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SUMMARY

This Final Technical Report presents the re-sults of a feasibility investigation of a

technique for calculating the far-field radar cross section of an object based upon

measurements made in the near--field of the object. This technique is an extension of

existing planar near-field antenna measurement technology, and is capable of measuring

monostatic radar cross section and bistatic radar cross section at both narrow and wide

angles.

Included are the detailed formulation of the theory of near-field planar bistatic

radar cros section measurement, and discussion of details of the mechanical scanner and

software implementation. The comparison of measurement with predictions is presented;

the agreement is excellent, and suggests that a larger-scale demonstration would be

appropriate. Also included are concepts for reducing the amount of data required for

reconstructing radar cross section, and a discussion of limitations of this method of radar

cross-section measurement.

$pecific recommendations are presented for techuology development areas that

should be pursued to mature this meaurament technique into a viable, operational

technology. Among those areas are calibration, data handling, computational

optimization, data analysis, operational considerations, and additional theoretical

development. '
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FOREWORD

The BDM Corporation, 1801 Randolph Road SE, Albuquerque, NM 87106, is

pleased to submit this report, titled "Final Technical Report for Near-Field Bistatic RCS

Measurement," to the Rome Air Development Center as required by CDRL

DI-A--3591A/M.

This document presents a description of the work performed under contract number

F19628-6-C-0208 during the period of September 30, 1986 to March 20, 1989.
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CHAPTER I

INTRODUCTION

Radar cross-section (RCS) measurement is an important ingredient of design

verificauion and maintenance of contemporary aircraft and missile systems. RCS is

becoming more and more important for both tactical and strategic weapons systems, due in

part to increasingly sophisticated radar systems and the resulting need for low-observable

aircraft and missiles.

BDM is currently under contract to Rome Air Development Center to validate a

technique for calculating far-field monostatic and bistatic RCS using planar measurements

in the near-field of a test object. This technique, developed by BDM in 1984, is of

increasing relevance to the national need in this area, particularly in view of some of the

unique capabilities that the planar near-field technique may provide.

The goal of this contract effort is to demonstrate the feasibility of near-field

measurement of bistatic radar cross section. The proposed technical approach is divided

into six tasks which may be summarized as follows:

Task 1: Formulation of probe-corrected near-field RCS theory

Task 2: Development of software to compute scattering

Task 3: Design and construction of scanner

Task 4: Comparison of measurements with solutions

Task 5: Data reduction investigation

Task 6: Investigation of method's limitations

Those six tasks are addressed in Chapters II through VII of this final report, while

Conclusions are presented in Chapter VIII.

It is Important to realize that some of today's RCS measurement requirements

simply cannot be met with existing measurement technologies. For example, measuring

the RCS of low-observable aircraft is difficult on conventional far-field ranges: the

signature is small and hard to measure; range effects (ground and air scattering) degrade

Iol



accuracy and repeatability; airborne surveillance during long observation times

compromises security; and bistatic RCS is difficult to measure (particularly at small

angles).

BDM has been working on near-field RCS measurement and prediction concepts

since 1983. In 1984 Mike Dinallo developed and published the mathematical foundations of

a proposed near-field RCS (NFRCS) measurement approach which we called "planar

near-field RCS measurement." In 1987 Rogers and Farr published the explicit solution to

Dinallo's scattering equations and described BDM's ongoing work in near-field RCS

measurement.

Our planar NFRCS measurement technology is an outgrowth and extension of the

near-field antenna measurement theory and techniques developed by the National Bureau

of Standards (NBS) in the 1960s. The NBS theoretical ant experimental programs

demonstrated that traditional far-field antenna patterns can be calculated based upon

pattern data measured in the near-field of an antenns. These results were backed up by

extensive error analyzes and validation tests of antennas on near-field and far-field ranges.

The analyses and tests showed that patterns measured using near--field techniques are

more accurate, repeatable, and economical to obtain than patterns measured on traditional

antenna ranges. The near-field measurement facilities are also smaller than far-field

ranges and are fully enclosed, providing excellent security for sensitive military

applications. The NBS near-field antenna measurement methods are now in daily use by

most major antenna fabrication and test facilities.

Since 1984 BDM has been extending the NBS near-field antenna measurement

theory to include the near-field RCS measurement problem. Our work has been both

theoretical and experimental; we have developed the mathematics of near-field RCS

measurement and have carried on an active experimental program to validate the

mathematics. Our planar near-field RCS measurement technique is the result of this

work.
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The key feature of this technique is the mathematical algorithm that allows us to

efficiently compute the RCS of an object based upon many scattering .measurements made

near the object. The measurements are conceptually easy to obtain by a computerized

data control and acquisition systen similar to the one we have prototyped in the BDM

Laboratory.

The unknown object is illuminated by a single broad-beam transmitting anunana

and the scattered signal from the object is received by one or more receiving antennas. The

transmitting and receiving antennas are in the near-field of the object (typically within a

few feet of it when using gigahertz frequencies). A computerized data acquisition system

controls where the transmit and receiving antennas are placed (using servo control) and

measures and stores the received signals. The transmitting and receiving antennas are

moved around in a plane (i.e., a planar scan pattern), so our measurement approach is

more correctly called near-fie'd bistatic RCS measurement using planar scanning.

Other noteworthy features are that bistatic measurements are feasible both at large

and small emgles, monostatic measurements are feasible, sensitivity is excellent (so

low-observables can be measured), and the measurement facility is totally enclosed (which

enhances security).
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CHAPTER I

FORMULATION OF NEAR-FIELD THEORY

In this chapter we present the analysis of near-field bistatic scattering data. This

analysis is based upon Dinallo's [16] formulation of bistatic scattering in terms of the plane

wave scattering matrix. Note that for the bulk of this section we Earry out the

mathematics in the unprimed coordinates of the object under test.

B. SCATTERING MATRIX

The goal is to calculate fcr an arbitrary object a scattering matrix

I .... [ ~11100A') Ii1a ('I)

I I11(k'~ ~l)- [ 111 110')Il0(U'))

which describes the scattering of an incident plane wave by that object, and

-x6k + kay + k,6,
"6xx+ yy + ,zz

It is worth noting explicitly that the elements of the scattering matrix . 11(•,l) are

specified by means of two polarization-related indices and two propagation vectors. For

example, l1180 (k,i) refers to the 0--component of the angular spectrum of the wave that is

scattered when the object is illuminated by the 0--component of the angular spectrum of

the incident wave. The incident wave has propagation vector I, and the scattered wave

has propagation vector ;. Taking all four elements together, il(k,1) specifies how the 0

and 0 components of the angular spectrum of the Incident wave I are scattered into 0 and

S components of the angular spectrum of a scattered wave k.

The incident and scattered waves are generally a superposition of plane waves which

we will model as a ontinuum of plane waves. A complicated wavefront illuminating the

object may be decomposed into a spectrum of plane waves. Measuring the transverse

components Eix and E.y of that E-field in some plane, such as z = zo, the angular

n-I



spectrum (of plane waves) is the Fourier transform in the x-y plane

Il() = Ii 9(i)• 9 + 1()

-J J () e d',

where

r'=rxi + r. + ze~.
The multitude of plane waves that makes up that angular spectrum of incident plane waves

is scattered by the object, yielding an infinity of emergent plane waves whose angular

spectrum is

!2(') = WN+V06= 18A [18A I, ')I,(i
,•,O(~~~11j',I) I1100(M,) J" ~~)],,I

Note that the 9- and #-componeats of the angular spectrum of the scattered plane

waves are a linear combination of both the 9- and the 0-components of the angular

spectrum of the incident plane wavs.

For a source at 'r having angular spectrum I1(t), the scattered angular spectrum at

the origin is denoted by F(*1,ý), where

P 1 4,•.,) _.[F OO• •,S ) '

F,9(;1,k)'
Fo'l,¢ti) I u•kT][ , "LI I#rik II

(As written here, P(;14) Is related directly to the samp ig plane coordinates rather than

the object coordinates.) The far-f6eld scattered I at 4 is calculated with the results from

a previous section. Hence,

ts-(;2) =-2ko 
e+ ';2h

s2 r2 '2
where i is parallel to ' 2" If the incident wave I in fact planar, then the angulr spectrum
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of the incident wave Is[I101
and the Integral above reduces to a matrix multiplication. The far-field scattered E-field

is

C. MEASURE

Given illumination of the test object by the transmit antenna in transmit

orientation #1, we will first calculate the 0- and O-components of the scattered angular

spectrum over the area scanned by the receive probe antenna In order to calculate the

scattering matrix Next, the transmit probe antenna is rotatod 900 to Illuminate the test

object with a different angular spectrum of plane waves, and we then repeat the

measurements and calculations In order to determine the $-- and --components of the

scattered angular spectrum for this second transmit probe antenra orientation. From these

two sets of data, we can calculate the manner In which the test object scatters the 0- and

O-components of the incident wave into the 0-and O-components of scattered waves.

The laboratory meaurements for bistatic near-field scattering consist of gain and

phase measurements made by a receive probe as it Is swept through a pattern of probe

locations. The receive probe scan pattern is swept repeatedly (and gain and phase

measurements made) for a set of transmit probe locations, as the transmit probe itself steps

through a set of locations in the transmit probe san pattern.

The transmit probe and receive probe we use are Identical, although they need not

be so. The receive probe's receiving characteristic

1o0(0) '= 1
10 0(k)
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and the transmit probe's transmitting characteristic

110(l) =i109(b)I 1,
1 0 0(b

are assumed to be known (either analytically or empirically). As in the case of near-field

antenna meaaurements, neither probe antenna should have nulls in a direction * for which

one wishes to calcuate the scattering matrix.

D. OUTLINE OF SOLUTION

In this section we outline the approach we take to determine the scattering matrix

_11(M,) The scattering matrix o11(•,) of an object is a tensor of rank two that

describes how an incident plane wave (1) with arbitrary polarization is scattered by that

object and transformed into one or more scattered plane waves (k). The scattering of an

arbitrary wavefront follows directly, since the superposition principle allows us to create

complex wavefronts as a superposition of plane waves.

The scattering object is at the origin, and we define

= propagation vector of incident wave (from transmit probe),

ri = coordinates of source of incident wave (transmit probe),

k= propagation vector of scattered wave (to receive probe), and

r2 = coordinates of receive probe.

The measurement equation for near-field bistatic RCS is [17]

o J12) 01(i). [JJ ~11(0,!0t10(l) e 1 dL] e 2  di dL.

{5} {3} {2} { 1} {4}
The scalar bo is a measurable quantity that is the complex gain factor describing

the transmission path from the transmit probe to the receive probe via the scattering

object. The incident wave is represented by the factor {2}. The exponential {1} represents

propagation of the incident wave from the transmitting antenna to the object, and the

multiplication with {3} represents scattering by the object. The resulting scattered
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~~ I ----- • - n i = =

spectrum of waves propagates {4} from the object to the receive probe; {5} represents the

interaction of the propagated, scattered wave with the receiving probe itself. The gain and

phase ratios measured by the Hewlett-Packard network analyzer are the values of bo-

If we consider the scattering object as a transmitting "antenna," the complicated

wavefront generated by it can be represented by a superposition of plane waves. We

denote that superposition by P1,(G,), where 'r is the location of the actual transmit

source and k is the wavevector of the scattered plane waves. Since the scattered spectrum

is

Pi(Oi•) = 1J 10,101).I00) e *dL,

the measurement equation above becomes

b 1 -f t 0 1 (k).(lk) e2
2 dK.

This is the measurement equation for near-field antenna measurement which may be

solved to determine PIG'1,i).

Furthermore, the above two equations are very similar, except that bo(l,r 2 ) is a

scalar equation while Fl(rlrk) is a vector equation. The techniques of an earhler section

can be applied to solving for 1(1) except that two independent solutions must be

found (representing the e0 and & components of PI(ri,)).
E. ,CALOULATTNG iI~

Using the above definition of the scattered spectrum P(rl,k), the measurement

equation can be written
-~ ii'; 2 di

bol(,;2) = m1 0 1().N 1("1 ,) e+ d2

which is'a Fourier integral that can be inverted formally [18] as

rr e dr2

10(0 16 S)= 4... ... bol. 2) e k 2 • •2-
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The Integral is over all positions of the receive probe, holding the transmit probe

position fixed. Since the receive probe moves in the plane z = d (a constant), we define

r%&2=r + r2yi, + d'

and the integral becomes -idk z. r i .
k Jbol(rlr2 ) e A2

We define the right-hand side of the equation as a coupling product DI(li), so
i ;~10( 0 4 16' 14•'I) = Dl(6l')'

where D1(r,4) is the calculable quantity

D0 )-= ---. • b 1 2) e dR2

A r 4JJ+= IO1  )F1•;1 ,•) + 0()F (li.

Let the measurements be repeated with the same transmit probe but with a

different receive probe antenna that has receiving characteristic

I01 •(k) J

obtained by rotating the receive probe by 90& Calling the new set of measurements

b,2(1,r2), we can compute another coupling produ'ct D2( as

D2('S)= e4- -Jjbo2 (rj,r2) e d•.

- I•I~)FI•I,•) + l()F (• )

If the determinant

Al(O) - 01),)10(1) -16(0)I010)

is non-zero, then
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k) --'r

F1(•,• fiD1(1•I1(1 r - D2('l,i)6I0'1•(p•)

_ A1 (;1,• )Fl1(01,0) = D2(1,)010(1 , 1) 0 1;,)•6;•

In summary, the transmit probe antenna is in an orientation that we define as "TX
orientation #L." For each transmit probe location ' we measure an array of scalar values
as the receive probe (in RX or.entation #1) is moved through its scan pattern. A second
array of scalar values is measured with the receive, probe rotated by 900 (RX orientation

#2). These two arrays of measured data, called bo1('rlr 2 ) and bo2(r 1,r2), are used to
calculate ( ) (-,) is a vector quantity that is defined for every transmit probe

location and every possible ;.
F. COMPUTINQ . i-'£

In order to calculate the scattering matrix, it is necessary to determine a second,
independent scattered spectrum P2(1',) that represents ',he scattered spectrum with the
object illuminated by a different aource spectrum. Since the transmit probe is linearly
polarized, we can create a different source -pectrum by rotating the trunsmit probe

antenna.

With the transmit probe antenna rotated by 900 (TX orientation #2), we repeat
the entire series of measurements and calculations described in the previous section.
For each transmit probe location ',, we measure an array of scalar values as the receive
probe (in RX orientation #1) is moved through its acan patterr. A second array of scalar
v3lues is measured with the receive probe in RX orientation #2. These two arrays of
measured data, called bo3(r1 ,'2 ) and bo4( 1r,* 2), are imed to calculate r

The pertinent equations are summarized below-

o3(*1,2)= IJ01(6)'F2(½1ý) e4 d ,
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'01(')-P2-;j J(r 1 r2) e iir2 '

or, explicitly,

Aiso

rd rr

is Rnaz-zero, then

G. VE-CTORL COUpirnPR, TY
Referring to the general b~swi~c mmnlemwet equation

2 f0M ~fJf1,(10) -11 0(f) dl.. 2dd
we have calculate ýIrý and f2 (r',k), whre .

and-f 11u.10f it;1d

kI -JiO')e if1 Id4



are Fcurier integrals that may be Inverted to give

I . . I Fjrl"( ) e1 r d;,
_1110,1.0io~b • 4- P,(I l e2•' t. d~rl

This time the lntegr4s are over all positiont of the transmit probe, holding 'be

receive probe posi;ion fixed. Since the transmit probe moves In the plane z d, let
AI-- rlxex + r ly~y + d, i2,

and the Integrals become

S!uc•,•),•oCii11 4-T 'j 1(r,t) e dR1

I 1I(kJ)1 0(f) - " " •2(ri.) e d. 1.

We define a pair of veclor coupling products (ij,) and •(•,,) a,

-. idl e r - d

Q(f) --77 j 2(jj, e d-v

so thit we can write
1 (ij) .11oCf) = ij-

H. _QALIULT 'i E = •'( 1 M).

Exp,.iilng the above eqnuation In cwmpor.nts and dioppiag the expiiJt (lJ)

dependence,

[0 0 is I 110 9 jI O

0 0 1 3 0 i o 1 1 0 0 r4 0
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wA& his solutions:

I110o Q910

i1 = QA.00o -, QF100

_QAioO - W100

provided the determinant
A 3 11oiioo- Iiohioo

is nc'wo for paxticular (;,I). This completes the calculation of the scattering matrix

Note that all of the above calculations are In the coordinate system of the object

under test. When making the actual measurements, one must immediately convert from

the ccordlnatm systew of the measurement table to that of the object under test.

-- I0



CHAPTER III
DEVELOPMENT OF SOFTWARE TO COMPUTE SCATTERING

A. INTBODU1rTION

The software to perform the scattering ciculations is a straightforward
implementation of the algorithm presented in the previous chapter. The heart of the
software is the two-dimensonal fast-Fourier transform subroutine; a number of such
subroutines are available in the open literature.

There are a number of software issues stemming from the discretization that is
implicitly employed to calculate diserete equivalents to continuous integrals. These issues
are discussed in the following sections.

B. DFT ORIGIN AND PHASE SHIFT
In this section we discuss sampled-data evaluation of Fourier intgrals by the FFT

algorithm. For rigorous discussion, refer to the literature [12].

Numerical evaluation of integrals of the form

SH(W) = f-h(t) 'PAt dt

is feasible for bandlimited h(t) using sampled data and discrete Fovrier transform
techniques. The continuous function h(t) is sampled at Intervals of bt chosen by Nyquist's

criterion. The sampled h(t) is a finite sequence

{h'(n) - h(t) I t a to+ (a-1) 6t, nl, .... N}
3 h'(I),h,(2),....h.(N)

which is implicitly periodic in n with period N. Thi DFT of h'(n) is
N , 1k-l

F.'(k)= h'(n)e k ... N

where (for even N)

&as2z

•.,,.,,.....,•_ ..... .•- ,,. ... .4. ,,- ...... -- ,,,..,,,•,,,. • ...........



H(w) = bt.H'(k).

For example, with N=8,

H-i = H+O&
H, 2 =H 1&~H, 3 = HE+25)
H'4 = H(+36)
H'5 =H, ) --= H(-4&a)H, 6 H:--'•

7) = H(-2,w)
H'8 =HC-I&)

In a sampled-data implementation, Fourier integrals are conveniently calculated

using the discrete Fourier transform (DFT) in the form of the Fast Fourier Transform

(FFT) algorithm. However, there is a phase shift implicit in the DFT that arises because

the origin of the transform is at the first point processed.

We compute the above integral by a summation:
NiKNy l" (Ki--1) (Ii-l)j

eIl= a (K--1) (1 f -1)x

where 1., 1y are indices of ameasurement data arry, and Kx, Ky are (in this instance

only) indices of the transf ra-ed data array. 1. and K. range from 1 to Nx, and Iy and Ky

range from 1 to Ny.

Idealizing the sampling procem somewhat, the sampled function fsIX,Iy) at given

(Ic,) corrw-s to the continuous function f(xy) at the point

x = x + (N-i)'8 x,

y=r yo + (ly7;Y

so

11.-2



The measurement data array f,(.) Is defined over some set of (1xIy) that does not

necessarily include the coordinate system origin. In order that the computed phase be

referenced to that origin, a phase factor must be included to specify the phase of the (1,1)

point relative to that origin:
N~ Ny 8 I~~.x (Ki 1) (Ix-'1)x[* (Y-1)1-)

xj= ly 1

where

K e .(K x--)a exp[*2x.e (Kx r -)a,

and

&y roy/$y.
No modification to the FFT algorithm is required, since the phase factor XK,,Ky)

can be calculated and multiplied into the transformed data array generated by the FFT

algorithm.

C. D2SCUSSION OF CALCULATED SCATTERING MATRIX

For a given test object, our laboratory measurements and data analysis produce a

set of scattering matrices of the form

where each matrix consists of four complex scalars (llxx, Il xy, y I11yy) that define

the scattering matrix for given values of R and L. As before, L is the projection of the

incident (illuminating) plane wave propagation vector I onto the x-y plane, and K is the

projection of the scattered plane wave propagatlon vector ' onto the x-y plane.

Since the discrete Fourier transform (DFT) is used in the sampled-data

Implementation of the integrals, R and L' can take on only a discrete set of values that are
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determined by the measurement grid size, the spatial sampling interval &, and the "rules"

of the DFT. Fourier interpolation can be used to increase the resolution of the grid of

values of R and L.

D. gRIDDED VALUES OF R AND

Suppose the transmit probe scan pattern is a square consisting of Nt. points on a

side, with spatial sample interval &- The propagation vector of the transmitted wave (i.e.,

the plane wave that is incident upon the test object) is denoted by

1= 6. + ly6 + 1,6,

and its projection onto the x-y plane is

L = lx6x + ly6y.
• Then the x- and the y-components of I take on the discee values

The the -and x the-opoet of take on. thNiceevleX r Nx
_ N- tx ' & 0...Ntx

I yj= &t j ---02"'i

where
& 2•

tx tx

is the spacing between adjacent samples in "k--space. The maximum magnitude that 1.

or ly can have is

Ilxlmax -1y -a'-

Howa-ver, l and Iy are constrained by the a requirement that Iz be real,

since

+l I A

and propagating waves correspond to those T for which 1. Is real. If 1x or ly gets too large,

1z becomes imaginary, so we requie.

M-4



Since is the highest spatial frequency that can be present due to propagating

waves, it is the Nyquist frequency [13] of the signal to be sampled, and the required

sampling Interval is A/2. If the sample interval is indeed $, = A/2, the domain of valid

(Ixl) Is a circle in the (ij) plane that is exactly inscribed in the square defined by

-2. : Ntx1 Nt N~ tx1 I

so a fraction L•=i21% of the computed IlXjy! Is not useful to us.

A similar situation exists with regard to the range of values of the propagation

vector of the scattered plane wave. Suppose the receive probe pattern is a square with Nrx

points on a side and spatial sample interval &- The propagation vector of the scattered

wave is denoted by

K = + ky y +

and its projection onto the x-y plane is

kik.a + ky~.
The x- and the y-components of i take on the discrete values

N

jk . 2 rx&rx j 01,2 ....Nr

where
2 7

&rx N 6

Ik.1max Iky = "' sand
k2 + k2<[2v]

E. SIGNAL PROCESSING

Conservative signal processing technique calls for using a sampling interval smaller

than the A/2 dictated by the Nyquist limit. In the present instance, the physics of the

wave propagation very effectively bandlinmts the signal by Imposing a very sharp cutoff for
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spatial frequencies beyond 1/A. This is in contrast to typical signal acquisition scenarios in

which a signal generally has components above fNyqui't; there one must use a sharp cutoff

filter and in addition sample at a somewhat higher rate than the Nyquist theorem requires.

We conclude that one should probably use & < A/2 by perhaps 5% or so.

Given the good A/D resolution (12 bits), adequate floating-point precision and

dynamic range (I.E.E.E. standard floating-point format), and a relatively quiet

measurement location, we ignore some of the common reasons for sampling at above the

Nyquist frequency, namely quantization and numeric dynamic range.

Since the experimentally-determined scattering matrices are defined at discrete

values of K and L, it is convenient to construct one's theoretical models of scattering such

that the precise values of R and L calculated by the analysis software can be automatically

plugged in to yield the theoretical scattering values. From an algorithmic standpoint this

corresponds to implementing the theoretical or numerical model of scattering as a

subroutine that has as input the values of K and i for which a theoretical prediction is

needed.

F. OVERAMPlLING

Under ideal conditions the gain and phase signals from the network analyzer need to

be sampled only at A/2 intervals (or slightly more often if one is near the reactive

near--field of the test object). In this application we oversample by a factor of ten.

Reasons for this are (1) noise generated in the electronics for gain and phase detection

smears out the spectral content of the signal being measured; (2) a general rule of thumb in

digitizing and processing noisy signals is that one should digitize at five to ten times the

Nyquist rate; (3) filtering techniques can be used to reduce the (uncorrelated) noise on the

signal; and (4) non-linear filtering techniques can be used to detect and correct invalid

phase measurements.

The invalid phase measurements occur because the phase detection circuit in the

network analyzer updates its output asynchronously with respect to the A/D converter, so
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it is possible for the A/D to sample the phase when the circuit is "wrapping" around from

+180 to -180 degrees (or vice versa). Measuring extra points allows us to detect and

correct the invalid phase values. Spatial filtering to improve sigal-to-noise ratio (SNR)

is also practical when oversampling is performed.

The figures in this section were constructed using measured data from two x-axis

scans (made on 6/4/87) of 10 Ghz bistatic RCS from the 6-inch aluminum sphere. The

TX probe was held stationary, and the RX probe was scanned in the +x direction using a

200 hz digitizing clock and the usual probe velocity of 29.8 cm/sec. Sample interval is

calculated as 0.149 cm, corresponding to oversampling by a factor of ten at 10 Ghz.

The probes were open-end X-band waveguide with absorber collars to limit

low-angle radiation and an absorber barrier between the RX and TX probes to limit direct

probe-to-probe coupling. The TX probe was driven with a 20-watt (nominal)

traveling-wave tube (TWT) amplifier, and a preamplifier was used on the RX probe.

A high SNR scan was obtained using maximum drive to the TWT amplifier. A low

SNR scan was obtained immediately after the high SNR scan but with the TWT drive level

reduced by 15 db. Additional measurement noise was introduced by the lowered reference

channel signal at the network analyzer.
S G. DIGITIZATION RATU

Since the quantity of data required by the near-field technique is already

formidable, it is preferable to store the minimum number of values necessary for the

reconstruction of the scattering matrix. The signal being measured contains no

components above spatial frequency

nan= cycles/meter,

so digitizing the signal at a sampling frequency of 2/A samples/meter would theoretically

capture all of the spectral content of the signal. For reasons mentioned above, digitizing at

ten times this rate is more appropriate, so we choose

' s samples/meter.
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Then

-, 6 .4 meter/sample

and

'Nyquist = cycles/meter
Is the highest spatial frequency that can be deWcted without abasing.

The bandwidth of the network analyzer's gain and phase detection circuits is 10

kHz, so samples should be taken at intervals
&>> 1

>> 0.1 ms

to ensure that the noise in the samples is uncorrelated. Allowing an order of magnitude

leeway, we set a lower bound of one millisecond, which corresponds to a spatial interval

& = v A,

where v is the speed of the probe antenna. Typically v = 0.30 m/s, so & - .0003 meter.

At 10 Ghz, A/2 = .015 meter, so this & represents oversampling the data by a factor of
"•2 .015 m .

which more than meets the oversampling goal mentioned above. The bandwidth of the

receiver is large enough to allow much oversampling without compromising the noise

characteristics of the sampled data.

Conclusions to be drawn are: (1) oversampling can be performed without reducing

the RX probe scan speed, and (2) the measured noise will be uncorrelated from sample to

sample. Note that the computer system is Idle during the time required to return the RX

platform for the next scan, so the filtering adds no time penalty.

H. PHASE WRAP DETEMTIO

The phase wrap problem is difficult to observe in standard gain and phase plots

(Figures Ill-1 and mI-2). The incorrect measurement occurs when the phase is changing
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from +180 to -180 degrees (or vice versa), and the value measured is somewhere between

180 and -180, so that it appears approximately in the proper place on the plot and is easily

overlooked.

The invalid sample often shows up dearly as a "spike" in plots of the real and

Imaginary components (Figures 111-3 and MI--4). The real and imaginary signal

components are computed as

R(A,,p) = A cos •p

-(A,p) = A sin

so

R(A,*180) = - A

I(A,180) 0.

On plots of real and imaginary components, one looks for phase errors when both

(1) R is far from zero and "spikes" towards zero, and (2) I is about zero. Visual inspection

of the figures illustrates this. If the gain A Is small, the spike is hard to detect but will

have minor effect upon the analysis of the raw data, since the first step in the analysis is a

Fourier transform, which is basically a gain-weighted and phase-weighted averaging

proces.

The difference between the high-SNR real component and the low-SNR real

component is shown in Figure 111-5. The phase error spikes are clearly visible.

One of several possible methods for locating phase errors of this type is by

inspecting the derivative of the real (or imaginary) component with respect to the spatial

coordinate. If s(i) represents either the real or the imaginary component, then define the

derivative process

which is a one-sided estimator of the derivative of s(i). A spike in the process s(i) appears

as a double-sided spike in s'(i) [(c. the engineering "derivative" of the continuous-time

Dirac delta function].
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A threshold value for the minimum double-spike amplitude that should be classified
as a phase error can be derived from Tchebyshef's Inequality [14] which relates the
deviation I X-p I of a process X to the variance u of the process by the Inequality

Pf jX-P1, U ~n'S- 2

irrespective of the form of ;he probability density ftmction of X.

Identify X with the derivative procss s,(i), so

= E{s'}
N

n=1
and

a= E{(s, _P)2}
1[ N1

.=(s3(i) -P)2

For na=3, say, the inequalifty predicts that the probitbility that Is,(i)- Il will exceed

3uis less than 32i=0.11.

The spike detection algorithm is constructed as follows. Compute the derivative
sequence s'(i). Compute the mean and variance of s'(i) and normalize s'(i) to zero mean

and unit variance by the transformation
s'(i) -•

Choose "n" to ensure a reasobtably low rate of false detections, and perform the test
"" s '(i)l>n to locate invalid phase values In s(i). The test is performed independently on
the real and imaginazy components of s(1), and the combined results are used to select the
suspect values of s(1) for which interpolation Is needed.

I. •P.AIALfI .TEBI
Since the noisy signal is oversampled by a factor of ten above the Nyquist rate, a

low-pass digital filter can be applied to the measurements to improve SNR.. Averaging
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groups of ten adjacent samples is a simple approach to the filtering but distorts the higher

spatial frequency components of the desired signal and has suboptimal noise suppression

characteristics.

A linear-phase filter is required to avoid spatial phase distortion of the measured

signal. A finite impu!se response filter in the spatial domain with cutoff at normalized
-_ cut off

frequency vcutof=can be constructed aa follows [15].

We wart a FIR filter of the form

-= a,-1,where
i =0

m F number of coefficients (odd integer), and

a. z f-;Ite coeffic:ents (real).

To ensure linear phase, we define the filter coefficiets -ymmetrically as

cl, i•0, 1, 2, ...q,

where
q- (m-4)/2,

q~ 5

The ideal low-pass filter has tzransfer function of the form
f I if V < Ventoe• ]

Hd Y = 0 if v ?• Ucu to• j
Taking a discrete Fourier transform to the spatial domain, the filter coefcients are

sin(i " ~Cutoff)
S - , i=O, 1,...q.

Gain and phase response plots (not shown) verify that this is a linear phase

low-pass filter with cutoil near z;-0.2, but sidelobe levels are unacceptably high. Sidelobes

are ,reatly reduced by using the smoothing window
' 0.54 + 0.46cos (i7/q)

wHil) jo0 otherwise
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so that

CI cif ' wH(i).

Sidelobe levels of the filter composed of the c1 (Figure M4-6) are about 50 db down.

At f=1/A, the highest spatial frequency that the plane wave spectrum can contain outside

the reactive near-field region, the corresponding normalized frequency is zt-0.1, and the

filter's gain Is down by a factor of 0.92 (about -0.7 db). This level of attenuation will have

negligible effect upon-the near-field data analysis.

J. POWER SPECTRUM ANALYSIS

Autocorrelation (ACF) and power spectral density (PSD) of the real and imaginary

components of the two scans are shown in Figures MI-7 through 111-10. The smoothing

window bandwidth Is 0 013 Nqst* No differencing of the signals was performed,

although slightly better PSDs might be obtained. Note that the PSDs are down by 20 to

30 db at thi I/A frequency. The noise floor is down 35 db (high-SNR signal) and 20 db

(low-SNR signzl). One may conclude that the measured signals are indeed bandlimited to
1/A.-

The composite plots in Figures Mn-1I through 11-14 illustrate the effect of the

spike detection, interpolation, and spatial filtering algorithms. The data traces in the

figures, from top to bottom, are

(1) raw data (real or Imaginary),

(2) normalized derivative s'(n),

(3) combined "phase error'; flags from real and imaginary components

using Tchebycheffs Inequality with n=3,

(4) signal after phase errors are replaced by intevpolaed values,

(5) final, filtered signal.

The scales of traces 1, 4, and 5 are identical, while 2 is shown at 0.25 sensitivity.

Each scan (comprising about 1.5 meters) contains 1000 gain-phase sample pairs. For the
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high S/N scan, 0.3 % of the phwe- snples wom fund hnalid; 2.2 % of the low SIN scan

values were InvAUd.

PSDs of the filtered signals axe shown in Figures M-15 w-d M-16. Note thM the

phas enor correction and laltering have lowered the. noi•e for by ten to fifteen db.
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CHAPTER riF
DESIGN AND CONSTRUCTION OF SCANNER

A. dQF-A

The sca table (Figure IV-1) has two movable carriages, each with one movable

platform. The two platforms are referred to as the TX and RX platforms. Prior to

scanning, the TX and RX platforms start from known initial positions defined by reference

marks on the scan table. The initial positions for the TX and RX platforms are near the

lower-left and upper-left corners of the available scan area, respectively, as viewed from

the operator's position. The stepper motor control software compensates for the offset

between the initial TX and RX positions, so that coordinates for TX probe, RX probe, and

test object are expressed in terms of the same coordinate system.

Optoelectronic sensors are located at the home positions of the platforms. When

the scan table is initialized, and at intervals during scanning, the software moves the

platforms to the home positions and verifies that the stepper motors are still calibrated

(i.e., no steps have been lost). If the software finds that steps were lost, the previous

segment of data i. automatically reacquired.

When near-field antenna measurements are performed, the antenna under test

(AUT) is mounted above the table pointing down, and the receiving probe antenna is

mounted on the ML platform. The TX platform is not used in this mode.

When near-field bistatic RCS measurements are performed, the object under test

(OUT) is mounted above the scanning table, and the transmit and receive probe antennas

are mounted on the TX and RX platforms, respectively.

B. PRBEANENA

The probe antennas are Identical equal-length open--ended sections of X-band

wav4nide or pyramidal horn antennas. Each probe is held in a mounting bracket thai is

bolted to a single mounting hole on its platform. The TX and RX probes are always on the

platforms, as indicated in Figure IV-1.
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Both platforms are used when performing bistatic RCS measurements; only the RX

platform is used when performing antenna measurements.

C. SCNPTEN

The TX and RX probe antennas move through predetermined scan patterns when

measurements are being made. The scan patterns are shown pictorially in Figure IV-2 and

algorithmically in Figures IV-3 and PV-4. During scanning the probe antennas move

along the x-exis while holding y constant.

The data analysis computer programs impose some limitations on the scan patterns.

If near-field antenna measurements are to be performed, the TX scan pattern is

(effectively) a 1-by-1 scan, and the RX scan pattern must be square with an even number

of points on eath side. If rear-field bistatic RCS measurements are to be performed, the

TX and RX scan patterns must be square and have an even number of points on each side.

The x- and y-iampling Intervals for both the RX and TX patterns must be identical.
D. ME-SUMMFNT CON•FJO%&

"The equipment configuration for performing near-field measurements is shown in

Figure IV-&. The synthesized RF signal is taken from *the output port of the

Hewlett-Packard 8408B Microwave Network Analyzer to a 20-watt TWT amplifier, and

then to either the antenna under test or the TX probe antenna via a length L, of

semi-righid RG .402/U co&axil cable. A length L2 of RG .402/U cable carries the reweived

signal fto the RX probe to a preamplifier and then to the input port of the 8408B.

There -q additional amplification/attenuation in the test channil gain G., setting in the

8408B, which may be adjusted diffexently on different measurement runs. L1 and L2 are

typically both 25 feet long.

Gain and phase are calculated continuously by the q4M8B and are captured by the

dual-channil A/D converter for the IBM PC. The analog processing circuits in the 8408B

can operate at either 100 hz or 10 khz bandwidth. The 10 khz bandwidth is used to avoid

smeming the measured data during fast scanning.
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C P$=ed-o for Antenna Measureent Scanning
C
C NXRXNYX in number of poins along x~y for RX probe
C DIRXIYRX - loop indice for RX scanning
C XRXORG,YRXORG - lower left corner of RY scan pattern

C XRX.YRX - current coonliinates of RX probe
C IRXO a RX probe orientation
C DELTXY = sample interval (meters)

C

DO 2O IRXO-1.2

DO 10 IYrX=1,NYRX
DO 10 IXRX=lNXRX

XRXX=XRXORG+(XRX-1)*DELTXY
YIRX=YRXORG+(IYRX-1)*DELrXY

CALL MOVE(XRXYRIO
CALL MEASURE(GAINPHASE)

CALL WRr•(GAINpHASE)
10 CONMNUE

PAUSE 'Chang probe orientation now.'
20 CONTINUE

STOP Done.'

Fg= IV-3. FORMRAN Code for Antenna
Meaee Scan PatMr
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C Pseudo-cod for Bisuxic Measurement Scanning
C
C DNX MN - number of points along xTy for TX probe
C IXTX IY1X - loop indices for TX scanning
C XTXORGYTXORG = lower left comer of TX scan pattern
C XYXYTX = current coordinae of IX probe
C rrxo - TX probe orienttion
C NXRX,NYRX - number of points along xy for RX probe
C IXRXJYRX - loop indices for RX scanning
C XRXORGYRXORG = lower left corner of RX scan pattern
C XRXYRX - current coordinae of RX probe
C IRXO = RX probe orientation
C DELTXY - sample interval (meters)

C
DO 30 rTXO-I,2
DO 30 IRXO1I,2
DO 20 IY7IXI,NYIX
DO 20 IXX=NXTX

X7X=XCrXORG+(DCTX-1)*DELTXY
YTX=YTXORG(K=-I)*DELTXY
CALL TXMOVE(X Y=X)
DO I0 IYRX=INRX
DO 10 IXRX=-INXRX
XRX-XPRX.ORG+(CXRX-I)*DELTXY
YRX-YRXORG+aY -I)*DDELTXY
CALL MOVE(XRXYRX)
CALL MEASURE(GA•H-ASE)
CALL WRrMEGAINYPHASE)

10 CONTINU -

20 CON'TUE

PAUSE 'Chang probe orientations now.'
30 CONTINUE

STOP Done.'
END

Figur W1-4. FORTRAN Code for
Bismtic Scan Patern
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E. DATA ACQUISITION SYSTEM

Data acquisition is controlled by a computer program that runs on the IBM PC.
The program controls the scanning table motors and A/D converter and stores the

measured data to disk.

The conversion time of the 12-bit A/D converter is typically 25 ps. Gain and phase
are sampled simultaneously by dual sample/hold amplifiers and then digitized in succession

by the A/D converter. The measurements are the gain (Vg) and phase (Vý) voltages from
the network analyzer. The actual gain and phase are computed as G = Vg.gain and

O= V.fo, where 'gain Is a gain calibration factor (20.0 db/volt) and f, is a phase
calibration factor (100.0 degrees/volt) for the 8408B analyzer. The gain and phase are

combined into a complex number and stored in a disk file.
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CHAPTER V

COMPARISON OF MEASUREMENTS WITH SOLUTIONS

A. .INTRODUCTION

The far-field RCS that is calculated via near-field RCS measurements may be

checked by comparing it to the far-field RCS predicted by electromagnetic theory. The

conducting sphere and disk are convenient objects for this comparison, since an analytic

solution exists for the sphere and a physical optics solution may be applied to the disk.

Equations for scattering from sphere and disk may be found in Appendices C and D,

respectively. In this chapter we present a quantitative comparison of the far-field RCS

obtained via near-field measurements with the calculated far-field RCS of the conducting

sphere.

Although full bistatic scattering measurements were made on the sphere and the

disk, funding and time limitations precluded our performing the data reduction and

analysis of that data. The results presented here represent scattering from the sphere only.

These near-field measurements were made at 10 Ghz using the experimental setup

described in Chapter III. The target is a precision 6 inch diameter aluminam sphere

mounted above the scanning table. The measurements were made on a 64 by 64 grid of

points with the transmit antenna stationary and directly under the target, so that the

target illumination was essentially

S= 6E( %y.

B. COHRENTJ BACKGROUND-S BTRACTION

In Figure V-i may be seen the magnitude of the co-polarization component of the

raw data measured by the receiving antenna. The target sphere, located at (xy)

coordinate (1.02,1.02) meters, is above the lower right edge of the plot, corresponding to

the peak amplitude of the raw signal.

Figure V-2 shows a background plot with all parameters identical to the previous

plot with the exception of the target sphere, which was removed from the test volume.
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Although there is no coherent background signature visible In the figure, the raw data are

noticeably cleaner after this background ca is subtracted coherently from it (Figure

V--3). The improvement in signal/noise ratio is even more apparent in Figures V-4 and

V--5, which are contour plots of the imaginary component of the co-polarization before and

after coherent background subtraction, respectively. Similar improvement occurs in the

cross-polarization components.

Coherent background subtraction is performed for all data shown in the figures In

the remainder of this section.

C. DAT[A TAPERING

The first step in the analysis of the raw data is a two-dimensional discrete Fourier

transform (DFT). The signal processing aspects of the data analysis are illustrated by the

effects of several tapering methods that were tried. Figure V-6 shows the magnitude of the

DFT of the co-pularization signal with no tapering; this is equivalent to a rectangular

("boxcar") taper in the continuous domain. The direct scattering from the target shows up

as the large peak in the figure, and probe-to-probe coupling appears at the upper left and

lower right edges of the figure. The side-lobe level due to leakage from the main peak is

about 30 db below the peak.

In Figure V-7 is shown the magnitude of the DFT of the co-polarization signal

after a separable cosine taper of the form 1 + 2 cosM was applied to both the x-axis

and the y-ais. Note that the sidelobe level is better than 40 db down and the

probe-to-probe coupling peak is much more localized, although there is little fine structure

discernible on the peaks.

Figure V--8 shows the magnitude of the DFT of the co-polarization signal after a

separable, partial-cosine taper was applied to both axes. This taper consists of a cosine

taper spliced onto a boxcar-type taper, so that the middle half of the data are unaffected

while the first and last quarters of the data set Are tapered. The sidelobe suppression of

this taper "is generally poorer than that of the cosine, but for this data set is
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comparable to that produced by the cosine taper. Much more structure is visible on the

peaks (a common characteristic of this type of taper).
A similar judgment may be made based on the calculated scattering matrix.

Figures V-9 through V-1l show the magnitude of Sa calculated using no taper, a cosine

taper, and a partial cosine taper, respectively. The cosine taper has the lowest sidelobe

levels, while the partial cosine taper has higher sidelobes but more derail in the

transformed data. In general, the additional detail makes the partial cosine taper

preferable to the cosine taper.

D. PROBFE-PROBE COUPLING

Figures V-3 and V-8 illustrate the manner in which the measured data are
transformed from a Cartesian coordinate system with units of meters (Figure V--3) to an

angular spectrum with units of reciprocal meters (Figure V-8) in k-spae. The directly
coupled signal from* the transmit probe to the receive probe appear. in the angular

spectrum as a broad peak with incident wavenumbers near the horizon (i.e., Ikz2 c 0) in

angular space.
This direct signal can be separated from the desired signal if the desired sigal is not

too close to the direct signal in k-space. Note that (Figure V-8) the probe-probe coupling

appears as a broad peak at the top left edge of the plot and spills over (due to wraparound

in the DFT) to the lower right edge. This broad peak is distinct from, and does not

corrupt, the desired signal in these plots.

Under these conditions, the only detrimental effect of probe-probe coupling is that

it increases the required dynamic range of the receiver.

E. REGION O F DEFINI

The region of definition of the reconstructed RCS is limited by the size of the scan

area relative to the apparent angular extent of the object as viewed from the center of the

measurement scan. In general, the actual area of definition is relatively small when viewed
in k-space. The reconstructed phase of So shown in FiM re 'V-12 is valid only dyer a small
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semicircular region that is approximately

-Z3 meter <k. < 50 m.tei

60 meter-1 < ky < 140 meter-'.

The actual region of validity is blurred due to the sampling geometry and signal "leakage"

between adjacent DFT values- The leakage has been reduced in these plots by applying a

smoothing tqaer before performing the Fourier transforms. The region u validity ippears

in the figure as an area of smoothly-varying phase that is distinct from the phase noise

that covers the remakaer of the k.-ky plane.

F. CUT ELMS

The region of definitiou appears also in cut plots through the kx-ky plane. A cut

through Figure V-12 along the line kx=O yields the plot shown in Figure V-13. The phase

fanc:ticn ie well-behaved for 60 meter-1 < ky < 140 meter- 1 , while it oscillates rapidly

'nd randomly outside that region.

Figures V-14 through V-26 show overlay plots of the predicted and measured Sol

SV SX, and Sy in cuts along the kx andI y axces. A fixed offset of 6 db has been added to

the measured scattering magnitude to facilitate comparison of predictions and measared

data in these plots. This offset, occurring consistently iA all of the measured scattering

dita, is attributed to a calibration inconsistency that time limitations prevent our

-escdving Recall that the region of definition in these plots is approximately

-50 meter7- < k. < 50 meter 1

60 meter-' < ky < 140 mtetii1 .

"Figure V-14 show2_ the predicted and neasured magnitude of the function So alocg

a cut kx = 0 mete&-. The deep notch in the predicted magnitudc is a point of phase

ambiguity in this coordinate system representation. Over the region of definition, the

reconstructed mignitude is eszentially flat with about *2 db of residuMl ripple.

Figure V-15 shows the predicted and measured magnitude of the function S V along

a cut kx = 0 mete- 1 . Along this cut, the predicted S 9 is zero except ior an impulee at the
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origin. Th;, reanstuucted functica is ab.,-t -20 db from S&, indicating that

cross-polarization leakage occurred due to antenna gisagnment.

Figure V-.6 shows the predicted and measured magnitude of the function S. along

a cut IC = 0 meter-1. '•-he predicted Sy is acarately .reconstructed with about *2 db of

ripple.

figure V--7 shows the predicted and measured phase of the function S9 along a cut

k. = 0 meLýa1. in these phase cut plots, it is imporant to view only the actual region Gf

definitiop gien above. Over that region, the phase agreement is reasonably good; the

upwyd parabolic tIope to 6he right is discernible.

Fl.ure 'V•18 shows the predicted and measured magritude of the function S. aeong

a ott kx = 0 me~er- 1 . Again, over ih1 region of definition, the reconstructed phase agrees

reasonably re.l with the predicted phase, provided that one takes into account the pha."

w-rap that ocmcur at about l.5 meter-,.

.igure V-19 shows the predicted and measured magnitude of the function SO z'ong

a cu! kr= 6.5.4 meteri-. Along. this cut, where the region of definition is approximately

Ikyl • 50 meter7-, the agreement btween the two plots is excellent, with about 2 db

maximum error.

Figuie V-20 shows the predicted sud measured magnitude of the function SP along

a cut kx = 05.4 meteri-. Agremtnt is again quite good, with the saxne offset of 6 db.

The same may be said of Figures V-21 and V-22 whit show the predicted and measured

magnitude of the functions S. and Sy along the same cut.

Figures V-2.1 through V-26 si-ow the predicted and measured phases of the

functions SP S , Sx, &ad S y along a cut k,,= 65.4 rreter-I. The measured phase plots

show a linear additive phas2 term wi' h slope of about 0.3 degree/meter;, this term is

pro"bably due to target misalignment. There is in addition b phase inversion of S and

S~which affects the ruer in w:ich thosu two functions change as the orign (kx =

crossed.
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C-. STUMMARY

In this section we presented both predictions and near-field measurements of

tir-field bistatic scattering of the conducting sphere. The key ),nts of the presentation

may b- summartzed as follows:

(1) The magnitude of the measured scattering agrees well with the predicted

scattering within the region of defirion of the k-space reconstruction. The

discrepancy between measurcment and prediction consists of a *2 db peak

ripple superimpo3ed upon a ranstant calibration oftset of 6 db.

(2) Agreenieat of the scattering phase is not as good. This is due primarily to

two effects:

(a) Phase measmtcments are particularly sensitive to antenna axial

alignment perpendicular to the plane of scanning.

(b) "Wra,-around" occurs in the phase of the measured data due to

(fixed) phase offsets in the network analyzer.

(3) Coherent background subtraction is an effective teclin-que for improving

signal-to-noise ratio.

(4) Spatial iltering to remove unwanted scattering from the environment may

be performed in the k-space Fourier transform representation oi the

measured data.

(•) Sidelobes iu the Fouricr-traasformed measurenents are great', -educed by

smoothing the measurements with a smoothing window prior to perbriaing

.he Fourier transforms.

(6) Probe-to-probe couplizg is rPily separated from the desired target

scat .ering itn•orniton n the k-space representation of the measured data.
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CHAPTER VI

DATA REDUCTION INVESTIGATION

A. INTRODUCTION

The existing algokithms 5or computing near-field tatenna patterns and radar cross

sections of objects impose significant computational burdens. In this section we describe

modifications and/or alternatives to the existing algorithms which offer the potential for

reducing t0e number oi computational steps needed to obtain useful near-field

measurement data. The iLvestigations concentrate on three priruary computational

alterratives described in the idGlowiug sections. The following eher computational

aternatives are n.tt considered herm (1) .dptive nonuniform sampling, (2)

non-rectangular lattice (or grid) sample spacing, (3) stai.Rtically reduced number of

near-field data used in tioe far-'ield transform, and (4) derivative data measurei in the

near-field.

Two approaches for reducing the burden of the near-field computations are

considered here. The first approach i, based on writing the equations for computing the

scattering matrix directly in ,ector and matrix notation. The current equations compute

Y'ie scattering matrix in several steps. Each step requires computations and transfers to

data storage which !npose computational burdeas. These burdens can be reduced by using

a direct matrix formulation of the scattering equation In addition, the other alteinatives

for reducing either the amount of meastured near-field data or 'he computations necessary

to determine the scattering matrix are more convenient to work with in terms of the direct

matrix formulations.

The -,emnd approach --k based on expailsions of the near-field functional components

which allow us to imnnose constraints on the near-field functions The constraints can be

based on (1) the desired or expected analytical behavior of the functions, (2) the physics of

ý!,N, measurement environment, or (3) the informatioru content of the data process.
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In invest!g!%ting thc comput.tlons from a matrix persp ive, we first rewrite the

equations for 'he scatteing mirix in vector matrix notation. Expressed in this form, the

scnttering .zquation is more eftsily Interpreted and adapted to improve the efficiency of

computing the relitionships betwmen the scattering components. Next we relate tho

scattering matrix formulation vith ths vector formulation of the first subsection and

com..are the results.

The c.xpliclt qolution for the scattering matrix 2ll(KL) in terms of the rreasure,4

at array parallels the solution Civen in Chapter II except that thii de-dvatioli solv'-s for

the scattering matrix in teras of the .neasuree data Yector and r rix -pr-esen4ations.

The equarion development is descried in terds of the coLlnnuora Founxr traisform for

exposition convenience. Equivalent results caw be obtained fo, ,he point measurement

computation of the Discrete Fourier transform using the Fast .. urier tranqform.

The bistatic measurement equation Is

-- ~~~o('1' 2)= 0i1k)'Tlk•''0•d

where
0 ( =) = týLe vector transpose of f01(K)

k = Scattering (emerging) direction,

= incident (illumLnation) direction,

?I = Pxrex + Pyrey + Ptrez = receiver Prnbe coordinates,

12 = Pxtex + Pytey + Pztez = transmit probe coordinates.

In the laboratory we measure a multidimensional scalar complex array

M(Pxr 39P,PyrP ltytr,t ela discrete points whose components elements ate the measured

values of bo('12)

(PxrPyrPzrr) I {(P,, PyriPz)•), Pzr = constant,
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(PxtPytPzt) E {(P, 'PYti'Pzt)}' Pzt = constant,

4r = {1, 2} an index denoting receive probe orientation, and

ft = {1, 2) - an index denoting transmit probe orientation.

In the first step of the solution, we take the inverse Fourier transform with respect

to the respective transmitter and receiver locations f,, t 2 of both sides of the equation.

fbo('1IP I-im fn' f2 i•' 102 t "i - J~"I .10l .

yfr'

e" d 2''fl a2 dl eIII!i -f ,0

= (2r)6 if lo1(i).,T11(,j) .110(f). • •.(-€d!"d

=(2r)6 fI t() -T11 (n-'m)" 10(-mý)

where i. is defined in terms of its wavenumber kxr, kyr, kzr components in the coordinate

system of T11(•,i). Note that 4r and ft are constants in the above equation. We now

write the equation in terms of the •,I arguments
B (i,-I) :(2,)6 01t(K). -T"J 1 ). 410 (1)

where
JJ "ii'f2÷il r dt

B(k,-I) =j bo(flf 2)-e dr1 dr2.

The minus sign of the vector 1 indicates the direction of the incident radiation

relative to the scattering object. In our laboratory measurements the elements of M(.) are

built up by a concatenation of scans by the rece've probe; during each scan we vary Pxr

snd Pyr and hold Pzr' Pxt, Pyt, fr, and 4t constant. If

Nxr = number of discrete values of Px,

Nyr = number of discrete values of Pyr'

Nxt = number of discrete values of PxtI

Nyt = number of discrete values of Pyt'
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then M(.) consists of 4NtN A matrices, each of which Yoatalws Nx Ny complex scalars.

The factor of 4 comes from 4r= {1,2} and Ct= {1,2}.

The vectors 101(i) and fi0(1) have specific components reflecting their

dependence on the probe orientations (4= {1,2}, t= {1,2}) polarization components (0,0)

of the transmitted and received signals. Next we define two 2x2 matrices UT and Xt

composed of the respective •1(i) and 110(i) vectors In terms of their specific function

arguments {, 4 and 0, thus

t1(,krrl)I kT Z• [..,ot , * .] = [ 01 frl) 10100k ,4 1)]

['•lt•l )1 Ilo (01A42) Ilo0("fr2t) ]

The quantity B(i,-f) is also a function of the probe and poluization arguments so

we define If, a 2x2 matrix with the diagonal terms specified by the respective values of

IT(-) for each of the four vector combinations of the UK (IM) matrices. Using the above

definitions we can write the scattering matrix equation as

(f~•, I) = (2.)6 LZ(J). T (6,,1) Tr(f)t.

If the matrices 1K and IT have rank two, their inverses exist and we can write the

scattering matrix as

TII(ij) = UT U-1..(IL't)1/(21) 6 .

The matrix inverses for the IK and IL4 matrices are

(TK•-I r 10 1 0(k,42) -1 0 1 4)(kl) /A(r)

[-01Ae(,42) '0i (00 )
r -I10(k2 0 1 0 (ii 2 ) 1
-[-I 0 1 0(1,fti) i01•.Ca', /t)

where A(r) and A(t) are respectively

A(r) I k &r OX ) 0

= 10 0 (k, 4rl) ' 1 0 0 )( ,t 2 )- 110(10,"r1) 1101ok,2)
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T~he 1; matrix is given by

Br 1Brlt21

The subscripts ri and tj (ij=1,2) in the Bri t terms identify the orientation of the cri, Ctj

probe components. We can then write the scattering matrix, 1 11 (k,1), explicitly in terms

-o~ the vector elements and scaling components, A(r)&1(t)(2jr) , as
F Ii~(,42 BritjrIOjO(ý,Crj)Br2 tj l0j6(k',Cr)Br1 tg-l010(i,fr)Br2 t

We can now write the elements, T. .(ij=l,2) of the T (, matrix as

T1 lj(IiCr2)BrI ti IO10i'k4,dF-z2 611)I010(tCO) -

T2= (-IgjO(k,Cr2)BrI tI7o10(L',fri)Br2 td1)IAýZ.,~2) +

(11(,C2BI t210i(ýCri)%r t2)IQj(I,ftj) -~ )~)(r6-

T22 =-(-Iai 6(k, 1,10)Brl t1+lOjiCl~r)Br2 tj~1Ojj 1 'Ct2) +

The Tij components of Tj(,) for particular values of (K ,yxy) are the

transfer function that maps incident 04~ polrzations into scattered (emerging) $,0i

polarizations.

We now show the equivalence of the scattering matrix as derived above and the

matrix representation derived in Chapter 111 We first derive the explicit solution for the

scattering matrix T11(R,fL) in ternms of the measured data array. The bistatic

measurement equation is
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(ktto-) dI e '&-r2

D(i,f1)

where the equation elements are as defined in the preceding sections and D(k,r1 ) is a scalar

coupling product.

In the laboratory we measure a multidimensional scalar complex array

bo(Pxr,PyrP rPxtPytPt,Cr,Ct) at discrete points

(PxrPyrPzr) {(PxriPYri,)}, Pzr = constant,

(Pxt'ytszt) E {(PiPYt ,Pzt)1, PA = constant,

1= {i, 2} a an index denoting receive probe orientation, and

t {1, 2} = an index denoting transmit probe orientation.

In the first step of the solution, the scalar coupling product D(.) is computed as a

phase-shifted two-dimensional Fourier transform of B(.) with respect to the transmitter

coordinate r2:I4 *
r * -im- r2  It 1. - m 2

bo(r 1,r 2) e dr2  Jj 0). Y~ ( ;11(•(,1)10 (±) e i dkl ek d

which we write as
IU(M,,•) = r f110) .I Tii J•) .•iOM e i•'l- di dT1 (21)2 A(k-m)

1 0i' 1 d.102) ~n

IY(K rl) = (2r)2 I0 T 10). l) "iO( e 1 di .

IY(*,•i) Is now written as a matrix to reflect its multi-component structure.

In our laboratory measurements the data components bo('ii 2) are built up as a

concatenation of scans by the .receive probe; during each scan we vary Pr and Pyr and
hold PzrP PPyti ýr, and ýt constant. Each U(k,) component consists of four complex

scalar corresponding to the combinations of f,=(1,2) and ft={1,2}.
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In the second step of the solution, the scattered spectrum
F(i'(1) -- J T11(0'1 "l0(i) e 4'1 -r dI.

is computed from IY(i,:1) and the receive probe response function To,(-) by means of A

simultaneous linear equation solution. From a prior equation 1;(;,'2) is

(t'r,;i) = (2x)2 Tot , I).

Expanding explicitly,

D(i,;1,Cr,Ct) = 101J(,) Fj(k,*r,et) + I01,(•,(r) F,(ilt).

To solve for F(.) we need two equations obtained by measuring D(.) at two different Cr:

D(i,;1,frl,Ct) = o10(1& rl) Fi,1,Ct) + I 01o(krl) Fo(ý,'1,•t
D(i,'rl,fr2,ft) = 101•,ýr2) Fdi,*r1,Ct) + 1010(•,fr2) FO(i,;1,Ct)-

Then
F8(i,;I,,Ct) = [D (k',lrl, 1411t)I010(4, ) - D(irl, 1a 42 t)I01(KI, Crl ],&(r)-'

Fkf1,(t) = [D(K,rI,4rl,ft)Io1(k,42) -D(k,r1,i 2 ,ft)Io01(k,r1)JA(r)F

with non-zero determinant

A(r) = I010I(kri)Ioi,#( r42 ) -IO19(,r2)I010('Ird)

For each transmit probe position (Pxd.P c,Pzt) a orientation ft, F(.) is defined over all

valid ;. Note that 1'(.) is not a function of fr A particular realization F(.) is the

scattered spectrum from the object, given a particular position r 1 and orientation Ct of the

transmit probe.

In the third step the vector coupling product is calculated as a two-dimensional

phase-shifted Fourier transform with respect to the transmit probe coordinates. From a

prior equation

F(;, 1r) =J T( TTl ).( 1 0(f) e l d

we define
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=(,I T11(,1)-41 o(I).

and write

r(ij'd 41 , 1) -•( ~e 4141 dI.

The equation is now Fourier transformed with respect to 1I
S(,,1).e-in'r1 +U fr"

(ia) -- (2r)2 Jq(0,1). dl 6(+;)

(,!) -= (2,)2 ,(,-)

This vector coupling product represents the 0,0 components of the scattered spectrum as a

function of incident 1, emerging ý, and transmit probe orientation 4t"
The fourth and final step is to calculate the scattering matrix Tjl(i,). The

equation
,( r(I,*) = Tn1 (ib ).10(t)

can be written explicitly in terms of the respective Ctterms as

[~~~ ~ ~ C•k l•l ,k•,t2)J

T1100 (1,t 1) T11i0(i,ft2) '10i(kjtl) Iioe(1 ,•4t 2)

Solving for T (11 (i,) we write
T11 (•,) = ZRk,;1,t).rl0(I,Ct)-

where

Tl ,Ct)- -- [ I1o0(i'C't2) 11i0(0-W 2 I A(t -['10A(kltl) II0ALk],tl)](

with non--mo determinant
A(t) =- !10•A(,•,tl)I10O(Tft2) -• I109"CtP)100(",Ct)

which results in
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Q (r ,tl Qo(k',1 ,ft2) *Iio(kt2) AIleO"f't2) 1~ )lSt-11

lc C~rtl) Q16(i, 1, t2) J'1-00O ,fCtlt) Ilo•(k,ftl)J "

We can now write the components of Tll(kI) as

T Q0 140,04042)- 990 1tO 140)io(,41)
Tl1000•) = oL't)l•••2 At~t • t) Io(,tl

rlle(L Q k,••~t)x÷(~2 - Q 0 140,1040141~t)
1180 0() A(t)

T k, -q9(0 ',tl)Ilo#(',•t2) + 401(14,1,0290o4,1t)
11000 = - A(t)

=-q Q(,l1tl) lo(8, t2) +Q t(•,, 1 42) lo8(, l4)

The four components of TII(Mi), for particular values of (M,), are the transfer function
that maps incident 0,0 polarizations into scattered (emerging) 0,0 polarizations.

To compare the vector and above formulations of the scattering equations, it is

necessary to substitute for the respective •, I and U matrices to show the equation in

terms cf the measured Y data set.

We have, from a preceding section,

F(ij,) = (2r)2 q(j,--).

We use a previously defined equation relating U and F to write the T components in terms

of the IU and T matrices, i.e.,
U(K,*rl) = (2r)2 Tot (6)"F( r1).

The Fourier transform with respect to r1 and the wavenumber argument 1 is
U(;, 1) = (2,r)2 Tot1(f) 0(,•

Thus, we obtain
NM•,) = ((2,r)4 T•I(6)).•T(•-I).

Recall that Uo(*1,r2) is defined in terms of U(i, *1) as

o('1;2)= [(,r1) ei dk.
J

Taking the Fourier transform of both sides with respect to ;, and ;2 we have
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r e4 r

if %( elmrl) drd d

JJJ T(~i~) e "2 d ; d;. d~2.

The results of the transforma operations yield

or

Using the equation for 75 determined earlier, we now have

We can now write the components otfij in tex-s of the If components as

1I(%,) T'i)1f;j/2)

The I and R elements of 'Q are

-491A(W'4 010 ('4rd
where A(r) is

A(r) =Ii(,~,Ii(k)-li(ir)4i(,~

and

Sil tI Br1 t21

We can now write ZFi ) as

-[Qe(~-'vti) QAl t21
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[~ ~ ~~t (T-1k.qj0u (kfri)Br2 t~ (Toi0(k,4 2)Bri t2 -1oi(kýr)B t2
(-Iol 8(ý,ri2)Bjl tj -4,30 e(* 41)Br2 tl (-1oi #(ýfr2)Bri t2 +0 (~1B2t).

We.-an. now write the coznnponents of T 1 1 (ij) 33

llook (t)

Tllo(kij) + Q~)1 O ( ,4y)t2Io(lfj .

When the vclues for tf e jq eements we stbb(i 'uted into the equations for the elements

we see that th-z scattering miatrix vfalues -xe ident'cal to those derived earlier. Thus, the

representation re will u;;e for omptzinj the sca~teritiq matrix is

where

-'0 [ f2 'PI{,4 Ioi(itfr) J Ar

(Tr~l f 91 Iýc2) -104G144)~

I -I014(1etl'1 0 ~4 140j
A(r) oIo('' k o~~42 -! k~~~4) ~g,

and
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C. FUNCTIONAL EXPANSION

We consider here a method for reducing the computational and storage burden of

the near-field computations. The baoils for the method is a representation of the measured

data field by a suitable expansion function which is truncated to limit the number of field

function derivatives (to yield a relatively "smooth" estimate of the Licattering matrix) and

which minimizes some specified error function of the estimated scattering matrix. The

equatiops are written in terms of the previously determined values, T,,(ij), of the

scattering matrix and the next value, Tll(K+AZ,I+A1), of the scatterirg matrix to be

determined. As an example, we will consider an estimate for the scattering matrix which

zinimizes the norm, Ni(d). of the waataon definirg the scattering matrix, i.e.

N(d) = I Tll(,i) -I ' -/(2•r)6  m.

The specific ma•rix normalization which might be used need not be specified at this time

for the purposes of this Pxample. The mnimizaticn is subjet to the constraint that in the

reion of each set of estnted values, the scattering mntrix has no derivatives above the

second order. Therefore

T11 (+Ai,I÷+A) =9-.o V j.& 816k + v i.al 8/01](n) T11(r,I)

where V i and V i are thz gradients of the function T,.1(1, ) with respect to K and I and
](n) represents the gradient and partial differential operators in the bracketed quantity

being reised to the nth power before operating on the proces functions. The minimization

and constraint conditions are combined using a LaGrange multiplier as shown below:

Q = N(d) + A I(TII(;+Ai,1+Al) -- 4= 0 [V j-Ai 81/ + V I.,& 8/011(n)

The equation for Q is now minimized with respect to A and also T1 1(k,I) for given values

of Aý and Al in order to compute TII(i+Ai,I+AI). The intent of the operations is to

solve for consecutive values of TIj(k+Ai,I+Al) for spacings of Alt and Al which are

greater than those which thight be required if the process constraints were not applied. If

the resultant spacings of AI and Al are greater than those that would be required based on
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the effective aperture of the scattering object, then we will have reduced the density of data

sampling for the near--eld measurements.

The equations must next be written in terms of the measurement parameters

(TI))-1, (T(l)t)-I and (2r)' and the data variable r(i, 1).

The expan3lon terms in the constraint equation are next written as

h=o 0 / + v r . /81(n) T1(6,I) = t=o [V . o/ + va/aI(•)•(•)-L•tI)•(tt)-'/(2,r)6.

The expansion for n=O yields
(IX(i))-1.- E(K, 1).-(M]:c)t)-1/(2r)6.

The expansion for n=1 yields

[V J.b] 0/& + V I.A1 0/011](1 (Tfil.(i ,1).i)-(1)t)-./(2r)6 
=

[(-1)(•)-' D -C (.)(•• (1))t1. (V •)- /0 l](f•, )). (f)t)- ]/ 2r+
•i)-•.(V t.• 8/& ir(i,)). tt- • +K

The expansion for n=2 yields
[V j.4SaI& + V .I /01(2) )/(2) =

[V2j.O .4/A2 + 2-.V i.S V I.Al /olal + V2
1.&I qp18121.

(TK•(i))-'-90J I•({ -(MI() t)-l. i(2,)6.

Rather than complete the expansion for the second order terms, it is helpful to

cousider the implications of the expansion terms relative to reducing the sampling denmty

of measurements while providing a satisfactory enimate of the scattering matrix. For

example, we might examine the computational and sampling implications of using a

.Deasmrent process which assured that the t (i)/t I and rK'(i)/0t terms would be

sUro.

The final steps are to perform the minimrization with respect to A and the

components of (iC(r)f-.•(•,I).(r(1)t)- in the expansion equations and solve for
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-TII(•+!,1+AI). The estimated value for TI1 (++A-) is then compared with

the measured value of Tll(i+&], I-c&). If the differen•e between the two values

exceeds a specdfed tolerance value, we have several alternatives depending on the region

over which the funcion -ninimization was performed. If the region is local, the required

spacings of the data samples can be determn~ed adaptively mnd changed as required at each

measurement location. if the minimization region is global then the local error estimates

can be used as a basis for changing the constraint conditions of the algorithm.
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CHAPTER VII

DEFINITION OF MEASUREMENT LIMITATIONS

A. INTRODUCTIONJ

The purpose of this task was to investigate the limitations, both theoretical and

experimental, of the near-field RCS measurement method. We concentrated on two

topics: (1) data acquisition limitaticns and (2) measurement of wide-angle bistatic RCS.

Investigation into the data acquisition limitations considered the design of the receiver, the

antenna configuration, and the storage requirements. The investigation into wide-angle

bistatic RCS concentrated on the difficulties of performing such a measurement.

Results of this investigation are that, depending upon the frequency of interest,

near-field RCS is practical with current technology for objects ranging in size from small

missiles to B-1 Bombers for monostatic RCS and small-angle bistatic RCS. For

wide-angle bistatic RCS, we concluded that new technology and/or modified near-field

theory is needed. Additionally, application of near-ield RCS for large objects at

frequencies above 1 gigahertz is dependent upon the development of large array antennas

appropriate for near-field.

B. DATA ACOUIsr10 LIMITATIONS

Investigations into the data acquisition limitations covered the topics of receiver

design, antenna requirements, and data storage requirements. This investigation

demonstrates that near-field RCS is possible for a wide class of problems with current

technology and that, with the advancement of new technology, it has the potential to be

applicable for many classes of RCS measurement configurations. In this section, only

monostatic and small-angle bistatic RCS is considered.

1. ReevrDsg

A potential design for the receiver in the near-field measurement method is

shown in Figure VII-l. The receiver shown is a synchronous detector and is similar to

receivers used on typical radar systems. This type of receiver is proposed because of its
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ability to rapidly measure the real and imaginary parts of the received signal The real

part of the RF signal is obtained by multiplying the PF signal by a reference signal from

the local osclla"or and low-pass filtering the result. The Imaginary part is obtained by

multiplying the RF signal by the qusdrature of the reference signal and filtering as before.

These signals are then converted to digital form and stored.

In most cLaes, data storage will be the slowest function in the receiver. However, If a

buffer is devised to switch between several storage devices, one could realize a system

which is limited by the A/D conversion and the settling time of the low-pass filter. In

most practical eaues, the A/D conversion time will be the limiting factor on speed If one Is

willing to use a wide-band low-pass filter and accept the increased noise that will be

associated with the wide bandwidth. Conversion times of under one microsecond for 12 bit

A/D conversion are common.

Figure VII-2 shows the measurement time required to make near-field RCS

measurements assuming that the only limitation Is the sampling time for the A/D

conversion. In this example an army antenna with A/2 spacing is used, the A/D conversion

time is 0.1 microsecond, and the time to move the transmit probe Is assumed negligible.

This graph shows that for practical frequencies and for targets as large &a the B-1 bomber,

A/D conversion times are not a limitation with near-field mensurements given enough

receivers. The main limitation of this configuration, however, is the design of the array

antenna and receiver system, and the cost of such a system. Arrays with 106 to 107 array

elements and 102 to 103 receivers will be required at higher frequencies.

2. fla g=

Data storage requirements are extremely large for many practical

,easurement configurations. Figure VII-3 shows tOe data volume generated assuming

conventional sampling techniques and no data compression. The large amounts of data

that must be stored required some kind of data compression to make near-field RCS

practical for large scattering objects at high frequencies. Several techniques for reducing
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the volume of data are discussed in Chapter VI. Even without data compression, however,

it appears feasible to measure objects ranging from a jeep at 5 Ghz to a B-1 Bomber at

100 Mhz.
3. Fdtn eloo

In the previous section it was shown that near-field measurement times are

reasonable given a suitably-designed array antenna and receiver system. This technology

has not been demonstrated yet, and therefore near-field measurement times were

investigated assuming implementations using exdsting technology.

From Figure VII-2, note that measurement times of weeks are needed for

large scattering objects in the gigahertz frequency bands given an optimally designed

antenna system. The only measurement speed limitation of that system was the A/D

conversion time. Therefore, one can conclude that near-field RCS measurements of large

objects will require multi-antenna arrays to achieve the necessary measurement speed.

Measurement times for near-field RCS were developed as a function of the

number of probe antennas (or array elements), the frequency, and the aperture scan area.

Current technology generally uses a waveguide probe antenna. Although this type of probe

has limited application here due to its high scattering cross section, it may be usable as

long as the total number of probes is relatively small (i.e., the total cross section ot the

probes must remain small). Figure VII-4 through VII-8 show the resulting measurement

times at different frequencies for various size apertures. Tabi%. VI-1 shows the practical

limitation on target size as a function of frequency using these probe scanning techniques.

As shown in the table, many practical systems can be measured with current probe

scanning techniques and an expensive array antenna system need not be developed for

these cases.

C. AT!-ANGLD BISTLTC RCS

The near-field theory developed by Dinallo requires that the probe-to-probe

coupling of the transmitter and receiver be negligible. This can be accomplished either by
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using probes with minimal mutual coupling or measurement techniques such as time

gating, FM modulation of the background (range filtering), k-space filtering (angular

filtering), and so forth. Each of these experimental techniques has its limitations. The

problem that arises is that there will always be potential geometric orientations for which

angular, range, or time filtering alone cannot distinguish between the received signals from

the scatterer and the transmit probe antenna. This problem might be solved by using two

or more of these techniques in tandem. Additional development of the theory of near-field

RCS measurement may also be fruitful. Wide-angle bistatic RCS is conceptually feasible,

but has yet to be demonstrated. Further investigation into using multiple filtering

techniques and/or additional theoretical development need to be performed.
D. CONCLUSIONS

Thzu brief investigation has shown that near-field monostatic and small-angle

bistatic RCS measurements are practical for some interesting classes of problems using

current technology. It also shows the need to develop both large array antenna systems

and inexpensive multi-channel receivers. The need for array antennas, and thus

multi-channel receiving, increases with increasing target size and frequency. Data storage

problems also increase with increasing target size and frequency.

The data quantity reduction techniques discased in Chapter V have the potential

of relaidng the constraints for both the data storage and the complexity of the array

antenna by requiring fewer data samples, and therefore requiring fewer array elements.
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CHAPTER VIII

CONCLUSIONS
A. INTRODUCTION

This final report presents the technical work performed by BDM for the Rome .%"

Development Center to Perform laboratory measurements and anzlyss to vnlidate a Wlanar

near-field RCS measurement technique.

The major issues of the technical effort are discussed in the p,=,]ous chapers of thl-

report. The probe corrected near-field theory is well-developed and is directly applcable

to the planar measmuement configuration. Software to implement the theory has been

developed. Near-fielo measurements were obtained with a low-cost computer-a-utrolled

scanning table designed and constructed in the BDM Laboratory. Agreement betwebn

measurements and prvdictions was excellent. We have identified several approaches to

reducing the quantity of data required for near-field RCS measurements, and hav'.

identified some of the limitations of the method.

Although we do not see any fundamental obstacles to implementing this R0S9

measurement technique on a larger scale, our recent work nas given us insight into the typr

of development needed to bring this concept to fruitiou. While building on the mature

near-field antenna measurement technology, planar near-field RCS measurement itself is

obviously not a matu-o technology. BDM is not at a point to design turn-key systems

implementinE this technology, although we have been leaders in developing and validating

the mathematics and experimental protocols for there measurements.

We do feel, however, that this Is a very promising avenue for near-field

RCS measurement. It shows promise of addressing several important issues of RCS

measurement:

(1) measuring RCS of low-observable objects,

(2) measuring monostatic and blstatic RCS,

(3) providing a secure faciiify for RCS measurement,
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(4-- increased accuracy, and

(5) increased repeatability.

In the following sections we discuss eow technolo a we that need further

development. Specific arw of planar near-field RCS technology are disussed in the terms

of topic problem areas and tentative solutions. EnvironmezW factors are also noted where

appropr:ate.

B. B&Lcn- ME+ $UR•MENTr REOIUIBEMETS

There is currently a credibility gap that must be surmounted. Although the

.neoretiral basis for -onverting near-field RC• to far-field RCS is firm, there has been no

large-sc.le demonstration thet mear-field RCS data will yidd valid, believable far-field

RCS for realistic military ta-gets., it is necessary to establish analytical bases for relating

onventional far-field RCS measurements and near--field RCS meaaurements, identify

limitations of both far-field and near-field RCS meazurments, and investigate ths extent

to which the statistical car.erxa•ica of faW-field and near--ld daza are complementary.

There will b- szowp difficuWt! a enc-mutered in meabvring low-observabie RCS, since,

as in conventional far-Seld ranges, the RCS may be comparable to the background

scattering levels in the system. It is neceesary to identify mechanisms for dealing optimally

with low signal/noise measurement eavironments.

The actual requirements for RCS data quantity and precision are not clear. While

very accurate RCS from many angles is desirable, what is actually acceptable? There is a

need for realistic RCS requirements assessments based upon system specifications and

mission requirements.

The analysis of near-field RCS data has moderate computational complexity.

Studies are needed to identify trade-off elements, precision, and computational complexity

and apply a systems view of the problem to determine computational trade-offs.
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C. THEORETICAL BASIS

Tne theoretical basis for near-field RCS measurements needs expanding. Among

the effects that need additional investigation are multiple interactions between probes and

objects, ways of reducing the computational burden, effects of undersampling the data

field, maximum entropy constraints to reduce what would be redundant information In a

noise-frea environment, algorithm modifications to compute parameters of estimated

statistical distributions directly for RCS or antenna patterns, and more effective probe

antenna designs and patterns.

D. CALIDBATION

Fxisting RF technology is generally adequate to support this RCS measurement

technique. Care must be taken in stable design of signal sources, feeds, and receivers. The

mechanical and electrical design of the antennas and feds will require ingenuity.

Calibration of such a near-field RCS measurement facility would probably require built-in

calibration loops in the RF paths to allow adaptive self-test and recalibration during data

runs. Implications cf such self-test loops, and the possibility of using created white (or

other suitably defined) spatial and frequency noise sources and out-of-band techniques to

check calibration In real time, should be investigated.

E. MEASURING THE NECESSARY DATA

The two key problems for this near-field measurement approach are the amount of

data that must be measured, and the time that will be requi.red to make the measurements.

There is no fundamental obstacle to recording the necessary data, but it calls for clever

measurement system design and data processing algorithms.

The measured near-field data will be voluminous. Ways are needed to reduce the

amount of data required, and to efficiently store the data once they are measured. Possible

paths to pursue are to achieve data density reductions by alternative computation and

analysis algorithms; data coding algorithms to reduce data volume for Ucquisition, storage,

and processing; trade-offs between data precision, storage requirements, and analysis
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accuracy; uew algorithms (eigenstructure, analytic and series functions, and orthogonal

expansions) for reducing sampling density; determining what can be done numerically to

utilize magnituie-only or phae-only measurements; use of error-ree versus

non-error-fEm, data comprersion; use of densely--packed antenna a&rays; and investigation

tf various higa-densty digital data storage media including optical disk and holographic

storar B

Other avenues of inv--tigation include fMlly-automated measurements systems,

computer-contro!led data collection and probe and target positioning with process quality

feedback, time-division and frequency-division multiplex antenna and feed systems,

fast-response serve control systems for probe antenia positioning, existing laser metrology

systems for cosed-4oop control of antenna position, multiple transmit and receive channels

with broad-band intermediate frequency strips to allow high-speed I-Q measurements,

parallel computationally-specific dedicated processors, and combined data measurement

and analog computation.

The various RF coupling paths between measurements system and object must be

analyzed as part of the error analysis. Signal-to-noise limitations must be evaluated,

particularly in light of low-observable targets, broad IF bandwidths in receivers, and

system noise figure. Other signal-to-noise issues Include using multiple coherent data

measurenmts, background scatter reduction, coherent or incoherent background

subtrdction and suppression, absorption and signature techniques, effects of multiple

reflections, explicit time gating and Implicit gating using synthetic spectra and data

signatures, environmental changes and deviations from Ideal, and factor analysis.

Part of that investigation would be to evaluate the level of specular and diffuse

reflections that may be present from both object and background, and possibly create

mediflied •1gorithbmstalloied respectively to emphasize or reject specular and diffuse

reflections via a feed-back loop, using resuts to isolate undesired components of the

background.
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Obtaining the necessary metrology accuracy is not a trivial problem, but is well

within the state of the art. Tools to be used here include laser interferometry', closed loop

control, real-time RF frequency and phase error measurement and adaptive correction, and

phase locking techniques. Timing errors can be minimized by referring all measurements

to a master clock to correct the time refemces of data as required.

It is necessary to evaluate reproducibility of measurement conditions.

Reproducibility is impacted by environmental effects, equipment drift, structural stability,

target stability, and aging, and might be measured in terms of pattern distr.butions and

statistical confidence intervals.

Effects of non-ideal measurement components (eag., amplifiers, mixers) must be

evaluated. One approach is to exercise and modify algorithms as required to examine data

behavior given non-ideal components, including error analyses, simulation, and

experiments to evaluate effects of component variability.

Possible methods of alleviating undesired effects of probe characteristics include

using broad-band, lot mutual coupling, variable polarization, active nonlinear elements.

Adequate polarization and geometry control may allow simplifications in the data

processing algorithms; this will require detailed antenna analysis and design and feed

systems using PIN diode switching and compensating elements.

Environmental noise components might be isolated and compensated for by

measuring and assigning data signatures to various environmental and measurement

elements and demodulating the undesired signatures in real time. Environmental

interference might also be reduced by using out-of-band data from known targets to

isolate environmental interference on a real-time basis.

Approaches to reducing data computational burden include using canonic

simplifications based on alternative measurement ani analysis algorithms, and

simultaneous measurement, computation, and analysis using buffered computations and

direct transform algorithms.
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Data collection monitoring and quality control call for automated operations and

on-line factor analysis to determine data error sensitivity. The need for Identifying

unusual measurement problems during data acquisition suggests that one should create an

evolving data pattern generated incrementally as measurement data are obtained, so that

algorithms can detect divergence from the emerging pattern.
F. DAAAAYI

The relations between Input and output data quantity and quality, and numerical

effects in the data analysis algorithms, need additional Investigation. Possible approaches

are to employ a 64-bit (or longer) word-length computer to simulate a variable word

length computer and thus determine the numerical sensitivity of the algorithms and

optimize the algorithms for minimum sensitivity; investigate dynamic range limitations

due to numerical considerations of using large Fast Fourier Transforms (FFTs); and

possible use of phase-only data. Simulations are needed to help determine error relations

between data inputs and outputs. Data analysis time and resources could be reduced by

using dedicated hardware FF1s and processors.

Additional paths to reducing computational complexity include using the physical

situation's constraints (both target and environment), using mathematical structure

constraints, adding other consualnts on information content, matching the information

content of the channel betwe-e, measurements and canonic results, factor analysis, and

various operations research techuiques (including linear programming).

Other poWible data and algorithm modifications include using blank data cells

(under sampling), truncation (blanking), zero Interpolation, blanking interpoWlation, various

simplifications and alternatives to the axsting near-field theory, solving dual/analog

problems, identiWying relations between simplification and useful outputs, computing

pattern statistics rather than RCS patterns, and using object and algorithm functional

symmetry.
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G. OPERATIONAL CONSIDERATIONS

We emphasize again that it is not clear what RCS data are really needed for

existing aircraft and missiles. It would be a noteworthy capability simply to be able to

measure monostatic RCS at, smy, one degree intervals for angles within *30 degrees of the

horizon, but it is not clear whether missi, effectiveness would be truly enhanced by such

detailed knowledge. Perhaps it would be more useful to be able to state that the maximum

RCS over a specified solid angle is less than - with probability V. The range of angles and

the angular resolution of the data have major technical (measurement time and data

volume) and economic (time and cost) impact. As aids to baselining this measurement

approach, time and data volume could be estimated for specific measurement scenarios,

given the angular range and resolution needed.

The absolute RCS accuracy required for mission evaluation has a major impact

upon how much data are needed, how long It takes to measure the data, and what kind of

algorithms are used to process and display the data. Acceptable and desirable

measurement accuracy constraints for mission scenarios must be established.

The mission scenario elements together impose stringent requirements upon the

measurement system. As part of identifying true measurement needs, a system level

evaluation of mission and operations use of RCS data is needed, to determine feasible costs

(time, capital, and staff), and to perform trade-off analyses and simulations.
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APPENDIX A

COORDINATE SYSTEMS

A. COORDINATE SYSTEMS

There are two coordinate systems (Figure A-i) to deal with in performing

near-field measurements: the scan table coordinate system (S') and the antenna

coordinate system (S). In the context of bistatic RCS measurements, the antenna

coordinate system is referred to as the test object coordinate system

The scan table coordinate system is the "laboratory" coordinate frame in which

measurements are taken, while the antenna coordinate system is the natural coordinate

frame for the antenna or object under test. Both are right-handed coordinate systems.

The scan table coordinate ,ystem is defined with horizontal x'-y" plane and

z'-axis upwards. The x-axis corresponds to movement of a platform only, while the

y'-axis corresponds to movement of a carriage along with its platform.

The origin of the scan table coordinate system is at the center of the aperture of the

TX probe antenna when the TX. platform is at its initial ("home") position. The

horizontal position of the origin coincides with the TX probe antenna mounting hole in the

TX platform, while the height of the origin above laboratory floor level depends upon the

height of the TX probe antenna that is installed.

The origin of the antenna coordinate system S is placed at some convenient

reference point on the AUT. If ; is the representation in S, of a vector from the origin

of S, to the origin of S, then a vector *r expressed in S' transforms to S as

; = ( -®r ),

where

o x + y oy
r 1 001

Y= o 0-1 0
10 0-1 j

rrx + ry&s + r2 .ý, and

A-1



OjCt Under 'TOWt

A,
*10

A,

0

A A
Note tat e x e

A A,

AA
e z z

A

Scan Table
Coordinate Systm

F4=u~ A-1. Comiuma~ Sysmmn

A-2



If the unit direction vector A is expressed in spherical coordinates as (,,) then

its negative (-A ) is written as (r,r - Or+ +).

If the unit direction vector is expressed in spherical coordinates In S as (r#,O,),

then it is expressed in S' as A" = (r',9',4'), where

r, r
e" =•r-9

,= .

If the unit direction vector A is exprssed in spherical coordinates in S as (r,8,0),

then its negative (-A) expressed inS" is-A = (r',Is', where

l= r

&, =-(a+ •).

The above relations can be verified by inspection of the coordinate systems

involved. We require that

r>O

S" is used to describe the probe antenna TX and RX characteristics since these

functions do not depend on a probe's location in S'.

C. ILLUM1MATING PLANE WAVE

The target is illuminated by a plane wave with polarization A, (j1-•=O) that is

effectively emitted from coordinates (xiyjzj) in S, toward the target centered at known

coordinates (x6,yNz) In S'. Define a unit vector *, in S, in the direction (x*-Xi, Y6-yil

"ZP-Zj). The vector "1 is known, since ;i Is a unit wave-vector from the far-field

illumination direction (if TX probe is scanning), or (xjyjzj) is the TX probe position and

ri can be calcudated'(if the TX probe is stationary).
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The propagation vector kfis expressed as

k~i q~k

k~1 =rq1k

or

=- cd-l(ril)

i= tan-1 (il'1,l)

where

k a 2r/A.

We also know, or will specify arbitrarily, the polarization of the illuminating plane

wave. If the TX probe is scanning, we select the polarization(s) EB or Eý for a particular

simulation. If the TX probe is a stationary standard gab. horn pointed at the object, we

will orient the horn so that the object Is on-ads and the E-plane of the horn is either

vertical or horizontal In S,, so that the transmitted polarization is either purely E' or

purely Eý.

If the polarization is known In the basis set

then the spherical components of the polarization are

EI = EisinOlcoso 1 + Ellin01 slino 1 + Ek.is 1

Ek = EIcos01cos• 1 + E; 1coS01sivO1 - E%.sinn1

EýI = -Eisnol + EBicoe 1 .

If the polarization is known In the basis set

then the Cartesian components of polarization are

m = E;isin 1coI + Eicc061COsO - E~lsino1

-Ei = Ei0 1sin$1 ln0 + Eclcesin 1l + EýIco0S#
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El= E' 1cOs91 - E' sin91 ,

and E; must be selected to ensure that •i.i-fO. Thus i can be expressed in either

Cartesian or spherical coordinates using the above transformation equations.

The propagation vector is expressed in S via the transformations
kx = +k l

_ ~k,l• =-k;il
or

O1= r-O

, = --4i.

The polarization vector is expressed in S via the transformations
Exl = +%,I

Eyl = -E•I

E•l = -E;I
or

Erl = +E;i

Ef 1 = -E•I
E01 = -Ei.

Therefore we can express the inlcident wave-vector and polarization (i) in either

Cartesian or spherical components in S, which is the coordinate system of the target.

D. SCATE D PLANE WAVE

The target scatters the illuminating plane wave Into plane waves in various

directions. In order to evaluate the scattering, we select a particular scattering direction

based upon where the observer is in the far-field.

Consider a plane wave that Is rcattered toward the known coordinates (xyiz) In

S'. Define a unit vector '-• in S" In the direction (xj-x6,yj-y6,q--z). The propagation
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vector k is expressed as

k;2 = 72k

or

= k
0= -1(.2

di cos '(ri2)

where k B 2r/A.

If scattering in a known direction is desired rather than scattering toward a known
coordinate, then q (expressed in S') is the scattering direction and (xyp,) need not be

known.

The propagation vector 2 is expressed in S via the transformations

ky2 =--ý
k2 = -,A2

or

r2 ri

E. SCATTERING CALCULATION

At this point we know the incident k-vector (i1)' the incident polariztion (i),
and the scattering k-vector (k2), all expressed in S, so we can compute the polarization

vector (t2) of the far-field scattered plane wave (Figure A-2) by mean of an analytic or
numerical model of the scattering object. The usual range-dependent phase factor can be

ingored.
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The scattering analysis of the sphere requirm that the object be In a preferred

coordinate system S" in which It is Illuminated by an incident plane wave having

propagation vector jkilz and linear polarization Ibi x . Since and A, are not so

constrained, we must construct a coordinate rotation matrix A that defines a Dew

coordinate system S" In which

' I = I ixl,
where we must have

k 2=O.
The coordinate rotation A transforms an arbitrary iinearly polarized incident plane

wave into a plane wave propagating In the direction Aith 6. polarization. The

scattering direction is also tranformed as

At this point il, Al, and k are known numerically, so the scattered polarization t

can be calculated in S" using the appropriate analysis (e.g., Stratton for the dielectric

sphere) and then transformed back to S as

The matrix A is computed in three steps. Let A. be a matrix that rotates a vector

S (for which we will actually use ;,) about e: by an angle

a, - tan-1 -_V _J.
z zJ

This rotation reduces ky to zero, so the rotated k (which we will call (1)) lies in the 6A

plane. The matrix is

r1 0 0
x 0= cos(al) sin(al)

LU -sin(a1) cos J
so
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ad applying the same rotation to . gives

Next, let A y be a matrix that rotates a r-ector about 6Y by an angle

This rotation reduces k(l) to zero, so the rotated •(I) (which we will call lies on the

ez axis. The matrix for this rotation is

rcos(a2) 0 sin(a2)

AY 0 1 0
L-sn(a,) 0 cos(a,).

so
i,(2 ) A xs -i ( ')
k(2) ___x.0().

At this point, j(2) is on the ez axis, as desired, and A(2) is in the yx~y Plane.

Finally, let Az be a matrix that rotates a vector about ez by an angle
r p()

o3 =-&
1 [--t•

This rotation reduces EM to zero, so the rotated E(2) (which we will call E(3)) will lie on

the 6. axis. The matrix is
cos(03) sin(83) 01

AZ= -sin(a3) cos(%ý) 0].
0 0 1

The desired coordinate rotation matrix is
A_ = Az.Ay-Ax.

The scattering analysis of the disk requires that the object be in a preferred

coordinate system S" in which it is illuminated by an incident plane wave from above the

61"-4y " plane having propagation vector i = (-,sin'"6x - c "Oz)il and lnear
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polarization E011oj + , where ZI Is in the plane 1"e- and i'=8" Since j1 and El

are not so constrained, we must construct a coordinate rotation matrix A that defines a

new coordinate system S" in which

All= EIlI + --a ) and
=E .+ .

where we must still have
k"1*91 =0

The scattering direction is ý w transformed as 4 .2.

The matrix A 1z computed in two steps. Let x be a matrix that rotates a vector

(for which we will actually use lc) about 6. by an angle

21=1°0 ifkz <0
r fkz > 0

This rotation ensures that kz is non-positive, as required, so the rotated k (which we will

call •(1)) lies below the 6.6y plane. The matrix Is
0 01

x= 0 cos(a1) sin(a)l
- 0 -sin(a1) cos(a 1 )

so
K(1) = Ax.K'

and applying the same rotation to 9 gives
k(l) = _A.-L..

Then let _z be a matrix that rotas a vector about 6z by an angle

r [k( +

This rotation reduces k(l) to zero and makes k(l) negative. The matrix is
[ cos(, sn(,2) 01

-z= -sin(a2) cos(a2) 0O.

-0 0 1]
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The desired coordinate rotat;on matrix A = i .s A. Applying A to

= ex + Y+ Ezz
In S" the angles of incidenes and emergence of the plane waves are

--_- co (k 2z/kl)

and

11 = co'- (k&1/)

=tan•1 ["LJ
The incident pclaxization parallel and perpendicular to the plane of incidence in S" are

•.1= I~j-I(-"•+sin ;-)

At this point a, .: and are known numerically, so the scattered polarization E• can be

calculated in S" as a linear combination of Eland E

EF-•L LS21 S2.22 E.L

In terms ufe'" .

61-2" = ~ O + "L;+ Esn
which is transformed back to S as

S•~2 = C A--'-

F. Musformation of Scatered Wave

If the predicted fa-field scattered plane wave's polarization vctor is

L=_(E.,,Ey2,Ea) when expressed in S, then the spherical components of polarization are

E = E•i•=Acos 2 + Eyin 2s"2 2 + EBzIM 2

E0 = E2dcose2cosO 2 + Ey2cose2sink2 - E%2n92

02= "-EsiD02 + Eyg2CSO'"
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If the calculated polarization in spherical coordinates is

when expressed In S, then the Cartes•,a components are

Ex = EOsn 2cw2 + B.02.OS9co 2 - B-slnO

E2 = Ee 02 + E2osln2 + F20=0

E2 = Er~w 2 - E•sin 2.

The polarization vector is expressed in S, via the transformations
%2 =+Ex2

Ey2 ýy 2

%2= AE2

or

E-r2 = +Er2

= -E.E•2 = -E

By means of the above equations, the scattered wave-vector (•) and polarization

(•) can be expressed in S' using eith Crter sa or spherical components.

The far-field scattered electric field is given by A and ', which can be expressed

in term of S or S'. It is probably best to stay In S, which is the natural coordinate system

for the scattering object.
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B. METHOD OF STATIONARY PHASE

In this section we summarize the relationship between the angular plane-wave

spectrum of an B--field and the far-field E-field that emerges by applying the method of

stationary phase to calculation of far-field E-field.

Consider an B-field expressed In the following form

2(; =, e dk~dk,.
) j

The first rtep in finding the far field Is to convert to spherical coordinates. Thus,

we define

r. k2sin~cosOB(i)

••k (sin x + " sW4 i Y+ coo$1Z)

r a r On&os p ij- SWi + cosa$ z).

izurn which far ji we obtain

W(•) -' ji N ) e lkrcTse Cosa + sin# sina Co("-)] d d4.

Thie is now in the correct form for Invoking the method of stationary phase [3].

Since the mdeh is somewhat involved, we quote the result and refemnce the details to

Born and Wolf. In their notation (Appendix MI, pp. 753-754, eq 16 and 19),

r k(X,y) Ikf* 0,y0
IIg(X,y)e dxd[Y 2nrw g(x0,yd

where

i 2f

dzfW

+- if oft> and o>0I

~-1 if< 7OIýýadC



and (xoYo) Is the critical point at which

-M =Df .0.
Thus, in our notation, the far field Is -

l•imt N; "2xke

2xke

where

Cos$- k
-•--.

Suppose we have a far field
1icr

I mi t b(r) -au Ege y m
lr l'

Substituting into the previous equation gives

B ,) ,2xk2ccofE0•

and
In

Thus the anguiz plane-wave spenm A(M) of an E-F-leld can be expressed in

terms of the known far-fed F.-feld by the relatio

2*co9 n..[Ie .

where K1•.
Later, when using plane wave spectra to define the transmit characristic of an

antenna, we use the symbol (, ) instead of •). Henc

10' 2-AcosD Inl-.. e ~ rJ
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C. OPEN-ENDED WAVEGUIDE

In this section we determine the magnitude of the TEh mode excited In an

open-ended wavegulde (OEWG) when illuminated by a plane wave. The motivation for

this analysis is clarification of the field relations and coefficients of proportionality.

The geometry of this problem Is illustrated In Figure B-2. Assume that the

Incident E-field at the origin is a plane wave

LI C M InC Inc.#B (0,)0A+ EA (0,O),e
Inc(# ) incr

where E8( ,€) and E# C(1,0) are complex scalars with an Identical phase.

We will create an elemental dipole in the far field that could excite this plane wave.

The E-field of a dipole is [4]
,kr

AdP = e sin(r) IdT,
-1 q k2

where we have defined x - - 4 =, and ,i is the intrinsic Impedance of free space.

We first choose a dipole in the far field parallel to linC to crate VuiC at the origin:
ihaInc 1C

Ez = U-- (Id?)p
i kr

where dt Is parallel to •n. Note that, in the in() factor In diP(), 0 is the angle

between dI and i and is therefore 4/2.

So,

Idi lckr jnc

which produces the observed incident field fpc

We now wish to find the wave launched into the OEWG by the dipole Md. To do

so, we invoke reciprocity and calculate the B-field at the dipole due to an excitation of the

OEWG. Suppose, in the wavegulde, we launch a wave of magnitude Eo towards the end of

the O -WG. At the aperture, we have
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Ey = Eo (1+r) cos [rr] and
Hx = --E .(l r) x i]

where

17
ZC

Next we determine a current distribution that excites this mode in the OEWG at a

point A from the opening (Figure B-3)
Jx = 2- Hx

-2---Ec. COS r- x,

where

Ag A

ga

Hence, the above current produces the open-ended waveguide far field

ikr

where for notational convenience we have defined

foepEH( 8, E )cos(i )

AE

and EE(0,0), FM(#0,), and AE are as defined by Yaghjian. Note that f0 and fo are now

simple unitless functions.

If we now generalize for an arbitrary antenna, we find
•(0,•) = imi t •,,•e

I I-
The reciprocity theorem states that
JJJ t". b dV = J Abja dV.
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In this instance the two cases (a) and (b) are:

(a) the current sheet in the OEWG excites the far field, and

(b) the small dipo!e in the far field excites the TEN mode in the

OEWG.

Now, the mode excited by the plane wave in the OEWG at a distance A inside the

open end is

Ey = bocos(-a-)

where bo is unknown. Invoking reciprocity, we find

j=- 2. BO.-cos[rLaxj.vJa=-2-•gc " a[-] y,

&kr

jb -Idl,

-. e -ie r [Einc6e + Einc6]

and

Eb -bo cosr X &1

The left-hand side of the reciprocity equation above becomes
ikr

fffa.jbV =A ir ~e~ + ~ f6 kr W ic., i nc
- AE f oe + foeinnce

while the right-hand side becomes

jf•bja dV =fb/2 "a/2 bc xi -2Eo rX x d]_'-12 fa 2 loco L-FJ Y-c-c' r - aL j• 64 d
r/• r+a/2

0-2b0E° b a2 aXI dx dy.
- J ii/2 cosJ-!

B-9



Using

C0a2 r x] T'

Ja-a/2

the integral is
H Lb.a dV -- - bOEO ab

Equating the left- and right-hand sides of the reciprocity equation,

-boEo ab AE f inc
EZ-- Ite jine + oLI c

so
-Zc4riAE nc+foeFnI

Using the relation

F1

we get
"-4 ziAE tfoe~inc + foeE lnc}bo = i2,• fT ,0 $ 0 .

abl 1-aJ E0

The above equation gives us the magnitude bo of the TEl0 mode excited in an

open-ended waveguide when Illuminated by an incident field ilnc The receiving

characteristic of the OEWG is thus

30()= -7

abk2 I y jT{iJ 0

The ratio AE/Eo is calculated elsewhere.

Now let open-ended wavegulde (OEWG) be illuminated by an &ntenma with known

far-field pattern and excitation. The wavegulde feed for the antenna is assumed to be

identical to the waveguide used as the OEWG. The geometry for this analysis Is shown In
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Figure B-4. Note that the source antenna is placed in the unprimed coordinate system,

and the OEWG probe is in the primed system. We define

ao = excitation in waveguide of known antenna, and

bo = excitation in OEWG.

Both ao and bo are defined at a distance A from the origin of the respective coordinate

systems.

In the coordinate system 0 (that of the antenna under test), the far-field E-field of

the antenna is

M r( ) = ao [EJ0  ,O))& + E 4)(8,4))& + 0 .er] "k'

where EP(eA) and EPA(,4) are known functions, ao is the excitation, and angles 0 and 4)

are related to the propagation vector k by

and

It has been shown that E(r) can be expressed in terms of the Fourier transform of

the components of A(r) that lHe in the x-y plane. The Fourier transform of those

components is commonly referred to as the angular spectrum (of plane waves) of 9(;) and

is denoted here by A(;). Using the method of stationary phase, the angular spectrum of

can be related to the far-field E-field, making the above expression for E()

equivalent to

el dkdk,

where

- ia 0 1
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or, in more general notation,
•lo~I •imi t [ e"'; *'9(",1

field transmitted to 01, exprsse in tR 2 coor a 0, is

-2A7 JJ1 r1
If now the probe is scanned over the plane z=d, we introduce an additional phase factor to

get

2(x.yd =iao is, 0,0)6 + EO(8,O)6,6 e i(kxx+k).y) k zd

Having established the incident field at the OEWG as a summation of plane waves,

the next step is to calculate the OEWC excitation bo due to a single incident plane wave.

Consider a plane wave
E ')= [Ete",•')a•+ E•(G',& )e]5(k-- )5kv--kv )

with propagation vector k', m in er R= 2 syste m .Q.ý, incident upon an

open--ended waveguide. It was shown above that

• ..41ri AE [E'8,,.)f0O,)abkI IF - 1&-j- -•2 L

where f•(9',@') and f(8',1&) are the known pattern factors of the OEWG:
EOEWG(r) =AE"

In fact, a plane wave from the antenna at 0, and Incident upon the OEWG at 0',

in the unprimed coordinated o! the antenna under test, is

iaoe e(kxx+k.Y)
E•(0,*) ='2xk2cos ,
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I lka~ d i,+k 9 )EPA,• = V0•(,4) ei~•ky

=2xk cosi ~9#
so

ikzd

-=AE 4ri taoe ei(kxX+kyy)[E.(0 .).fO(O,,) +b° oo abkF7-W l_•_22%m(O)

Simplifying, and using the relations

fj$,(,) = f6(o • € )
YOM,¢ = Y€,e,,•,,

where 1 =0 and 1 =s-0, we get

AE -2ieik z d i (kxx+ky) ,)
ao-E&.- -7ze Coe a LEBiomfie'r-) +0 abk~j i-W.2  os

Summing over a continuum of plane waves:

AE -2ia [+ E,09 (09,(#)fO
b° = '-oco*abD 1"ACost)

e3 T.e i xikx dkxdky.

The above is a complete and rigorous description In the coordinate system of the

antenna under test. In general, however, the measurements will be made in a coordinate

system that is attached to a fixed point on the scanning table, and is thus defined byI -1 0 Y-Yol,
Z11 J 0 0 -1] [z-.dJrL' I= ' o 1 L- i J-O

where the origin of the coordinate system is at the probe antenna zoordinates

0" = (xoYod). Hence, after taking the data, the first step of the analysis is to convert

from the doubly-primed coordinate system of the scanning table to the unprimed
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coordinate system of the antenna under tebt. We now have

z d,][01 ["o.:][ ]+[y :

D. PROBE ANTNNA MHARAIFQISTIC

The transmit characteristic of the prob- antennau Is related to its far-fielddE-,-1d

by [5]

811 limi t ° • '4'rj

" " 2xkcoe$ r -0 aL

where • is parallel to *. Assuming a redprocal anten-, the receiving characteristic is

Y cos(f)
r01(k) = - -- 0(-L,)-

The constant Yo and io are admIttgrces that may be notlied to umity. If we

wish to perform an absolute me.•aurm t, It will be necessary to specify the ratio Yo

exactly. To do so, we return to the expression for the received signa derived eulier

-2i&o___ Ej(#,)f 6(,w-O) + lk(D,*)f@(Sa-.) 1k dbo= 0 I •o()-- -• "
ablI r1- Cos ( )

i(k•+ky)

e dkdxky

This we compare to the expresion

4"T r01l.(k) e dK

We now conider the tran- t aztenv to be an OEWO with =xcitot;, Eo. We

have therefore
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________ A I fj(9,q)f 9(D,x-j) + !f~(.O)f4(,.") lkzd.bo = - o (V

0 ab4{T{J~ 0dk~dky,

where bo, AF, and B0 are all in units of volts/meter. BY equting the two expressions we

get

1 *rn~)'1A~) -221 E ____

From a previous section we have

;1(i lj -I mi t 1r~ e ~r]

Furthermore,

I 1 (k) coeDsa 0(-k)
10

Substituting, we get

YO -A' 2
1 ~ ~ o -2xi lA

-1- 4 l-D1-.4e 4 Cos# abo T 01

y 0 32A

Pence,
Y Cos#

-l~) 6r4cosD . AE

er an OEG, or
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-l8(ý) limit [kre r ()
abYT1'-W Ocoeg Bo Ir ®r

where E(0,0) is the transmitted field due to an excitation E. in an OEWG

E. ~REa D =OF pyRAmIDAL HORN ANTENNA

The pyramidal horn probe antenna has the advantage that it has higher gain, which

increases the signal-to-noise ratio (SNR) on-axis. Of course, the horn's higher directivity

reduces the SNE. off-axis, and the presence of nulls in the horn pattern Is undesirable.

Since the horn antennak is well-characterized, it is also a good choice for a test antenna for

near-field antenna measurements.

The following discussion of the pattern of the pyramidal horn is taken from Balanis

[6]. The pyramidal horn geometry is shown in FiV, re B-5 (Balantis' Figure 12.18). The

following parameters are assumed to be known:

an wavegulde feed dimension (larger), along ix,

b wavegulde feed dimension (smaller), allong ~
al horn dimension (larger), along ix,

ba horn dimension (smaller), alongY

p1  distance from aperture to B-plJane phase center,

P2adistance from aperture to fl-plane phase center,

Eo - wavegulde excitation (TB10 mode), and

A freem-space wavelength.

T~he tangential components of the E,- and H--felds at the horn aperture are

approximately

B~~(x~,y') +,2cs~x
- B~(x'.y'

+ X21+7 I
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The far-field E--field can be derived (after tedious meanipulation)

Er =0,
1k e+ikr an

E sE -1k 6eik co os()1+cws(I)J.I 1I2
where

.4 [ kip2 P1

11 e fiC(t)-.c(ti) + [ti-til+

~ fi~i~e[ f I {C(t2.)C(tit 1)J + i[S(t2.Y-S I 1 1

k b,

k =2r/A,

k k sin($) cos(O) + /,
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k = sin(O~coe(O) - j/l

k k =sn(f)sn(O);

and

C(x) = dt

,xd

5(x) = JPnHal. dt

are the Fresnel cosine and soe integrals.

We use the Narda 640 horn antenna at 10 Ghz driven by X-band waveguide.

Typical parameters are

a = .02286 m
b = .01016 m
a,= .0737 m,
bl= .0544 ro,

Pl = .0916 m,

P2 = .1189 m.A = .03 m.

B-20



APPENDIX C

SCATTERING BY CONDUCTING SPHERE

The conducting sphere is a canonical object for which an analytical solution exists.

In this appendix we present a solution [191 for scattering by a perfectly conducting sphere,

followed by a derivation of the coordinate transformations necessary to utilize this solution

in verifying the measured scattering matrix.

For convenience, we will work initially in an unprhmed coordinate system. A

perfectly conducting sphere of radius a is placed at the origin (Figure C-i) and is

illuminated by a monochromatic incident plane wave traveling in the +6z direction with

x-polarization
i = kz ez

Einc =f Eo k" ) ex"

Dropping the e-40A denendency, write Lc in spherical form

o= F ) r..n+. _,.~(1) 1o[ oln "e
2=n

where

fl=)(k2R)-Pl(cs# Cos ~ ap I(Coss)S sn " e0 -- Jn(k 2R) 80 sino

n)--n(n+l)- P(os)cos r +

IFit* 0(k21L) a$

1 6[k 2RJn(k2R)] n,
8(k 2mo ONR) (o5sn

and

k, = propagation constant inside sphere,

k2 = propagation constant outside sphere and
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Rt = radius to observation point.

For R > a, the scattered field will have th4 form

n=1 (n7 [a

wh~er

4()-41)(k2FL).P1(Cose) coso e q'(1R) 81co

o~~~hn)( R)h kR. sn
=el n(n+l)± n .~cocs 2r

I, #lk2 R4'h(I)(k2 R)J apn'(cwa)
S 8(kf) A8N

1ý' O (k2R)J

We define

p=k 2.a,

so

k, -a= N-p.

The boundary condition at Rf= a requires that

ar = V,-, N P)~rJn(P)1 -P2 4 ,[Nj.(p

and

hr pln(Np)ýýTINpin(Np)M 2 pNJ(Np}j[pt.(p)1

The above equa~1ons are valid for a sphere with arbitrary dielectric properties. If

the sphere Is aluminum, and the surrounding medium is air, then
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P, P2 = Po = 1.257 X 1o0- henry/meter,

el c2 = c = 8.&54 X 1- 12 farad/meter,

o1= 3.5 X 10 mho/meter, and

02 fo.

The general form of the propagation constant is

k2 = cp,2 + iw

= epw2(l + init

where

At f = 10 Ghz,

or 1- 6.3 X 10'' f 1w "

so

k2 ilt'1 p1} 1 , and

k * F" .6 x io6 / .•

Alsm.

kc2 g! 209.4 /mneter.

Choosing a 6-inch diameter sphere, a = .0762 meter, so

p=k 2

= 15.96

and

Np =, . 1.28 X 105 /meter.

Since Np>> 1, we can use the asymptotic relations

ja(Np) g 1p

and
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fv - sin [p - n

8(Np) ~-i N~~r

to sipiythe aoeequations for ar and brn' Yielding

ha1 (p v jn(P)+

Aftr heusal or o mnipultin
iKR2+ 1 ceI IPcs)

1K2R w I )(SO)
Er ~ ~ en~ f in( aplco)

and1

Er~ ~ ~~~. -K' JM 2~ P(OOI



APPENDIX D

SCATTERING BY CONDUCTING DISK

To calculate scattering from a conducting disk we use a physical optics solution due

to Capt. Keith Trott of RADC. Using the theory of physical optics 120], on a scattering

object
P% 2 fi H

where
Js total surface current,

a a unit normal vector pointing away from surface,

H aincident H field.

This is a good approximation for large objects but tends to break down with smaller

objects because it is not valid near edges. If the incident plane wave 9 is known, then one

can compute, in sequence, H, 3, and the vector potential

eJ ~dS,JTF,-• I
and the scattered E-field is

In the unprimed frame the disk is at the origin (Figure C-i), lies in the x-y plane,

and has radius a. It is illuminated from above the x-y plane by the incident wave vector
~= -(co•ssin 1 .ex +smn smn.e +csOi.ez ) I6.

Assume i ties in the x--z planp, so 0•-0, and
(a " - a + o. iy + cs

The observation location is also above the x-y plane at

r = x-6. + y'y + z'6z

= r (cosdn$ 6x + sl O sin6y + coe z),

so
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- r -kir(sinfloosoinO + cosOicoeg.

The plane of incidence Is defined by ki and ez" There are two polazations of the incident

field - parallel and perpendicular to the plane of incidence. An arbitrary planar

illumination to with ki (0=O) can be expressed in terms of thome two polarizations:

A11 = Eol1 e (-cosiex + sinOz)

e y~

Considering the parallel polarization first, we have

27y-
On the disk (0'=r/2) we use primed coordinates to indicate a source, so

Bol e 4 sin81cos0
IV 6y

Then

= 2 8z 1= 4 fi•/2

-231 e kr'sine1coso'
27 ix

The observation point is

; = I'r(cosqdnr + s.inof y + ccez)

while on the disk itself 8'=r/2, so

r IIj(cos0'6 + sino'a y)
The factor I ;-;" I in the integral for A is

-- (rcos~n#n_',cos0') 2 +(rd '•si n#_r'sin 2)2 + r2cos20

= r + r,2  2rr_8InkW(#_0.)

In the denominator of the integral, I-'I cnM be approximated by !r1. in the

numerator phase factor, a better approximation is required. Ignoring quadratic terms

inside the radical, expanding in a Taylor series, and retaining the first two terms

g!-"~ r - r'sin6cosk--') 3



Then

A x- j 1-j-- 2- e e l~dl

After tedious manipulation,

a= j+lkI Jl(kA&)

e!ý fx'(,A [csecmOs6- snO,]
where

In the far field, retaining r' tersu only,

EO =--qHe =+ikq AO
so the scattered field due to parallel illumnination is

E51  ZE~e~=rAJ 1 (akA) [cOW&MOeO+ sino4

Considering perpendicular polarization,

EO [ 3 +ik.4 '
/[cosei 1 sinei i5Je

Then
2EI +lkr'sln9.coso,
3= 0 cosO. e

A = -L c s e a (kaA ) .

_ ,r J (kaA)
,nr 0 A a L osdo + so

and the scattered field due to perpendicular Illumination is

Au +iE~e~ikr a y-j (akA) [co9j(csn$O+ cos$)]--
Since~ and b. have identical time phase, the scattered B--field is

IE$# e7r k Ji(ka)j 3ecsi cos9~cosfsl EI oi

D-4



MISSION

Of
Rome.Air Development Center

JRADC plans and executes research, development, test and
selected a quisiton Programs in -support of Command, Control,
Communmication~s and Intelligence (C2I) activiies. Technical and
engineering support within areas of competence is provided to
ES)) Program Offices (POs) and other ES)) elements lo

~3 perform efficlive acquisiion of V1 sytems. The areas of
S technical c~ompetence include communications, command and
S control, battle management information processing, surveilance

sensors, intelligence data collection and handling, solid state
sci'. nces, elect romagn etics, and propagation, and electronic
reliability/m-aintainability and compatibilty.


