILOG (Mislevy & Bock, 1984) computer program and non-parametric estimates
of ICCs and OCCs based on Levine's (1985, 1989a, 1989b) MFS theory were
obtained with the ForScore computer program. Fit plots showed very accurate
modeling of empirical proportions for the multilinear formula scoring ICCs
and OCCs. Figure 1 shows a typical fit plot; the multilinear formula
scoring estimate of the ICC is given by the dashed line in the upper left
panel; the solid lines in the other three panels show conditional OCCs (OCCs
divided by [1-£i(°)]) for the three incorrect options.

Samples and analyses. The following general process was used to
evaluate the effects of each of the four forms of misspecification described
above. First, a normal sample of 4,000 response patterns was generated with
the ICCs and OCCs described above, Then (except for the misspecified
aberrance condition) two samples of 2,000 aberrant response patterns were
generated, again with the ICCs and OCCs estimated from the sample of 5,301,
One sample contained normal response patterns that had been subjected to the
10 item per test spuriously high manipulation, and the other sample
contained patterns subjected to the 10 item per test spuriously low
manipulation. Four aberrant samples of 2,000 patterns were created for the
aberrance misspecification condition, Here samples were created with 5 and
15 item per test spuriously high manipulations and with 5 and 15 item per
test spuriously low manipulations.
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Figure 1. Fit Plots for an Item Characteristic Curve and Three Conditional
Option Characteristic Curves Obtained with the ForScore Computer
Program.
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For three of the misspecifications, 0 = |0,,8,] was sampled from the
standardized bivariate normal distribution with correlation .7. The
sampling of O values in the misspecified ability density condition is
described below. Note that there was no selection of response patterns as
in Study One; all normal and aberrant response patterns were included.

A separate analysis was conducted to evaluate each of the four forms of
misspecification. In each case, correctly specified optimal indices were
computed as well as incorrectly specified optimal indices.

The first form of misspecification consisted of computing optimal
indices with estimated 1CCs and OCCs in place of the true ICCs and OCCs. To
examine the effects of this substitution, the multilinear formula scoring
ICCs and OCCs were used to simulate a test calibration sample of 3,000
response patterns. Then multilinear formula scoring ICCs and OCUs were
estimated from this sample of 3,000 using the ForScore prougram and three-
parameter logistic ICCs were estimated with the BILOG program. Finally,
optimal appropriateness indices were computed for the normal and aberrant
response patterns described above using the correct ICCs and OCCs as well as
the estimated (from the simulated calibration sample of 3,000) ICCs and
OCCs.

Note that the multilinear formula scuring 1CCs and OCCs estimated from
the simulation sample of 3,000 response patterns differ trom the simulation
ICCs and OCCs only to the extent of estimation error. In contrast, the
three-parameter logistic ICCs estimated from the sample of 3,000 differ from
the simulation ICCs both because of estimation errors and the fact that the
true ICCs were not exactly three-parameter logistic. It seemed reascnable
to incorporate this latter type of misspecification for the three-parameter
logistic because ICCs are not necessarily correctly modelled by curves in
the three-parameter logistic family.

The second form of misspecification investigated in Study Two consisted
of violations of local independence. As described previously, item
responses were generated to simulate a two-dimensional test where the two
latent traits had a correlation of .7. The misspecified optimal indices
made the incorrect assumption that the entire item pool of 104 items was
unidimensional. Then optimal indices for a single long unidimensional test
were computed in the misspecification condition; the correctly specified
multi-test optimal indices werec also computed

A misspecified ability density was the third form of misspecitication
studied. In earlier research (e.g., Drasgow, Levine, McLaughlin, & Earles,
1987), the ability density f(e) in Equation 5 has been taken as the standard
normal. This density is undoubtedly incorrect for a population of examinees
when there has been self-selection or sume other selection prior to
administration of the exam (e.g., when recruiters prescreen applicants).

To simulate ability density misspecification, two numbers X and Y were
sampled from a truncated chi-square distribution with 10 degrees of freedom
(the bottom .01% and top 1.U4% of the distribution were discarded since
multilinear formula scoring 1CCs and OCCs were detined only tor Us less than

3 in absolute value). Then 0, was taken as [X - E(X)|/vVar(X) (i.e., a
standardized version of the truncated chi-square). The density of 6, is
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shown in Figure 2, along with the standard nc.mal density. 6, was
constructed by first standardizing Y and then computing 6, = ad, + (1'§)Eyv

where Ey is the standardized Y and a = .4995 was chosen so that 6, and 0,

had a correlation of .7. Finally, misspecified optimal indices were
computed with the incorrect assumption that [6,,8,] was sampled from the
standardized bivariate normal distribution with correlation .7. Correctly
specified optimal indices were also computed.

The f'inal misspecification concerned the number of aberrant responses
made by an examinee. Test administrators ordinarily do not know how many
item responses might be aberrant. To evaluate the performances of optimal
indices under these conditions, response patterns with 5 or 15 aberrant
responses per test were created, and then the optimal index for 10 aberrant
responses per test was computed as well as the correctly specified optimal
index.

Results

True versus estimated ICCs and OCCs. Table 5 presents selected
detection rates of spuriously high and spuriously low response patterns for
the ICC and OCC misspecification condition. From this table it is evident
that only minimal reduction in detection rates occurred as a result
estimation error. The greatest shrinkage was expected for the polychotomous
MFS analysis; here the detection rates for optimal indices computed for
true and estimated ICCs and OCCs were 85% and 82% in the spuriously low
condition and 39% and 36% in the spuriously high conditiun when the false
positive rate was 5%. This small amount of shrinkage clearly indicates that
the effects of the estimation errors obtained with a calibration sample of
3,000 were generally inconsequential.

There is one discrepant value in Table 5: When the false positive rate
was .001, the detection rate for the polychotomous MFS multi-test optimal
index was much lower for estimated ICCs and OCCs in the spuriously low
condition. Although this result may be due to errors of c¢stimation of the
ICCs and OCCs, it may also be due to the fact that Table 5 presents
empirical detection rates (i.e., the numbers in Table 5 would be different
if we replicated our analysis but used a different seed for the random
number generator). The cutting score for classification is determined from
only 4 normal response patterns when the false positive rate is .001; this
cutting score is likely to have considerable sampling error.

Very little decrement in Jdetection rates is evident in the dichotomous
MFS analysis. This finding corroborates results obtained by Levine,
Drasgow, Williams, McCusker, and Thomasson (under review), who found very
small estimation errors with their "ideal observer" methodology (i.e., an
observer who uses an optimal statistical procedure to distinguish response
patterns generated from true versus estimated ICCs).

Finally, the detection rates for the estimated three-parameter logistic
ICCs are nearly as high as the rates for the dichotomous analysis with the
true multilinear formula scoring ICCs. From this finding it appears that
the joint effects of estimation errors and departures from the three-
parameter logistic parameter form were generally inconsequential. Note,
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Table 5. Selected Rates of Detection of Aberrant Response Patterns by the
Likelihood Katio Evaluated with True and Estimated ltem Parameters

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate Fest True Est. True  Est. Est.
10 Spuriously Low Responses Per Test
.001 v 29 26 23 22 19
Q 18 13 06 06 07
MT 41 16 23 25 20
.01 v 56 51 38 38 38
Q 28 217 13 L 15
M1 69 6l 47 47 43
.03 v 68 65 52 52 51
Q 4o 37 23 23 22
MT 80 76 59 58 59
.05 v 75 73 59 58 57
Q 48 46 29 28 28
MT 85 82 66 65 64
.10 v 85 84 71 70 69
Q 63 60 4o 39 37
MT 91 90 17 76 75
10 Spuriously High Responses Per Test
.001 v 02 02 o1 01 02
Q 03 02 02 02 03
MT 05 05 03 05 o4
.01 ) 07 07 06 06 06
Q 12 12 09 10 10
MT 19 18 13 13 il
.03 v 14 14 12 12 13
Q 24 22 19 19 18
Mr 32 29 25 24 25
.05 v 19 18 17 15 18
Q 31 28 26 26 23
MT 39 36 31 30 32
.10 v 30 28 27 26 217
Q u3 4o 39 37 36
Mr 50 46 43 43 us
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however, that the detection rates for both dichotomous analyses fall short
of the polychotomous model detection rates. These differences are
especially large for the spuriously low response patterns.

Dimensional ity misspecilication. Table 6 presents results for the
misspecification condition in which two-dimensional item responses are
analyzed with a one-dimensional model. Hesults tor the correctly specified
multi-test analyses are given beneath the columns headed MT,

Substantial drops in rates of detection of both spuriousiy high and
spuriously low response patterns are apparent for all three types of
analyses. For example, when the false positive rate is 3% there was a 17%
decrease in the rate of detection of spuriously low response patterns by the
polychotomous MFS analysis (i.e., 80% detection in the correct analysis
versus 63% in the misspecified analysis) and there were 18% decreases for
the dichotomous MFS analysis and the three-parameter logistic analysis. A
similar pattern of results occurs for the spuriously high response patterns.

The detection rates shown in Table 6 indicate that optimal
appropriateness measurement is affected by scrious violations of
unidimensionality. Specifically, it is clear that detection rates are
markedly decreased by combining the simulated verbal and quantitative tests
and then performing a unidimensional analysis. This finding underscores the
importance of earlier research that developed optimal multi-test
appropriateness indices (Drasgow, Levine, & McLaughlin, in press; Levine, in
preparation).

Misspecifiied ability densities. Table 7 presents the results for the
response patterns created with ability parameters obtained from truncated
chi-square distributions but analyzed with the incorrect assumption that the
ability distribution was bivariate normal. A very high degree of robustness
to this form of misspecification can be seen in Table 7 for all item
response models and both types of aberrant response patterns.

The robustness to ability density misspecifications is a result of the
equations for the marginal likelihood of a response pattern given in
Equations 3 and 4. From these equations it can be seen that the marginal
likelihood is the integral of the product of the conditional likelihood of
the response pattern and the ability density. For tests of moderate length
or longer, the ability density is ordinarily very flat in relation to the
conditional likelihood. For example, the maximum of the normal density is
about eight times larger than the minimum density on the interval [-2, 2].
In contrast, the maximum of the conditional likelihood may be 10'°® or even
104° times larger than its minimum on the same interval (Levine & Drasgow,
1988, p. 170). Consequently, the value of the integral is determined
primarily by the conditional likelihood function for tests as long as the
verbal and quantitative tests simulated here.

Incorrect specification of the number of aberrant responses. The
results for the final form of misspecification are given in Table 8. Here
response patterns were generated with either 5 or 15 aberrant respouses per
test generated; optimal indices were then computed with the correct
assumption about the number of aberrant responses or analyzed with the
incorrect assumption that 10 item per test were aberrant.
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Table 6. Selected Rates of Detection of Aberrant Hesponse Patterns by the
Likelihood Ratio with Correct and Incorrect Assumptiouns about Dimensionality

False

Pos. Potychot. MFS Dichot. MFS 3PL

Rate MT One Test MT One Test MT One Test
Data Generated with 10 Spuriously Low Responses ber Test

001 41 1 23 05 24 05

.0 69 L7 W7 20 43 19

.03 80 63 59 41 54 36 .

.05 85 73 66 51 62 L6

.10 91 85 717 67 73 62
Data Generated with 10 Spuriously High Responses Per Test

.001 05 00 05 02 05 00

.01 19 o4 15 05 16 04

.03 32 14 25 13 25 13

.05 39 22 32 20 32 20

.10 50 36 L6 32 46 33




Table 7. Selected Rates of Detection of Aberrant Hesponse Patterns by the
Likelihood Ratio Evaluated with Correct and Misspecified Ability Densities

False
Pos. Polychot. MFS Dichot. MFS 3PL
Rate Test  Correct Misspec. Correct Misspec, Correct Misspec.
10 Spuriously Low Responses Per Test
.00 ' 31 31 20 19 19 18
Q 13 1 04 03 04 oh
Ml 38 y2 20 19 22 20
.01 v 53 54 35 34 35 35
Q 26 26 10 10 12 1"
MT 66 67 43 I 43 42
.03 v 64 64 g 4g ug 47
Q Lo 39 19 19 21 19
™I 81 80 58 57 51 56
.05 v 73 T4 56 57 56 54
Q 48 47 24 25 27 26
Mr 86 86 67 64 66 64
.10 v 83 83 70 69 68 67
Q 61 61 38 38 4o 39
MT 94 93 78 78 17 77
10 Spuriously High Responses Per Test
.001 v 02 00 02 02 u1 01
Q 02 01 02 01 01 01
MI 05 00 02 01 03 03
.01 v 08 07 07 06 05 05
Q " 08 " 08 10 10
Ml 18 14 14 12 13 12
.03 v 15 15 14 1L 1" 1
Q 22 21 21 20 21 19
MT 3 28 28 26 24 26
.05 v 21 21 18 18 17 17
Q 32 30 28 26 26 26
MT 39 38 34 33 3 30
.10 v 31 31 28 27 26 25
Q 4y y2 bo 4o 38 36
Mr 54 52 49 48 46 45
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Table 8.

Selected Rates of Detection by the Likelihood Ratio with
Correct and Incorrect Specifications of the Number of Aberrant Responses

False Polychot. MFS Dichot. MFS 3PL
Pos. Aberr. Assumption Aberr, Assumption Aberr. Assumption
Rate Test 5 10 15 5 10 15 5 10 15
Data Generated with 5 Spuriously Low Responses Per Test
.001 v 19 17 08 07 07 06
Q 09 04 01 00 02 01
MT 18 15 1 05 09 05
.01 v 32 27 21 16 19 15
Q 15 12 07 06 08 06
M 4 31 26 17 25 17
.03 v Ly 37 32 26 29 23
Q 23 21 12 10 13 "
MT 53 Ly 37 28 33 26
.05 v 51 43 39 33 35 29
Q 29 27 16 15 17 14
MI' 59 51 y2 35 4o 32
.10 v 62 57 b9 y2 48 42
Q 39 37 25 22 26 23
MI' 68 ou 54 48 52 us
Data Generated with 15 Spuriously Low Responses Per Test
.001 v i5 45 22 26 23 28
Q 19 23 06 07 09 09
MT 53 57 25 3 3 34
.01 v 65 69 48 52 43 48
Q LR b2 18 21 20 19
MT 83 87 60 65 53 56
.03 v 81 83 64 66 58 61
Q 55 58 32 32 28 30
M 91 92 72 15 67 69
.05 v 86 87 70 73 67 69
Q 65 67 39 39 37 38
MI 94 94 79 80 75 78
.10 ) 93 93 82 84 79 80
Q 76 77 51 54 48 50
MT 97 98 89 91 86 87
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Table 8 (concluded)
False Polychot. MFS Dichot. MFS 3PL
~ Pos. Aberr. Assumption Aberr., Assumption Aberr. Assumption
Rate Test 5 10 15 5 10 15 5 10 15
Data Generated with 5 Spuriously High Responses Per Test
. .00 v 00 00 01 01 00 00
Q 00 00 00 01 00 00
MI' 00 00 01 01 00 00
.01 v 03 03 03 03 03 03
Q 05 04 o4 o4 ol o4
ML 07 06 07 06 05 05
.03 v 08 08 08 08 06 06
Q " 10 10 08 10 08
MT 15 13 13 11 12 1"
.05 ) 12 12 1" 11 10 10
Q 15 14 13 13 14 13
MT 19 18 16 16 17 15
.10 v 22 20 19 19 17 17
Q 24 22 24 22 22 21
Ml 30 27 28 26 27 24
Data Generated with 15 Spuriously High Responses Per Test
.00 v 05 06 03 o4 03 o4
Q 09 12 03 n 07 07
M1 M 07 06 14 09 10
.01 v 13 14 09 09 12 13
Q 24 26 16 19 16 20
MT 35 37 23 27 26 29
.03 v 22 22 17 16 21 21
’ Q 39 4o 28 31 27 31
MT u8 51 38 i 38 U1
° .05 v 28 30 22 23 26 27
Q is 48 37 38 35 39
MT 55 59 46 ug Ly 48
.10 ) ko 42 35 35 36 36
Q 56 60 51 52 49 52

MT 68 72 59 60 58 62




Surprisingly modest drops in detection rates were obtained for this
form of misspecification. An examination of Table 8 indicates that the
least robustness occurred for the response patterns generated with five
spuriously low responses per test. At a 5% false positive rate, the drops
in detection rates were just 8% for the polychotomous MFS model, 7% for the
dichotomous MFS model, and 8% for the 3PL model.

Although further analyses would be needed to corroborate this
observation, it appears from Table 8 that a greater degree of robustness is
obtained when a response pattern is analyzed with a misspecified number of
aberrant responses that is smaller than the actual number of aberrant
responses. The converse analysis, in which the misspecitied number of
aberrant responses is larger than the actual number of aberrant responses,
yielded somewhat larger drops in detection rates.

1V. CONCLUSIUNS AND DISCUSSION

The major purpose of the research described in this paper was to
explore the possibility of using optimal appropriateness indices to address
practical testing problems. To this end, it was shown that existing
algorithms for evaluating optimal indices could be tailored for a specific
problem (i.e., testing the hypothesis that a response pattern with a total
test score in a narrow range was obtained honestly or dishonestly) and
evaluated the performance of the resulting optimal test. An interrelated
set of simulations was also conducted to examine the robustness of optimal
tests to violations of assumptions.

There can be little doubt that some examinees may be tempted to cheat
when valued outcomes are contingent upon obtaining a test score exceeding
some cutoff value. Moreover, the use of cutoffs to determine allocation of
valued outcomes is very common: recruitment bonuses, minimum qualification
for military enlistment, professional licensing (e.g., nursing, attorney's
bar examinations), certification, and state and local public sector hiring.

A way that test administrators can combat cheating has been described
in this paper. The statistic given in Equation 8 provides a most powerful
test of the hypothesis that an examinee obtained a score barely exceeding
some cutoff by honest means against the alternative hypothesis that the
barely passing score was obtained by cheating on k items. Of course, the
optimal appropriateness index cannot replace careful proctoring during exam
administration, routine replacement of old test forms with new test forms,
and other security measures. Nonetheless, it does give the test
administrator an additional method for identifying cheating. Moreover, test
takers may be dissuaded from attempting to cheat if they know that their
responses Wwill be examined for indications of cheating.

Tables 1 through 4 give rates of detection of simulated cheaters who
obtained scores in a moderately low (20th through 2Uth percentiles) or just
above average (50th through 54th) score ranges. The results given in these
tables provide news that is both bad and good. 7The bad news is that it is
very difficult to distinguish between normal response patterns with test
scores in a narrow score range and patterns from examinces who cheated on a
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few items (5 or 10 per test) in order to obtain test scores in the same
range. This result is not too surprising because some of the honest
examinces obtained test scores in the given score range by chance rather
than merit. Specifically, consider a plot of the frequency distribution of
0 or true score for people with observed scores between, say, the 50th and
54th percentiles for some unidimensional test. We would observe many people
with 8s or true scores that fall outside the 50th through 5lth percentiles.
The point is that restricting observed scores to lie within some percentile
range does not guarantee that 8s or true scores will fall in the same
percentile range. Some lower ability examinees obtained test scores in the
score range because they were lucky and some higher ability examinees
obtained test scores in the score range because they were unlucky.

Given just a response pattern, the effects of "luck" (i.e., a few extra
correct responses) and the effects of cheating on a few items (again, a few
extra correct responses) are very difficult to differentiate. Some of the
cheaters have Os in or even above the percentile range. Others have 8s just
below the percentile range and would therefore have close to a 50% chance of
obtaining an observed score in the percentile range if they were retested
with a different test form. In sum, there is little practical need to
identify cheaters with 6s that are close to or in the percentile range,
although ethical and policy considerations may deem otherwise.

Turning now to the good news from Study One, Tables 1 through 4 show
that it is possible to identify simulated cheating on a relatively large
number of items. For the lower test score range, reasonably high rates of
detection were obtained with simulated cheating on 10 items per test.

Fairly good detection rates were also obtained with cheating on 15 items per
test for the just-above-average score range. ldentifying individuals who
cheat on a large number of items is particularly important because these
people have 6s that are far below noncheaters.

The results obtained in Study Two clearly suggest that optimal
indices can be used effectively in applied settings. Only one form of model
misspecification substantially decreased detection rates. This type of
misspecification would occur if a test administrator were to combine a
verbal test and a quantitative test and treat the composite as a long
unidimensional test. Such an event, perhaps based on the argument that
typical paper-and-pencil tests are “highly g saturated," would seriously
undermine attempts to identify aberrant response patterns. Instead, multi-
test optimal appropriateness indices (Drasgow, Levine, & McLaughlin, in
press) should be computed because they provide far more effective
identification of aberrance in the context of a battery of several
unidimensional tests.

Three other forms of misspecification were found to have little or no
effect on detection rates in Study Two. Perhaps the most important of these
three types of misspecification concerns item parameter estimation errors.
In a practical setting, there is never access to the "true” item parameters;
at best there are only item parameters estimated from data provided by a
large and representative sample. Table 5 shows that there was little
decrement in detection rates due to estimation errors for either MFS
estimation or 3PL estimation. These results corroborate and extend earlier
research on MFS estimation via the ForScore computer program (Drasgow,
Levine, Williams, McLaughlin, & Candell, in press; Lim et al., 1989;
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Williams & Levine, 1984, 1986) and 3PL estimation with the BILOG computer
program (Levine et al., under review; Lim & Drasgow, in press; Mislevy,
1986; Mislevy & Stocking, 1989). It was thus concluded that estimated item
parameters can be used effectively in place of the true parameters, provided
that the estimates were obtained from a large, representative sample.

Table 7 shows that even a rather badly misspecified ability density has
little effect on detection rates, at least for tests of the length simulated
in Study Two (50 and 54 items) and the one ability density in this study.
This result is convenient because it means that test administrators do not
need to be concerned with density estimation. Misspecified ability
densities may have a significant effect on shorter tests where the ability
density exhibits considerable variation relative to the likelihood function.
In such cases it may be necessary to estimate the ability density (see, for
example, Levine, 1989a; Mislevy, 1984; or Samejima, 1981).

The final form of misspecification concerned the number of aberrant
responses. Table 8 presents the surprising result that an analysis assuming
10 spuriously low responses per test for response patterns that actually had
5 or 15 .puriously low responses per test was almost as effective as the
truly optimal analysis. A similar finding was obtained for spuriously high
responses. These results provide a contrast between longer, paper-and-
pencil tests and short computerized adaptive tests (CATs): Candell and
Levine (1989) found larger drops in detection rates when the number of
aberrant responses was misspecified on a 15 item CAT.

The results from Studies One and Two lead to the following suggestion
for the use of appropriateness measurement in an applied setting. First,
the test administrator should make a judgment about the minimum number k of
spuriously high or spuriously low responses that is needed in order to
constitute a nontrivial practical problem. An optimal appropriateness
index could be computed assuming k aberrant responses, perhaps using
existing algorithms and software. Finally, response patterns with index
scores that exceed a threshold associated with some acceptable false
positive rate could be flagged, and the examinees retested.

Implicit in the above suggestion is the need for item parameters
estimated from a large and representative sample. The suggestion also
builds on the misspecification analyses that found ability density
misspecification to be unimportant and found robustness to misspecification
of the number of aberrant responses. .

Finally, the utilization of appropriateness indices, perhaps in the
manner outlined above, would be expected to improve the quality of a testing
program. It would allow identification of some response patterns with
modest degrees of aberrance and effective detection of patterns with
substantial degrees of aberrance and might thereby deter cheating. It would
provide individual test takers with some assurance that their aptitudes had
been accurately measured. For these reasons it is recommended that testing
programs seriously consider implementing appropriateness measurement.
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