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ABSTRACT

Techniques from automatic speech recognition are applied to the problem of modeling

and classifying acoustic transients. Linear Predictive Coding (LPC), Vector Quantization

(VQ) and Hidden Markov Models (HMMs) are three popular techniques which when

combined together are called the structural-parametric approach to the recognition of
speech sounds. The same approach is applied first in modeling and then in identifying

three classes of brief, wideband sounds, similar to underwater passive sonar transients.

An LPC analysis-synthesis system operating below 9000 bits per second can produce high
quality synthetic transients. The data rate necessary to maintain high quality can be further
reduced to about 1100 bits per second by LPC followed by VQ, using the Itakura-Saito

(IS) class of distortion measures. The high fidelity achievable at low rates is evidence that
LPC is a good spectral representation and that the IS distortion measure Is meaningful in

the comparison of transient spectra. Classification decisions based solely on averaged
VQ distortion or entropy result in a classification accuracy of over 97%. Classification

decisions based on VQ followed by HMMs result in a classification accuracy of over 96%.
A new HMM structure is introduced, the product code HMM, which provides the best
classification performance of the HMM structures. The product code HMM consists of two
Independent HMMs per class; a classification decision is made by combining the results U

of the two independent HMMs.
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. INTRODUCTION

One class of passive sonar signals, called "transient," is made of sounds which are brief,

with wideband energy, and which may not be produced by the sources of more traditional

sounds. (For this paper, by "brief" we mean on the order of seconds, and by "wideband"

we mean several thousand Hz.) Possible objectives for a processing system for transients

include such familiar tasks as localization in space and detection in time. One might also

think of a segmentation task, which finds not only where the transient starts in time, but

where it ends. Another important task, and the subject of this paper, is to classify the

localized, detected, and segmented transient by assigning it to one of a predetermined

number of classes.

Reports from experienced sonar operators suggest that they can classify transients with

high accuracy by listening to the audio signal corresponding to an appropriate beam. A

good machine classification strategy might be to approximate in some way the auditory

* discrimination capability of a sonar operator. The problem of sound recognition is, of

course, one that designers of automatic speech recognition have been addressing for

about 30 years. Although no current speech recognition system can approach the

capability of human listeners, some success has been obtained in limited recognition

tasks, and more impressive results have been achieved for speech synthesis and low bit

rate coding systems1 . The major objective of this study is to assess the potential usefulness

of speech recognition techniques for transient signals

The speech recognition problem is easier is some ways but more difficult In others than

the sonar transient problem. With speech, the acoustic environment is often very favorable,

with high signal-to-noise (SNR) ratios, often good room acoustics, and usually a

cooperative sound source - the human talker. Both speech production and perception

have been extensively researched for decades and the successes of most speech

processing systems can be partially attributed to speech specific knowledge imbedded in
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Othe systems. The difficulty with speech lies in the tremendous complexity of the linguistic

information represented in the acoustic signal. Humans use many sources and levels of

knowledge to encode and decode the highly ambiguous acoustic speech signal. These

knowledge sources include phonetic, phonological, lexical, syntactic, semantic, pragmatic,

and many others. To have a machine decode speech like a human listener requires all

of these kinds of knowledge to be known and represented. A machine which recognizes

sonar transients must on the other hand, contend with an uncooperative source, and a

much harsher acoustic environment in terms of SNR, reverberation, and the unpredictable

ocean transmission path. Modeling of transient production and human transient perception

has been addressed by only a few researchers and therefore is much less understood

than for speech. On the plus side, there is very little "linguistic," i.e., semantic, information

encoded in a transient signal; what linguistic information there is represents the identity of

the source and physical actions that the source might be taking.

Approaches to speech recognition can be expediently categorized as either structural or

artificial intelligence (Al)f. The two approaches are very different in philosophy, goals of

systems, and the techniques used. The structural approach is selected for this study.

There are several factors which favor the structural approach. One factor is that the use

of speech synthesis techniques allow the human researcher to interactively verify the

appropriateness of models by listening to them at intermediate steps in the recognition

system. A second factor is that human experts on sonar transients are not as important

as they would be in an Al sysfGen; these experts are not readily available. The structural

techniques are applicable to almost any signal; they are not specific to speech. It Is also

believed that the structural approach is better at illuminating important physical properties

of signals. Finally, the transient signal contains little linguistic information. The main

characteristic of Al recognition systems is their ability to model many levels of linguistic

knowledge which are related in complex ways. This linguistic modeling ability is not crucial

in transient recognition systems.
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* The recognition objective in this study is rather modest. It is to classify signals from three

classes of transients. The signals are assumed already localized, detected and segmented.

Furthermore, the signals are recorded in a high SNR environment. We recognize that this

"toy" problem hardly begins to compare with the difficulty of the real ocean environment.

It is still useful to determine how well the speech techniques perform on transient signals

in the best case. The other factors of difficulty may be introduced one at time once an

upper bound on performance has been found.

The paper is organized as follows. The second section gives a brief introduction to models

of production and perception for speech sounds and a summary of models of perception

for transient sounds. The third section presents descriptions of the three basic techniques

which make up the structural approach. These are: LPC for spectral analysis, VQ, (also

used for vector quantizer) for pattern recognition, and HMMs for temporal decoding. The

material in the third section is presented in a tutorial fashion, since it is assumed that

* readers of this joumal are not necessarily familiar with speech recognition techniques. The

fourth section presents the procedures and data from modeling and classification

experiments. Finally, the fifth section discusses the key results.

MODELS OF SPEECH AND TRANSIENT PERCEPTION

Models of human speech production and perception have been crucial in the development

of high quality speech coding, synthesis, and recognition systems. Since the techniques

used in speech recognition depend on these models a great deal we review them prior to

discussing the techniques themselves. We then compare the speech models with models

of transient perception. The motivation for using the structural approach is examined in

light of the transient model of perception.
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* Speech Production and Perception

The cornerstone of both speech production and perception has been the concept of

short-time stationarity. The speech signal is assumed to be a realization of a nonstationary

random process, yet one which is quasi-stationary for short periods of time. In speech

production, the human talker is assumed to go from one articulatory (or linguistic) state

and produce some speech, stay in that state for a while, go to the next state and produce

some speech, and so on. In speech perception, the listener processes the speech signal

by chopping it up into short time frames and decoding each frame successively. The

assumption of short-time stationarity means that classical linear systems theory can be

applied to each short time period or frame, both in theories of production and perception

and in machine processing. For example, the most popular engineering representation

for speech is short-time Fourier analysis. It is also popular to assume that the human

auditory system does something similar to short-time Fourier analysis. This short-time

* stationarity philosophy is being challenged by recent advances in the theory of

time-frequency distributions3.

The standard model of speech production is shown in figure 1. The model includes a

source exciting a time-varying discrete-time linear system, denoted G(z). The source is

assumed to be either a train of periodic impulses for sounds where the vocal tract is vibrating

("voiced" sounds) or aperiodic noise for sounds where the vocal tract Is not vibrating

("unvoiced" sounds). It should be noted that both these sources have the same spectrum

- white. Thus, the observed speech is assumed to be the output of a time-varying linear

system driven by a white source.

Models of speech perception are usually very complex and include higher brain processes4.

Here we are mostly concerned with lower-level, or "bottom-up" auditory characteristics;

however, it is generally agreed that higher level or "top-down" process are needed for

complex speech perception tasks. Most models of speech perception assume that the
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* main information-bearing attributes of speech are contained in the short-time amplitude

spectrum; phase information is considered relatively unimportant. A crucial aspect of the

short-time amplitude spectrum is the spectral peak, known to be critical to the perception

of most speech sounds. The location of spectral peaks are called "formant" frequencies,

and are often used in defining the acoustic-phonetic properties of vowels. Formant

frequencies also correspond to natural resonant frequencies of the human vocal tract.

Spectral valleys, however, are known to be of much less perceptual importance. It is also

agreed that time-domain, or suprasegmental information corresponding to the prosody of

speech is also important for perception. Prosody includes such attributes as rhythm, timing,

pitch, and loudness contours. Systems for recognizing speech for modest size tasks

generally use only amplitude spectra and do not use prosodic information; instead they

try to eliminate or normalize it. Systems for high fidelity speech coding or synthesis must

include prosody to achieve adequate quality.

* Transient Perception

Very little is known about human perception of transients. Transients can be considered

examples of what are also known as environmental, complex nonspeech, or ecological

sounds. Psychoacoustic and related perceptual research on these sounds are reviewed

in a recent paper by Howard and O'Hare. The following is a summary of what is currently

known about the perception of such sounds.

Both time-domain or prosodic, and spectral features are important cues for listeners to use

in the perception of transients. Spectral cues Include formant frequencies and overall

short-time spectral shape. The prosodic cues include features like "beats" and periodicity.

It is suspected that the cues or features that listeners use are not absolute but vary with

context; that is, on the particular sounds being recognized. The difficulty in recognizing a

sound is dependent on the number of possible sources which could have produced the

sounde. Howard and O'Hare conjecture that top-down processing is more important in the
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perception of transients than bottom-up processing. By this they seem to mean that prior

learning, of relating sounds to sources, is more important in recognizing sounds than the

acoustic cues themselves.

We argue that the structural approach for speech recognition is consistent with most of

what is known about transient perception. Both spectral and prosodic features are

incorporated in the structural approach, and the pattern or ordering of the features are first

learned and then used to classify unknown sounds. The major difference between the

automated system developed in this study fortransients and that commonly used for speech

is in the model of production of sound. Figure 2 shows the model of transient production

used in this study. It is identical to the model of figure 1 except that the source is restricted

to be aperiodic random noise. A second difference between the automated transient

system and the model of Howard and O'Hare is that a restricted set of acoustic cues are

defined and used and do not adapt to the context. Nevertheless, most of the important

aspects of the model of transient perception are represented in the structural approach.

TECHNIQUES OF THE STRUCTURAL APPROACH

This section reviews in a tutorial fashion the three basic techniques of the structural

approach. First LPC is discussed as a spectral modeling tool, VQ is then presented as a

pattern matching method, and finally a review is given for the use of HMMs for temporal

decoding.

LPC

LPC is a general system identification technique which has wide application in signal

processing. It has been used by several investigators for modeling acoustic transients 78 .

It has proven to be particularly useful in speech processing applications because it allows

the parameters of the model of speech production in figure 1 to be easily obtained. The
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LPC formulation is not only useful in analysis of speech but in the generation or synthesis

of speech as well. The name LPC has been associated with a class of problems with very

different assumptions but whose mathematical structure is identical.

Formulation and Solution of LPC

Consider the difference equation:

M
x(n) = -, arx(n-k) + u(n)a. (1)

k=1

Taking the Z transform of (1) yields:

X(z) c) - G(z). (2)

U(z) A(z)

* In (2), the polynomial A(z) is defined as:

M
A(z) a , akz ; ao  1. (3)

k=O

Equation (1) is the synthesis formulation of LPC and shows that the observed output

sequence x(n) is assumed produced from a weighted sum of past outputs and a scaled

current input u(n). The synthesis formulation may be used to generate speech or transients

by driving the system function G(z) with an input which has a white spectrum. This implies

that the output x(n) was produced by an autoregressive or Markov process of order M.

The filter or system function G(z) of (2) is the same as that shown in figure 1. The analysis

formulation of LPC is given by:

e(n) = x(n)-{-- a(n-k) (4)
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where e(n) is the prediction error resulting from modeling x(n) by a linear sum of its past

scaled values. In the analysis formulation, x(n) is an input and is used to calculate values

of the LPC model G(z) such that the square of the error in equation (4) will be minimized.

The sequence x(n) may be a realization of a random process or deterministic: the solution

to the LPC equations will be mathematically identical. In the random case, u(n) in (1) is a

sequence of independent, identically distributed random variables with zero-mean and

unit-variance. Some of the important LPC formulations have been the maximum likelihood,

which assumes a Gaussian, stationary random process, the inverse filter, which assumes

a deterministic sequence, and Prony's method, which assumes a deterministic sequence

composed of a linear combination of complex exponentials9. LPC is also equivalent to the

maximum entropy method of spectral analysis, but it is not the same as the Burg algorithm' °.

We now define the spectral density - autocorrelation Fourier transform pairs:

X(e j ) = rx(n)eJwn. (5)

(n) = 1 _= dw

r.(n X(ej")e j - dw (6)

The input signal energy (or power) r,(O) is also denoted by Nr. The normalized frequency

variable w has a range of -n to n. We also note that X(z) * X(z)" ,-+ rx,(n), where the arrow

signifies a Z-transform relationship. The spectral density of (5) is a power spectral density

if x(n) is a wide-sense stationary random process, and is an energy spectral density if x(n)

is deterministic. If x(n) is deterministic or a wide-sense stationary and ergodic random

process, its short-time autocorrelation function can be written as:
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N-k-n
r.(n) = I x(k)x(n +k); n = 0,1,2,...,N. (7)

k=O

The limits on the sum of (7) correspond to the so-called "autocorrelation" method of

computation for LPC, which is used in this study. The autocorrelation method is selected

since it is guaranteed to provide a stable LPC model G(z) and it has a spectral interpretation.

The residual, or total squared error, a, can be written as:

N-I M

a = X e(n) 2 = r,,(O) rx(O) + 2 1 ra(n)r(n) (8)
n=0 n=1

where the autocorrelation of the LPC filter coefficients is defined as:

M-n

A(z)A(z -') *-* r,(n) = Y a(n)a(n+k); n = O,1,...,M. (9)~k=O

The goal of LPC is to find the LPC coefficients ak, which minimize the squared error of

equation (8). It turns out that a set of M simultaneous linear equations arises which are

called the normal, Yule-Walker, or Wiener-Hopf equations, depending on the assumptions

made about x(n) and r,(n). In the autocorrelation method of LPC, the simultaneous

equations result in a Toepliz matrix which may be solved for the ak efficiently by recursive

methods9. The gain-squared term - is set equal to the residual energy, a = a. There are

M + 1 terms needed to specify the LPC model: a, ak, k = 1, 2,..., M; ao is always defined

to be 1, so is not needed. Since M + 1 is usually much less that the number of samples

N in a frame, considerable data compression results by representing the frame with an

LPC model.
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Useful Properties of LPC

The residual energy of (8) can also be written in the frequency domain by using the definition

of the inverse discrete-time Fourier transform as:

it

SC= IX(ej)I'IA(ejl)12 dw (10)
_f 21r"

In this form, the residual is easily interpreted as that energy which results from passing

the input sequence through the inverse filter A(z). We denote the minimum value of the

residual for an order of M as am, where ox >: am. The corresponding LPC model which

results in this minimum residual is denoted GM(z)=-- The filter Gm(z) is stable

since AM(z) has all of its roots inside the unit circle. From the correlation matching property

of LPC, the autocorrelation of the impulse response corresponding to the model GM(z) can

be equated to the autocorrelation of the input sequence:

GM(z)GM(z-') -- rM(n) = r(n);n = 0,1,...,M. (11)

The one-step prediction error given by:

a. lira a = exp In IX(ew)12 dw. (12)

Two other related concepts are the spectral flatness measure (SFM) and prediction gain

(PG). The SFM in dB is given by:

SFM aj dB. (13)
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The PG is the negative of the SFM in dB; however, it is usually not expressed in dB. Both

PG and SFM are measures of the short time predictability of x(n).

The LPC spectrum of a short time frame can be computed for display by taking the K point

Discrete Fourier Transform of the LPC model GM(z) = 4M. The LPC spectrum is then found

by evaluating:

IGMu eK)I -1DFT (101OgoIA--)12 ;k = 0,1,2,...,K1

-
2 log 1 0am- 10log 10 1 A(eI 21 (14)

The magnitude spectrum derived from LPC analysis has several important characteristics.

The LPC spectrum is a smoothed version of the spectrum of the sequence itself. LPC

*uses its degrees of freedom to try and match spectral peaks well at the expense of poorer

representation of spectral valleys. Since the human perceptual process seems to use

spectral peaks as important cues in the identification of speech sounds, LPC is considered

a good spectral representation. The importance of spectral peaks for underwater transient

sounds is much less clear.

VQ

VO compresses the data rate overthat which LPC alone can achieve, hopefully maintaining

a perceptually meaningful representation of the original sequence.
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.Introduction to VQ

LPC analysis results in an optimal LPC model, which is a vector of parameters, for each

frame of the input sequence. The optimal LPC model at this point can be considered to

be one of an infinite number of LPC models; that is, it is continuous with respect to the set

of all LPC models. VQ replaces the continuous LPC model with one of a finite number of

predefined LPC models. It quantizes an entire LPC model or vector as a whole, hence

the name vector quantization.

VQ has become increasingly popular for the coding of speech and images since about

1979, when VQ publications first began appearing. It has also been used a method of

pattern recognition or clustering. The reason for its popularity is because VQ can provide

better fidelity data transmission at the same rate as scalar quantization, or equivalently, a

lower rate at the same fidelity. This ability is predicted by Shannon's rate-distortion theory,

which says that one can always do better by coding a block or a vector of data than by

W coding a scalar". The advantage is mainly because nonlinear dependencies between

vector elements are exploited in VQ while they are not in scalar quantization12 .

The basic idea behind VO is to minimize the distance or distortion between an input optimal

LPC vector GM(n) and one of a small number of LPC vectors, G1(n), called a reproduction

vector or model (here we have explicitly included the short-time frame index, n). When

an input optimal LPC vector is quantized, a distortion results from replacing It with one of

the finite number of reproduction vectors. VO systems are designed to minimize the

expected value of this distortion:

D = E[d(GM(n); G,(n))], (15)

where the notation E means expected value, d(. ; .) means the distortion between the

arguments, and GM and G, are random LPC vectors. Since the joint probability distribution
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O for the elements of G. are not known, it is generally assumed that the source producing

the input vectors is ergodic and thus stationary so that the actual criteria to be minimized

for VQ systems is the time average:

K-1

D irn (K-l) , d(Gm(n);G,(n)). (16)
K--+- n=O

The source does not have to be stationary or ergodic for (16) to hold; a sufficient condition

is that it be an asymptotically mean stationary source". Processes like speech which have

both global and local stationarity can be modeled as an asymptotically mean stationary

source.

Training of VO

Equation (16) is used as the basis for the selection of the reproduction models or vectors,

also called codewords. A collection of codewords is called a codebook. The codewords

are found by an iterative clustering algorithm which uses examples of the data from the

same source which will be quantized. -Thus, VO systems must be trained prior to their

actual use; training is a computationally intensive process. The training or clustering

algorithm seeks to find the set of L codewords which minimizes the average distortion of

(16) for the training data. The algorithm is a generalization of Lloyd's Method I quantization

algorithm, sometimes called the Lloyd-Max algorithm, but usually known as the Linde,

Buzo, and Gray (LBG) algorithm when applied to VQ13.This algorithm is similar but not

identical to the well-known k-means clustering algorithm'2 .

Once the codebook has been trained, it can be used to quantize LPC vectors outside of

the training data. For a codebook of L codewords, the codebook is said to be of size or

rate R = log2 L bits, since each codeword can be uniquely represented with a binary word

* 14



* having that number of bits. To VQ an optimal input vector, the input vector is compared

with all L codewords and the index corresponding to the minimum distortion is the output,

i.e., VQ output = arg { min[ d ( GM ( n) ; G, ( n) ) ] .

Distortion Measure

The distortion measure is a crucial element in the design of VQ systems or other

classification systems. The distortion measure essentially is an indication of the

dissimilarity between two short-time spectra, one called an input or test, the other called

the output or reference. Most pattern recognition systems compare patterns with a metric

or distance, i.e., the Euclidean or Mahalanobis. A distortion measure is different from

metrics or distances in that a distortion measure is not symmetric with respect to its

arguments. That is, it makes a difference which pattern is called input and which is called

output.

* The most popular distortion measure for comparison of LPC spectra is the IS class of

measures, which is in widespread use in speech recognition and coding systems. It has

also been used in previous research on acoustic transients'. Its popularity is due to the

fact that is computationally inexpensive, that it is mathematically tractable so that VQ

codewords can be computed or approximated, that it has an information-theoretic

justification, and more importantly, that it is perceptually meaningful in the comparison of

speech spectra. The IS measure has been shown to be consistent with the psychoacoustic

property of masking for nonspeech14 , and has been found to correlate well with human

listener judgements of the quality of speech' s . The IS class of distortion measures has an

intimate relationship with LPC analysis because LPC analysis Is Implicitly minimizing the

IS distortion between the input sampled data and the optimal LPC model. By using the

IS measure, the same distortion is being minimized in both spectral modeling or system

Identification (LPC) and In quantization (VQ).

* 15



* The IS distortion measure between a frame of sampled data X(z) and any all-pole model

G(z) -is defined as:

dsX 1)2 12 A(e) 2
{IX(ej-)!

-il( X(e jw) I2 A (ejw) 12)J_ 1 1 dw (17)

By using (10), (12), and the fact that A(z) has all of its roots inside the unit circle, the IS

distortion can be written as:

dis(I X 12; I(I2 = a (1

It can be seen that minimizing the integral of (17) with respect to the LPC filter coefficients

ak, reduces to minimizing the residual energy a, which is just the minimization done in LPC.

Thus, the IS measure also emphasizes a good match at spectral peaks, but not spectral

valleys.

Many useful and important properties of the IS distortion can be found elsewhere1 ' 17; here

we focus primarily on the issue of gain. Buzo, et al, have shown that the IS measure

satisfies two equalities'e. The first, a "triangle equality", shows that the IS distortion Is

exactly the sum of the distortions due to spectral modeling (LPC) and quantization (VQ):

ds (XI2;I I 2 dIS(IX 2;IGMr) + ds (IGmJr) ;IG 12). (19)
{ap cwaI mdt} q.,.Vuumn.16
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* The second triangle equality shows that the IS distortion is exactly equal to the sum of the

distortions due to modeling and quantization of spectral shape, and modeling and

quantization of gain:

d.s(I X1;l I2) = dsIXI2;I (I2)+ds(a; a). (20)
'spcrra1 shape)

In VO one is usually interested not in the absolute distortion but only the relative distortion

among the L codewords, since the goal is to select the best-matching or "nearest-neighbor"

codeword. The first term in (19) will be the same for distortion calculations with all

codewords since that term depends only on the input itself, not on the codewords. The

measure actually used in calculations is the so-called modified IS measure:

modified d,s X12;I 1I2 dS(IGM I2 ;IGI2 ) = - 1n - (21)

In this study the modified IS measure was used, and the term IS will be considered to

mean (21) unless it is necessary to distinguish it from (19).

Short-time gain, or energy can be an important acoustic cue in the recognition of speech.

For example, gain is useful in distinguishing the noun permit from the verb permit, since

the accent is on the first syllable for the former and the second syllable for the latter; their

purely spectral characteristics are very similar. However, often speech recognition systems

normalize out the effects of gain so that variations in speaking level do not affect the

recognition results. In speech coding systems it is also) common to code the gain separately

from the purely spectral information. Since so little is known about the perceptual aspects

of transients the approach we take Is to investigate the effects of both gain and spectral

shape on classification performance. The gain separation of (20) plays an important role

since it permits the evaluation of spectral shape and gain separately, or together.

* , 17



Product Code VQ

The gain-shape separation of (20) can be implemented in a structure called a product code

VQ19, also called a gain-shape VQ. In standard VQ, the result of quantizing the input optimal

LPC vector Gm(z) is an index i corresponding to the closest codeword G,(z) = In a

product code VQ, the result is now an index pair, i and j corresponding to the product

codeword G.,(z) = j,. The product codeword is composed of a gain codeword and a spectral

shape codeword. There are now two codebooks, one containing shape codewords and

one containing gain codewords.

The first term of (20) is called the gain-optimized IS measure, GO, sometimes called the

log-likelihood ratio or the Itakura measure:

Go a dis = In . (22)

with the "modified" version defined as:

modified dG X I12I -;12 dis (I 2;I .1- = In("). (23)
(I A )( Am'A a~m

The second term of (20) we refer to as the IS gain distortion, G, which can be expressed

as:

d ;I-I=2) ds (0x ; a) = (- a-1. (24)

To VO an input optimal LPC vector, two steps are required. The first step is to search the

shape codebook to find the shape codeword - which best matches the input spectral

shape by using (23). The residual energy ot which results is then used in (24) to search
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* the gain codebook to find the best matching gain codeword a . This procedure is depicted

in figure 3. With L, shape codewords and L. gain codewords the total number of different

product codewords is the Cartesian product L = L, * L., but the number of codewords

needed to be stored is only L, + LV.

Classification by VQ

It is generally agreed that the time variation or sequence of short-time spectral information

is needed to classify acoustic signals. However, surprisingly good classification

performance has been obtained by using only average spectral information20 . For each

class I, a VQ codebook is designed using training data from only that class. An unknown

sequence is encoded by each of the codebooks and the average distortion D, is computed

from (16) for the Ith codebook, for all I. The classification strategy is to pick the minimum

average distortion codebook as the class of the unknown sequence:

VQ distortion classification criterion arg{minD, }. (25)

It has been observed that VQs are efficient coders in the sense that if the output index is

regarded as a random variable, the entropy is close to the maximum possible'7 . Let Y be

a random variable for the output index, Y e {Y1, Y2,..., yd and p(y,) m P(Y = y,). The entropy

of Y is given by the familiar expression H(Y) = -, p(y,) log 2 (p(yi)). If individual VO codebooks

are designed for each class I, then we expect the Ith codebook to be more efficient at

encoding sequences from the Ith class than for any other class, Implying H,(Y) > Hk(Y), I

k. We now introduce a new classification criterion based on this notion:

VQ entropy classification criterion arg {max [H,(Y)] }. (26)
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. HMMs

HMMs are a powerful signal modeling tool. They are used in speech recognition systems

to decode a sequence of VQ indexes, i.e., symbols, to make a classification decision. They

have been found to offer better computation/performance ratios than other techniques like

dynamic time warping2 l . Streit has used HMMs to study transient-like signals generated

by Monte-Carlo techniques22. In this section we summarize the key elements of HMMs

and introduce a new HMM structure.

Mathematical Framework of HMMs

A signal is assumed to be represented as a finite-state, first-order, discrete-time Markov

chain with N states. At each discrete time instant t, the signal generates a symbol o,, one

of the L VQ indexes. A HMM is doubly stochastic because at each discrete time instant,

the signal transitions to the next state according to a state transition probability matrix, and

* generates a symbol according to a symbol probability distribution which depends on the

state. Since what is observed are symbols which depend probabilistically on the states,

the underlying Markov chain is considered "hidden," and can only be inferred from the

observation symbols. Since classes are represented with models that vary only in the

probability distributions or parameters, the use of HMMs is sometimes called the

structural-parametric approach.

We now Introduce the standard notation for HMMs. A sequence of T observations 0 is

observed, 0= 01, 02,..., oT. Each observation o,, is a member of the set of VQ indexes, o,

e (y, y2,..., Y ). The states of the Markov chain are denoted q e {qj, q2 ,..., qN 1. The

Markov chain begins in state i with probability ir = P(q, at t = 1); the r, are called the initial

state probabilities. The Markov chain transition probabilities are denoted a, = P(q at t +

1 q, at t) = matrix A, and the symbol probabilities are denoted b (k) W P(Yk at t I q, at t) =

matrix B. The notation r = (AE, 7q) is shorthand for the HMM for class I.
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For signals that exhibit behavior which regularly begins, proceeds, and ends distinctively,

constraints are placed on the initial and transition probabilities. Such HMMs are nonergodic,

sometimes called serially constrained or left-to-right, and are used exclusively in this study.

Howard and Ballas have shown that the transients which have a left-to-right, first-order

Markov structure are easier for human listeners to classify than sounds which have no

specific structure2. The signal must begin in state 1, n, = 1, so q, = 1, and end in state

N, qT = N. The constraint aq = 0 for j - i > 1 is called SC2, while the constraint aN = 0 for j

- i > 2 is called SC121. These constraints imply that the signal starts in state 1, always

transitions to a state no more than one state (SC2) or two states (SC1) higher with no

backtracking, and finally ends in the last state. Figure 4 shows an example of an SC2

HMM.

HMM Algorithms

As in VQ, HMMs must be trained prior to being used in classification. The goal of the

training is to achieve good estimates of the state transition and symbol probabilities. One

HMM is trained for each transient class. The training is accomplished by the Baum-Welch

reestimation algorithm. This algorithm uses sequences of VQ indexes from training data

for a given class of transient and iteratively estimates the desired probabilities; the algorithm

converges to a local minimum. Once HMMs have been trained for each transient class,

they may be used to classify unknown sequences of VQ indexes. The classification

algorithm used in this study is the well-known Viterbi algorithm. The Viterbi algorithm

provides an estimate of P(O, 0 1 r,), where Q = {q1, q2,..., qT}. That is, it gives an estimate

of the joint probability of the observed symbols and the inferred state sequence, given the

Ith HMM. In addition, it provides the highest probability state sequence 0. The classification

criteria is then:

HMM classification criteria arg{max [logP(0,Q I rJ)}. (27)
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* Due to scaling concerns, the log of the probability is computed rather than the probability

itself. Details of the Baum-Welch and Viterbi algorithms along with important

implementation considerations are presented elsewhere 4.

Product Code HMMs

We introduce here what is believed to be a new HMM structure, called the product code

HMM. This structure uses as observations, VQ index sequences from a product code Va.

Thus, there are now two VQ index sequences, one for spectral shape, denoted 0, = (o,1,

o2,..., 0,T}, and one for gain, denoted 09 = (01i, Og2, .... o0T }. The two sequences and thus

the underlying HMMs are assumed statistically independent. For each transient class I,

there are now two HMMs, one corresponding to spectral shape, IF, = {A, BO, 7Q, and one

to gain, r., = {Ag, Bg, x.j. At each time instant t, there are two observation symbols o,,

and ogt. From the independence assumption we have that P(o,,, o0t) = P(o') * P(ot). It is

then easy to show that:

logP(O.,I,O,,9Ig 1F,7,) = logP(O,,l, 1T)+logP(0g,Ig IF) (28)

The classification criteria is still that of (27), except that the maximization is now over the

RHS of (28). The shape VQ index sequence is evaluated by the shape HMM, the first

term of the RHS of (28) is computed and the gain index sequence is evaluated by the gain

HMM and the second term of the RHS of (28) is computed; the two are added to get the

final log probability for class I. Figure 5 depicts an SC2 product code HMM.

There are a number of advantages to the product structure. First, it Is easy to assess the

relative importance of spectral shape and gain by using either or both HMMs in making a

classification decision. Second, the number of states, constraints, and the number of

symbols does not have to be the same for the two HMMs. More accurate modeling may

be possible for the two sequences treated separately than by combining them in one HMM.
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* Third, it should be clear that product structure may be extended to more than two

independent HMMs. Finally, if the full IS measure is used, it can be shown that there is

much less computation and storage using the product VQ/HMM structure than using the

standard structure.

EXPERIMENTAL PROCEDURE AND RESULTS

In this section we first describe the data base used in this study. Next, we summarize

experiments of modeling transients with LPC and LPCNQ using speech coding and

synthesis techniques. We then describe and present results of classification experiments

using VQ only. Finally, we describe and present results of experiments using the full

structural-parametric approach, including standard and product code HMMs.

Data Base Description

Rather than use an available data base of real underwater transients, we elected to record

our own data base in our (above water) lab. The reasons for this were to eliminate the

effects of the ocean medium from this study, and to insure an adequate amount of data

for training and classification. Three classes of transients were recorded: class a, a wooden

door opened then shut, class b, a metal tool dropped in a large metal container, and class

c, water poured from a small container into a larger container. The classes were chosen

to be similar to passive sonar transients. Two hundred tokens, or examples of each class

were recorded. The recording was done straight to digital disk, with an antialiasing filter

cut-off of 4 kHz, a sampling rate of 10,000 Hz, at 12 bits per sample. Each token was

about one second long. The data base was split Into halves, 100 tokens of each class

made up the training set, and 100 tokens of each class were designated the test set. Due

to some recording anomalies, one token was later discarded from the test set, and five

were discarded from the test set; therefore 299 tokens were used for training and 295 for

testing.
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*LPC Modeling

The purpose of this experiment was to verify the model of figure 2, and to determine a

reasonable LPC model order M, and analysis frame length K. Ten tokens were selected

at random from each class and many combinations of K and M were used in LPC analysis

of each token. The LPC analysis was implemented with Hamming windows and the

autocorrelation method. For each combination of M and K, the parameters computed

during LPC analysis were used in the LPC synthesis of figure 2. That is, artificial transients

were synthesized by driving the sequence of LPC models with white noise. This is very

similar to a standard LPC analysis/synthesis or vocoder system. We then subjectively

determined the quality of the artificial transients by listening to the synthesized output. We

found that a model order of M = 4 and frame size K = 64 (6.4 msec) resulted in very good

quality synthetic transients. Model orders less than 4, or frame sizes much more than 64

resulted in poor quality. Conversely, orders more than 4 or frame sizes less than 64 did

not noticeably improve quality. Frame overlaps of various percentages did not affect

quality. Figure 6(a) shows an original waveform of a token from class a, while 6(b) shows

the waveform produced by M = 4 LPC synthesis.

The ten tokens of each class were analyzed by LPC order M = 1, 2,..., 29, with N = 64,

Hamming windows and no overlap. For each frame, the residual energy am and the input

energy c, were computed and their ratio, the normalized residual, was averaged over all

frames. The average normalized residual is shown as a function of M, in figure 7, which

also includes estimates of the SFM and PG. It can be seen that the modeling error due

to LPC falls off rapidly with increasing M until about M = 4, when it levels out, verifying that

M = 4 is a reasonable order to use.
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O Data Compression by VO

The VQ codebook size or rate was selected as follows. An energy threshold was used to

eliminate silent regions at the beginning and ending of the transients. The training set was

used with the LBG algorithm to design VO codebooks with the IS distortion measure of

rates R = 1, 2,..., 9 bits. Likewise, VQ product codebooks were designed for R = 2, 3,...,

9 bits. For the product codebooks, for a given rate R, there are R-1 combinations of shape

rate R, = log, N, and gain rate R9 = log, N., R, + R9 = R. For each rate codebook, the

entire training set was encoded and the average distortion D computed. Table 1 shows

the results. (For product codebooks, the shape distortion for a given R, is the same and

is repeated for convenience.) These codebooks were used to quantize the training and

test data for subsequent use with HMMs. Figure 8 shows a plot of D for both the standard

VQ codebook and the lowest distortion product ro -hook, as a function of R. The distortion

drops of rapidly for the IS curve until R = 7, when it levels off, indicating that there is little

improvement in distortion by adding more codewords. The distortion curve for the product

codebook levels of at about R = 8 bits. For a gi, an R, R > 5, the lowest distortion product

codebook always occurs for a gain codebook size of R. = 4 bits. The distortions obtained

on encoding the test set were found to be close to the values in Table I.

Based on figure 8, the standard IS codebook rate was selected as R = 7 bits. To evaluate

the effect of this compression on the fidelity of the transients, the LPCNQ vocoder structure

of figure 9 was used. At the transmitter, LPC was done on each frame of the input data,

as described previously. Each input optimal LPC vector was VQ and represented as an

index i, i c { 1, 2..., 128). At the receiver, the index was used to access the corresponding

VO codeword G,(z). This codeword, an LPC model, was then driven by white noise to

result in an artificial output. Informal listening tests again demonstrated that the fidelity

was very high. Figure 6(c) shows the output of this VQ/LPC vocoder, for the input of 6(a).
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Table I. Distortion for VO CodeBooks

CODEBOOK SHAPE GAIN SHAPE GAIN PRODUCT IS
RATE R RATE R, RATE R, DIST DIST DIST DIST

(bits) (bits) (bits) (do) (do) (do) (d)

1 1.8760

2 .7926
1 1 .3135 1.4052 1.7187

3 .3836 .4806
1 2 .3135 1.3557 .6971
2 1 .2097 1.5654

4 .3174
1 3 .3135 .1020 .4155
2 2 .2097 .3704 .5799
3 1 .1579 1.3481 1.5060

5 .2271
1 4 .3135 .0279 .3414
2 3 .2097 .0991 .3088
3 2 .1679 .3831 .5210
4 1 .1184 1.3170 1,4354

6 .1712
1 5 .3135 .0076 .3211
2 4 2097 .0271 .2368
3 3 .1579 .0979 .2558
4 2 .1184 .3549 .4733
5 1 .0858 1.3070 1.3928

7 .1373
7 1 6 .3136 .0020 .3156

2 5 .2097 .0073 .2170
3 4 .1679 .0267 .1846
4 3 .1184 .0962 .2146
5 2 .0858 .3528 .4386
6 1 .0640 1.3010 1.3650

8 .1217
1 7 .3135 .0005 .3140
2 6 2097 .0020 .2117
3 5 .1579 .0073 .1652
4 4 .1184 .0263 .1447
5 3 .0858 .0959 .1817
6 2 .0640 .3504 .4144
7 1 .0465 1.2961 1.3426

9 .0826
1 8 .3135 .0001 .3136
2 7 2097 .0005 .2102
3 6 .1579 .0020 .1599
4 5 .1184 .0073 .1257
5 4 .0858 .0263 .1121
6 3 .0640 .0959 .l00
7 2 .0465 .3504 .3969
8 1 .0350 1.2961 1.3311

It should be noted that the data rates for the LPC and LPCNQ vocoder systems were

about 9 Kbps and 1.1 Kbps, respectively, the latter representing a reduction of about 99%

over the original 120 Kbps sampled data sequence.
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* Figure 10(a) shows a scatterplot of the first two LPC reflection coefficients for the training

set17. Figure 10(b) shows the locations of the 128 IS codewords in this same space.

Clearly, the codewords are well selected by the LBG algorithm to represent the clustering

of the data. Figure 11 shows a plot of the output entropy the VQ as a function of R. It can

be seen that the VO is an efficient coder in that the observed entropy is reasonably close

to the maximum log 2 L. Figures 12(a), (b), and (c), show individual LPC scatterplots for

training data for classes a,b, and c, respectively. The spectral overlap is greatest between

classes a and b.

VQ Classification Experiments

A number of classification experiments were conducted using VQ only. The experiments

were done in the following way. Individual codebooks were designed for each class at

rates of R = 0, 1.... 7 bits. The codebooks were designed using the standard (modified)

IS measure, the GO measure, and the G measure, to result in standard IS, shape, and

* gain codebooks. Product codebooks of rate R = 1, 2,..., 12 were made by using

combinations of the shape and gain codebooks (note that R. = Rg = 0 gives R = 1). A

restriction was made so that R, and R. ; 6. The number of different product combinations

is 1 for R = 0, R - 1 for 2:< R < 8, and 13 - R for 8 ; R<.12. Each unknown token in the

test set was compared with each of the codebooks with several different distortion

measures. For the G codebooks, only the G measure was used. For the IS and GO

codebooks, the IS, GO and the GN measure were used. (The GN is the gain-normalized

IS measure or likelihood ratio, similar to the GO measure, In that only spectral shapes are

used in the comparison"6 .) Thus, a total of seven combinations of classification distortion

measures and codebook distortion measures were used. The notation "GOIS" means, for

example, that the GO measure was used in classification and the IS for codebook design.

The VQ classification criteria of (25) and (26) were used for each experiment (except that

the entropy criterion is not defined for rates of zero). For product codebooks, the
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. classification criterion is the minimization of the sum of the distortions from the shape and

gain codebooks, or the maximization of the sum of the entropies from the shape and gain

codebooks. Figure 13(a) shows classification error as a percentage versus codebook rate,

using the distortion criteria of (25); each curve is one of the seven combinations of

classification distortion measures and codebook types. In addition, a curve representing

the best product code performance at each rate is included. Figure 13(b) shows the result

using the entropy criteria of (26). Figure 14 shows percent classification error using the

distortion criteria for product codebooks, as a function of the rate of the shape codebook,

R.; each curve represents a different total product rate R.

HMM Classification Experiments

HMMs were trained by using the Baum-Welch algorithm, using the training VQ index

sequences from the 7-bit IS codebook. Both SC1 and SC2 constraints were used. The

number of states was N = 1, 2,..., 10, 20 for SC2, and N = 3, 4,..., 10, 20 for SC1 (since

* SC1 is not defined for N < 3). Classification experiments were performed by representing

each class with one HMM of state N and using the classification criterion of (27). Gain

and shape SC2 HMMs were trained by using gain and shape VQ index sequences from

product code VQs. For each class, gain and shape SC2 HMMs of rates Ro, Ro, = 0, 1 ....

6 were trained. Classification was done by representing each class by a shape codebook

of R, bits and using (27); this was repeated for gain codebooks of Rg bits. Finally,

classification experiments were performed by using product code HMMs. At each rate R,

the number of combinations of gain and shape codebooks was given in the previous section.

For each experiment, the same combination of shape and gain rates, and same number

of states were used for each class. For example, at a rate R = 4, and number of states N.

= Ng, a classification experiment was done using (28) for say Ro = 3 and Rg = 1 for all

classes.
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Figure 15 shows classification performance as a function of the number of states per HMM;

separate curves are included for SC1 and SC2 standard HMMs, gain only and shape only

HMMs, and product code HMMs. For product code HMMs, the best performance at each

state is shown in Figure 15. Figures 16(a) and (b) show the performances of shape and

gain HMMs as a function of rates R, and Rg, respectively; each curve in the figures

corresponds to a fixed number of states. In figure 17, classification performance is plotted

against rate for shape, gain and product code HMMs, where the best performance at each

rate is given. Also shown in the figure are the performances of the SC1 and SC2 standard

IS HMMs, both at a rate of R = 7 bits. Finally, in figure 18, classification performance for

product code HMMs is shown as a function of the number of bits in the shape codebook

R.; each curve represents the best performance at a given rate, R.

The optimal state sequence provided by the Viterbi algorithm can be used to gain further

insight into the time-varying nature of a transient. Figures 19(a), (b), and (c) show a

waveform of the same transient from class b superimposed with an optimal state sequence

from an SC2 R = 7 standard IS HMM, an R, = 5 shape HMM, and an Rg = 2 gain HMM,

respectively, all with N = 3 states. It can be seen that the underlying character of the signal

is different when considering shape and gain combined together compared to when they

are modeled separately.

DISCUSSION

LPC/VQ Modeling

The representation of transients by low order LPC, with very short time frames, and the

ability to generate synthetic transients by using an aperiodic excitation to drive a

time-varying all-pole model, means that these transients are similar to unvoiced speech
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* sounds. The high fidelity data compression achieved by using VQ with the IS distortion

measure is evidence that the distortion measure is perceptually meaningful for the

transients considered in this study. This may not be true for other transients.

VQ Classification

Figure 13(a) shows that the best performance using a distortion criterion was 3.37%,

obtained using the ISIS combination at a rate of only R = 1 bit; a close second at 3.71%

error, was a product codebook of R, = 1, R9 = 1, R = 2 bits. Several trends are evident

in the figure. The most important trend is that the performance of product codebooks is

generally better than other methods and relatively insensitive to rate. Better performance

is obtained using the same distortion measure for classification as for codebook design.

The fact that product codebooks performed generally better than shape, gain, or shape

and gain represented in IS codebooks, means that both shape and gain contribute to better

performance but only if the relative number of bits between shape and gain can be fixed.

* Figure 14 indicates that best performance for rate R is to use R, = R - 1 and R. = 1. There

is no consistent trend in 13(a) or 14 on the effect of R on performance.

Figure 13(b) indicates that the ISIS combination had consistently the best performance

using the enn"(opy criterion. In fact, the 2.7% error obtained at R = 6 bits, was the best in

the entire study. Using the entropy criterion, better performance was obtained using the

IS codebook, regardless of the classification distortion measure. Entropy results for product

codebooks are not indicated because they were uniformly bad over all combinations of

gain and shape rates, generally over 50% error. There is a clear trend of better performance

with an increase in R.

Table II displays confusion matrices corresponding to the best performances at rate R =

6, using distortion and entropy criterion, respectively; these are representative of most of

the experiments. It is evident that classes a and b are more confusable with each other
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than with class c. This is to be expected from the scatterplots of figure 12. The confusion

matrices also imply that some combination of distortion and entropy criteria would not be

expected to improve performance significantly.

Table II. Confusion Matrices for VQ Classification

(Each number is the occurrences of test class I classified as I)

Reference I

a b C

a 76 21 0

Test I b 21 78 0

C0 1 0 1 99

Confusion matrix for distortion criterion, ISIS, R - 6

Reference I

a b c
- {- m

a1 0

Test I b 7 92 0

€ 0 1 0 1 99

Confusion matrix for entropy criterion, ISIS, R - 6

Although VO distortion goes down with an Increase In R, classification performance was

not found to be related to R using the distortion criterion. This can be explained by

conjecturing that if only a few codewords are used to represent each class, the codewords

of one class are likely to be fairly different from those of another class. As more and more

codewords are used, the more the similarity among codewords of different classes is likely

to be. This phenomena may help explain the better performance of the entropy criterion,

and the improvement using the entropy criterion with an Increase In R. With larger
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*codebooks, it is likely that a good match can be found to an unknown frame from any of

the codebooks so that a low average distortion may result from any codebook; yet more

of the codewords are used from the codebook of the correct class, and hence its entropy

will be higher than other classes. We know of no explanation for the dismal performance

of product code VQ using the entropy criteria.

HMM Classification

Figure 15 shows the clear advantage of product code HMMs over shape only, gain only,

or standard IS structures. The product code performance shown is the best over all R and

combinations of R, and R. for a given N. The performance of the product code structure

is also relatively insensitive to the number of states in the HMM. The SC 1 standard IS

HMM provided the second consistently best performance. Next best were the SC2 IS

HMM and shape only HMM, which provided about the same performance, followed by the

gain only HMM. Best product code performance was 3.71% error which occurred at N =

1, 5, 6, and 10 states. Figures 16(a) and (b) show the performances of shape and gain

only HMMs as a function of the rate R, respectively. Each curve represents a fixed number

of states. There is trend toward better shape HMM performance with increasing R, up

until about 4 or 5. The dependence of performance of number of states and R. is not

evident.

Figure 17 shows that there is definite improvement in performance with an increase in

rate, with some fluctuations. The product code performance Is relatively insensitive to R

for R > 4. Figure 18 illustrates that for a given total rate R, best product code HMM

performance is often achieved for R, = R - 2. (This is not apparent for larger rates R > 7,

because there are only a few combinations of shape and gain rates used.) The best

performance of 3.71% was achieved at the following {R, RJ combinations: {5, 3) occurred

three times, and (8, 2) and (9, 4) once. Thus, both gain and shape information are more
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useful in classification than either alone, but better performance is achieved if each is

modeled separately in a product code HMM than if they are lumped together In the standard

IS HMM.

A very brief experiment was done where each class was modeled with a standard IS HMM

but with the number of states not necessarily the same. An examination was made of the

number of errors made for class I for SCI and SC2 standard IS HMMs, and the state

number corresponding to the minimum number of errors for class I was found. Classification

experiments were made using the selected number of states per class. The state numbers

so selected were (20, 8, 9) for SC1 classes and {7, 20, 10) for SC2 classes a, b, and c,

respectively. The two classification performances were both 5.05% error, better than the

any of the standard IS performances where each class was modeled by the same number

of states. This suggests that further improvement could be made in product code

performances by using the same idea.

* Comparison of VO and HMM Classification

The performances of VO alone and the HMM approach were close, with VO slightly better.

This implies that the sequence of short-time spectral information was not needed to classify

the three classes selected. However, it is conjectured, that as the number of classes

increases, the greater the possibility that average spectral characteristics will be similar

among some of the classes, and hence the less likely that VQ will be a reliable classifier.

There was a tendency toward better performance with an increase in rate R for both VQ

and HMM; this was not always true, but for HMMs, the trend was more consistent. For

both VQ and HMMs, the product structure outperformed the shape only, gain only and

standard structures. The reason forthis seems to be that it Is necessary to explicitly allocate

a certain number of bits to shape and gain, rather than allocate the bits only to shape or
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* gain, or allow the LBG algorithm to determine the allocation in IS codebooks. For VQ, the

best number of shape bits was usually R - 1 while for HMM it was often R - 2, showing

that more number of bits were needed for spectral shape than gain.

We note that a 1 state HMM is similar to classification by VQ, since the classification is

done by using only the symbol probability distribution, i.e., average spectral information.

The performances of the best product code VQ (R = 2, R, = 1) and 1 state product code

HMM (R = 5, R$ = 3) were the same, 3.71%. The 1 state product code HMM had best

performances of shape only (R = 4) at 11.86% error, gain only (R = 6) at 14.23% error and

standard SC2 IS (R = 7) at 10.13% error, compared to the performances of VQ shape (R

= 5) at 13.5%, gain (R = 3) at 15.99%, and ISIS (R = 1) at 3.37%; the 1 state HMM performed

slightly better than VQ for shape and gain, but much worse for the standard IS measure.

Comparison witr Human Classification Performance

* A handful of controlled studies have been reported on the performance of human listeners

on classification tasks where the sounds were similar to those used in this study. Ballas

and Howard summarize four of these studies, and state that error rates of 50%, 2%, over

65%, and 5%, have been reported". The number of classes, leaming protocols, and the

experience of the listeners, were different in each study. The performance of the current

machine classifier compares favorably to the human performances.

CONCLUSION

Techniques borrowed from automatic speech recognition and coding were useful in

modeling and then classifying three classes of sonar-like, acoustic transients. LPC models

for transients were verified by listening to the quality of the synthetic output of an LPC

analysis/synthesis system, using white noise as an excitation. The low LPC model order

and the short frame size required showed that the transients were similar to unvoiced

speech sounds. An analysis/synthesis system using LPCNQ further Indicated that the IS
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distortion measure is perceptually meaningful in the comparison of transient spectra. The

techniques of speech synthesis were very useful in confirming that the spectral modeling

and quantization methods preserved most of the perceptually important information. VQ

and HMMs were used to classify 295 tokens of the three classes of transients. VQ achieved

the single best classification performance of 2.7/ error using as a criterion the maximum

entropy of the output index of individual VQ codebooks. However, the product code

structure achieved consistently good performances across a wide range of VQ rates for

both VQ only (using the distortion criterion) and HMM classifiers, and across states for

HMMs. The product code approach resulted in an error of 3.7% for both VQ and HMM.

This implies that both spectral shape and gain were valuable in classifying these transients.

Furthermore, better performance was achieved by separating shape and gain so that the

optimal number of bits could be allocated to each, and combining the individual results in

product fashion. More bits were required for spectral shape. The main conclusion of this

study is that techniques from the speech field show promise in the automatic classification

of underwater transie-..
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