
In DTIC
Am ELECTE

00 FEB 1 1990

DD

Ada* Verification System (AVS)
Studies

Final Report

Prepared for:
Defense Communications Engineering Center

1860 Wiehle Avenue
Reston, VA 22090-5500

Prepared by:
IIT Research Institute

4550 Forbes Blvd., Suite 300
Lanham, MD 20706

November 1987

DMIMM3~fON STATEMEN A
Appteve.l f.i .: Lrrelciee

*Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office).

96? /S O a



I
* PREFACE

IITRI is quite pleased with the Final Report. In addition to
this report we are passing along, through this forward, several
comments made by one of the reviewers of the draft of this
document.

Our purpose in passing these concerns along to you is to
specifically indicate related issues that are either not addressed
or are not completely investigated by this study. In addition,
there are instances noted where the perspective taken by IITRI is
not universally shared throughout the software community.

* One area of concern raised was the relative treatment of
formal code verification, software safety, and IBM's 'cleanroom.'
The Orange Book discussion of Beyond Class (Al) accepts code
verification as an approach for these systems but does not rule
out other approaches. The report does not fully develop the
argument that formal code verification raises the assurance of
software to a higher level than the other two approaches.

Further, a feasibility assessment of applying the alternative
approaches to a large system versus applying formal code
verification to a large system was not performed. The point
raised is that 'cleanroom' has been successfully applied to these
systems while formal code verification has not. This could lead
to the conclusion that although 'cleanroom' may not raise
assurance to the extent that formal code verification does, the
feasibility of applying 'cleanroom' to large systems has been

* established.

The assessment of verifiability of individual Ada constructs
is a necessary step; the issue of interaction effects between
constructs relative to verification must be addressed prior to
designing or implementing a verification environment. Also,
further detail does exist on specific constructs. In particular,
the field of numerical analysis has developed approaches toward
improving the verifiability of programs using real numbers.
Although the use of real numbers goes beyond the Ada language, it
is certainly applicable to Ada.

Other issues which require ongoing research include the scope
and assumptions of the verification. Do you stop with the source
code or also verify all runtime support software? Do you verify
the compiler? Do you interpret the semantics for the source code
from the support code necessary for execution? Do you assume
normal termination of the program? Which constructs are more
sensitive to abnormal termination?

This study investigated issues relative to the use of Ada for
systems to be certified Beyond Class (Al). There are specific
sections of the Orange Book which address systems at the Class
(Al) level and below which are affected by the implementation
language. This report does not address those issues.
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Our resource estimate could have used additional systems as
analogs, and gone into more detail on the similarities and
differences of the existing systems to the desired Ada
verification environment.

Finally, all of us would like to have more detail on the
ongoing efforts.

Again, we feel very pleased with the study and the Final
Report. We also feel it is in everyone's best interest to pass
along these concerns.
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20. The techniques and technologies investigated by this study are applicable to

systems to be certified as 'Beyond Class (AI), as well as to other high-assurance soft-

ware. The primary approach in developing this software is formal code verification.

This report investigates each Ada construct relative to code verificatio, the technologies

ecessary to support code verification, ongoing efforts direetly related to verification

of Ada code, and alternatives to code verification for achieving high-assurance software.

Since Ada was not developed to be a verifiable language, there are some con-
tructs that will defy formal verification; these challenges do not seem to be over-

whelming and could presumably be controlled by restrictions on the use of the language.
Tasking and exception handling are the two greatest challenges that the language
constructs provide for verification, with tasking being the greater challenge.

The two most critical support technologies for Ada code verification are a
formal definition of the language and a formal specification language. The formal
definition of Ada developed by DDC needs to be verified, validated, or certified by
someone outside of the developing group. This is a major issue. Also, the structure
and the syntax of the definition limit its utility. ANNA as a specification language
has limitations which are being addressed by Odyssey Research Associates, tnd alterna-
tive forms for specifications are being investigated by Computatuional Logic.

Two alternatives to formal verification were investigated, the software
safety approach and the IBM 'cleanroom'. Each improves the assurance of software
yet neither provides adequate assurance to be considered for 'Beyond Clas (Al)' soft-
ware.

Assessing the state of the art of formal verification technology relative to the
Ada language requires perspective. To date, the largest code verified system in
operation is 4,211 lines of code. Given that languages that are designed and developed
to be verifiable provide challnges to the development of large, complex systems, it would
be naive to expect that Ada would be easibly verifiable.

There are a few general conclusions that have been develped during the course
of this study:

Reasons not to use Ada at the Class (Al) level or below are more culturally
based than technically based.

Formality in software development should not be all or nothing.

Analysis of constructs that challenge verification can be the basis for de-
veloping coding guidelines on software that do not need to be verified.

There are very few people who adequately understand the application of
formal methods.
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0.0 EXECUTIVE SUMMARY

The goal of this study was to investigate approaches to 'high-
assurance' software written in the Ada programming language.
'High-assurance' software is an expression used throughout this
report that includes the software in systems defined to be
'secure' by the Department of Defense Trusted Computer System
Evaluation Criteria as well as other software with very high
reliability or security requirements. 'High-assurance' software
includes any software which much function as intended or there
would be a threat to human life or national security. The report
is applicable, then, to high-assurance software which, for the
most part, is yet to be developed.

The techniques and technologies investigated by this study are
applicable to systems to be certified as 'Beyond Class (Al),' as
well as to other high-assurance software. The primary approach in
developing this software is formal code verification. This report
investigates each Ada construct relative to code verification, the
technologies necessary to support code verification, ongoing
efforts directly related to verification of Ada code, and
alternatives to code verification for achieving high-assurance
software.

Since Ada was not developed to be a verifiable language, there
are some constructs that will defy formal verification; these
challenges do not seem to be overwhelming and could presumably be
controlled by restrictions on the use of the language. Tasking
and exception handling are the two greatest challenges that the
language constructs provide for verification, with tasking being* the greater challenge.

The two most critical support technologies for Ada code
verification are a formal definition of the language and a formal
specification language. The formal definition of Ada developed by
DDC needs to be verified, validated, or certified by someone
outside of the developing group. This is a major issue. Also,
the structure and the syntax of the definition limit its utility.
ANNA as a specification language has limitations which are being
addressed by Odyssey Research Associates, and alternative forms
for specifications are being investigated by Computational Logic.

Two alternatives to formal verification were investigated, the
software safety approach and the IBM 'cleanroom.' Each improves
the assurance of software yet neither provides adequate assurance
to be considered for 'Beyond Class (Al)' software.

Assessing the state of the art of formal verification
technology relative to the Ada language requires perspective. To
date, the largest code verified system in operation is 4,211 lines
of code. Given that languages that are designed and developed to
be verifiable provide challenges to the development of large,
complex systems, it would be naive to expect that Ada would beeasily verifiable.
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There are a few general conclusions that have been developed
during the course of this study:

Reasons not to use Ada at the Class (Al) level or below are
more culturally based than technically based.

Formality in software development should not be all or
nothing.

Analysis of constructs that challenge verification can be the
basis for developing coding guidelines on software that do not
need to be verified.

There are very few people who adequately understand the
application of formal methods.

2
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U 1.0 INTRODUCTION AND OVERVIEW

This study had several objectives. The abstract goal was to
investigate methods that would lead to a 'high assurance' that
software written in the Ada language would perform as intended.
To make this goal concrete required a preliminary understanding of
'high assurance.' The Deoartment of Defense Trusted Comouter
Systems Evaluation Criteria defines secure computer systems as
those that satisfy six requirements:

3 1. There must be an explicit and well-defined security
policy enforced by the system.

2. Access control labels must be associated with objects.

3. Individual subjects must be identified.

* 4. Audit information must be selectively kept and protected
so that actions affecting security can be traced to the

* responsible party.

5. The computer system must contain hardware/software
mechanisms that can be independently evaluated to provide
sufficient assurance that the system enforces
requirements 1 through 4 above.

6. The trusted mechanisms that enforce these basic
requirements must be continuously protected against
tampering and/or unauthorized changes.

The software in these systems is frequently referenced as
'secure' or 'trusted' software. This report is directly
applicable to 'secure' and 'trLsted' software and is also
applicable to a much broader collection of software. This broader
collection includes software with very high reliability or
security requirements; software which must function as intended or
there will be threat to human life or national security.
Throughout this report, such software is referred to as 'high-
assurance.'

This study is to review those factors that will affect the use
of Ada for high-assurance software. Although formal code
verification (i.e., formally establishing the consistency between
the software specification and the code) is the primary focus of
this paper, other approaches to raising the confidence in software
that may be applicable to the security community are investigated.

3 1.1 PROJECT DEFINITION

Initially, several components of the research were identified.
One area is to review each Ada construct as defined by the Ada
Language Reference Manual (LRM). This review is centered on the
impact of each construct on formal verification. The perspective3 in this component is formal code verification for Ada. The

3I



assessment is based on the f-asibility to develop a verification
axiom, or proof rule, for eac construct in isolation. A detailed
listing of the constructs an-; the effect of each on verification
is found in Appendix A; a synopsis of this review is contained in
Section 2.

After investigating the constructs in isolation, this study
considers other factors of formal verification with respect to
Ada. This analysis is contained in Section 3.

In addition to the axioms, other support technologies are
required for code verification. These include a formal definition
and a specification language. Specification languages are not
only necessary for formal code verification, but can also be used
with other techniques, both formal and less formal. An
understanding of runtime issues is necessary to understand the
limitations of code verification relative to how the software will
function during execution. The status of each of these issues
relative to Ada execution is outlined in Section 4.

Of primary interest in this study are two basic questions:

Is the construction of an automated Ada verification
environment within the grasp of today's technology?

If yes, what resources would be required to construct the
environment?

Section 5 of this report addresses these issues by providing a
brief review of related efforts that are ongoing and by
projecting, primarily by use of an analogous system, anticipated
resources for construction of an Ada verification environment.

Another component of the study is an investigation of
alternatives to formal code verification. The two alternatives
studied are the verification techniques utilized in the
certification of software safety and the human verification of the
IBM 'cleanroom' approach developed by Harlan Mills. These
approaches are presented in Appendices E and F, respectively.

The remaining sections of this report are structured on the
study framework:

2.0 ADA CONSTRUCTS THAT AFFECT VERIFICATION
3.0 FORMAL VERIFICATION IN ADA
4.0 ADA-SPECIFIC SUPPORT TECHNOLOGIES
5.0 SCOPE OF AN ADA VERIFICATION ENVIRONMENT
6.0 CONCLUSIONS
7.0 REFERENCES

Some of the conclusions of this study go beyond the initial
study plan. IITRI was chosen to perform this study because of its
independence and lack of a vested interest in a particular
solution to the challenges of high-assurance software. While

4 i
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investigating the principle questions addressed by the study,
secondary observations were made that are included in Section 6.

In addition there are seven appendices. Several topics have
been addressed directly by this study which can best be presented
by encapsulating the results and placing the information in an
appendix. Software safety and the IBM 'cleanroom' each improve
the assurance of software, yet neither provides adequate assurance
to be considered for 'Beyond Class (AI)' software.

In addition to Software Safety and 'cleanroom' being covered
in appendices, automatic programming and Independent Verification
and Validation (IV&V) are discussed as alternatives to code
verification in an appendix. Automatic programming is covered in
response to a belief that if verification technology is not
adequately mature to be applied to today's large and complex

programs, then perhaps automatic programming is the answer. IV&V
is addressed in response to the opinion that if verification is
too formal or too complex for the average programmer, then perhaps
improved IV&V will adequately increase our confidence in the
software that is being produced. Neither is considered a serious
alternative to verification: automatic programming because of its
own immaturity, and IV&V because of its lack of formality.

Some information that is central to Ada verification is
contained in appendices. Background information on research
efforts in formal methods applied to Ada is contained in
appendices to enhance the flow of this document. This is
information on efforts performed at Stanford University and at
SofTech.

Each section of this report has a set of assumptions
associated with it. The balance of this introduction discusses
some of these assumptions and the perspectives against which

* certain assessments are made.
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1.2 PRIMITIVE QUESTIONS

General

The NCSC would eventually like to require formal code
verification for certain software efforts. To date, formal code
verification has been an expensive, challenging, elusive goal.
The objective is to understand exactly what software will and will
not do. If code verification is the correct approach, is
axiomatic verification the appropriate form of verification?

The current approach for development methodologies is to
maximize the use of automation. The benefits of automation are
obvious. Tedious, repetitious tasks are performed without human
error; hours and hours worth of human computations can be done
instantly; rules that can be automated can be mechanically checked
with no violations overlooked. However, none of the existing
automated systems have been proven to be complete or sound. Is
the correct approach to attempt to develop a completely automated
system and then to train individuals to use the system?

Ada-Specific

If Ada code is to be verified, there must be a formal
definition that defines precisely what the language means. The
Department of Defense (DoD) is diligent about maintaining the Ada
standard; who will develop or certify the formal definition? Once
a specification language is developed, will the writers of
requirements write their requirements in the specification
language? Ada is a large, rich language. If it is to be
axiomatized, how much should the language be restricted to
facilitate axiom development?

State of Practice

For a system to be certified as Class (Al), a formal model of
the security policy must be clearly identified and documented and
this model must be shown to be consistent with the formal top-
level specification. This consistency must be established by
formal methods where verification tools exist. The consistency
between the Formal top-level specification and the implementation
language is established only informally. Is there any step in
this process that precludes use of Ada?

1.3 ASUPIN

In the sections of this report that review Ada constructs
(2.0) and the required support technologies (4.0), the assumption
is that axiomatic verification of Ada is the intended end result.
Appendix A contains a construct by construct review of the
literature on the feasibility of axiom development.

I
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i The direction of recent Ada verification efforts (Section 5.0)
is to perform traditional axiomatic verification. They are
assessed under the assumption that to be useful they must
facilitate axiomatic code verification.

The assumptions when reviewing alternative approaches
(Appendices E and F) change. The assumption here is that softwareis to be controlled and understood. Software safety attempts to
control software; IBM's 'cleanroom' attempts to understand and
predict the performance of software. Neither uses axiomatic
verification yet both use formal reasoning.

The assumption made in the conclusions (Section 6.0) is that
Ada is to be considered for certified software from the Class (Cl)
through 'Beyond Class (Al).' The focus of this study is Beyond
Class (Al), yet some insights on the development of software that
is to be certified at a lower level have been gained and are
articulated.

I
I
I
i

I
I
I
i
I

I
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2.0 ADA CONSTRUCTS THAT AFFECT VERIFICATION

Ada is generally viewed as a rich language. The richness of
the language is perceived to be detrimental to formal
verification. A construct by construct analysis of the effect of
Ada constructs on formal verification is presented in Appendix A.
This section highlights the constructs most challenging to
verification, identifies a few problems considered to be
unresolvable and outlines restrictions on Ada programming style
that would be necessary if the code were to be formally verified.
The conclusion of this section outlines the impact that using Ada
would have on secure systems.

Different perspectives are used in this section. The
subsections on challenging constructs, unresolvable problems, and
necessary restrictions in coding style assume that the intent is
to verify code using axiomatic verification techniques on the
code. The concluding section on the impact of the use of Ada for
secure systems takes a pragmatic view, assessing the impact of Ada
on current practice.

2.1 MOST CHALLENGING CONSTRUCTS

Tasks

Far and away, concurrency is one of the most hazardous
obstacles in the way of applying formal verification technology to
the Ada language. By allowing only restricted use of tasking, it
appears that concurrency in Ada can be made amenable to
application of formal verification technology; however, it remains
to be seen whether what remains has any semblance to what would be
called Ada, and whether it would have any usefulness for the
objectives for which it was designed into the language. Use of
the techniques employed in Communicating Sequential Processors
(CSP) (Barringer] appears to be a promising possibility while
other research indicates that restriction of communication to only
buffers (a la Gypsy) [Young80], to only scalars [Odyssey85], or to
only those entry points in which pre-condition and postcondition
assertions have been specified (Tripathi] would alleviate many of
the inherent difficulties in applying formal verification
technology to the Ada concurrency problems.

It must be noted that those restrictions to communicating
between tasks reflect the state of the art rather than assess
feasibility. Although no one has published proof rules for
passing aggregate types, for example arrays or records,
development of such proof rules seems quite feasible.

Several researchers [Odyssey85, Pneuli] have recommended that
access pointers to tasks not be allowed. The intent of this
restriction is to disallow dynamic creation of tasks. In the
absence of dynamic creation of tasks, proof rules can be obtained
for tasking. However, it is unlikely that this limitation will be
readily accepted, particularly in the systems programming arena.

8
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The approach used [Owicki and Gries] to verify Communicating
Sequential Processes, Hoare's language framework for concurrent
programming, is readily adapted to verification of Ada tasks.
This approach consists of two distinct steps: internal
verification and external verification. Internal verification
consists of proving that the task is an isolated, sequential
program. External verification consists of proving that, with the
exception of entries, tasks do not affect any subprograms, tasks,
or variables declared outside of the task being verified.
External verification also requires proof that the task inI question is not affected by any subprograms, tasks, or variables
declared outside of the task. Again, entries are the exception to
this rule. External verification is performed in two states:

a) I-0 assertions on entries are made and shared variables
are restricted.

b) A proof against deadlocks and starvation is made.

Deadlock and starvation avoidance proofs are prevalent
throughout parallel processing literature.

* The verification of tasks also assumes the following:

a) All processes terminate normally.

b) Subprogram calls have no side effects.

c) Assignments have no side effects.

I d) Tasks may not be aliassed.

* Exceptions

The major difficulty with exceptions [Tripathi] in the Ada
language from the point of view of verification is the dynamic
manner in which exceptions are propagated, and the resulting
comylexity that derives from attempting analysis during symbolic
execution of programs in the verification step. This complexity
is furthered by the fact that exceptions are propagated "as is,"
which could cause an unhandled exception to propagate from several
levels down to a routine that has no understanding of the meaning
of the exception. For example, a stack package with a private
implementation that raises INDEXERROR in the environment of the
calling procedure would be totally unexpected and either unhandled
or mishandled.

I Through adequate containment of the exceptions, the complexity
should be reduced. However, the interaction of exceptions and
other constructs moves this issue well beyond the problem of
bookkeeping. For example, if an exception is raised during
execution of a routine with IN OUT parameters, it is not clear if
those variables will have been updated prior to transfer of

* control to the exception handler.

9I



2.2 UNRESOLVABLE PROBLEMS

Programming languages not developed for verification
inevitably contain constructs that are non-verifiable. Some of
these can be controlled through restrictions on programming
practices and are discussed in the next section. For two common
programming constructs there is no current solution. Although
these constructs are not unique to Ada, they do exist in Ada.

Verification of statements including real numbers, and
operations on real numbers, is beyond the state of the art. This
is due to the lack of accuracy. In the statement

J:= (1.0/3.0) + (1.0/3.0) + (1.0/3.0)

J would, mathematically, be set to 1.0. However, not only is it
uncertain if J will equal 1, it is not known how close to 1 J will
be. The effect of this on subsequent statements involving J is
unpredictable. As in other languages using real numbers, they
cannot be used if the software is to be verified.

Another area that is not verifiable is the process of setting
timing constraints. If a section of code must be executed within
a specified time, there is no way to verify that the constraint
will be met.

2.3 RESTRICTIONS TO BE ENFORCED

The recommended coding restrictions of note involve aliasing,
aliasing of access types, using shared variables by tasks, and
side effects of functions.

Verifying a specific subprogram call requires verifying
certain conditions about the parameters involved in the call.
These parameters fall into one of two categories: input
parameters or output parameters. Input parameters are used only
for passing values to the subprogram; output parameters may have
their values altered by the subprogram. The conditions that must
be verified for each are as follows. No variable, either input or
output, may appear in either the precondition or postcondition.
No variable that appears in the output parameter list may appear
more than once in that list, and no output parameter may appear as
an input parameter. The former condition results in updating
multiple variables when only one is intended to be updated. For
example, if two subprogram formal parameters, A and B, are both
passed variable X through a subprogram call, the result of the
statements

A:=0
B:=I

leaves variable X with the value 1 and no variable from the call
with value 0. The postcondition after these two statements would
assume the existence of two distinct parameters, one with value 1

10
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* the other with value 0. If an output parameter appears as an
input parameter, the time at which the input parameter is
evaluated becomes critical. If the output variable is updated
prior to the valuation of the input parameter, the value of the
input parameter may differ from the value recorded if the output
parameter is not updated prior to evaluation of the input
parameter. A single actual parameter used for more than one
formal parameter is known as "aliasing."

The association of parameters at subprogram call points would
be the ideal location to exclude aliasing [Good8O, Odyssey85].
Although there might be a loss of efficiency, the fact that
aliasing is unnecessary and complicates application of formal
verification technology [Young8l] would seem to be sufficient
reason for its elimination.

The major concern in the use of access types is the
possibility of aliasing (see [Odyssey85] for a lengthy discussion
of the matter). One possible solution to the aliasing problem
with access types, presented in [Tripathi], is to define a new
operator for access types that performs component copying, rather
than pointer duplication. This solution is appealing with the
advent of the evaluation of the Ada language, due in the latter
part of the 1980s, when changes and updates based on several years
of working experience with the language will be incorporated into
the language. However, restrictions on parameter passing
[Odyssey85, Young8l] would appear to provide the same benefit with

* fewer changes.

If a function performs input or output or accesses non-local
variables, it is said to cause "side effects." If function
subprograms are truly functional they will not include side
effects. If Ada functions are restricted to exclude side effects,
they can be verified similarly to Gypsy function subprograms, in
which these restrictions are enforced by the language.

Shared variables are the major construct in tasking that will
have to be restricted (although perhaps simulated through use of
other constructs using synchronization) in order to apply formal
verification technology to Ada. On this matter, there is no
disagreement among the researchers [Cohen, Good8O, Odyssey85,
Tripathi].

Many of these recommended restrictions are consistent with
what are considered good programming practices. The exception is
use of shared variables by tasks; forcing tasks to communicate by
other means will restrict the utility of tasking. If the code is
to be verified, however, the restriction may be necessary.

I
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2.4 EFFECT ON SECURE SYSTEMS

Issues are being addressed in this section from various
perspectives, and each perspective carries with it some implicit
assumptions. The first three subsections have assumed a goal of
verifying Ada code and have ignored other issues.

The focus of these three sections is on an axiom system for
Ada: which constructs would be most challenging to axiomatize,
which will avoid axiomatization, and what restrictions must be
made on coding practices to enhance the feasibility of developing
an axiom system. Other key elements of verification -- formal
semantics, a specification language, and runtime issues -- are
addressed in Section 4.0, "Ada-Specific Support Technologies".

This section is a very brief view of current practices to
assess the impact of using Ada.

Surprisingly, little is written in the TCSEC about languages,
except as they relate to description and to formal specification.
For such languages, they are only described as natural languages
(e.g., English), or as "formal mathematical languages," with the
implication that the latter may be used in formal proofs, possibly
automated, demonstrating the consistency between certain entities.

The Class (Al) criteria do not place any requirement, in a
formal sense, upon showing that the implementation of a system is
logically internally consistent or formally consistent with the
Formal Top Level Specification (FTLS). This is the only area in
the criteria for the Al class that makes any specific indication
of implementation languages, and the TCSEC discusses its relevance
to a system accreditation.

It is instructive to consider the position taken with respect
to development of Class (Al) systems implemented in other
languages. To date, the only such system is the Honeywell SCOMP.
The implementation language used in the SCOMP was C. Restrictions
were placed upon the programmers developing code for the SCOMP in
order to simplify the process of showing informal correspondence
of the implementation with the FTLS. The mapping from an approved
design or specification verification tool to Ada, or a slightly
restricted version of Ada, would be no more challenging to develop
than a mapping from the same tool to C. Since the correspondence
could be established for Ada, any decision not to use Ada seems as
much cultural as technical.

The TCSEC does define a class of systems that are 'Beyond
Class (Al)' in which use of Ada as an implementation language
becomes a major factor. At this level, verification is required
down to the source code level of the implementation. There is
currently insufficient theoretical understanding of Ada to perform
such proofs of correctness, and no verification systems to provide
automated support of such endeavors.

1
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3.0 FORMAL VERIFICATION IN ADA

This section reviews formal verification, the current state of
the art, and the current state of practice with respect to Ada.

3.1 STATE OF THE ART

Formal verification is the highest technology approach to
increasing assurance in the correct functioning of computer
software. Other approaches, such as testing, configuration
management, or development methodology, have benefits but
verification alone can make a quantum leap in the level of
assurance. This has resulted in the unfortunate position that
verification is an all-or-nothing proposition for software
development requiring very high levels of assurance. This
mentality has only slowed the application of formal verification
technology.

The earmark of formal verification technology, is, of course,
the formality of the technology. Unfortunately, this formality is
a wicked two edged sword. Great benefit accrues in being able to
provide a functional description (a model) of the intended
behavior of a program, and to be able to provide a mathematical
proof of consistency between that model and the software
implementation of it. However, to take advantage of these
benefits, it is necessary to ensure that the underlying
mechanisms, proof techniques, and automated support tools are* themselves sufficiently trusted not to introduce errors in one
manner or another. The development of such constituent elements
is also not a mild undertaking, requiring individuals with
advanced education in the appropriate field. Furthermore, the
use and application of the technology also requires individuals
with similarly advanced training.

t The formal verification process consists of preparing, priorto the development of software, the formal specification of a
model of the intended behavior of the software. Some effort may
be placed (as described previously) in the analysis of the
specifications to ascertain their completeness and internal
consistency. Then, following the software development
methodology, designs and implementations at the various levels of
the software are completed, and formal correspondence with the
specification is performed, resulting in proofs of correctness of
the implementation with respect to the specification. The
formal proof of correctness consists of showing that the two
separate, hopefully somewhat orthogonal, descriptions have a
proper correspondence.

Besides the level of expertise required by the individuals
performing the formal specification and verification, the
application of this advanced technology requires such significant
amounts of available computing resources as to dwarf other methods
of increasing assurance. Without sufficient computing resources
being brought to bear on the development, it would be no wonder

* that the technology could be faulted for the failure of such
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projects attempting to utilize formal verification technology.
The use and application of this technology will also greatly
increase the difficulty of project management. It has already
been difficult enough to manage large software projects in the
absence of formal verification technology. With such application,
there is expected to be at least an additional equivalent amount
of specification as implementation, and supporting proofs, whose
size has been conservatively estimated at ten times the size of
the specification and implementation combined.

3.2. ANALYSIS OF THE TECHNOLOGY WITH RESPECT TO ADA

As mentioned above, one of the earmarks of formal verification
technology is its formality. This is an area that seems to have
had varied amounts of support during the design of Ada. In the
early requirements documents for the Ada language, verification
was mentioned as a desirable goal, but the language contains many
constructs (see Appendix A) that prevent this goal. In order to
do formal proofs of consistency between the specification and the
implementation, a formal description of the language semantics is
also necessary. Some effort has been done by the EEC in this area,
but it has not sufficiently matured to a stage where it can be
utilized in formal verification. Even the only viable
specification language for Ada, ANNA, has been geared more toward
the utilization of runtime assertion checks, not formal
verification, and has largely ignored the aspects of
parallelism. At least one known effort is involved in extending
ANNA to overcome these deficiencies.

Once the remaining theoretical obstacles have been overcome,
it will be necessary to develop automated support tools for the
specification and verification process.

14
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1 4.0 ADA-SPECIFIC SUPPORT TECHNOLOGIES

Formal code verification requires several key components. The
implementation language must have a formal definition or semantics
so that the exact meaning of each language construct and sub-
construct is clear and unambiguous. There must be a specification
language. Since the proof establishes the consistency between the
specification and the code, the specification must be stated in a
formal language. Although not required for code verification,
runtime issues are very important. Code, even if proven correct,
will not function as expected if the runtime environment does not
execute in a manner that is consistent with the assumptions of the
proof.

These issues -- formal definitions and semantics,
specification languages, and runtime issues -- are discussed in
this section.

1 4.1 FORMAL DEFINITION AND FORMAL SEMANTICS

The most ambitious attempt at a formal definition of the Ada
language is being undertaken by the Dansk Datamatik Center and its
member companies. This definition is intended to give meaning to
each Ada language construct by providing meaning to each sub-
construct. This definition is to be a readable, unambiguousIa
definition that will be implementation dependent. The approach
was to develop a static semantics and then to develop the dynamic
semantics. The dynamic semantics will have embedded in it the
sequential constructs, as these may be executing in parallel, and
the input-output portions of the language.

* The semantics are provided by use of axioms which are given as
abstract data types and an algebra, or model, for combining the
constructs. In addition to being a basis for formal proofs, this
definition is meant to be a standard reference or specification
for implementers of the language.

This effort is producing a very large volume for the formal
definition. Although the developers are building into the
definition mechanisms to establish the completeness and
consistency of the definition, these two concerns -- consistency
and completeness -- are still major.

SofTech has been working on an effort to define the problems
and potential solutions to the development of an axiomatic
semantic definition of the Ada language. The difference between
an axiomatic semantic description of Ada and the definition of Ada
given by MIL-STD-1815A is that the semantic description defines
the behavior and interrelationships of the individual language
constructs in such a way as to be used as the basis of a proof.
The existence of a semantic definition of a language is necessary
if a comprehensive verification technology is to be developed for
that language. Any aspects of a language that are not rigidly,
semantically defined are subject to varying interpretations by
different compilers. Some of the Ada constructs that pose
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difficulties in verification have been left out of the semantic
description. A list of the excluded constructs are address
clauses, unchecked conversions, variables shared among tasks and
subprogram calls that generate aliases.

To a large extent, most elements of a semantic description are
handled at compilation time and need not be dealt with during
verification time. It is important to realize that the actual
verification environment is based on the semantic definition of
Ada rather than the actual language, and constructs that are not
included in the semantic definition invalidate the verification
process. The SofTech study concerns itself only with those
constructs that are not dealt with at compilation time. This
definition is described in detail in Appendix C.

SofTech has developed the architecture for a verification
environment based upon the formal semantic definition they have
developed for Ada. This verification environment is based upon a
modification of Ada -- the semantic definition -- and is described
in detail in Appendix D.

4.2 SPECIFICATION LANGUAGES

Specification languages are necessary for code verification
and can also be used for other proof-related purposes. Analysis
of the specifications prior to proving consistency between the
code and the specification, can only be formally done with a
mathematically-based specification language. Also, runtime
analysis is facilitated by use of a specification language to
state the assertions that are to be checked at runtime. Some Ada-
specific work on specification language tools is being done at
Stanford University and is discussed briefly in Section 5.1 and in
more detail in Appendix B. Use of specifications in runtime is
discussed in Section 4.2.

At the present time, software system specifications are done
in the English language. While using English as a specification
language has the advantage of providing easily readable, easily
composed specifications there are some problems inherent with the
use of English. The English language often contains
inconsistencies and ambiguities which inhibit exact
interpretations of the specifications. The translation required
from specification language to coding is so broad due to the vast
difference in media as to create transitional errors in all but
the most detailed, trivial or exhaustively used system.

The principle specification language for Ada was developed at
Stanford University. ANNA (ANNotated Ada) is an annotation
language for all constructs of Ada except tasking. The language
is designed to support various theories of formally specifying and
verifying programs. One area of current research is the use of
parallel processors to provide concurrent checking of
specifications.
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Since the ANNA semantics closely parallel those of Ada, its*1 use in secure systems development would allow the system designers
and implementors to use the same underlying language semantics for
communication of the intended behavior of their specifications and
programs. However, since the language appears to have been
targeted to the runtime validation of program execution rather
than pre-execution proofs of correctness, its applicability in
secure systems development would be limited until a supporting
infrastructure, both in terms of theoretical aspects of the
language and in terms of automated tools, can be developed.

I Norm Cohen has worked on the development of Ada as a
specification language at Softech. Use of a formal language, such
as Ada, to describe such specifications would greatly reduce the
number of translational errors. This could be used as an
important first step in developing trusted verifiable software.

The use of Ada as a specification language enables the
specification to be read and interpreted by a compiler-like
consistency checker which is able to enforce internal consistency
within the semantics. Taken to a higher level, the consistency
checker may be used to check the consistency between different
levels of specification. In this manner the integrity of the
initial specification may be checked, level by level, down to the
actual code. If the compiler being used is a trusted compiler
then the consistency of all specification level transitions have
been verified from the most abstract level to the actual code.

4.3 RUNTIME ISSUES

Verification of a program, in any language, takes place during
a "proof time" which occurs before the program is executed.
Situations that are difficult to predict at proof time are
generally either discounted or disallowed by verification
techniques. The result of this is that one of two things happens:
either an issue is ignored or discounted in some superfluous way,
or a great deal of effort is spent attempting to suppress possible
occurrences of the problem.

Ada deals with runtime difficulties through the use of
exceptions. Much work has gone into exception handling during
verification. Two of the more detailed verification systems are
Cohen's work at SofTech, which is described in Appendix C, and
McHugh's work at the University of Texas at Austin in the Gypsylanguage (McHugh]. Gypsy's exceptions are similar to Ada; thisenables us to apply runtime techniques developed in Gypsy to Ada.

McHugh handles exceptions in two manners, one of which is that
exceptions that are considered domain related. These exceptions
are discounted with regards to verification. An illustration of
this is as follows: a verified satellite communications system
would fail if the satellite were disabled; or on a more local
basis, a trusted operating system may give faulty retrievals if
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the memory is damaged. The effect of this decision is to localize
the responsibility of the verification to not include errors that
emit from outside the program. Should the satellite or memory be
verified in addition to the software, then a memory failure would
indicate a fault in the verification process.

Exceptions that are not external in origin are handled
differently. These exceptions are, in effect, eliminated from the
program to be verified. Exceptions of this type are indirectly
optimized during the verification process before runtime. This is
performed by the creation of optimization conditions that are
related to possible exceptions. Optimization conditions must be
sufficiently well defined to show that the corresponding
optimization condition must occur before the exception may be
raised. Given this, it is easily proven that, if an optimization
code can be proven to never occur, the exception will never be
raised. It is easily concluded that an exception which is never
raised cannot compromise the verification of a program or module
of a program. We may now state that, if an optimization condition
is offered as a precondition of a module of Ada code then the code
may be considered verified with respect to the exception that
corresponds to the optimization condition.

In short, the nature of exceptions makes them difficult to
verify in a robust manner. The state of the art is little more
than the statement that "if an exception never occurs it creates
no problems in verification."

Runtime Assertion Checks

Another area in which specifications may be applied is that of
runtime assertion checks. This section describes the various
types of such checks, their applicability and utility, and the
status of the technology as applied particularly to Ada.

Runtime assertion checks can increase the assurance in the
correct functioning of a program in a number of ways. First, the
additional effort expended in the development of such assertions,
whether they be informal or formal, increases the level of the
programmer's understanding of the program. Second, the
preparation of assertions can provide a gentle introduction to the
application of formal verification technology (see below), by
allowing the programmer to get a small amount of exposure to part
of the verification process without having to make the total
investment in learning the process at once. Finally, and the
major reason for their use, is that the runtime checks can be used
in instrumented versions of the executable programs to check the
programmer's understanding of the program against its actual
execution.

Runtime assertion checks can be included in a program in
various forms. The first, and most obvious, form of assertion is
simple inclusion of code in the programming language itself. This
code may be instrumented in such a way as to be turned on or off
at runtime, although recompilation of the source code may be
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required. The level of overhead associated with such checking

increases from the lowest, in which the runtime assertions are not
included at compile time, followed by instrumentation with checksI turned off, runtime assertions compiled in, to instrumentation
with checks turned on. Another possible form of inclusion of
runtime assertions is through the use of a formal assertion
mechanism. These may be processed by a preprocessor, as in the
case of the C language assert construct, and converted into
corresponding source code, or parsed with the program text, as in
ANNA runtime specifications, and expanded during the code

* generation phase of compilation.

One benefit of the use of runtime assertion checks is that the
technology is so similar to compiler technology that it can be
applied without additional technology development. Its
application is also at a sufficiently low level to allow its use
by programmers at various ability levels (depending upon the level
of formality of the specification language). Another benefit is
that the technology can be easily integrated into the traditional
software development methodology without having to make largeinvestments in retraining, changes in practice, or additional
hardware.

The use of runtime assertion checks is not without drawbacks,
however. The most obvious one is the overhead penalty in
execution time while running programs instrumented with such
runtime assertions. Another drawback is that the application of
formal verification technology may obviate such runtime checks.
With a formal verification methodology, it may be possible to
logically prove that the assertion holds at the point in the
program's execution, and thus the resulting runtime check can be
omitted, thus reducing the program's runtime overhead and
increasing its performance.

Runtime assertion checking is a technology which can be, and
currently is being, applied to increase the assurance in the
correct execution of software written in Ada. Research at
Stanford University has resulted in ANNA, a specification language
for Ada, specifically designed for use in preparing runtime
assertion checks. Automated tools for supporting the software
development process using such checks have been developed, and
preliminary results have been obtained on a number of research and
development projects.

ANNA was designed primarily for use with the sequential
aspects of the Ada language. Efforts are underway to extend ANNA
and combine it with other languages to use it for the parallel
aspects as well. Additional research is being targeted at
providing a mechanism for concurrent execution of the resulting
runtime assertion checks (on multi-processor hardware) in order to
exploit some of the benefits of the parallel execution and reduce
the apparent runtime overhead penalty associated with the checks.

The use of ANNA is very CPU intensive, not only in the
execution time of the resulting software, but also in the
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execution time of the automated tools. The lack of speed in these
tools is due in part to their use of somewhat dated compiler
technology, as well as the fact that they are implemented in Ada,
where compiler maturity is not at a sufficient level to produce
quality code comparable to other languages. This drawback might I
prevent its application in environments that are unable to provide
a sufficient hardware base for development environments, although
the benefit of the choice of Ada has allowed transition among
available hardware configurations which provide Ada software
development environments.
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5.0 SCOPE OF AN ADA VERIFICATION ENVIRONMENT

The NCSC is interested in pushing the state of the art in
certification to 'Beyond Class (Al).' This translates into formal
code verification. The DoD is insistent on the use of the Ada
programming language. Therefore, formal code verification of Ada
software is a goal of the Center. Due to the nature of formal
code verification, this process should be highly automated in an
Ada verification environment. This section of the report briefly
describes three ongoing research efforts in this direction and
then discusses potential necessary resources to develop a
functional Ada verification environment.

5.1 RECENT EFFORTS

There are currently three known efforts investigating various
aspects of this research. These are efforts being undertaken by
Stanford University, Computational Logic, Inc., and Odyssey
Research Associates Inc.

The Stanford University research has focused mostly on the
development of a specification language, ANNA, and the development
of tools to support its use in the area of runtime assertion
checks. The language was completed several years ago, and is
being used by a number of contractors and other researchers, bothin real world applications and in further research. The automated
support tools themselves are written in Ada, and run on a number
of different hardware architectures. Neither the language, nor the
support tools have been designed specifically for use in a
verification environment, although much of the effort that has
been completed would provide a starting basis for such an
environment.

The current effort is part of a three year project (completion
September 1989) to construct a prototype environment of tools forsoftware and hardware development. These tools are based on
specification languages with particular emphasis on distributed
computing and implemented in the Ada language for maximum
portability to various environments. It is hoped that the results
of this effort will provide a better understanding into what
features are necessary in a development environment with a number
of possible applications: requirements analysis and negotiation,
rapid prototyping, formal implementation guides, automatic
implementations from specifications and construction of self-3 testing systems.

The effort draws on a significant amount of already completed
research, particularly that done in developing the specification
languages ANNA and TSL, and the effort already performed in
developing tools for syntactically parsing the ANNA text and

* manipulation of the underlying DIANA representation.

The emphasis appears to be similar to that being taken by
other researchers, in attempting to apply specification and
verification techniques over the entire spectrum of system
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development, from the top level system requirements and definition
down to the low level hardware implementation.

In addition to the primary emphasis on the development of a
prototype environment for software and hardware development,
additional emphasis is being placed on developing reusable
components that may be shared among the various applications level
programs in the project. The use of Ada as the implementation
language is intended to aid in the portability of the resulting
system, and the emphasis on integrability (the commonality of tool
interfaces, underlying structures, etc.) will also allow the
investigation of the utility of such an approach in a large
development project. The choice of Ada is also intended to allow
the investigation of features of parallelism in specification,
runtime checking and software development that have heretofore
been unavailable in other environments and with other languages.

Computational Logic, Inc. is investigating the underlying
logic necessary to support an Ada verification environment.
Leveraging their background with the Gypsy Verification
Environment, the Boyer-Moore theorem prover, and the beginning
research on the underlying logic for the Rose language (a Gypsy
successor), various constructs in the Ada language are to be
analyzed to determine the underlying logic structure necessary to
support such a verification environment. This effort is more
directed at preparing the underlying formalisms, and understanding
the relationship between those formalisms and the programming
language semantics than to the development of any additional
specification languages or automated support tools.

Odyssey Research Associates, Inc. is involved in research and
development of a prototype Ada verification environment. The
major thrust of the effort is the extension of ANNA to support
real-world programs. ANNA will be extended by applying it to
known examples; finding and fixing the shortcomings in each of
these applications. Additional effort is planned to design and
develop a prototype verification environment supporting the ANNA
extensions with a theorem prover and proof rules and formal
semantics for that portion of the Ada language being utilized.

As these various approaches to formal verification with the
Ada language are progressing, it will be necessary to apply the
resulting technology in order to gain experience with it and to
evaluate the feasibility for development of large scale projects.

5.2 PROJECTIONS OF RESOURCES

Software cost estimating is far from an exact science. The
primary input to cost models is lines of code and secondary inputs
include program application type, complexity of the program,
capability of the developers and other environmental factors.
Even if these factors were known, attempting to use a traditional
parametric cost model for estimating the cost of an Ada
verification environment would be impractical. The major issues

22



I
in building the environment require answering several questions
that are in the research stage.

The primary concern is concurrency. Proof rules for Ada
tasking are still a research issue. Also, the utility of the DDC
formal definition of the language, or some alternative formal
definition, is not yet established. There is no Ada specification
language that can adequately express the logic required to be the
basis of a proof system.

In spite of these qualifications, an estimate will be made.
The process used to derive the estimate will be analogy, where a
system with some similarity to the desired system will be used as
a basis for the estimate. The system to be used as the analog is
the Pascal verifier developed in the 1970s at Stanford University.

Development of the Pascal verifier took approximately 20 man
years of effort during the years 1972 to 1979. This system did
not contain all of the elements that would be desirable in a
system to be developed today. Those elements would include a
friendly user interface, counter-example generators, reusable
proofs, proof classifiers and tracing capabilities to assist in
following the progress of the proof. Also, the system was not
built using the same standards of software engineering that would
be used today, which may increase development effort in exchange
for decreasing maintenance effort.

The estimate for developing a verification environment for
sequential Ada that had the following capabilities in 30 man yearsof effort:

I Prove the consistency between a specification and the

behavior of a program,

Perform runtime checking of consistency of specifications, and

Perform analysis of specifications.

I To develop an environment that would include tasking, with
clearly articulated and enforceable restrictions, would take much
more effort. Some estimate of that could be made based on the
success of the Odyssey Research Associates development of a
prototype environment that will handle a 'cluster' of Ada with
some restrictions.

The Odyssey effort, believed to be approximately 30 man years,
is attempting to develop an environment that supports the Ada
language to the extent that the Gypsy Verification Environment
supports the Gypsy language. If the prototype is successful, the
development of a production quality environment would require,
presumably, an additional 30 man years.

The estimates are that an environment for sequential Ada could
be built for 30 man years; if the Odyssey effort is successful and
the technology developed by them is accessible, then enhancing
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that effort to production quality would take approximately an
additional 30 man years. These estimates are obviously very
rough.
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6.0 CONCLUSIONS

This study had several objectives. The abstract goal was to
investigate methods that would lead to the highest assurance that
software written in the Ada language would perform as intended.
This led to the examination of elements related to the formal
verification of Ada software, to the examination of formal methods
applied at levels other than code verification, and to the
examination of less-formal methods.

Relative to code verification, the continuing examination of
Ada constructs reveals two findings. Since Ada was not developed
to be a verifiable language, there are some constructs that will
defy formal verification; these challenges do not seem to be
overwhelming and could presumably be controlled by restrictions to
the use of the language. Tasking and exception handling are the
two greatest challenges that the language constructs provide for
verification. Of these, tasking is the far greater challenge.

Code verification requires both a formal definition and a
specification language. The formal definition being developed by
DDC will need to be verified, validated or certified by someone
outside of the developing group. This is a major issue. Also,
the structure and syntax of the definition will limit its utility.

ANNA as a specification language has limitations which are
being addressed by Odyssey Research, and alternative forms for

* specifications are being investigated by Computational Logic.

As these various elements of formal verification with the Ada
language progress, it will remain to apply resulting technology in
order to gain experience with it and to evaluate the feasibility
for development of large scale projects. To date, applications of
verification technology have been performed by small groups of
people on small tasks, with rather limited results in terms of
both costs and quantity of software. This situation will be no
different in application of formal verification technology to the
Ada language. The community of individuals trained in the use and
application of formal verification techniques is small, and the
intersection of those individuals with the limited pool of talent
proficient in the Ada language continues to reduce the available
labor.

Existing verification projects have been small in size,
because that has been the only manner in which to maintain control
of the complexity of the project, and to be able to support the
project with automated support tools. Advances in hardware
technology will improve the utility of support tools, but cannot
solve the personnel problem.

Beyond code verification, formal methods are being
investigated with respect to Ada. The two areas of research are
the application of formal methods to specification analysis and to

runtime assertions. In the area of specification analysis, the
* focus is on finding and analyzing inconsistencies in the
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specifications. Although this will not provide the assurances of
code verification, it seems that an emphasis on this work will
prove to support code verification in the long run, and will be
useful in its own right. Successful verification projects depend
on consistent specifications.

Although runtime assertion checking seems redundant for
verified software, this avenue seems particularly worthy of
research for distributed systems. This avenue may well help in
the understanding of concurrency.

Two alternatives to formal verification were investigated, the
software safety approach, and the IBM 'cleanroom.' Each improves
the assurance of software, yet neither provides adequate assurance
to be considered for 'Beyond Class (Al)' software.

Assessing the adequacy of the state of the art of formal
verification technology relative to the Ada language requires
perspective. To date, the largest code verified system in
operation is 4,211 lines of code. Given that languages that are
designed and developed to be verifiable provide challenges to the
development of large, complex systems, it would be naive to expect
that Ada would be easily verifiable.

There are a few general conclusions that have been developed
during the course of this study:

Reasons not to use Ada at the Class (Al) level or below are
more culturally based than technically based.

Formality in software development should not be all or
nothing.

Analysis of constructs that challenge verification can be a
basis for developing coding guidelines on software that does
not need to be verified.

There are very few people who adequately understand the
application of formal methods.
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0. Preliminary

This Appendix reviews the state of the art of program
verification with respect to the Ada language. Where relevant,
references are made to existing verification languages and systems
that implement features equivalent to Ada, as well as those with only
limited correspondence. Special note will be made of programming
constructs that pose difficulty to verification in general, and Ada
constructs in particular that pose such difficulty, both in
isolation, and when taken in concert with other constructs.

The perspective on formal verification of this Appendix is that
of Hoare and Floyd. Briefly, each statement is preceded by an
assertion (the precondition) and followed by an assertion (the
postcondition). These assertions are statements that involve program
variables. A proof consists of demonstrating two things. The first
is to show that if the precondition is true, and the statement
executes, then the postcondition is true. This requires the
existence of a proof rule for each type of statement to be executed.
The proof rule defines how the statement alters the precondition to
produce the postcondition. The second part of the proof requires
demonstrating that the postcondition of a statement logically implies
the precondition for the subsequent statement.

One of the major deficiencies of the Ada language with respect to
verificatic., is the lack of a formal definition of the semantics of
the language. Although the Ada Language Reference Manual (LRM) may
be considered to provide somewhat of an "operational" semantics, it
is not sufficiently formal to be applied in the use of formal
verification technology. The need for a formal, semantic definition
is based on the need to specify which of the phrases in a
syntactically correct program are commands, and what conditions must
be imposed on an interpretation in the neighborhood of each command
[Floyd]. Each proof rule must be validated by interpreting it with
respect to the formal definition of the language to which it is to be
applied. Also, this formal definition provides a final authority in
disagreements; transforms the system of reasoning into a mathematical
object; and enables the processing of the system to be automated
[O'Donnell]. An effort is currently underway to provide a formal
definition [EEC, LNRC] that will hopefully provide the mathematical
foundation of language semantics. Once this foundation has been
laid, attention can then be turned to the development of proof rules
for the constructs in the language, which are vital for the
application of formal verification technology.

In addition to a formal semantics, Ada will require a
specification language if formal verification of Ada programs is to
be achieved. A specification language provides the vehicle for
stating, in mathematically precise terms, what a program is expected
to do. ANNA is a specification language for Ada and it, or an
extension of it, may prove satisfactory for verification purposes.
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I The remaining chapters of this Appendix are structured to be in
accordance with the chapters of the LRM. Each section describes the
state of the art of formal verification technology with respect to
the general topic (as outlined in the LRM); the state of the art of
formal verification technology in particular as it relates to the
given Ada construct; difficulties in applying formal verificationI technology with that construct; and possible solutions to allow the
application of formal verification technology through certain
restrictions on the use of the construct, whether alone, or in
concert with other constructs of the language. Many of theserecommendations are drawn from the existing literature [Cohen,Divito84, Odyssey85, Tripathi, Young8O, Young8l] specifically
addressed toward making Ada a language in which formal verification
technology can be applied.

1. Introduction

I For the most part, this chapter of the LRM deals with matters
that are unrelated to the syntax and semantics of the Ada language,
and, as such, is irrelevant to the application of formal verification
technology. One area that does have some relevance, though, is the
area of "Classification of Errors" (1.6).

I 1.1 Scope of the Standard

No further implications for formal verification technology.

1.1.1 Extent of the Standard

No further implications for formal verification technoloty.

1.1.2 Conformity of an Implementation with the Standard

* No further implications for formal verification technology.

1.2 Structure of the Standard

No further implications for formal verification technology

1.3 Design Goals and Sources

No further implications for formal verification technology

1.4 Language Summary

No further implications for formal verification technology.

1.5 Method of Description and Syntax Notion

No further implications for formal verification technology.

I
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1.6 Classification of Errors

The LRM defines four types of errors: compilation time errors,
runtime errors, erroneous execution, and incorrect order
dependencies. The first of these four types of errors, compilation
time errors, are commonly referred to as syntax errors, and will not
allow for compilation of the program. Since one of the requirements *
of formal verification is that the code to be verified be "legal" m
with respect to the rules of the language, this type of error will
preclude verification. The second type of error, the runtime error,
occurs during the attempted execution of the program, and is commonly
referred to as an "exception." Runtime errors in general have been
widely discussed in the literature (Goodenough, Liskov], and have
even been discussed with respect to Ada [Luckham8O]. In addition to
this, since Chapter 7, "Exceptions", is devoted entirely to this U
topic, its discussion will be deferred to that chapter. The
remaining error types, erroneous execution and incorrect order
dependencies, are not required to be detected at compilation or
execution, but do result in violations of certain rules of the Ada
language. Since the detection of these errors is not required by the
LRM, their detection falls to the verification environment.

This chapter of the LRM deals with the delineation of the
elements which make up the parts of the language. These elements
define the "tokens" which are processed in determination of the U
legality of a program. The majority of these items has little
relevance to the issue of formal verification technology. Comments
are noteworthy, in that the ANNA specification language [Luckham84]
defines "formal" comments meant to be used in the specification of
Ada software. These comments are not executable, and therefore will
not influence the execution of the software, however, they will
influence the verifier, and as such will influence the verification
process.

2.1 Character Set I
No further implications for formal verification technology.

2.2 Lexical Elements, Separators, and Delimiters

No further implications for formal verification technology.

2.3 Identifiers

No further implications for formal verification technology.

2.4 Numeric Literals

No further implications for formal verification technology. I
2.4.1 Decimal Literals

No further implications for formal verification technology.
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I 2.4.2 Based Literals

No further implications for formal verification technology.

I 2.5 Character Literals

No further implications for formal verification technology.

I 2.6 String Literals

No further implications for formal verification technology.

2.7 Comments

* No further implications for formal verification technology.

2.8 Pragmas

The PRAGMA construct is relevant, although this chapter of the
LRM does not discuss its use and application, but only rules for its
placement within the program text. For the discussion of its
interaction with formal verification technology, see Section 11.7.

2.9 Reserved Words

No further implications for formal verification technology.

U 2.10 Allowable Replacement of Characters

No further implications for formal verification technology.

I 3. Declarations and Types

This chapter of the LRM defines the type mechanism, the means for
declaring objects of the types, and the set of operations on the
types. The major areas which are of concern to the application of
formal verification technology include object declarations, real
types, and access types.

3.1 Declarations

* No further implications for formal verification technology.

3.2 Objects and Named Numbers

3.2.1 Object Declarations

One manner in which erroneous programs may occur is in the use of
an object prior to assigning a value to the object. In other
languages designed for verifiability (e.g., Gypsy), the formal
definition of the language requires that the default value for
objects be specified when declared [Good78]. When the semanticdefinition of Ada is complete, it should resolve this difficulty.
Another approach to this problem prior to the completion of the
semantic definition is to disallow references to objects before their
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initialization [Odyssey85]. This is addressed through explicit
initialization, and hopefully enforced by automated verification
tools when performing symbolic evaluation and path analysis.
However, even these rather laborious steps can not fully assure that
a variable is defined before it is referenced.

3.2.2 Number Declarations

No further implications for formal verification technology.

3.3 Types and Subtypes

For the most part, types and subtypes within Ada are well behaved
with respect to formal verification. With the exception of arrays
and access types, verification is restricted to constraint and
accuracy difficulties. Verification techniques intent on prevention
of constraint errors are well documented [Good78, Hantler, Hoare69,
McGettrick]. Nondiscrete types, such as real -nd floating point
types, require verification techniques to prevent ii-ccurate values.
Methods of measuring possible inaccuracies, short of reporting the
maximum possible error, are not available. The existence of a
default value for declarations is used to verify that no undefined
variable will be referenced.

3.3.1 Type Declarations

No further implications for formal verification technology.

3.3.2 Subtype Declarations

No further implications for formal verification technology.

3.3.3 Classification of Operations

No further implications for formal verification technology.

3.4 Derived Types

Derived types are subject to the same restrictions as their
parent types.

3.5 Scalar Types

No further implications for formal verification technology.

3.5.1 Enumeration Types

No further implications for formal verification technology.

3.5.2 Character Types

No further implications for formal verification technology.
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S 3.5.3 Boolean Types

No further implications for formal verification technology.

3.5.4 Integer Types

No further implications for formal verification technology.

3.5.5 Operations of Discrete Types

* Discrete types require several restrictions to verification
procedures. Verification techniques must be used to prevent
constraint errors such that OP (M,N) remains within the bounds of T
if M and N are of type T, and OP is any operation valid on T. Some
mathematical laws are not applicable on discrete types, in particular
the associative and distributive laws regarding statements are not

* applicable due to possible constraint errors.

3.5.6 Real Types

Real types have been largely ignored in formal verification
technology. Part of this difficulty has been due to the fact that
operations on such types decrease the accuracy of the result, as a
function of the values and the underlying implementation
(McGettrick, Tripathi, Young8l], thus precluding the proofs of
correctness. Proofs of correctness would require precise measurement
of the accuracy. This measurement is unavailable as the exact
representation of a real within the machine is not defined (e.g., a
machine capable of representing four digits may represent one half asI either 0.500E00 or 0.005E02). It has been suggested that
verification may be performed by restricting representation to a
common form.

I 3.5.7 Floating Point Types

No further implications for formal verification technology.

3.5.8 Operations of Floating Point Types

No further implications for formal verification technology.

I 3.5.9 Fixed Point Types

Fixed point types are decreased in accuracy as a result of
operations. The problems of undefined inaccuracy pertinent to real
types are not applicable in fixed point types, and measurement of
maximum error is possible through standard numerical methods
techniques.

3.5.10 Operations of Fixed Point Types

No further implications for formal verification technology.

I
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3.6 Array Types

It has been suggested [McGettrick] that inclusion of some array-
specific functions would be beneficial in verifying programs
containing arrays. These functions would include "select" (for
identifying a specific array element), "assign" (for updating an
array element), and boolean functions to indicate the ordering of an
array.

3.6.1 Index Constraints and Discrete Ranges

No further implications for formal verification technology.

3.6.2 Operations of Array Types

No further implications for formal verification technology.

3.6.3 The Type String

No further implications for formal verification technology.

3.7 Record Types

All restrictions and implications inherent in the types of a
component of a record are implicit for that component.

3.7.1 Discriminants

No further implications for formal verification technology.

3.7.2 Discriminant Constraints

No further implications for formal verification technology.

3.7.3 Variant Parts

No further implications for formal verification technology.

3.7.4 Operations of Record Types

No further implications for formal verification technology.

3.8 Access Types

The access type in Ada, as mentioned before, is roughly
equivalent to the pointer type in Pascal [Young8l]. Verification
systems, such as the Stanford Pascal Verifier [Luckham79) have been
developed for dealing with such types using formal verification
technology, and [McGettrick] provides a notation and an
axiomatization specifically for the access types as found in Ada.
The major area of difficulty with access types and corresponding
objects are in the areas where aliasing might occur [Odyssey85,
Tripathi) in parameter passing. This issue is discussed below in
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Operations of Access Types, Section 3.8.2 and Subprogram Calls,
Section 6.4.

Some researchers [Odyssey85] have recommended forbidding access
types to task types. The reason for this is twofold: 1. To
prevent the dynamic creation of tasks. 2. The lack of research
information passing tasks as parameters in subprogram calls.

3.8.1 Incomplete Type Declarations

No further implications for formal verification technology.

3.8.2 Operations of Access Types

* The major concern in the use of access types is the possibility
of aliasing (see [Odyssey85] for a lengthy discussion of the matter).
One possible solution to the aliasing problem with access types,
presented in [Tripathi], is to define a new operator for access types
which performs component copying, rather than pointer duplication.
This solution is appealing with the advent of the evaluation of the
Ada language, due in the latter part of the 1980s, when changes and
updates based on several years of working experience with the
language will be incorporated into the language. However,
restrictions on parameter passing [Odyssey85, Young8l] would appear
to provide the same benefit with fewer changes.

3.9 Declarative Parts

* No further implications for formal verification technology.

* 4. Names and Expressions

This chapter of the LRM deals with the use of identifiers as
names, combining names into expressions, and rules for evaluation of
both names and expressions. The areas of interest from the
verification viewpoint include the manner of expression evaluation
(Section 4.5), accuracy of operations on real types (Section 4.5.7),I and allocators (Section 4.8).

4.1 Names

3 No further implications for formal verification technology.

4.1.1 Index Components

No further implications for formal verification technology.

I 4.1.2 Slices

No further implications for formal verification technology.

3 4.1.3 Selected Components

No further implications for formal verification technology.

I
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4.1.4 Attributes

No further implications for formal verification technology.

4.2 Literals

No further implications for formal verification technology.

4.3 Aggregates

No further implications for formal verification technology.

4.3.1 Record Aggregates

No further implications for formal verification technology.

4.3.2 Array Aggregates

No further implications for formal verification technology.

4.4 Expressions

No further implications for formal verification technology.

4.5 Operators and Expression Evaluation

Expressions, particularly numeric expressions, raise the
possibility of exceptions where either intermediate or final results
may be outside the bounds of the type of the object which is the
target of the expression. If the expression is successfully
evaluated, and the result is outside the bounds of the target of the
assignment, then the exception constrainterror will be raised. I
Handling this exception is within the scope of today's verification
technology. However, the effect on verification of an intermediate
result which is outside the bounds of the arithmetic type is much
greater. An intermediate calculation may either raise a
numeric-error constraint or result in numeric overflow. While an
expression may be completely computable (in terms of universal
arithmetic), it may not be actually reliable on a particular Iimplementation. As an example of this consider the expression:

IntNo:= (MAXINT*MAXINT)/MAXINT;

This is equivalent, mathematically, to:

IntNo:= MAXINT; i
The result should be MAXINT. However an intermediate result,
MAXINT*MAXINT, is too large to be contained in the machine and may I
result in an overflow condition. Verification concerning such
expressions would thus be dependent upon knowing the implementation
limitations, and proofs would have to take this fact into
consideration.

4.5.1 Logical Operators and Short-Circuit Control Forms 3
A-10 I
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I No further implications for formal verification technology.

I 4.5.2 Relational Operators and Membership Tests

No further implications for formal verification technology.

I 4.5.3 Binary Adding Operators

No further implications for formal verification technology.

I 4.5.4 Unary Adding Operators

No further implications for formal verification technology.

I 4.5.5 Multiplying Operators

* No further implications for formal verification technology

4.5.6 Highest Precedence Operators

3 No further implications for formal verification technology.

4.5.7 Accuracy of Operations with Real Operands

As mentioned previously (Sections 3.5.6 - 3.5.10), verification
of the accuracy of operations on real numbers is currently beyond the
state of the art in formal verification technology. [As a
demonstration of this, consider

J := (1.0/3.0) + (1.0/3.0) + (1.0/3.0)

Since each addend is equal to .33333 .... (as represented on the
machine being used) the result would be .99999 ..... The result
however should be simply 1. Any later operations using the variable
J would contain a degree of error and would result in multiplication
of the error. Since the accuracy is dependent upon the
implementation, its verification is currently beyond the state of the
art.]

4.6 Type Conversions

No further implications for formal verification technology.

I 4.7 Qualified Expressions

No further implications for formal verification technology.

* 4.8 Allocators

In the use of allocators, care must be taken to see that the
initialization recommendations (in Section 3.2.1) are taken into
consideration in order to prevent programs from operating on objects
that are not initialized.

I
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4.9 Static Expressions and Static Subtypes

No further implications for formal verification technology.

4.10 Universal Expressions

No further implications for formal verification technology.

5. Statements

This chapter of the LRM describes the eight kinds of statements
in Ada. These are assignment (with special case for arrays),
conditional (if), case, loop, block, exit, return, and goto. For the
most part, these are the standard kinds of statements found in most
modern day programming languages. As a result, when taken in
isolation, these constructs are amenable to known methods in formal
verification technology [McGettrick].

This chapter is being considered only from the sequential
perspective; the effects of parallel execution are considered in
Chapter 9, "Tasks". Proof rules for assignments to scalar elements
are a straightforward substitution of the assigned value into the
precondition to generate the postcondition. This becomes more
complex when updating a single array element, since most of the array
values are unchanged. The compilation is adequately severe that
[Mills86) proposes elimination of arrays as data structures. For if
statements, there is a single precondition but there are two
postconditions, one for each the "then" and "not then" (possible
"else") branch. After an if statement, it is necessary to show that
both postconditions logically imply the next precondition. The case
statement is an extension of the if statement. Loop statements
require the development of a loop invariant. An invariant is an
assertion that is typically the strongest statement that is true at
particular point of the loop; it frequently contains all of the
variables of the loop. The statements within the loop are verified
in the normal fashion, except that the loop invariant is logically
"ANDed" to the precondition and postcondition at the point of
interest of the invariant. Also, at the conclusion of the loop, the
invariant is true and the controlling Boolean condition is false.
The block statement is discussed under visibility; the exit and
return statements are covered in Chapter 6, "Subprograms".

5.1 Simple and Compound Statements - Sequences of Statements

Rules for the verification of simple and compound statements are
standard fare in formal verification technology. The proof rules
given in (McGettrick] are sufficient for most types of statements if
the following criteria are met: (1) no aliasing, (2) no side
effects, and (3) no nonlocal variables. These criteria are good
software engineering practice, and as such should not require extra
programming effort. These criteria are necessary in that each of
them, if not met, may cause an unintended change to be effected
during the course of the execution of the software. These unintended
changes may cause an erroneous, or at least unexpected, result that
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would preclude the verification of this software. For the most part,
the set of statement constructs available in Ada is similar to those
found in Algol, Pascal and Gypsy, languages for which axiomatizations
and proof rules of these constructs are fairly well known and
understood.

5.2 Assignment Statement

No further implications for formal verification technology.

5.2.1 Array Assignments

No further implications for formal verification technology.

5.3 If Statements

No further implications for formal verification technology.

5.4 Case Statements

No further implications for formal verification technology.

5.5 Loop Statements

No further implications for formal verification technology.

5.6 Block Statements

No further implications for formal verification technology.

5.7 Exit Statements

No further implications for formal verification technology.

5.8 Return Statements

No further implications for formal verification technology

5.9 Goto Statements

No further implications for formal verification technology.
Although it would be considered bad form (and has been recommended
against in [Odyssey85]) to make widespread use of the goto statement,
particularly due to the additional complexity it would cause in
verification, it has been shown [McGettrick] that verification of
such constructs is not intractable.

6. Subprograms

This chapter of the LRM defines the mechanism for describing
subprograms (technically procedures and functions), the mechanisms
for their invocation, and the manner of parameter passing. In the
absence of concurrence, as with other aspects of the Ada language,
most aspects of subprogram declaration and invocation are equivalent
with respect to verification as those in other languages. Some

A-13

I



specific differences that are relevant in the application of formal
verification technology to Ada are the issues of subprogram
declarations (6.1), formal parameter modes (6.2), and parameter
"aliasing" (6.4).

The major issues in verification of subprograms are all related
to parameters and parameter passing. Verifying the subprogram
requires establishing a precondition that, if true prior to execution
of the subprogram, assures that a postcondition is true upon
completion of the subprogram's execution. Verifying a specific
subprogram call requires verifying certain conditions about the
parameters involved in the call. These parameters fall into one of
two categories, input parameters or output parameters. Input
parameters are used only for passing values to the subprogram; output
parameters may have their values altered by the subprogram. The
conditions that must be verified for each call are as follows. No
variable, either input or output, may appear in either the
precondition or postcondition. No formal parameter that appears in
the output parameter list may appear more than once in that list,
and, no output parameter may appear as an input parameter. The
formal condition results in updating multiple variables when only one
is intended to be updated. For example, if two subprogram formal
parameters, A and B, are both passed variable X through a subprogram
call, the result of the statements

A:=O
B:=l

leaves variable X with the value 1 and no variable from the call with
value 0. The postcondition after these two statements would assume
the existence of two distinct parameters, one with value 1 the other
with value 0. If an output parameter appears as an input parameter,
the time at which the input parameter is evaluated becomes critical.
If the output variable is updated prior to the evaluation of the
input parameter, the value of the input parameter may differ from the
value recorded if the output parameter is not updated prior to
evaluation of the input parameter. A single actual parameter used
for more than one formal parameter is known as "aliasing." Aliasing
is discussed in Section 6.4.1.

6.1 Subprogram Declarations

Although [Odyssey85] recommends restricting a subprogram from
containing another equivalently named subprogram with the same
parameter type profile, this restriction is not necessary from the
viewpoint of verification, as the scoping rules in Ada clearly define
which subprogram is visible at any point in the program text. It
might be justified from a human viewpoint, however, as the additional
complexity of overloaded names could cause difficulty both in the
software development and verification processes.

6.2 Formal Parameter Modes

One result of a more formal semantic definition of the language
would include the definition of the default values for out
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parameters, akin to that described in Section 4.2.1 for object
declarations [Odyssey85]. Doing so would help prevent erroneous
programs.

Another difficulty, due to the lack of specificity on the part of
the language designers, is the method of parameter passing, and the
manner in which this affects verification. It is quite elementary,
as shown in [Tripathi], to concoct an example in which a legal
program can generate different results based upon whether the
parameter passing mechanism chosen is call by value or call by

* reference. Again, the completion of the formal semantic definition
would address such an issue. Also, regardless of the parameter
passing mode, verifying programs with aliased subprogram calls is
intractable.

6.3 Subprogram Bodies

No further implications for formal verification technology.

6.3.1 Conformance Rules

No further implications for formal verification technology.

6.3.2 Inline Expansion of Subprograms

No further implications for formal verification technology.

U 6.4 Subprogram Calls

6.4.1 Parameter Associations

The association of parameters at subprogram call points would be
the ideal location to exclude aliasing [GoodBO, Odyssey85]. Although
there might be a loss of efficiency, the fact that aliasing is
unnecessary and complicates application of formal verification
technology [Young8l] would seem to be sufficient reason for its
elimination.

3Also, the matter of indeterminacy, inherent in the language
definition, such as 6.4(6) (quoted below) must be resolved in the
formal semantic definition in order to allow both the presentation of
proof techniques and the development of automated tools for
supporting proofs.

I 6.4 (6) Subprogram Calls

The parameter associations of a subprogram call are evaluated in
some order that is not defined by the language. Similarly, the
language rules do not define in which order the values of in out
or out are copied back into the corresponding actual parameters
(when this is done).

I 6.4.2 Default Parameters

3 No further implications for formal verification technology.
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6.5 Function Subprograms

If function subprograms are truly functional, they will not
include any input or output, nor will they reference nonlocal (i.e.,
global) variables. If this is the case, Ada function subprograms can
be verified similarly to Gypsy function subprograms, in which these
restrictions are enforced by the language.

6.6 Parameter and Result Type Profile - Overloading of

Subprograms

No further implications for formal verification technology.

6.7 Overloading of Operators

No further implications for formal verification technology.

7. Packages

This chapter of the LRM deals with the specification of packages
as a means to encapsulate data and subprograms into a single
structure. Of particular interest in the application of formal
verification technology are the use of private and limited types
within a package.

The use of packages directly supports the notion of abstract data
types [Gerhart, Guttag, Shaw], a common abstraction mechanism in
software engineering used to reduce program complexity. Proof rules
for dealing with packages, including package invariants (similar to
loop invariants) have been outlined [Cohen]. The package invariant
is a formula that is asserted to be true and after each call of the
package's subprograms. The application of formal verification
techniques at the level of packages supports the privacy principle
[Tripathi], and might be sufficient to allow implementations of
kernel based security monitors [TCSEC].

7.1 Package Structure

No further implications for formal verification technology.

7.2 Package Specifications and Declarations

No further implications for formal verification technology.

7.3 Package Bodies

No further implications for formal verification technology.

7.4 Private Type and Deferred Constant Declarations

No further implications for formal verification technology.
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I 7.4.1 Private Types

The declaration of a type as private in Ada is similar to the
declaration of a type as an abstract type in Gypsy. Use of these
types are possible only through specific operations on the type,
while the underlying implementation (called the private part in Ada,H and the concrete type in Gypsy) is not available to the programmer
using the type. This provides a wonderful opportunity for
modularization both of software development and of program proofs.
Since the user of these types and operations is unable to know the
underlying representation, it is not possible to develop programs or
proofs that depend upon that representation, thus making them

I independent of it.

7.4.2 Operations of a Private Type

No further implications for formal verification technology.

7.4.3 Deferred Constants

I 7.4.4 Limited Types

A limited type provides the same benefits as a private type with
respect to formal verification technology, as well as aiding further
in the support of package and type invariants [Cohen]. Since
assignment and tests for equality, are further restricted, anI implementation in which two underlying objects might have different
concrete representations but be equivalent from the abstract point of
view (just as one half and two quarters are equivalent) could be
supported. This feature provides additional support for a wider
range of abstract data type implementations.

7.5 Example of a Table Management Package

I No further implications for formal verification technology.

I 7.6 Example of a Text Handling Package

No further implications for formal verification technology

I 8. Visibility Rules

This chapter of the LRM deals with the rules for determining theI visibility of names and identifiers in the Ada program text. For
the most part, such rules are applicable at the syntactic and
semantic phases of the analysis of the Ada program text, although
they will be relevant during verification to determine the scope of
variables being used in proofs of theorems. One area in which the
visibility rules of Ada do have an impact upon the application of

formal verification technology is the allowance of nested subprogram
declarations. Although allowed in the language, [Young~l] points out
that use of such constructs is easily replaced through the use of
good modular design and proper parameter structuring. This is not to
say that a program containing nested subprograms cannot be verified,

A-17I



and one that does not contain nested subprograms can; however, the
application of verification technology to the programs that are
developed in a more modularized manner is a less complicated process,
since modular programs aid in the development of modular proofs.

8.1 Declarative Region

No further implications for formal verification technology.

8.2 Scope of Declarations

No further implications for formal verification technology.

8.3 Visibility

No further implications for formal verification technology.

8.4 Use Clauses

No further implications for formal verification technology.

8.5 Renaming Declarations

No further implications for formal verification technology.

8.6 The Package Standard

No further implications for formal verification technology.

8.7 The Context of Overload Resolution

No further implications for formal verification technology.

9. Tasks

This chapter of the LRM deals with the concurrent aspects of the
Ada language. Far and away, concurrence is one of the most hazardous
obstacles in the way of applying formal verification technology to
the Ada language. By allowing only restricted use of tasking, it
appears that concurrence in Ada can be made amenable to application
of formal verification technology; however, it remains to be seen
whether what remains has any semblance to what would be called Ada,
and whether it would have any usefulness for the objectives for which
it was designed into the language. Use of the techniques employed in
Communicating Sequential Processors (CSP) [Barringer) appears to be a
promising possibility while other research indicates that restriction
of communication to only buffers (a la Gypsy) [Young8O], to only
scalars [Odyssey85], or to only those entry points in which pre-
condition and postcondition assertions have been specified
[Tripathi), would alleviate many of the inherent difficulties in
applying formal verification technology to the Ada concurrence
problem.
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I It must be noted that these restrictions to communicating between
tasks reflect the state of the art rather than assess feasibility.
Although no one has published proof rules for passing aggregate
types, for example arrays or records, development of such proof rules
seems quite feasible.

Several researchers [Odyssey85, Pneuli] have recommended that
access pointers to tasks not be allowed. The intent of this
restriction is to disallow dynamic creation of tasks. They have also
indicated that in the absence of dynamic creation of tasks, proof
rules can be obtained for tasking. However, it is unlikely that this
limitation will be readily accepted, particularly in the systems

programming arena.

The approach used by [Owicki and Gries] to verify Communicating
Sequential Processes, Hoare's language framework for concurrent
programming, is readily adapted to verification of Ada tasks. This
approach consists of two distinct steps: internal verification and
external verification. Internal verification consists of proving the
task an isolated, sequential program. External verification consists
of proving that, with the exception of entries, tasks do not affect
any subprograms, tasks or variables declared outside of the task
being verified. External verification also requires proof that the
task in question is not affected by any subprograms, tasks or
variables declared outside of the task; again, entries are the
exception to this rule. External verification is performed in two
stages:

a) I-0 assertions on entries are made, and shared variables
are restricted, and

b) A proof against deadlocks and starvation is made.

Deadlock and starvation avoidance proofs are prevalent throughout
parallel processing literature.

The verification of tasks also assumes the following:

a) All constructs terminate normally;

* b) Subprogram calls have no side effects;

c) Assignments have no side effects, and

I d) Tasks may not be aliased.

* 9.1 Task Specifications and Task Bodies

This section of the LRM delineates the mechanism for separating
task specifications and bodies. As such, it creates no further
implications for formal verification technology.
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9.2 Task Types and Task Objects

No further implications for formal verification technology.

9.3 Task Execution - Task Activation

No further implications for formal verification technology.

9.4 Task Dependence - Termination of Tasks

No further implications for formal verification technology.

9.5 Entries, Entry Calls, and Accept Statements

Assertions must be made on all 1-0 entry calls.

9.6 Delay Statements, Duration, and Time

There has been very little success in the application of formal
verification technology to the area of real-time features. This is
due in part to the lack of a formal basis for discussion of time, as
well as the inability to deal with factors such as operating system
overhead, change in speed of central processors, and code
optimizations. Use of delays in order to achieve certain
synchronization between actions would much more preferably be
accomplished through semaphores and inter-task communications.

9.7 Select Statements

9.7.1 Selective Waits

The selective wait is another area in the language that provides
for indeterminacy:

9.7.1(5) Selective Waits

... are evaluated in some order that is not defined by the
language; ...

One result of this specification is that selective waits that contain
an else clause can be correctly implemented by a compiler that always
chooses the else clause. It will thus be necessary to restrict the
use of selective waits with else clauses in order to assure avoidance
of such anomalous behavior.

9.7.2 Conditional Entry Calls

Conditional entry calls are similar to selective waits, in that
they can specify an else clause to be performed. However, the
execution of the else part of the conditional entry call only occurs
after the conditional entry has failed, which does not lead to
indeterminacy, and can thus be handled without difficulty.
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I 9.7.3 Timed Entry Calls

As mentioned above, dealing with real-time aspects of programs is
beyond the state of the art of formal verification technology. Thus,
the use of time entry calls would have to be forbidden.

E 9.8 Priorities

The specification of task priority is a mechanism that can be
used to indicate relative importance of concurrent tasks with respect

I to scheduling of processing. However, the LRM clearly indicates that
this area provides an indeterminacy. For tasks of the same priority,
the scheduling order is not defined by the language, and the LRM
explicitly discourages the use of priority assignment for
synchronization. Since priorities should be used only to indicate
relative degrees of urgency and not for synchronization,

synchronization should be used rather than priorities.

* 9.9 Task and Entry Attributes

Tasks and entries have three attributes as specified in the LRM:
T'CALLABLE, T'TERMINATED, and E'COUNT. It has been recommended
(Odyssey85) that the use of these attributes be restricted. The
reason behind this recommendation is that use of these dynamic
attributes enables the passing of information in a manner which is
much more difficult to keep track of than the normal manner of
parameter passing. Since timing and scheduling have already been
excluded from the realm under which formal verification technology is
applicable, this restriction seems reasonable.

I 9.10 Abort Statements

No further implications for formal verification technology.

I 9.11 Shared Variables

Shared variables are the major construct in tasking that will
have to be restricted (although perhaps simulated through use of
other constructs using synchronization) in order to apply formal
verification technology to Ada. On this matter, there is no
disagreement among the researchers[Cohen, Good8O, Odyssey85,
Tripathi].

9.12 Example of Tasking

No further implications for formal verification technology.

10. Program Structure and Compilation Issues

This chapter of the LRM describes the units of compilation,
attends to the ordering requirements for program libraries, and
touches briefly on the results of optimizations. Aside from the
results of optimizations (see also Sections 1.6 and 11.7 with respect
to exceptions) this part of the LRM is neutral with respect to

* application of formal verification technology.
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10.1 Compilation Units - Library Units

No further implications for formal verification technology.

10.1.1 Context Clauses - With Clauses

No further implications for formal verification technology.

10.1.2 Examples of Compilation Units

No further implications for formal verification technology.

10.2 Subunits of Compilation Units

10.2.1 Examples of Subunits

No further implications for formal verification technology.

10.3 Order of Compilation

No further implications for formal verification technology. It
is known that proof order is dependent upon modifications in the same
manner as compilation order, and this provides no new difficulties.

10.4 The Program Library

No further implications for formal verification technology.

10.5 Elaboration of Library Units

No further implications for formal verification technology.

10.6 Program Optimization

The LRM allows optimizations to be performed in situations where
execution of the code would be known to raise exceptions at runtime
(such as an expression causing division by zero). This causes no
impedance to the application of verification technology so long as
the semantics embodied in the proof techniques and tools recognize
the same situation, and proceed in the same manner with respect to
symbolic evaluation and/or path analysis in generating the relevant
verification conditions.

11. Exceptions

This chapter of the LRM defines the exception constructs and
mechanisms and rules of handling exceptions within programs. As
mentioned earlier in Section 1.6, exceptions have been discussed
widely in the general literature [Goodenough, Liskov] as well as with
specific respect to the Ada language [Luckham8O, Young8l]. Other
authors have discussed the relation of exceptions with respect to
other aspects of the language [Cohen, Odyssey85, Tripathi].
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The major difficulty with exceptions [Tripathi] in the Ada

language from the point of view of verification is the dynamic manner
in which exceptions are propagated, and the resulting complexity that
derives from attempting analysis during symboli= execution of
programs during verification. This complexity is furthered by the
fact that exceptions are propagated "as is," which could cause an
unhandled exception to propagate from several levels down to a
routine that has no understanding of the meaning of the exception. A
stack package with a private implementation that raises INDEX ERROR
in the environment of the calling procedure would be totally
unexpected and either unhandled or mishandled.

Through adequate containment of the exceptions - conversion of
unhandled exceptions to some ROUTINEERROR on exit from a block
(within a package or not), or explicit use of "OTHERS" clauses at all
possible functions (not a convenient approach), the complexity could
be reduced.

Another matter of concern with respect to exceptions is due to
the non-specificity of the language with respect to modes of
parameter passing. If a compiler passes an IN OUT parameter by copy
on entry and on exit, the actual parameter may never be updated if
the routine raises an exception, whereas if the parameter is passed
by reference, changes to the actual parameter may actually change the
passed formal parameter, and the value will have been updated in the
presence of a raised exception.

11.1 Exception Declarations

No further implications for formal verification technology.

11.2 Exception Handlers

No further implications for formal verification technology.

11.3 Raise Statements

No further implications for formal verification technology.

11.4 Exception Handling

* Exceptions in Ada are handled by the innermost execution frame or
accept statement enclosing the statement that caused the exception.
(Exceptions within accept statements are discussed in Section 11.5.)
Although the Ada mechanism for propagating exceptions is dynamic,
there is no clear evidence that they are intractable from a
verification standpoint [Young8l].

11.4.1 Exceptions Raised During the Execution of Statements

The major difficulty with exceptions [Tripathi] in the Ada
language from the point of view of verification is the dynamic manner
in which exceptions are propagated, and the resulting complexity that
derives from attempting analysis during symbolic execution of
programs during verification. This complexity is further by the fact
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that exceptions are propagated "as is," which could cause an
unhandled exception to be propagate from several levels down to a
routine that has no understanding of the meaning of the exception. A
stack package with a private implementation that raises INDEX ERROR
in the environment of the calling procedure would be totally
unexpected and either un~landled or mishandled.

Through adequate cgntainment of the exceptions - conversion of
unhandled exceptions to some ROUTINE ERROR on exit from a block
(within a package or/not), or explicit use of "OTHERS" clauses at all
possible junctions (not a convenient approach) - the complexity could
be reduced.

Another matter of concern with respect to exceptions is due to
the non-specificity of the language with respect to modes of
parameter passing. If a compiler passes an IN OUT variable by
copying on entry and on exit, the variable may never be updated if
the routine raises an exception, whereas if the variable is passed by
reference, changes to the local variable may actually change the
passed variable, and the value will have been updated in the presence
of a raised exception. (See example are below.)

with textio; use text_io;
procedure arr is

package int_io is new textio.integer io (integer); use
intio;

type x is array (1.. 10) of integer);

y : x := (others = >0);

procedure bar (a : in out x) is
i : integer := 1;
begin

loop
a (1) := a(1) + 1;
i := i 100;

end loop;
end bar;

begin
bar (y);
exception
when others = put (y (1));

new-line;
end arr;

11.4.2 Exceptions Raised During the Elaboration of Declarations

No further implications for formal verification technology.
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I 11.5 Exceptions Raised During Task Communication

Exceptions raised during task communication are complicated more
by the difficulty in dealing with tasking in Ada than in dealing with
exceptions. However, it is likely that a specification language can
be developed to adequately describe the behavior of exceptions within
tasking to accommodate formal verification technology.

11.6 Exceptions and Optimization

I As mentioned in Section 10.6, optimization is really a compiler
issue, and not a verification issue. Provided that the compiler
adheres to the semantics of the language, it is free to perform
whatever optimizations may be desired to increase the runtimeefficiency of any program that raises the exception in a much shortertime frame, without any adverse implications for verification.

I 11.7 Suppressing Checks

The specification of suppression of runtime checks provides no
difficulty if such directives are also provided as information during
the verification process. This is necessary to prevent programs from
becoming erroneous (see LRM 1.7 (20)). However, a properly
integrated verification and compilation environment can determine at
what points in a program the runtime checks can be suppressed, and
perform the same benefit [McHugh]. The application of verification

* technology should preclude the possibility of erroneous programs.

Suppression of runtime checks through the use of the suppress
pragma directive to the compiler is essentially a change in the
semantics of the language. For software in which it is desired to
use this feature, it would be necessary to re-verify the software
with different symbolic evaluation and verification condition

* generation.

One very useful side benefit of applying formal verification
technology to software development is the possibility of proving that
certain checks need not be made, and knowing that the suppress pragma
can indeed be utilized without re-verification [McHugh]. This would
be applicable only over small segments of program code, but could
have significant payback in execution speed.

12. Generic Units

This chapter of the LRM describes the structure and application
of generic units within Ada. The use of generic constructs is one of
the more novel innovations in the Ada language, and as such, little
effort in the formal verification technology realm had previously
been applied to this area.

Several efforts (McGettrick, Tripathi, Young8O] have investigated

the applicability of formal verification technology to this
construct, and found it amenable to such methods. One major question

* that remains to be resolved is whether generics can be proven prior
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to instantiation, or whether it is necessary to reprove them for each
instantiation. Although the former is preferable, the latter may be
necessary given some generics and their functional subprograms
[Tripathi). The major difficulty lies in the validity of
precondition and postcondition assumptions used during proofs of
generics when given particular instantiations.

A simple solution to providing generics is to prove each
instantiation of the generic (e.g., each instantiation of a generic
subprogram would be proven as a subprogram). This solution is costly
and defeats the intended purpose of generics; a one time verification
scheme is a preferred alternative. This "one shot" scheme would
utilize a method similar to a standard proof routine with several key
restrictions. These restrictions are as follows:

The standard routine must be capable of verifying constructs on
a modular basis

Proof rules utilized during the proof must be generic within the
scope of the generic parameter declaration

A resultant specification of the generic must be performed so
that its effects on external constructs may be used for the
verification of the external constructs.

12.1 Generic Declarations

No further implications for formal verification technology.

12.1.1 Generic Format Objects

No further implications for formal verification technology.

12.1.2 Generic Formal Types

No further implications for formal verification technology.

12.1.13 Generic Formal Subprograms

No further implications for formal verification technology.

12.2 Generic Bodies

No further implications for formal verification technology.

12.3 Generic Instantiation

No further implications for formal verification technology.

12.3.1 Matching Rules for Formal Objects

No further implications for formal verification technology.
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I 12.3.2 Matching Rules for Formal Private Types

No further implications for formal verification technology.

12.3.3 Matching Rules for Formal Scalar Types

No further implications for formal verification technology.

12.3.4 Matching Rules for Formal Array Types

No further implications for formal verification technology.

12.3.5 Matching Rules for Formal Access Types

No further implications for formal verification technology.

I 12.3.6 Matching Rules for Formal Subprograms

12.4 Example of a Generic Package

No further implications for formal verification technology.

13. Representation Clauses and Implementation-Dependent Features

This chapter of the LRM deals with implementation-specific
matters at such a low level as to almost preclude application of
formal verification technology. Several of the constructs, such as
representation clauses, length clauses, enumeration representation
clauses, and address clauses are on the order of specific directives
to the compiler and would have no noticeable effect on the execution
of the resulting program. Machine code insertions, and interfaces to
subprograms written in other languages man be amenable to application
of formal verification technology given an adequate specification
language, while unchecked programming constructs are clearly beyond
the scope of the current state of the art, and would have to beI disallowed.

13.1 Representation Clauses

No further implications for formal verification technology.

13.2 Length Clauses

I No further implications for formal verification technology.

13.3 Enumeration Representation Clauses

No further implications for formal verification technology.

I
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13.4 Record Representation Clauses

No formal implications for formal verification technology.

13.5 Address Clauses

The use of the address clauses must be restricted so as to
preclude the use of a particular address (whether it be a device, or
actual memory) as a shared variable. An example of a program
fragment which allows this follows:

with system; use system;

procedure adr is

a, b : system.address:
for a use at no addr: -- NO ADDR : constant ADDRESS:
for b use at no-addr: -- from package SYSTEM

begin
null;

end addr;

If a and b are each passed to different tasks, it then becomes
possible to cause an implicit sharing of variables. (Given some
vendor's SYSTEM package, it might by possible to generate any desired
address for this example.)

13.5.1 Interrupts

The example in 13.5 is as applicable for interrupts as it is for
shared memory.

13.6 Change of Representation

No further implications for formal verification technology.

13.7 The Package System

No further implications for formal verification technology.

13.7.1 System-Dependent Named Numbers

13.7.2 Representation Attributes

No further implications for formal verification technology.

13.7.3 Representation Attributes of Real Types

No further implications for formal verification technology.
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I 13.8 Machine Code Insertions

The difficulty with allowing machine code insertions from a
verification point of view is the inability to correlate the
specification of the machine code instructions with the intended
abstract behavior at the Ada language level. If it is possible to
specify the intended behavior, it would likely be preferable (from
the verification viewpoint) to program in Ada; if not, attempting to
use such insertions would stymie the verification process.

I One possible use of this feature would be to insert calls to
currently existing functions (e.g., sort routines), that might be
known to already work, rather than having to recode the routines in
Ada. A specification of the routines at the Ada specification
language level and "trusting" the routines to not stray from their
specified behavior might provide an acceptable temporary compromise.

I 13.9 Interface to Other Languages

Interfaces to other languages are like interfacing to machine
language insertions - the major difficulty lies in the specification
of the intended behavior of the interfaced routines, and in the proof
that the routines do indeed perform the specified behavior. Calling
a routine that performs a cube root of its argument a square root
program and specifying it as such will simply not cause it to perform
a square root function, and can lead to "proven" incorrect programs

* if such routines are trusted to such an extent.

13.10 Unchecked Programming

The use of unchecked programming should be generally disallowed
in order to allow the application of formal verification technology.

13.10.1 Unchecked Storage Deallocation

Since the only program-visible effect of using
unchecked deallocation is the assignment of the access value null to
the variable being deallocated, there is no problem with the use of
this feature from the correctness of the most Ada programs-simply
treat such calls as assignments to null. If, however, it is
necessary (and possible) to specify something concerning the amount
of available storage before and after such calls, then something must
be known about the underlying representation, and the specification
language must have some mechanism for specifying such attributes as
available storage space.

13.10.2 Unchecked Type Conversions

One major difficulty with the use of unchecked type conversions
is specifying the transformation between the two types that takes

I placC during the conversion. As an example (see example convert
below), conversion from an eight character string to a sixty-four
element boolean array with the Verdix compiler causes the boolean

* array to contain representations of the corresponding ASCII

A-29I



characters with the least significant bit first. Other compiler
implementations may store the data with the most significant bit
first, and generate different results.

with textio; use text_io;
with unchecked conversion;
procedure convert is

subtype string8 is string (I .. 8);
type bit64 is array (1 .. 64) of boolean;
pragma pack (bit64);

s : string8 := "12345678";
b : bit64;

function string8tobit64 is new uncheckedconversion
(string8, bit64);

begin
b := string8tobit64 (s);
for i in 0 .. 7 loop

for j in 1 .. 8 loop

if b (i * 8 + j) then
put ("l");

else
put ("0");

end if
end loop;
new line;

end loop;
end convert;

14. Input-Output

This chapter of the LRM describes the mechanisms for input and
output from an Ada program and the management of file objects. The
packages described include procedures for the input of sequential,
direct, and numeric data. If implemented correctly, and as intended
by the original programmer, these procedures will not preclude
verification. However, if implemented incorrectly, the results
obtained are unpredictable.
This is a problem of semantics, and not a problem of verification.

The major obstacles to application of formal verification
technology that input and output creates are the lack of the
semantics of input and output, and the ability to do input and output
anywhere within an Ada program. Restricting functions from having
side effects, such as input and output, is encouraged [Odyssey85,
Tripathi], and the use of specifications for those procedures which
do have input and output is a necessity for verification.
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I14.1 External Files and File Objects

No further implications for formal verification technology.

I14.2 Sequential and Direct Files

No further implications for formal verification technology.

14.2.1 File Management

No further implications for formal verification technology.

14.2.2 Sequential Input-Output

No further implications for formal verification technology.

I 14.2.3 Specification of the Package SequentialIO

No further implications for formal verification technology.

I 14.2.4 Direct Input-Output

No further implications for formal verification technology.

E 14.2.5 Specification of the Package DirectIO

* No further implications for formal verification technology.

14.3 Text Input-Output

* No further implications for formal verification technology.

14.3.1 File Management

I No further implications for formal verification technology

I 14.3.2 Default Input and Output Files

No further implications for formal verification technology.

I 14.3.3 Specification of Line and Page Lengths

No further implications for formal verification technology.

I 14.3.4 Operations on Columns, Lines, and Pages

No further implications for formal verification technology.

14.3.5 Get and Put Procedures

* No further implications for formal verification technology.
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14.3.6 Input-Output of Characters and Strings

No further implications for formal verification technology.

14.3.7 Input-Output for Integer Types

No further implications for formula verification technology.

14.3.8 Input-Output for Real Types

No further implications for formal verification technology.

14.3.9 Input-Output for Enumeration Types

No further implications for formal verification technology.

14.3.10 Specification of the Package TextIO

No further implications for formal verification technology.

14.4 Exceptions in Input-Output

No further implications for formal verification technology.

14.5 Specification of the Package IO_Exceptions

No further implications for formal verification technology.

14.6 Low Level Input-Output

No further implications for formal verification technology.

14.7 Example of Input-Output

No further implications for formal verifncation technology.
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This Appendix describes the verification effort by the Program
Analysis and Verification Group at Stanford University. The effort
is analyzed with an eye to its efficiency in serving the needs of the
computer security community (particularly the National Computer
Security Center) with respect to fielding systems that are
verified and accredited at the Al level.

The information contained in this report has been obtained from
the document "An Environment for Ada Software Development Based on
Formal Specification" (Stanford TR #CSL-TR-86-305) and from
discussions with the staff on the project at Stanford.

PROJECT OVERVIEW

The current effort is part of a three year project (completion
September 1989) to construct a prototype environment of tools for
software and hardware development. These tools are based on
specification languages with particular emphasis on distributed
computing and implemented in the Ada language for maximum portability
to various environments. It is hoped that the results of this effort
will provide a better understanding into what features are necessary
in a development environment with a number of possible applications:
requirements analysis and negotiation, rapid prototyping, formal
implementation guides, automatic implementations from specifications
and construction of self-testing systems.

The effort draws on a significant amount of already completed
research, particularly that done in developing the specification
languages ANNA (ANNotated Ada) and TSL (Task Sequencing Language),
and the effort already performed in developing tools for
syntactically parsing the ANNA text and manipulation of the
underlying DIANA representation.

The emphasis appears to be similar to that being taken by other
researchers, in attempting to apply specification and verification
techniques over the entire spectrum of system development, from the
top level system requirements and definition down to the low level
hardware implementation.

In addition to the primary emphasis on the development of a
prototype environment for software and hardware development,
additional emphasis is being placed on developing reusable components
that may be shared among the various applications level programs in
the project. The use of Ada as the implementation language is
intended to aid in the portability of the resulting system, and the
emphasis on integrability (the commonality of tool interfaces
underlying structures, etc.) will also allow the investigation of the
utility of such an approach in a large development project. The
choice of Ada is also intended to allow the investigation of features
of parallelism in specification, runtime checking and software
development that have heretofore been unavailable in other
environments and with other languages.
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I LANGUAGES

This section describes the specification languages (called wide-
spectrum in their literature) in use in the Stanford verification
project.

M ANNA

ANNA is an annotation language for all constructs of Ada exceptI tasking. Although the language is designed to support various
theories of formally specifying and verifying programs, it appears
that the main emphasis has been on the use of the language for
runtime assertion checking. This emphasis appears to be borne out by
the choice, and implementation order, of tools developed for
supporting work using ANNA. In particular, one area of research that
is being looked into is the use of parallel processors to provide
concurrent checking of specifications.

ANNA is being utilized in a number of research and development
efforts for the specification of systems to be implemented in Ada.
Since the ANNA semantics closely parallel those of Ada, its use in
secure systems development would allow the system designers and
implementors to use the same underlying language semantics for
communication of the intended behavior of their specifications and
programs. However, since the language appears to have been targeted
to the runtime validation of program execution rather than pre-
execution proofs of correctness, its applicability in secure systems
development would be limited until a supporting infrastructure, both
in terms of theoretical aspects of the language and in terms of
automated tools, can be developed.

TSL

TSL is a language for specification of the parallel aspects of
Ada program execution. As with ANNA, the efforts appear to be
focused on the runtime validation of TSL specifications. The model
of computation of an Ada program used in analysis is that of a
partially ordered linear sequence. The stream of such a sequence
provides a thread of control, which may be analyzed to determine the
proper execution of a program.

HDL

HDL (Hardware Design Language) is an instance of VHDL (VHSICIHDL) that incorporates features of both VHDL and ANNA for hardware
design. The major benefit to VHDL that will accrue through the
synergy with ANNA is the ability to more accurately represent
hierarchical system design, and to permit the use of axiomatic proof
methods in order to perform design verifications.

I
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CURRENT TOOLS

This section describes the status of tools in the current
development environment. The tools are referred to in several
categories by the developers. The only category discussed here is
that of the application tools, the ones with which the user
interfaces. These tools have no direct bearing on the development of
verified secure system implemented in Ada.

The Ada-ANNA Fabricator and Structure Editor is the planned user
interface to all the tools in the integrated environment. As such,
it operates on the DIANA Abstract Symbol Tree. These tools
understand the syntax and structure of both Ada and ANNA, and are
capable of inserting templates and filling in syntax information.
The system has a graphics display with a mouse interface.

The ANNA Runtime Checker is the cornerstone of the current
research efforts. It provides a capability for testing Ada programs
for consistency with respect to ANNA specifications through runtime
validation checks. ANNA annotations are parsed, stored in internal
format, and pretty-printed as part of the Ada program that they are
intended to validate. The checker is functional, with ports
completed to several hardware architectures. A number of small
examples have been run through the system, and some external
organizations have used it as well.

The TSL Runtime System provides the same capability for parallel
programs that the ANNA Runtime Checker provides for sequential
programs. This is accomplished through a runtime monitor that
accepts the execution stream of relevant events specified using TSL,
and matches them against the sequence derived from the specification
provided in the program. Errors are raised upon observance of
inconsistencies.

Directly Related Tools

This section describes some of the planned tools for supporting
software and hardware development with the various languages
described previously. Only those tools which are applicable towards
verified secure systems are included.

The ANNA Specification Analyzer permits the interactive
evaluation of package specifications during development. The
specifications and program can be symbolically evaluated, and stopped
at any particular point in the evaluation for investigation of
existing properties of the system under evaluation.

This tool could be used during initial design and development of
verified secure systems implemented in Ada to allow the designer to
obtain a much greater understanding of the system specification, and
the consequences of various decisions.
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I This tool would provide extensive support for the development of
verified secure systems implemented in Ada. However, this project is
considered a major and very longterm development effort, which is
still in the planning stages, and does not appear to be a primary
focus of the research effort. Such a tool appears to be at leastthree to seven years away from being available and useful.

The ANNA Static Checker would allow the checking of some
annotations to be done prior to runtime through the use of static
semantic analysis. This would allow some of the runtime checks to be
discontinued, saving on execution time for the system underevaluation. This tool would provide an initial subset of necessary
components for a verification system.

The ANNA Verifier will provide support for mathematical proofs
of correctness between ANNA specifications and Ada programs. It is
intended to support and be integrated into the software development
process, support a number of development methodologies (although be
particularly oriented to hierarchical development), and provide forI both fully automatic verification and for stepwise theorem proving.

Indirectly Related Tools

* This section describes some of the planned tools which are not
applicable towards verification in Ada.

The ANNA Package Body Developer follows the SpecificationAnalyzer and aids in constructing the package body. The
specifications prepared in the Analyzer are used as specifications
for the various bodies in the package implementation, and additional
assertions, such as loop invariant assertions, are developed and
added to the implementation.

The ANNA Runtime Testing System appears to be an extension of
the current ANNA Runtime Checker. The major extension is the
inclusion of reasoning tools to support the optimization of inserted
runtime checks, a la McHugh.

This tool is intended to generate checks that can be run in
parallel with execution of the underlying program to check tasking
related software. In addition, it will permit the investigation of
further applications of system parallelism by allowing tasks that runthe checks to be placed on other processors.

The TSL Distributed Simulator-Checker is an extension of the
current TSL runtime system to provide simulation of parallel
(tasking) software specifications prior to implementation.
Specifications of the interactions between tasks are specified in
TSL, and the specifications are symbolically evaluated to determine

* consistency.
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SofTech has been working on an effort to define the problems and
potential solutions to the development of an axiomatic semantic
definition of the Ada language. The difference between an axiomatic
semantic description of Ada and the definition of Ada given by MIL-
STD-1815A is that the semantic description defines the behavior and
interrelationships of the individual language constructs in such a
way as to be used as the basis of a proof. The existence of a
semantic definition of a language is necessary if a comprehensive
verification technology is to be developed for that language. Any
aspects of a language that are not rigidly, semantically defined are
subject to varying interpretations by different compilers. Some of
the Ada constructs which pose difficulties in verification have been
left out of the semantic description. A list of the excluded
constructs are address clauses, unchecked conversions, variables
shared among tasks and subprogram calls that generate aliases.

To a large extent, most elements of a semantic description are
handled at compilation time and need not be dealt with during
verification time. It is important to realize that the actual
verification environment is based on the semantic definition of Ada
rather than the actual language and constructs which are not included
in the semantic definition invalidate the verification process. The
SofTech study concerns itself only with those constructs which are
not dealt with at compilation time.

SofTech has developed the architecture for a verification
environment based upon the formal semantic definition they have
developed for Ada. This verification environment is based upon a
modification of Ada -- the semantic definition. The description of
the proposed verification environment is included in the following
subsections.

THE VERIFICATION ENVIRONMENT

To create an environment to verify Ada programs three languages
were identified as needed to be defined. These languages are the
source language, the assertion language, and the metalanguage.

The source language is based on the code to be verified. The
source language builds upon the original Ada code by removing any and
all ambiguities and overloaded constructs contained within the Ada
code and specifying them in such a way as to make them unambiguous.
An inconvenience of this language is that the Ada code which has been
modified to become source language code tends to be verbose and
difficult to read. A source language to Ada translator may be used
to transfer code back to Ada to add enhanced readability. Aliasing
is not allowed within the source language even though it is allowed
within Ada.

Assertion languages, of which ANNA is an example, describe
conditions which are expected to hold for formal verification. The
most important quality of the assertion language is the availability
for logical operators within the instruction set.
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I The proof rules are written in the metalanguage. The
metalanguage is designed after Dijkstra's weakest liberal
precondition function (wlp) wherein each function contains the
parameters S and P where S is a statement and P is a formula. If S
is true both before and after the wlp is executed then the formula Pwill be true after wlp is executed.

I IDENTIFIED PROBLEMS

SofTech identified a series of problems that arise while
attempting to verify their axiomatic semantically defined Ada.

Erroneous Execution

As described in the Ada Language Reference Manual (LRM) there
are four types of program errors:

* 1) Those which are detected at compile-time and make the
program illegal. These are of no concern to a verification
environment. It is assumed that any program undergoing
verification has passed through a compiler.

2) Those which are detected by run-time checks and raise
exceptions. This error is discussed in Section 3.2.2.2.

3) Those which need not be detected at all, but whose
occurrence makes execution of a program erroneous.

4) Those which need not be detected, but which cause the
outcome of the program to be considered erroneous.

The third type of error is erroneous execution, although when
this type of error causes execution problems, the programmer, ratherthan the program, is considered to be at fault. This type of error
is considered to be outside the domain of verification.

Semantic definitions of programs fail to hold during an
erroneous execution. The verification of the abstract package state
corresponds to the modular verification of subprograms. As with the
subprograms, abstract package state specifications and bodies are
verified separately.

An erroneous program (an error of type four) is a result of poor
specifications or incorrect programming, problems that are beyond the
scope of present verification technology. State of the art
verification technology is capable of verifying the consistency of a
program only with regards to its specifications.

Unpredictable Exceptions

Unpredictable exceptions are those exceptions that are raised
from sources external to the program, e.g., DEVICEERROR. It is

* suggested that this type of exception may be handled by the creation
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of a logical predicate that is true as long as none of these "acts of
God" occur. This predicate may be added to the preconditions for the
occurrence of the event.

Validation of Modular Sections of the Program

Ada is designed so that modular portions of Ada code are capable
of being compiled separately. Verification of Ada programs should
also be capable of being performed separately in a similar manner.
To perform modular verification, semantic definitions must be made of
the modular specifications and modular bodies. The verification of a
module's body is not affected by the body of another module; only the
semantic definition of the specification is considered. When a body
is verified the preconditions established by the corresponding
specification must be maintained.

A problem occurs during verification if the value of a parameter
is dependent upon whether it is passed by reference or copying. If
this possibility exists then the subprogram call is considered
erroneous. This evaluation includes occurrences of this problem
through aliasing.

Packages are verified modularly by the modular verification of
an abstract package state which corresponds to the subprogram
specification.

Tasking Issues

Tasks, like packages, are treated as abstractions with an
abstract state and a body being verified separately. Each task entry
has a set of pre-postcondition pairs which must remain valid for
verification to take place. Exceptions raised during tasking are
considered "acts of God" and the raising of a tasking error
invalidates the semantic description. In this way the issue of
concurrency problems is avoided.

Timing Issues

Timing issues, such as delay statements, wait statements, and
the priority pragma are avoided by the SofTech semantic description.

Optimization of Compilers

The optimization of code in Ada allowed by the Ada LRM presents
a problem in formulating axiomatic semantics and subsequent
verification. The modification of the Ada language by the compilers
makes it impossible to properly define the required preconditions.
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SofTech has proposed a set of requirements for tools to support
the formal verification and validation of Ada programs on a modular
basis. This set of requirements is known as the Modular Ada
Validation Environment (MAVEN). This project is not being
implemented and is meant to serve as a set of guidelines for an Ada
Program Support Environment (APSE) that is to support formal
verification and validation. SofTech makes the distinction between
verification and val iAation by defining them as such: verification
pertains to the formal proof of a piece of code through mathematical
techniques, validation pertains to the determination of a level of
confidence in the software in question through formal or informal
methods.

REQUIREMENTS

The functionality of MAVEN is based on the establ'.shing of
several requirements for the validation of Ada programs:

a) Formal proofs Fhould be implementation independent. The
behavior of a specific environment that contains a
validated Ada compiler should not affect the performance of
MAVEN.

b) The functional performance of MAVEN should be modular in
nature. rThe modification of a modular section of a program
should not require the re-validation of other modules of
the same program as long as certain pre-postconditions of
the modified module are not changed.

c) Separate modules of a program may be validated by different
techniques. Different modules lend themselves to different
validation techniques. While one module may be formally
verified without complications, another module may require
a less rigorous technique be used. This difference in
techniques should not affect the overall validation of the
software. Some of the possible techniques include formal
and informal proof techniques, code walkthroughs, unit
testing, and historical acceptance based on trusted
performance.

d) While complete verification may be impossible with existing
techniques, partial verification or validation, involving
the proof of one or more properties of a module or program,
is a useful indicator in providing a guide of correct
behavior.

D-2



I
I

TOOLS

3 To perform validation of a module of code it is suggested that a
process similar to the compilation of a module of code be used. The
syntactic specification of a piece of code should be validated before
that piece of code's body. This allows other modules that call this
module to be validated before the module is fully validated. The
eventual validation of the body includes maintaining the constraintsI defined by the syntactic specifications.

Facilitating modular validation, an important construct with
MAVEN, is the program library. Syntactic specifications are stored
in the program library where they are accessible to module bodies
being validated. Semantic specifications are stored in a validation
library. The semantic specification for a module consists of a set
of pre-postcondition pairs, one for normal termination and one for
each exception that may be raised.

To facilitate consistency within the verification process, MAVEN
imposes restrictions on the order in which units may be verified.
Specifically a module's semantic specification must be entered into
the validation library before any other module that references the
module, or the module itself, may be consiH-red verified. The order
of verification of individual bodies or irn..vidual specifications is
not considered, only that a specification must be verified before a
separate body that refers to it may be verified. Similar restrictions
apply to the re-validation of a program after modifications are made.

While the most powerful tools within MAVEN are the libraries
(validation and program), there are more verification tools within
MAVEN. Some of these tools are specification writer's assistant, a
software retrieval tool and a suite of testing tools. The
specification writer's assistant is a knowledge-based tool which,
through interaction with the user, produces formal specifications.
The software-retrieval tool implies validation upon reusable units of

* code assuming two conditions hold true:

a) The preconditions given in the design imply theI corresponding preconditions of the reusable unit.

b) The postconditions given in the design imply the
corresponding postconditions of the reusable unit.

I EFFECTS ON THE SOFTWARE LIFE CYCLE

While MAVEN is mostly applicable to the validation of software,
it provides support for a wide variety of topics over the entire life
cycle. Only those topics which are directly related to verification
will be discussed here. Under MAVEN, verification is not limited to
a single do or die process, support is given to verification ofsoftware throughout the life-cycle. The specification writer's
assistant is useful in defining formally stated verifiable
requirements. In addition MAVEN plays four roles in the design
phase:
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a) The validation library is used for storage of semantic
specifications of each design module. Again the
specification writer's assistant is used here.

b) During top level design module design plans are formulated
and stored in the validation library.

C) MAVEN contains a catalog of reusable software including
modules previously placed there by the user. These
modules are most easily integrated if their formal
specifications are stored in a library which is linked to
the actual code through automated retrieval. As previously
stated, re-validation of this code is not required if the
syntactic specifications validate within the scope of the
new program.

d) In the same way that standard Ada code is verified an Ada
Program Design Language (PDL) is subject to validation
through MAVEN. This enables the programmer to prove that
top-level algorithms correctly meet the system
specifications.

Logically, all verification techniques applicable to top level
design are also applicable to intermediate and low level designs.

MAVEN may be used to assure that, when modifications are made to
the program for maintenance, the initial specifications are not
validated.
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There are strong parallels between security and safety. In
security, if software performs unpredictably national interests may
be compromised. Software safety is typically utilized to protect
human life in instances as varied as monitoring nuclear power plants
to regulating implanted pacemakers to supporting air traffic control.

The question here is Ada-specific: Is the software safety
approach applicable to Ada software that is intended to be trusted
or secure? The two issues spawned by this question are the degree
of similarity of security and safety, and the maturity and
applicability of software safety vis a vis Ada. To address these
issues it is necessary, first, to review software safety.

DESCRIPTION OF SOFTWARE SAFETY

Software safety involves ensuring that software will execute
within a system context without resulting in unacceptable risk. Many
safety-critical applications will be written in Ada, and therefore it
is useful to examine the Ada language with respect to safety issues.
The DoD and otner government agencies require that all safety-
critical software be certified as having acceptable risk before it
can be fielded. The ability to verify the safety of software written
in Ada may make the difference between whether Ada features are used
in safety-critical software.

To make these decisions, it is helpful to examine the types of
requirements levied on safety-critical software. A general safety
standard MIL-STD-882B: System Safety Program Requirements, was
recently updated to include two tasks specifically related to
software. One task requires Software Hazard Analysis "to identify
hazardous conditions incident to safety critical operator information
and command and control functions." This task involves performing
and documenting "software hazard analysis on safety critical
software-controlled functions to identify software errors-paths which
could cause unwanted hazardous conditions" by examining "software and
its system interfaces for events, faults, and occurrences such as
timing which could cause or contribute to undesired events affecting
safety." A second task, Safety Verification, requires that the
developer "define and perform tests and demonstrations or use other
verification methods on safety critical hardware, software, and
procedures to verify compliance with safety requirements." On most
non-trivial software, it will not be possible to verify safety to the
degree required by using testing or demonstrations. This will mean
that formal verification procedures of some sort will be required by
those on whom this task is levied.

Two service-specific standards also require software safety
analysis. An Air Force standard for missile and weapon systems, MIL-
STD-1574A: System Safety Program for Space and Missile Systems,
requires a Software Safety Analysis and an Integrated Software Safety
Analysis (which includes the analysis of the interfaces of the
software to the rest of the system, i.e., the assembled system). The
Navy also has a draft standard, MIL-STD-SNS: Software Nuclear
Safety, due to be released soon that requires Software Nuclear Safety
Analysis (SNSA). This Navy standard will impose strict requirements
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on software design and verification that will severely affect the
choice and use of the programming language for the software. If
strictly enforced, these standards could also mean that some type of
formal verification of safety will be necessary.

Achieving acceptable risk for systems controlled by software
will require changes to the entire software development life cycle.
The programming language used will most affect the design,
implementation, and verification activities.

Design and Implementation

Designing for safety requires early identification and
separation of safety-critical functions. This allows design to focus
on areas requiring particular and intense attention and to provide
leverage for the verification activities by minimizing the amount of
time and effort needed to verify and certify the software.

Software hazard analysis involves identifying software-related
system hazards. It is performed early in the development process,
usually prior to the specification of the software requirements, but
after preliminary system hazard analyses have been performed. In
general, software can cause problems through acts of omission
(failing to do something required) or commission (doing something
that shou3d not be done or doing something at the wrong time or in
the wrong sequence). Software hazards also may include failing to
recognize a hazardous condition requiring corrective action or
producing the wrong response to a hazardous condition.

Once the software safety requirements have been identified and
specified, it is necessary to design the software to minimize risk.
Software safety design analysis [Leveson (1986b)] is a procedure
whose goal is to identify safety-critical items. The process can
begin once a high-level design has been produced. Safety-critical
items are software processes, data items, or states whose inadvertent
occurrence, failure to occur when required, occurrence out of
sequence, occurrence in combination with other functions, or
erroneous value can be involved in the development of a potential
hazard. Safety-critical items include erroneous program states and
data items that could cause a hazard even if the function or
algorithm is correct. Emphasis is placed on inputs from and
interfaces with other components of the controlled system.

The results of the software safety design analysis are used in
the detailed software design and implementation, especially with
regard to minimizing the critical items, designing fault tolerance
and exception-handling facilities, and ensuring that the critical
items are isolated from the rest of the software and adequate
"firewalls" built. It is also useful in planning load shedding and
reconfiguration (e.g., determining exactly which modules and data
items are absolutely necessary in a degraded (fail-soft) processing
mode and determining the priorities that should be assigned to Ada
tasks).

A safe software design includes standard software engineering
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techniques to enhance reliability, and special safety features such
as interlocks, fail-safe procedures and design to protect against
failure in other parts of the system including the computer hardware
[Leveson (1986a)]. In general, the design features can be divided
into two categories: (1) preventing hazards and (2) detecting and
treating them.

Preventing hazards through design involves designing the
software so that the occurrence of faults and failures cannot cause
hazards. The basic idea is to reduce the amount of software that
affects safety (and thus to reduce the verification and certification
effort involved) and to change as many potentially critical faults
into non-critical faults as possible. This may involve isolation of
critical functions through modularization, the application of
security techniques for authority limitation to ensure that critical
items are protected from inadvertent activation or destruction, the
use of programming language concurrence and synchronization features
to ensure sequencing and to implement interlocks, etc.

Preventing hazards through design is difficult. In any
certiiication arguments that are based on this approach, it will be
necessary to prove that there is no way that the safety of the system
can be compromised by faults in the non-critical software. One way
to do this is to provide a programming languaqe whose semantics
ensure that the hazards are prevented. Ada has many features that
will help here including strong typing, tasking, abstract date types,
and exceptions.

Prevention of hazards is difficult and tends to involve
reduction of functionality or design freedom. The alternative is to
attempt to detect and treat hazards. Ada exception-handling provides
a mechanism to assist in software fault-detection. However, it has
been found to be difficult to formulate the appropriate exception
conditions [Leveson, Knight, Cha, and Shimeall(1963)]. In terms of
safety, it is possible to use the information obtained through the
software hazard analysis and the software safety design analysis to
guide the content and placement of the exception conditions.

Verification and Certification of Safety

If the design is carefully done, verification and certification
of the safety of software should be greatly simplified. The most
costly procedures need be performed only on the modules that have
been determined to be so critical that testing and other assurance
procedures alone will not suffice to ensure acceptable risk. The
verification procedures also need to ensure that the detailed design
features related to safety-critical items and exception-handling have
been correctly implemented and that the assumptions and models upon
which the analyses have been based are correct. Because Ada language
features can actually be used to ensure many of these required design
features, the certification requirements will reduce to arguments
about he correctness with which these features have been implemented
in the Ada compiler used.

This raises some interesting questions with regard to
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I certification of Ada compilers for safety-critical applications.

Certification of the compilers for such applications requires a much
higher level of assurance than provided by current Ada compiler
certification procedures. Even compilers for languages such as
Jovial require years of verification and certification to convincethose contracting for safety-critical software that there are
absolutely no faults contained in the compilers and that they will,
with absolute certainty, produce correct and safe code. Few such
certified compilers exist at all, which is one of the reasons safety-
critical software is often written in assembly language (it is muchI easier to certify an assembler). It is doubtful that any complete
Ada compiler could pass these stringent procedures. However, it may
be possible to build compilers that do not attempt to handle all AdaI language features. It will also probably be necessary to build
compilers that do not require that the entire Ada run-time support
facilities be resident in memory for all programs to run. It will be
next to impossible to prove that a large runtime support system is
correct and that it will not affect the correctness and safety of the
application software. It will be necessary to write compilers that
allow run-time facilities to be excluded if the particular featuresI that it handles are not used in the application programs. Without
this, it is doubtful that Ada can be used in safety-critical
applications for embedded systems.

I APPLICABILITY TO SECURE ADA SOFTWARE

It is important to understand that verification of safety is
different from the usual verification of correctness [Leveson (1983),
Leveson (1986a)). The basic goal of safety verification is different
than that of correctness. We will assume, by definition, that the
correct states are safe (i.e., that the designers did not intend for
the system to have accidents). The incorrect states can then be
divided into two sets -- those that are considered safe and those
that are considered unsafe. Safety verification attempts to verify
that the program will never allow an unsafe state to be reached
(although it says nothing about incorrect but safe states). Since
the goal is to prove that something will not happen, it is useful to
use proof by contradiction. That is, it is assumed that the softwarehas produced an unsafe control action, and it is shown that thiscould not happen since it leads to a logical contradiction.

3 Although a proof of correctness should theoretically be able to
show that the software is safe, it is often impractical to accomplish
this because of the sheer magnitude of the proof effort involved andI because of the difficulty of completely specifying correct behavior.
In the few safety proofs on real software that have been performed
[Leveson and Harvey (1983), McIntee (1983)], the proof appears to
involve much less work than a proof of correctness (especially since
the proof procedure can stop following a software path as soon as a
contradiction is reached). Also, it is often easier to specify
safety than complete correctness, especially since the requirements
may be mandated by law or government authority, as with nuclear
weapon safety requirements in the U.S. Like correctness proofs, the
analysis may be partially automated [Rolandelli, Chimeall, Leveson
(1986)], but highly skilled human help is required.
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The degree of applicability of software safety approaches to
secure software is a function of the ability to clearly identify the
security requirements and to then isolate the code affected by these
requirements. If a well defined set of security requirements exists
and these can be partitioned into a limited number of modules then
the software safety approach is applicable. It must be noted that
with this approach, a large percentage of the code is developed using
traditional approaches. If the intent is to know exactly what the
software will and will not do this approach is not applicable; if,
however, the intent is to assure that a set of requirements that are
isolated into a limited number of modules are satisfied, then the
approach is promising.

Relative to Ada, Software Fault Tree Analysis (SFTA), which has
many of the features required for verification of safety, has been
defined at least partially for the language [Leveson and
Stolzy(1983)]. The technique can handle all Ada features that also
occur in Pascal along with the Ada rendezvous. Work is presently
being done at the University of California, Irvine to extend the
technique to as much of Ada as possible (and to define those Ada
features that might need to be avoided if SFTA is to be used). An
automated tool that would take annotated Ada code and automatically
produce the fault tree verification is currently under design and
development, but will not be ready to be used for several years.
Since the results can be checked by hand, it should be possible to
certify such a tool for use on safety-critical code.
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The intent of IBM's "cleanroom" approach to software
development is to prevent software defects during development rather
than to detect and remove defects after development. The approach
is to use a combination of human verification and statistical
testing and to assess success of the process by utilization of
reliability estimates. The human verification process is based on
reasoning about sets, functions and relations of abstract states
through use of denotational semantics. This approach enables
abstraction to higher levels and, therefore, permits reasoning
about both 100 line modules and 100,000 line systems. An
underlying assumption is that specification writing, verification
writing, and code writing are full partners and that each of these
activities may affect tne other two. One conspicuous outgrowth
of the approach is the attention that both individual programmers
and programming teams give to the design and verification of
software.

Whether this approach is applicable to developing secure
software in Ada does not center on the Ada language. The questions
are does this relatively informal approach satisfy the stated and
intended software security requirements? Is human verification,
which is both fallible and flexible, acceptable as an alternative to
automated verification? Is the process of "cleanroom" both mature
enough and adequately articulated to be transitioned to other
organizations? The effect of Ada on the answers to any of these
questions is secondary at most.

DESCRIPTION OF CLEANROOM

A primary principle of "cleanroom" that supports the defect
prevention philosophy is counterintuitive, at least initially:
testing and debugging are prohibited until software is released for
independent, user-generated statistical testing. This principle is
an affirmation that the software will be developed correctly, and
therefore unit testing and debugging are unnecessary. The debugging
process is replaced by human verification combined with statistical
testing.

Human verification is performed at each level of the stepwise
refinement of a structured specification. A structured specification
is a formal statement of a specification as a relation. This
relation is given as ordered pairs of potential inputs and acceptable
outputs. The initial specification is decomposed into a nested set
of subsets that are used to define the initial and incremental
releases. Due to the nesting, each incremental release includes all
the specifications of previous releases.

The testing performed prior to release i6 customer-defined
statistical testing. The customer generates a use profile for the
subset of specifications covered by each release. The testing is
designated to establish reliability levels for the software. Since
test suites are developed based on anticipated usage, translating the
performance during testing into anticipated reliability during use is
fairly straightforward.
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E Human Verification

The verification used in "cleanroom" is functional verification
and the only automated tools used are word processors. Functional
verification utilizes the denotational semantics and rules of sets,functions and relations to reason about specifications as they aredecomposed and refined.

Initially, a structured specification exists at a very high
level. This specification is given as a relation, a set of orderedE pairs of anticipated inputs paired with acceptable outputs. This
specification is refined by replacing pairs of the relation with more
concrete rules for determining the output element of the pair. Two
processes are applied during refinement. One is the decomposition of
the specifications into nested subsets. The subsets of
specifications are used to define incremental deliveries where each
delivery is an expansion of the previous delivery; the specifications
covered by the new delivery are a superset of those covered by the
previous delivery. In addition to being broken into nested subsets,the specifications are refined in detail. This evolution of
specifications leads to specifying each sequence of statements, each
iteration (loop) statement, and each selection (IF. . .THEN)statement. The specifications are developed prior to the code.Obviously, large volumes of specifications are generated.

The verification process takes place in parallel with the
specification development. The reasoning is done using denotational
semantics based on the set theory. From the initial structured
specification through detailed specificaticn that will be used togenerate a small sequence of code, specifications are given as
relations. (If the output for any given input is unique, the
relation is a function.) As the specifications are decomposed and
refined, more specific rules for calculating the relations or
functions are generated. Mathematical variables are introduced and,
eventually, program variables are defined and introduced into the
specifications. It is important to note that when the reasoning goes
from the more detailed specifications to the highe- level
specifications, that the abstraction process replaces the program
variables and mathematical variables so that the verification
documentation remains manageable from the perspective of detail.

The establishment of program correctness with respect to a
specification is finalized after the program has been written. The
specification for the program has been given as a relation. The
program computes a function, since any input will calculate a unique
output. Each small piece of code is specified by a function,
typically given as a rule in terms of program variables. To
calculate the meaning of larger sections of code, the functions of
the subsections of the code are composed. As the sections of code
functionally described get larger through composition, the specific
function rules are replaced by higher-level descriptions which no
longer utilize the program variables. Once a function for the entire
program has been established it is compared to the relation of the
specification.
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The program is considered correct with respect to the
specification if for each input in the specification relation, the I
program calculates an acceptable output.

This can be represented quite concisely mathematically. Let the
specification relation be denoted by S. S is a set of ordered pairs.
Let the function calculated by the program be denoted by P. P is
also a set of ordered pairs. The domaii (S) is the set of all first
elements in the ordered pairs of S, and tne domain (S OP) is the set
of first elements of ordered pairs thac --e in the intersection of S
and P. P is correct with respect to S if and only if

DOMAIN (SOP) = 39M7,iN(S).

This assures that each input elemei.t i, S is paired with an
acceptable output element by the function P.

The verification text generated is not a full proof. The text
is the design of a proof that is meant to be inspected by other
designers and judged for its adequacy.

Statistical Testing

This process of verification is fallible for two reasons.
First, it is a human activity and humans are fallible. Second, proof
outlines may not expose subtle and critical errors in reasoning. For
these reasons, the "cleanroom' complements the human verification
with statistical testing.

Statistical testing is based on user-generated profiles of the
ase of the software being produced. Test suites are developed which
reflect this profile. This method of testing encourages covering a
large portion of the specification input space and also utilizes the
design hypothesis, which is still intact due to the nature of the
development process.

Once testing is complete, reliability estimates can be made.
These estimates are bL;ed on the performance of the software during
statisti,.a1 testing.

APPLICABILITY TO SECURE ADA SOFTWARE

"Cleanroom" is an approach to enhance and estimate software
reliability. The human verification process embedded in "cleanroom"
is an attempt to ensure that the output of the program is acceptable
as defined by the specification. If the specification accurately
states what the program is to do, the human verification process
attempts to assure the program performs as it is desired to perform.

The benefits of "cleanroom" include the attention given to the
design and verification process by individual programmers and by
programming teams. Also, the design and the design hypothesis are
preserved through this process. The verification and inspections
happen early in the life cycle so that evolving designs that are hard
to verify may be altered.
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Harlan Mills, architect of the "cleanroom" approach, has made

Ada-specific recommendations for verification [Mills 1986A]:

o Transfer verification technology to people as well as
machines -- people are more fallible but more flexible.

o For human verification in an Ada environment to be
successful, a verification language and processing
facilities are necessary.

o Include in the verification or specification language aproposition type whose members are proofs or proof
outlines, for the proposition.

The appealing features of applying "cleanroom" to certification
of secure software include that the process goes from early in the
specification phase through coding and testing and therefore, beyond
design verification; it is a formal method, although somewhat
infozmally applied; and it is somewhat language-independent. It does
however, require training talented individuals, and the process is
only as good as each specification application.
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AUTOMATIC PROGRAMMING

Automatic programming has been the hope of many computer
scientists since the beginning of the field. The term has been
applied to a widely varying set of technologies, but they always seem
to be what is just over the horizon.

In the fifties, FORTRAN was called an automatic programming
tool. In many ways it did automate the programming of arithmetic
formulae. Many errors were eliminated, optimizations could be done
by the translating software, and consequently higher confidence could
be placed in the result. There was still considerable opportunity
for error -- misused operator precedence and parentheses for example.
These kinds of errors could not be caught by the compiler because
they were correct programs, just not the ones intended. The attempt
to answer this issue drew things in two different directions. One
was toward testing and the other was toward an even higher level of
specification of the program.

Testing was basically to show the actual performance of the
software. These results could be compared with the expected results
and thereby determine if the program was correct. The development of
these tests required as much, if not more, analysis and development
work as the program itself. It was also clear that testing could
uncover only a limited number of errors. In particular if the
original problem was misunderstood, it was possible for both the
programming and testing teams to do their jobs wrong. Sometimes they
would catch each other, but sometimes they would make consistent
misinterpretations.

In many situations the original problem statement and its
analysis would be done by a single team and then passed to developers
and testers. If the original analysis was wrong then no amount of
work by the testing team would reveal it.

This motivated the other approach which was to move to higher
level languages which would be closer to the original problem and
hopefully understandable by the people with the problem to be solved.
By using a higher level language, the number of interpretation (and
thereby potentially error causing) steps could be reduced. This is
also some of the motivation behind prototyping. The general hope is
that written at the proper level, it will be possible for the
original requestors to determine if it is the correct program. Then
the actual program could be automatically derived through a series of
transformations, program generation, and compiling steps.

Much of the work on program proving is closely connected to this
approach. By putting assertions about the program into the code
itself, it is hoped that the program can be automatically proved to
conform to these assertions, and it is also hoped that these
assertions will be more directly linkable to the requirements and
specifications of the original problem.

Because of the close linkage of these two approaches, it is
unlikely that one will succeed without the other. Current approaches
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in automatic programming are along the lines of automating the
generation of programs starting from very high level specifications.
These very high level specifications are very much like the high
level assertions used in the program proving and verification
approach.

Research and development work going on now should emphasize some
of the common features of the two approaches and start providing the
programmer tools and interfaces that would be useful -- for example,
some kind of advanced editor that would help build high level
assertions and link them to the high level specifications and
requirements that are supposed to be answered by the code under
development. This kind of tool could be immediately useful in the
context of traditional IV&V (Independent Verification and Validation)
where requirements, specification and code must be linked and also
useful in developing code which had a high probability of fitting
into any automatic verification environment developed in the future.

I Some of the work on program transformations has already been
applied in unstructured to structured code converters and in
recursion removal optimizes. Many other transformations could be
used to assist programmers. The programmer's assistant kind of work
is really just a high level program building tool, but it still
requires an expert programmer and expert in the tool to use it

* effectively.

INDEPENDENT VERIFICATION AND VALIDATION (IV&V)

In IV&V (independent verification and validation), the word
"verification" basically means checking between stages in the
software development process to be sure that all items have been
correctly handled. For example, that each of the points in the
specification is accomplished by a portion of the design, that no
functions exist in the design that are not explicitly required in the
specifications, and that all the connections between the requirements
specification and the design have been properly documented.

This approach is very useful in large systems where it is veryeasy for things to get lost. There have also been some automatedsystems which provide various kinds of cross reference lists linking

specification sections to design elements. These can also be used to
link testing objectives to specific modules, chec1 for the modularityand separability of the design, and point out related areas during
maintenance activities.

I On government contracts the IV&V process can also be used to
have separate contractors checking on each other about the details in
the specifications and designs (usually a pretty good idea). There is
however a problem in that the organization managing the acquisition
of the computer software is usually separated from the initial
requestor and from the eventual user. That means there will be
continual interpretations of what is wanted that may, or may not,
match exactly the actual goals.

* This approach has also begun to use various metrics and models
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to predict the complexity and error proneness cf large software
developments. There are also formal procedures for software audits
and so forth. These topics are well covered in many current software
engineering text and guide books.

This approach is neglected by more formally oriented computer
scientists because of its being generally a management technique. The
cleanroom and software safety approaches have their roots in these
now classical approaches to 3oftware management.

When it comes down to human decisions as to whether some
software performs correctly, there will always be a need for
management control and tracking of the development and review
process. These classical techniques will be important no matter how
much we are able to automate high level specifications, automatic
derivation of programs and formal verification.

These techniques should be adapted to use the emerging formal
specification tools, automatic cross references between stages in I
program development, and the limited formal verification technologies
that are now becoming available. In particular code needs to be
developed with eventual verification in mind. These management
techniques can be used to assure that the software and its internal
conditions and assertions are consistent.
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