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GENERAL FORMS AND PROPERTIES OF ZERO
CROSS-CORRELATION RADAR WAVEFORMS

1. INTRODUCTION

Modern radars generally incorporate pulse compression waveforms to obtain the desired range
resolution while avoiding pulses having large peak powers. Pulse compression waveforms are exem-
plified by the Barker, pseudo-random shift register, chirp, and the polyphase codes [1-31. This report
describes new waveforms that have been recently investigated for use in radar systems. Of particular
interest are multiple dissimilar waveforms having very low sidelobes after processing. Low sidelobes
are desired to prc:vent the masking of weak targets in the sidelobes of strong targets or clutter returns.
The multiple waveforms (whose number we set equal to M) are processed by individually match-
filtering, time aligning, and summing the results.

The multiple waveforms considered in this report are derived from either complementary or
noncomplementary waveforms. Complementary waveforms [4-9] are coded sequences (complex
numbers in general) having autocorrelation functions (ACFs) (or equivalently the output of pulse
compressors consisting of filters matched to the coded sequences) that sum to zero everywhere except
at the match point when time aligned and added together. This is shown in Fig. 1 for M = 2.

In Refs. 2 and 3, new multiple waveforms were discussed that have zero cross-correlation
response after combining the individual responses when filtered by a filter matched to a different
waveform of the set. These waveforms have potential applications in cancelling stationary clutter
from ambiguous ranges in a medium or high PRF radar and/or in reducing mutual interference
between radars that are operating in the same frequency band in proximity to ea. ouer.

This report is an extension of that work presented in Refs. 2 and 3. Herr, we give general
forms for both the complementary and noncomplementary zero cross-correlation waveform sets. In
addition, various properties of these codes and their relationship to zero sidelobe periodic codes are
stated and proved. A radar application using these codes is presented.

2. DEFINITIONS

In this section, we define our nomenclature and review the concept of periodic coded
waveforms. A code word a is defined as a vector of length N, and

S(do, a,., aN_),(1)

Manuscript approved September 1, 1989.
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Fig. I - Complementary code example

where an n = 0, 1, ... N - 1 are the elements of the code word. This code word modulates a
carrier frequency and is match-filtered at baseband upon reception. The aperiodic autocorrelation
function (ACF) of a is given by

N-i-k
ra(k) = 1, a fai +k, k = 0, 1,... , N - I,

i =0

N -1-k
ra(-k) = E a*+ka i , k = 1,2,..., N-1 (2)

i=0

where * denotes complex conjugation. The k = 0 value of ra(k) corresponds to the match point, and
the k * 0 values correspond to the right and left side sidelobes of the compressed pulse.

A periodic code is one that repeats the code word q indefinitely. Hence, if apc is the periodic
code associated with a then

2
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ap, = a oa on... (3)

where the symbol "o" denotes concatenation. On reception, a periodic code is match-filtered with
its code word. The output of the correlation process is also periodic with a period, N. Hence, the
matched-peak response repeats every N unit time delays as does the sidelobe response. We define the
N point periodic autocorrelation function as

N-I

rp(k) = a*a(i+k),o. , k = 0, 1 ... , N - 1. (4)
-0

Note that the i + k subscript is taken modulo N. Thus we are computing the residue of i + k with
respect to the number of subpulses contained in the code word. For our development, we always
compute the subscript with respect to the code order and drop the mod N notation from the subscript,
thus aN + i = ai .

Define the vectors hk, k = 0 ... , N - I as

ho = (ao, a1, ... , aN-l),

hI = (a,, a 2, ... , aN-1 , ao), (5)

h 2 = (a 2 , ao, ... aN ao, a,),

hN_ 1  (aN-I, ao, a,, ... ,aN-2),

where these vectors are the circular rotations of a. Equation (4) can be rewritten as

rP(k) = hh T , k = 0, 1... N -1 (6)

where T denotes the vector transpose operation.

A zero sidelobe periodic code (ZSPC) has the property that

rp(k) = hh = 0, for k * 0. (7)

If all the code elements of a ZSPC have unit amplitude, the code is called a perfect periodic code
11,21.

3
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We now consider multiple waveforms. Define the code matrix C as an M x N matrix of code
words:

CO0  Cot ... CO,N -1

CI 0  Cll ... CI,N-I

c =(8)

CM-,0 CM-I, ... cM-1,N-1

Let there be M code word of length N, where the m th code word (m 0, 1,..... M - 1) is defined
by the M + Ith row of C or

Cm = (CmO, Cm 1.', Cm,N)- )- (9)

We define the aperiodic cross-correlation vector (CCV) between cm and c, as

C* . . . ....), ~n)2, 4),r-) -? (10)

where the bold asterisk * denotes the linear convolution operation, - denotes the time reversal of the
sequence ca, and

N-i-k
rk(a ) = c.cn,i+k, k > 0, (11)

iaO

N-l-krL_." )  E ,c*,i+kcnj, k > 0. (12)
a =0

Note that in general I rk() * r Ir-kI unless m = n.

In addition, the summed CCV is defined as

M-I
C~* m+1 = (q ()N -1,q-(N-2)... qft), ql), ... , qjV! 1). (13)

m-0

We note that if

Nth position
M-I

E C* m = (, 0 ..... , O, O, .. , O), (14)

4
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then the code words of C form a complementary code set. If I q Iqk() , then the summed
CCV is called magnitude symmetric. Furthermore, if

M-1 c* *Z,,+/ = 0, 1 * 0 , (15)
m =0

where 0 is a vector of 2N - 1 zeros, then we call the code words of C a zero cross-correlation code
(ZCC).

In the following sections we consider periodic codes that are formed by concatenating the M
rows of C. Thus a code word a is formed as

a = co ocI o... ocM- 1. (16)

3. PROPERTIES OF ZCC COMPLEMENTARY WAVEFORMS

The relationship between ZCC complementary codes and their associated periodic code is stated
in the following theorem.

Theorem 1: If the rows of C form a zero sidelobe periodic code (ZSPC), are a complementary code,
and the summed CCV is magnitude symmetric, then the rows of C form a ZCC code.

Proof. Let us form the periodic code associated with C

ho = (COO, c 0 1, .. CO,N1, C10 , C1 2 ... , C, , C20 , ... , CNI.N). (17)

The circular rotations of ho are defined by Eq. (5).

Let I = 11 N + 12 where 12-l mod N and set r m ) = 0 for all m ,n . It is straightforward to
show that for a ZSPC, I * 0

M-1 (mm+l) M.1 (mm+l+l)h Em rl, + 1 r-(N-l,) = 0 (18)
m=0 m=0

where m +11 and m + Il + 1 are taken modulo M. Now from Eq. (13) we know that

qj(i) = M- rjm'm+i). (19)

m=0

Note that q()N - 0 becauser" = 0 for all m, n. It is instructive to write Eq. (18) out for
successive values of I by using Eq. (19)

5
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hthr = q) + qL'JN-j) = 0

hthJ = q40) + qL_ N,2) = 0

hthN- 1  =qj°!1 + q = 0

h hN _ qO) + qS1 ) = 0

h thk+1 =I q1) +q N- 1 ) = 0

hthT+2 q4) + q2 N_2) = 0
(20)

h h - =qk) + q&) = 0

h* hTN + = q(12) + q(3  = -

We note that every Nth equation of (20) is of the form ht = qjfl) + q,) - 0,
n = 1,2,..., N - 1. Since qi n-l) -0, it follows that q f) -0 for n = 1,2,..., N - 1. It is
seen that if the code words of C are complementary then qj(0) =0 for j 0. Thus using the first
N - I equations of (20) imply that q9) = 0 for 1, 2s N - i. If the summed CCV is
magnitude symmetric, then qjl) = 0 for j = 1, 2, ... , N - 1. Hence by using the (N + I)th
through (2N - I)th equation of (20), it follows that q -) = 0. This argument can be repeated to
show that qji) = 0 for all i, j except for when i = j = 0. Hence the theorem follows.

The following two theorems can be shown by using the same arguments:

Theorem 2: If C is a ZCC code and complementary, then C is also a ZSPC.

Theorem 3: If C is a ZCC code and a ZSPC, then C is complementary.

6
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Next, consider the matrix

K zeros

COO CO Co2 "" Co',N1 0 0... 0

CI 0  C1 1  C1 2  ... CI,N l  0 0... 0

Caug (21)

CM-1, 0 CM_!,1 CM-I,2 ... CM1,N1 0 0... 0

where K is an arbitrary positive integer. This Cau, matrix is merely the original C matrix augmented
with an M x K block of zeros. We will show that

Theorem 4: If C is a ZCC code and complementary, then Caug is a ZSPC.

Proof It is elementary to show that if C is a ZCC code and complementary, then Caug is a ZCC
code and complementary. Hence by using Theorem 2 the theorem follows.

4. GENERAL FORM OF ZCC COMPLEMENTARY WAVEFORMS

Consider the following N x N code matrix C where an element of C is defimed by

cmi = Xmd+ 1Wp , m,i = 0, 1, ... ,N - 1, (22)

where

.21r

WN = e , (23)

41, WN, WN..., WN
d1 , d 2, ... , dN-l are arbitrary complex numbers, and M' is an integer relatively prime to N. We

show that

Theorem 5: The matrix C as defined by (22) is ZCC complementary code.

Proof. Using (11) and (12), we can show that

N-I-k
-
r  . (mdWM'm)*(nd WM'n+k))

i=O

N-1-k
_ N-l-'k M' (n -m)i

=i xn -m WpF, d#+ di+k+ lWN , (24)
i=0

7
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N-i-k
r = tmdi++IWM'm(i+k))*(\nd+,W ')
i=0

N-i-k
= Xn-mWWM'mk , d*?+k+ldi+lWM '(n -m)i. (25)

i=0

Thus ifwe setn = m + ,then

rk~ ,m +l)N - 1-k

= XlWM'(m+)k d+di+k+ N, (26)
i=O

N-1-kr(m,m+l)=X1WM'mk , di+ld,+k+iWM'li. (27)
-k -ai~ 1N(7

i=O

From these equations, it can be shown that

q ) N-1 (m' m+1) =- W Ina VMk1-k M'Ii
E rk( m  N WME dNN+di+k+iN (28)

m=0 L m o J j=o

(I N-1 + V1I = W 1& N-1-kq _gr(m'' +i) - NwrkM'mj F, .dL+d+k+1WNM"i. (29)

m =o mO J i0

Since

N-1
'm& = 0 (30)

M=0

for M' relatively prime to N and k *0, it follows that qk( ) = q 0 for k, 1* 0. For k = 0
and I * 0, the second summation in both (28) and (29) is of the same form as (30). Thus
qk(t ) = qk( - t) = 0 for k = 0 andl *0. Hence the theorem isproven.

We note that for X =d I = d 2 ... = dN =M' = 1 the general form reduces to the Frank
matrix, which was shown in Ref. 2 to be a ZCC complementary waveform. In addition, if the
Lewis-Kretschmer P4 code [1] has a length that is a square integer N 2, and the elements of this code
are put into square matrix form where the concatenation of the rows generate the P4 code, then it is
straightforward to show that this code also fits the general form given by (22) and hence is a ZCC
complementary code.

8
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5. ZCC NONCOMPLEMENTARY WAVEFORMS

In this section the following theorem is proved:

Theorem 6: If C has the form

a0bo aob I ... aobN_ l

albo alb, ... ajbN-

c =(31)

aM - lbo aM-lbl ... aM-lbN_ !

and a = (a0 , a1 , I.. ,am -1) is a zero sidelobe periodic code, then the rows of C form a ZCC code.

We call the code given by (31) an inner-outer code, because a given inner code of subpulses
represented by bob 1,... ,bN - is modulated on a pulse-to-pulse basis by an outer code given by
a0 ,a 1,... ,aM -1. We note that these waveforms have the value that M is arbitrary, whereas for the
ZCC complementary waveforms, the number of code words in the matrix C always must be equal to
the number of elements in a row of C.

Proof. The individual code elements are given by

Cm, = ambi, m,i = 0, 1,..... N - 1. (32)

Using (11) and (12), it follows that

N-i-k
rk(r n) = F a*b*abi+k, k > 0, (33)

i=O

N-i-k
r k = a*b*,+kanbi , k >0. (34)

i=0

Thus setting n = m + l

qFk) - rm +!) = a*'am +] bi'bi +k , k 0 0, (35)
, =o r.mi I, ri=o

U-l rM-1 N-k
m = "mm+l) = aam+l b,+kb i  ,k > 0. (36)M0 +I) .m =0 _i=0

u 9



GERLACH AND KRETSCHMER

Since a is a ZSPC,

M-1

E a rea,+ = 0 for I * 0.
m=0

Hence q(l) and q YI are equal to zero and the theorem follows.

6. RADAR APPLICATION EXAMPLE

In this section a radar application using the complementary or inner-outer waveforms described
in the previous sections is briefly discussed. Only codes that are unit amplitude (or zero if the code
element is turned off) are considered. These codes have the practical advantage that they are energy
efficient on transmit. Thus for the general form of the ZCC complementary code given by (22), we
stipulate that dI, d 2, ... , dN-l must be on the unit circle.

Most radar waveforms do not have 100% duty cycles but have off-times that are used to listen
for or receive the waveform. Hence the actual pulse train associated with the matrix C may look as
shown in Fig. 2. Here each row of C forms a pulse (or group of subpulses). We define the code of
the m th subpulse associated with the m + 1 row or pulse as

Cm = (CmO, Cm1, '" , Cm,N-)" (37)

Each pulse is separated by a given pulse repetition interval (PRIP) where there are "0"s
transmitted between the end of one pulse and the beginning of the next. Normally this "off" time is
greater than the pulse "on" time. All of the code words are transmitted in PRIc seconds.
Thereafter, they may be repeated with a period PRIc for multiple burst processing.

One application of the ZCC complementary codes, which was first presented in Refs. 2 and 3
and is also applicable to ZCC inner-outer codes, is in removing ambiguous range radar returns for
medium or high PRF radars. An example of this for a single burst is shown in Fig. 3 for N = 4.
The waveforms are transmitted as shown in Fig. 3 according to the rows in C, but the return signals
are processed only during the indicated processing interval in multiple channels having filters matched
to the indicated codes in each pulse repetition interval. That is, after transmitting co in the processing
interval, all received signals are processed by filters matched to Co, C3, c2, and c I in channels 0 to 3
respectively, and so on. The result is that channel 0 is matched to the first unambiguous range inter-
val and rejects stationary returns (those that have almost zero doppler shift) from the 2nd, 3rd and 4th
time around range intervals. Likewise, channels 1, 2, and 3 are matched to the 2nd, 3rd and 4th time
around returns and reject stationary clutter from the other range intervals. If the waveforms are com-
plementary, stationary targets in the matched intervals have no sidelobes. Note that the fill pulses
C1, c2, and C3 are necessary for this processing scheme (as they would be for any ambiguous range
radar). However, if multiple bursts are used in a particular look direction, then these fill pulses
would be unnecessary, because the preceding single burst would provide the fill pulses for the current
burst.

For example, the matched-filter response for a single burst of ZCC complementary waveforms
is shown in Fig. 4 and for noncomplementary ZCC waveforms is shown in Fig. 5. From Fig. 4, we
see that there are no sidelobes for the ZCC complementary waveforms. From Fig. 5, we observe

10
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Fig. 3 - Example of orthogonal waveform processing for N = 4
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Fig. 4 - ACF for ZCC complementary waveforms
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Fig. 5 - ACF for noncomplementary ZCC waveforms
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that the sidelobes are nonzero only in the first N - 1 near-in right and left sidelobes about the match
point for the noncomplementary ZCC waveforms. In fact, these sidelobes correspond to the sidelobes
of the autocorrelation function (ACF) of the codeword b times M where the sidelobes level is meas-
ured relative to the match point gain MN. Finally, we note that for clutter having a small spectral
spread about zero doppler, the nonambiguous range clutter can be reduced by using MTI processing.
The PRI of the MTI canceller would equal PRI,.

7. SUMARY

In this report we have described the properties of zero cross-correlation waveform codes, i.e.
the cross-correlation responses sum to zero everywhere. These codes, in turn, are related to periodic
codes having zero sidelobe autocorrelation functions. These ideal periodic codes are important in
themselves because the underlying aperiodic codes usually have useful attributes such as low sidelobes
and/or good doppler tolerance. This is exemplified by the Frank, P4, and shift register codes.

Two general forms of the zero cross-correlation codes were described. The first form consists
of a sequence of dissimilar waveforms that have the additional property of being complementary. The
second form consists of a sequence of waveforms that are identically coded except for an outer code
that results in a different phase being associated with each repetitive waveform.

A processing scheme using multiple waveforms was described that uses the zero cross-
correlation codes to eliminate zero doppler ambiguous range clutter that might occur in a medium or
high PRF radar. For clutter having a small spectral spread about zero doppler, the nonambiguous
range clutter is reduced in a manner similar to MTI processing. A detailed assessment of the trade-
offs, and the ability to resolve the true range of a target is the subject of future work.
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