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ABSTRACT. Due to the large number of entities and processes that must be represented, combat
models at the theater level in the Army today are expected value models. An expected value model is
deterministic - it uses the expected value of random variables as inputs and generally uses some sort
of expected value within the internal processes. The use of expected value models creates problems in
the proper interpretation of their output and ways for representing the uncertainty associated with
the model input and processes.

This paper suggests a method for handling uncertainty in the input data sets (which usually
contain elements that are specific realizations of random processes) in situations where the outcomes
of interest can be expressed in binary variables (e.g., "success" or "failure"). A theater nuclear
exchange is used as an example, having many different possible outcomes determined by random
processes. A method is provided for describing the space of all possible outcomes of the exchange and
partitioning the space into sets of outcome'r which, if used as input into a theater-level conventional
simulation, are expected to lead to significantly different results. A method for sampling the most
probable outcome from each set is also explained.

This approach permits the construction of an experimental plan that requires a small number of
model runs, each run expected to provide a significantly different result. From these runs an
estimate of the variability in the theater combat resulting from uncertainty in the input data (in
this case, the impact of a nuclear exchange) can be made.

THE RESEARCH SPONSOR was the Director, US Aimy Concepts Analysis Agency (CAA).

THE OBJECTIVE OF THE RESEARCH was to develop a method for summarizing a stochastic
process as input into a deterministic expected value model.

THE MAIN ASSUMPTIONS used in this research were:

(1) The stochastic process (outcome of a nuclear exchange) can be summarized 35 sets of binary
variables, each variable indicating the defeat or failure to defeat a unit.

(2) It is possible to identify significantly different outcomes of a nuclear exchange in terms of
sets of defeated and nondefeated units.

(3) The probabilities of defeating units can be evaluated independently.

THE BASIC APPROACH used in this research was to use the probability that a targetable subunit
(such as a company or battery) can be defeated (which can be obtained from the Theater Analytic
Nuclear (TACNUC) Model under development at CAA) to determine the probability that units
(such as divisions) represented in the theater-level ex'pected value model can be defeated. The space
of all possible outcomes of the exchange is described in terms of binary variables representing the
defeat or failure to defeat a unit. The outcome space can be partitioned into sets of outcomes which,
if used as input into a theater-level conventional simulation, will lead to significantly different
results. From these partitions an experimental plait is constructed that identifies a small number of
outcome realizations of the exchange to use as input to the expected value model, running the model
once for each input.

v
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THE PRINCIPAL FINDING of the research is that is is possible to summarize a stochastic process

such as the outcome of a theater nuclear exchange as input to a deterministic conventional m(olel of

battle at the theater level.

THE RESEARCH WAS PERFORMED BY MAI Mark A. Youngren, Requirements Directorate,

CAA.

COMMENTS AND QUESTIONS may be sent to the Director, US Army Concepts Analysis Agency,

ATTN: CSCA-RQN, 8120 Woodmont Avenue, Bethesda, MD 20814-2797.
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HANDLING UNCERTAINTY IN INPUT TO EXPECTED VALUE MODELS

Introduction

Modeling large systems and processes such as combat at the theater level is difficult. The

number of possible units and interactions has driven most modelers to use an expected value

approach. An expected value model uses the expected value of random variables as inputs and

generally uses some sort of expected value within the internal processes. The models are

deterministic; that is, they will yield only one set of outputs for any given set of inputs. The use of

expected value models creates problems in the proper interpretation of their output and ways for

representing the uncertainty associated with the model input and processes. In a recent discussion

paper, Stockton [19891 provided the following example:

"A Red unit will go northwest or northeast based on whether his strength at a given point is

above or below some threshold value. Let's say that the real-world probability of being above the

threshold is 0.6 and, if above, he will go northwest to face a very strong Blue force armed with

Supertank. If he goes northeast (probability 0.4), he faces a relatively weaker force, armed with bows

and arrows. With several replications of a stochastic model, expected losses will consider both

possibilities and will develop expenditures of tank ammo and arrows; with an expected value model,

he will always go toward the stronger force, and no expenditures of arrows will be observed."

Stockton correctly points out that the results of an expected value model, even when provided

expected value inputs, are not the expected value of the output. He suggests that the output of such

a model may be a "most likely value," using his example. However, we can offer another example

which illustrates that expected value models also fail to provide a "most likely" result.

Suppose in the example provided above that the Red force has a visual sensor that can see all of

the Blue forces traveling together (with probability 1) if the skies are clear, and cannot see any of

the Blue force if the skies are cloudy. To simplify, suppose that the skies are either clear or cloudy,

and the probability that the skies are clear is 0.6. How many Blue units are detected by the Red

force? The expected value is 0.6 . (100 percent of the Blue units) + 0.4 . (0 percent of the Blue

units) = 60 percent of the Blue units. Expected value models will normally apply expected values,
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either as inputs to the model (60 percent would be an expected value for the probability of target

acquisition) or internal to the processes. Note, however, that acquiring 60 percent of the Blue force is

the least likely outcome, as it occurs with probability 0! Even if we chose the most likely result of

100 percent detection (which is not the way that expected value models generally handle continuous

variables as opposed to choices), we run into problems.

Now let us combine the two examples. It is reasonable to suppose that if the Red force can see

the Blue force, or even a large percentage of the force, it will notice that one force is armed with

Supertank and the other with bows and arrows. Thus, given detection, it will engage the weaker

(bows and arrows) force. If we have the model take the most likely values in the two examples, it

will (1) detect 100 percent of the Blue force and (2) go northwest to engage the Blue force. Each

result is by itself most likely, yet the result is the most unlikely. Even if one modeled the Red force

detection at 60 percent, the combination of a 60 percent detection (still sufficient to distinguish

between Supertank and bows and arrows) and moving northwest is unlikely.

Admittedly, these examples are simplistic. Yet it is true that expected value models not only fail

to yield the expected value of the output, they also fail to yield the most likely output. What, then,

is the probability associated with the output of an expected value model? The answer to that

question, unfortunately, is "nobody knows." This is why expected value models can yield

counterintuitive, contradictory, and/or nonsensical results when initially tested. The usual approach

when this occurs is to adjust input data, processes, thresholds, etc. until the model yields

"reasonable" results. Hopefully this yields a model that will provide suitably realistic results with a

different input data set, but there are no guarantees. We unquestionably have no way of determining

the likelihood of any given output from a complex expected value model.

Sources of Uncertainiy

There are two areas of uncertainty properly associated with an expected value model that must

be handled: uncertainty in the model input, and uncertainty in the model processes.

Unfortunately, a "blessed" input data set is often regarded as certain - if we have approval for a

set of numbers to be used in the study, then those numbers are the set to use to support our

analysis. Excursions from the base data set for purposes of analysis will vary only a small number of

data items by design; the others remain fixed. Some input data values are truly fixed; the air

distance from Bremen to Munich is an example. Other values may be fixed by scenario; for example,

2
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the daylight hours vary by latitude and time of year; a-scenario will fix a time and place that will in

turn determine the al propriate value for daylight. Unfortunately, these scenario-driven items are

often fixed arbitrarily, even when they may have an impact upon the analysis. For example, if a

force is particularly vulnerable to detection by a sensor that requires daylight, you can get different

results in a summer versus winter scenario (which will in turn be different than that obtained using

an arbitrary number like 8 hours or 12 hours). This difference may even be apparent in studies that

seemingly are not associated with detection -- ammo rates could be significantly different, for

example. This is a simple, obvious example; many others, not so easily identified, exist. We must

regard the input data set as a single realization of many stochastic variables. It is not always clear

which reaization to select for use -- averages do not always exist and may not be appropriate.

Furthermore, correlatkins exist between sets of these data inputs; for example., selecting the most

likely or expected values of cloud cover and rain independently may yield the combination of sunny

with 1 inch of rain! Note that this problem exists with stochastic (Monte Carlo) models -- they also

require a fixed data set that is no' varied from run to run.

Uncerta:nty also exists in th: model procsses. Stochastic models generally handle this

uncertainty through random number draws, although they are also subject to problems associated

with correlations (separate random number draws generally require independence) and fixed values

such as thresholds. The examples provided above illustrate some of the problems associated with

handling process and input uncertainty within an expected value model.

Addressing Uncertainty in Expected Value Models

At this point, it would be nice to be able to make a statement like "the solution to this problem

is easy; one simply needs to... ." Unfortunately, there are no simple, universal solutions to the

problems associated with addressing uncertainty in expected value models. It is clear, however, that

any methods that might alleviate the problem must deal with the uncertainty associated with the

data input as well as the uncertainty associated with the model processes. Furthermore, the

uncertainty in the input data justifies the following assertion: executing an expected value model only

once for a given data set does not provide a meaningful result. If an expected value model is to be

used to support analysis, the user must be prepared to execute multiple runs, varying in some

meaningful fashion the input data and/or the model processes, in order to establish some measure of

the uncertainty associated with the output of such a model.

3
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Ideally, such an approach will minirnize the number of runs required (because running a large

expected value model can be very costly), yet provide a significantly different resilt from each run,

thus increasing the variance across all outputs. We want to be able to describe the probability that

the conditions represented in the input for each run (or conditions similar to those represented) will

occur.

We have developed an approach to handling input uncertainty in theater-level expected value

models in situations when the outcomes of interest can be expressed in terms of binary variables;

i.e., one can describe all events as "yes" or "no," "on" or "off," etc, The particular application that

will be developed deals with a theater-level tactical nuclear exchange.

Several models of conventional warfare exist at the theater level. The model used at CAA is

called the Force Evaluation Model (FORCEM). Like most theater-level models and scenarios,

FORCEM is a low resolution expected value model, representing combat forces at the division and

higher level and time in 12-hour steps. The Nuclear Effects Model Embedded Stochastically in

Simulation (NEMESIS) research at CAA (Youngren [1989]) documents an analytic model for

describing the possible outcomes of a theater-level tactical nuclear exchange. The methodology

described in this paper arose from the need to summarize the stochastic outcomes of the theater-level

exchange as input to FORCEM.

The Scenario

In a theater-level battle where nuclear weapons may be employed, the commander of the forces

on a side may have an overall objective (such as stabilizing the forward line of own troops (FLOT)

in the defense or achieving a breakthrough in the offense) that will necessitate the use of nuclear

weapons. In order to meet this objective, the commander will specify the defeal criteria against each

unit -- that is, the necessary degree of damage to be achieved against each unit to meet his objective.

The defeat criteria will differ from unit to unit depending upon the unit mission, the posture, the

equipment, etc. The criteria applied to larger units (such as divisions) will frequently focus fires on

critical subordinate units. For example, the defeat criteria for a unit might be achieving a latent

lethal dose (about 450 rad) against at least 50 percent of the personnel in the unit. The defeat

criteria for a particular division might be to defeat at least 50 percent of the infantry units or at

least 40 percent of the armor units in the division.

4
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Although the effects of a tactical nuclear laydown at the theater perspective are normally

described in terms of defeating divisions, tactical nuclear weapons within the theater are targeted

against forces at the company and battery level. The term subunit (also target or target subunit)

used in this paper denotes a combat organization (such as a company) that would be targeted by a

nuclear weapon. The size of the subunit will depend both upon the capabilities of the weapon system

used to engage the subunit and the targeting doctrine of the firer. For example, companies may be

targeted close to the FLOT using small, artillery-fired weapons, while battalions may be targeted

deep using missiles or air-delivered weapons. For purposes of exposition, we will refer to the low-

resolution combat organizations represented in theater models such as FORCEM (usually divisions,

although other forces may be represented as well) as units.

There are very many targetable subunits in a typical theater scenario, on the order of 104. As a

result, there are 2104 possible outcomes that can occur in terms of the defeat or failure to defeat each

subunit. Even if we look only at the defeat or failure to defeat the low resolution aggregate units

represented in our theater model (usually several hundred), we still have on the order of 210 2

possible outcomes. Even with sophisticated techniques and considerable confounding, classical

experimental design approaches require at least one run per variable. The large amount of time and

effort required to execute even a simple run of a typical theater-level expected value model prohibit.

more than a few model runs for any study. Classical experimental designs therefore obviously cannot

be applied. Our objective is to construct a plan that minimizes the number of different input data

sets (thus minimizing the number of theater-level model runs) yet fully reflects the range of possible

outcomes of the theater nuclear exchange.

A Method for Addressing Input Uncertainty in Expected Value Models

Describing the outcome of the th-ater-level nuclear exchange on each unit in terms of defeat

criteria allows us to define a binary variable Bi, where Bi = 1 if the unit is defeated; 0 otherwise.

Given the assumption that the outcome is independent between units, the outcome of any exchange

is simply a set of O's and l's with the probability that any Bi 1 equal to Pdcjeat(i), the

probability that unit i is defeated, i = 1, ... , m. Methods for easily calculating the probability of

defeat for each targetable subunit are given in Youngren [1989]. Given m units, there are 2 m possible

outcomes. Clearly, if we define defeat criteria in terms of total numbers of potential nuclear targets

(on the order of 104), there are too many outcomes to enumerate.

5
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At the theater level, however, defeat criteria can usually be expressed in terms of divisions and a

limited number of other high value targets -- on the order of at most several hundred across a

theater. Each division, in turn, will have its defeat criteria established in terms of units subordinate

to that division. For example, suppose that a division j has 10 battalions of infantry (engaged as

battalions), 24 armored companies (engaged as companies), and 20 batteries of artillery. The defeat

criteria for this division may be 50 percent of the infantry, 40 percent of the armor, or 60 percent of

both, with a separate criteria for artillery (divisional and nondivisional). In terms of maneuver

subunits, 5 infantry battalions or 10 armor companies must be defeated in order to defeat the
(10±24)!

division. There are p (10-p)! q! (24-q)! ways of choosing p infantry battalions and q armored

battalions for defeat, and all combinations where p > 5, q _> 10, or ( p + q ) _ 60 percent of the

subunit (which can be worked out for specific values of p and q ) lead to the defeat of this division.

If we assume that each subunit i, i = 1, ... , 34 has a unique probability of defeat pde/rat(i), we

probably do not wish to enumerate all sets of subunits where the division is defeated and compute

the joint probability (which will be the product of PdeJtt(i) for the subunits i defeated and

(1 -pde/et(i)) for the subunits that are not). Fortunately, this situation is readily amenable to

Monte Carlo solutions. We simply need to draw 34 binary pseudorandom numbers Bi such that each

number Bi = 1 with probability pdcfeat(/), and let a binary variable, say D,,, equal 1 il' the set of

numbers Bi drawn correspond to division j being defeated, 0 otherwise. If we perform N replications

of this experiment, we can estimate P[ division defeated ] = IL DU,. If we do this for each division

j, then we have a probability pddea•(dciv j) P[ division j defeated ] for j = 1, ... , ndiv, where ndiv

- the number of divisions.

At the division level, we can define a binary variable Oj to define the outcome of the nuclear

exchange with respect to division j, j = 1, ... , ndiv. 0 = I with probability Pdce/at(div j) if

division j is defeated; 0 otherwise.

Across the theater, the theater commander will desire at least a certain percentage of units be

defeated in order for the employment of nuclear weapons to be considered effective. We can define a

binary function of the random variables 0, 40( Q ), such that 0( Q ) = 1 if the commander's

objective is met; 0 otherwise. Clearly 0k( Q ) is nondecreasing in 0. The function 0 may be regarded

as identical to a structure function of a coherent system in reliability theory (Barlow & Proschan

(19811); thus we can use results from coherent structure theory in our analysis of the nuclear

exchange issue.

6
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For example, if any k out of m divisions must be defeated in order for the commander's

objective to be met,

0( Qo ) = ( o1 0 2 ... o k I ( o1 0 2 ... o k ., o k+ • ) 11 " [ ( o ,,,.+ l ... o ,,),

for all possible subsets of size k from the m units, 1 < k < m, where

Furthermore, we can bound P[ 0( Q ) = 1 by (Barlow & Proschan [1981] p. 31):

max -IT P[Oj1] < P[ 1Q)-]_ min JI1 P[Oi=1],

1 < r < npath iEPr 1< s < ncut aEA'

where P, denotes one of the npath k ) possible min path sets (in this case, a min path set is

any set of k units), K. denotes one of the ncut -( m possible min cut sets (in this case, a(m-k+1

min cut set is any set of m-k+1 units), and XL X = 1 - T7"(1-Xi). If we let po(i)
I i

P[ Oi = 1 ], and number the units such that po(1) < po(2) < ... po(m), then
m m-k+"max IT] P[0-1 ]i~ -- IF p.(i) ; mrin IL1 P[0-1 Oi --- 1 .] po-)

1 < r < npath iEPr i=m-k +i 1 < s <nCut iEK4i p(I)

This example of a k out on m defeat criteria shows how we can estimate (through bounds) tile

probability that the commander's objective may be met. Alternatively, P[ 0( Q ) = 1 ] can be

estimated using the same Monte Carlo technique used to find P[ O = 1 ] for each division j.

Partitioning the Space of All Possible Outcomes

At the theater level with a total of nt division-sized and high value targets, if we examine the

nuclear exchange outcome O0 for each division (or equivalent high-value target), there are 2"'

possible outcomes. It may be the case that it makes a difference in the battle that follows the

nuclear exchange which units are defeated or targets destroyed in the exchange. Or, more simply, it

may be how many units are defeated and targets destroyed across the theater whichi makes a

difference.

It is possible to define sets of outcomes of the nuclear exchange that, given our best judgment.,

we expect to have a significantly different effect on any subsequent theater-level battle (if all

outcomes have approximately the same effect, then there is one set consisting of all outcomes). WVe

choose these sets by selecting partitions dividing the sample space (space of all possible outcomes)

into strata such that the following properties are met:

7
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(1) All events within a given stratum will yield approximately the same overall theater-level

outcome. As a result of this assumption, we regard all events within any given stratum as

exchangeable.

(2) Any set of n events from n different strata are expected to yield n different theater-level

outcomes. Thus, any pair of events from two different strata are not exchangeable.

In practice, all events within a stratum will not be truly exchangeable, and the two events to

either "side" of any partition will likely lead to similar theater-level outcomes. Nevertheless, it is

possible to conceive of outcome sets with different results, and we assume for all of the development

below that these two properties are obeyed.

For example, suppose that there are 20 opposing divisions in a sector of combat. Our best

judgment, given the tactical and operational situation, is that the defeat of at least 7 divisions out of

the 20 will be required to avoid loss of territory (stabilize the FLOT--which may be the

commander's objective). However, if 14 or more divisions are defeated, an opportunity occurs not

merely to stabilize the FLOT but also to conduct a successful counterattack. In this case, if O, 1

if division i is defeated, i - 1, ... , 20, there are 220 possible outcomes. We can partition the sample

space of possible outcomes into the I,( k ) outcomes where 6 or fewer divisions are defeated, the
='-0

20 outcomes where 7 or more but less than 14 divisions are defeated, and the ( 20 )
outcomes where 14 or more divisions are defeated.

The example given above involved two partitions (three strata); the number of partitions

required depends on the number of significantly different theater-level outcomes that need to be

represented. Selecting the partitions will require experienced judgment and possibly some

experimentation with the theater model. If one is unsure about how many partitions to select, the

number of strata should equal the maximum number of theater model runs you can afford.

Stratified Sampling from the Sample Space

Once the sample space (space of all possible outcomes) has been identified, it is possible to

perform a stratified sampling from the sample space, each sample from the outcome of the nuclear

exchange model forming an input vector to the theater-level conventional model. From each stratum

created by our partitions, a single realization can be sampled. A random sampling approach can be

8
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used; however, since the actual likelihood of all of the events within a stratum may vary widely, we

recommend using a fixed sampling scheme. in particular sampling the mode from each partition.

Given the assumption of exchangeability between events within a stratum, any choice will have a

roughly equivalent effect on the theater-level outcome, so any choice is valid. Using the mode allows

us to compensate for the fact that the events within the stratum are only approximately

exchangeable. A modal (most likely) outcome will also form a plausible input suitable for

subsequent analysis. The theater-level conventional model, such as FORCEM, will be run ns times

for each of the nas strata created from ns-1 partitions, using the outcome selected from each

stratum as an input. If the second assumption that we made in selecting the partitions is met, the ns

battles simulated in FORCEM using outcomes from the ns different strata should yield noticeably

different revults, The response surface estimated using these ns FORCEM runs should provide a

better representation of the variability possible in theater-level combat where nuclear weapons are

employed than a random selection of ns outcomes from the 2nt outcomes possible, where ni is the

number of targetable subunits in the theater.

The question naturally arises, "what if I am wrong in selecting the partitions?" Partitioning is a

judgemental process; more of an art than a science. The situation in which this technique is to be

used is one where many runs of the deterministic model are not possible; therefore,. it is not possible

to sample the results of many outputs given many different input data sets describing different

nuclear exchange outcomes. As a result, we simply do our best to try and force realizations from

areas of the space of all possible outcomes where we think that the theater-level outcome will be

different. The impact of being wrong is not much different than being right. We still have another

point in the theater-level outcome space that you are sampling. The fact that the nuclear exchange

outcome did not lead to the theater-level outcome expected should be of great interest to the

analysis. Either the theater model has deficiencies in correctly representing the impact of the

exchange, or the theater situation is (surprisingly) robust to the exchange. If the theater outcome

that you tried to create (by selecting the nuciear exchange outcome stratum) is still of interest,

another run could be attempted (if time and resources permit), sampling from a more extreme point

within the stratum.

Selecting the Most Likely Outcome (Mode) From Each Stratum

Selecting the mode from each stratum is simple and not computationally intensive. The

partitions defining the stratum will establish the outcome vectors 0 that fall within each stratum.

Recall that po(J) = P[ Oj =_ 1 1, and let qo(j) -- 1 p(j). Order the po(j) and qo(j)'s together

9
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from the largest to the smallest value. To select the mode within each partition, go from the first

value (po(j) or qo(j)) and select the outcome Oj 1 for each po(j) and the outcome Oj = 0 for

each qo(J). Continue until each target j has an outcome assigned, making sure to assign only one

outcome to each target. It will be necessary to "skip" over the higher probability (p0 (j) or qo(j)) for

some targets j in order to have a total set of outcomes fall within the partition.

This procedure can most easily be understood through an example. Suppose we have five

divisional units with the following probabilities of defeat (P( Oj = 11]): po(1) = 0.2, po( 2 ) = 0.25,

p(3) -- po( 4 ) = 0.4, p.(5) = 0.6. We also have the following strata defined in terms of number of

units defeated: { 0, 1 }, { 2, 3, 4 }, and { 5 ). We order our probabilities as follows: qo(1) 0.8 >

qo(2) = 0.75 > po(5) qo(3) = qo(4) = 0.6 > po(3) = po(4) = qo(5) = 0.4 > po( 2 ) 0.25 >

po(1) = 0.2.

The first stratum must have zero or one unit defeated. Thus our mode for the first stratum "s

qo(1).qo(2).po(5)'q 0 (3)'qo(4) (i.e., outcomes O1=0, 02=0, O51, -03=0, 04=0), with a

probability equal to (0.8)(0.75)(0.6)3 = 0.1296. The second stratum must have two, three, or four

units defeated and the mode is qo(1).qo(2).po(5).qo(3).po(4), with a probability equal to

(0.8)(0.75)(0.6)2(0.4) = 0.0864. In this case, we "skipped" outcome 04=0 with probability 0.6 and

selected outcome ' 4=.1 with probability 0.4 so that we would have at least 2 units defeated for this

strata. Note that an equally likely selection would be qo(1)'qo(2).po(5)'q 0 (4).po(3). The third

stratum must have five units defeated and the mode is p0(5).po(3),p 0 (4).p 0 (2).p 0 (l), with a

probability equal to (0.6)(0.4)2(0.25)(0.2) = 0.0048.

Interpreting the Results of Conventional Runs Using Stratified Inputs

If we wish to obtain an output measure from the theater-level conventional model that we wish

to average across all possible outcomes (which is the sort of thing we normally do in our simulation

models), we need to construct a weighted average from the ns runs conducted using the theater

model. The weight assigned to the output measure from each run k would be the total likelihood of

all events within stratum k, k = 1, ... , ns. If it is possible to enumerate all of the possible outcomes

(nt sufficiently small), this likelihood can be computed directly. If nt is too large, we can conduct a

simple Monte Carlo estimation of the probability Pk that an event chosen at random falls within

stratum k, k = 1, ..- , ns. This is the straightforward process of estimating the vector { Pi,..., Pns )

from a multinomial distribution.

10
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We can return to the previous example to illustrate an exact computation of the likelihood of all

events within a stratum. Recall that the strata were defined in terms of number of units defeated:

{ 0, 1 }, { 2, 3, 4 }, and { 5. }. The probability that 0 units are defeated is P{ 0 } =

q0 (1).q•(2).qo(3).qo(4).qo(5) = 0.0864. There are ( 5 ) = 5 possible outcomes leading to 1 unit

destroyed; they are:
po(1)q.q(2)q.q(3)-.qo(4).q,,(5), q.(1)p.p(2)-.q(3)q.o(4).q-(5), qo(1)q.q(2).po(3)q.q(4).qo,(5),

qo(1)q.q(2)q.q(3).po(4) q.q(5), q.(1) .qo(2)q.o(3) q.q(4)p. p(5)

with a total probability of 0.0216+0.0288+0.0576+0.0576+0.1296 = 0.2952. Thus the total

likelihood of the events in the first stratum is 0.0864 + 0.2952 = 0.3816.

The calculations for P{2}, P{3}, and P{4) are messy (more combinations) but straightforward.

The likelihoods are P{2) = 0.3612, P{3} = 0.2012, and P{4) = 0.0512, for a total likelihood of

0.6136. The likelihood of the third stratum is P{5} = 0.0048.

Adjustments

In practice, several cases may arise where it is desirable to make some adjustments to the basic

model. We describe some of them here.

a. Likelihood of any realization within a strata being too small. In some cases, the total

likelihood of any realization from a particular strata may be too small to justify further

consideration. An example of this is the third strata ({5}) discussed in the previous paragraph. A

probability of less than 0.01 is likely small enough to ignore in our theater level modeling (this

threshold is, of course, a matter of judgment) In cases such as this, we may wish to simply run the

conventional theater model with the modes from the more likely (in the example, the first and

second) strata.

b. The modes from two strata are outcomes that are adjacent to one another. It is possible that

the modes from two strata are at the boundary of their respective strata, next to the same partition,

and thus adjacent to one another in terms of an ordered outcome space. An example of this is also

provided in the previous paragraph, where the modes from the first two strata are adjacent to one

another in terms of units defeated (one unit defeated in the first stratum and two in the second). In

order to reinforce-our second assumption (different results from different strata), we may wish to

make a different selection from one stratum or the other in order to avoid similar results. Two

possible adjustments come to mind.

11



CAA-RP-89-5

(1) The first adjustment is to select the next highest likelihood from within either stratum that

does not provide the same number of units defeated as does the mode. In our example, we would

choose either an outcome of zero units defeated from the first stratum or three or four units defeated

from the second stratum. The most likely outcome where zero units are defeated is

qo(1).qo(2).qo(3).qo(4).qo(5) = 0.0864. The most likely outcome where three or four units are

defeated is qo(1).qo(2).po(5).po(3).p 0 (4) = 0.0576. Since 0.0864 > 0.0576, we could choose the

outcome of zero units defeated from the first stratum and keep the outcome we previously computed

(two units defeated) for the second stratum.

(2) The second possible adjustment is to define partitions such that there are "gaps" between

the strata. In our previous example, we might define significantly different outcomes coming from

zero or one units defeated, three or four defeated, and five defeated, where the outcome of two units

defeated may be an ambiguous case leading to either the same result as { 0, 1 } or { 3, 4 ) defeated

units. This approach may be more realistic, as the "transitional cases" at the boundaries of the

exhaustive strata may lead to theater outcomes that are not as clear cut as those nearer the center of

any particular stratum. The only drawback to this approach is the fact that the total likelihood of

drawing results from any of the strata will not equal one.

Repeated Exchanges

Until now, we have assumed that there is essentially only one nuclear exchange of interest. In

other words, we have assumed that the nuclear weapons will be employed during a relatively small

timeframe within the overall theater battle, and that the theater battle will be conventional

thereafter (at least for the duration of the conflict to be simulated), However, it is possible that a

scenario may call for repeated exchanges of nuclear weapons. We can handle each exchange by

defining the outcomes through binary variables and stratifying the outcome space as explained

above. However, constructing an experimental plan with a reasonable number of runs of the theater

model becomes difficult. The difficulty rises from the total number of possible combinations of

individual exchange outcomes, even if only a few strata are chosen for each exchange. For example,

only three exchanges vith only three significantly different outcomes (strata) predicted per exchange

will lead to 33 = 27 different possible outcomes after all three exchanges. It is probably too

expensive to execute this many runs of a theater-level simulation model.

To handle such a situation, we begin by determining the probability of defeating each theater-

level unit and partitioning the set of all possible outcomes as explained previously WM can diagram
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the 27 possible outcomes for our example as shown below in Figure 1. If 27 runs are too many to

execute on our theater level simulation, then we must select a smaller subset of the 27 outcomes to

actually use. The question is, of course, which subset do we pick? A stochastic simulation will

randomly select paths through the "tree" (Figure 1) by selecting individual exchange outcomes

randomly according to their likelihoods. When a stochastic simulation is run multiple times, the

paths with a high probability of occurrence will be selected multiple times and the paths with a low

probability of occurrence will be selected infrequently if at all. The result is a weighted set of

outcomes that can be used to estimate the distribution of the actual outcome after three exchanges.

In our case, we cannot even afford to run the model once for each possible outcome, much less

multiple times. However, we have the same objective of trying to determine a set of outcomes

corresponding to particular paths that can be weighted to estimate the distribution of the actual

outcome after three exchanges.

Figure 1. Possible Outcomes from Three Exchanges with Three Strata Each

Following the example diagrammed in Figure 1, let us label the strata at each exchange as high

(H), medium (M), and low (L) corresponding to some exchange outcome along some measure (e.g.,

total units defeated). We can bound the outcome using the extreme choices at each decision point in

our tree; i.e., HHH for an upper bound and LLL for a lower bound. We can also choose an

intermediate outcome (MMM) in this case by choosing the intermediate result at each decision point

(note that there may not always be a clearly defined "middle"). Beyond this, we need some sort of

rationale for selecting particular outcomes out of the 27 possible. It is important to note that the

variables are nested. For example, the middle outcome from a second strike following a high

outcome from the first exchange (HM) will be different from the middle outcome from a second

strike following a low outcome from the first exchange (LM), because the force strengths surviving

the first exchange (and thus the subsequent theater battle before the second exchange) are

significantly different.

13
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Several approaches come to mind, both qualitative and quantitative. Qualitative approaches will

choose outcomes according to the strata; for example, alternating sequences such as HML, LMH, and

MLH could be chosen.

Quantitative approaches will look at the probability assigned to each stratum. For purposes of

illustration, assume that the probability for the outcomes ( H, M, L ) are ( .2, .5 .3 ) respectively,

and that the probability for H, M, and L are idendical for each of the three exchanges (in reality,

this would be unlikely but it suffices for illustration). We select our runs according to their

probabilities. For example, the most likely outcome will be MMM with probability (.5)3 - 0.125.

The next most likely are LMM, MLM, and MML with probability (.5)2(.3) = 0.075, etc. We can

concentrate on choosing the outcomes with the greatest likelihood (possibly in addition to the

bounds HUH and LLL).

Interpreting the uutput becomes more difficult when we run only a subset of all possible

outcome strata. In our standard experimental plan, we run all possible outcome strata and weight

the result with the probability associated with the strata. If we do not make any adjustments (such

as defining non-adjacent strata), the probabilities of a realization coming from a stratum will sum to

1. When we select a subset of outcome strata, the associated probabilities will not sum to 1. We

recommend normalizing the probabilities associated with the outcomes selected and proceeding

accordingly. An example should make this clear.

Repeated Exchanges - an Example

Suppose we have three exchanges with three significantly different outcomes (strata) H, M, L

with probabilities .2, .5, .3 respectively as stated previously. A possible selection scheme might be

the following.

(1) Select the upper and lower bounds HHIl and LLL. The associated probabilities are HHH _

(. 3=0.008 and LLL =:(.3)3 =0.027.

(2) Select the middle (qualitative) or modal (quantitative) outcome. In this case, they are the

same (MMM) with probability (.5)3 = 0.125.

(3) Select the next most likely outcomes LMM, MLM, and MML. The associated probabilities

are equal at (.5)'(.3) = 0.075. Alternatively, some type of alternating strata sequence could be used.
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This forms a subset of 6 outcomes out of the 27 possible. The total probability of a realization

coming from any of the 6 selected outcomes is 0.008 + 0.027 + 0.125 + (3)(0.075) = 0.385. The

normalized probabilities are therefore:

HHH = 0008. = 0.021

LLL = 0.027 = 0.070

MMM = 0.125 = 0.325

LMM, MLM, MML = 0.075 = 0.195.

This sums to 1.001 due to rounding error.

In this example we would execute six runs of the theater-level simulation model, selecting

realizations from the strata associated with each exchange as indicated above (for example, MLM

would select from the middle stratum for the first and third exchange, and the lower stratum in the

second). The theater-level model output associated with each realization selected can be weighted

with the normalized probability of occurrence.

Note that we only account for 38.5 percent of the possible outcomes in terms of probability. As

a result, our estimates made from only six runs will not be as good as those produced from a larger

subset from the 27 possible.

Averaging the Results

To continue our example, suppose that an outcome for some particular measure from a theater

conventional model such as FORCEM was 125 for a run using input from the first stratum, 75 for a

run from the second stratum, and 25 for a run from the third stratum. An average value for this

measure would be derived from weighting the output from a given run with the total probability of

any realization coming from within the stratum. In our example, we have (125)(.3816) +

(75)(.6136) 4- (25)(.0048) = 93.84. This value, along with the range of values produced by the three

different runs (summarized perhaps with a weighted variance or other statistic), should be much

more meaningful than the value obtained by running FORCEM only for some arbitrarily chosen

input set for the nuclear exchange outcome.

However, a word of caution is necessary. We started with the assumption that there is more

than one significantly different outcome in the theater context; in our example, there were three. A

single summary measure, such as the average, does not reflect this reality. Even a sample average

15



CAA-RP-89-5

and variance will not inform a decisionmaker about the possible outcomes along with their

associated probabilities. Since the total number of runs of the theater conventional model will be (by

necessity) small, we recommend reporting all of the results, accompanied perhaps with a summary

measure. In cases of tactical nuclear warfare, we are often concerned with relatively unlikely events

(such as the exchange itself) that nevertheless have a very significant impact. Averaging obscures

this fact and can lead a decisionmaker astray.

Summary

Using a deterministic, expected value approach to model a real-world situation such as theater-

level combat poses problems in selecting input data. A deterministic simulation demands a single

input data set for a model run, while the data may have to represent a process that is inherently

stochastic. An example is provided in this paper. The results of a tactical nuclear exchange within a

theater is inherently stochastic, driven by random events such as target acquisitions. An "average"

exchange outcome cannot properly be defined; an average fails to exist in subset selection problems

(for example, if 20 units out of 50 are acquired on ihe average, which 20 are to be selected as

acquired in the deterministic model?) Even where averages can be defined, they fail to reflect

important variations in possible outcomes that may make a difference between winning and losing

the war in a theater simulation.

Ideally, a theater-level stochastic model would be used to properly reflect uncertainties inherent

in the data and processes represented by the model. However, the current state of the art in

hardware and software only permit us (at present) to model combat at the theater in a

deterministic, low-resolution mode. Thus, we must reconcile the need to provide an input to these

deterministic mode!s with the reality of random outcomes.

If there are approximately I04 potential nuclear targets in a theater, there are 2104 possible

outcomes that can occur in terms of the defeat or failure to defeat each potential target. Even if we

look only at the defeat or failure to defeat the low resolution aggregate units represented in our

theater model, we still have on the order of 20 2 possible outcomes. A classical experimental design

approach that requires at least one run per variable obviously cannot be applied. The challenge,

then, is to construct a plan that minimizes the number of different input data sets yet fully reflects

the range of possible outcomes of the theater nuclear exchange.
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This paper outlines an approach to constructing such an experimental plan. We begin with the

, probability of defeating a potential nuclear target pdejfag(i) and determine from that the probability

of defeating the aggregate units represented in our theater model (such as divisions). We can

characterize all possible outcomes of the exchange as sets of binary variables, where ehli binary

variable reflects the defeat or failure to defeat each unit. We tht.- partition the outcome space into

strata such that outcomes from different strata lead to significantly different results in the theater

battle, and all significantly different outcomes are included in some stratum. Our experimental plan

consists of a nuclear exchange realization from each strata that corresponds to the most likely

outcome within that stratum. The theater-level model is run using the experimental plan to

determine the appropriate input data set to use to reflect the outcome of a theater nuclear exchange.

Directions for Future Research

The techniques outlined in this paper form only a start at trying to resolve the issue of how to

handle uncertainty in input to large, complex expected value models. They are presently limited to

input processes that can be summarized in a reasonable number of binary variables, where it is

possible to make a judgement about the type of expected value model output given sets of similar

input realizations. Nevertheless, it is a step in the right direction. At. present, it is not infrequent to

find studies based on a single model run per input scenario, without any estimate of the variability

possible in the results obtained.

Possible future ,esearch topics include extending the techniques to proceeses that can be

expressed in various states, the number of such states exceeding two, Better ways of estimating

partitions of the sample space may also be developed. A very realistic case in many theater scenarios

involves repeated realizations of random processes (in the context of the nuclear exchanges discussed

in the paper, this would imply many small weapon exchanges over a relativeiy long period of time).

At present, we have no satisfactory way of handling this situation. Robust experimental plans that

can provide meaningful results over a large numbei of repeated realizations will be be necessary to

model such scenarios.
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APPENDIX B

NOTATION

Bi A binary variable denoting the defeat / failure to defeat outcome of a nuclear

exchange against a targetable unit, where Bi = I if the unit is defeated; 0 otherwise.

Dn A binary variable denoting the defeat / failure to defeat outcome of a nuclear

exchange against a division for the nth Monte Carlo replication, where Dn, = 1 if the

set of numbers bi drawn correspond to a division being defeated, 0 otherwise.

H,M,L A qualitative measure of the nuclear exchange outcome along some measure (e.g.,

total units defeated). H stands for high, M for medium, and L for low. When ordered,

e.g., HLM, the first letter represents the outcome of the first exchange, the second the

outcome of the second exchange, etc.

K, A variable which denotes the sth possible min cut sets (in this case, a min cut set is

any set of rn-k+l units).

ndiv The number of divisions.

ns The number of strata selected for a particular nuclear exchange.

nt The number of targetable subunits in the theater.

Oi A binary variable used to define the outcome of the nuclear exchange with respect to

division j, j = 1, ... , ndiv. Oi = I with probability p,,j,,g(div j) if division j is

defeated; 0 otherwise.

qS( 0 ) A binary function of the random variables 0, defined such that 0( 1 ) I if the

commander's objective (for the theater-wide nuclear exchange) is met; 0 otherwise.

Pr A variable which denotes the rth possible min path sets (in this case, a min path set

is any set of k units).

pde/t,(div j) Probability that division j defeated ] for j = 1, ... , ndiv.
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P-(O) The probability that P( Oj = 1); that is, the probability that division i is defeated.

(xj)] xi) For 2units, ( x,)] xi) 1 1 -(1 xi)( 1 - x j)

AL Xi For n units, L Xi 1 -f11 (I-Xi)

S

k The binomial coefficient. n ) is defined as

kB-k2n k!
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