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A self-organizing multiple-view representation of 3D objects

Shimon Edelman Daphna Weinshall

We explore representation of 3D objects in which several distinct 2D views are stored for
each object. We demonstrate the ability of a two-layer network of thresholded summation
units to support such representations. Using unsupervised Hebbian relaxation, we trained
the network to recognise ten objects from different viewpoints. The training process led to
the emergence of compact representations of the specific input views. When tested on novel
views of the same objects, the network exhibited a substantial generalisation capability. In
simulated psychophysical experiments, the network’s behavior was qualitatively similar to
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1 Introduction

Model-based object recognition involves, by definition, a comparison between the input image
and models of different objects that are internal to the recognition system. The optimal way to
store those models depends, among other factors, on the amount of information available in the
input. For example, if depth information in the input is made explicit, it may be worthwhile
to maintain 3D models and to look for three-dimensional congruence between the input and
a model. A recently proposed recognition method circumvents the need for the recovery of
depth in the image, e.g. by computing for each 3D model the transformation that would cause
its projection to coincide with the hypothesized view of the object in the input ([1], [2]; see
also 3], {4]). This method (viewpoint normalization, or alignment) can obviously be used in
conjunction with 3D object models, in which case the only benefit derived by the system from
the explicit storage of the third dimension is the ease of computing the appearance of a model
from an arbitrary viewpoint.

Keeping 3D models of objects has one distinct disadvantage: during learning, the system
must recover the 3D shapes of the objects, or, in other words, to solve the inverse optics problem.
Because of this, most existing recognition schemes are confined to simplified domains, or block
worlds, or else rely on hand-coded object models. One way to overcome the need for 3D models
is to devise a method for reconstructing the projection of an object from an arbitrary viewpoint
that needs less depth information. For example, it has been proposed [5] to represent objects
by storing the curvature of the object’s surface, for each point on a contour that belongs to
a projection of the object. Combined with an algorithm for computing the projection of the
object from different directions, given the curvature information, this proposal alleviates the
dependency of recognition schemes on the recovery of complete depth information.

Representing a 3D object by a collection of its 2D views is an old idea {6]. Recent develop-
ments indicate that indeed it may be possible to recognize 3D objects using strictly 2D models
([8, [7], [9], [10]). In the present paper, we explore representation of 3D objects by multiple 2D
views, subject to the constraints of compuitational simplicity and biological plausibility. Recent
psychophysical findings support the notion that the human visual system tends to employ repre-
sentation by multiple 2D views for well-practiced objects ([11], [12]). Specifically, response time
in various tasks that depend on object recognition depends linearly on the distance between the
displayed view of the object and a preferred, or canonical [13] view. A related phenomenon is
mental rotation ([14}, [15]), in which the time to decide whether two simultaneously displayed
objects are isomorphic or enantiomorphic (that is, are mirror images of each other) depends
linearly on the orientation difference between the two.

The main problem with representation that is based on a fixed set of 2D views is how to
infer the object’s appearance from a novel viewpoint. One possibility is to synthesize a linear
operator (7], or a nonlinear module [10}, that will carry out that task. Such an approach offers
a solution at an abstract algorithmic level. An implementation-level approach must address the
problem in more concrete terms. A theorem stating that in a certain perceptual problem the
output can be obtained from the input via matrix multiplication does not qualify, for example,
as an implementation-level model of the human ability to solve that problem.

To model human performance in several experiments involving object recognition, we im-
plemented a representation scheme with the following properties:

o Unsupervised learning: the representations are self-organizing, not specified by design or




imposed by a teacher.

Compactness: the representation does not resemble the input pictorially.

Availability: any combination of input features has a potential representation®

o Robustness: the system generalizes to novel views of familiar objects (within a certain
range) and is insensitive to small deformations in the input.

e Structure: views close to each other are tightly associated.

Testability: the model is based on psychophysical data, and generates experimentally
testable predictions.

We show that a two-layer network of thresholded summation units can fulfill these requirements.
Using unsupervised Hebbian relaxation, we trained the network to recognize ten objects from
different viewpoints. The training process led to the emergence of compact representations of
the familiar views. When tested on novel views of the same objects, the network exhibited a
substantial generalization capability.

The rest of the paper is organized as follows. In section 2 we review the experiments
described in [12] and summarize their results. In section 3 we describe the model. In section 4
we describe the general performance of the model and the results of simulated psychophysical
experiments. In section 5 we address several computational and biological aspects of the model.
Section 6 is a summary of the report.

2 Review of psychophysical experiments and results

Everyday objects are more readily recognized when seen from certain representative, or canon-
ical, viewpoints than from other, random, viewpoints. Palmer et al. [13] found that canonical
views of commonplace objects can be reliably characterized using several criteria. For example,
when asked to form a mental image of an object, people usually imagine it as seen from a
canonical perspective. In recognition, canonical views are identified more quickly than others,
with response times decreasing monotonically with increasing subjective goodness [13].

This dependency of response time on the distance to a canonical view is expected if one draws
an analogy between recognition by viewpoint normalization on one hand ([3], [1]) and mental
rotation on the other hand ([14], [15]). The very existence of canonical views may be attributed
to a tradeoff between the amount of memory invested in storing object representations and the
amount of time that must be spent in viewpoint normalization. Thus, it may seem that no
preferred perspective should exist for familiar objects that are equally likely to be seen frum
any viewpoint. Indeed, there is evidence that normalization effects on recognition latency (as
reflected in the existence of preferred views) disappear with practice for a variety of 21" stimuli
such as line drawings of common ob jects [16], random polygons [17], pseudo-characte: s {18] and
stick figures [11].

! As pointed out by Shimon Ullman, in its extreme formulation this property appears to have no counterpart in
human vision: people, as opposed to computers, find it hard to memorise random patterns. In our experiments,
described in the next section, subjects easily remembered the randomly generated test abjects. It is this ability
that our model is intended to replicate.




Figure 1: Examples of wire-like objects. Shaded, grey-scale images of similar wires were used
as stimuli in the experiments.

In a previous work, we have investigated the canonical views phenomenon for novel 3D
wire-frame objects. In particular, we looked for the effects of object complexity and familiarity
on the variation of response times and error rates over different views of the object. Our
main findings indicate that the response times for different views become more uniform with
practice, even though the subjects in our experiments received no feedback as to the correctness
of their responses. In addition, the orderly dependency of the response time on the distance
to a “good” view, characteristic of the canonical views phenomenon and of mental rotation,
disappeared with practice.

We review the recognition experiments reported in [12] that have been simulated with the
network model described in section 3. The stimuli were novel wire-frame objects of small,
nonzero thickness (Figure 1). The objects were created in two steps. First, a straight five-
segment chain of vertices was made. Second, each vertex was displaced in 3D by a random
amount, distributed normally around zero. By definition, the variance of the displacements
determined the complexity of the resulting wire. Third, the size of the resulting object was
scaled, so that all the wires were of the same length. Thirty novel 3D objects, generated
according to this procedure and grouped by average complexity into three sets of ten, served
as stimuli in the experiment. 144 evenly spaced images of each of the objects were produced
by stepping the camera? by 30° increments in latitude and longitude.

The basic experimental run used ten objects of the same complexity and consisted of ten
blocks, in each of which a different object was defined as the target for recognition. Each block
had two phases:

Training: In the beginning of each block, the subject was shown all 144 views of the target
twice, in a natural succession.

Testing: In the rest of the block, a subset of 16 fixed views (spaced by 90° in latitude and
longitude) was used for each object. The subject was presented with a sequence of stimuli,
shown one at a time. Half of these were views of the target. The other half were views of

2Here and below we refer to the simulated camera.
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Figure 2: Human subjects: effects of complexity and familiarity. Coefficient of variation of RT
over views (%) vs. session, by complexity (dot, square and triangle mark low, middle and high
complexity, respectively). The c.v. of RT decreased with session for the low and the medium,
but not for the high, complexity groups. The overall effect of session is significant.

the rest of the objects from the current set. The subject was asked to determine whether
or not the view was of the current target. No feedback was given as to the correctness of
the response.

The experiment was repeated in two sessions, each consisting of several blocks. The response
time (RT) and error rate (ER) served as measures of recognition. Since the decrease in the
mean RT, brought about by the subject’s increased proficiency in the task, would have masked
any differential RT effects between views, we used the coefficient of variation of RT over the
different views (defined as the ratio of the standard deviation of RT to the mean of RT) as
a measure of the strength of the canonicality effect. We used analysis of variance to find its
dependency on familiarity. A different perspective on the canonical views effect was provided
by estimating the dependency of the RT on the attitude of the object relative to the observer.
We defined the (subject-specific) best view for each object as the view with the shortest RT.
One could then characterize RT as a function of object attitude by measuring its dependency
on D = D(subject,target, view), the distance between the best view and the actually shown
view. We used regression analysis to characterize RT(D) and ER(D).

Following is a summary of the main effects that are apparent in our data (see Figures 2
through 4):

1. Stimulus complexity had no effect on the coefficient of variation of RT over views and
little effect on the coefficient of variation of ER.

2. Stimulus familiarity reduced the variation of RT over views.

3. Initially, RT for a particular view depended on the the distance to the canonical view.
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Figure 3: Human subjects: effect of familiarity. Regression curves of RT (sec) on the distance
between the shown view and the best view, D (deg), by session. The difference between the
regression curves for sessions 1 and 2 is barely significant. In this experiment, the sessions
consisted of 3 and 2 exposures per view per object, respectively. Apparently, such an exposure
level is not enough to produce a visible effect on the dependency of RT on D (cf. Figure 4).
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Figure 4: Human subjects: effect of familiarity. Regression curves of RT (sec) on the distance
between the shown view and the best view, D (deg), by session. The regression for session 1,
but not for session 2 (the flatter curve) is highly significant. In this experiment, each session
consisted of 5 exposures per view per object. Error bars denote twice the standard error of the
mean for the corresponding points. The flattening of the curve signifies the diminution of the

dependency of RT on D, which can be interpreted as a weakening of a phenomenon related to
mental rotation (see text).




Stimulus familiarity decreased this dependency, eventually making it statisticall insignif-
icant.

Our findings are consistent with a theory of recognition that involves two distinct stages: nor-
malization and comparison (cf. Ullman’s recognition by alignment [1]). In the normalization
stage, the image and a model are brought to a common attitude in a visual buffer. This
operation could be done by a process analogous to mental rotation, which would take time
proportional to the attitude difference between the image and the model. Subsequently, a com.-
parison would be made between the two. The time to perform the comparison could depend,
e.g., on the object’s complexity, but not on its attitude, so that the comparison stage would
contribute a constant amount to the overall recognition time. On the other hand, the error rate
of recognition would be largely determined by the comparison stage. With practice, more views
of the stimuli could be retained by the visual system, resulting in a smaller average amount
of rotation necessary to normalize the input to a standard, or canonical, appearance. The
response times for the initially “bad” views (determined by the normalization process) would
decrease, reducing the variation of RT over views. On the other hand, the mean error rates for
the “bad” views (determined by the comparison process), and, consequently, the variation of
ER over views, would not change, because of the absence of feedback to the subject. This is
compatible with our observations.

To recapitulate, a possible explanation of the familiarity effect is in terms of mental rota-
tion of object representations that becomes unnecessary when many specific views of objects
are stored as a result of practice. In the rest of the paper, we show that a self-organizing model
that has no built-in provisions for rotating arbitrary objects may suffice to account for the ex-
perimental results of [12], summarized above. We do this by constructing the model and testing
it using the same experimental paradigm and essentially the same stimuli (the projections of
the vertices of the wire objects) seen by the human subjects.

3 The model

3.1 Structure

The structure of the network (called CLF, for conjunctions of localized features [19]) appears
in Figure 5. The first (input, or feature) layer of the network is a feature map. In our case the
input to the network is an array in which the value of a pixel is proportional to the likelihood
(computed presurnably by a lower-level module) that a vertex of a wire-frame object is present
there. (Other local features, such as edge elements, may serve as input.) The computer graphics
system we used to create the wire-frame objects marks every vertex by a small square (see
Figure 6). To isolate the vertices, we thin the image, retaining only those object pixels which
have more than six neighbors. As a side-effect of this method, crossings are detected along with
the vertices.

Every unit in the (feature) F-layer is connected to all units in the second (representation)
R-layer. The initial strength of a “vertical” (V) connection between an F-unit and an R-
unit decreases monotonically with the “horizontal” distance between the units, according to an
inverse square law (which may be considered the first approximation to a Gaussian distribution).
In our simulations the size of the F-layer was 64 x 64 units and the size of the R-layer ~ 16 x 16
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Figure 5: The network consists of two layers, F (input, or feature, layer) and R (representation
layer). Only a small part of the projections from F to R are shown. The network encodes input
patterns by making units in the R-layer respond selectively to conjunctions of features localized
in the F-layer. The curve connecting the representations of the different views of the same
object in R-layer symbolizes the association that builds up between these views as a result of
practice.

Figure 6: (a) Wire-frame object, as it is presented to the model. (b) The actual input to
the network, derived from (a) by a thinning-like operation. Note that the crossing of the two
segments of the original object is detected, along with its vertices. Typically, only the vertices
are detected.




units. Let (z,y) be the coordinates of an F-unit and (%, j) — the coordinates of an R-unit. The
initial weight between these two units is then

1
B T S R R

where (41,4j) is the point in the F-layer that is directly “above” the R-unit (i, j).

The R-units in the representation layer are connected among themselves by lateral (L)
connections, whose initial strength is zero. Whereas the V-connections form the representations
of individual views of an object, the L-connections form associations among different views of
the same object. Any two R-units may become associated. The full connection matrix for a
16 x 16 R-layer is, therefore, of size 256 x 256.

50.

3.2 Operation

During training, the input to the model is a sequence of appearances of an object, encoded by
the 2D locations of concrete sensory features (vertices) rather than a list of abstract features.
At the first presentation of a stimulus several representation units are active, all with different
strengths (due to the initial Gaussian distribution of vertical connection strengths).

3.2.1 Winner Take All

We employ a simple winner-take-all (WTA) mechanism to identify for each view of the input
object a few most active R-units, which subsequently are recruited to represent that view. The
WTA mechanism works as follows. The net activities of the R-units are uniformly thresholded.
Initially, the threshold is high enough to ensure that all activity in the R-layer is suppressed. The
threshold is then gradually decreased, by a fixed (multiplicative) amount, until some activity
appears in the R-layer. If the decrease rate of the threshold is slow enough, only a few units
will remain active at the end of the WTA process. In our implementation, the decrease rate
was 0.95. In most cases, only one winner emerged.

More specifically, let S, be a flag set when there is any activity in the R-layer at iteration n,
T, a global adjustable threshold, A(i,)(™) the net activity of unit (%, ) thresholded by T, and
P < 1 the threshold decrease factor. The threshold updating rule is:

. e S, V A(3,7)O®
(i,J)ER
¢ while §,, =0 do

1. T, «Thoa-p, p<1
2. Sn— YV A(5)"
(.J)eR
To increase the likelihood of obtaining a single winner, the value of p can also be learned so that
it is smaller than the ratio of the activity of the second strongest unit to that of the eventual
winner.
Note that although the WTA can be obtained by a simple computation, we prefer the
stepwise algorithm above because it has a natural interpretation in biological terms. Such an
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interpretation requires postulating two mechanisms that operate in parallel. The first mech-
. anism, which looks at the activity of the R-layer, may be thought as a high fan-in OR gate.
The second mechanism, which performs uniform adjustable thresholding on all the R-units, is
similar to a global bias. Together, they resemble feedback-regulated global arousal networks
that are thought to be present, e.g., in the medulla and in the limbic system of the brain ([20]).
The reason we could implement WTA with such a simple mechanism is the relaxation
of the main functional requirement, namely, the uniqueness of the winner. Unlike existing
WTA algorithms (e.g., [21], [22], [23]), our approach does not require complicated arithmetics
or precise connections among processing units. These advantages suggest that, instead of
increasing the sophistication of WTA algorithms to meet stringent functional requirements, it
might be worthwhile to revise theories that incorporate WTA models, so that they can tolerate
a compromise in the WTA performance.

3.2.2 Adjustment of weights and thresholds

In the next stage, two changes of weights and thresholds occur that make the currently active
R-units (the winners of the WTA stage) selectively responsive to the present view of the input
object. First, there is an enhancement of the V-connections from the active (input) F-units to
the active R-units (the winners). At the same time, the thresholds of the active R-units are
raised, so that at the presentation of a different input these units will be less likely to respond
and to be recruited anew.

We employ Hebbian relaxation to enhance the V-connections from the input layer to the
active R-unit (or units). Specifically, the connection strength vy, from F-unit a to R-unit

. b = (i,7) changes by

. vmaz
Avyy, = min {avgpAa - Aij, v™ — vgp}

—-v
VT,“" (1)
where A;; is the activitivation of the R-unit (i,j) after WTA, v™%* is an upper bound on a
connection strength and a is a parameter controlling the rate of convergence. This is a bounded
Hebbian relaxation rule where weights are updated by the correlation between input and output
activities (A4, - A;;), that is, the activities on both ends of the link, in proportion to the current
value of the weight (the correlation is multiplied by v,;), and where the weight is bounded by

vmac .

The threshold of a winner R-unit is increased by

AT, =6 Avapda (2)

where § < 1. This rule keeps the thresholded activity level of the unit growing while the unit
becomes more input specific. As a result, the unit encodes the spatial structure of a specific
view, responding selectively to that view after only a few (two or three) presentations.

3.2.3 Between-views association

The principle by which specific views of the same object are grouped is that of temporal
association. New views of the object appear in a natural order, corresponding to their succession




during an arbitrary rotation of the object. The lateral (L) connections in the representation
layer are modified by a time-delay Hebbian relaxation. L-connection wy. between R-uuits
b = (¢,7) and ¢ = (I,m) that represent successive views is enhanced in proportion to the
closeness of their peak activations in time, up to a certain time difference K:

v = Y AM(b,c)- sy AlfH e ©
k<K

Once again, this is a bounded Hebbian relaxation rule where weights are updated by the cor-
relation between the activities on both ends of the link (Af; - A{}*) at different time instants,
and where the weight is bounded by w™?*.

The strength of the association between two views is made proportional to a coefficient,
AM(b, c), that measures the strength of the apparent motion effect that would ensue if the two
views were presented in succession to a human subject. The reason for the introduction of this
coefficient is the observation that people tend to perceive that two unfamiliar views belong to
the same object only if their presentation induces an apparent motion effect [24]. Note that
AM(b, c) should depend on two factors, one of which is figural similarity between the two views,
and the other is their temporal proximity (Korte’s laws; see e.g. [25]). We currently use 2D
correlation of blurred images to measure figural similarity between two views.

In using 2D correlation to measure figural similarity, we are motivated by two considerations.
The first one is the biological plausibility of computing 2D correlation ([26]). The second motive
is the finding that, in the perception of three-dimensional structure from motion, the human
visual system appears to compute the 2D rather than the 3D minimal mapping [25]. Within the
minimal mapping framework, minimizing the sum of distances between corresponding points is
equivalent to maximizing the correlation between two point sets.

Let f(x) be the input pattern in frame 1 and f(x + vAt) - the pattern in frame 2 of a
motion sequence. Then v may be recovered using standard regularization [27], by looking for

min {|I£(x) - f(x + uAt)|[? + Al Pul?} (4)

where P is a smoothing operator (see e.g. {28]). If v may be assumed constant over small
patches of the image, the second term in (4) may be dropped, and we are left with

min 3 [1£(x) - f(x + ua)|’ ®)

where p; are the patches covering the image, over which v is approximately constant. Under
reasonable assumptions this is equivalent to

max 3 £(x)- f(x + uAt) ®)
[
(cf. [29]). The expression in (6) is essentially the maximal correlation between the two frames.
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Figure 7: Snapshots of the activation patterns in the network in different stages of operations
for two views of the same object. Left to right: input array; R-layer before thresholding; R-
layer after thresholding but before WTA; R-layer after WTA. Because of the adjustment of the
V-connections, in the leftmost panel in the bottom row there are only two units whose activity
is visibly above 0. Even though these two R-units, which have been previously recruited to
represent a different view of the object, are much more active than the rest of the R-layer,
after thresholding (bottom row, third panel from the left) they are suppressed (leaving black
“holes”) and the true distribution of activity is apparent. Note that it is a blurred version of
the input shape. After WTA (rightmost panels), there remains usually just one active R-unit.
More than one winner may emerge, as it happened in the second row.

3.2.4 Signalling a new object

The appearance of a new object is explicitly signalled to the network, so that two different
objects do not become associated by this mechanism. This separation can also be implicitly
achieved by forcing a delay of more than K time units between the presentation of different
objects. The parameter ¥, decreases with |k| so that the association is stronger for units
whose activation is closer in time. In this manner, a footprint of temporally associated view-
specific representations is formed in the second layer for each object. Together, the view-specific
representations form a distributed multiple-view representation of the object (figure 7 illustrates
the training sequence).

11




Figure 8: Left: activation pattern in the R-layer, produced by an object (# 4), after the network
has been trained on all ten objects. Right: the remembered (ideal) footprint of the same object.

4 Testing the model

We have subjected the CLF network to simulated experiments, modeled after the experiments
of [12], summarized in section 2 above. Each of ten novel 3D wire-frame objects (the low-
complexity set of [12]) served in turn as target. The task was to distinguish between the target
and the other nine, non-target, objects. The network was first trained on a set of projections of
the target’s vertices from 16 evenly spaced viewpoints. After learning the target using Hebbian
relaxation as described above, the network was tested on a sequence of inputs, half of which
consisted of familiar views of the target, and half of views of other, not necessarily familiar,
objects.

The presentation of an input to the F-layer activated units in the representation layer.
The activation then spread to other R-units via the L-connections (see figure 8). After a
fixed number of lateral activation cycles, we correlated the resulting pattern of activity with
footprints of objects learned so far. The object whose footprint yielded the highest correlation
was recognized by definition. In this experiment, the network recognized the views of each
session’s target and of the previous targets, and rejected other, as yet unfamiliar, objects.

We used correlation to measure closeness between two patterns. This choice may be clarified
by considering a model of decision-making in recognition in which many units (possibly with
different initial levels of activation) encode the known entities (one unit per entity; cf. [30], [31].
In our case several units together encode an object.). When an input is present, each unit’s
activation is increased in proportion to the similarity between the input and the concept that
the unit represents. The decision threshold, initially kept high to discourage false alarms, is
gradually decreased, until it is exceeded by some unit’s activation (note the similarity to our
WTA mechanism). Recognition latency in this scheme clearly depends on the activation induced
by the input in the would-be strongest representation unit. In our scheme, this activation
is measured by the correlation between the actual footprint induced by the input and the
prototypical memory trace of this footprint. This correlation also serves as an analog of response

12




time.

In the representation scheme described in this paper, learning a new view of an object
amounts to the recruitment of a new unit in the R-layer and the adjustment of its incoming
V-connections and threshold to determine its input specificity. With a total of 256 initially
available R-units and little more than 160 units necessary to encode every learned view of the
ten objects®, the network had the potential to recognize correctly all the learned views. The
recognition was indeed perfect for those views (the issue of generalizing recognition to novel
views is explored below).

4.1 Simulated psychophysical experiments

CV of CORR (%)
s
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Figure 9: The coefficient of variation of CORR over views for the two sessions, by complexity,
before the introduction of shortcuts into the footprint (see text). Compare with Figure 2.

Recall that the analog of response time in our simulations is the value of the correlation
(CORR) between the actual activation pattern in the R-layer and the ideal pattern for the
recognized object. We were able to reproduce all three main results of the psychophysical
experiments outlined in section 2, with a random initial choice of the parameters of the network
model:

¢ No dependency of the coefficient of variation of CORR over views on stimulus complexity
was found (Figure 9; compare with Figure 2).

o The variation of CORR over views significantly decreased with practice (Figure 9; compare
with Figure 2). An analysis of variance yielded F(1,16) = 15.88, p < 0.001.

¢ The dependence of CORR on stimulus attitude diminished with practice (Figure 10;
compare with Figure 3).

3The Winner Take All mechanism rarely came up with more than one R-unit per view.
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Figure 10: The regression of CORR on distance to the best view, by session, before the intro-
duction of shortcuts into the footprint (see text). Compare with Figure 3, keeping in mind that
high CORR is analogous to low RT.

The last point above involved computing the regression coefficients of CORR on D, the
distance between the actually shown view of the stimulus and its best (highest-CORR) view,
see section 2. As in the analysis of the psychophysical data in [12], we have used a second order
regression, that is, looked for the quadratic expression that best approximated the data. In
the real experiments, we have observed a significant flattening of the regression curve following
practice. In the simulated experiment, however, the difference between the sets of regression co-
efficients corresponding to sessions 1 and 2 (excluding the intercept) was practically insignificant
(F(2,157) = 1.5, p = 0.23).

To find out whether our model is powerful enough to replicate the flattening of the regression
of RT on D, we added the enhancement of the lateral connections between simultaneously
active units in the representation layer during the test phase of the simulated experiment to
the enhancement during the training phase (controlled by v, in equation 3). As a result, more
shortcuts (lateral links spanning more than one successive view of an object) appeared in the
footprints, which tended therefore to become less “linear” with practice.

Introducing the shortcuts enhanced the session effect, increasing the significance of the
difference between the regression coefficients of CORR on D for the two sessions (F(2,157) =
2.6, p < 0.08; see Figure 12). The effect of shortcuts on the coefficient of variation of CORR was
even stronger (compare Figure 11 with Figure 9). Apparently, already the first session caused
the CORR characteristics for the different views to reach their steady-state values. With longer
sessions the flattening is more obvious (see Figure 13).
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Figure 11: Coefficient of variation of CORR over views for the two sessions, by complexity,
after the introduction of shortcuts into the footprint (see text).
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Figure 12: Regression of CORR on distance to the best view, by session, after the introduction
of shortcuts into the footprint (see text). Compare with Figure 3.
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Figure 13: Regression of CORR on distance to the best view, by session, after the introduction
of shortcuts into the footprint, with 10 exposures per view per session (see text). This many
exposures were necessary to achieve a disappearance of the dependency of CORR on D (compare
with Figure 4).

4.2 Modeling variable association between successive views

The simulated experiments described above were conducted with the apparent motion estima-
tor switched off (by setting the term AM in equation 3, section 3.2.3, identically to 1). An
opportunity to test whether apparent motion (in our formulation, correlation) is involved in
determining between-views association arose when we found that the data of one of the sub-
jects of the psychophysical experiments described in section 2 had to be excluded from the final
analysis, for the following reason. Whereas all other subjects were shown closely spaced views
of the target object during the training phase (144 views per object), this subject was trained,
by mistake, on widely disparate views (16 views per object, the same number as in the testing
stage)*. Because of this, no significant dependency of the response time on the distance to the
best view was found for this subject, already in the first session.

To save computation time, in all the simulated experiments so far the network was exposed
to the same 16 views in the training and the testing phases. To replicate the apparent motion
influence, we have compared the dependency of the CORR performance measure of the model
on the distance to the best view under two conditions. In the control condition, the network
was trained on 144 views of an object, and tested on 16 of these views (as were most of our
human subjects). In the “no apparent motion” condition, 16 views were used both for training
and testing. As expected, the dependency of CORR on the distance to the best view was
much stronger in the control condition®, apparently because of the influence of the AM term in

‘The subject later reported that he saw no apparent motion when the training views were presented to him.
*Regression of CORR on the distance to the best view in the control condition: F(3,13) = 8.1, p < 0.03;
regression in the “no apparent motion” condition: F(2,13) < 1.
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Figure 14: Performance of the network on novel orientations of familiar objects (mean of 10
objects, bars denote the variance). Broken line shows the performance with the WTA step
implemented by a program that simply chooses the strongest R-unit, and with a fixed boost
factor of 50 (see text). Solid line shows the performance with the iterative WTA scheme and
the adaptive boost factor.

equation (3), and in accordance with the human performance under analogous circumstances.

4.3 Generalization to novel views

The usefulness of a recognition scheme based on multiple-view representation depends on its
ability to classify correctly novel views of familiar objects. To assess the generalization ability
of the CLF network, we have tested it on views obtained by rotating the objects away from
learned views by as much as 23° (see Figure 14). The classification rate was better than chance
for the entire range of rotation. For rotations of up to 4° it was close to perfect, decreasing to
30% at 23° (chance level was 10% because we have used ten objects). One may compare this
result with Rock’s ([32], [33]) finding that people have difficulties in recognising or imagining
wire-frame objects in a novel orientation that differs by more than 30° from a familiar one.

The smoothness of the V-connections® alone would suffice to make the network insensitive
to small deformations of the input objects (caused, e.g., by a shift in the viewpoint) and to
noise, were it not for the updating of the R-thresholds in (2). Raising the thresholds implies
that, after training, only an exact replica of the original input can activate a recruited R-unit.

A partial solution to this difficulty is provided by the observation that if at least some of the
F-units originally activated by a certain view of an object are activated also by a novel view,
then there is a good chance that simply raising the input level will turn on the correct R-unit
before any other committed R-unit. The uncommitted R-units (situated along the periphery of

“The V-connections are smooth in the following sense. If an active F-unit at (z,y) causes the activity in the
R-layer to peak at (3, j), then shifting the input to (z + §z,y + 8§y), where §z and 5y are small, causes the peak
in the R-layer to move to (¢ + 81, 5 + §5), where §i and §5 are also small.
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the R-layer) will have remained inactive, provided that the dropoff in the V-connection strength
with horizontal displacement is larger than the increase in input activity needed to push the
correct R-unit over its threshold. Following this observation, we have modified the Winner-
Take-All mechanism as follows. During learning, the winner R-units are identified as before.
During testing, on the other hand, we now require that the total activity of the winner R-units
exceed a threshold, which is a fraction (specifically, 80%) of the long-term running-average
activity in the R-layer. If after the WTA step no R-unit satisfies the threshold requirement,
the input (i.e., the activity of the F-layer) is boosted (multiplied by 1.1) and the WTA process
is repeated, until some R-units’ activity exceeds the threshold. At the end of this process, the
correct R-unit is more often than not the first one to cross the threshold, provided the input is
sufficiently similar to its preferred pattern (see Figure 14)7.

The above solution to the generalization problem is partial, because it requires that there be
an actual overlap between the positions of some of the features belonging to the novel view and
those that belong to one of the known views of the object. Thus, boosting the input enables the
network to perform autoassociation, i.e., to activate the representation of a view given partial
information on the position of its features. Although it is surprising how well an autoassociation
model can generalize for novel viewpoint (3D rotations, see Figure 14), its generalization ability
is deficient when other distortions of the input exist. For example, errors in the alignment of
the object (equivalent to shifting the input away from a learned position by a few pixels) may
cause its overlap with the learned pattern to vanish.

Blurring the input prior to its application to the F-layer can significantly extend the gener-
alization ability of the CLF model. Performing autoassociation on a dot pattern blurred with a
Gaussian G(x, o) is computationally equivalent to finding the k’th committed R-unit that gives

N N
mfxz Z AiG(|Ixi — tirl)vsa (7)
i

where N is the number of features (points or vertices) in the input pattern x whose coordinates
are x; in the F-layer, t;; is the coordinates in the F-layer of the j'th feature that contributes
to the k’th R-unit, A, is the activity of the i’th feature detector in the F-layer and v;; is the
weight of the V-connection between the j’th feature of the k’th object and its R-unit (cf. (1)).
If the width o of the blurring Gaussian is small compared with the average distance between
t;’s, and if A;v;, does not change much with i and k, then (7) may be rewritten as

N
mfoG(”xi — tell) (8)

which may be thought of as a correlation between the input and a set of templates, realized as
Gaussian receptive fields (see Figure 15). This, in turn, appears to be related to interpolation
with Radial Basis Functions ([34], (9], {10]).

"While providing s solution to the generalisation problem in a biologically plausible framework (see sec-
tion 3.2.1), the above modification of the WTA mechanism does require one additional piece of information.
Namely, the network now has to be told whether its current input is a pattern to be learned (in which case
the F-layer activity should not be artificially boosted), or a pattern to be classified. We currently work on an
extension that would allow the network to make the learn/test decision autonomously.
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Figure 15: Recognition of a novel view of a 3-vertex object by the CLF network. The Gaussian
templates of (8) for one of the familiar views are represented schematically by the “hats”
centered on the F-units t;;. The centers of another set of vertex templates are also shown
(tix). The recognized view is represented by the R-unit R;. x;, X3, and xx are the locations
of the vertex of a distorted input that is still recogniged as view 1.




5 Discussion

5.1 Spatial and temporal association
The present model is based on the following two postulates:

« o Spatial association: object views may be defined as coincidences of features, appropriately
. positioned in a viewer-based coordinate system.

; o Temporal association: complete object representations may be constructed from view-
specific representations, by tying together views that are seen in a natural succession,
e.g., during the object’s rotation with respect to the viewer.

The first postulate, that objects are represented as conjunctions or coincidences of spatially
localized feature occurrences, can be traced at least as far back as McCulloch’s work [35].
Coincidence detection, expanded to include spatiotemporal, as well as more abstract cross-
modal, coincidences, has been repeatedly proposed as a general model of brain function ([36),
[37]).

Taken literally, the notion of conjunction encoding leads towards representation by Boolean
formulae, which tends to suffer from brittleness {38] and appears to be a poor model of human
performance in a range of tasks. By substituting products of fuszy (blurred) templates (cf.
[10]) for logical conjunctions, we escape problems associated with propositional representations.
In the introduction, we have outlined what we believe are the a priori requirements for a
practical and plausible representation scheme. The CLF model has been designed to meet
those requirements. In the rest of this section, we discuss the extent to which the model is
biologically sound.

5.2 Hebbian synapses, correlation and unsupervised learning

A system that is required to adapt to its environment and that has no access to an oracle
or a teacher must rely during learning on coincidence-detecting, or correlation, operations®.
The CLF model incorporates correlation at several levels. At the level of weight adjustment,
correlation appears in the form of a Hebbian rule (equation (1); see [39], [40] ). At a higher level,
eorrelation between two successive views of an object serves to determine their figural similarity,
and hence the strength of the association to be established between their representations in the
R-layer. Finally, the model classifies an unknown view by choosing the template (a familiar
view) that is maximally correlated with the input. The omnipresence of correlation in a model
of human visual recognition, as well as the success of correlation-based algorithms for motion
and stereo ([29], [41]), points towards a reassessment of the importance of correlation, which
has been somewhat neglected lately, in vision.

*The correlation of two vectors, u and v, may be defined as 3, ¢(ui, v;), where ¢ is & measure of similarity
of the vectors’ components (such as the product). More generzally, one of the vectors would be allowed to shift
with respect to the other and the maximum of the above sum over such displacements would be taken. Allowing
such a flexible interpretation of the meaning of the term “correlation”, this sentence applies to cases that seem,
at the first glance, unlikely. For example, in a classifier system [38] the success of competing classifiers in each
iteration is determined by a template comparison that is usually a form of correlation.
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5.3 Learning by selective reinforcement

In the CLF model, the input (F) layer is fully connected to the representation (R) layer. For
this reason, the model satisfies trivially the availability requirement, posed in section 1: for
any input conmfiguration of F-units there exists an R-unit that is connected to all of them and
can represent their co-occurrence. When the CLF model learns to represent and recognize an
object, the learning is in the sense of selective reinforcement of existing structures, rather than
the creation of novel structures [42]. The extreme view of the neonatal brain as a complete
tabula rasa seems as implausible as the opposite extreme which postulates that every detail, at
least in the perceptual areas, is genetically specified [43]. Learning by selection appears to be a
reasonable compromise between these two extremes. Within the selection paradigm, the major
structures (in the case of our model, the existence of distinct input and representation areas) are
specified during “phylogenesis”, while the details (e.g., the structure of the receptive fields [44])
emerge in “ontogenesis” ®. Neurobiological support for the selection view of learning may be
found, e.g., in ({45}, [46], [47]). Computationally, there appears to be little distinction between
learning by selection and learning by structure acquisition, unless implementation restrictions
are in effect!?.

5.4 Which unit should be reinforced: the role of WTA

In the CLF model, as in some previously suggested learning schemes (e.g., in Fukushima’s
neocognitron [48]), the representation unit to be reinforced is selected via 8 Winner-Take-All
process. The CLF model is, however, more flexible in that we assume no prior classification of
the input features. As a result, two different patterns may cause the same R-unit to become
the winner, provided that the projections of their centroids on the F-layer coincide. An addi-
tional mechanism, selective raising of the R-units’ thresholds, is therefore necessary to enhance
representation selectivity.

5.5 The lateral connections

The CLF network differs from layered models that compute progressively more complex topo-
graphic maps of the input (e.g., [49], [50]) by its reliance on long-range lateral connections in
the representation layer. Whereas some perceptual phenomena can be modeled by continuous
maps in which topological proximity is the major consideration, potentially holistic or global
phenomena such as recognition require that conceptual proximity be substituted for the topo-
logical one [51]. Relatively long-range lateral connections appear to exist in the cortex and may
be responsible for nonlocal phenomena such as the nonclassical receptive fields [52].

5.6 Several open questions

The apparent success of a rather straightforward representation model to replicate human
performance in a recognition task poses the following question regarding the sophistication of
the human visual system: can one recognize a familiar object from an unfamiliar viewpoint?

?Unfortunately, this view leaves the problem of explaining the emergence of architecture capable of supporting
cognition unsolved.
1°Compare the GRBF and the HyperBF formulations of learning by hypersurface approximation in (9]
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A recent result [7], as well as the structure from motion theorems ([53}, [54]), indicate that, in
principle, that should be possible. Another recent result, the formulation of object recognition
as a problem in function interpolation ([9], [10]), qualifies that prediction by distinguishing
between mildly and radically unfamiliar views. The former, being surrounded by familiar
views in the viewing space, ought to be amenable to interpolation, whereas the latter would
require extrapolation, a less reliable operation. The present model also predicts that a novel
view that is sufficiently removed from any familiar one would most probably be misrecognized.
Psychophysical results to date ([13] [32], [33]) appear to support the notion that, at least in this
.particular task, the human visual system is computationally less sophisticated than one might
imagine. Further research is needed to elucidate the question of the extent to which the human
visual system is capable of generalizing recognition of an object to a novel viewpoint.

A related question arises from the proposal that the CLF scheme be considered a model
of human performance in tasks that involve mental rotation. If our model indeed resembles
the physical substrate of the mental rotation phenomena, then (i) the capability of the human
visual system for mental rotation outside the range of familiar views should be limited, and (i)
mental rotation effects within the range of familiar views should depend on the presentation
sequence of these views during training. Both these predictions of the model can be tested
experimentally.

Finally, we note that fixating a specific feature of the input image, rather than its centroid,
may help realizing the autoassociation potential of the CLF network in dealing with partially
occluded objects. A preferred fixation feature may exist and be found preattentively, or, even
better, recognition modules centered on different features for the same object may emerge as a
result of practice. As a result, our model predicts that recognition performance should depend
critically on the freedom of the subject to fixate at will different regions of the image. Ideally,
this prediction should be tested in a controlled setup, in which the fixation patterns of the
subjects are recorded both in the training and the learning phases of the experiment.

6 Summary

We have described a two-layer network of thresholded summation units which is capable of
developing multiple-view representations of 3D objects in an unsupervised fashion, using fast
Hebbian learning. Using this network to model the performance of human subjects on similar
stimuli, we replicated psychophysical experiments that investigated the phenomena of canoni-
cal views and mental rotation. The model’s performance closely paralleled that of the human
subjects, even though the network has no a priori mechanism for “rotating” object representa-
tions. Qur results may indicate that a different interpretation of findings that are usually taken
to signify mental rotation is possible. The footprints (chains of representation units created
through association during training) formed in the representation layer in our model provide a
hint as to what the substrate upon which the mental rotation phenomena are based may look

like.
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