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TEXTURE SEGMENTATION USING LOCALIZED
SPATIAL FILTERING

Introduction

Texture is a term used to indicate the' spatial intensity variations in

scenes or images. The subject has been studied extensively for the purpose of

I identifying objects or regions of interest. It~has been used as a technique to

classify images belonging to different categories of objects or-regions[1,2].

Despite its clear cut semantic meaning, texture is a rather vaguely defined

i concept. There is still no unique definition of texture and no systematic

approach to its characterization or measurement. There are just too many

3 different kinds of textures in the images of natural or man-made objects to

generalize the problem. Most successful texture discrimination techniques

developed so far are based on a spatial-statistical approach. In this approach,

5 pixels in a selected neighborhood having special spatial relations are chosen

to yield statistical data samples. A variety of numerical measures are then

3employed to extract the useful information necessary for differentiation. The

decision as to which technique is more powerful and accurate depends quite often

on the specific images selected for a study.

In a texture segmentation procedure, texture discrimination techniques

are used to separate and identify regions of lifferent textures in images. The

£ most commonly used method is to classify each pixel individually. Pixel

classification requires a determination of the texture in the pixel's immediate

3 neighborhood. The size of the neighborhood window chosen to process the texture

£ features has to be large enough to provide a statistically meaningful sample.

This approach will work provided that an effective discriminant function exists

* for the textures to be segmented and that the texture extends over a region much

Mncript approved Augt 30, 1989.
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I
larger than the window dimension. Also, the neighborhood window has to be

scanned over the whole image in order to classify each pixel. It is likely that

this process will consume too much time to be realistic in practical I
applications.

In this paper a new, faster, computational approach to texture analysis

and segmentation is presented based on localized spatial filtering. This

approach works well in those images where different texture classes differ

significantly in their dominant spatial frequencies. Filters are chosen for each 5
class of texture with parameters to match class frequency, bandwidth and the

spatial orientation. The filtering process generates filtered images which

reveal the relative dominance of each class over the whole image. Segmentation 5
is accomplished by designating each pixel as belonging to the class whose filter

produced the strongest response at that location. It is a process whereby image

regions of different textures are separated by sensing the localized changes

of spatial frequency and its orientations. SAR images of the open ocean surface I
and of arctic ice regions were chosen to test its applicability. Excellent 3
results are obtained. Comparisons are made with the results obtained from a

method based on the co-occurrence matrix approach. I

Two-dimensional Gabor Approach to Image and Vision Research I
The spatial filters which will be used in this texture analysis and 3

segmentation study are the two-dimensional Gabor functions. The original idea

was first introduced by Gabor in 194613]. Instead of describing communication 3
signals in terms of idealized time domain and frequency domain functions, he

suggested that a more appropriate and realistic approach should be something 3
intermediate between the two extremes. The scheme he proposed to decompose and

2
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3 represent an arbitrary signal consists of a set of elementary signals which are

harmonic oscillations modulated by a probability pulse. To achieve the minimum

possible product of the effective duration and the effective frequency width,

3Gabor chose the gaussian probability function as the modulating envelope. These

elementary signals can be written in the following form,I
f(t)-exp[-(t-t) 2 /402 ]xexp[(j2nf 0 (t-t 0 )] (1)

I where j-vI:. These signals are centered at time t-t0 and at frequency f-f0. The

gaussian envelope is described by the standard deviation a. The effective

3m duration of the signal, At, is defined as

I At[(t-t0)2Y12 (2a)

and the effective frequency width, Af, as

Af-[(f-fo0)21l/2  (2b)

3 in which the horizontal bar denotes an average value. These Gabor elementary

signals possess the property of minimizing the combined effective spread in both

i time and frequency. Mathematically, this corresponds to an uncertainty relation

3 AtAf 1/4w. (3)

£ This information uncertainty relation derived by Gabor indicates that a signal's

33
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.characteristics specified simultaneously in time and frequency, is fundamentally

limited by a lower bound on the product of its bandwidth and time duration. The

family of signals in (1) achieves the theoretical lower limit of this joint i
uncertainty.

The recent discovery that the measured receptive field profile of single

cortical cells matches well the spatial variation of such signals, pointed to

the usefulness of Gabor elementary signals in vision studies[4]. Simple cells

in the visual cortex have spatially localized receptive fields which consist of m

distinct elongated excitatory and inhibitory zones[5]. The spatial frequency

I
domain study also revealed the fact that the cells are tuned to specific

frequencies with bandwidths of the order of one octave[6,7]. These results match 5
the psychophysical experimental evidence that the visual scene is analyzed in

terms of independent frequency channels[8]. The representation of an image in 3
the visual cortex must, therefore, involve both space and spatial frequency

variables in its description. Gabor signals provide such dual variable i
dependence simultaneously. Their special characteristic of maximizing

localization in space and in spatial frequency seems to agree with the biological

system's natural tendency to sense the environment with optimum efficiency. 3
Gabor's original theory was developed for studying one-dimensional time-

varying communication signals, whereas image and vision related processes occur i
in two-dimensional(2D) space. The necessary extension of Gabor's scheme to two

dimensions was published by Daugman in 198519]. In addition to the spatial

resolution and spatial frequency bandwidth descriptions, the two dimensional 3
version of the Gabor signals also includes the orientation bandwidth and the

width/length aspect ratio characteristics inherent in 2D problems. These 2D 3
Gabor signals also preserve the property of optimum joint information resolution m

4 I
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I in the 2D spatial and 2D spectral domains. Supported by the evidence in the

biological studies, it is possible that the 2D filters generated by the 2D Gabor

elementary signals with the properly chosen parameters could be used for the

3efficient extraction of various kinds of information from images.
If the spatial and spectral increments are properly chosen, the Gabor

elementary functions form a complete mathematical set[10,11]. An image can be

decomposed exactly as a summation of clusters of Gabor elementary functions

Iscattered in a uniform lattice structure over the spacial extent of the image.
5 Thus, for instance, image data compression is possible by eliminating those

functions with insignificant coefficients and reconstructing the image with the

3 rest. The required calculation is quite intensive and to be of practical use

special hardware is needed in which the fundamental algorithms used in the scheme

i are incorporated in an integrated circuit design.

Texture Discrimination by Gabor Filters

In this paper, the Gabor scheme is used in a task of image segmentation

based on texture differences. The contents of the image to be processed are

£ assumed to contain several kinds of image textures portraying physically

different objects, landscapes or terrains. Recently, Bovik et al and Turner used

the Gabor elementary functions as localized spatial filters in texture

f discrimination and segmentation of images composed of synthetic

textures[12,13,14]. A similar approach is followed in this paper for Segmenting

3 SAR images of ocean surfaces and arctic ice regions. The goal of this effort

is to search for efficient techniques based on texture analysis to separate and

possibly identify areas of different meteorological conditions in the ocean

* surface case and to reveal ice composition and location in the arctic.

15
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Usually in order for an image segmentation process by texture analysis

methods to be feasible there are a few practical conditions to be satisfied.

First, the number of different kind.s of textures which co-exist in the image must I
not be large. Second, different kinds of textures are separated by smooth

boundaries. Third, there is at least a texture classification approach which

can separate the different kinds of textures with reasonable accuracy. For the

Gabor filter approach to be applicable, the textures involved should be

distinguishable in terms of different localized spatial frequencies and/or in 5
terms of different aspect ratios of these variations in two perpendicular spatial

directions.

The geometry of the problem is illustrated in Fig. I where two coordinate 5
systems are displayed. The unprimed coordinate system matches that of the image

and the axes of the primed coordinate system coincide with the axes of an ellipse 3
shown. The two systems are related by an angle of rotation 4. The 2D version

of equation (I) can be written in the primed coordinate system as I
m

h(xl, y,).(/4nka2)expf_[(x,/X)2+y,2]/4o2}exp~j2n (Ulx,+V,y,)]. (4)m

I
It represents a complex sinusoidal grating modulated by a 2D gaussian

function profile with aspect ratio X, scale parameter a, and the major axis of 5
the ellipse along the x' coordinate direction. Also U' and V' are the spatial

sinusoidal frequencies of the grating in the direction of the x' and y'

coordinates respectively. The frequency spectrum, which is the Fourier transform

of (4), is given by

6
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I
H(u' ,v I)=expf-4 2 a 2 [ (u'-U') 2+(v'-V' )21 j. (5) 1

The variables in the two coordinate systems are related by the U
transformation relation, I(; coB -sin \/X1\-i (6)I ,

The same relation also holds between the frequency variables (u,v) and (u',v'), I
and between (U,V) and (U',V'). Note that H(u',v') is a band pass gaussian 3
function with the same aspect ratio X, except that the orientations of the major

and minor axes are interchanged as compared with that in the spacial domain. 3
The radial center frequency F-(U'2+V'2)1/2-(U2+v2)1/2 is measured in cycles per

pixel and is oriented at an angle 8-tan-(V/U) with respect to u-axis. I
In general, the orientation of the gaussian modulation function and the 3

direction of harmonic spatial variation yield two independent variables in the

Gabor scheme. To simplify the problem, only the special case will be pursued 1
in which the direction of spatial change and the major axis of the gaussian

ellipse are the same. In this case the angles * and e are the same and equations I
(4) and (5) reduce to 3

h(x',y')-(1/41T.a 2)expfj2iTFx'-[(x'/X) 2 +y' 2 ]/402I (7) 3
and

H(u' ,v' )-exp[-4n2 a2 [ (u'-F) 2X2 +v' 2 ]}. (8) U

I
I
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I
3 There are eight degree of freedom in the specification of a 2D Gabor filter[9].

Therefore, it is difficult to gain any intuitive understanding of how ti.(

3 characteristics of the filters change when these parameters are varied. For the

images studied in this paper a simplified version of (7) and (8) will be used

wherein the parameters to be varied include the size of the gaussian profile(o),

3 its aspect ratio(k), the center spatial frequency(F), and its orientation

angle(e) which coincides with one of the axes of the gaussian ellipse. Fig. 2

shows the intensity plots of a 2D Gabor filter specified by the real part of (7),

displayed as a 512 by 512 pixel image. The center freoxency is F=0.1

cycles/pixel and the bandwidth B=.35 octaves. The aspect ratio is X=1.5.

Starting with the upper left plot and following a clockwise sequence, the

orientation angle has the value of e=900, 1350, 450, and 00. The center of each

I plot is located at the column and row pixel coordinates of (128,128), (384,128),

(384,384), and (128,384). Fig. 3 is the frequency domain counterpart of Fig.

I 2. It is also a 512 by 512 pixel image with the same locations for the plot

centers and a scale of one pixel distance equal to a spatial frequency of 0.002

cycles/pixel.

I For a typical 2D spatial filter, the definition of bandwidth and its

associated physical meaning can be quite complicated. In the special case as

3 represented by equations (7) and (8) with spectrum shown in Fig. 3, the problem

is simple and clear. There are two bandwidths to be defined. The first is the

spatial frequency bandwidth and the second is the orientation bandwidth. The

3 meaning of the parameters introduced to describe and specify them can be made

by reference to Fig. 4 which is similar to the lower right part of Fig. 3.

3 Adopting the conventions used in the physiological vision research, the spatial

I
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3 frequency bandwidth is measured in octaves which is the ratio of the upper half

peak power frequency to the lower half-peak power frequency expressed in terms

binary power. The orientation bandwidth is measured in radians. Expressed in

3 terms of the parameters in equation (7) or (8), they are [121

3 B-1og2( Fxo+a)/(wFo-a) (9)

Iand Q-2tan-1[a/ Fo] 
(10)I

where a-[1n2/2]11 2. Also B and 0 can be used to replace a and X as two of the

3 mfour parameters in the filter specification.

The filters expressed by (7) and (8) are rather narrow special cases of

the general form of the 2D Gabor filter family. Some conclusions derived from

3 Ithis model, especially those relating to the orientation bandwidth, the spatial

frequency bandwidth and the aspect ratio, match quite well the empirical

3 observations recorded in vision research[9,16,171. These facts confirm the

validity of equations (7) and (8) as the proper functions delineating the

3 perception functions of cells in the mammalian visual cortex. It is expected

that the model will be useful as an analytical tool in many areas of study in

image processing. Choosing the model as a filter and performing a convolution

process with an image yields a complex-valued image containing only a limited

range of frequencies and orientations specified by its parameters. The filtered

3 image contains mainly components within the bandwidths of the filter. Each

pixel's complex magnitude reveals the relative strength of the variations

characterized by the filter attributes in its neighborhood in the original image.

I
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I
Since these filters have the property of achieving the optimum localization in5

both domains, the filtered image will show the best possible distribution of the

spatial signals within the given bandwidths of the filter. I
In the problem discussed. here, an image is assumed to be composed of

several regions or segments. Each region has a dominant textural structure and

there are only a few kinds of different textures present. In this situation, 5
the image can be assumed as a summation of weighted Gabor functions of the form

expressed in equation (7) with their centers shifted to locations where the

corresponding spatial frequencies match the local texture variation. Under this

assumption, the image is expanded in a summation of the form,

45(x,y)-E a Ih,(x'-x/' ,y'-y,') +e(x,y) (11) I

in which e(x,y) represents the image components whose spatial composition does

not match any of the texture categories to be located and identified for I
segmentation. Also (xp',yi') is the center coordinate in the primed system of

each localized harmonic spatial textural variation. The integer index i covers

all the possible localized texture regions within the image of interest. The 3
functions h1(x',y') have implicit dependence on variables F,, o, and g/= /. The

latter specifies the angle between the primed and unprimed coordinate system. l

The aspect ratio is assumed to be unity because the spatial variation of the

textures to be examined is reasonably isotropic. I
Experimental Procedures

In the experiments conducted for this paper, the first step is to identify 5
1

14 I
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3 the kinds of textures which exist in the image and to locate and separate them

from one another or from other regions where there is no texture of interest.

I The second step is to find ideal or typical training samples. A Fourier analysis

3 is made on the training samples to find the spectral distribution in order to

estimate the appropriate parameter values of the Gabor filter functions. The

third step is to perform convolutions of the Gabor filter having estimated

parameters with the training samples to check the average pixel magnitude of the

result in order to determine the best possible combination. If there is more

3 Nthan one texture class in the problem, the convolution is performed between Gabor

filters of each class and the training samples of all classes. The parameters

3 of the filters are chosen such that the ratios between the average pixel

magnitude of the convolution with the same class and the average pixel amplitudes

of convolution with other class samples have thi highest absolute values. The

convolution is performed using a FFT algorithm. The images which are used for

segmentation have a size of 512 by 512 pixels. The FFT is performed on a FPS

3 API20B 38-bit array processor. The maximum size of a 2-dimensional FFT which

can be performed is 128 by 128. Because of the wraparound problem associated

3 with convolution of finite size functions, there are rows and columns around the

edge of the filtered window section of the image which have erroneous data[18].

Therefore thirty two pixels of the data around the periphery were discarded after

3 the filtering process of each of the 128 by 128 sub-images. The magnitude of

all the Gabor filters used in this study declines to negligible level beyond 32

3 pixels from their respective centers.

For images in which only one texture class is to be isolated from the

background, the segmentation is accomplished by finding an amplitude threshold

3 of the filtered image pixels. For images with several texture classes, the

15
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segmentation is accomplished by assigning each pixel to that class whose Gabor

filter produced for it the highest pixel magnitude in the filtered image.

The segmentation process starts at the upper left corner of the image with 3
a 128 by 128 window. Then the window is shifted right by 64 pixels. There is

an overlap of 64 columns between the consecutive windows. Since 32 pixels around

the periphery have to be discarded in the filtered image, there is no 5
discontinuity in the data required for classification of the inner pixels. After

finishing the top row of windows, the same process is repeated in the rows of 3
windows shifted downward by 64 pixels with respect to upper row.

Experimental Results 3
Fig. 5a shows a SAR image of the ocean surface. It is a sub-image obtained

during SIR-B mission of October 11, 1984. The area covered is centered around

geographical coordinate of 370 North and 740 West off the U.S East coast. The

whole image looks quite homogeneous. However, by careful examination of the I
intensity variations, directional striations can be found in it. The areas with 5
the striations may indicate regions on the ocean surface where stronger waves

and winds may have existed at the moment the image was generated. The objective 5
of segmentation is to use the computer to map the image automatically into

striated and non-striated areas. This image was segmented earlier using the co- I
occurrence matrix method approach and the texture energy transform method

approach[19,20]. Excellent results were obtained with the texture energy

transform method, but the results using the co-occurrence matrix method were less 3
satisfactory. Fig. 5b shows the segmented image based on localized spatial

filtering with the Gabor filter. The white regions are the striated areas and 3

1
16 I

I



I
U
I

V ~ ~

I
I
I -'

I
U I (a)

I
I
I
I
I
I
I
5 (b)

Fig. 5. (a) SII~-B image of ocean surface. (b) Segmented image of (a).
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the dark ones are non-striated. The filter parameters chosen were, 3
F-0.1328125 cycles/pixel

B=.5 octaves

0- =-65°"

These parameters are estimated by examining the FFT result of the training sample

in a window of 128 by 128 pixels with the upper left pixel located at column 337 I
and row 65. The column number is counted from left to right and the row number

is counted from top to bottom. I
Fig. 6 is a SAR sub-image of an arctic ice region obtained by the SEASAT 5

SAR instrument. Within this image, there are approximately four different kinds

of texture corresponding to the images of water, new forming ice, older ice, and 3
multi-year ice. This classification is based on an intuitive understanding of

the problem and not upon dependable ground truth data, which are not available. I
Fig. 7 shows the segmented image. Pseudo colors are used for better

visualization. Brown color is assigned to multi-year ice, green color to older

ice, cyan color to new forming ice and blue color to water. The training samples 3
used to determine the parameters of the Gabor filters are within windows of size

64 by 64 pixels with the upper left corner located at row 293 and column 374 for

multi-year ice, row 27 and column 128 for older ice, and row 231 and column 103

for new forming ice. Water has least prominent spatial variations compared with I

the ice and no filter was designed for it. Since the FFT operation on each 3
training sample reveals the relative spectral distributions within the sample

only and no information for different ices can be extracted from it, a 3
coefficient is attached to each filter as a variable to be adjusted. The factor

1/4rXo2 in equation (7) is ignored to simplify the problem. These filter 3
I
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U coefficients were determined during segmentation trials to produce the optimum

3 results. The image texture of these ices does not possess any directional

characteristics. Four filters are chosen for each kind of ice to cover the

3 harmonic spatial variations in four directions shown in Fig. 2 and 3, other

parameters being identical. In the segmentation process, the sum of four

I filtered image pixel magnitudes from filters of each kind of ice are compared.

Each pixel is assigned to the ice category whose filters produced the largest

sum. A threshold level of this sum is located in the process to separate ices

3 and water. Although these ices have quite distinguishable appearances on the

image, their spectral distributions are sufficiently close to make the decision

3 on the filter parameters non-trivial. Table I lists the filters used to obtain

Fig. 7. Fig. 8 shows the segmented images using one of each of the four filters.

Fig. 9 shows the segmented image using two filters with harmonic spatial

3 variations in the vertical and horizontal directions. As these textures have

no preferred directional characteristics, segmentation using only one filter in

3 a particular direction results in an image which separates the different textural

regions quite well except that the filter imposes an emphasis on one direction.

With two perpendicular filters, the directional emphasis disappears and the

3 result is a good substitute for the one obtained with the four filters. The

coefficients of these filters are the same and the threshold levels separating

3 the ices and the water in Fig. 8 and Fig. 9 are respectively one quarter and one

half that used to obtain Fig.7. For comparison, the image of Fig. 6 was also

3 segmented using the co-occurrence matrix approach and the result is shown in Fig.

10. The same pseudo colors are assigned to the three kinds of ices and water.

The red color pixels indicate those locations where no decision could be reached

in the classification process. The details of the formulation of the problem

* 23
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Table I 3

multi-year ice older ice new forming ice U
filter coefficient 1.0 0.8 0.58 1
center frequency 0.0375 0.0469 0.0297

bandwidth 1.9 0.6 0.9 5
spatial harmonic variation direction angle(same for all three)

e- - 0 , i450, 900 1
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I and the steps used in the discrimination process can be found elsewhere[19,20].

m The components of the textural features are the averaged values in the four

directions(vertical, horizontal, upper right and lower left, upper left and lower

3 right) of the quantities defined in the co-occurrence method as uniformity,

correlation, contrast, and inverse difference moment. The discrimination

3 functions used in the classification process are determined from the data samples

in the training windows of the image as listed in the Table II. The segmentation

is accomplished by a pixel classification process, starting from the upper left

3 corner of the image, and using a window of 13 by 13 pixels. The pixel data

within the window were used to evaluate the feature components as the argument

3 for the discrimination function to determine the center pixel's classification.

Then the window is shifted toward the right by one position to determine the next

pixel's classification. After finishing the whole row of pixels, the same

process is continued on the next row with the window shifted downward one pixel.

Six pixels along the periphery of the image can not be classified. The size of

3 the window was chosen to be small enough to contain the data necessary to

accurately depict the texture characteristics of its center and at the same time

3 large e.iough to provide reliable statistics. A smaller window size is preferred

as it reduces the required computational time. In this case the window size of

13 by 13 pixels was a reasonable compromise.

3 Comparing these two segmentation results, one concludes that the co-

occurrence matrix approach preserves finer texture detail than the approach based

5 on filtering with Gabor functions. But the required computations make it less

efficient if faster segmentation is desired. The image shown in Fig. 6 is only

a tiny portion of a typical SAR image of an arctic ice area. Although it may

5 have missed revealing the small scale variations of the ice compositions, images
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Table II

category upper left corner pixel window size I
column # row # column width row depth 3

water 176 378 20 23

222 376 20 23 3
" 480 167 32 28

" 439 225 16 16 i
" 249 359 29 26

new forming ice 134 263 45 45

" 356 104 31 31 i

129 372 32 32

" 123 138 53 38

4 368 58 27 24

older ice 150 218 31 32 1
" 44 73 24 24 3

480 1 26 26

" 294 383 23 23 i

multi-year ice 427 343 24 20

387 140 31 16 1
" 82 150 16 16 3

193 82 29 28

" 2 437 33 43 3
" 9 1 28 39

28 346 27 67 1

I
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3 segmented by Gabor filters do portray correctly the overall location distribution

of different kinds of ice texture in this image. This information provides

adequate data to establish ice classification, ice concentration and ice movement

3 which are needed, preferably in real-time, for decisions to be made in year-

round arctic operations[22].

3 The computational time involved in producing the image of Fig. 10, using

an optimized code on a typical mini-computer of the VAX 11/780 class, was

respectively 1.4, 4.7 and 2.6 times that expended on images in Fig. 7, 8, and

3 9 with no code optimization.

As mentioned earlier there is no ground truth available for the image in

question. Training samples used to determine the discriminant functions in the

co-occurrence matrix approach and the filter parameters in the localized

filtering approach were picked within the image itself through intuitive

judgement. It is easier to select training samples which are homogeneous in

textural appearance for the co-occurrence matrix approach since the sample's size

3 and shape can be varied. For the localized filtering approach, using a FFT to

find the spectral distribution, the training sample's size has to be a power of

3 two and square in shape. The larger the size the more accurately the parameters

can be estimated. A size of 64 by 64 pixels was chosen in this study. It is

difficult to find a homogeneous region of the same texture at that size in the

3 image for every kind of ice type. As far as reducing the processing time is

concerned, it is not likely that there can be much improvement in the co-

3 occurrence matrix approach. But for the localized filtering approach,

significant improvements in computational time seem feasible if the FFT can be

performed with larger dimensions and if all the proper filters chosen have

3 smaller spatial extent to reduce the size of the area which has to be overlapped
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in the processing.

Concluding Remarks and Discussions m

Spatial filtering using 2D Gabor functions is a new approach to the study

of texture analysis and segmentation in images. The idea originated in

biological vision research and the observation that some of the lower order Gabor

functions happen to be the most appropriate mathematical model for describing

the 2D receptive field profiles of simple cells in mammalian visual cortex. The

Gabor functions posses a unique property of achieving the optimum joint

resolution in both the spatial and spectral domains. This fact may be the reason

why these functions represent so well the performance of the biological visual

systems in optimally sensing and locating objects of different attributes in the

visual field. The Gabor functions constitute a complete mathematical set in a

combined frequency-position space for image decomposition. Although in general

the latter idea may not have practical consequences, some modifications or I
simplifications of it will have vast potential as a mathematical tool in studies

of pattern recognition and machine vision. Textural properties carry useful

information in human interpretation of imagery data. Textural analysis involving

2D Gabor functions seems to be a proper approach since it incorporates the

physiological knowledge of vision in the formulation of the problem. I
In this paper, 2D Gabor functions were used as the spatial filters for i

the image segmentation based on texture differences. The images under study are

assumed to be composed of segments. Each of them has a textural structure

belonging to one of a few different kinds. A 2D Gabor function is chosen as

the filter to appropriately match the spatial frequency and directional m

bandwidths of each kind of texture. Convolution of the filter with the image
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I mgenerates a filtered image of complex magnitude. The variations of the complex

magnitude indicates with the best possible spatial accuracy the corresponding

textural component's relative strength as a function of location. Segmentation

is attained by assigning each pixel to the kind of texture whose filter generates

the strongest response at that position. This idea is applied to SAR images of

m the open ocean surfaces and arctic ice fields. Results obtained are highly

promising. Clearly, this technique can be applicable to any image for which

segmentation by computer processing, based on textural differences, is desired.

3 Computationally this approach to image segmentation permits fast implementation

since the convolution involved can be carried out via Fast Fourier

m Transform(FFT).

I'
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