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SUMMARY

This Final Technical Report presents the results of a feasibility investigation of a
technique for calculating the far-field radar cross section of an object based upon
measurements made in the near—field of the object. This technique is an extension of
existing planar near~field antenna measurement techuology, and is capable of measuring
monostatic radar cross section and bistatic radar cross section at both narrow and wide
angles.

Included are the deiailed formulation of the theory of near~field planar bistatic
radar cross section measurement, and discussion of details of the mechanical scanner and
software implementation. The comparison of measurement with predictions is presented;
the agrecment is excellent, and suggests that a larger-scale demonstration would be
appropriate.  Also included are concepts for reducing the amount of data required for
reconstructing radar cross section, and a discussion of limitations of this method of radar
croga—section measurement.

Specific recommendations are presented for technology development areas that
should be pursued to mature this measurement technique into a viable, operational
technology.  Among those areas are calibration, data handling, computational
optimization, data analysis, operational considerations, and additional theoretical

development. ( KR\) (
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FOREWORD
The BDM Corporation, 1801 Randolph Road SE, Albuquerque, NM 87106, is
pleased to submit this report, titled "Final Technical Report for Near~Field Bistatic RCS
Measurement,” to the Rome Air Development Center a3 required by CDRL
DI-A-3591A/M.
This document presents a description of the work performed under contract number
F19628—-86—C—0208 during the period of September 30, 1986 to March 20, 1989.
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CHAPTERI
INTRODUCTION

Radar cross—section (RCS) measurement is an important ingredient of design
verificasion and maintenance of contemporary aircraft and missile systems. RCS is
becoming more and more important for both tactical and strategic weapons systems, due in
part to increasingly sophisticated radar systems ard the resulting need for low—observable
aircraft and missiles.

BDM is currently under contract to Rome Air Developmezt Center to validate a
technique for calculating far-field monostatic and bistatic RCS using planar measurements
in the near—field of a test object. This technique, developed by BDM in 1984, is of
increasing relevance to the national need in this area, particularly in view of some of the
unique capabilities that the planar near—field technique may provide.

The goal of this contract effort is to demonstrate the feasibilit.y of near—field
measurement of bistatic radar cross section. The proposed technical approach is divided
into six tasks which may be summarized as follows:

. Task 1: Formulation of probe~corrected near—field RCS theory

Task 2: Development of software to compute scattering

Task 3: Design and construction of scanner

Task 4: Comparison of measurements with solutions

Task §: Data reduction investigation

Task 6: Investigation of metkod's limitations

Those six tasks are addressed in Chapters II through VII of this final report, wkile
Conclusions are presented in Chapter VIII.

It is important to realize that some of today's RCS measurement requirements
simply cannot be met with existing measurement technologies. For example, measuring -
the RCS of low-observable aircraft is difficult on conveational far—field ranges: the
signature is small and hard to measure; range effects (ground and air scattering) degrade




accuracy and repeatability; airborne surveillance during long observation times
compromises security; and bistatic RCSis difficult to measure (particularly at small
angles).

BDM has beea working on near—field RCS measurement and prediction concepts
since 1983. In 1984 Mike Dinallo developed and published the mathematical foundations of
a proposed near-field RCS (NFRCS) measurement approach which we called "planar
near~field RCS measurement.” In 1987 Rogers and Farr published the explicit sclution to
Dinallo's scattering equations and described BDM's ongoing work in near-field RCS
measurement.

Our planar NFRCS measurement technclogy is an outgrowth and extension of the
near—fie!d antenna measurement theory and techniques developed by the National Bureau
of Standards (NBS) in the 1960s. The NBS theoretical and experimental programs
demonstrated that traditional far—field antenna patterns can bte calculated based upon
pattern data measured in the near—field of an antenns. These results were backed up by
extensive error analyzes and validation tests of antennas on near~field and far~field ranges.
The analyses and tests showed that patterns measured using near-field techniques are
more accurate, repeatable, and economical to obtain thar patterns measured on traditional
antenna ranges. The near—field measurement facilities are also smaller than far-field
ranges and are fully enclosed, previding excellent security for sensitive military
apphcations. The NBS near~field antenna measurement methods are now in daily use by
most major antenna fabrication and test facilities.

Since 1984 BDM has been extending the NBS near—field antenna measurement
theory to include the near-ficld RCS measurement problem. Our work has been both
theoretical and experimental; we have developed the mathematics of near—field RCS

‘measurement and have carried on an active experimental program to validate the

mathematics. Our planar near—field RCS measurement technique is the result of this

work.




The key feature of this technique is the matkematical algorithm that allows us to
efficiently compute the RCS of an object based upon many scattering measurements made
near the object. The measurements are conceptually easy to obtain by a coniputerized
data contro! and acquisition system similar to the one we have prototyped in the BDM
Laboratory.

The unknown object i3 illuminated by a single broad—beam transmitting antenna
and the scattered signal from the object is received by one or more receiving antennas. The
transmitting and receiving antennas are in the near—field of the object (typically within a
few feet of it when using gigahertz frequencies). A computerized data acquisition system
controls where the transmit and receiving antennas are placed (using servo control) and

measures and stores the received signals. The transmitting and receiving antennas are

moved around in a plane (i.e., a planar scan pattern), s¢ our measurement approach is

more correctly called near—field bistatic RCS measurement using planar scanring.

Other noteworthy features are that bistatic measurements are feasible both at large
and small angles, monostatic measurements are feasible, sensitivity is excellent (so
low—observables can be measured), and the measurement facility is totally enclosed (which

enhances security).




CHAPTER I
FORMULATION OF NEAR-FIELD THEORY

A.  INTRODUCTION

In this chapter we present the analysis of near-field bistatic scattering data. This
analysis is based upon Dinallo's [16] formulation of bistatic scattering in terms of the plane
wave scattering matrix. Note that for the bulk of this section we Carry out the
mathematics in the unprimed coordinates of the object under test.
B.  SCATTERING MATRIX

The goal is to calculate fcr an arbitrary object a scattering matrix
Lygd&d) Ty k1)
111¢0(k’1) Ill¢¢(k’l)
which describes the scattering of an incident plane wave by that object, and

-

L&D =

k=ke + ks +k8,

I=18 + 18, +18,

It is worth noting explicitly that the elements of the scattering matrix 1, (k,) are
specified by means of two polarization~related indices and two propagation vectors. For
example, I, ¢(ﬁ,T) refers to the #~component of the angular spectrum of the wave that is
scattered when the object is illuminated by the ¢—component of the angular spectrum of
the incident wave. The incident wave Las propagation vector T, and the scattered wave
has propagation vector k. Taking all four elements together, 1 l(l},i) speciﬁé how the ¢
and ¢ components of the angular spectrum of the incident wave 1 are scattered into 8 and
¢ components of the angular spectrum of a scattered wave k.

The incident and scattered waves are generally a superposition of plane waves which
we will model as a cuntinuum of plane waves. A complicated wavefront illumirating the

cbject may be decomposed into a spectrum of plane waves. Measuring the transverse
components E, and Eiy of that E-field in some plane, such as z= 2 the angular




spectrum (of plane waves) is the Fourier transform in the x—y plane
L) =1, (Dey+ 1, Dy
o AT,
= IIE’i(r') e dr,
where

b = & +ryey+z G
The multitude of plane waves that makes up that angular spectrum of incident plane waves
is scattered by the object, yielding an infinity of emergent plane waves whose angular
spectzum is

Ik = Lgk)e,+ 1, ¢(i)é 6

higdld) Lyeg®D] [ 140
xnw(k,I) rlw(k,n I ¢(I)

Note that the 8~ and ¢—components of the angular spectrum of the scattered plane
waves are a linear combination of both the ¢- and the ¢—components of the angular
spectrum of the incident plane wavzs.

For a source at ;1 having angular spectrum 'I'I(T), the scattered angular spectrum at
the origin is denoted by F(7 k), where

F (1K)
F (%)

J [ [Iuoo(i’r) 1119¢(i’r)l 1D -xf 1

Lygd®l) Lygel) | ] 1400
(As written here, F(r &) is related directly to the sampling plane coordinates rather than
the object coordinates.) The far~field scattered E at T, is calculated with the results from
a previous section. Hence,

iy, ..
Byi,) = 225'-“-29“—’- 2,k

where k is parallel to r2. If the incident wave is in fact planar, then the anguldr spectrum




of the incident wave is
I
+ 10 -
Lay=| fai-T)
Il P
and the integral above reduces to a matrix raultiplication. The far—field scattered E-field
is
A2y ~2xicosd
Blrg) ==+,
MEASUREMENTS
Given llumination of the test object by the transmit antenna in transmit
orientation #1, we will first calculate the 8- and ¢~components of the scattered angular

spectrum over the ares scanned by the receive probe antenna in order to calculate the
scattering matrix. Next, the trausmit probe antenna is rotated 90° to illuminate the test

ST CANRRPRCE A PO +ik-2, 11,
. e e
I I ¢(I)]

116E1) Ly ge®l)

object with a different angular spectrum of plane waves, and we then repeat the
measurements and calculations in order to determine the ¢~ and ¢-components of the
scattered angular spectrum for this second transmit probe antenra orientation. From these
two gets of data, we can calculate the manner in which the test object scatters the &~ and
#~components of the incident wave into the 4 and ¢~components of scattered waves.

The laboratory measurements for bistatic near~field scattering consist of gain and
phase measurements made by a receive probe as it is swept through a pattern of probe
locations. The receive probe scan pattern i3 swept repestedly (and gain and phase
measurements made) for a set of transmit probe locations, as the transmit probe itself steps
through a set of locations in the transmit probe scan pattern.

The transmit probe and receive probe we use are identical, although they need not
be s0. The receive probe’s receiving characteristic

e Ty 40)
(k) = o

1




and the transmit probe's ‘ransmitting characteristic

1h= 'Im(?
Iigg(D)
are assumed to be known (either analytically or empirically). As ir the case of near~field
antenna measurements, neither probe antenna should have nulls in a direction t for which
one wishes to calculate the scattering matrix.
D.  QUTLINE OF SCLUTION

In this section we outline the approach we take to determine the scattering matrix
__Lll(fc,f) The scattering matrix __I:u(l’:,f) of an object i3 a tensor of rank two that
describes how an incident plane wave (i) with arbitrary polarization is scattered by that
object and transformed into one or more scattered plane waves (fc). The scattering of an
arbitrary wavefront follows directly, since the superposition principle allows us to create
complex wavefronts as a superposition of plane waves.

The scattering object is at the origin, and we define

= propagation vector of incident wave (from transmit probe),

;1 = coordinates of source of incident wave (transmit probe),

k = propagation vector of scattered wave (to receive probe), and

;2 = coordinates of receive probe.

The measurement equation for near~field bistatic RCS is {17]

.o —il.?
bo(rl,r2)=”101(k) ” L&D Me RFTAN

{5} 34 {2 (1 {4}
The scalar b is a measurable quantity that is the complex gain factor describing

+ik-T - -
24icat.

the transmission path from the transmit probe to the recelve probe viz the scattering
object. The incident wave is represeated by the factor {2}. The exponential {1} represents
propagation of the incident wave from the transmitting antenna to the object, and the
multiplication with {3} represents scattering by the object. The resulting scattered

o4




spectrum of waves propagates {4} from the object to the receive probe; {5} represents the .
interaction of the propagated, scattered wave with the receiving probe itself. The gain and
phase ratios measured by the Hewlett—Packard network analyzer are the values of bo.

If we consider the scattering object as a transmitting "antenna,” the complicated
wavefront generated by it can be represented by a superposition of plane waves. We
denote that superposition by F(7 k), where T; is the location of the actual transmit
source and k is the wavevector of the scattered plane waves. Since the scattered spectrum

is

*> 4 o I Y - .'if';l -
Fl(rl,k) = ;ll(ksl)'lm(l) e dL,

the measurement equation above becomes

. s e a e a HETy
by(rprg) = H Igy(k)-Fy(r k) e dK.
This is the measuremeat equation for near-field antenna measurement which may be
solved to determige F (k).
Furthermc;re, the above two equations are very similar, except that bo(;l’;Z) is a
scalar equation while f‘l(;l,fc) is a vector equation. The techniques of an earlier section
can be applied to solving for f-‘l(;l,i), except that two independent solutions must be

found (representing the & gand @ A components of f’l(;l,i)).
E.  CALCULATING F(.R)
Using the above definition of the scattered spectrum f‘(;l,i), the measurement

equation can be written
. o s e e HKTy
Boy (FyeFg) = Hfm(k)-f"l(rl,k) e ldf
which is'a Fourier integral that can be inverted formally [18] as

>

e d - - - -> -ik. >
1oy ®)-F, G0 = é—”bol(rl,r2) o 2 df,.




The integral is over all positions of the receive probe, holding the transmit probe
position fixed. Since the receive probe moves in the plane z = d (a constant), we define

By = 1y + Iyl + 408,
and the integral becomes

-idk o
» - @ Z - o 4K-

i@ -F G0 = 94—‘.,-”1301(1»1;2) e % dR,.

We define the right—hand side of the equation a3 a coupling product Dl(;l’r‘)' 0

io;(i)'ﬁl(;pi) = Dl(;l’i)’
where Dl(?l,i) is the calculable quantity

<> » e—idkz -+ » +iﬁ'§‘2 3
Dl(rl*k) = —-2—41 bol(rl’rZ) e dR.z
= I, JKOF, 47, K) + 1, JBIF) B
Let the measurements be repeated with the same transmit probe but with a
different receive probe antenna that has receiving characteristic

I o®)
I ¢(§) ’

Ijy) = [

obtained by rotating the receive probe by 907 Calling the new set of measurements

bog(F;:To)s We can compute another coupling product Dz(El,l‘c) as
~idk - -
. o e Z .. --iK-B2
Dyff k) =~ =— J | bolfpfg)e  2diy
= Ig) fR0F 51, 8) + T3y JOOF, 7 )

If the determinant

Ay(k) = Iy k)5 46) = Igy )y oK)
is non—zero, then




Dy (T, 00, ¢(;1 JK) =Dy(F Ry, ¢(;1;},)
A,(7,k)
Do(Fy k)l oFy - B) Dy (100, o1 )
Ak ) )
In summary, the transmit probe antenna is in an orientation thas we define as "T'X

Fif k) =

Flé(rlrk) =

orientation #1.* For each transmit probe location ;1, we measure an array of scalar values
as the receive probe (in RX orientation #1) i3 moved through its scan pattern. A second
array of scalar values is measured with the receive probe rotated by 9¢° (RX orientation
#2). These two arrays of measured data, called bol(;l,;z) and boz(;l,?2), are used to
caleulate ¥, (¥ ,§). F(£},K) is a vector quantity that is defined for every transmit probe
location and every possible k.

F.  COMPUTING (.7

In order to calculate the scattering matrix, it is tecegsary to0 detecmine a second,
independent scattered spectrum f'2(§l,ft) that represents nhe scattered spectrum with the
object illuminated by a different zource spectrum.  Since the transmit probe is lineaily
polarized, we can create a different source fnecirum by rotating the tramsmit probe
antenna.

With the transmit probe anteans rotated by $0° (TX orientation #2), we repeat
the entire series of measurements and calculations described in the previcus section.
For each transmit prebe location ;1, we measure an array of scalar values as the receive
probe (in RX orientation #1) is moved through its scan pattera. A second array of scalar
values is measured with the receive probe in RX crientation #2. These two arraye of
meagured dats, called b y(7,,7,) and Bog{F(sT,), are ured to calculate Fol(t1 k).

The pertinent equations are summarized below:
+ik-

E -
de,

bgCFyig) = Hig'l(ﬁ).i‘z(;l,i) .
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Ty @By, ) = jrj‘ Jl“’o:s“’ pfgle

T
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dr2,

idk > -+
% . - K.
=5 J Jboa(’l"z)e deﬁz'
= Dy(f).R)
or, explicitly,
fm(i)-g(;l,ﬁ) = Ly fIF, 47, 5) + Yo1 ¢(§)F2 4,(51,%).
Also
jdk 2
* - r-Y £ * +!K'
Dy(ry k) = pvi H"o&v’z) e % dty
=1 o(x})rz Fe B % ¢(§)F2 db(?l,s}).

89080 = Yoy )15, 48) 15, Rty B
is non—zero, then

. DAOI, Q,E«D"‘I ..’E
Fogt B) = 3(ry %) 01¢(rl )1‘—;(1'1,1:) Rlé(!l )
Az(rpk)

Dyl Rilgy oF 1 B) = Do, 0015, o, )
By(F,k)

YECTOR COUPLING PRODUCT.

Referring to the geveral bistasic measwerzent equation
- - - > ‘I * ; a] +§i N ; -
bo(zqito) = Hfm(k)‘ [” Ly &D-1,h ot dl}" ek,
we have calculated Fy (7, &) and Fo(F £, where

.. . iz,
B [ 1,601,057

"

F2¢(; 1»1*‘)' =

i

and
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Byt k) = J Jf;u(k,l)-fio(z) e i,




are Fourier integrals that may be inverted to give
f Hi.T
&)1 ()=t F 5 e Lor
41601 1g(h) = 25 l 1(rpl) 1

> - +ir . ;
Ly &D-IjD) = ;‘:’.T ” Eyfrpl)e
This time the integrals are aver all positions of the transmit probe, holding
receive prote posision fixed. Since the transmit probe moves in the plane z = ¢, et

-

1
drl.

R1 =118, + tly”y + d'ez,

and the integrals become
Widyre
Lu(kv‘)‘Im(I) = 94—221-1-“ i‘l(rl,f) e dR;
" +i 1 - +ii.-§.i o
L&M= 927-” Fypd)e dR,.
We define a pair of vectar coupling products Q(ﬁ,f) and Q'(i,f) as

. +1di . i,
8D s;;ﬂ B e Mg

il o ik,

D=ty | 2™ ey
so that we car write

L&D 1D = A&

L&D Tl = Q- (D).
H.  CALCULATING THE SCATTERING MATRIX

Expazding the above equation In cumporents and dzopping the explisit (k1)
dependence,
[Hca Lo ¢ 0] [lnao] ) ]

l ]

O 9 Zioplog 1 Tuaes Q,
K] Qb
e
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wiick hes solutions:
Qgiog — Qg
a
Qliog — Q108
oY
L. w3dlios — Qg
1148 )
. wJdos — Sihog
1144 a
provided the determinant
A21004 ~ Hodog
is nomzero for pacticular (i,f). This completes the calcuiation of the scattering matrix
L&D _
Note that all of the above calculations are in the coordinate system of the ohject

under test. When making the actual measurements, one must immediately convert from
$he coordinates systan of the measurement table to that of the object under test.

Ligg=

higs=




CHAPTER III
DEVELCPMENT OF SOFTWARE TO COMPUTE SCATTERING
A.  INTRODUCTION

The software to perform the scattering cnlculations is a straightforward
implementation of the algorithm presented in the previous chapter. The heart of the
software is the two—dimensional fast~Fourier transform subroutine; a number of such
subroutines are available in the Gpen literature.

There are a number of software issues stemming from the discretization that is
implicitly employed to calculate discrete equivalents to continuous integrals. These issues
are discussed in the foliowing sections.

B.  DET ORIGIN AND PHASK SHIFT

In this section we discuss sampled—data evaluation of Fourier int2grals by the FFT
algorithm. For rigorous discussions refer to the literature {12].

Numerical evaluation of integrals of tha form

H(w) = | h(t) 3 g
-
is feasible for bandlimited h(t) using sampled dats and discrete Fourier transform

techniques. The continuous function h(t) is sampled at intervals of & chosen oy Nyquist's
criterion. The sampled hit) is a finite sequence
{h'(n) =h(t) jt= ty + (2=1)-8t, n=t,...N}
z4-(1),k°(2),...5 ()
whick is jmplicitly periodic in n with period N. The DET of h*(n)is

N =2xi(n—1}{k-1 )
E'k)= § he(n)e k=1, N

a=1-
where {for even N)




{(k—l)sw k=1, 2,..—5+
w=

k(N1 k=H—2. 843,
H(w) = &-H’ (k).

For example, with N=8,

H-(1) = H(+06w)

H/(2) = H(+1&w

H/(3)=H +25w

H-(4) = B(+

g' g =H +45w = H(—4bw)

H(7) = H -26(0

H(8) = H(-1éw,

In a sampled—data implementation, Fourier integrals are convenientiy calculated
using the discrete Fourier transform (DFT) in the form of the Fast Fourier Transform
(FFT) algorithm. However, there is a phase shift implicit in the DFT that arises because
the origin of the transform is at the first point processed.

We compute the above integral by a summation:
. kR (K1) (1)
[[idye "ak=4g ] g "2 f (Ix,Iy) exp[ --N—-—]

x
(K.~1) (1~
&p[t A& ) (I-1)
Yy

where I, Iy are indices of a messurement data array, aad Ky Ky are {in this instance
only) indices of the trans{ »n-ed data array. I and K range from 1 to N, and Iy and Ky
range from 1 to Ny.

Idealizing the sampling process somewhat, the sampled function fs(Ix,iy) at given
(Ix,Iy) correspords to the continuous function f(x,y) at the point

x=ro + ([ ~1)-4,

y=Iy +(I -1y y’

Ly = Mgy I 7+ 1)

-2




The measurement data array () is defined over some set of (Ix,Iy) that does not
necessarily include the coordinate system origin. In order that the computed phase be
referenced to that origin, a phase factor must be included to speciiy the phase of the (1,1)
point relative to that origin:

N, N
Xp ¥ (K1) (L) K ~1) (I ~1)
) 1 § lfa(rx,ly)-wcp[tzn—T —’—r’— K Ky)
x= y=

where

WK, K,) = exp {ﬂn——ni)i— { —l)a}

& = ol Jx,

a = 'oy/ 5y'

No modification to the FFT algorithm is vequired, since the phase factor ¢(Kx,Ky)
can be calculated and multiplied into the transformed data arrsy generated by the FFT
algorithm.

C.  DISCUSSION QF CALCULATED SCATTERING MATRIX
For a given test object, our laboratory measurements and data analysis produce a

set of scattering matrices of the form
By xuxy(x.,ij)

Lyl Ly

where each matrix consists of four complex scalars (Illxx’ Inxy' Inyx' Iuyy) that define

Ly (Kply) = &L |
the scattering matrix for given values of K an¢ L. As before, L is the projection of the
incident (:lluminating) plane wave propagation vector T onto the x-y plane, and K is the
projection of the scattered plane wave propagation vector k onto the x~y plane.

Since the discrete Fourier transform (DFT) is used in the sampled—data
implementation of the integrals, K and 1 can take on only a discrete set of vaiues that are




determined by the measurement grid size, the spatial sampﬁné interval &, and the “rules”

of the DFT. Fourier interpolztion can be used to increase the resolution of the grid of

values of K and L.

D. GRIDDED VALUESOFK AND L :
Suppose the transmit probe scan pattern is 8 square consisting of Ntx points on 2

side, with spatial sample interval &. The propagation vector of the transmitted wave (i.e.,

the plane wave that is incident upon the test object) is denoted by

1= lxéx + lyéy + Izéz,

and its projection onto the x—y plane is

L= lxéx + lyéy.

Then the x— and the y—components of T take on the discrete values

1 = i Nix & _,i=02,.N
x = [T = 02Ny

1, = j-N"‘ &, ,i=02.N
yj"‘ - tx""' - tx

where
2z
& = K
tx tx
is the spacing between adjacent samples in "k-space”. The maximum magnitude that ix

or ly can have is
—- - X

Ll e = Ity mae = 5~

Howaver, ’x and 1y are constrained by the additional requirement that lz e real,
since

2?4 2= 20 2

x' ¥y oz 4
and propagating waves correspond to those 1 for which lz fgreal. If lx or 1y gets too large,
lz besomes imaginary, so we requiss

2 for1?
% IYS[—-X—}.

12




Since A~ is the highest spatial frequency that can be.praent due to propagating
waves, it is the Nyquist frequency [13} of the signal to be sampled, and the required
sampling interval is A/2. If the sample interval is indeed § = 2/2, the domain of valid
(lx.'ly.) i a circle in the (i,j) plane that is exactly inscribed in the square defined by

i -
. Ntx Ntx " Ntx I"i;x
= |~ g |d= | == T p

30 a fraction ‘-’-';’—'-g 21% of the computed lxi’ly- is not useful to us.
J

A similar situation exists with regard to the range of values of the propagation
vector of the scattered plane wave. Suppose the receive probe pattern is a square with er
points on & side and spatial sample interval &. The propagation vector of the scattered
wave is denoted by

k= kxéx + kyéy +ké,
and its projection cnto the x~y plane is

K= kxéx + kyéy. .
The x— and the y~components cof k take on the discrete values

hj .
= | IX =
kxi— Py &m,1—0,2,...er

N
O PO 4
kxj" =" 6er

1j= 0,2 Ny

& = 2z
=~ X

Vel mase = 1yl g = — 55> 2nd

K+ k§ < [——2}»]2
E.  SIGNAL PROCESSING

Conservative signal processing technique calls for using a sampling interval smaller
than the A/2 dictated by the Nyquist limit. In the present instance, the physics of the
wave propagation vesy effectively bandlimits the signsl by imposing & very shar_p cutoff for




spatial frequencies beyond 1/A. This is in contrast to typical signal acquisition scenarios in
which a signal generally has components above fNyquist; there one must use a sharp cutoff
filter and in addition sample at a somewhat higher rate than the Nyquist theorem requires.
We conclude that one should probably use é&x < A/2 by perhaps 5% or so.

Given the good A/D resolution (12 bits), adequate floating~point precision and
dynamic tange (LE.E.E. standard floating~point format), and a relatively quiet
measurement location, we ignore come of the common reasons for sampling at above the
Nyquist frequency, namely quantization and numeric dynamic range.

Since the experimentally—determined scattering matrices are defined at discrete
values of K and L, it is convenient to construct one's theoretical models of scattering such
that the precise values of K and T calculated by the analysis software can be automatically
plugged in to yield the theoretical scattering values. From an algorithmic standpoint this
corresponds to implementing the theoretical or numerical model of scattering as a
subroutine that has as input the values of K and I for which a theoreticat prediction is
needed.

F.  QVER-SAMPLING

Under ideal conditions the gain and phase signals from the network arcalyzer need to
be sampled only at A/2 intervals (or slightly more often if one is near the reactive
pear—field of the test object). In this application we oversample by a factor of ten.
Reasons for this are: (1) noise generated in the electronics for gain and phase detection
smears out the spectral content of the signal being measured; (2) a general rule of thumb in
digitizing and processing noisy signals i3 that one should digitize at five to ten times the
Nyquist rate; (3) filtering techniques can be used to reduce the (uncorrelated) noise on the
signal; and (4) non-linear filtering techniques can be used to detect and correct invalid
phase measurements.

The invalid phase measurements occur because the phase detection circuit in the
network analyzer updates its output asynchronously with respect to the A/D converter, so

¥




it is possible for the A/D to sample the phase when the circuit is "wrapping" around from

+180 to —180 degrees (or vice versa). Measuring extra points allows us to detect and
correct the invalid phase values. Spatial filtering to improve signal—-to~noise ratio (SNR)
is also practical when oversampling is performed.

The figures in this section were constructed uvsing measured data from two x—axis
scans (made on 6/4/87) of 10 Ghz bistatic RCS from the 6~inch aluminum sphere. The
TX probe was held stationary, and the RX probe was scanned in the +x direction using a
200 hz digitizing clock and the usual probe velocity of 29.8 cm/sec. Sample interval is
calculated as 6.149 cm, corresponding to oversampling by a factor of ten at 10 Ghz.

The probes were open—end X-band waveguide with absorber collars to limit
low--angle radiation and an absorber barrier between the RX and TX probes to limit direct
probe-to-probe coupling. The TX probe was driven with a 20-watt (nominal)
traveling-wave tube (TWT) amplifier, and a preamplifier was used on the RX probe.

A high SNR scan was obtained using maximum drive to the TWT amgplifier. A low
SNR scan was obtained immediately after the high SNR scan but with the TWT drive level
reduced by 15 db. Additional measurement noise was introduced by the lowered reference
channel signal at the network analyzer.

G.  DIGITIZATION RATE

Since the quantity of data required by the near-field technique is already
formidable, it is preferable to store the minimum number of values necessary for the
reconstruction of the scaitering matrix. The signal being measured contains no
components above spatial frequency

fyignal,max = —4— Cyeles/meter,

80 digitiziog the signal at a sampling frequency of 2/A samples/meter would theoretically
capture all of the spectral content of the signal. For reasons mentioned above, digitizing at
ten $imes this rate is mote appropriate, so we choose:

f= -2—?\- samples/meter.




Then

k== + meter/zample
]

=A
and
- _1
fNyquist =1 cycles/meter
is the highest spatial frequency that can be defected without aliasing.
The bandwidth of the network analyzer's gain and phase detection circuits is 10
kHz, s0 samples should be taken at intervals

to ensure that the noise in the sampies is uncorrelsted. Allowing an order of magnitude

leeway, we set a lower bound of cne millisecond, which corresponds to a spatial interval
k=v&,

where v i3 the speed of the probe antenna. Typically v = 0.30 m/s, so & = .6003 meter.

At 10 Ghz, A/2 = .015 meter, so this &x represents oversampling the data by a factor of

I
which more than meets the oversampling goal mentioned above. The bandwidth of the
receiver is large enough to allow much oversampling without compromising the noise
characteristics of the sampled data.

Conclusions to be drawn are: (1) oversampling can be performed without reducing
the RX probe scan speed, and (2) the measured noise will be uncorrelated from sample to
sample. Note that the computer system is idle during the time required to return the RX
platform for the next scan, so the filtering adds no time penalty.

H.  PHASE WRAP DETECTION

The phase wrap problem is difficult to observe in standard gain and phase plots

(Figures II-1 and TI-2). The incorrect measurement occurs when the phase is changing
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, from +180 to ~180 degrees (or vice versa), and the value measured is scmewhere beiween

180 and —186, so that it appears approximately in the proper place on the plot and is easily
overlooked.

The invalid sample often shows up clearly as a "spike" in plots of the resl and
imeaginary components (Figures II-3 and Ii—4). The real and imaginary signal
oomponents are computed as

RAp)=Acosp

I(A,¢) =Asinp

R(A,180) =~ A

I(A,£180) = 0.

On plots of real and imaginary components, one looks for phase errors when both
(1) R is far from zero and "spikes® towards zero, and (2) I is about zero. Visual inspection
of the figures illustrates this. If the gain A is amall, the spike is bard to detect but will
have minor effect upon the analysis of the raw data, since the first step in the analysis is a
Fourjer transform, which is basically a gain—weighted and phase-weighted averaging
process.

The difference between the high—-SNR real component and the low-SNR real
component is shown in Figure III-5. The phase error spikes are clearly visible.

One of several possible methods for locating phase errors of this type is by
inspecting the derivative of the real (or imaginary) component with respect to the spatial
coordinate. If s(i) represents either the real or the imaginary component, then define the
derivative process

8-(i}) = a(i-+1}~s(i)
which is a one-gided estimator of the derivative of s(i). A spike in the process s(i) appears
a8 & double-sided spike in s’(i) [cf. the engineering "derivative” of the continuous—time
Dirac delta function].
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A threshold value for the minimum double-spike ampnt;xde that should be classified

as a phase error can be derived from Tchebysheff's Inequality {14) which relates the

deviation |X—gs| of a process X to the variance o of tha process by the inequality
P{IX4| 250} s -

irrespective of the form of the probability density frnction of X.

Identify X with the derivative process s*(i), so

s=E{s’}
N
s -4 § =0
n=1
and

o =E{(s' ~ )%}

n=1
For n=3, say, the inequality predicts that the probability that [s-(i)}-u| will exceed

30 i3 less than 372=0.11T,

,, N +
:={%-Z ww-mﬂ

The spike detection algorithm is constructed as follows. Compute the derivative
sequence 8/(i). Compute the mean and variance of s/(1) and normalize /(i) to 2610 mean
and unit variance by the transformation

sy -l = p
Choose "n" to ensure a reasohably low rate of false detections, and perform the test
ls*(i)|>n to locate invalid phase values in s(i). The test is pecformed independently on
the real and imaginary components of s(i), and the combined results are used to select tke
suspect values of s(i) for which interpolation is needed.

I SPATIAL FILTERING

Since the noisy signal is oversampled by a factor of ten above the Nyquist rate, a

low~-pass digital filter can be appiied to the measurements to improve SNR. . Averaging

. m-15




groups of ‘eu adjacent samples is a simple approach to tke filtering but distorts the higher
spatial frequency components of the desired signal and has suboptimal noise suppression
characteristics.

A linear—phase filter i3 required to avoid spatial phase distortion of the measured
signal. A finite impulse responge filter in the spatial domain witk cutcff 2t rormalized

fcut’ot‘t’
Nyquist
We want a FIR filter of the form

m=—1 i
B{z) = X y 2 where

i=0
m = pumber of coefficients (odd integer), and
8, = filter coefficients (real).

To ensure linear phase, we define the filter coefficients symmetrically as

frequeny v, o = can be construcied az follows {15].

cl’ ig.o’ 17 2’ "'q’
where
q= (m-1)/2,
CiE¢p )
The ideal low~paas filter has transfer function of the form

fiifv< Veutoff

=

Taking a discrete Fourier transform to the spatial domaig, the filter coefficients are
sin{i * v }
. cutoff’ .
=15y i=0, 1, ...q.

Gain and phase response plots (oot showm) verify that this is a Linear phase
low—-pass filter with cutoif near ¥=0.2, but sidelobe levels are unacceptably high. Sidelobes

are preatly reduced by using the smoothing window
0.54 + 0.46¢c08 (ix/q)

022 vonponr

wyli) =
H Dotherwise




so that

¢ =¢f - wyli)-

Sidelobe levels of the filter composed of the ¢, (Figure III-6) are about 50 db down.
At f=1/), the highest spatial frequency that the plane wave spectrum can contain outside
the reactive near~field region, the corresponding normalized frequency is »=0.1, and the
filter's gain is down by a factor of 0.92 (about —0.7 db}. This level of attenuation will have
negligible effect upen-the near~field data analysis.
J. POWER SPECTRUM ANALYSIS

Autocorrelatior (ACF) and power spectral density (PSD) of the real and imaginary
components of the two scans are shown in Figures ITI~7 through III-10. The smoothing
window bandwidth is 0‘013ngquist‘ No differeacing of the signals was performed,
although slightly better PSDs might bs obtained. Note shat the PSDs are down by 20 to
30 db at thé 1/A frequency. The noise floor is down 35 db (high~SNK signal) and 20 db

(low—SNR signzl). One may conclude that the measured signals are indeed bandlimited to
1/ -

The composite plots in Figures II-11 through III-14 illustrate the effect of the
spike detection, interpolation, and spatial filtering algorithms. The data traces in the
figures, from top to boitorn, are

(1) raw data (real or imaginary),

(2) normalized derivative ;'(n),

(3) combined "phase error® flags from real and imaginary components

using Tchebycheff’s Inequality with n=3,

{4) signal after phase errors are replaced by interpolzted values,

(5) final, filtered signal.

The scales of traces 1, 4, and 5 are identical, while 2 is shown at 0.25 sensitivity.
Each sean (comprising about 1.5 meters) containe 1000 gain—phase sample pairs. For the




high S/N scan, 8.3 % of the phase samples were found iwvalid; 2.2 % of the low S/ scan
values were invalid. :
PSDs of the filtered signals are shown in Figares I11~13 sad II~16. Note thss the

phase error correction and Gltering have lowered the nelse ficor by ien {o fifteen db.
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CHAPTER [V
DESIGN AND CONSTRUCTION OF SCANNER

A, SCANTABLE

The scan sable (Figure IV—1) has {wo movable carriages, each with one movable
platform. The 4wo platforms are referred to as the TX and RX platforms. Prior to
scanning, the TX and RX platforms stast from known initial positions defined by reference
marks on the scan table. The initial positions for the TX a2ad RX platforms are near the
lower—left and upper—left corners of the available scan area, respectively, as viewed from
the operator’s position. The stepper motor control software compensates for the offset
between the initiai TX and RX positions, so that coordinates for TX probe, RX probe, and
test object are expressed in terms of the same coordinate sysiem.

Optoelectronic sensors are located at the home positions of the platforms. When
the scan table is initialized, and at intervals during scanning, the software moves the
platforms to the home positions and verifies that the stepper motors are stiil calibrated
(i.e., no steps have been lost). If the software finds that steps were lost, the previous
segment of data i¢ automatically reacguired.

When near~field antenna measurements are performed, the antenna under test
(AUT) is mounted above the table pointing down, and the receiving probe antenna is
mounted o the RX platform. The TX platform is not used in this mode.

When near—field bistatic RCS measurements are performed, the object under test
(OUT) is mounted above the scanning table, and the transmit and receive probe antennas
are mounted on the TX and RX platforms, respactively.

B. PROBE ANTENNAS
The probe sntennas are identical equai~length open—ended sections of X—band

waveguide or pyramidal horn anteanas. Each probe is held in a mounting bracket thai is

bolted to 2 single mounting hole on its platform. The TX and RX probes are always on the
platforms, as indicated in Figure IV-1.




fcaCun et RV et

SULIOJI¥]d DAV UEOS °§-Af 2NBLg

193{q0 1591




Both platforms are used when performing bistatic RCS measurements; only the RX

platform is used whea performing antenna measurements,
C.  SCANPATTEENS

The TX and RX probe antennas move through predetermired scan pattemns whea
measurements are being made. The scan patterns are shown pictorially in Figure IV=2 and
algorithmically in Figures IV-3 and IV-4. During scanning the probe antennas move
along the x~axis while holding y constant.

The data analysis computer programs impose some limitations on the scan patterns.
If near—field antenna mcasurements are to be performed, the TX scan pattern is
(effectively) a 1-by—1 scan, and the RX scan pattern must be square with an even aumber
of points on each side. If resr—field bistasic RCS measurernents are to be performed, the
TX and RX scan patterns must be squsre and hisve an even number of points on each side.
The x— and y~sampling intervals for both the RX and TX patterns must be identical.
D. MEASUREMENT CONFIGURATION

The equipment configuration for performing near—field measurements is shown in
Figure IV-§. The synthesized RF signal is teken from ‘the output port of the
Hewiett~Packard 84088 Microwave Network Analyzer to a 20-watt TWT amplifier, and
then to either the anienna under test or the TX probe antemna via a length L; of
semi~rigid RG 402/U coaxiai cable. A length Ly of RG 402/U cable carries the retsived
signal from the RX probe io a preamplifier and shen to the input port of the 8408B.
There iz additional amplification/attenuation in the test chanpal gain Gzc seising in the
8408B, which may be adjusted differently on differest measurement rups. Ll aand L2 are
typically both 23 feet leng.

Galn and phase are calculated zontinuously by the 868B and are captured by the
dual-channel AfD converter for the IBM PC. The analog prossssing circuits in the 8403B
can operate at either 100 hz or 10 khz bandwidth. The 10 khz bandwidth is used to avoid

emesring the measured data during fast scanning.
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Pseudo-codcforAntennaanrmu!Scanning

NXRX.NYRX = number of points along x,y for RX prode
IXRX,IYRX = loop indices for RX scanning
XRXORG,YRXORG = lower left comer of R, scan pattem
XRX,YRX = current coordinates of RX probe

IRXO = RX probe crieatation

DELTXY = sample interval (meters)

DO 20 IRXO=1,2

DO 10 IYRX=1 NYRX

DO 10 IXRX=1 NXRX
XPX=XRXORG+IXRX~1)*DELTXY
YRX=YRXORGHIYRX—~1)*DELTXY
CALL MOVE(XRX,YRX)

CALL MEASURE(GAIN,PHASE)
CALL WRITE(GAIN,PHASE)
CONTINUE

PAUSE 'Change probe orientation now.’
CONTINUE

STOP Done.’

END

Figare IV-3. FORTRAN (ode for Antenns
Measuremens Scan Patiemn
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Pseudo~code for Bistatic Measurement Scanning

NXTXNYTX = number of points along x,y for TX probe
IXTX,IYTX = loop indices for TX scanning
XTXORG,YTXORG = lower left coraer of TX scan pattem
XYX,YTX = current coordinates of TX probe

ITXO = TX probe orientation

NXRX,NYRX = number of points aloag x,y for RX probe
IXRX.TYRX = loop indices for RX scanning
XRXORG,YRXORG = lower left comer of RX scan pattern
XRX,YRX = current coordinates of RX probe

IRXO = RX probe orientation

DELTXY = sample interval (mesers)

DO 30 ITXO=1.2

DO 30 RXO=12

DO 20 IYTX=1,NYTX

DO 20 IXTX=1 NXTX
XTX=XTXORGHIXTX~1*DELTXY
YTX=YTXORGHIYTX-I)*DELTXY
CALL TXMOVEXTX,YTX)

DO 19 IYRX=1 NYRX

DO 10 IXRX=1,NXRX
XRX=XRXORGHIXRX~-1)*DELTXY
YRX«YRXORGHIYTX-1)*DELTXY
CALL MOVEXRX,YRX)

CALL MEASURE(GAIN,PHASE)
CAL! WRITE(GAIN,PHASE)
CONTINUE

CONTINUE

PAUSE ‘Change probe orientations now.’
CONTINUE

STOP Done.’

END

Figure IV-4. FORTRAN Code for
Bistatic Scan Pattern

IvV-6
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E.  DATA ACQUISITION SYSTEM

Data acquisition is controlled by a computer program that runs on the IBM PC.
The program controls the scanning table motors and A/D converter and stores the
measured data to disk.

The conversion time of the 12~bit A/D converter is typically 25 ys. Gain and phase
are sampled simultaneously by dual sample/hold amplifiers and then digitized in succession
by the A/D converter. The measurements are the gain (Vg) and phase (V ¢) voltages from
the network analyzer. The actual gain and phase are computed as G = Vg’fgain and

¢=V ¢-f¢, where fga.in is a gain calibration factor (20.0 db/volt) and f g8 a phase

calibration factor (100.0 degrees/volt) for the 8408B analyzer. The gain and phase are
combined into a complex number and stored in a disk file.
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CHAPTER V
COMPARISON OF MEASUREMENTS WITH SOLUTIONS
A. INTRODUCTION

The far—field RCS that is calculated via near-field RCS measurements may be
checked by comparing it to the far~field RCS oredicted by electromagnetic theory. The
conducting sphere and disk are convenient objects for this comparison, since an analytic
solution exists for the sphere and a physical optics solution may be applied to the disk.
Equations for scattering from sphere and disk may be found in Appendices C and D,
respectively. In this chapter we present a quantitative comparison of the far-field RCS
obtained via near~field measurements with the calculated far~field RCS of the conducting
sphere.

Although full bistatic scatiering measurements were made on the sphere and the
disk, funding and time limitations precluded our pesforming the data reduction and
aualysis of that data. The results presented here represent scattering frem the sphere only.

These near~field measuremeats were made at 10 Ghz using the experimental setup
described in Chapter III. The target is a precisicn 6 inch diameter aluminam sphere
mounted above the scanning table. The measurements were made on a 64 by 64 grid of
points with the transmit anteana stationary and directly under the target, so that the
targst illumination was essentially

E=|E] éy.

B.  COHERENT BACKGROUND SUBTRACTION

Ie Figure V-1 may be seen the magnitude of the co—polasization component of the
raw data measured by the receiving antenns. The target sphere, located at (x,y)
eoordinate (1.02,1.02) meters, i3 above the lower right edge of the plot, corresponding to
the peak amplitude of the raw signal.

Figure V-2 shows a background plot with all parameters identical to the previous

plot with the excepion of the target sphere, which was removed from the test volume.
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Although there is no coherent background signature visible in the figure, the raw data are
noticeably cleaner after this background scan is subtracted coherently from it (Figure
V-3). The improvement in signal/noise ratio is even more apparent in Figures V-4 and
V-5, which are contour plots of the imaginary component of the co-polarization before and
after coherent background subtraction, respectively. Similar improvement occurs in the
cross~polarization components.

Coherent background subtraction is performed for all data shown in the figures in
the remainder of this section.

C.  DATATAPERING

The first step in the analysis of the raw data is & two~dimensional discrete Fourier
transform (DFT). The signal processing aspects cf the data analysis are iliustzated by the
effects of several tapering methods that were tried. Figure V-6 shows the magx;itude of the
DFT of the co—polarization signal with no tapering; this is equivalent to a rectangular
("boxcar") taper in the continuous domain. The direct scattering from the target shows up
as the large peak in the figure, and probe—to—probe coupling appears at the upper left and
lower right edges of the figure. The side—lobe level due to leakage from the main peak is
about 30 db below the peak.

In Figure V-7 is shown the magnitude of the DFT of the co—polarization signal
after a separable cosine taper of the form —1—12-%)— was applied to both the x—axis
and the y-axis. Note thst the sidelobe level is better than 40 db down and the
probe—to-probe coupling peak is much more localized, although there is little fine structure
discernible on the peaks,

Figure Y-8 shows the magnitude of the DFT of the co—polarization signal after a
separable, partial—cosine taper was applied to hoth axes. This taper consists of a cosine
taper spliced onto a boxcar~type taper, so that the middle half of the data are unaffected
while the first and last quarters of the data set are tapered. The sidelobe éupprasiou of
this taper is gemerally poorer than that of the cosine, but for this data set is
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comparable to that produced by the cosine taper. Much more structure is visible on the
peaks (a common characteriatic of this type of taper).

A similar judgment may be made based on the calculated scattering matrix.
Figures V-9 threugh V11 show the msgnitude of Sa calculated uvsing no taper, a cosine
taper, and & partial cosine taper, respectively. The cosine $aper has the lowest sidelobe
levels, while the partial cosine taper has higher sidelobes but more detail in the
transformed data. In genmeral, the sdditional detail makes the partial cosine taper
preferable to the cosine taper.

D.  PROBE-PROBE GOUPLING

Figures V=3 and V-8 illustrate the manner in which the measured data are
transformed from a Cartesian coordinate system with units of meters (Figure V-3) to an
angular spectrum with units of reciprocal meters (Figure V-8) in k-~gpaca. 'i‘he directly

coupied signal from the iransmit probe to the receive probe appears in the angular
spectrum as a broad peak with incident wavenumbers near the horizon (ie., ﬂcz! 20) in
anguler space.

This direct signal can be separated from the desired signal if the desired signal ie aot
100 close to the direct signal in k-space. Note that (Figure V~-8) the probe—prode coupling
appears a3 a broad peak at the top left edge of the plot and spills over {due to wraparound
in the DFT) to the lower right edge. This broad peak is distinct from, and dees not
corrupt, the desired signal in these plots.

Under these conditions, the only detrimentsl effect of probe-probe coupling is that
it increases the required dynamic range of the receiver.
E. N 3

The region of definition of the reconstructed RCS is limited by the size of the scan
area relative to the apparent angular extent of the object as viewed from the center of the
measurement scan. In general, the actual area of definition is relatively small when viewed
in k-space. The reconstructed phase of g shown in Figure V12 i valid only 6ver a small

V-11
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zemicircular region that is approximately
~50 meter ! < k <50 mater ™

66 meter ™ < k< 140 meter .
The actual region of validity is blurred due to the sampling geometry and signal "leakage®
between adjacent DFT values- The leakage hss been reduced in these plots by applying a
smoothing teper before pesforming the Fourier transforzs. The region ur validity appears
in the figuze a8 an area of smoothly~varying phase that is distinct from the phase noise
that covers the remairdez of the l&—ky plane.
F.  CUTPLOTS

The region of definition agpears also in cut plots through the kx-ky plane. A cut
through Figure Y-12 along the line k =0 yields the plot shown in Figure v- ‘13.. The phase
fanctica ie well-behaved for 60 meter ™ < ky < 140 meter_l, while it uscillates rapidly
1nd randomly outside that region.

Figures V-14 through V-26 show overlay plots of the predicted and measured S o
S(p: Sx’ aad Sy in cuts along the kx and ky axes. A fixed offset of 6 db has been added to
the measured scaitering magnitude to facilitate comparison of predictions and messared
data in these plots. This uffset, cccurring consistently iw all of the measured scattering
Gata, is attributed to s calibration inconsistency that time limitations prevenmt our
resclving Recall that the region of definition in these plots is approximately

~50 mater ™! < k <50 meter >

60 meter ™ < k, < 140 raeter .

Figure V~14 ¢how? the predicted and nieasured magnitude of the function S, alocg
acutk =0 meter . The deep notch in he predicted magnitudc is a point of phase
ambiguity in this coordinste system representation. Over the region of definition, the
reconstructed magnitude is eszentially fla with about 42 db of restdual ripple. .

Figure V-15 shows the predicted and measured magritude of the functicn S @ along
acut kx =0 meter"l. Along this cut, the predicted S 9 is zero except tor 2a impulze at the
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origin.  ‘The reconstructed functicn i3 absut —20 db ‘fmm Sp indicating that
cross—polarization leakzge occurred due to antenna misalignment.

Figure V=16 shows the predicted and measured magnitude of the functisn Sy along
2 cut k, =0 meter™L. ‘Che predicted Sy is accarately zeconstructed with about 22 db of

ripple.

Figwre V-27 shows the predicted and measured phase of tbe function S, along  cut
k =0 meter Y. In these phase cut plots, it is imporieat to view only the actual regioa of
definitior given above. Over thai region, the phase agreement is reasanably good; the
upwatd parabolic slope to che right is discernible.

Figure V18 shows the predicted and measured magritude of vhe function Sy aleng
actk =0 mever™). Again, over k2 region of definition, the reconstructed phase agrees
reasonably wali with the predicted phase, provided that one takes into account the phase
wrap that occurs at shout 1:5 meter 2,

Figitre V19 shows she predicted and measured magnitude of the function Sy 2long

a cut k= 654 mster .

Along this cut, where the region of definition is approximately
Ik} <50 meter, the agreement between the two plots is excellent, with about 2 db
maximum error.

Figure V20 shows the predicted and measured magnitude of the function S 0 along
a cut k=684 meter . Agrecment is again quite good, with the same offset of 6 db.
The same may be said of Figures V~21 and V-22 whi~h show the predicted and measured
magnitude of tke functions 5, and Sy along the same cut.

Figures V-22 through V-8 stow the predicted and measured phases of the
functions S, S‘p, S, snd Sy along a cut k= 65.4 weter ©, The measured phase plots
show a linear additive pbase term wiik alops of about 0.3 degree/meter; this term is
probably due to targel misalignment. There I8 in addition a phase inversioa of § » and
5, which affects the narner in widch those two functions change as the origin (ky=9%)is
crossed.
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In this section we presented beth predictions and near—field measurements of

:', ! tar-field bistatic scattering of the conducting sphere. The key ncints of the presentation

)

. ave e v

)

S (3)

(@)

R

L may bz suremarized as foliows:

The magnitude of the measured scattering agrees well with the predicted

scsttering within the region of definition of the k~space reconstruction. The

discrepancy between measurcment and prediction consists of a #2 db pesk

ripple superimposed upon a nronstant calibration ofiset of 6 db.

Agreefne:c of the scattering phase is not as good. This is due primarily to

two effects:

(a) Phase measmemernis are particularly seasitive to antenns axial
alignment perpendicular to the plane of scanning.

\b)  "Wrap-around" occurs in the phase of the measured data due to
(fixed) phzxe offsets in the network analyzer.

Coherent background subtraction is an effective technique for improving

signal--to-nvise ratio.

Spatial fitering to remove unwanted scastering from the environment may

be performed in the k—space Fourier transform representation of the

measured data.

Sidelobes iu the Fourics~transformed measurensents aze great!r educed by

smoothing the measuremwerts with a smoothing window prior to per'srining

she Fourier transforms.

Probe~to~probz couplirg is r2adily separated from the desired target

scatwering information in the k—space representaticn of the measured data.




CHAPTER VI
DATA REDUCTION INVESTIGATION

A, INTRODUCTION

The existing algoxithms for computing near—field antenna patterns and radar cross
sections of objects impose significant computational burderz. In this section we describe
modifications and/or alterpatives to the existing algorithms which offer the potential for
reducing the nuraber of computational steps needed to obtain vseful near~field
measurement data. The irvestigations concentrat2 on tbree priroary computational
alterratives described in the icllowiuz sections. The following olher computational
Alternatives are nat considered here (1) adaptive nonuniform sampling, (2)
non-rectangular lattice (or grid) sample spacing, {3) stasistically reduced mumber of
near-field data used in tre far—field transform, and () derivative data measured in the
near—field.

Two approaches for reducing the burden of the near—field computations are
considered here. The first approach i» based on writing the equations for computing the
scattering matrix directly in wector and matrix notation. The current equations compute
she scattering matrix iv several steps. Each step requires computations and transfers to
data storage which inpose computational burdeas. These burdens can be reduced by using
a direct matrix formulation cf the scattering equation Ia addition, the other alteinatives
for reducing either the amount of measured near~field data or the computations necessary
to determine the scavtering matrix are more convenient to work with in terms of the direct
matrix formulations.

The second aporoach ‘o based on expausions of the rear—field functional components
which allow us to irapose constraints on the near—field functions The constraints can be
based on (1) the desived or expected analyticai behavior of the functions, (2) the physics of

Ihe measurement environment, or (3) the information content of the data process.




B.  MATRIX QPERATIONS

1n investigating the compuistions from a matrix perspoctive, we first rewrite the
equations for the scattering matrix in vector matrix notation. Expressed in this form, the
scattering quation is more eusily iuterpreted and adapted to impmve the efficiency of
computing the relstionships between the scatteving compouents. Next we relate the
scattering matrix formulation with the vector formulation of the first subsection and
com,»are the results.

The axplicit solution for the scattering matrix gu(f(,f.) in terms of the measured
Gata array parallels the solution given in Chapter II except that this decivatiou solves for
the scattering mat.ix in terms of the .easured datu vactor and rasirix tepresensations.
The equaion development i3 descriced in terras of the continuovrs Founer trarsform for
exposition convenience. Equivalent results can be obtained for ihe point measurement
computation of the Discrete Fourier ‘ransform using the Fast ¢ urier transform.

The bistatic measurement equation is

ikepil-2,
1k d

bo(i‘l ,f2)= J'J 351 (i) 'Tn(ai) ‘ilod) €

where

T(tn (k) = tae vector transpose of 301 (&

k= scattering (emerging) direction,

1 = incident {illurciration) direction,

? 1= eréx + Pyl,éy + Pm.éz = receiver probe coordinates,

f2 = théx + Pytéy + Pztéz = {ransmit probe coordinates.

In the laboratory we measure a multidimensional scalar complex array
M(Pxx’Pyr'va yt’fr'ft) at discrete points whose components elements are the measured
values of bo(l‘x,fz)

(PP P ) € {(P’“{Pﬁi’?z‘)}’ P,, = tonstan,




(PsPyy Pyg) € {(thi,Pyti,Pzt)}, P,, = constant,
= {1, 2} = an index denoting receive probe orientation, and

§, = {1, 2} = an index denoting transmit probe orientation.

In the first step of the solution, we take the inverse Fourier transform with respect

to the respective transmitter and receiver locations 1‘1, t2 of both sides of the equation.

” LXCBY I P 19t = ”” 15, @ Ty &1 1o (D-

ikl L, -
e 2 Lakdie
= @b || 18 BT (&1 oD K+ 1) 45-K) dk o
=@ I (3)- T, G -m) 1 yo(-3)
where k is defined in terms of its wavenumber er, kyr' kzr componeats in the coordinate
system of Tu(fc,f). Note that £, and §, are constants in the above equation. We now -
write the equation in terms of the i,I arguments
B(E,~1) = (@0f 1§, (0)- T, &, 1)-1,p(D)
where
R kg iler, L
B@E,-1) = H (e L L dby,
The minus sign of the vector 1 indicates the direction of the incident radiation
relative to the scattering object. In ous laboratory measurements the elements of M(-) are
built up by a concatenation of scans by the rece’ve probe; during each scan we vary er
and Pyr and bold P, Py, Pyt’ €. and §, constans. If
- N = number of discrete values of P '
‘ Nyr = number of discrete values of Pyr'
: Nxt = number of discrete values of Pe
»LL;:;___ Nyt = number of discrete values of ?yt’
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then M(-) consists of 4N matrices, each of which <outains Nanr complex scalars.

xtMyt

The factor of 4 comes from .= {1,2} and £,= {1,2}.

The vectors 301 (k) and im(i) have spegific components reflecting their
dependence on the probe crientations (§,= {1,2}, {;= {1,2}) polarization components (#,4)
of the transmitted and received signals. Next we defie two 2x2 matrices TK and IE
composed of the respective 14 (£) and T(T) vesters in terms of their specific function

arguments ¢, ¢ and 0, thus
[ 6 b ] [Iow(“ &) Iy gles 5:1)]
I*l(k ) | Ukt T 4ke)
=[ 1(" n)] [ LogTiée) Im¢(f*fu)]

e 1 LnofTy) TosTitn)
The quantity B(ﬁ,-I) is also 2 function of the probe and polarization arguments so

we define B, a 2x2 matrix with the diagonal terms specified by the respective values of
B(-) for each of the four vector combinations of the TK (IL) matrices. Using the above
definitions we can write the scattering matrix equation as
B D) = 20 ®@®)-T,, &, 1) WDt
If the matrices TK and IL have rank two, their inverses exist and we can write the
scattering matrix as
T,y &1 = (™ By (en)’.
The matrix inverses for the IK and IL* matrices are
(TR = [ Toaglobrg) Ty glokey) ] 18G)
Toroiba) Toypldsy)
Ty = [ Torglliéea) ~Tg1llsteo) ] 18()
TogTb) Tl
where A(r) and A(t) are respectively

Afr) = gy ity Tog o) — Ty geey) Ty fotiy)

-

Ay = tgdE6y) oy = LiogTéy) TafTig)




The B matrix is given by

B [ Buu Brw ]
Bot Broeo

The subscripts ri and tj (i,j=1,2) in the Bﬁ 4 terms identify the orientation of the Eﬁ’ 'ftj
probe components. We can then write the scattering matrix, T11(E,I), explicitly in terms
of the vector elements and scaling components, A(r)A(t)(2x)6, as

[ Ingkbra)Bry r—To1g6)Bra 1 Tono®r6ra)Bry 120160601 )Bea 12
o1 ooy 1101 gkir1)Bra o1 o1 ok6ea)Bey e2 o1 o(kiér1)Ben v2

. [ on¢(z’ft2) g1 glirg) (AmADES
gty Ingdlén) .
We can now write the elements, T;y(ij=1,2) of the Ty (k,1) matrix as
Ty = Uy gbo)Bry oy Torsobes Brg 2 Vgn oTo6i0) =
Ton g ora)Bry 1ol o8 1oVl g1 AEAGN 2
Typ = g BBy Torgobe)Bra eVl i) +
(g1 gl 6)Bey 4ol o082 1 AT G NADAGNERY
Ty = Clog fk&ig)Bry 1+ oErbey)Brs 1)y o1 ~
(FlgrolobBey ey Bg el 16N GOAG R
Tag =Ty db§e0)Br1 o +pr by )Beg oo o) +
CAFCTI I ST B A A O T
The T;; compopents of T, (&.0), for particular values of (K K oLy Ly )s are the
transfer fuaction that maps incident 6,4 polarizations into scattered (emerging) 4,4
polarizations.
We now show the equivalence of the scatiering matrix as derived above and the
matrix representation derived in Chapter I&. We first derive the explicit solution for the
scattering matrix T, 1(I’(,f.) in terms of the measured data array. The bistatic

measurement equation is




D(k, ;)
where the equation elements are as defined in the preceding sections and D(i,;l) is a scalar

coupling product.

In the laboratory we measure a multidimensional scalar complex array
bo(Pn’Pyr’Pzr,vaPyt'Pzt’Er’st) at discrete points

(PPypoPy) € {(Pni,Pyri,Pzr)}, P, = constant,

(P PypP) € {(thi’Pyti’Pzt)]’ P, = constant,

&=1{1 2} = an index denoting receive probe orientation, and

§=1{L 2} = an index denoting transmit probe orientation.

In the first step of the solution, the scalar coupling product D(-) is computed as 2
phase—shifted two—dirensional Fourier transform of B(-) with respect to the transmitter

coordinate ;2:

which we write as

- - r 3 - ’.T.’ g -
D, 1)) =J Tél(k)-I T,,E&)1,Me g T (292 fk-m)

D(E7 ) = e 1L, () J T @ L Me Ll
D(i,?l) is now written as a matrix to reflect its multi-component structure.

In our laboratory measurements the data components bo(;l’;2) are built up as a
concatenation of scans by the receive probe; during eack scan we vary er and Pyr and
hold P, Py, Pyt’ £, and ¢, constant. Each D'(i,;l) component consists of four complex
scalar corresponding to the combinations of §r={1,2} and §‘={1,2}.

V16




In the second step of the solution, the scattered spectrum

T - J T G A D e

is computed from D(k,?,) and the receive probe response function Ip)(-) by means of a

simultaneous linear equation solution. From a prior equation I?(fc,;z) is
D(E,7) = 20 T8, (®)-F(k.7)).

Expanding explicitly,

DTy 6pty) = Ty foty) Folkif6) + Top g(Eaty) Pyl ).

To solve for F(-) we need two equations obtained by measuring D(-) at two different &
DT g ) = Top flfobiy) Fiflof 1,8 + Ty gy F kit 6y)
D(kF 1 6pby) = Tog ffibrg) Pt ) + Ty gBs6rg) F 71,6

Then

Ralltyoby) = [Ty €00 Ton g (Babyg) =DCRsTy 60 )T (o) |ate)™

Fy(kotyogy) = {D(i’;vfrvft)101a(i'fr2) ‘D(f";l’frz’ft)low(r"fu)]“’)—l
with non-zero determinant

OES SPICNN] APCR SRS PR ML SR CH R
For each transmit probe position (th'Pyt’Pzt) and orientation §,, F(-) is defined over all
valid k. Note that F(-) is not a function of §- A particular realization F(-) is the
scattered spectrum from the object, given a particular position ;l and orientation & of the
transmit probe.

In the third step the vector coupling product is calculated as a twe—dimensional
phase-shifted Fourier transform with respect to the transmit probe coordinates. From a

prior equation

-
+

1.
F(Es;l) =JT11(]‘(,I)'I10(1) e T dl

we define




Q1) = Ty, (6, 1) -1,(D).

and write

-

PENE JQ(iJ) S

The equation i3 now Fourier transformed with respect to ;1

- -

> - 'in'rl Py - -i I+;)';1 - -
F(k,r,)-e dt, = || Tk, 1) e di dr,.

T ) = (20)? jmm). dl &1+)

F(&,1) = 0% Q(k,-)
This vector coupling product represents the #,¢ components of the scattered spectrum as a
function of incident T, emerging fs, and transmit probe orientation Et'

The fourth and final step is to calculate the scattering matrix T,;(k,1). The
equation

Q(Er;l) = Tu(]“si)'rm(i)
can be written explicitly in terms of the respective § terms as

[Q,(E}l,eu) Qylk,T;06,0) ] ~

[Tuoadvfu) Ty4606e0) [Ima(mfu) Ixoe(i’i'fsz)]

Trglé) Tigg)
Solving for T, (k, 1) we write
Ty 1) =TT 6 Ty ™
where

LogEligy) gyl iéyy)

Log®l.6g) Tyopklitg)
‘Im¢(ij,fu) Ilog(iyisfu)
with non-zero determinant

A() = Lkl 6 g 11610) = LTy 0T1610)
which results in .

Ilod»f‘)-l = [ ]A(t)_1




Q 9(?{';1’6{1) Q g(it;laftz) 110¢(i’r’€t2) ‘Img(ij,ftg)
Q¢(f‘1;lvft1) Q¢(i);11€t2) -110¢(T"I’Et1) Iloa(itrreu)
We can now write the components of Tn(i,I) as
" Qptk,6)T04(160) - 0g(k1,600110,(1,6)
1163)

INORS

Ty19k1) =

T110¢(f‘j) =

&(ijafu)llo‘(r ] €t2) ;(3?(23 ’ ftg)llo‘(r ’ fﬂ)

e 1. = gl TyopT60) + BT, ) 10001, 6y)
Ty140001) = %)

- Q¢(§1I’fu)11oo(rvft2) + Q¢(E1T9€t2)1100(Y’Et1)
a(t) )

Ti14 ¢(1‘<,T) =
The four components of Tll(i,f), for particular values of (k,1), are the transfer function
that maps incident 4,4 polarizations into scattered (emerging) 4,4 polarizations.

To compare the vector and above formulations of the scattering equations, it is
necessary to substitute for the respective §, F and D matrices vo show the equation in
terms cf the measured B data set.

We have, from a preceding section,

F(k,1) = (222 Q(k,-1).

We use a previously defined equation relating D and F to write the T components ia terms
of the D and I matrices, i.e.,

B(k,1,) = (20?1, () -F(k.7)).

The Fourier transform with respect to ;1 and the wavenumber argument iis

D(k,1) = e0? 1§, () -F (&, 1).

Thus, we obtain
B(E,T) = ((29* Ty () -T(&,).
Recal! that 50(;1,;2) is defined in terms of D{k, 7,) as
. . L, ikel,
B'o(rl,r2) = [B(k,rl) e dk.
J

Taking the Fourier transform of both sides with respect to ;1 and ;2 we have .
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b,(ry:59) € dry dry=

L bR, L
B(k,rl) e dk dx, dr,.

The results of the transform operations yield

.

»> 9 - 3 "m‘rl > 2
B(m,n) = }| D(k,r;)-e dk dr, -(22)"- 6{k-+n)

B (&,1) = 2025,

Using the equation for ¥ determined earlier, we now have
B(&,1) = 20538, (0)- Wk, D).

We can now write the componeats of ;I‘u(i,l) in teyms of the B components as
k) = Iy (B D/ee,

The ¥ and B elements of T are

@™ = [ gl “lrgthéa) ] A
Ihpgladg)  Top gldsy)

where A(r) is

A= 101 Aﬁ,fﬂ)'lm ¢(ir€f;) - 101¢(iafn)’lm 9(12’6!‘2)
[ Biu B ]
[ By Bl
now write Q(i,r) as
[Qplkiy b)) Qb

Q(iri) = LRl + g j =
L Q¢(k1r3s€ui Q¢(kar1v€t2)
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We 2an pow write the comnponents of Tn(i,I) 23
00(14‘111;}1)1101(196‘2) - Qg(ijrfm)llo‘(rifn)
03]

Ty199E1) =

o Gl 0gE 16 y0p(T 169 = Uy 60T 10,(116))
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1140\%4) = i)
It UykLe 0060 + QT 60T 104106
11¢¢\ %4 = 1Y(3] g
When the volues for tte T ciements are subsii‘ueed into the equations for the T¥ elements

we see that th: scattering matrix values are identical to these derived earlier. Thus, the
representation we will uce for computing the scastering matnx is
T,, & = RE, B - @O en®
where
_ L. k&) ~To, ((%,2,,)
eyt =] e ) ~01¢("w1 l Al
Lo ekiby)  Topgleyy) |

(Toh = [ Ighsy) Tudbld 1,
Tl Tl )

A() = gy k. 23) Ty gy =Ty 161) Ty sy
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W2 (onsider Lere a method for reducing the computational and storage burden of

the near—field computations. The basis for the method is a representation of the measured
data field by a suitable expansion function which is truncated to limit the number of field
function derivatives (to yield a relatively "smooth" estimate of the scattering matrix) and
which minimizee some specified error function of the estimated scattering matrix. The
equatiors are written in terms of the previously determined values, Tu (k,1), of the
scattering matrix and the next value, Tn(l’t-bAi,hAI), of the scattering matrix to be
determined. As an exampie, we will consider an estimate for the scattering matrix which
.~inimizes the norm, N(d). of the squation defining the scatiering matrix, i.e.

N@) = | Tyy (1) - QR Be 2y /200 oy
The specific mattix normalization which might te used need not be specified a¢ this time
for the purposes of this examgple. The minimizaticn is subject to the constraint that in the
region of each set of estimated values, the scattering mastrix has no derivatives above the
second order. Therefore

T, ok, Teal) =22 vi-ak ok + 7101 oli® T, (k1)
where V  and V 1 are the gradients of the function ’f,. 1(2,1) with respect to k and T and
[»}(n) represents the gradient and partial differsntial operators in the bracketed quantity
being raised to the nth power before operating oa the process functions. The mizimization
and constraint conditions are combined using a LaGrange multiplier as shown below:

Q = N@) + A [Ty (+ak,l+al) « 2_ 7 g-ak g/ + v g-a1 gal®

T11(]“’1))!11011:1‘

Tke equation for Q is now minimized with respect to A and alse Tn(i‘:,i) for given values
of AL 2nd AT in order to compute Tu(hAl’:,Id-AI). The intent of the operations is to
solve for consecutive values of TII(E+AE,I+AI) for spacings of Ak and Al which are
greater than these which ight be required if the process constraints were not applied. If
the resultant spacings of Ak and A are greater than those that would be required based on
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the effective aperture of the scattering object, then we will have reduced the density of data
sampling for the near—-field measurements.
The equations must next be written in terms of the ineasurement parameters
MRE)™, @)ty and (27)° and the data varisble B(E, ).
The expansion terms in the constraint equation are next written as
2o pok ok +vy-al rali® T, &0 =52 vy-ak o/dk + v1-al
o/ali® (@) Bk, 1)-amhyy Y en.
The expansion for n=0 yields
@R @)™ B D -@d) e’
The expansion for n=1 yields
7 -ak 8/ + v -a1 alilY @R -BE D@Dy -/2n® =
(0K )™ (7 Ak o/ R(Ey)-RE™BED- DY +
K™ (V;-aF & BE,D)-(TDY™ +
K@@ 1al gl B @Dy +

R ™ B D (0o -4l gal @®Hh)- @D e’
The expansion for n=2 yields
[7 -k ek + v 1-a1 9/l @REBED - @Dy 200 =
W.ak /d° + 2.y oAk v pa1 Fdkel + vpal &)
@) B&D - @Dy /20

Rather than complete the expansion for the second order terms, it is helpful to

cousider the jmplications of the expansion terms relative to reducing the sampling denmity
of measurezaents while providing a satisfactory estimate of the scattering matrix. For
exsmple, we might examine the computational and sampling implications of using a
measurement process which assured that the IR (E) 3%k and STR(T)/41 terms would be
7210,

The final steps are to perform the minimization witk respect to A and the
components of (‘.’K(l’c))"l-H(f:,i).(IES(I)‘)’1 in the expansion equations and solve for
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T, (k+ak,1+Al). The estimated value for ,, (k+Ak,1-+l) is then compared with
the measured value of T11(2+A1‘:,i+zﬁ). If the differenc? between the two values
exceeds a specified tolerance value, we have several alternatives depending on the region
over which the funcrion icinimization was performed. If the region is local, the required
spacings of the data samples can be determined adaptively znd changed as required at each

measurement location. If the minimization region is global then the local ercor estimates

can be used as a basis for changing the constraint conditions of the algorithm.




CHAPTER VI
DEFINITION OF MEASUREMENT LIMITATIONS

A, INTRODUCTION

The purpose of this task was to investigate the limitations, both theoretical and
experimental, of the near—field RCS messurement method. We concentrated on two
topics: (1) data acquisition limitaticns and (2) measurement of wide-angle bistatic RCS.
Investigation into the data acquisition limitations considered the design of the receiver, the
antenna configuration, and the storage requirements. The investigation into wide-angle
bistatic RCS concentrated on the difficuities of performing such a measurement.

Results of this investigation are that, depending upon the frequency of interest,
near—field RCS is practical with current technology for objects ranging in size from smali
missiles to B~1 Bombers for monostatic RCS and small-angle bistatic RCS. For
wide—angle biztatic RCS, we concluded that new technology and/or modified near-field
theory is needed. Additionally, application of near—field RCS for large objects at
frequencies above 1 gigahertz is dependent upon the development of large array antennss
appropriate for near~field.

B.  DATA ACQUISITION LIMITATIONS

Investigations into the data acquisition limitations covered the topics of receiver
design, antenna requirements, and data storage requirements. This investigation
demonstrates that near—field RCS is possible for a wide class of problems with current
technology and that, with the advancement of new technology, it has the potential to be
applicable for.many classes of RCS measurement configurations. In this section, only
monostatic and small-angle bistatic RCS is considered.

1. Receiver Desien

A potential design for the receiver in the near~field measurement method is
shown in Figure VII-1. The receiver shown is a synchroncus detector and is similar to
receivers used on typical radar systems. This type of receiver is proposed because of its
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ability to rapidly measure the real and imaginary paris of the received signal. The real
part of the RF signal is obtained by rnultiplying the RF signal by a reference signal from
the local oscillator and low-pass filtering the resuit. The ircaginazy part is obrained by
multiplying the RF signal by the quadrature of the reference signal and filtering as before.
These signals are then converted to digital form anq stored.

In most cases, data storage will be the slowest function in the receiver. However, if a
buffer is devised to switch between several storage devices, one could realize a system
which is limited by the A/D conversicn and the settling time of the low—pass filter. In
mest practical cases, the A/D conversion time will be the limiting factor on speed if one is
willing to use a wide-band low-pass filter and accept the increased noise that wiil be
associated with the wide bandwidth. Couversion nmes of under one microsecond for 12 bit
A/D convession are common. .

Figure VII-2 shows the messurement time required to make near-field RCS
measurements assuming that the caly limitation is the sampling time for the A/D
conversion. Ie this example an array antenns with A/2 spacing is used, the A/D conversion
time js 0.1 microsecond, and the time to move the transmit probe is assumed negligible.
This graph shows that for practical frequencies and for tatgets as large a3 the B—1 bomber,
A/D conversion times are not a limitation with near-field mensurements given enough
receivers. The main limitation of this configuration, bowever, is the design of the array
antennz and receiver system, and the cost of such a system. Arrays with 106 to 107 array
elements and 107 to 10° receivers will be required at higher frequencies.

2. DstaStorage

Data storage requirements are extremely large for many practical
measurement configurations. Figure VII-3 shows the data volume generated assuming
conventional sampling techniques and no data compression. The large amounts of data
that must be stored required some kind of data compression to make near-field RCS
practical for large scattering objects at high frequencies. Seversl techniques for reducing
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the volume of data are discussed in Chapter V1. Even without data compression, however,
it appears feasible to measure objects ranging from 2 jeep at 5 Ghz to a B~1 Bomber at
100 Mhz. '
3. Existing Technology
In the previous section it was shown that near-field measurement times are

reasonable given a suitably—designed sr;ay antenna ang receiver system. This technology

has not been demonstrated yet, and therefore near—field measurement timesz were
investigated assuming implementations using existing technology.

From Figure VII-2; note that measurement times of weeks are needed for
large scattering objects in the gigahertz frequency bands given an optimally designed
antenna system. The only measurement speed limitation of that system was the A/D
conversion time. Therefore, one can conclude that near~field RCS measurements of large
objects will require multi-sntenna arrays to achieve the necessary measurement speed.

Measurement times for near—field RCS were developed as a function of the
number of probe antennas (or array elements), the frequency, and the aperture scan area.
Current technology generally uses a waveguide probe antenna. Although this type of probe
has limited application here due to its high scattering cross section, it may be usable as
long as the total numaber of probes is relatively small (i.e., the total cross section ot the
probes must remain small). Figure VII—4 through VII-8 show the resulting measurement
times at different frequencies for various size apertures. Tabh VII~1 shows the practical
limitation on target size as a function of frequency using these probe scanning techniques.
As shown in the table, many practical systems can be measured with curreat probe
scanning techriques and an expensive array antenna system need not be developed for
these cases.

C.  WIRE-ANGLE BISTATIC RCS
The near-iield theory developed by Dinallo requires that the probe—to-probe
coupling of the transmitter and receiver be negligible. This can be accomplishes cither by
VII-5
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Table VII-1.

Practical Target Size Limitations Versus
Frequency Using Current Probe Scanning Techniques.

Frequency Target

100 MEz B-1 bomber
500 MHz F-15 Sghter
1GHz MS0 tank
5GHz Jeep

10GHz < 2m diameter
target




using probes with minimai mutual coupling or measurement techniques such as time
gating, FM modulation of the background (range filtering), k—space filtering (angular
filtering), and so forth. Each of these experimental techniques has its limitations. The
problem that arises is that there will always be potential geometric orientations for which
angular, range, or time filtering alone cannot distinguish between the received signals from
the scatterer and the transmit probe antenna. This problem might be solved by using two
or more of these techniques in tandem. Additional development of the theory of near-field
RCS measurement may also be fruitful. Wide—angle bistatic RCS is conceptually feasible,

but has yet to be demonstrated. Further investigation into using multiple filtering
techniques and/or additional theoretical development need to be performed.
D.  CONCLUSIONS

Thiz brief investigation has shown that near—field monostatic and .small-angle

bistatic RCS measurements are practical for some interesting classes of problems using
current technology. It also shows the need to develop both large array antenna systems
and inexpensive multi~channel receivers. The need for arrzy antennss, and thus
multi~channel receiving, increases with increasing target size and frequency. Data storage
problems also increase with increasing target size and frequency.

The data quantity reduction techniques discussed in Chapter V have the potential
of relaxing the constraints for both the data storage and the complexity of the array

antenna by requiring fewer data samples, and therefore requiring fewer array elements.




CHAPTER VIl
CONCLUSIONS

INTRQDUCTION

This final report presents the technical work performed by BLM for the Rome alr
Development Center to perform laboratory measurements and snajysis to validate a planar
near-field RCS measurement technique.

The major issues of the technical effort are discussed in the p+~jous chaprers of thic
report. The probe corrected near—field theory is well~developed and is directly appilcable
to the planar measusement configuration. Software to implement the thecry has been
developed. Near-field measurements were obtained with a low—cest computer—~x-utroticd
scanning table designed and constructed in the BDM Laboratory. Agreement between
measurements and predictions was excellent. We have identified several approaches so
reducing the quantity of data required for near-field RCS measurements, and have
identified some of the limitations of the method.

Although we do not see any fundamental obstacles to implementing this RCS

measurement technique on a larger scale, our recent work nas given us insight into the type

of development needed to bring this concept to fruition. While building on the mature

near—field antenna mesgurement technology, planar near~field RCS measurement itself is
obviously not a matu-c technology. BDM is cot at a point to design turn~key systems
implementing thie tecunology, although we have been leaders in developing and validating
the mathematics ard experimental protocols for these measurements.

We do feel, however, that this is & very promising avenue for near-field
RCS measurement. It shows promise of addressing several important issues of RCS
measurement:

(1)  measuring RCS of low—observable objects,

(2)  measuring monostatic and bistatic RCS,

(3)  providing a secure faciiify for RCS measurement,
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(4}  increased accuracy, and

(5) increased repeatability.

In the followirg sections we discuss zome techmology aveas that need further
developmant. Specific arcas of planar near—field RCS technology are discussed in the terms
of topic problem areas and tentative solutions. Environmenial factors are &l?,o noted where

appropriate.
8.  REALISTIC RCS MESSUREMENT REQUIREMENILS

There i3 currently s credibility gap that must be surmouated. Although the
ineoretical basis for sonverting aear—field RC3 1o far—field RCS i3 firm, there has been no
large-scxle demoastravion that 2ear—field RCS data will yicld valid, believable far—field
RCS for realistic military targets. it is necessary to establish analytical bases for zelating
sonveptional far-field RC3 ineasurements aud pear—fie’d RCS measurements, identify
limitstions of both Jar-fieid and near~feld RCS meagursments, and investigate the extent
to which the statistical charzeterisiica of far—~field and near~eld dala are complementary.

There will be soina difficultiag encruntered in measuring low—observabie RCS, since,
as in conventional far~Seld ranges, the RCS may be comparable to the background
scattering levels in the system. It is necessary to idensify mechanisms for dealing optimally
with low signal/noise measurement eavironments,

The actual requirements for RCS data quantity and precision are not clear. While
very accurate RCS from many angles is desirable, what i3 actually acceptable? There is a
need for realistic RCS requirements assessments based upoa system specifications and
mission requirements.

The analysis of near—-field RCS dats has moderate computational complexity.
Studies are needed to identify trade~off elements, precisioa, and computational complexity

and apply a systems view of the probiem to determine computational trade~offs.




Tae theoretical basis for near~field RCS measurements needs expanding. Among
the effects that need additional investigation are multiple interactions between probes and
objects, ways of reducing the computaticnai burden, effects of undersampling the data
field, maximum entropy constraiats to reduce what would be redundant information in a
noise~fre2 environment, algorithm: modifications to compute parameters of estimated
statistical distributions directly for RCS or antenna patterns, and more effective probe
antenxa designs and patterns.

D.  CALIBRATION

Fxisting RF technology is generally adequate to support this RCS messurement
technique. Care must be taken in stable design of signal sources, feeds, and receivers. The
mechanical and electrical design of the antemnas and feeds will require ingenuity.
Calibration of such a rear—field RCS measurement facility would probably require built—in
calibration loops in the RF paths to ailow adaptive self~test and recalibration during data
runs. Implications cf such self-test loops, and the possibility of using created white (or
other suitably defined) spatial and frequency noise sources and out—of-band techniques to
check calibration in real time, should be investigated.

E.  MEASURING THE NECESSARY DATA

The two key problems for this near—field measurement approach are the amount of
data that must be measured, and the time that will be requized to make the measurements.
There is no fundamental obstacle to recording the necessary data, but it calls for clever
measurement system design and data processing algorithms.

The measured near—field data will be voluminous. Ways are needed to reduce the
amount cf data required, and to efficiently store the data once they are measured. Possible
paths to pursue are to achieve data density reductions by alternative computation and
analysis algorithms; data coding algorithms to reduce data volume for vcquisition, storage,

and processing; trade-offs between data precision, storage requiremeats, and analysis
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accuracy; uew algorithms {eigenstructure, analytic and series functions, and orthogonal
expansions) for reaucing sampling density; determining what can be done numerically to
utilize :pagnitude-only or phace—only measurements; use of error—free versus
non—error~fren data compression; use of densely--packed antenna arrays; and investigation
«f various high~density digital data storage media including optical disk and holegraphic
storaga,

Other avenues of investigation include fully-automated measurements systems,
computer—controlled cata collection and probe and target positioning with process quality
feedback, time—division and frequency—division multiplex antenns and feed systems,
fast—response serve coatrol systems for probe antenna positioning, existing laser metrology
systems for ciosed-loop control of antenna pusition, multiple transmit and receive channels
with broad-band intermediate frequency strips to allow high—speed I-Q measurements,
parallel computationally-specific dedicated processors, and combined data measurement
and analog computation.

The various RF coupling paths between measurements system and object must be
analyzed as part of the error snalysis. Signal-to-noise limitations must be evaluated,
perticuierly in light of low—observable targets, broad IF bandwidths in receivers, and
system noise figure. Other signal-to-noise issues include using multiple coherent data

roeasurements, background scatter reduction, coherent or incoheremt background

subtraction and suppression, absorption and signature techniques, effects of multiple
reflections, explicit time gating and implicit gating using synthetic spectra and data
Signatures, environmental changes and deviations from idesl, and factor analysis.

Part of that investigaticn would be to evaluate the level of speculsr and dlﬁ;use
reflections that may be present from both object and hackground, and possibly create
modifies} t,lgoﬁthx;m-uilured respectively to emphasize or reject specular and diffuse
reflections via a feed—back loop, using results to isolate undesired components of the
background.




Obtaining the necessary metrology accuracy is not a trivial problem, but is well
within the state of the art. Tools to be used here include laser interferometrv, closed loop
contrel, real—time RF frequency and phase error measurement and adaptive correction, and
phase locking techniques. Timing errors can be minimized by referring all measurements
to a msster clock to eorrect the time references of data as required.

It is necessary to evaluate reproducibility of measurement conditions.
Reproducibility is impacted by environmental effects, equipment drift, structural stability,
target stability, and aging, and might be measured in terms of pattern distributions and
statistical confidence intervals.

Effects of non—ideal measurement components (e.g., amplifiers, mixers) must be

evaluated. One approach is to exercise and modify algorithms as required to examine data

behavior given non-ideal components, including error analyses, simulation, and

experiments to evaluate effects of component variability.

Possible methods of alleviating undesired effects of probe characterictics include
usiné broad—band, low mutual coupling, variable polarization, active nonlinear elements.
Adequate polarization and geometry control may allow simplifications in the data
processing algorithms; this will require detailed antenna analysis and design and feed
systems using PIN diode switching and compensating elements.

Environmental noise components might be isolated and compensated for by
measuring and assigning data signatures to various environmental and measurement
elements and demodulating the undesired signatures in real time. Environmental
interference might also be reduced by using out~of-band da‘a from kuown targets to
isolate environmental interference on a real—time basis.

Approaches to reducing data computational burden include using canonic
simplifications based on alternative measurement and analysis algorithms, aad
simulsaneous measurement, computation, and analysis using buffered computations and
direct transform algorithms.




Data collection monitoring and quality control call for automated operations and
on-line factor analysis to determine data error semsitivity. The need for identifying
unusual measurement problems during dats acquisition suggests that one should create an
evolving data pattern generated incrementally as measurement data are obtained, so that
algorithms can detect divergence from the emerging pattern.

F.  DATA ANALYSIS

The relations between input and output data quantity and quality, and numerical
effects in the data analysis algorithms, need additional investigation. Possible approaches
are to employ a 64--bit (or longer) word-length computer to simulate a variable word
length computer and thus determine the numerical sensitivity of the algorithms and
optimize the algorithms for minimum sensitivity; investigate dynamic range limitations
due to numerical considerations of using large Fast Fourier Transforms (FFTs); and
possible use of phase-only data. Simulations are needed to help determine error relations
between dats inputs and outputs. Data analysis time and resources could be reduced by
using dedicated hardware FF'Ts and processcrs.

Additional paths to reducing computational complexity include using the physical
situation's constraints (both target and emvironment), using mathematical structure
constraints, adding other constraints on information content, matching the information
content of the channel between measyrements znd canonic results, facior analysis, and
various aperations research techuiques (including linear programming). .

Other possible data and algorithm modifications include using blank data cells
(under sampling), truncation (blanking), zero interpolation, blanking interpolation, various
simplifications and alternstives to the existing near~field theory, solving dusl/analog
probiems, identifying relations between simplification and useful outputs, computing
pattern statistics rather than RCS patterns, and using ohject and algorithm functional
symmetry.




G.  OPERATIONAL CONSIDERATIONS

We emphasize again that it is not clear what RCS data are really needed for
existing aircraft and missiles. It would be a noteworthy capability simply to be able to
measure monostatic RCS at, sey, one degree intervals for angles within 430 degrees of the
horizon, but it is not clear whether mission effectiveness would be truly enhanced by such
detailed knowledge. Perhaps it would be more useful to be gble to state that the maximum
RCS over a specified solid angle is less than z with probability 3. The range of angles and
the angular resolution of the data bave major technical (measurement time and data
volume) and economic ({ime and cost) impact. As aids to baselining this measurement
approach, time and data volume could be estimated for specific measurement scenarios,
given the angular range and resolution needed.

The avsolute RCS accuracy required for mission evaluation has a m'ajor impact

upon how much data are needed, how long it takes to measure the data, and what kind of
algorithms are used to process and display the data. Acceptable and desirable
measyrement accuracy constraints for mission scenarios must be established.

The mission scenario elements together impose stringent requirements upon the
measurement system. As part of identifying true measurement needs, a system level
evaluation of mission and operations use of RCS data is needed, to determine feasible costs
(time, capital, and staff), and to perform trade—off analyses and simulations.
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APPENDIX A
COORDINATE SYSTEMS

A.  COORDINATE SXSTEMS

There are two coordinate systems (Figure A-1) to deal with in performing
near-field mezsurements: the scan table coordinate system (S’) and the antenna
coordinate system (S). In the context of bistatic RCS measurements, the antenna
coordinate system is referred to as the test object coordinate system.

The scan table coordinate system is the "laboratory" coozdinate frame in which
mezsurements are taken, while the antenna ccordinate system is the patural coordinate
frame for the antenna or object under test. Both are right—handed coordinate systems.

The scan table coordinate zystem is defined with horizontal x‘—y’ plane and
z’—axis upwards. The x’~axis corresponds to movement of a platform only, while the
y’—axis corresponds to movement of a carriage along with its platform.

The origin of the scan table coordinate system is at the center of the aperture of the
TX probe antenna when the TX platform is at its initial ("home") position. The
horizontal position of the origin coincides with the TX probe anteans mounting hole in the
TX platform, while the height of the origin above laboratory floor level depends upon the
height of the TX probe antenna that is installed.

The origin of the antenna coordinate system S is placed at some convenient

reference point cn the AUT. If ;6 is the representation in S of a vector from the origin
of S to the origin of S, then a vector T+ expressed in S’ transforms to S as
P=Y( - 1),

where

e' +r’ 8’

’ + 0z°2'
10

0-1 s
00

+

£ z‘ and
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If the unit direction vector A is expressed in spherical coordinates as (r,3,¢), then
its negative (- R) is written as (r,x— 8,7 + ¢).
If the unit direction vector A is expressed in spherical coordinates in £ as (r,0,¢),
then it is expressed in §* a8 A = (17,4",4°), where
=t
r=x-0
¢ ==¢.
If the unit direction vecter A is expressed in spherical coordinates in S 23 (,4,4),
then its negative (-A) expressed in S is ~A = (1,0 ,4"), where
‘=1
=0
¢ =—(x+9¢).
The above relations can be verified by inspection of the coordinate systems
involved. We require that
r20
0<h<rx
—x$pim
S* is used to describe the probe antenna TX and RX characteristics since these
functions do not depend on a probe's location in §-.
C.  ILLUMINATING PLANE WAVE
The target is illuminated by a plane wave with polarization ﬁi (Ei-ii=0) that is
effectively emitted from coordinates (x{.y{.%{) in §* toward the target centered at known

coordinates (x(),yé,za) in S’. Define a unit vector ;'1 in S in the direction (xg=x{, ¥§=¥1
" zgzi). The vector ;'1 is known, since ;i is & unit wave-vector from the far-field
iltumination direction (if TX probe ia scanning), or (xi,yi,zi) is the TX probe position and
7{ can be ealenlated (if the TX probe is stationary). ' )
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The propagation vestor ii is expressed as
Ky = Tk

1=
721 = "ok

=

b = oo™ (1))

# =t ()
where

k=2x/

We also know, or will specify arbitrarily, the polarization of the illuminating plane
wave. If the TX probe is scanning, we select the polarization(s) Ejor E /) fo.r.a particular
simulation. If the TX probe is a stationary standard gain horn pointed at the object, we
will orient the horn so that the object is on—axis and the E-plane of the hom is either
vertical or horizontal in S’, so that the transmitted polarization is either purely E'a or
purely E&

If the polarization is known in the basis set

Bf = (B By i)
then the spherical components of the polarization are

E;, = B sinf)cosé; + I::"dainolsingﬁ1 + EZ,cosf;

E{ﬁ = E£1°°“1°°‘¢1 + E;lcoaolsinqﬁl - E;lsinol

Efﬂ = -E;dsiwl + E;,lcowl.

If the polarization is known in the basis set

B{ = (B; B Bgy)s .
then the Cartesian components of polarization are

Ej = Ehsinoleowl + E'ﬂeoeﬂlcosg&l —E&lsimﬁl

E§-1 = E;lsinelsiwl + Efﬂeowlsixwl + E&lcoséi




E;, = E;,c086) — Egpsind),
and E; must be selected to ensure that ki-B{=0. Thus E{ can be expressed in either
Cartesian or spherical coordinates using the above transformation equations.

The propagation vector &, is expressed in S via the transformations

kg =+

k1 = k)

k=%

n=r

01 =x- Oi

¢y =—91.

The polarization vector EI is expressed in S via the transformations

Exl = +E)"1 .
E,; =-E;)
Ea=-Ey

Therefore we can express the incident wave-vector (121) and polarization (ﬁl) in either
Cartesian or spherical components in 8, which is the coordinate system of ihe target.
D.  SCATTERED PLANE WAVE

The target scatters the illuminating plane wave into plane waves in various
directions. In order {0 evaluate the scattering, we select a particular scattering direction
based upon where the observer is in the far—field.

Consider a plane wave that is scattered toward the known coordinates (xé,yé,zé) in

S*. Define a unit vector ;'é in 8’ in the direction (xé-xé,yé—yé,zé—zé). The prepagation




vectorl’céisexpmsedas
K = gk
Ky = Ty

22 = TaoK

=

85 = cos”Y(r;,)

¢ = tau_l(g,z,r,’a)
where k =2x/A.

If scattering in a known direction is desired rather than scattering toward a known
coordinate, then ?é (expressed in S*) is the scattering direction and (x3,y3:25) need ot be
known. '

The propagation vector ia is expressed in S via the transformations

ko =+

At this point we know the incident k—vector (k,), the incident polarizetion (E;),
and the scattering k—vector (§2), all expressed in S, so we can compute the polarizatior
vector (ﬁz) of the far~fieid scattered plane wave (Figure A-2) by means of an analytic or
numerical model of the scattering object. The usual range~dependent phase factor can be
ingored. :




Scattering Object

Ilumination Observer
from 5
Far-Field Far-Field

(0, +4,) (8,:9,)

Figure A-2. Scattering Geometry




The scattering analysis of the sphere requires that the object be.in a preferred
coordinate system S in which it is illuminated by an incident plane wave having
propagation vector ll’:léz and linear polarization !ﬁléx. Six;ce El and ﬁl are not %0
constrained, we must construct a coordinate rotation matrix 4 that defines a pew
conrdinate systern S" in which

A-k; = [k |8} and

é'ﬁl = Iéllé;,
where we must have

k=0

ky-Eg=0.

The coordinate rotation 4 transiorms an arbitrazy iinearly polarized incident plane
wave into a plane wave propagating in the é; direction with é_:; mWiom The
scattering direction is also transformed as

K=ok

At this point k), £, and &, are known numerically, so the scattered polarization £
can be calculated in S" using the appropriate analyzis {e.g., Stratton for the dielectric

- sphere) and then transformed back to S as

\ §2= é—l, "

= The matrix A is computed in three steps. Let éx be a matrix that rotates a vector
k (for which we will actually use k) about &_ by an angle

=—tan” [—r”—]
This rotation reduces k t0 zezo, 80 the rotated & (which we will call k(l)) lies in the & e
. ] plane. The matrix is

1 0 g
Ay = {0 cos(a;) sin(a)) |,
0 -sin(ay) cos(a;)




- 1 -
i) = Aok
aed applying the same rotation to & gives
1
M=y B
Next, let éybeamatﬁxthatromeuvemrabmxt éybyanangle
[
opm-ua [
2
This rotation reduces k;l) to zero, so the rotated f:(l) (which we will call §(2)) lies on the

éz axis. The matrix for this rotation is
c08(ay) O sin(az) 1
A = 0 1 0

¥

sin(ay) 0 cos(ag) |

22 . A 21

k((2)> ~h k(u))

B =g BV

At this point, f:(2) is on the éz axis, as desired, and ﬁ(2) is in the éxéy plane.

Firally, let éz be a matrix that rotates a vector about éz by an angle

[ EE
%= 5|
x
This rotation reduces E§,2) to zero, so the rotated E@) (which we will call l’*:(a)) will lie on
the éx axis. The matrix is
cos(ag) sin(ay) 0
A, =| —sin(ay) cos(ag) 0 |.
0 0 1
The desired coordinate rotation matrix is
A= éz'.&. 'éx'
The scattering analysis of the disk requires that the object be in a preferred
coordinate system S* in which it is illuminated by an incident plane wave from above the

ex"—éy" plane having propagation vector k = (~singe, - m#'éz)l!’tl &nd linear




polarization By &) + E, &, where & is in the plane k-8 and &28). Siace £, and &
are not so constrained, we must construct a coordinate rotation matrix A that defines a
new coordinate system S" in which
Ak, = |k, | (~sind"é, ~ c080"¢,) and
AR =B # +E &,
where we must still have
k- =0
iy B0
The scattering direction i3 alse transformed as l':; =4 'k'z
The matrix A is computed in two steps. Let éxbeamatﬁxtha.t rotates a vector k
(for which we will actually use k,) about &_by an angle
0 ifk, <0
a = 3
1 x if kz >0
This rotation ensures that k, is non—positive, as required, o the rotated k (which we will

call X(1)) lies below the &8, plane. The matrixis

[1 0 0
A, =10 cos(e;) sin(al)],
0 -sin(al) cos(a;)

A8) BN
K =4 -k
and applying the same rotation to B gives
M-p B
EM =g B
Then let A, be a matrix that rotates 3 vector about &, by an angle

[
=tan —-{-D +1
This rotation reduces k(1) 10 zero and makes k’((l) pegative. The matrix is

cos(aj sin(a2) 0 .
A= [—sin(az) cos(ay) 0].
0 0 1

A-ll




The desired coordinate rotation matrixis § = A -A. Applying AtoB;,
Bj=ak

= széx + E;yéy
In 5" the anples of incidence and emergence of the plane waves are
6y = cos " (ki /k;)
# =0

+ Egzéz

and

= oo™ (4, ky)

- [
The incident pclarization paraliel and perpendicular to the plane of incidence in §" are

By = 15 1(oos By + sineyey

By, =) &
At this point kY, EY. anc k4 are known numerically, so the scattered polarization £ can be
czleulated in S" as a linear combinstion of E;“ and E'l' :

il 1 EH +
[Ezu] - [Sn SmJ { 1 }
E3 1 LSg Sppl LEY,

In terms of 88045,

B = B cosfhey + Ej &) + Ejsinder,
which is transformed back t6 S as

~1 1"

EQ = é .ﬁ?
F.  ZIrapsformation.of Scattered Wave

If the predicted far-field scattered plane wave's polarization vestor is
ﬁ2 % (BB E 1) When expressed in 8, then the spherical components of polarization are

Em = Eﬂmﬂgwséz + Ey?eosozsinéz - Ezzsinez

E 2= -Exzsin¢2 4 Eﬂcosasz.




If the caleulated polarization in spherical coordinates is

By=(EpEgEy)
when expressed in S, then the Cariesixa components are
Ey2 = Eﬂsinazsiwz + Emooaﬂzsinéz + E¢20°S¢2
Ep= E‘,zmo2 = E psind,.
The polarization vector is expressed in S’ via the transformations
Ea=+Eq

By =—Ep
Ea=-Ep

Eig=+Ey

Eéz =~F o .

By means of the above equations, the scattered wave-vector (ké) and polarization
(E3) can be expressed in S using either Cartesian or spherical components.

The far—field scattered electric field is given by £, and &), which can be expressed
in terms of S or §”. It is probably best to stay in S, which is the natural coordinate system
for the scatiering object.
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B.  METHOD OF STATIONARY PHASE

In this section we summarize the relationship between the angular plane~wave
spectrum of an E~Seld and the far—field E-feld that emerges by applying the method of
stationary phase to calculation of far~field E-field.

Consider an E~field expressed in the following form

e ffa. 2

D)= ﬂ Bk)e k..

The first etep in finding the far field is to convert to spherical coordinates. Thus,
we defipe

B(4,¢) = keind cosé B(K)

k 2 k (sind cosg & +sinfsing & +cosf )

72 (sinerosf &, + sinasingé, + csed,),
from which far k|Jf we obtain
ikr{cos® cosa + sind sina cos(f-a)) a0d

Bn= [ [ Bege

é.

Thie is now in the correct form for invoking the method of stationary phase [3).
:Since the methoa is somewhat involved, we quote the result and reference the details to
Born and Woif. In their notation (Appendix I, pp. 753754, eq 16 and 19),

ik : LA
J J glxy)e ("y)dxdw—-—"'—“';—-s(xo,yo) e 77,
fies - 71 k

-

where




and (xo,yo) is the critical point at which

&= -ar""
Thus, in our noution, the far field is

v » *
PR o Lo Ao,
R gy aeas]

z .

s sawin

1imit B(F) = 2““ cos(d) B(E)
2]

=25 cu() [B80%,+ BLONE,),
where
k
cosf = -,
Suppose we have a far field
ike

timit E@) = 8,[Ef00)5 + B L0098, ]
Substituting into the previous equation gives

is
B6,¢) =m—age¢)

ia, °
- 2w
By(4¢) = mfs‘eé(%#)-
Thus tbe angular plane~wave specirum B(k) of an E-field can be expressed in
terms of the known far-ficld E-field by the relation
k¥ ‘,-,:(
Bk ==-—-2-—- limit | e T B,
) tkcosf  iri-w [ )]
where k|jr.
Later, when using plane wave spectra to define the transmit characteristic of an
antenns, we use the symbol #,(k) instead of B(k). Hence,

&)= —t— . 1imi k3 gl
o st fipis [ 720




In this section we determine the magnitude of the TE;, mode excited in an
open—ended waveguide (OEWG) when illuminated by a plane wave. The motivition for
this aralysis is clarification of the field relations and coefficients of proportionality.

The geometry of this problem is illustrated in Figure B-2. Assume that the
incident E~field at the origin is s plane wave

Binc  E1D%(4, #)eg+E} EID(g,4)8 "
where EP%(6,¢) and E’“(o ¢) are complex scalars with an identical phase.

We will create an elemental dipole in the far field that could excite this plane wave.

The E-field of a dipole is [4]
kr
BIPF) = £ 8 sin() 141,
~ip e
where we have defined x = 1 and 7 is the intrinsic impedance of free space.
We first choose a dipole in the far field paraliel to BInC 45 create ﬁinc at the origin:
ilr

Elf= -L‘E:—- (i),

E;“ 5 (Idl) &
where dl is parallel to BI%C. Note tbat, in the sin(#) factor in E4IP(?), £ is the angle
between di and k and is therefore z/2.

So,
I(ﬁ = -—kr% éinc,

K e
which produces the observed incident fieid BI2C.
We now wish to find the wave launched into the OEWG by the dipole Id1. To do
0, we invoke reciprocity and calculate the E~field at the dipole dus to an excitation of the
OEWG. Suppose, in the waveguide, we lsunch a wave of magnitude Eo towards the end of

the OEWG. At the aperture, we have




Open-End Waveguide Coordinate
System for Far Field




— % X
y = EQ (1+F) (X)S[T] and

By = == (1-T) cos[ZX],
where
n

c -
' x (2
11—
Next we determine a current distribution that excites this mode in the OEWG at a

N
"

point A g from the opening (Figure B—3)
Jx = Z-Hx

E
=_o. Zo ws[r x],
¢

where
A= A

g x |2 i
11
Hence, the above current produces the open—ended waveguide far field
ikr
N e " -
E(r) = AE I [fgeeo + igee¢],
where for notational convenience we have defined

| 4, ¢)sin(¢)
ige'(aﬁ) = EE( AE =
fge(01¢) = AE )

and EE(0,¢), EH(0,¢), and Ap are as defined by Yaghjian. Note that fo and f ¢ are now
simple unitless functions. '

If we now generalize for an arbitrary antenna, we find
r,0, g)e ik

r,—

1(6,4) = 1imit
|r

| o
The reciprocity theorem states that

[[[#23av=[[[ 23 av.
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In this instanice the two cases (a) and (b) are:
(a) the current sheet in the OEWG excites the far field, and
(b) the small dipole in che far field excites the TE o mode in the
OEWG.
Now, the mode excited by the plane wave in the OEWG at a distance Ag inside the
open end is
E =b eos( )

where bo is unknown. Invoking reciprocity, we find

)

[E},ncé g+ ES% q(,]

E=p eos[ﬁ]é
The left—hand side of the reciprocity equation above becomes

J”Ea Jbav = AE-E--[toee0+ e¢] ki, [E inc, E;,“cé¢]

Ap
inc , oepinc
=R {iEr + )
while the right—hand side becomes

ﬁbJﬂdv—r l/. bcos y:;E—cos[ ]}dxdy
—b/2 2

—2b B,
=2 -a—"] dx dy.

2J—a/2




Using
3/2
2{0 x __a
o’ B2 ax= 4
J—af2
the integral is

- bE ab
b 1a ., 0. 0
[feosrave o2
Equating the left— and right-hand sides of the reciprocity equation,
-bE ab A e
o0 > "B inc inc
-z =2 [t + e,
-2 4xiA . .
b =t E_ [oepinc , oepinel
(] abnszo {9 ' (2 }
Using the relation
)

X

1 =353

~4xiAg

{tgeEianc - igeE; nc}_

abi [ 1- Fti 0
The above equation gives us the magnitude bo of the ‘ll‘E10 mode excited in an
open—ended waveguide when illuminated by an incident feld gloc  gpe receiving

characteristic of the OEWG is thus
~4xiAp

The ratio Ap/E, is calculated elsewhere.
Now let open—ended waveguide (OEWG) be illuminated by an atenna with known

far-field pattern and excitation. The waveguide feed for the antenns is assumed to be

identical to the waveguide used as the OEWG. The geometry for this analysis is shown in

@ = {f‘;e Bg+15e ¢}.
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Figure B-4. Note that the source antenna is placed in the unprimed coordinate system,
and the OEWG probe is in the primed system. We define

8= excitation in waveguide of known antenna, and

bo = excitation in OEWG.
Both a ) and by are defined at & distance '\8 from the origin of the respective coordinate
systems.

In the coordinate system O (that of the antenna under test), the far~field E-field of
the antenna is

P . . . ] ok

BE) = 8, [Ef0018+ (60124 + 05|
where E9(0,¢) and E ¢(0,¢) are known functions, a, is the excitation, and angles 0and ¢
are related to the propagation vector k by

] k
§=cos |
x

and

et ]

X
It has been shown thet ﬁ(;) can be expressed in terms of the Fourier transform of

the components of E(r) that He in the x~y plane. The Fourier transform of those
compenents is commonly referred to as the angular spectrum (of plane waves) of E(7) and
is denoted here by ﬁ(i). Using the method of stationary phase, the angular spectrum of
E(T) can be related to the far—field E~feld, making the above expression for E(r)
equivalent to

Br) = ” Bk ol T dk dk,,

where

P ia
BE) = e [E 40008 + Egl00)3]
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or, in more general notation,

8, o(E) = —1 limiz[kre""
10%) 23k%050 1 | ~n '

These plane waves propagate from the antenna to the origin O’ of the primed
ik d
coordinate systern. When they reach O, they are shifted in phase by a factore 2 , so the
field transmitted to O, expressed in terms of coordinate system O, is

" ia (E(0,8)e, + E (8,¢)8 ] ik &
E(anfd) = 2;2— J] d cgs(ﬁ)é ¢}e z dkxdky.

If now the probe i3 scanned over the plane z=d, we introduce an additional phase factor to

get

u ia [E{8,$)e, + E (8,68 ] i(k x+k y) ik d
Bexrd) =2 ” d =T l}e X

Having established the incident field at the OEWG as a summation of plane waves,
the next step is to calculate the OEWC excitation bo due to a single incident plane wave.
Consider a plane wave

B() = [Bg09)8p+ E085] g Wy )
with propagation vector E', expressed in terms of coordinate gvgiem Q. incident upon an
open—ended waveguide. It was shown above that

. A
b= B [mye s )ife80) + Eglo 1008
0 bkl | 1 -1 E12 To ¢ ¢
ka
where f;,(a',¢') and f&(o',w) are the known pattern factors of the OEWG:
ikr

5 2 —-— € 3P ALY » AYA

In fact, a plane wave from the antenpa at O, and incident upoa the OEWG at O/,
in the unprimed coordinated of the antenna under test, is

ei(kxx+kyy)

jae °
E46, =-T—.° E4$,
9( 2 2xk“cosd g( /)




i kzd

ia +k
B =0 T

ik d
A ta e

bogE'E" —4xi o z 1( e kyY)[Ep(a@ fo(gl’¢;)+
0 abk“m 2xc0s( 0)
E(04)146¢)]-
Simplifying, and using the relations
1£6.0) = 10 .x4")
14(0.9) =1,(8".7-4")
where §’=4 and ¢’=x-¢, we get

b =a 'E 8,6} {6,
0 o k4j_—{__}7 cos(6) dAdha4) +
E04) 0r-4))-
Summing over 2 continuum of plane waves:
. e 2ia, [ EfS01J07-8) + Ey8.8)y(0-6)
= E_ . ]
ik d i(k,ev}-kyy)
e “ . dkxdky.

The above is & complete and rigorous description in the ccordinate system of the
antenna under test. In gemeral, bowever, the measurements will be made in a coordinate
system that is attacheqd to a fixed point on the scanning table, and is thus defined by

ix" 1 0 0 X=X,

y{=10- 0;-l3y,l
2" 0 0 -1 2-d
where the origin of the coordinate system is at the probe antenna coordinates

o= (xo,yo,d). Hence, after taking the data, the first step of the analysis is to convert
from the doubly-primed coordinste system of the scanping table to the unprimed
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coordinste system of the antenna under text. We now have
HE I
= .|+
y o)y %
z=4d,
z
§e=sin —""""‘"’]
1 i
p=tan | L.
D.  PROBE ANTENNA CHARACIERISTIC
The transmit characteristic of the probs antenna is related ‘o its far-fidd E-fleld
by (8]

10) =t timit Jir e E B |
b=y i

Toa

where k is parallel to I Assurping a reciprocal antenns, the receiving characteristic is

Y, co8(d)
o

The constante Yoand nouesdmittanoathamsybenmmﬂmdmunity. if we
wish to perform an absclute measurement, it will be neceasary to specify the ratic Ys"”o
exactly. To do so, we return to the expression for the recelved signal derived casiler
—2ia, J EJO0{0m9) + EJ0)0rd) td

Ty @ = -2yg(-E).

b =

(]
4
abk I 1- {f-’af‘z_

This ve compare to the expression

T €))

ik xt%, y)
2 Jy dkxdicy‘

i -2
BT) = 2 | For(R)-3(E) e dR.
4 3 01\
We now consider the tranzmit aztenna to be an OEWG with excitation B,
have therefore




4. .
R R

where b, A, and E are all in usits of volts/meter. By equating the two expressions we

get

[A 2 - -
1% 22 (32 25 Bl 1) H
i @il = & 1l

g

From a previous section we have

$y9(6) = ‘—'—g—"’}xmﬂ e fé(n]

| =0
3y0(k) = —-—,—-—AE I(k)
Furthermore,

o) = =2 cosd3yg()
b4 =-.-—-m 3
01 o 10

Y,
0 i LTI
1{~k).
Mo 2xk“cos )
Substituting, we get
2 ra 12
1 Yo AR em ARl 1
a2 o 4k cost 4 7131 Bo| 080
abk®l 1 - il
Yo = §,2r5i
7 -
° anb! 1-{;’%}3
Hence,
. - Yocoaﬁ o
!'Ol(k) = T 810(-!().
4 A
b -16%"cosd 1 E 2
i@ = : -5
o1 Poced Eo
sbl 1- ! ‘!2 ccsé o
for an CEWG, or

B.16

pr et g Sve———

—2iAg rp ([ 1400XL09) + 109N f6r-0) B2
by = ) =7 Eo co8 ( @)
abk i 1— {ﬁlz ]
S




3 4 ~ik T

o= [ - (& o E, Kb [ éﬂl
where £(0,9) is the transmitted field due to an excitation E, in an OEWG

E(x) = B cos EX &
E.  FAR FIELD OF PYRAMIDAL HORN ANTENNA

The pyramidal horn probe antenns bas the advantage that it has higher gain, which
increases the signal-to—noise ratio {SNR) on—axis. Of course, the horn's higher directivity
reduces the SNR off-axis, and the presence of nulls in the horn pattern is undesirable.
Since the horn antenna is well—characterized, it is also a good choice for a test anténna for
near—field antenna measurements.

The following discussion of the pattern of the pyramidal horr is taken from Balanis
{6}. The pyramidal horn geometry i3 shown in Figure B-5 (Balanis' Figure 12.18). The
following parameters are assumed to be known:

a = waveguide feed dimension (larger), along &,

b= wa»egmdefeed dimension (smaller), along & o

a = hsrn dimension (larger), along &,
b, = horn dimension (smaller), slcng &,
£ distance from aperture to E—plane phase center,
py= distance from aperture to H-plane phace center,
E, = waveguide excitation (TE, j mode), and
A = free-space wavelength.
The tangential ccmponents of the E~ snd H-fields at the horn aperture are

appseximately
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where

The far-field E-field can be derived (after tedious manipulation)

E, =9,
Ey= By Tk e [ sin(g). 1+con(8)] 1L |, and
Eg =B, e 6" | con(g)- (Lcos()-1,1, |,
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4= [ [+ v
= k sin(fos(4) ~ /2y,
k, = ksin(fein(g);

and

X n2
Cx) = Leos [5-] a

X
2
S(x) =J m[—"z—] d
0
are the Fresnel cosine and sine integzals.

We use the Narda 640 horn antenna at 10 Ghz driven by X—band waveguide.
Typical parameters are
a=.02286 m

b=.01016 m
= ,0737 m,

b1= 0544 m,
= 0918 m,
py= L1189 m.
A=.03m




APPENDIX C
SCATTERING BY CONDUCTING SPHERE

The conducting sphere is a canonical object for which an analytical solution exists.
In this appendix we present a eoletion {19] for scattering by a perfectly conducting sphere,
followed by a derivation of the cnordinate transformations recessary to utilize this solution
in verifying the measured scattering matrix.

For convenience, we will work initially in an unprimed coordinate system. A
perfectly conducting sphere of radius & is placed at the origin (Figure C-1) and is
illuminated by a monochromatic incident plane wave traveling in the +éz direction with
x~polarization

k=k,¢,

pi(kzz-we) .
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Dropping the € *“* dependency, write Emc in spherical form
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kl = propagation constant inside sphere,
ky = propagation constant outside sphere, and
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R = radius to observation point.
For R > a, the scattered field will have the form

B=E Xim"-a%%i%r [a-m) 102380 |,
n=

where
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We define
k =N-ky,

p=kys,

cos¢é¢*

P](cosf)sing & &

ki ra=N-g.

The boundary condition at R = a requires that

oI -—ulin(Np)g; ;rpjn(p)] - ﬂgin(P)%m[NPjn(Np)]
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The above equations are valid for 8 sphere with arbitrary dielectric properties. If
the sphere is aluminum, and the surrounding medium is air, then




#y =y = = 1.257 X 10°® henry/metes,
€ = & = ¢, = 8854 X 1072 farad/meter,
0, =35 X 107 mho/meter, and
Oy = 0.
The general form of the propagation constant is
k2 = cp.wz + iwpo
= ew(1 +1in),

kl‘l’ o i"l“z uzr,rl, and

klg*F’ 1.66X106/meter.

1 = ey
k2 ¥ 209.4 /meter.
Choosing o 6~inch diameter sphere, 2 = .0762 meter, s0
p=ip
= 15.96
and
Np=+ [ - 126X 10° /meter.
Since |Np|>>1, we can use the asymptotic relations
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to simplify the above equations for af and b, yielding
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where
B{1(e) = ,00) + 1+,
After the usual sort of manipulation,
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APPENDIX D
SCATTEKING BY CONDUCTING DISK

To calculate scattering from a conducting disk we use a physical optics solution due
to Capt. Keith Trott of RADC. Using the theory of physical optics [20], on a scattering
object

®n2ix i
where

3% = total surface current,

fi = unit normal vector pointing away from surface,

H =incident H field.

This is & good approximation for large objects but tends to break down with smaller
objects because it is not valid near edges. If the incident plane wave £ is known, then one
can compute, in sequence, f{, ¥ , and the vector potential

+ik| -t |

1.1 Be
A= ror —_——eee (S
* ” jTr|
and the scattered E~field is

ﬁa—:-l—-ﬁzﬁx.l.
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In the vaprimed frame the disk is at the origin (Figure C-1), lies in the x-y plane,

and has radius a. It is illuminated from above the x~y plane by the incident wava vector
k= (cosgsing, -8, + sing'sind & + c086;-8,) k]
Assume Ei lies in the x~z plane, so ¢i=0, and
k =—(sin&-& + O-éy + coaf-8) 'z..
The observation location is also above the x—y plane at
r=x-& + y-éy +2:8,
= r (cosdeind &, -+ sindsind éy +c0s8 &),
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kT = —k;r(sinfcosgeind + cosécosd).
The plase of incidence is defined by k; and &,. There are two polarizations of the incicent
field — parallel and perpendicular to the plsne of incidence. An arbitrary planar
illumination & with k (#,=0) can be expressed in terms of those two polasizations:

+iki T . R
- ﬁn = EOH e ("’Cmoiex + sinﬂiez)

+ik;-r
= 174
ﬁ.l. - Eo:. e Y
Conaidering the parallel polarization first, we have

E ik..7
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On the disk (#”=x/2) we use primed coordinates to indicate a source, so
& - Eo[] e—ikr'sinoicosgb 5
b=x/2 1 Yy

Then

BEy=2¢ <8
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The observation point is

r = |r|(cosgsin, + singsind®, + coe,)
while on the disk itself 8’=x/2, so

I’ = |r|(eos¢'éx + siné'éy).

The factor |t~ | in the integral for A is

[7-1| =j (rcosgsind-rcosg’)* + (rsingsinfr’sing’)> + rocost

=| ¥ + r* - 2 sindos(¢-¢*)
In the denominator of the integral, |T-~r| can be spproximated by |7]. In the
numerator phase factor, & better approximation is required. Ignoring quadratic terms
inside the radical, expsnding in & Taylor series, and retaining the first two terms

l;—-x" | @ r-r’sinfoos{- 7).
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After tedious manipulaﬁsm,
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where

A= s’ + sia’8 + Zsinfsinbooss .
In the far field, retaining r " terms only,

30 the scattered ﬁeld due to pamllel illumination is

Consxdering perpendxculu polarization,

+ikr'sin0icos¢,
&

J,(kad)
mr o8t a T
E J;(kad)

.. _Jox s .
=~7r cos&ia X [eos&sm¢e0+cos¢e¢]

and the scattered field due to perpendicular ilumination is
B, = +iE T &7 (akh) feonsi(costhingé , + cosgd )
S'noe Esll and Eu have identical time phase, the scattered E-field is
E ~ikr ~Cos fcosd oeséicosﬁimﬁ E
30} _ .. e Nak of]
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