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Abstract

A generalization and the dual version of the following result due to

Firey is given: The mixed area of a plane convex body and its polar dual is

at least nt. We give a sharp upper bound for the product of the dual cross-

sectional measure of any index and that of its polar dual. A general result

for a convex body K and a convex increasing real valued function gives

inequalities for sets of constant width and sets with equichordal points as

special cases.
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Introduction

Polar dual convex bodies are useful in geometry of numbers 117],

Minkowski geometry [10, 11] and differential equations [121. We assume a

familiarity with the elementary concepts from the theory of convex sets.

Benson [21, Bonnesen and Fenchel [3], Eggleston [7), and Yaglom and

Boltyanskii [231 have good treatments of the required background material

for this paper.

The preliminary definitions and concepts used in this work are given

in the next section. A generalization and dual version of the following

result due to Firey [81 is given: The mixed area of a plane convex body and its

polar dual is at least i. We give a sharp upper bound for the product of the

dual cross-sectional measure of any index and that of its polar dual. A

general result for a convex body K and a convex increasing real valued

function gives inequalities for sets of constant width and sets with

equichordal points as special cases.

Preliminaries

By a convex body in R, we mean a compact convex subset of R- with

nonempty interior. All convex bodies are assumed to contain the origin in

their interiors. For each direction uES" where S"' is the unit sphere

centered at the origin in R, we let h(K,u) denote the support function of the

convex body K evaluated at it. Thus,

(1) h(K,u) = sup {u x:xeK},

which may be interpreted as the distance from the origin to the supporting

hyperplane of K having outward-pointing normal u. The width of K in

direction it, denoted 11(K,u), is given by

(2) It (K,u) = h(I,u) + h(K,-u).



A convex body K is said to have constant width b if, and only if, W(K,u) = b for

all uES'. For a plane convex body K we shall use the notation h(K,O) =

h(K,u), where u = (cos 0, sin 0). In this case the width of K in the direction 6

can be written as

(3) W(K,O )=h(K,O )+h(K,O+ir).

The polar dual (or polar reciprocal) of a convex body K, denoted by K,

is another convex body having the origin as an interior point and is defined

by

(4) K'= {y Ix.y:l for allxE K}

This definition depends upon the origin. If K is the origin, then K' is the

whole space. If K is any other single point, then K" is a closed half space.

The polar dual has the property that
1

h(K',u) = and
(5) p (K,u)

1
p (K', i) = I

h(K,u)

where p (K~u) and p (K'u) denote radial functions of K and K'respectively,

defined by

(6) p (K,u=sup{A > IAES " I}

Let B be the closed unit ball in R'. The outer parallel set of K at

distance A > 0 is given by

(7) K. =K+ALB.

The convex body Kx consists of all points in R" whose distance from K is less

than or equal to X. It turns out that the volume V(Kx) is a polynomial in X

whose coefficients are geometric invariants of K:

(8) V(K -i), B) (n),,}(K)A2
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The functionals W, (K) do not have a standard name in English. In German

W, (K) is the i:h Quermassintegral of K. It is roughly the i'h cross-sectional

measure of K. Bonnesen and Fenchel [31 and Hadwiger [151 are standard

references for the study of Quermassintegrals. The following is true:

(9) W(K) = V(K); nW,(K) = S(K); W,(K) = w. where V(K) and S(K) are the

volume and surface area of K respectively and co. is the volume of the unit

ball B in R4. It turns out that W., (K) has an interesting representation. The

mean width of K, denoted by W(K) is given by

(10) WV(K) = - fW(K,u)du

where dii is the area element on S"'. Then in fact
1) _ )1 fIV(K,u)du.

By using (2) and (11), one obtains

(12) IV (K) =f1 h(Ku)du.
$.-I

The W,K) are special cases of a set of functionals, depending on more

than one convex body, introduced by Minkowski (in the 3-dimensional case).

If K1,...,K, are convex bodies in R'and 1 ,...,Ajrange over the positive

real numbers, then the volume of ) K+...+ A,K, is a homogeneous

polynomial, of degree n, in A,.-.,A,. That is
(13) V(AIKI +'"-+ ,K , ) = ,,...2,.X,

where the coefficients a,...,. depend only on K,,...,K,. We may assume that

coefficients are chosen so as to be invariant under permutations of their

subscripts. Then these coefficients are called mixed volumes and denoted by

a,,...,..,K) to indicate their dependence on K,...,K. We have, in

other words,

(14) I'(A1K1+...+A,K,) = XVK, , ,
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where ;,. range independently over 1,..-,r Important properties of mixed

volumes are discussed in Eggleston [7].

It follows from (8) that

(15) W%(K) = V(K,..,K, B,.-.,B),

which is sometimes used as a definition of W, (K).

The dual mixed volumes are defined in Lutwak [181 by

17) (K,,....,K.) = 1 fp (K.,,u) ... p (K , u) du

S.-'

where du signifies the area element on S". Let

(17) V,(K 1 ,K,) = (K,,..,K,K,,...,K2)

The dual cross-sectional measures are the special dual mixed volumes

defined by

(18) I (K) = 1,(K,B)

where B is the unit ball in R'. We shall use the following results of Lutwak

[18]:
(19) I'( )< ' - '" /

and

(20) V"(K 1,...,K.) _ VtK,).. V(K.).

After obtaining inequalities for mixed volumes and dual mixed

volumes, we shall use the following definitions to prove geometric

inequalities for sets of constant width and sets with equichordal,

equiproduct and equireciprocal points. A point P is an equichordal point of a

convex region K if and only if all the chords through P have the same

length. If the origin is an equichordal point with chord length 2, then

(21) p (K,u) + p (K,-u) = 2.

4



P is an equiproduct point of a convex region K if and only if each chord

through P intersects the boundary of K at points A and B such that the

product of TA and - is constant. If the origin is an equiproduct point with

constant 1, then

(22) p (K,u) p (K,-u) = 1.

P is an equireciprocal point of a convex region K if and only if each chord

1 I
through P intersects the boundary of K in points A and B such that +

is a constant. If the origin is an equireciprocal point with constant 2, then
1 1+ =2.

(23) p (K,u) p (K,-u)

Klee 121] has a discussion of sets with equichordal, equiproduct, or

equireciprocal points.

K is a set of constant relative width b if, and only if,

(24) K + (-K) = bE,

where E is the unit ball of a given Minkowski space (n - dimensional

Banach space).

Results

Theorem I below implies a generalization of the following result, due

to Firey [8j, as a special case: The mixed area of a plane convex body and its

polar dual is at least nt.

Theorem 1 Consider n convex bodies K,K,...,K.., in R*. Then the

mixed volumes V(K,K,,...,K-,.), V(K',K, ,..-,K..,),V(B,K,..,K ,) satisfy

(25) V(K,K,,...,K-,_) V(K',K ,...,K. 2) > V 2(B, K1 ,...,KfI).

Proof, By definition,

V(K,K 1',...,K 1) fh(K,u) dS (K,,...,K 4 ,,u)
• n

and
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,,(,., KP,,,K.j,>= h(K-.,,u>d s K,,..., K._,,U..
Multiply both sides of the above two equalities and use h(K',u) = and

p (K,u)

the Cauchy Schwarz inequality to obtain

n 2V(K,K,,...,K..,)V(K',K ..... ,,)

= h(Ku)dS(K1,...K._1))(f I d S (K,,...,K ,)

(~ 1 Ku

p (Khu) d S (K,,..,K._,)>-4p- (K, u)

t (fdS(K ... ,K..,,u)) = n V2(B,K,,....K,_,).

The last inequality follows since hi(K,u) _ p (K,u).m

Corollorv 1.1. The mixed volume of K and K',V(K',K,...,K), satisfies

(26) V(K',K,...,K)' > co2V(K)-

where w, is the volume of an n - dimensional unit ball and V(K) denotes the

volume of K.

Proof. Let K, = K2  K, = K. Then (25) reduces to

V(K)V(K',K,...,K)_ V2(BK,...,K)= IS(K)]

Use the general isoperimetric inequality,
SR >: n'w V11-,

to obtain (26)-W

The case n = 2 gives Firey's result. The following result can be

obtained from Theorem 1 as a special case.

Corollory 1.2. Let K be a convex body and K" its polar dual then

(27) I.. (KIt' ,(K ) >_ o ).
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Proof Let K, =14 =K, = K, = B in Theorem 1. Use (15) and (25) to

obtain (27)4

The problem of finding the infimum of the product W,(K)W,(K*) for all

convex bodies K, for each i, is not completely solved. See Bambah [1],

Dvoretzky and Rogers 161, Firey [91, Guggenheimer (13,141, Heil [161, Lutwak

[18j, and Steinhardt [221 for partial results. In Theorem 3 we use an

inequality due to Blaschke-Santal6 (see Theorem 2) concerning the product

of volume of a convex body K and its polar dual K" with respect to the Santa16

point of K. The Santal6 point of K is often defined as the unique point in the

interior of K with respect to which the volume of the polar dual is a

minimum. For a good discussion of the Blaschke-Santal6 inequality and a

further list of references, see Lutwak [20].

Theorem 2 (The Blaschke-Santal6 inequality). Assume K is a convex

body in R" and /(is its polar dual with respect to the Santal6 point of K. Then

V(K)V(K') <_ co I,

with equality if and only if K is an ellipsoid.

Theorem 3. Let K be a convex body in R'. Assume Kis the polar dual

of K with respect to the Santal6 point. Then the dual mixed volume of K and

K', 1(K',K,...,K), satisfies

(28) V(K',K,.,K)" -_ co 'V(K), 2

Proof, By (20),

Use Santal6's inequality,

V'(K)V(K') < co 2,

to obtain the desired inequalityg
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The case n = 2 in Theorem 3 above gives a result similar to Firey's

result. The dual mixed area of a plane convex body and its polar dual with

respect to the Santal6 point is at most n.

The following theorem concerning dual mixed volumes will

generalize Santal6's inequality.

Theorem 4. Let K and K2 be two convex bodies. Assume K and K2 are

the polar dual of K, and K2 with respect to the Santal6 points respectively.

Then the dual mixed volumes V(K,,K 2) and V(K,',K 2 ) satisfy
(29) 17(KIK 2)V(K,',K 2) < o.

Proof, Lutwak [181 shows that

(K,,,K 2)<:5V(K,) - V(K2)"., 0<i<n.

Replace K, by K,', (i = 1,2), to obtain

Y(K,',K,')!< V(K,')-- V(K;)-"

Multiply both sides of the above two inequalities and use Santal6's

inequality to obtain the desired resultO

If K, = K2 = K then (29) reduces to Santal6's inequality. If

K, = K, K2 = B then (29) reduces to the following corollary.

Corollary 4.1. Assume K is a convex body in R'. Assume K" is the

polar dual of K with respect to Santal6 point. Then

(30) c(K),(K) < )2

Theorem 5 below is a general result which gives inequalities for sets

of constant width and sets with equichordal point as special cases. See

Chakerian and Groemer [41 for an excellent survey of sets of constant width.

Theorem 5. For a convex body K and convex increasing real valuei

function p define g(K) by

B



g(K)= J q (p (K,u))du.

The functional g satisfies

(31) gr(K,+KV , g(K,")+g(K;)

2 2

and equality holds if and only if K, = K,.

Proof, g(K*) + g(K;) f ip (p (K,*,u)) + 4p (p (;U)u

2.- 2
S.-I

(Pp (K:,u)-4p (K;,ui) I d 2 Jdu.
J L2 f~j 11

S..-' S.-I +
p (K ,u) p (K;,u)

The first inequality uses the convexity of (p . The second inequality follows

since p is increasing and the arithmetic mean is greater than or equal to

the harmonic mean.

We nov use (5) and the linearity property of the support function to

obtain,

f., [2(p (K, 1,u) +p (K;,u)Y)'] du =

-I
f [(. ( ' u+hK2 u d

f-, [ -j(K-+ K, ,u )) du =

2

O (P (( K_ +K ) L )Ug()+2J2 2 )  "

Thus, (31) follows. For equality to hold, it is necessary that

p (K:,u) = p (K;,u) which implies K, = K2. For example, equality of the

arithmetic and harmonic means of

p (K:,u) and p (K;,u )implies p (Ku) = p (K;,u).

9



One can use (31) and continuity of g to derive

(32) 1[IK)](32)P g(Ki) >: g(,

using the standard argument that leads to Jensen's inequality. More

generally if {K, : 0:<t1} is a family of convex bodies and K - (K,)dt is the

Minkowski-Riemann integral (see Dinghas [51 ) then

(33) g(K') _ Ig(K,)dt.

Corollary .. The n- dimensional volume of the polar reciprocal of a

set K of constant relative width 2 satisfies

(34) V(K*) 2 V(E").

Equality holds if and only ifK =L, the unit ball in the given Minkowski

space.

Proof, Let (P (1) = t'-.Then (p is an increasing convex function. For
n

any set K,g(K) = V(K) where g is defined as in Theorem 5. Hence using (31),

K + (-K) V(K)+ V((-K)') _ V(K')+ V(K')V(E') = V(( K  2 <) = V(K').
2 2 2

By Theorem 5 equality holds if and only if K =-K = E. 8

Corollary 5.2. Let K" be the polar dual of a set K of constant width 2 in R'.

Then
(35) W, (K'-) _>_ W,(B), i -- 0, 1, 2,...n - 1,

with equality if and only ifK is a unit ball.

Proof. By Corollory 5.1,

(36) V(K') >_ c

with equality if and only if K = B. This is the case i = 0 since W.(K*) = V(K).

Hadwiger 115], page 278 shows that for any convex set K,

10



(37) W(K)" > w. V(K)-.

replacing K by K" in (37) and using (36) implies (35). 0

The following is an easy consequence of Corollary 5.2 for a set with an

equireciprocal point.

Theor. If K is a convex set with an equireciprocal point corresponding

to constant 2 then

(38) W,(K) !W,(B), i=0,1,2,-.-,n-1,

with equality if and only ifK is a unit ball centered at the origin.

Proof. (23) and (5) imply that K" is a set of constant width 2. The fact

that (K')' = K and Corollary 5.2 imply (38).8

Theorem 7. If K has an equichordal point with chord length 2, then

(39) K_,(K') > co.,

with equality if and only if K is the unit ball centered at the origin.

Proof. The width of K" in direction u satisfies

4
(40) IV(K',u) = h(K',u)+ h(K,-u) > = 2,

p (K,u)+p (K,-u)

where we have used the inequality between arithmetic and harmonic

means, (5), and (21). Then the mean width of K, denoted by W(K'), satisfies

(41) fVj(K)=-1i (Ku)du> - f 2du>2.

But

(42) W_,1(K') = ~~w_,g(K) > w__.2-= w
(4)2 2

as we wanted to show. Equality holds if and only if p (K,u)= p (K,-u)= 1,

which implies K is a unit ball centered at the origin. 0

Theorem 8. If K has an equiproduct point with constant 1,

then

(43) t(K) 2! (B), i = 0, 1,2,...,n - I



Prof, We first prove the case i = 0. Namely, V(K) > co.. Together the

inequality between arithmetic and geometric means and (22) imply

(44) p (K,u)+p (K,-u) ? 2/rp (Ku) p (K,-u) = 2.

Also,

1 f[p (K,u)]"du f (p (K,u)) + (p (K,-u))'du.(45) V(K) = 2sp-

Convexity of the funtion x implies

(46)
1 f(p (K,u))R+(p (K, -i))t _ fI p (K,u)+p (K,-u)

n2 n 2L
$.-I $-t

Equations (44), (45) and (46) imply the result for i = 0, namely,

V (K) t I du =nw co,.n f n
(47) S,-,

Equality holds if and only if p (K,u) =p (K,-u). Using (21), equality holds if

and only if p (K,u) = p (K,-u) = 1 which gives a unit ball centered at the

origin.

To prove (43) we use (37), noting that equality holds if and only if K is

the unit ball centered at the origin.g
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