
o a

0 NAVAL POSTGRADUATE SCHOOL
Monterey, California

uI UIC FILE COPY

TINI

A SPLIT-AND-MERGE METHOD FOR CREATING
POLYGONAL HOMOGENEOUS-VEGETATION
REGIONS FROM DIGITIZED TERRAIN DATA

by

Roderick K. Wade

June 1989

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution unlimited

DTIC
Sh ELECTE

* B8

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
1 a Report Security Classification lb Restrictive Markings

UNCLASSIFIED
2a Security Classification Authority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
(If Applicable)

Naval Postgraduate School 52 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrment Identification Number

(If Applicable)

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Program mE.t.a Number Projec No Task No Wink U=t Awmvon No

11 Title (Include Security Classification)
A SPLIT-AND-MERGE METHOD FOR CREATING POLYGONAL HOMOGENEOUS-VEGETATION

REGIONS FROM DIGITIZED TERRAIN DATA
12 Personal Author(s)

Roderick K. Wade
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) "5 Page Count

Master's Thesis From To June 1989 89
16 Supplementary Notation

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

1 7 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)
Field Group Subgroup Computer Vision, Artificial Intelligence, Optimal-Path-Planning,

\ 1 Digitized Terrain Databases, Prolog
1 9,,Xbstract (continue on reverse if necessary and identify by block number

1Providing a simplified representation of terrain characteristics has applications to optimal-path-planning
programs using spatial reasoning. Utilizing computer vision techniques, our program creates polygonal
homogeneous-vegetation regions based on map vegetation data from a digitized Defense Mapping Agency
Database. Boundary points for regions are identified from the vegetation codes in the database, and then the
boundary contours of the regions are traced using a modified look-left boundary tracing algorithm. Each region is
then represented by a polyline comprised of line segments that meet a minimum threshold for fit using the linear
least-squares criterion. The segments are determined by first recursively splitting the region boundary until all
segments meet the fit threshold, and then merging adjacent segments that meet the threshold.-- \

20 Distribution/Availability of Abstract 21 Abstract Security Classification

unclassified/unlimited D same as report DTIC users UNCLASSIFIED
22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol

Prof. Neil C. Rowe (408) 646-2462 Code 52Rp
DD FORM 1473, 84 MAR 63 APR edition may be used until exhausted security classification ot this pagc

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

A Split-and-Merge Method for Creating
Polygonal Homogeneous-Vegetation Regions from

Digitized Terrain Data

by

Roderick K. Wade
Captain, United States Army

B.S., United States Military Academy, 1981

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author: _____
Roderick K. Wade

Approved by: !U
Professr Neil C. Rowe, Thesis Advisor

_rofesseh g Kwak, Second Reader

Professor Robert B. McGhee, Chairman
Department of Computer Science

Kneal it. -!1V--4 1

Dean of Information and Policy- ciences

ii

ABSTRACT

Providing a simplified representation of terrain characteristics has applications to

optimal-path-planning programs using spatial reasoning. Utilizing computer vision

techniques, our program creates polygonal homogeneous vegetation regions based on

map vegetation data from a digitized Defense Mapping Agency database. Boundary

points for regions are identified from the vegetation codes in the database, and then the

boundary contours of the regions are traced using a modified look-left boundary tracing

algorithm. Each region is then represented by a polyline comprised of line segments

that meet a minimum threshold for fit using the linear least-squares criterion. The

segments are determined by first recursively splitting the region boundary until all

segments meet the fit threshold, and then merging adjacent segments that meet the

threshold.

Accession For

NTIS GRA&I
DTIC TAB 0Unannounced Q
Justification

Distr bution/

Availability Codes
Avail and/or

Dist Speil

- . . -

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND I

B. ORGANIZATION 2

U. REVIEW OF REGION REPRESENTATION BY POLYGONS 3

A. POLYLINES 3

B. APPROXIMATION OF FIT BY LINEAR LEAST-SQUARES

M ETH OD 4

III. SPATIAL TERRAIN DATABASES 7

A. DEFENSE MAPPING AGENCY DATABASES 7

B. DATABASE USAGE FOR OPTIMAL-PATH PLANNING 7

IV. IMPLEMENTATION 10

A. DESCRIPTION OF THE BOUNDARY-IDENTIFICATION PHASE . 10

B. DESCRIPTION OF THE SPLIT-AND-MERGE PHASE 17

V . RESU LTS ... 22

A. PERFORMANCE MEASURES OF THE BOUNDARY-

IDENTIFICATION PHASE 22

B. PERFORMANCE MEASURES OF THE SPLIT-AND-MERGE

PHA SE 22

VI. CONCLUSION 25

APPENDIX A TEST RESULTS 27

iv

APPENDIX B SOURCE CODE FOR THE BOUNDARY-IDENIFICATION

PHASE.. 36

APPENDIX C SOURCE CODE FOR THE SPLIT-AND-MIERGE PHASE 69

LIST OF REFERENCES....................................... 82

INMTAL DISTRIBUTION LIST................................. 83

I. INTRODUCTION

A. BACKGROUND

Recent work at the Naval Postgraduate School has studied methods to determine

the optimal path between two points in terrain. These methods assume that the terrain

can be represented by homogeneous polygonal regions. Attributes of a region can

include the degree of vegetation, type of vegetation, soil composition, elevation, slope,

orientation of the slope, and man-made physical features within the area. Currently the

optimal-path-planning research is using artificial terrain data. A program that will

take Defense Mapping Agency digitized terrain data and create homogeneous regions

would enable researchers to show the real-world feasibility of their path-planning

approaches. In this thesis, we have developed tools to create these regions from

vegetation data recorded at evenly-spaced sample points.

To create two-dimensional regions from vegetation data at evenly-spaced points

we used two phases. The first phase identified the boundary points of a homogeneous

region, points halfway between adjacent sampled points of differing vegetation. The

second phase used a split-and-merge method with linear-least-squares constraints to

reduce the complexity of the region boundaries (their number of vertices). The

simplified regions enable us to represent the terrain characteristics in a clear and

concise manner.

B. ORGANIZATION

Chapter 2 introduces previous work in the areas of region representation by

polylines, split-and-merge algorithms, and the linear-least-squares constraints AdIl of

approximating the fit of points to a line. Chapter 3 describes the Defense Mapping

Agency Databases, and databases used for optimal path planning. In Chapter 4 we

discuss in detail our program. Chapter 5 shows our experimental results in both

qualitative and quantitative terms. Finally, Chapter 6 summarizes our contributions and

discusses some of the possible areas for further research based on this work.

2

UI. REVIEW OF REGION REPRESENTATION BY POLYGONS

A. POLYLINES

Polylmnes can be used to approximate the boundary of a region. A polyline

representation consists of a list of points. See Figure 1. A region can be represented

(Xl,Yl) (X2,Y2)

(X3 ,Y3)

(X4,Y4)

POLYLINE = [(X1,Yl), (X2,Y2), (X3,Y3), (X4,Y4),(X5,Y5),(X6,Y6)]

Figure 1 Polyline Representation of a Region

3

to any degree of accuracy by the polyline depending upon where and how many

points are used [Ref. l:p. 232].

A common technique used to determine a polyline representing a region is

splitting and merging. It can be proved that the number of line segments in a polyline

constructed using a split and merge algorithm will never be greater than two times the

minimum number of segments for a given line fit criteria [Ref. 2: p.283]. There are

numerous methods to determine whether a given line segment should be split, merged

or left untouched. Usually all methods split segments of a polyline until all

subsegments meet criteria for linearity. Then usually adjacent segments of the polyline

are merged together if they meet other criteria. The methodology used to determine

linearity is problem-domain-dependent.

The linear least-squares method to determine the collinearity of points has been

used in a merge-only scheme [Ref. 3]. Two adjacent points were arbitrarily selected

and points added to their segment until the linear least-square fit of the segment failed

the fit criteria. At that point a new segment was started and the process repeated until

the region was completed. The start point for each segment determines the breakpoints

of the region. The primary disadvantage of this method is that the merging without

backtracking or splitting does not give the most aesthetically pleasing breakpoints.

B. APPROXIMATION OF FIT BY LINEAR LEAST-SQUARES METHOD

The fit of a set of points with respect to a given line can be judged using several

techniques. The linear least-squares method sums the squares of the distances from

each data point to the line. In our work the line is determined by the two endpoints

of the boundary-points subset tested. We use the general equation of a line:

4

Ax +By+ C= 0 (1)

Given two endpoints (XI,YI) and (X2,Y2) of the line segment we can derive the value

of the constants A, B, and C by:

Y-YI = Y2- Yl (2)
X -XI X2 -XI

Cross multiplying and solving for zero yields:

A=YI -Y2 (3)

B = X2 -XI (4)

C = X1Y2 - X2YI (5)

The slope and the intercept are:

M =-A /B (6)

B =-C B (7)

The linear least-squares fit for n points with respect to the line calculated above is:

FIT = . 1r (Axi + By, + C)2 (8)

n (A2 + B2)

8 5nnnn mun m n u n nn lmu nnulu nnnn n ln lUnl u l

The fit is a calculation of how far on the average the n points are from the line. A

fit of zero means that all of the points lie on the line. By squaring the distance from

the line we give equal weight to points that are on each side of the line. The square

root enables us to renormalize distance from the line.

6

III. SPATIAL TERRAIN DATABASES

A. DEFENSE MAPPING AGENCY DATABASES

The Defense Mapping Agency maintains digitized terrain databases for most of

the world. These databases contain information about elevation data, vegetation, bodies

of water, and man-made objects. Typically these databases record data at evenly

spaced sample points in latitude and longitude.

The Digital Terrain and Elevation Data (DTED) database used in our program

contains two types of such information. The terrain elevation and the height of the

vegetation coverage are encoded in two bytes for each sample point. The three most

significant bits are the vegetation code and the remaining 13 bits are the elevation in

feet. The three bits of vegetation code are explained in Figure 2. Vegetation codes

6 and 7 never occured in the terrain samples we selected so we did not provide

additional handling for these codes. The samples are conducted every 12.5 meters.

Each square kilometer or grid square requires 6400 samples (80 * 80) or 12,600 bytes.

B. DATABASE USAGE FOR OPTIMAL-PATH PLANNING

There are several approaches to determine the optimum path between two points.

At the Naval Postgraduate School considerable research is being conducted using spatial

reasoning. Spatial reasoning methods do not use traditional grid terrain modeling

where the terrain is represented by evenly distributed sample points. Instead spatial

reasoning uses descriptive terrain modeling where the terrain is partitioned into

7

VEGETATION CODE VEGETATION HEIGHT

0 LESS THAN 1 METER

SI - 4 METERS

2 4 - 8 METERS

3 8 - 12 METERS

4 12 - 20 METERS

5 GREATER THAN 20 METERS

6 NO DATA AVAILABLE

7 NOT USED

Figure 2 Vegetation Codes

homogeneous regions. The minimal-energy optimal-path-planning research conducted

by Ron Ross uses partitioned regions based on the slope of the terrain, soil

composition, and other factors [Ref 4].

The first step to implement this work was done by Seung Hee Yee who wrote

a program for planar-patch terrain modeling based on the elevation data [Ref 5]. One

of the three methods that he tested was joint top-down and bottom-up terrain

modeling. His top-down phase used a quadtree subdivision method to divide the

terrain area into regions represented by a plane and the fit of that plane to the data

points. After all subregions meet the appropriate fit threshold, he used a bottom-up

approach to merge similar adjacent regions. His bottom-up phase used two merging

criteria. First. the adjacent planes must have a minimum difference of the squares of

8

the differences of the respective plane coefficients. Second, the data points from both

regions must be representable by a plane which meets the same fit threshold as in the

top-down phase. If both criteria are met, then the regions are merged and the new

plane is stored along with its fit. During the year since Seung Hee Yee developed

his program, Professor Rowe has improved it by including better techniques to insure

continuity between the planes of adjacent regions. The planar patches or regions from

these programs could be further partitioned into regions of homogeneous vegetation, but

this has not yet been done.

The simplest minimal-energy optimal-path-planning programs run on the order of

N squared with respect to the number of vertices per region and the number of regions.

For this reason it is important to create regions which preserve the topology of the

original sampled data and yet minimize the number of vertices.

9

IV. IMPLEMENTATION

The program developed is a method to create polygonal homogeneous-vegetation

regions from the Defense Mapping Agency database described in Chapter 3. To form

these regions the program's first phase identifies which sample points in the database

have different vegetation codes than their neighbors. These sample points are identified

as boundary cells. A boundary-identification algorithm is then used on these boundary

cells to determine sequences of boundary points between regions of different vegetation.

A second phase then takes the sequence of boundary points for each region and

performs a split-and-merge algorithm on the list of those points to redefine the regions

in a more efficient form (one with fewer vertices).

A. DESCRIPTION OF THE BOUNDARY-IDENTIFICATION PHASE

We chose C as the language for the boundary-identification phase. The program

runs using a BSD 4.3 compiler on a VAX 11/785 or on an Integrated Solutions (ISI)

workstation. Appendix B contains the source code for the boundary indentification

phase. This phase requires input from the Defense Mapping Agency DTED database.

This database consists of elevation and vegetation data points every 12.5 meters. Our

program builds regions containing sample points with the same vegetation code for a

one kilometer by one kilometer grid square.

Several assumptions were required in the boundary-identification phase. First,

each region formed is assumed to contain vegetation of only one kind. This is

10

fundamental to the concept of homogeneous regions. Second, regions will not consist

of one sample point. These singular points which have no adjacent neighbors above,

below, or beside them are changed to have the same code as the adjacent data point

with the largest vegetation code (i.e. heaviest vegetation). Third, holes in regions will

be detected only in the sense that another region will be formed inside of the outer

region. No special classification is added to a region if it has a hole.

The boundary-identification phase is divided into two passes through the input

data. The first pass identifies the boundary cells. A sample point is considered to be

a boundary cell if any of its four neighbors above, below, or beside it have a different

vegetation code. The sole exception to this rule exists when the point itself or its

differing neighbor are singular points, which are not considered to be boundary cells

in accordance with the second assumption. An example of vegetation codes and

identified boundary cells is shown in Figure 3.

The second pass searches through the identified boundary cells and traces the

contour for each region: as boundary cells are traced, they are marked and identified

with a specific region number. Region numbers are generated as necessary beginning

with 1. The search for a boundary cell to start the contour-tracing for each region is

started in the upper left-hand comer of the input. The grid is searched in a left-to-

right raster scan stopping at the first boundary cell that has not been assigned to a

specific region. After this region has been traced by the contour-tracing algorithm from

this start point. the raster scan continues.

The contour-tracing algorithm follows the traditional eight-connected look-left

algorithm for traversing a maze [Ref. 6:p. 278]. At each boundary cell during the trace

11

5 5 0 0 0

0 5 0 0 0

5 5 0 0 0 0
T A T EVGT.TIO Co

..... ::::::::: :::::::

5 : ::,,00

Figure 3 Boundary Cells

the direction of entry determines which way we look to find the next boundary cell;

the direction of entry at the start point is defined to be the raster scan direction.

Normally, we look to the boundary cell to the left of the direction of entry. If this

cell is not a boundary cell of the same vegetation code we look one cell left and

12

forward. This process is continued clockwise until we find a boundary cell. The

contour-tracing algorithm is continued until we reach the start point or a border of the

picture (the first pass ensures that either event must eventually occur).

Several additions to the contour-tracing algorithm were included to enable us to

handle conditions along the exterior borders of the overall 1km. by lkm. area. When

the contour tracing reaches an exterior border, a check is made to determine if a border

has previously been encountered for the current region. If a border has not previously

been encountered, the tracing continues in the opposite direction starting at the initial

point; otherwise, tracing stops. See Figure 4. Second, if the initial point of the region

is next to the exterior border the tracing will start away from the border. See Figure

5.

A significant improvement in the representation of the data during this pass is

gained by treating the actual boundary between two regions as the set of all points

half-way between the centers of each pair of adjoining boundary cells with a different

vegetation code. Tracing thus proceeds between these points. This is similar to the

crack edges approach used to represent the boundary between regions in [Ref. 1:p. 78].

Additionally, this techmique smooths the staircase effect created by the crack edges

approach. See Figure 6.

The boundary-tracing phase trades memory space for clarity of code. The input

is stored in an 80 x 80 array which represents the vegetation codes at each of the

6400 sampled points in row-major order. The first pass places boundary cells in a

6400 x 5 array in row-major order, classifying each by its x-coordinate, y-coordinate,

vegetation code. whether it is a boundary point, and a flag for marking when the

13

;........ ,?, iiiiiii!ii i.... .

Figure 4 Tracing after Hitting the Border

second pass places the boundary point in a specific region. The second pass stores

into a separate array for each region the sequenced boundary points x -coordinate, y-

coordinate, and vegetation code. The array of regions is output to a formatted file

which will be used as input to the split-and-merge phase described in section B.

14

..

T wo Ca se s where the trace algorithm (

starts away from the border

FIGURE 5 Conditions for Starting Away from the Border

The boundary-identification phase is limited to grids containing no more than

6400 input data points, and can handle up to 75 output regions of no more than 400

traced points. These constraints were selected to insure the program can handle grid

squares with either many small regions, or grid squares with a few large regions.

Although the normal cases for the boundary tracing algorithm have been tested, the

15

REGION I

B B

B.:: B.l.i!::' BB

.. EGONBONDRYE INTS ..
B g iiiiilill ~i~i !.............i

.....~ ~ ~ ~ ~ ~ ~EG O 2X- :i ::.::::: ::::: ::::::"

B

B BOUNDARY CELLS

Figure 6 Boundary Point Representation of Boundary Between Regions

handling of all possible cases involving small regions, such as those containing 2

boundary cells near other regions, has not been verified to work, as in some unusual

situations the tracing could skip points.

16

B. DESCRIPTION OF THE SPLIT-AND-MERGE PHASE

The split-and-merge phase of the program is written in the M-Prolog

programming language for the Integrated Solutions (ISI) workstations. The list-

processing capabilities of Prolog enables us to treat each region as a list of points and

conduct operations on the members of the list.

The input to the split-and-merge phase is a Prolog fact for each region detected

in the boundary-identification phase. Each fact contains an identification number of

the region, the list of points for the region, the vegetation code of the region, and the

total number of points in the region. See Figure 7. The output of the split-and-merge

phase is a set of facts which contain vegetation codes and lists of the coordinates of

each vertex for the polygonal homogeneous vegetation regions.

The major data structures used in the split-and-merge phase are lists, expressed

as facts asserted throughout the phase. A global variable is created for the processing

of each region. This contains the list of boundary points for that region; indexing

based on the placement of the boundary points in the list is used to access it in the

linear least-squares module. This saves allocated memory in terms of the statement

table, global stack. and the main stack. A segment fact is asserted each time the

linear least-squares fit is calculated for a line segment during the splitting process of

the split-and-merge phase. See Figure 9. These facts are asserted and retracted often

as the program seeks the proper combination of segments.

The split-and-merge phase contains five modules; the source code is contained

in Appendix C. The split-and-merge module controls the phase using the built-in

automatic backtracking of Prolog. The linear least-squares module calculates the fit

17

module regions.
/*$eject*/
body.
reg(O,[[O.OeO,22.5e0],
[1.OeO,21.0e0],
[1.0e0,21 .5e0],
[2.00,21.5e0],

[43.5e0,0.0e0]].3,62).
reg(l, [[O.OeO,72.5e0],

/* The first fact describes region number 0. */
/* The region contains 62 data points. */
/* The value for the region is vegetation code 3. */

Figure 7 Input Facts for Split-and-Merge Phase

of points in the vicinity of a line. The list module provides basic Prolog list-

processing predicates The math module provides math funtions such as the square

root which are not provided in M-Prolog.' Finally, the regions module provides the

data input from the boundary-identification phase.

The split-and-merge phase processes one pair of adjacent regions at a time,

starting with pairs with non-zero vegetation codes. For each adjacent region. the list

of boundary points from the two adjacent regions is intersected to produce a list of

adjacent boundary points. To achieve clean boundaries between the two regions, no

' The source code for the linear least-squares module and most of the math and list
modules were written by Professor Rowe. Prolog predicates written by Professor Rowe are
marked with an asterisk in Appendix C.

18

asserta(segment(R,N 1,N2,Fit 12)).

/* R represents the region number of the segment. *1
/* N I and N2 are the vertices of the line segment. */
/* NI and N2 are integer indices into the list of points */
/* for the region. */
/* Fit 12 is the linear least-squares fit of the ponts between NI and
/* and N2 and the line defined by Ni and N2. */

Figure 8 Segment Facts

merging of line segments is allowed to use points from boundary point lists of differing

region pairs. See Figure 8. The adjacent point list between the two regions will be

handled twice for the two regions of the pair; however, the list will be split and

merged identically in each case.

The splitting process follows the traditional divide-and-conquer algorithm [Ref 2:p.

282]. The linear least-squares fit is calculated for a segment, and a segment fact is

asserted. If the fit is less than the splitting threshold, the segment is split into two

new line segments which share a common point, the new "break-point" between them,

and the old segment fact is retracted. This process continues recursively until there

are no more segment facts to be split.

The calculation of the linear least-squares fit is done in the linear least-squares

module using equation (8) from Chapter 2. The end points of each line segment define

the line that will be tested for the fit. The use of the end points to define the line

segment, rather than searching for the "best" line, enables us to connect adjacent line

segments at exactly the breakpoints.

19

|FIRST ADJACENT POINT

1--H REGION1

@@ @REGION 2

SECOND ADJACEN POINT ------

0 POINTS DEFINING THE ADJACENT POINT LIST

Figure 9 Adjacent Regions

The merge process examines each pair of line segments with a common index

number (breakpoint) in the segment facts list. The segments are provisionally merged

and the fit is calculated. If the fit is less than or equal to the merge threshold, the

provisional merge is made permanent. A new segment fact is then asserted, and the

20

two original segment facts are then retracted. This process is continued until no more

adjacent line segments can be merged.

The final process in the linear least-squares module of the split-and-merge phase

takes the list of index numbers (representing the placement of the boundary points

within the input list) and finds their actual x and y-coordinates. This shortened list is

then bound to a newregion fact along with the value of the region.

21

V. RESULTS

A. PERFORMANCE MEASURES OF THE BOUNDARY-IDENTIFICATION

PHASE

In test runs, the boundary-identification phase appears to properly define the

boundaries of both convex and concave regions, including regions with holes. The

maximum error for any point on the region boundary is equal to one half of the

distance between the sample points, ignoring singular points. Since the input data

points were evenly spaced every 12.5 meters, the maximum error at any point is equal

to 6.25 meters.

The phase is memory-intensive. The program allocates 196800 bytes for the

three arrays that are used to temporarily store information. This is more than three

times the number of bytes required to process any of the test grid squares. Since we

are not trying to optimize the code, we allocated more room than would probably be

needed. Extensive use of file I/O, and the N squared nature of the boundary-

identification algorith-n, where N is the length of the square grid, slow the program

to an average run time of 1 minute.

B. PERFORMANCE MEASURES OF THE SPLIT-AND-MERGE PHASE

The regions obtained from the split-and-merge phase appear to represent the

input database without significant error. Examples of input terrain and the regions

formed are contained in Appendix A. As expected, the fit threshold determines the

22

number of vertices for the output regions. Table 1 shows several thresholds and the

resulting number of vertices for each region.

TABLE 1 EFFECT OF VARYING THE THRESHOLD ON THE NUMBER OF
VERTICES PER REGION

NUMBER OF POLYGON VERTICES

REGION # THRESHOLD THRESHOLD THRESHOLD THRESHOLD

0.10 1.0 2.50 10.0

0 21 11 7 3

1 3 3 2 2

2 5 4 3 2

3 23 15 9 5

4 21 11 6 4

5 21 12 4 4

6 18 12 7 4

A threshold of 0.01 allows almost no merging. Conversely, a threshold of 10.0

reduces the regions to only a few vertices.

The split-and-merge phase is expensive in both time and space. Table 2 shows

the maximum observed quantities for the Main Stack, Global Stack, Statement Table,

Evaluations, cpu run time, and the real run time. The stacks and statement table are

managed dynamically in our program, so the numbers vary through the running of the

program. The higher numbers were obtained while processing large lists in the linear

23

TABLE 2 MAXIMUM OBSERVED SIZE FOR M-PROLOG SYSTEM
PARAMETERS IN THE SPLIT-AND-MERGE PHASE

PARAMETERS QUANTrY

MAIN STACK 1057 ITEMS

GLOBAL STACK 4544 ITEMS

STATEMENT TABLE 66,939 STATEMENTS

CPU RUN TIME 20 MINUTES
23 SECONDS

REAL RUN TIME 30 MINUTES

least-squares module. Prior to entering the linear least-squares module the Main

Stack, Global Stack, and the Statement Table were 860 items, 660 items, and 60,836

statements respectively. These numbers only reflect the points in the program that we

observed the system parameters. It is possible that these parameters could exceed the

figures stated in Table 2 in other portions of the program.

24

VI. CONCLUSION

The primary objective of this work was twofold. First, we needed to show the

feasibility of creating a polygonal region representation of terrain vegetation from

digitized map data. Our program shows that this can be done. The program provides

a suboptimal solution that visually appears to properly represent the terrain. But the

split-and-merge phase of the program is time-consuming as the program searches for

proper line segments. The many calculations involved implementing the fit calculations

in M-Prolog is the main reason; other less mathematical methods for determining the

fit of lines do exist and could easily replace the linear least-squares calculations without

changing the rest of the split-and-merge phase.

The second objective of this work was to provide a working tool for path-

planning research at the Naval Postgraduate School. This program will enable

researchers to create polygonal regions of terrain vegetation.

The program only considers a 1km. by 1km. grid square. A more useful program

for optimal path planning could consider much larger areas of terrain. This would

probably require more efficient data storage in the boundary-identification phase and

possibly optimizing and compiling the split-and-merge phase. An alternative and less

costly technique would take the results from several adjacent grids and attempt to

splice regions together that hit their respective borders.

Another topic for future research would be overlaying the results of this work

with the three-dimensional planar-patch terrain models that Seung Hee Yee and

25

Professor Rowe developed. This would create partitioned homogeneous regions of

constant slope as well as vegetation.

26

APPENDIX A TEST RESULTS

27

L..,.~...uu.....uu111il ----ll 1

- ---- ------------ 1---46

----- 1-- -4 4 1 1 4

.......... 44 .1.44.
at--... --------- -- . 11....

------ ----- -- 61144...6
......~~ I6...144 4

-nnnnnn n 44444446

-- 00m 00003---

- - - - - - - - - -- -

01 ~ ~ ~ mmmmmm 4444444

onnnnnnnnnnnnnnnnnmmnmnnrnn0Om ... C00044

uuuuuuu nnnnnnv nn- -111000OOc 44x44o4"s
~...... :::: O003OO C44d444

OOODODDOOOODWMAGAMLMAM0MN 0000541Wd6

323333333333------------------------------ 6614 64444

13330000C 000000001

13333000CC 300000000CC000D

3333333333303000003330000000----0C
333333333333331333
33333333333333323333333333 5S55DOOOODODOOOOODD0000004414444444440
3333333333333333333 333333 .~S SSODO04444444440CC 3
33333333333333333333333333 SSSSS0000 64441446000CC 30
333333333333333313333333333 - s55500000444 4444444444C 3
3333333333333333113333333333 - .S55S004 -00C 44444 3
33333333333333331 3333 333330OW33: 2.OWMD. .DSS 54O0C 30C4300C43
33333333333333333 33333333 333333300000C -0555500C 0C 00C3
3333333333333321333333333333333330000000000CC 300O055555550030C3003
333333 33312313333 111233333300000000CC00005555550C0C30C0
333333333 3333 3333331331333333333333330000C0055555S00044C00000CD30D

333313333 333333221112333333333000000CC30000555SSS000C00C

333333333333333333333333133333333333333300000000000055SSSSS

Figure 5.4 Raw Data for 35 57' 30 'IN, 121 17' W

28

THRESHOLD EQUALS 0.01

4

2
4

4

0

13 5

NUMBERS ARE VEGETATION CODES

29

THRESHOLD EQUALS 1.0

40

2

4

0

4

3 (5

NUMBERS ARE VEGETATION CODES

30

THRESHOLD EQUALS 2.50

4

44

0

4

3 5

NUMBERS ARE VEGETATION CODES

31

THRESHOLD EQUALS 10.0

2

4

4

0

4

3 (5

NUMBERS ARE VEGETATION CODES

32

THRESHOLDS 1.0 AND 0.01 SUPERIMPOSED

33

ThRESHOLDS 0.01 AND 2.50 SUPERIMPOSED

34

THRESHOLDS 10.0 AND 0.01 SUPERIMPOSED

3

35

APPENDIX B SOURCE CODE FOR THE BOUNDARY-IDENTIFICATION

PHASE

#include <ctype.h>
#include <stdio.h>
#include <math.h>
#include "header.h"

unsigned short vegarray[80][80];

unsigned short bndpts[6400][5]; /* 6400 pts x, y, value, boundary?, reg? *

float regs[75][400][3]; /* 75 regions x 400 pts with xl, yl in array coords *
/* and the region value. *

unsigned short pnt;
unsigned short veg;
unsigned short new-val;
unsigned short curr-dir;
unsigned short cuqrpt;
unsigned short curr-x;
unsigned short curry;
unsigned short neighborx;
unsigned short neighbor-y;
unsigned short ij,k;
boolean found-next;
boolean hit-border;
boolean stop-tracing;
boolean trace-counter;
boolean trace-border;
booleam start-counter;
int fdin;

main()

unsigned short x,y;
int is-not..singlept();
int single-adjacent--pto;
int is-boundarypt,,;-
int can extendo;
int adjacent-border():

36

int curr -dir -diagonal();
it start-backwardsO;

Wdin = open(infile,0);
/* creates the vegatation array 80 x 80 with values *

for (x=-O; x < 80; x++) (
for (y = 0; y < 80; y++)(

read(fdin, &veg, 2);
vegafraylx][y] = veg - 48;

pnit =0;

i = 0; /* The current point in the second pass *
j = 0; /* The first four border regions are initiated w/out j *
k = 0; /* Next point # for current region being traced *
for (x = 0; x < 80; x++) (

for (y = 0; y < 80; y++)(
if (x == 0 11 x = 79 11 y = 0 11 y = 79)

bndptslpnt][01 = x;
bndpts[pnt][1] = y
bndpts[pnt][2] = vegarray~x][y];
bndptsjlpnt][3] = FALSE;
bndptsllpnt][4] = TRUE;

else if (((vegarray[x][y] != vegarraylx]Ijy+1J &&
is-not -singlept(x,y+1)) 11
(vegarrayix] ly) ! = vegarray [x+l1][y] &&
is-not..singlept(x+1 ,y)) 11
(vegarray[x][y] != vegarray[x][y-1] &&
is-not-.singlept(x,y- 1)) 11
(vegarray[xl[y] != vegarraylx-1] Ly] &&
is-not-singlept(x-1,y))) &&
is -not -singlept(x,y))

bndptsipntl[0I = x;
bndpts[pnt][1j = y
bndptslpntll2i = vegarray[x][y];,
bndpts~pnt][31 = TRUE;
bndpts[pnt][4] = FALSE;
/* if */

else if (single-adjacent..pt(xy))
bndpts[pnt][OI = x
bndpts[pnt][1] = y
bndpts[pnt][2] = new..yal;
bndpts[pntJ[3] = TRUE;
bndptslpntli4l = FALSE;

* J /* if*
else

-37

bndpts[pnt][0] = x;
bndpts[pnt][1] = y;

bndpts[pnt][2] = vegarray[x](y];
bndpts[pnt][3] = FALSE;
bndpts[pnt][4] = FALSE;

pnt++;
}/* for y *

}/* for x */
/* The second Pass through the data base starts here. This pass traces */
/* the boundaries of each region by scanning through the entire DB looking */
/* for a boundary point. Once a boundary point is found it starts tracing */
/* around the region. The output is to the regs set of arrays. */

while (i < 6400) 1
cun'_dir = North;
k = 0;
hitborder = FALSE;
traceborder = FALSE;
if (is boundaryptO) I

currpt = i;
curr x = bndpts[curr pt][O];
curr-y = bndpts[currptJl];
stop-tracing = FALSE;
tracecounter = FALSE;
startcounter = FALSE;
if (adjacentborder()

connectborderO;
if (start backwards0)

startcounter - TRUE;
tracecounter = TRUE;
hitborder = TRUE;
curr_dir = SEast;

do
if (start counter)

rightfrontneighbor();
addpoint();
foundnext = FALSE;
while (!foundnext) I

if (can-extend() I
movecurrdiro;
foundnext = TRUE;

else
lookleft_oneo:

38

if (can extend()
movecurr dirO;
found-next = TRUE;

else {
frontneighboro;
add.pointo;
lookleft oneo;
/* inner else

} /* outer else */
/* while not found next */

startcounter = FALSE;
/* if start counter */

else if (trace_counter && curtdir_diagonalO){
right-rearneighboro;
addpointo;
look_right_twoo;
foundnext = FALSE;
while (!foundnext) I

if (can-extendo) I
movecurr diro;
foundnext = TRUE;

else
lookleft oneo;
if (can-extendo) I

move currdiro;
foundnext = TRUE;

else I
frontneighboro;
add-pointo;
lookleft_one();

/* inner else */
/* outer else */
/* while not found-next */

if (currpt == i)
continue;

/* if curt dir is diagonal and tracing counter clockwise */
else if (tracecounter && ! curr dir diagonal() &&

!trace-border) I
right-neighboro;
add-pointo;
lookrightToneo;
found-next = FALSE;
while (!found_next)

39

if (cankextendo)

move - uffr.diro;
found-next = TRUE;

else
look-left oneo;
if (can..extend(;)I

move-curr.-diro;
found-next = TRUE;

else
front-.neighboro;
add&.pointo;
look-left--one();

1/* inner else *
/* outer else */

/* while not found-next ~
if (curr...pt == i)

continue,
/ * else curr-dir is not diagonal *

else if (cuffr-dir -diagonal())
left-rear-neigliboro;
addpointo;
look_left -twoo;
found-next = FALSE;
while (!found-next)(

if (can-extendo)
move cuffrdirO;,
found-next =TRUE:

else
look_right-oneo;
if (can extendo)

miove-curr_diro,
found-next = TRUE,

else
front-neighboro;
add-pointo;
look -right oneo:
inner else *

/* outer else */
/* while not found-next ~

if (curr..pt == i)
continue;
/* if cuff dir is diagonal *

40

/l *********************** else curt dir is not diagonal ******** */
else if (!traceborder)

left neighborO;
add-.pointo;
lookleftone();
foundnext = FALSE;
while (!foundnext) {

if (can..extendo) {
movecurr_dirO;
foundnext = TRUE;

else
lookright.oneO;
if (canextendO)

movecurrdiro;
foundnext = TRUE;

else
frontneighboro;
addpoint();
look_right-oneo;
/* inner else */

/* outer else */
/* while not found-next */

if (currpt == i)
continue;

/* else currdir is not diagonal */
if (adjacentbordero) {

bndpts[currpt][4] = TRUE.
connectbordero;
/* if current point is adjacent border */

while ((!(currpt == i && !(trace_counter))) &&
!(stop-tracing)):

/* If the region has the same start and end point make the last point the */
/* same as the first point. */

if ((currpt == i) && (!hitborder))
duplicatefirst-ptu;

/* Set a flag at the end of each region so the output routine knows to stop */
regsUJ[k][0] = 9999;
regsj]lk][1] = 9999.
j++; /* increment region number */

/* if is boundary point */
i++; /* increment point number that we are checking for bndy */

/* while i < 6400 */

41

print..outpu -regionso;

/* main for file bndpts.c *
/* ******END of file BNDPTS.C * * 4 * r 1 1

42

File BNDUTIL.C
/* This file contains the necessary functions to execute the bndpts.c program.*/

#include <ctype.h>
#include <stdio.h>
#include "header.h"

extem unsigned short veg;
extem unsigned short newval;
extem unsigned short currdir;
extem unsigned short currpt;
extem unsigned short curt_x;
extem unsigned short curry;
extem unsigned short ij,k;
extem unsigned short neighbor x;
extem unsigned short neighbor-y;
extem boolean tracecounter;
extern boolean traceborder;
extem boolean stopjtracing.
extern boolean hitborder;
extem unsigned short vegarray[80][80];
extem unsigned short bndpts[6400][5];
extern float regs[75][400][3];
exter int fdout;
extem int isboundarypto;
extem int issinglepto;
extem int single-adjacentpto;

/, ***

int isnotsinglept(x,y)
unsigned short x.y:

return (vegarraylx][y] == vegarray[x+l]Ly] II
vegarray[x][y] == vegarray[x-1][y] II
vegarray[x]ly] == vegarraylx][y+I] II
vegarraylx]Ly] == vegarray[x][y-1]);

} /* function isnotsinglept */

1* ***

*/

int single-adjacent.pt(x,y)
unsigned short x,y;
I
/* First find the maximum 4 way neighbor of the point. */

newval = 0;

43

if (vegarray[x + 1] [y] > vegarray[x][y + 1])
newval = vegarray[x+l][y];

if (vegarray[x][y-1] > vegarray[x+l][y])
newval = vegarray[x]Ly-l];

if (vegarray[x-l][y] > vegarray[x][y-l])
newval = vegarray[x-l][y];

if (vegarray[x][y+l] > vegarray[x-1][y])
newval = vegarray[x]Ly+lj;

/* Second, return true if the point has 4 way neighbors with at least two */
/* different values. Returns largest neighbors value as newval. */

return(! isnot..singlept(x,y) &&
(vegarray[x+l][y] != vegarray[x][y+l] II
vegarray[x+l][y] != vegarray[x][y-1] ii
vegarray[x+l][y] != vegarray[x-l][y]));

/* function single-adjacent__pt */

*/

/* A point is a boundary point if it is a boundary and it is not already */
/* part of a region and it does not have a value of zero. */

int is_boundarypt()

return (bndpts[i][3] == TRUE && bndpts[i][4] == FALSE &&
bndpts[i][2] != 0);

/* function isboundarypt */

/* ***
*/

/* A region is extended if the point in the curt direction is a boundary */
/* and the point in the curr direction is the same value as the current */
[* point. */

int canextend)

switch (curr dir)

case North: return (bndpts[currpt + 1][3) == TRUE &&
bndpts[currpt + 1][2] == bndpts[currpt][2]);

case NEast: return (bndpts[curr pt + 81][3] == TRUE &&
bndpts[curr_pt + 81][21 =-- bndptsicurrpt][2]);

case East: return (bndpts[currpt + 80][3] = TRUE &&
bndpts[currpt + 80][2] =- bndpts[curr._ptj[2]);

44

if (bndpts[curfpt(01 = 1)
if (bndptslcurr..pt][2] != bndpts[curr..pt + 1][2])

if (bndpts[curr..pt][2] = bndpts[cuff~pt -79][2])
regsUl[k][0I = 0.0;
regsU][k][1I = (float)(cun...y + 1.5);
regsU][k][2] = (float)(bndpts[curnpt][2]);

k++
else if (bndpts[curr..pt][2] = bndpts[curpt -80][2])

regsU][kIIO] = 0.0;
regs[k][1] = (float)(curr2y + 0.5);
regsUl[kI [2] = (float)(bndpts[currpt][2]);

else
regsUj][kI[0] = 0.0;
regsUI[kJ[l] = (float)(curr..y - 0.5);
regsU][k] [2] = (float)(bndpts[currjn] [2]);

if (hit-border)I
stop-tracing = TRUE;

else
hit-border = TRUE;
currpt = i;

curr-x = bndptsfcurr~pt][0]:
curr-Y = bndptslcurr..pt][1];
cuffr-dir = East;

else if (bndpts[curf-ptl[21 != bridpts[curr-pt 1][21)
if (bndpts[currpt[2] == bndpts[curr..pt - 81][2])

regsLil[k]IO] = 0.0;
regsUj]CkI[1I = (float)(curxiy - 1.5);
regsUl[k][2] = (float)(biidptslcurrpt12]);

else if (bndptstcurrpt][2] == bndpts[curr~pt -80][2])

regsUI[k][0] = 0.0;
regsUIj[k][1] = (float)(cur...y - 0.5);
regsU][k][2] = (float)(bndpts[curr_pt][2]);

else

47

regsU][kJ[0I = 0.0;
regsfj][k][11 = (float)(curr~j' + 0.5);
regsfjJ[k)[2] (float)(bndpis[cur...pt][21);
k++;

/* 3rd level else *
if (hit-border)

stop-racing = TRUE;
elseI

hit-border = TRUE;
trace-counter = TRUE;
curr-dir =South;

cuirKPt =;
curr-x = bndpts[curr...pt][O];
curr-y = bndpts[curr.pt][l];

/* 2nd level else *

else if (trace -counter)
trace-border = TRUE;

right - eighboro;
add-pointo;
curr-dir = North;
move-curr-diro;

else if (!trace-counter)
trace -border = TRUE;
left-neighboro;
addpointo.,
curr-dir = Sotith;
move-curr-dirU;

/* 1st level if *

if (bndptsfcurrpt[OI == 78)
if (bndpts[CUITptJf2J != bndptstcurrpt+l[](

if (bndpts[curr-pt)J[21 == bndpts[curr-pt + 81][2])
regsU[jk][0] = 79.0;
regsU]I[k][1] (float)(curr..y + 1.5);
regsLjl[k][2] = (float)(bndptslcurTrptE21);

else if (bndpts[curl-pt)[2I = bndptsicur...pt + 80112]) 1
regsUJtk][0J = 79.0;
regsU~fjfJ]I = (float)(curr-v + 0.5);
regsUJ[k][21 = (float)(bndpts[currp[2)

48

else
regsUj][k][0] = 79.0;
regsU][k)[l] = (float)(cur...y - 0.5);
regsUJCkj[21 = (float)(bndpts~cur...ptj[2J);

if (hitjborder)
stop-racing = TRUE;

else
hit-border = TRUE;
trace -counter = TRUE;
curr-dir South;
currpt = ;

curr-x = bndpts[cuffrpt][0];
curr-y = bndpts[curr pt]I1];

else if (bndpts[curr..pt][2] != bndptstcurr -pt -1][21)

if (bndpts[currpt][2] = bndpts[currpt + 791[2])
regs[k][01 = 79.0;
regsU1[ki(1J = (float)(curr.y- 15)
regsU] [k] 12] = (float)(bndpts [curr..pt] [21);

else if (bndpts[curr..pt][2] == bndpts[curr-pt + 80][2])
regsUji[k][0] = 79.0;
regsU~tl[l] = (float)(curr...y - 0.5):
regsU[j]k] [2] = (float)(bndpts[curr-pt][2]);
k++,

else
regs[j][k][01 = 79.0,
regslUlik][lI = (float)(curr y + 0.5);
regsU][k] [2] = (float)(bndptsfcurr-pt][1);

1 * 3rd level else *

if (hit-border)
stopjtracing = TRUE;

else
hit-border = TRUE;
trace_-counter = TRUE;
curr-dir =South;

curr-pt =;

curr-x = bndptslcurrptl[01;
curr_y = bndpts[curr-pt][l]:

49

/*' 2nd level else *
else if (trace-counter)

trace-border = TRUE;
right jleighboro;
addpointo;
currdir = South;
move-curr-dirO;

else if (!trace-counter)
trace -border = TRUE;
left -neigbboro;
add~pointo;
curr-dir = North;
move-curr-diro;

/* 1st level if *

if (bndpts[currpt][l] =-- 1) 1
if (bndptslcurr..pt][2] != bndpts[currpt -80][2])

if (bndpts[currpt][2] == bndpts[cur...pt - 81][2])
regsU][k][0] = (float)(curr-x - 1.5);
regsU][k][1] = 0.0;
regsj] [k] [2] = (float)(bndpts[cunrpt] [2]);

else if (bndpts[curr..pt][2] == bndpts[curr-.pt -1][2])

regsU][k]j0] = (float)(curr-X - 0.5);
regs~]Ik][1] = 0.0;
regsUj][k][2] = (float)(bndpts[curr-pt][2]);

else I
regslj][k][O] = (float)(curr-x + 0.5);
regsUj]IkJ[lI = 0.0;
regsj[k]j12] = (float)(bndpts[curr pt]["])-,

if (hit border)
stop-tracing = TRUE;

else (
hit-border = TRUE;
trace-counter = TRUE,
curr-dir =South;

currPt =;

curr-x = bndpts[curr~pt][0];.
curi-Y = bndpts[curr-ptl[lI;

50

else if (bndpts[curr~pt][2] != bndptscur...pt + 80][2])
if (bndpts[currjpt][2] = bndpts[curr-pt + 79][21)

regsUJ[k]tO] = (float)(curr-x + 1.5);
regsU][k][11 = 0.0;
regsU][k112] = (float)(bndpts[curr..pt][2]);

else if (bndpts[currpt][2] = bndpts[cur...pt -1][2])

regsUJCkj[01 = (float)(curr-X + 0.5);
regsUjI[k]I1] = 0.0;
regsU] [kI [2] = (float)(bndpts [currpt] [2]);
k++;

else
regsUj1[k][0] = (float)(curr-x - 0.5);

regsUl[k][lI = 0.0;
regs~] [kI [2] = (float)(bndpts[currpt] [2]);

k-H-;
I /* 3rd level else *
if (hit-border)

stop-tracing = TRUE,

else
hit-border = TRUE;
trace-counter = TRUE-,
curi_dir =South,

curr-pt =i.

curr-x = bndpts[curr-pt][O],
currv = bndpts[curr-pt][l];,

/* 2nd level else ~
else if (trace-counter)

trace border = TRUE.
right-neighbor);
add-pointo;
curr-dir = West;
move-curr-dirO,;

else if (!rrace-counter)
trace -border = TRUE;
Ieft-neighbor():
add-pomnt()
curr-dir = East,

51

move-cuffrdirO;

) /*I 1st level else *

if (bndpts[curr..pt][li = 78)
if (bndpts[cur...pt][2] != bndpts[currjnt - 80)[2])

if (bndpts~cur...ptJ[2J = bndpts[curr..pt - 79][2])
regsU][k][O] = (float)(curri-x-1.)
regsUj][k](1] = 79.0;
regsUJ[ki [2] = (float)(bndpts[curr..pt][2]);
k-i-i;

else if (bndpts[curr pt][2] = bndpts[curr-pt + 1][2])
regsU][k][0j = (float)(currf_x - 0.5);
regsUj][k][11 = 79.0;
regsU][k] [2] = (float)(bndptscurr..pt][2]);

elseI
regsU][k][0] = (float)(curr-X + 0.5);
regsUj][k][1] = 79.0;
regsU][kll2] = (float)(bndpts[curr.pt][2]);

if (hit border)
stop-tracing = TRUE;

else(
hit-border = TRUE;
tracecounter = TRUE;
curr-dir =South;

curr-pt =:

curr-x = bndpts[curr-pt][0];,
curr -N = bndpts[curr-pt][1];

else if (bndpts[currpt][21 !=bndpts[currpt + 80][2])
if (bndpts[currpt][21 == bndpts[curr..pt + 81][21)

regsol[k][0I = (float)(curr-x + 1.5);
regs~jJ~kJ[lI 79.0;
regsU][k] [21 = (float)(bndpts[currpt](2]);

else if (bndpts[curr..pt][2] == bndptslcurr..pt + 1][2])
regsojJfkJ(0J = (float)(curr-x + 0.5);
regsUj][k][11 = 79.0;.

52

regs[j][k][21 = (float)(bndpts[curr_.pt[2j);
k++;

else
regs[j][k][0] = (float)(currx - 0.5);
regsU][k][1] = 79.0;
regs[j][k][2] = (float)(bndpts[curr.pt][2]);
k++;

/* 3rd level else */

if (hit-border)
stop-tracing = TRUE;

else (
hitborder = TRUE;
tracecounter = TRUE;
currdir = South;
currpt =i;

currx = bndpts[currpt][0];
curr-y = bndpts[currpt][1];

/* 2nd level else */
else if (tracecounter)

traceborder = TRUE;
right-neighboro;
add-pointO;
currdir = East;
movecurrdiro;

else if (!tracecounter)
traceborder = TRUE;
left-neighboro()
addpoint(;
currdir = West;
movecurrdir):

/* 1st level if */
hitborder = TRUE;

/* function connectborder */

1**

/* Inserts a point to the current region output database, and increments */
/* the point count. */

53

add_.pointO
=

regs[j][k][O] = (float) (curx + neighbor.x)/2;
regsUj][k][I] = (float) (curr..y + neighbor...y)/2;

regsU][k][2] = (float) (bndpts[curr_.pt][2]);
k++; /* increment next point to be added to the region */

}* function add.point */

fi, **

/* Inserts a point to the current region output database, and increments */
/* the point count. This is used when the region is closed, and the *1
/* first point is the same as the last point. */

duplicatefirst-pt0

regs[il]k][0 = regs1][O][O];
regsU][k][1] = regs[j][0][1];
k++; /* increment next point to be added to the region */

/* function duplicate-first-pt */

1**

/* Gets the x,y of the point to the left of the curr point. */
/* If we are tracing counterclockwise,:we get the x,y of point to the right */

left_neighbor()

switch (curr-dir)

case North neighbor.x = currx - 1;
neighbor-y = curry;
break;

case NEast neighborx = currx -1;
neighbory = curr-y +1;
break;

case East neighborx r. curtx;
neighbory = curry + 1;
break;

case SEast neighbor x = currx + 1;
neighbory = curry + 1;
break:

case South neighbor x = curr_x +1;

54

neighbor-y =curry;

break;
case SWest neighbor _x =curr-x + 1;

neighbor..y =curry - 1;
break;

case West : neighbor-x curr-x;
neighbor- = curry - 1;
break;

case NWest :neighbor-x = curr-x - 1;
neighbor-y = curry -1;

break;
default: printf("Error curr-dir !0-7");

break;

/* switch ~

/*' function ~

/* Gets the x,y of the left rear neigbor of the current point. *

left-rear-neighbor()

switch (curt-dil)

case North :neighbor-x =curt-x 1;V
neighbor-y -curr- 1,
break;

case NEast neighbor-x curt-x -1,
neighbor~ji curr-y;
break;

case East : neighbor-x = curt-x -1;

neighbor N = curry + 1;
break;

case SEast :neighbor-x = curt-x,
neighbot-y = curry + 1;
break;

case South :neighbor-x =curt-x + 1;
neighbor-y =curr-y + 1;
break;

case SWest :neighbor-x curt-x + I;
neighbor-y =curr~y;

break;
case West : neighbor-x curt-x + 1;

neighbory curt y - 1;
break;

55

case NWest neighbor_x = currx;
neighbor-y = curr.y - 1;
break;

default: printf("Error curr-dir != 0-7");
break;

/* switch */

/* function

/* Gets the x,y of the left front neighbor of the current point. */

left frontneighbor()

switch (curr dir)

case North : neighborx = curr_x - 1;
neighbor-y = curr_y + 1;
break;

case NEast : neighbor x = curr -x;
neighbory = curry +1;
break;

case East : neivhbor x = curr x + 1;
neighbor_y = curr-y + 1;
break;

case SEast : neighborx = curr_x + 1;
neighbory = curry;

break:
case South : neighborx = curr_x +1;

neighbory = curry - 1;
break;

case SWest : neighborx = curr_x;
neighbor-y = curr-y - 1;
break;

case West : neighborx = curr_x - 1;
neighbor_, = curr-y - 1:
break;

case NWest : neighborx = curr_x - 1;
neighbor-y = curry;
break;

default: printf("Error curr-dir != 0-7");
break;

/* switch */

/* function */

56

/* Gets the x,y of the front neighbor of the current point. */

front-neighbor()

if (! tracecounter)
switch (curr dir)

case North neighborx = currx;
neighbor-y curry + 1;
break;

case NEast neighborx = curr_x + 1;
neighbor-y = cury + 1;
break;

case East : neighborx = currx + 1;
neighbor-y = curry;
break;

case SEast neighborx = curr x + 1;
neighbor-y = curry - 1;
break;

case South neighborx = curr-x;
neighbor-y curry - 1;
break;

case SWest : neighborx = curr_x - 1;
neighbory - curr.y - 1;
break;

case West : neighbor_x = curr_x - 1
neighbor-y curry;
break;

case NWest neighbor x = curr_x - 1;
neighborY = curr_y + 1.
break:

default: printf("Error curr-dir != 0-7");
break;

/* switch */
1 /* if trace left */
else {

switch (curr_dir)

case North : neighborx = curr_x;
neighbor_y = curr-y + 1;
break;

case NEast : neighborx = currx + 1;
neighbory = curry + 1;

57

break;
case East neighbor -.x = cuff-x + 1;

neighbor-Y = currj';
break;

case SEast neighborx = curt -x + 1;
neighbor-y =curr..y - 1;
break;

case South neighbor..x =curr-x;

neighbor-y =curr-y - 1;
break;

case SWest neighbor..x = curt-x - 1;
neighbor..y =curr-y - 1;
break;

case West neighbor - = curff - 1;
neighbor-y curr-y;
break;

case NWest neighborx = curt-x - 1;
neighbory = cuffty + 1;
break;

default: printf("Error curt-dir != 0-7");
break;

/* switch */
I/*' else trace right ~

/* function *

1* Gets the x,y of the point to the left of the curt point. *
/* If we are tracing counterclockwvise, we get the x,y of point to the right ~

right-neighbor()

switch (curr dir)

case North :neighbor-x =curr-x + 1;
neighbor-v curr_);
break;

case NEast neighbor-x =curt-x +1;
neighbor-y =curty -1;
break;

case East : neighbor-x =curt-x;

neighbor-y =curt-y - 1;
break;

case SEast neighbor-x =curt_x -1;

neighbor-Y= curr- 1;
break:

58

case South :neighbor _x =cun_x -1;
neighbor..y =currj';

break;
case SWest neighbor _x = currx - 1;

neighbor.y =curr..y + 1;
break;

case West : neighbor-x =curr-x;

neighbor.y =cuffry + 1;
break;

case NWest :neighbor-x = curr _x + 1;
neigbbor-y = cur...y + 1;
break;

default: printfC'Error curr-dir != 0-7");
break;

/* switch ~
/*' function *

/* Gets the x,y of the point to the right front of the curr point. *

riglitjfront.neighbor()

switch (curr dir)

case North :neighbor-x curr-x + 1;
neighbor-y =curr_v + 1;
break,

case NEast neighbor-x =curr-x + 1;
neighbory curr v,
bre Ak:

case East neighbor-x =curr-x + 1;
neighborx -y curr-Y - 1.
break:

case SEast :neighbor-x =curr x;-
neighbor-v curry - 1;
break,

case South :neighbor-x =curr-x 1;[
neighborv = curr-v- 1I
break-,

case SWest :neighbor-x =curr-x -1;

neighbor-v curr v:,
break;

case West : neighbor-x =curr-x -1.

neighbor y =curr_v, +- 1;

59

break;
case NWest neighbor-x = curr-x;

neighbor-y = curr-y + 1;
break;

default: printfC'Error cufr-dir != 0-7");
break;

f/' switch ~
)/* function *

/* Gets the x,y of the point to the right rear of the curr point. *

right -ear -neighbor()

switch (curr dir)

case North :neighbor-x =curr__x + 1;
neighbor..y= curry - 1;
break;

case NEast :neighbor-x =curr -X;
neighbor-.y =curr..y - 1;
break;

case East : neighbor-x = cuff..X - 1;
neighbor-y = curr-y - 1;
break;

case SEast :neighborx = curr-x - 1;
neighbor-y = curr-':
break;

case South :neighbor-x =curr -x - 1;
neighbor-y =curr-y + 1;
break.

case SWest :neighbor-x =curr-x;

neighbor-v curr-y + 1;
break;

case West : neighbor-x =curr-x + 1;
neighbor-y =curr-y + 1;
break;

case NWest :neighbor-x = curr-x + 1;
neighbor-y = curry;
break;

default: printf("Error curr-dir != 0-7");
break;

/* switch ~
/* function *

60

/* Marks the current point as used in a region, and changes the current */
/* point in the direction of the current direction. Changes the currx, */
/* and curry to correspond with the new current point. */

movecurrir()
(

bndpts[curr_pt][4] = TRUE;
switch (currdir)
f

case North curr-pt = currpt + 1;
break;

case NEast: curr-pt = curr-pt + 81;
break;

case East curr-pt = curr-pt + 80;
break;

case SEast curr-pt = curr-pt + 79;
break-

case South : curr-pt = curr-pt - 1;
break;

case SWest : curr-pt = curr-pt - 81;
break;

case West : curr-pt = curr-pt - 80;
break;

case NWest curr-pt curr-pt - 79;
break:

default printf("Currdir != 0-7");
break;

curr x = bndptslcurrpt][O]:
curr-y = bndpts[currpt][1];

/* function movecurrdir */

prifitoutput_regions()

FILE *fdout.
FILE *foutfig:
unsigned short r;
unsigned short s;
hat tenip:

61

fdout = fopen(outfile, "w+");
foutfig = fopen(outfig, "w+");
if (fdout == NULL)
printf("Have file opening problem");

if (foutfig = NULL)
printf("Have file opening problem");

/* Writes to file and screen the x and y value for each of the regions. ~
/* The stopping conditions of the loops are when the number of regions *
/* generated is reached, and for each region when the flag 9999 is reached. *
/* This function assumes it knows the number of regions Qj -1) and the
/* array element after the last point in each region is flagged.

fprintf(fdout. "module regions.n");
fprintf(fdout,"/*$eject*A n");
fprintf(fdout,"body.\n");
for (r = 0; r < j. r++)I

fprintf(fdout,"reg(%hu, [",r);
s = 0;
do

/* Convert to inches only for the foutfig file. *

printfC%4hu %4f %4f\n", r,regs[rJ [51[01 .regs[r][s] [1]);
fprintf(fdout," [%. lfeO, %. IfeO]" ,regs[rJ[s] [0],

regs[r][sJ[1J);
regs[r]fs][0] = (regs[r][s][0] / 10):
regsjr][s][I] = (regs[rl[s][11 / 10);
fprintf(foutfig ,"%4f %4f~n ",regs[r] [sI [01,

regs[r][s][1 1);
fprintf(foutfig."%4f %4f\n ",regs[rJ[sJ[01.

regs[r][s][1]).

if (regslr][s][0] != 9999.000000)
fprintf(fdout, ,\n');

while ((regs[r][s]1 01 != 9999.000000) 11
(regs[r][s][11 != 9999.0000000));

temp =(int)(regs[rt][)21)
fprintf(fdout,"1 ,%hu,%hu) .\n" ,temp,s):
/* forr */

fprintf(fdout ."numregions(%hu).\n",r);
fprintf(fdout ."endmod.\n");
fclose(fdout);.

62

fcloseffoutfig);
/* Print the output of the regions. ~

1* End of BNDUTIILC

63

File header.h
/* This file sets constants and determines the path for the input and */
/P output file for the bndpts.c program. */

#define infide "/work/wade/Thesis/C/rawdata2.h"
#define outfile "work/wade/Thesis/C/regiondata2.pro"
#define outfig "/work/wade/Thesis/C/regiondata2.fig"
#defme boolean int
#define FALSE 0
#define TRUE !(FALSE)
#define North 0
#define NEast I
#define East 2
#define SEast 3
#define South 4
#define SWest 5
#define West 6
#define NWest 7

/********END of file header.h ****************************

64

File vdb2.c
/* This file is the main program for getting a 1 Km by 1 Km grid square */
/* from the DTED data base. The program was run on the Silicon Graphics */
/* Computer. The program requires file "files.h" to run. The program is */
/* a variant of a widely used program in the department to get the data */

#include "stdio.h"
#include "ctype.h"
#include "math.h"
#include "files.h"

char infde[50]= MASTERDMADTEDFILE;
int fdin;

main()

int fdout.x.z.r,c,ij,utmx,utmz;
int off,ewerror= 1 ,nserror= 1 ,doswap= 1;
char s,swap,outfile[50],utmewL5],utmns[5],edbase[20402],temp;
unsigned short rawelevveg,massaged;
short MAXUTMEW=659,MAXUTMNS=849,DATAPTS=l 1;

system("clear"):
printf("THIS PROGRAM WILL CREATE A TERRAIN DATABASE.\n");
printf("THE SOURCE DATABASE IS A DEFENSE MAPPING AGENCY

DIGITAL\n")
printf("TERRAIN ELEVATION FILE FOR A 36 KM BY 35 KM REGION OF\n");
printf("FORT HUNTER LIGGET, CA. AND VICINITY.\n"):
printf("THE OUTPUT FILE IS A 1 KM BY 1 KM SUBSET OF THE ENTIRENi");

printf("REGION. AND WILL BE STORED IN THE FORMAT REQUIRED\n");
printf" 100.0 meter resolution\z'").
printft" 80 x 80 data points\n"),
printf(" storage in z major order\n'"),
printf("YOU MUST ENTER THE UTN COORDINATES OF THE SOUTHWESTn");

printf("CORNER OF THE SUBSET REGION YOU WANT EXTRACTED.\n");
printf(" ENTER A CARRIAGE RETURN TO CONTINUE...");

whiie(ewerror) {
system("clear");
printf(" VALID EW COORDINATES ARE IN THE RANGES:\,n"):
printf(" EAST-WEST (UTM EW): 410 to %dnn'",MAXUTMEW);
printf("

65

printf("*
printf("
printfC * N
printf(" * I
printf(" W W---E 4A\,n 9);
printfC' I *W)
printfC" * ft)

printf("*
printfC'
printfC'
printf(" 410 %dfn",M1AXUTMEW);
printf(".\naENTER. the UITM EW coordinate of the southwest corner\,n");
printf(" (Enter an integer value X 410 <-- X <-- %d)\n",M1AXUTM1EW);
printf(' X ?=>)
scanf("%d',&utmx):.
if((utmx>=410) && (utmnx<=M1AXUT1MEW)) ewerror=-0;

while(nserror)
systein("clear"):,
printf(" VALID NS COORDINATES ARE IN THE RANGES:\,n");
printf(" NORTH-SOUTH (UTM NS): 600 to %d\n\n",MAXUTMNS);
printfC" %3d- *******************\j,nMNAXUJTM.NS);
printf(" *\")

printf(" *\")

printfC" N N\"
printf(" I *\nI
printfC' W--E *\jn");
printf(' I *\n"-
printfC" * 5\n)
printf(" *\n)

printf(" *\")

printf(' 600-**********\l)
printf('Nn\nENTER the UJTM NS coordinate of the southwest comer\n");
printf(" (Enter an integer value Y: 600 <= Z <= %d)\,MAXIUTMNS);

scanf("%d",&utmz);
ift (utmz>=600)&&(utmnz<=M1AXUTMNS)) nserror=0O;

system("'clear"):
printfC"DO YOU WISH ELEVATION DATA WORDS TO HAVE THEIR BYTES

SWAPPED'T\,n");
printf(Q ENTER 'y' (YES: SWAP BYTES)Nn'"),
printfC" ENTER 'n' (NO: NO BYTE SWAP)W'"):
printfC" SWAP BYTES ==> ?"):

66

swap = toupper(getcharo);
while((swap != 'Y') && (swap W='N)) swap=toupper(getcharo);
ff(swap=='N') doswap=-O;
system("clear");
sprintf(utmew,"%3d",utmx);
sprintf(utmns,"%3d",utmz);
strcpy(outfile,OUTPLJTFILE);
if(doswap) strcat(outfile,"swap");
printf("\nCreating database for a Hkn x 1kmn region, southwest comner");
printf('%nat %d - %d. Database will consist of elevation data",utmx,utmz);
printf('Nnfor %d x %d points at 12.5 meter resolution. ",DATAPTS,DATAPT1S);
printf('NnDatabase filename is %sNn",outfile);
M = open(infile.0);

fdout= creat(outfile,0644);

r = (utmz-600)*8;
c = (utmx-4l0)*8;
lseek(fdin,offset(r,c),0);
for (1 0; i< 80; i++-I)(

foroj = 0: j< 80; j++) I

read(fdin,&raw,2);
veg = ((unsigned short)(raw & 0xe000) >> 13)+48;
write(fdout,&veg,2);
printf('%c",veg);

close(fdout).
close(fdin):
/* main */

/* This calculates the startpoint for the gridsquare within the *
/* 36 Km by 35 Km database.The 6400 represents the number of data points *
/* per grid square. The 35 is the number of grid squares in the north/south *
/* direction. *

offset(r,c)
int r,c;

return (2 * 6 0 5 * (n) c 8)
+(6400 * 5* (int)(r/80))

+ (80 * (c%80))
+ ((r%80))

67

/*******End of file VDB2.C *******************/

File files.h

/* This file sets the paths required for input/output to vdb2.c *

#define MlASTERDMADTEDFILE "fusr/work/cdec/DTED/terrain.dat"

#define PRINTFLE "usr/work/wade/thesis/awdata"

/*******End of file files.h ********************

APPENDIX C SOURCE CODE FOR THE SPLIT-AND-MERGE PHASE

module split-and-merge.

import(reg /4).

/*$eject*/
body.

dynamic(minlindex/ 1).
dynamic(max-index/i).
dynamic(segment/4).
dynamic(newregions/3).
dynainic(outputlist/1).
dynamic(intermnedlist/ 1).
dynamic(currentregion/1).
dynamic(flag/1).
dynamic(pairlistinll)
dynamic(pairlistout 1/1).
dynamnic(pairlistout2/1).
dynarnic(sproditem/0).
dynamnic(ssumitem/O).
dynamic(incr-global/2).
dynamic(vprodout/1).
dynarnic(vprodinlI/I)
dynrn ic (v prod in2/1)
dynaniic(surnuplist/1).
dynalnic(sumnupsun/l).

split-threshold(I 00e-2).
rnergethreshold I 0Oe-2).

gol :
set -state(global-stack.30000).
set-state(maun-stack, 10000),
system(compress-stacks).
sy stemn(g arbage-coll ect ion),
display-statistics,
handlec-adj-regs(reg,newreg ions),
spl itmrerge(reg~newregions),
print-output.
n].

69

display-statistics
ni, stars,
write -ab(l 8). write("SYSTEM STATUS"),
stare(cpu-time,X),
write("cpu time = "), write(X),write(" msec"), ni,
state(main..stack, [U,C]),
writeC'niain stack used = "), write(U),
state(global..stack, [UG,CG]),
write('global stack used = "), write(UG),nl,
state(statement-table,[U1 ,C1 I),
write("statement table used =),write(U 1), ni,
stars, ni.

stars:
nl.

print-Output
newregions(Regnumber,NewPointList,Value),
write("The "),write(Regnumber),write(" Region is: "),rd,
write(NewPointList) ,nl,
write("The Value is: "), write(Value),nl,nl,
fail.

print-output.

handle-adj-egs(INNAME, OUTNAME)
del-all-staternents(OUTTNAME/3),handle_adj 1 (INNAME,OUTNAME),!.

handle_adjl(INNAME,OUTTNAME) -
get-aregion(INNAME.Reg I,PL I.V I.NP 1),
get-a-egiotjNNAME,Reg2,PL2,V2,NP2),
RegI =1= Reg2,
display-statistics,
check if ad~i(PLl .PL2,AdjPts),!.
display-.statistics.
hand]eadj2(OLTrNAME,Reg 1 ,PL I ,V I NP 1 ,Reg2,PL2,V2,NP2,AdjPts).
fail.

handle_adjlI(INNAME,OUTNAME).

check_if-adj(PLlPL2.AdjPts) :
real- intersect ion(PLI ,PL2,AdjPt s),
lengthi(AdjPts.LA), write(LA),nl ,LA > 0,

handle-adj2(OUTNAME,ReglI,PLI1,V 1,NP I.Reg2,PL2,V2,NP2.AdjPts)
display-statistics,
hanidle-adj3(ReglI,PL1 ,NP1 .AdjPts.NewPLI),

70

Op=. [OUTNAME, RegI, NewPLl, VII,
assertz(OP),
handle_adj3(Reg2,PL2,V2,NP2,AdjPts,NewPL2),
OQ =,. [OUTNAME, Reg2, NewPL2, V21,
assertz(OQ),
fail.

handle-adj2(INNANMOUTNAME)

handle -adj3(Reg.PL,NPAdjPts,NewPL)
write("inside adj3'),nl,

setglobal(currentregion,PL),
set-.global(outputlist, [j),
set-global(intermedlist,[J),
set...global(flag,l),
find-sublist-indices(PL.NI ,N2,AdjPts),
get-sublist(PL. 1,N 1,FPLI1),get_sublist(PL,N2,NPBPL 1),
length(AdjPts,LA),
asserta(segment(Reg,NI ,N2,100)).
split~into~segments,
asserta(segment(Reg, 1 .N1,.100)),
asserta(segment(Reg,N2,NP,l100)),
split-into-segments,
set..gl obal(fl ag, 1).set-global(min- index,1),set~global(max-indexNP),
adj-merge(Reg .N1I N2),
build-intenned-list(Reg).
interrnedlist(NewlndexList), write(Newlndexl-ist),n],
length(NewlndexList.NewANum-), write('new list length is)

write(NewNum), ni. bujidnewi ist(NewlndexList .NewPL),
write("'he Final Point List is "), write(NewPL), ni,
display-segmentsasserted,!.

adj-merge(R.P1 .P2):
display-segments -asseried,n].
flag(), set-global(flag.O),
doall(adj-.merge-.segmient(R .P1I,P2 ') x
adj-merge(R.PI ,P2).

adj..merge(R,PI ,P2).

adj~merge-segment(R.PI .P2)
segrnent(R.A.B.FAB),segment(R,C.D,FCD). B =C, B /=PI,
B =/= P2. not segment(RAD.FAD).
merge _segment2(R .A,B ,C,D,FAB ,FCD).

adj-merge-.segment(R .Pl1 P2 :-
segment(R.A.B .FAB).segmient(R.C.D.FCD). min-ndex(MIIN),

71

max-index(MAX),C = MIN, B = MAX, B =/= P1, C =/= P1,
B =/= P2, C =/= P2,
znerge..segment3(RA,B,C,D,FAB,FCD).

split-Merge(INNAME, OUTNAME) -
split...merge2(IN4NAME,OUTTNAME).

splitmerge2(ENNAME, OUTNAME) :
get-a..ajegion(ENNAMERegNumberPointList,ValueNumPoints),
split -merge3(RegNumber,PoitList,NumPoints),
set..global(flag, 1), build-intermedjist(RegNumber),
inteminedlist(NewlndexList), write(NewlndexList),nl,
length(NewlndexList,NewNum), write("new list length is "),write(NewNuzn),
buildnewlist(NewlndexList,NewPointList),
write('The Final Point List is "),write(NewPointList),nl,
OP =.. [QUrTNAME,RegNuniber,NewPointList,Value],
assertz(OP),
fail.

split-merge2(INNAME, OUTNAME)

get...a..egion(I*NNM,RegNumber.PointList,Value,NuniPoints)
not segment (RegNumber,PointList,Value,NumPoints),
Q =.. tINNAME,RegNumber,PointList,ValueNumPoints], call(Q).

/* This is the main control structure for the split and merge algorithm. *

split-merge3(R.PointList.NumPoints)
set-globah ,currentregion,PointList).
set-global(ourputlist,[]).
set-..global(intermedlist,[]),
set~global (flag.lI),
asserta(segnient(R,l ,Num-Points,l100)).
split-into-segments,
display-.stat istics,
set-global (flag, 1),
set-.global(min-index, 1),
set-jJ obal(imax-index ,NumPoints),
merge- segments(R),
display-segments-asserted,!.

split...into-segments :-
display..segments asserted,nl.
flag(]), set-global(flag.O). doalh~split-into-.segment),
split-into-segments.

72

splitjinto..segments.

split..jnto-segmnent :
segment(R,N 1,N2,F),splitjnto..segment2(R,N 1,N2,F).

split -into -segrnent2(RN1,N2,F)
splitjthreshold(T),
F > T, average(N1,N2,N3), retract(segmnent(RN1N2,F)), !
display-statistics,
write("The first sublist indices and fit are:
write(N I),write(" "),write(N3),write(" "),n],
find_fit(R,Nl1,N3,F1 3), asserta(segmnent(RN 1N3,F1 3)),
write(Fl 3),nl,
display_statistics,
writeQ"The second sublist indices and fit are:")
write(N3),write(" "),write(N2),write(" "),
find_fit(R,N3 .N2,F32),asserta(segment(R,N3 ,N2,F32)),
write(F32),l.
set-.global(flag. 1),!.

merge-segnients(R) :-
display-segrnents -asserted,nl,
flag(I, set..global(flag,O),
doall(merge-segment(R)),
mergesegments(R).

mergesegments(R).

merge-segment(R)
segrnent(R,N1I,N2A,FI 2),segment(R,N3 ,N4,F34), N2 =N3,
not segmient (R,N I N4,H3),
ril,writeCI NI= "),write (N1I),write(" N2 = "),write(N2),
write(" N3= "),write (N3).write (" N4 = "),,write (N4),nI,
merge-segment2(R.N I .N2,N3,N4,FI 2,F34).

merge-segment(R :
segnient(R.N I N2.Fl 2)segment(R.N3 .N4,F34),
min_index(NIN),niaxindex(MX),
N3 = NUN,
N2 = MAX.
write(" Nl= "),write (N I),write(" N2 = "),write(N2),
write(" N3= ").write(N3),write(" N4 = "),write (N4),nI,
merge-segment3(R .Nl1,N2,N3,N4.F 12,F34).

merge-segment2(R.Nl .N2,N3,N4.FI 2.F34)
display-statistics,

73

fmd-fit(R,N 1,N4,F 14),
write("Fit is "),write(F14),nl,
niergethreshold(T), F14 <= T,
asserta(segment(R,Nl1,N4,F14)),
retract(segmnent(R,N I ,N2,Fl 2)),
retract(segment(R,N3,N4,F34)),
set..global(flag,1), L.

mergesegment3(R,N 1,N2,N3 ,N4,F1 2,F34)-
display-..statistics,
find_wrap fit(R,NI ,N4,F14),
write("Fit is :"),write(F14),nl,
mergethreshold(T), F14 <= T,
asserta(segment(R,Nl1,N4,F 14)),
retract(segrnent(R,N 1 ,N2,F 12)),
retract(segment(R,N3 ,N4,F34)),
set~global(min - ndex ,N4),
set~global(maxindex,N 1),
set...global(flag, 1), L.

display-segments-asserted -
segment(A,B ,C,D), write("Reg=).write(A),

write(" Indices = "), write(B),
write(" "), write(C),
write(' Fit =".write(D),

ni , fail.
displaysegments-asserted :-ni.

average(Nl .N2".N3) :
NP! is NI + 1, NP1 =/= N2,
N3 is ((N2 - NI) div 2.) + NI,!.

find-fitR.A,B,Fit) :
currentregion(X),

get-subi ist(X.A.B .SubList),nI,
endptlsline(SubList,[CI .C2,C3]),
Islinefit(SubList,tCI ,C2,C3],Fit).

find-wrap-fit(R.A,B,Fit)
currentregion(X),
A >B,
get-restlist(X,A,SubList I)
get-.sublist(X.l ,BSubList2),
append(SubList I .SubList2,SubList).
endptl slie(SubLis-t, C1 IC2,C3).

74

lslinefit(Subllist,[C 1 ,C2,C3],Fit).

build -mitermed_list(R) :
flag(l1),set..global(flag,O),
doall(get-segments(R)),
intermedlist(IL),
unduplicate(IL,NewIL), sort(NewILN~ewIL),
set-global(inteminedlist,NNewIL).

build-intermedlist(R) :

get...segments(R) -
segment(RN1,N2,Fit),
getsegments2(R,N 1,N2,Fit).

get-segments2(R,N 1 .N2.Fit): -
cons-..global (intermedlist,N 1)
consglobal(intermedlist,N2),
set..global(flag. 1),.

buildnewlist(NewlndexList,NewPointList):-
currentregion(PointList),
set-global (output] ist, []),
bu ildnewlist2 (PointList,Newlndex List),
outputlist(RNewPointList), reverse(RNewPointList,NewPointList),!.

buildnewlist2(PointList,fl).
buildnewNlist2ePointList,[NlBNewlndexListj):-

getpoint(PointList ,N,Point),
cons~global(outputlist,Point),
buildnewlist2(PointList,BNewlndexList).

get-poit(fABPomtList],N.A)
N = 1, !.

get-point([AIBPointList] ,N,Point)
NC is N -1,
getpoit(BPoinitList,NC ,Point), !

f* get-sublist is called when List, NI, and N2 are bound: yields SubList *
get...sublist(List.NI ,N2,SubList)

Iength(List,LL). LL >= 2,
get-rest-list(List,N1,L1).(NC2 is N2 - NI + 2),
get-rest-list(LI.NC2 *L2),

75

append(SubList,L2,Ll).

getjest-ist(RestList,N,RestList)
N = 1, !.

get~jestjist([AIL],N,Restlist)
NCis N -1,
getjestlist(L,NCRestList),!.

/* find_sublist-indices is called when List and SubList are bound.
find-sublist-indices(List,N 1,N2,[FirstIB SubList])-

last(BSubList,Last),
find~sublist_mndices2(List, 1 ,N3,First),
find_sublist_indices2(List,l1,N4,Last),
order-indices(N3,N4,NI ,N2), !.

find -sublist-indices2([[X I,Yl]IL],NC,NC,[X2,Y2]): - closer(XI X2), closer(Y2,Y2),

find-sublist -indices2([AILI,NCN,Point)
NC2 is NC + 1 ,find sublist-indices2(L,NC2,NPoint), !

order-indices(N1,N2,Nl,N2) NI <= N2,!.

order-indices(Nl,N2,N2,NI)

*doall(P) :-not alltried(P).

*alltried(P) :-call(P), fail.

76

module linear least-squares.

*splitpairs(L,Ll1,L2) :- set...global(pairlistin,L), set-global(pairlistoutl ,II),
set...global(pairlistout2,J), itcratelisz(splitpair(L),pairlistin),
pairlistoutl(RLI), pairlistout2(RL2), reverse(RLI,L1), reverse(RL2,L), !

*split-pair(L) :-pop~globa(pailistin,[X,Y]), consglobal(pairlistoutlX),
cons..global(pairlistout2,Y).

*reverse..pairs([J,[]).
* reversepairs([IAB] ILL] ,[B A]IRLL]) :- reverse..pairs(LLRLL).

/* Calculates the fit of a least-squares 2D line through a set of points. *

split-pairs(PLXL,YL), vprod(XLXL,XXL),
vprod(YL,YLYYL), vprod(XL,YLXYL),sumup(XL,SXL),sumup(YL,SYL),
sumup(XXL,SXXL), sumnup(XYL,SXYL), Iengtb(XLN),
M is ((N*SXYL)-(SXL*SYL))/((N*SXXL)-(SXL*SXL)),B is (SYL-(M*SXL))fN,!

endptlsline([[XI .YI]IBPL],[C1 ,C2,C3])
last(BPLj1X2X2]).
C1 is (YI - Y2),
C2 is (X2 - Xl), C3 is ((XI * Y2) - (X2 *Yl)),!

*lslinefit (PL[C 1C2,C3],Fit) :
abs(CI,ACI),abs(C2,AC2), ACI > AC2,!,
rev erse-pairs(PL,RPL),
lslinefit(RPLjC2,Cl ,C3],Fit).

*lslinefit(PLIC1 .C2,C3],Fit) :
M is (0-Cl)/C2, B is (0-C3)/C2,
spitpairs(PL.XL,YL). vprod(XL ,XLXXL),
vprod(YL,YL,YYL), vprod(XL,YL,XY L), surnup(XL,SXL), sumup(YL,SYL).
suinup(XXL.SXXL). sumup(XYL,SXYL), length(XL,N), sumup(YYL,SYYL),
SqFit is (M*M*SXXL) + (2*M*B*SXL) + SYYL + (N*B*B) + (-2 *M*SXflYL)
+ (-2 *B*SYL),
xsqrt(SqFit,A),D 1 is M*M+ 1, xsqrt(D 1,D),
Fit is A/D,!.

/* Iterative vector processing *
*sumup(L,N) :- setglobal(sumuplist ,L). setglobal(sumupsum ,O),

iterate] ist(sumupitem~sumuplist). sumupsum(N), !.
*sumupitem :- pop-global(sumupi ist.X), sumupsum(N), retract(sumupsum(N)),

NpX is N+X asserta(sumupsum(NpX)).

77

*vprod(V 1,V2,V) :- set...global(vprodoutO), set~lobal(vprodinl ,V1),
set..global(vprodin2,V2), iteratelist(vproditemvprodin I),
vprodout(RV), reverse(RV,V),!.

*vprtjditem :-pop-global(vprodinlX), pop...global(vprodin2,Y), XY is X*Y,
cons__gobal(vprodout,XY).

*vsiim(V1 ,V2,V) :- set__.global(vswmouQ,]),
setglobal(vsumin I,VI), set...global(vsumin2,V2),
iteratelist(vsumitemvsumin 1), vsumout(RV), reverse(RV,V), !

*vsumtem :- pop-global(vsuinIn,X), pop...global(vsumin2,Y), XY is X+Y,
cons-global(vsumout,XY).

*vdiff(V1 ,V2,V) : set~global(vdfffout, f), setgobal(vdiffinI1,V 1),
set~global(vdiffmn2,V2), iteratelist(vdiffitem,vdiffmnl),
vdiffout(RV), reverse(RV,V), L.

*vdiffitem :-pop-.global(vdiffinlX), popglobal(vdiffin2,Y), XY is X-Y,
cons-global(vdiffout,XY).

*sprod(VJ ,K,V) :-set-global(sprodout,[]), setglobal(sprodin,VI),
iteratelist(sproditem(K),sprodin), sprodout(RV), reverse(RV,V), L.

*sproditem(K) :- pop-global(sprodin,X), NX is X*K, cons...global(sprodout,NX).
*ssum(Vl1,KV) :- setglobal(ssumnout,[1), set-..global(ssum~inV 1),

iteratelist(ssumitem(K),ssumin), ssumout(RV), reverse(RV,V), L.
*ssumi~tem(K) :-pop..global(ssumnin,X), NX is X+K, consglobal(ssumoutNX).

/* Management of global variables as single-argument facts */
*setglobal(Name ,Value) :- OLDP =.[Name ,Oldvalue], retract(OLDP),

P =.rName, Value], asserta(P), L.

*setglobal(Naine,Value) :-P =.[Name,Value], asserta(P), L.

*consglobal(Namel) :-P=..[Namne,X], call(P), retract(P), NP=..[Name,[IIX]J,
asserta(NP), !.

*pop-global(NameValue) :- P=.. [Name, [Val uetL-], call(P), retract(P),
NP=..[Name,L]. asserta(NP), !.

*incr-globaJ(Naine) :- P=..[Name,X], call(P), retract(P). Xpl is X+1,
NP=..fName.Xpl), asserta(NP), !.

1* Forward-execution iteration, terminates when a given list is empty *
*iteratelist(Ipred,Lname) :- repeat, iterate 2(Ipred), P=..[Lname,U]l,

call(P), !.
*iterate 2(Ipred) :- call(Ipred), !

*iterate2(Ipred).

78

module lists.

f* Various list-processing predicates *
/* First, the basics *

*1as([XILI,Y)
last(L,Y) .

*appendffl,L,L)
*append([XILI,L2,[XIL3])

append(L,L2,L3)

*reverse(L,R) :
reverse 2(L[] ,R)

*reverse2([]LL)

*reverse2([XIL].RS)
reverse 2(L,[XIRI.S)

/* Predicates defined from others *

*unduplicate([IHj)

*unlduplicate([XIL].L2)
member(X,L), !, unduplicate(L,_2

*unduplicate(1XILjflXIL2],
unduplicate(L.-2)

*intersect i on. , [I).
*intersectioll([XIL1 j.L2,fXIL3])

inember(X,L2"). ,Jntersection(Li,L2,L3).
*intersecti1ol(XI L I].L2.L3)

intersection(L 1,1_21L3).

real -intersection([].L, ().
real intersection([XILI J.L2,[XIL3])

rea.1..pts-member(X,L2), !.reai-intersection(L 1 ,L2,3).
real intersection([XILI].L2,L3)

real-intersect ion Li U2,1_3).

realptsmember([X IYI][X2,Y 2ILI) :- Xl : X2, Y1 Y2, 2

realptsmember(X,[Y!L]

real-pts-rnember(X.L)

79

*member(X,[XlL]).
*member(X,[YIL])

member(X,L) .

*singlemember(X,[XILI)

*singlemember(X,II)
singlemember(X,L).

module math.

/* Mathematical Formulas not implemented in M-Prolog *
*xsqr(O,O)

*xsqrt(X,Y)
X<l, !, square bisection(Y,X,Xl).

*xsqrt(I,l)

*xsqrt(X.Y)

X>l, RX is I/X, xsqrt(RX,RY), Y is 1/RY.

*square-bisection(X,Y,LOHI) :
X is (LO+HI)/2, square(X,S), close(S,Y), L.

*square bisectioii(X,Y,LO,l:-
MIDPOINT is (LO+H])/2, square(MIDPOINT,S), S<Y, !
square bisection(X,YMPOINT,HI).

*squaxe bisection(X,Y,LO,I) :
MIDPOINT is (LO+HI)/2. square(MIDPOINTS), S>=Y. !
square_bisection(X,Y,LO,MIDPOINT).

*close(XY) :
D is X-Y. D > -1.OE-6, D < 1.OE-6.

*closer(XYi) :
D is X-'Y, D > -1.OE-3, D < 1.OE-3.

*square(X,Y)
Y is X*X.

*expon(XY)
expon2(X,I ,1 .,Y).

*expon2(X,N.S,T.S)
T<l.OE-6. !.

*expon2(X.NS.TY)

80

TPI is X/tN*T, SPI is S+TPI, NPI is N+1, expon2(XNPI,SPI,T'PI,Y).

abs(X,X) X >= 0,!.
abs(X,Y) Y is 0 - X,!.

endmod. /* split-merge ~

81

LIST OF REFERENCES

1. Ballard, Dana H. and Brown, Christopher M., Computer Vision, Prentice Hall,
Inc., 1982.

2. Pavlidis, Theo, Algorithms for Graphics and Image Processing, Computer Science
Press, Rockville, Maryland, 1982.

3. Roberts, L. G., "Machine Perception of three-dimensional solids," Optical and
Electro-optical Information Processing", MIT Press, 1965.

4. Ross, Ron S., Planning Minimum-Energy Paths in an Off Road Environment with
Anisotropic Traversal Costs and Motion Constraints, Ph.D. Dissertation, Naval
Postgraduate School, Monterey, California, June 1989.

5. Yee, Seung Hee, Three Algorithms for Planar-Patch Terrain Modeling, Masters
Thesis, Department of Computer Science, Naval Postgraduate School, Monterey,
California, June 1988.

6. Gonzalez, R.C., Digital Image Processing, Addison-Wesley Publishing Company,
1987.

82

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chief of Naval Operations 1
Director, Information Systems(OP-945)
Navy Department
Washington, D.C. 20350-2000

4. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Curriculum Officer, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor Neil C. Rowe. Code 52Rp 2
Computer Science Department
Naval Postgraduate School
Monterey. California 93943-5000

7. Professor Sehung Kwak, Code 52Kw 1
Computer Science Department
Naval Postgraduate School
Monterey. California 93943-5000

8. CPT Roderick K. Wade 2
HQDA, Artificial Intelligence Center
A'ITN: CSDS-AI
Washington, D.C. 20310-0200

83

