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19. thought I could contribute something by identifying some of the comonality
among the different results. .-V

So what I will do in this talk Vll be an incomplete version of what I

originally intended. I will give you a tour of the impossibility results that
I was able to collect. I apologize for not being comprehensive, and in particu-
lar for placing perhaps undue emphasis on results I have been involved in (but
those are the ones I know best!). I will describe the techniques used, as well
as giving some historical perspective. I'll intersperse this with my opinions
and observations, and I'll try to collect what I consider to be the most important
of these at the end. Then I'll make some suggestions for future work.
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A Hundred Impossibility Proofs for Distributed Computing

Nancy A. Lynch *

Lab for Computer Science
MIT, Cambridge, MA 02139

lynch@tds.lcs.mit.edu

1 Introduction a tour of the impossibility results that I was able to
collect. I apologize for not being comprehensive, and

This talk is about impossibility results in the area of in particular for placing perhaps undue emphasis on
distributed computing. In this category, I include not results I have been involved in (but those are the ones
just results that say that a particular task cannot be I know best!). I will describe the techniques used, as
accomplished, but also lower bound results, which say well as giving some historical perspective. I'll inter-
that a task cannot be accomplished within a certain sperse this with my opinions and observations, and
bound on cost. I'll try to collect what I consider to be the most im-

I started out with a simple plan for preparing this portant of these at the end. Then I'll make some
talk: I would spend a couple of weeks reading all the suggestions for future work.
impossibility proofs in our field, and would catego-
rize them according to the ideas used. Then I would
make wise and general observations, and try to pre- 2 The Results
dict where the future of this area is headed. That
turned out to be a bit too ambitious; there are many I classified the impossibility results I found into the
more such results than I thought. Although it is of- following categories: shared memory resource allo-
ten hard to say what constitutes a "different result", I cation, distributed consensus, shared registers, com-
managed to count over 100 such impossibility proofs! puting in rings and other networks, communication
And my search wasn't even very systematic or ex- protocols, and miscellaneous.
haustive.

It's not quite as hopeless to understand this area as 2.1 Shared Memory Resource Alloca-
it might seem from the number of papers. Although tion
there are 100 different results, there aren't 100 dif-
ferent ideas. I thought I could contribute something This was the area that introduced me not only to
by identifying some of the commonality among the the possibility of doing impossibility proofs for dis-
different results. tributed computing, but to the entire distributed

So what I will do in this talk will be an incomplete computing research area.
version of what I originally intended. I will give you In 1976, when I was at the University of Southern

'This work was supported in part by the National Science California, Armin Cremers and Tom Hibbard were
Foundation (NSF) under Grant CCR-86-11442, by the Office of playing with the problem of mutual exclusion (or al-
Naval Research (ONR) under Contract N00014-85-K-0168 and location of one resource) in a shared-memory envi-
by the Defense Advanced Research Projects Agency (DARPA) roniLient. In the environment they were considering.
under Contract N00014-83-K-0125. a group of asynchronous processes communicate via

shared memory, using operations such as read and
write or test-and-set.

The previous work in this area had consisted of
a series of papers by Dijkstra [38] and others, each

Keywords: impossibility, distributed computing presenting a new algorithm guaranteeing mutual ex-

clusion, along with some other properties such as
progress and fairness. The properties were specified
somewhat loosely: there was i, formal model uscd for
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describing algorithms and specifying problems to be a trivial problem statement that permits the solution
solved. Each paper, in fact, seemed to solve a slightly algorithm to prevent processes from making requests.
different problem (involving different fairness, perfor- They also needed to express conditional statements
mance and fault-tolerance properties). It was difficult like "the system is required to guarantee progress if
to compare the results in the different papers. the environment cooperates in that progress" - e.g.,

Cremers and Hibbard thought about inherent lim- the system will repeatedly grant the resource pro-
itations on the solvability of mutual exclusion in that vided the environment always returns it. They ended
environment, for the special case where memory was up with a carefully-crafted and delicate set of axioms
accessible via powerful test-and-set primitives. (Their for their problem statement.
version of test-and-set was very general, allowing one They proved their impossibility result for 2 values
atomic access to shared memory to read, compute and by assuming that memory was 2-valued, and carry-
write a value back.) An obvious complexity measure ing out a proof by contradiction using a case analysis.
to study was the size of shared memory; they con- This involved constructing several finite runs of the
sidered the very simple problem of achieving mutual algorithm, in which the processes request the resource
exclusion between two processes, using a single shared and take steps in various orders. Consider the values
variable, and asked how many values the shared vari- that the memory takes on at the end of all of these
able would need to take on. A 2-valued semaphore is runs. Since there are only two values, the pigeonhole
plenty if there are no fairness requirements; however, principle implies that there are many situations in
if fairness is included then 3 values were the best they which the memory must have the same value. They
could do. They proved the simple result that 2 values showed by case analysis that no matter how values
were insufficient. get assigned, there must be two "incompatible" situ-

In order to do this, they had to embark on a major ations in which shared memory has the same value.
modeling effort. (To see how important the modeling and in which one of the processes also has the same
work was here, note that the title of their paper [35] state, even though these two situations require differ-
emphasizes their model rather than their combinato- ent behavior from the process in order to satisfy the
rial result.) The algorithms work had proceeded quite correctness conditions. For example, suppose that
far without anyone having defined a formal model shared memory could have the same value and pro-
or being too precise about problem statements. But cess P, have the same state, in two situations - one
in order to give a formal proof of even a very sim- where P2 is in its critical region and one where it is
ple impossibility result, Cremers and Hibbard needed not requesting anything. In the second situation, pi
the rigor of a formal model. This model needed to must eventually go to its critical region on its own,
have two separate components - a careful descrip- whereas in the first, that would violate mutual ex-
tion of the correctness conditions (mutual exclusion, clusion. These two situations are indistinguishable to
progress and fairness), and a careful description of Pl, and so it must behave in the same way in both
the space of allowable implementations, i.e , processes situations. But then one or the other situation would
and shared memory. lead to incorrect behavior, a contradiction.

Defining the model was hard work, especially the This simple result already demonstrated the basic
problem statement. The mutual exclusion condition idea upon which all the 100 impossibility proofs in
was easy to define, but the progress and fairness distributed computing are based - the limitations im-
conditions were not. For instance, the requirements posed by local knowledge. (A process in this shared
involved the system "continuing to make progress". memory architecture could be said to "know" only
But clearly no system could guarantee progress if the what is in its local state and in the shared mene-
processes were permitted to stop at arbitrary times ory, since that is all that it can see directly.) It also
during their protocols. They needed a notion of ad- demonstrated the importance of formal models for
missible execution that described exactly when pro- stating and proving impossibility results.
cesses were required to continue taking steps (e.g., This early work influenced two different kinds of
while engaging in a protocol to obtain a resource, but later work: that on mutual exclusion upper and lower
not necessarily at other times). bounds, and that on models for distributed comput-

They also needed to capture some ideas about who ing.
controls each action. For example, they needed to A couple of years later, at Georgia Tech, I began
capture the idea that each process "might ret, 'est working in distributed computing, mainly because
the resource at any time", i.e., that the request, ,g there was a lot of activity there on design of dis-
actions were not under the control of the mutual ex- tributed systems. With Mike Fischer and Jim Burns,
clusion algorithm. Otherwise, they would risk having I began trying to understand what the interesting the-
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oretical ideas were in this new research area. One of pj takes its next step, it might reveal its presence to
the first things we did was to go back and look at the p1, '., pi, so they no longer have the requisite limited
mutual exclusion work, in particular, that of Cremers knowledge.
and Hibbard. The lower bounds for no lockout use trickier con-

In [26], we extended the results of [35] to n pro- structions. The contradictions involve the construc-
cesses rather than 2 (but still considered just one tion of incompatible infinite admissible executions
shared variable). The extended results turned out that look the same to particular processes, who get
to be very sensitive to assumptions about fairness: fooled thereby and exhibit incorrect behavior. The

1. Any solution that exhibits bounded waiting, proper treatment of admissibility was one of the most

where there is a bound on how many times any difficult aspects of this work.

process can bypass any other while the latter is This work is a good example of the interesting

waiting, requires at least n + I values. "game" of working on conflicting positive and neg-
ative results at the same time. We were working on

2. Even if no such bound is required, if no lockout trying to raise the lower bound of n/2 for no lock-
is required, then Q(v'ii) values are required. out algorithms to n, since it seemed very unlikely

that n processes could arbitrate among themselves
3. Adding a technical assumption to the preced- fairly if there weren't even enough values of shared

ting caseonth prvoessties anno g hem erw t memory for all the processes to uniquely record their
colrisesthe id o r ous n thoug the. pto presence. But that intuition turned out to be false -
col, raises the lower bound to n/2. (It is an we came up with a complicated algorithm that used
is necessary.) only around n/2 values! The algorithm arose in the

course of trying to prove impossibility - carefully ex-

The arguments are basically similar to those of [35], amining the reasons why all the plausible ideas for
based on the pigeonhole principle applied to values of impossibility proofs failed suggested what features a
shared memory, only in place of case analysis there is correct algorithm would have to have - and then one
a more systematic examination of executions. with these features actually worked. This algorithm

The first result uses a version of the following idea. was not practical; rather, it was a kind of algorithm I
Suppose P, enters the system and goes to its critical will call a counterexample algorithm, because it is de-
region. Then P2, - -, p,, enter the system in turn, each signed not for its intrinsic interest or practical value,
stopping at, a point where it is waiting for a chance to but rather to serve as a counterexample to an impos-
enter its critical region. Consider all the values of the sibility conjecture. There are many other such ex-
variables immediately after the steps of P2,'" ,P,. amples in the impossibility result literature (some of
If any pi and pj leave the variable with the same which get picked on unfairly for not being practical).
value, i < j, then the situation Cj in which pi,-- ,Pj As for Cremers and Hibbard, a lot of our work
all enter "looks like" the situation Ci in which only was devoted to formulating the model and correct-
pi,""., Pi enter, to pi,-. -, pi. Starting from situation ness conditions. Their definitions were not sufficiently
Ci, p1, -'. ,pi are able on their own to enter and leave clean for us to be able to use them easily in our
the critical region arbitrarily many times; therefore, proofs. Our proofs involved constructing complicated
they are also able to do this starting from Cj. But bad executions; the properties comprising the prob-
this means that in situation Cj they can bypass a lems statement are invoked repeatedly to justify the
stopped pj arbitrarily many times, more times than existence and properties of these executions. In or-
allowed by the bound for bounded waiting. This is a der to use the properties in this way, we needed clean
contradiction. problem statements, so we had to simplify, general-

This proof doesn't work if the fairness assumption ize and polish the model. The details of the model
is weakened to allow unbounded bypassing but no description added a lot of overhead to the paper -
lockout. A violation of bounded waiting occurs in so much overhead that it might serve as a significant
finite time, so in showing that such a violation oc- obstacle for a reader.
curs it suffices to construct a finite bad execution. A The modeling considerations that arose in this
demonstration of lockout, however, requires an infi- work led directly to my own interest in formal mod-
nite admissible execution in which some process gets els of concurrency, and especially in models that are
locked out. We can't modify the construction above suitable for use in impossibility proofs. In fact, the
to permit pl,' •, pi to bypasspj infinitely often, while second piece of work I did in this area was the de-
pi just sits there, because pj is required to take steps sign (with Mike Fischer) of a general formal model
every so often. In the situation above, a- soon as for asynchronous shared-memory systems [81].
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Soon thereafter, we obtained another collection of From the beginning, the area of distributed consen-
impossibility results [57, 531, this time for the k- sus has been a fruitful source of impossibility results.
exclusion problem, a generalization of mutual exclu- Some reasons for this are that the basic problem has
sion to some number k > 1 of resources. We showed a clean statement, and that there are many inter-
that a strong simulation of a shared queue requires esting variations of the problem, based on different
fl(n2 ) values of shared memory. We also obtained assumptions about faults, timing, and kinds of agree-
lower bounds for fault-tolerant versions of the prob- ment. The impossibility results in this area are based
lem, where the kinds of faults considered were just on just a few ideas, though. In what follows, I will
stopping faults. The techniques we used were similar group together results with related statements and
to those in [261. techniques.

In [27], we considered what happens if memory is
accessed via read and write operations rather than
test-and sets. In this case, it turns out that mutual
exclusion cannot be done at all using a single shared The first group of results show how many processes
variable! It does not matter how many values the are required to reach various kinds of consensus.
variable can take on. Moreover, this impossibility The first impossibility result in this area, the im-
does not depend on fairness assumptions, but just on possibility of reaching agreement among 3t processes
the two properties of mutual exclusion and continued in the presence of t Byzantine faults, appeared in the
system progress. More generally, n processes cannot original papers [891 [73] on Byzantine agreement. The
achieve mutual exclusion with progress, with fewer idea is based on processes "fooling" other processes,
than n separate shared variables). The proof again making them "believe" they are in different systems.
involves constructing incompatible admissible execu- The most pleasing proof I know for this result is not
tions that look the same to some of the processes, the original, but the scerario proof I did with Mike
so they behave incorrectly in some cases. This time, Fischer and Mike Merritt (54].
the key ideas are that (1) a process must write some- The following argument is for the case of t = 1,
thing in order to move to its critical region (to inform i.e., 3 processes and 1 fault. Suppose that p, q, and
others), and (2) a writing process obliterates any in- r comprise a 3-process solution that can tolerate 1
formation previously in the variable, fault. Consider a system composed of two copies each

Using similar techniques, Rabin [92] proved a lower of p, q and r joined into a ring, in order p0, qo, r0 ,
bound of Q(n i' s ) on the size of the range of test- pl, ql ,ri. Let cc be an execution of this system (a
and-set shared variables in any asynchronous shared- "scenario") in which each process with subscrpt 0 is
memory algorithm that solves the choice coordination started with initial value 0 and each with subscript 1
problem. In this problem, processes share a common is started with initial value 1. Although the problem
set of variables but do not have a common scheme for statement does not directly impose any conditions on
naming the variables; it is required that a marker be scenario a, such conditions can be deduced.
placed in exactly one of the variables.

P q
8 0

2.2 Distributed Consensus q a faulty q

Around 1980, Leslie Lamport visited Georgia Tech.
bringing along a copy of his new manuscript on the a-
Albanian Generals Problem Although superficially
quite different from the resource allocation problems qI PI
we had been working on, this problem had a similar
"feel". As before, independent processes with sep-
arate inputs were required to accomplish some kind L Scenaios for mnps&btUty af consensus for 3 processe and
of coordinated action, in the presence of uncertainty I fault
about the rest of the system. In the case of dis- Consider another scenario, a', consisting of ont
tributed consensus problems, the uncertainty arises copy each of p, q and r, where both p and q are
primarily because of the possibility of faults, rather started with initial value 0. Process r is faulty in
than because of asynchrony. Local knowledge is again a', and sends to p exactly what rl sends to Po in a
limited, this time not by bounds on the size of shared and to q exactly what ro sends to qO in a. In a',
memory, but by the fact that all information must be p and q behave exactly like po and qO do in a, and
conveyed via point-to-point message channels. receive exactly the same messages on their incoming
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channels. In a', p and q are required by the problem ence of 1 possible fault. Suppose p, q and r are pro-
statement to eventually output 0; therefore, p0 and q0 cesses that solve the problem. Consider scenario a
will do the same in a. By similar reasoning, q, and r, composed of a large number of processes pl, qj, ri,
eventually output 1 in c. However, it looks to P0 and P2, q2 , r2 , -.. , arranged in a ring. The processes
r, as if they are in another three-process scenario a" are supplied with physical clocks that run at con-
in which q is faulty; the problem statement requires stant rates, but the rates are different for different
them to eventually output the same value in a", and processes. The processes at one portion of the ring
so they will also do so in a. This is a contradiction. (say the top) have clocks that run slowly, while the

The idea of the proof in [89] is basically the same processes at the greatest distance from the slow pro-
as in this example, except that instead of describ- cesses have clocks that run fast; in between, there are
ing the scenario as the execution that is generated only tiny differences in rate between neighbors (but
by a certain system started with certain initial val- of course eventually the physical clocks of any two
ues, Lamport et al construct the scenario explicitly, neighbors diverge).
It seems to me that the higher level of abstraction of Each pair of consecutive neighbors thinks it is in a
the [54] proof makes much clearer what is really going 3-process scenario, so must synchronize clocks appro-
on. Perhaps there are other impossibility proofs con- priately. Each neighboring pair ends up with adjusted
taining explicit constructions of bad executions that clocks that are close in value. This requires either
could be made more understandable by describing the some slow processes to set their clocks far ahead or
bad executions implicitly, by a simple way of gener- some fast ones to set them far back. Assume the for-
ating them. mer, without loss of generality. Then there are two

A related impossibility result for low connectivity slow neighbors that will set their adjusted clocks to
networks appears in [39]; it says that at least 2t + 1 be far ahead, which will take them out of the range
network connectivity is required to tolerate t faults. of their physical clocks. But a comparison of a with
The proof is essentially another scenario argument a 3-process scenario that looks the same to these two
similar to the one above (using a different scenario neighbors shows that they must keep their adjusted
a). clocks within the range of their physical clocks in a,

Lamport also proved another impossibility result a contradiction.
for 3 processes and 1 fault, this time for a weaker The paper [54] presents a collection of results about
version of Byzantine agreement where the decision is the number of processes and connectivity required for
only predetermined for executions in which no faults various consensus problems; these include the results
occur [72]. The proof in that paper is quite complex, just described. This was the first paper to organize
but it is again essentially another scenario argument. the proofs using explicit and rigorous scenario argu-

In his invited address at the 1983 PODC sym- ments (although the same approach was implicit in
posium [75], Lamport posed a problem about syn- the other papers I mentioned). As I said earlier, this
chronizing clocks in a fault-prone distributed sys- approach is nice because it provides a high-level way
tem. The processes are assumed to have separate of looking at the constructions, and because it unifies
physical clocks that can proceed at different rates; a lot of different-looking previous work. The paper
the object is for processes to compute adjustments does not contain one general theorem that implies all
to their physical clocks so that the nonfaulty pro- the results (which would be still better) but rather a
cesses' adjusted clocks remain close to each other general technique.
(e.g., within a constant), and also so that they re- Some interesting modeling issues arose here. 1 usu-
main (approximately) within the range of the phys- ally like to present impossibility proofs using an ex-
ical clocks. Dolev, Halpern, and Strong proved the plicit operational model, describing processes and the
impossibility of solving this problem with 3 processes message system as some kind of state niac1-,in. Do-
and 1 fault [44]. I found this to be an immensely inter- ing that for the ordinary or weak Byzantine agree-
esting result, but unfortunately I couldn't understand ment setting seems straightforward Slit it is not
the proof; the main problem I had with it was that it clear what kind of model is appropriate for processes
was not based on a rigorous formal model. To help me with physical clocks that move at different rates. It
explain the proof to my distributed algorithms class, seemed at the time that if we gave all the details of
I redid the proof using a scenario argument. (It was such a model, it would be so complicated, and add so
the need to redo this proof that led to the work in much overhead to the paper that no one would ever
[54].) read it.

The following is a very sketchy outline of the impos- Our solution here was to give an axoniatzc model
sibility proof for synchronizing 3 clocks in the pres (without saying what kind of ilat hmlit.- ical object is
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supposed to serve as a model for the axioms). This Thus, we have a collection of impossibility results
approach tends to impose the fewest possible con- for the number of processes and connectivity for con-
staints on the system, making the result potentially sensus problems, all proved using scenario arguments.
applicable to more systems. On the other hand, such Several different kinds of models are used in this work.
an approach is also potentially applicable to no sys- For the results about synchronous systems, the early
tems - when proving impossibility results with an work such as that in [89] used specially tailored for-
axiomatically-described model, one should be sure real models. The later work used more general and
to check that some interesting models satisfy the ax- familiar-looking state machine models. These models
ioms! are a lot simpler than those used for asynchronous

Another result that can be proved using the same systems, because the notions of tining and admissi-

techniques is the impossibility result proved by Kar- bility are much simpler. For the results about par-

lin and Yao [68] for probabilistic Byzantine agree- tially synchronous systems (e.g., the results on clock
ment using randomized algorithms. Knowing that synchronization), it is not so clear what the proper
n processes can't reach agreement with t faults when model should be. Some of the proofs for partially
n < 3t, they asked with what probability such a small synchronous systems are done informally and am-
number of processes are able to agree. Their result biguously. Some have very detailed and complicated
shows that probability 2/3 is the best that can be special models, and some are done axiomatically.
achieved. Again, they used direct constructions of
bad executions, but the proof can be done more sir- 2.2.2 Number of Rounds
ply using a scenario argument similar to the first one
above. My first reaction to Leslie's paper on Albanian agree-

It is an interesting open question whether this ment was that the clever algorithms in the paper ran
bound is tight (for symmetric Byzantine agreement too long! Surely, I thought, there must be a way to
algorithms, in which each process starts with an ini- reach consensus in fewer than the t+I rounds their al-
tial value), and how it extends to arbitrary values of gorithm required. (From my experience, this is most
n and t. Even though an answer to this open ques- often the way impossibility proofs originate - one of-
tion may not have much direct practical significance, ten doesn't start out thinking that the impossible task
an answer to this question may give important in- is impossible.)
sight into the power of randomized algorithms. (So Mike Fischer and I soon were able to prove a t + 1
far, there are very few results in the literature giv- lower bound on number of rounds required for Byzan-
ing impossibility results for randomized algorithms.) tine agreement [56]. Our work on this result was an-
Impossiblity results for some additional special cases other good example of the game of working on con-
of this problem are proved in the new paper [60) the flicting positive and negative results at the same time.
proofs appear to be based on detailed analysis of the We went back-and-forth, working alternately on algo-
properties of randomized algorithms. The paper [40] rithms and impossibility proofs, for several days. A
extends the Karlin-Yao bound to hold even under cer- counterexample arose for each algorithm we thought
tain restrictions on the power of the "adversary". of, until finally one counterexample was extended to

The paper [46] contains some lower bounds on the an impossibility proof.
number of processes required to reach consensus in The basic idea of the proof is pretty simple. Con-
various fault and timing models. Proof techniques sider the case of twe faults, i.e., where t = 2; we must
are based on scenarios, show that two rounds can't suffice to reach agree-
The paper [31] contains lower bounds for the num- ment. We can assume without loss of generlity that

ber of processes required to solve the Byzantine firing the algorithni consists of every process broadcasting
squad problem, using various fault and timing mod- its value, then repeatedly receiving messages from ev-
els. A nice touch here is that one of the results is eryone and relaying everything that it received. So
proved by reducing weak Byzantine agreement to it after two rounds, each process can record the infor-
rather than by a direct proof. For the other results, mation it has received as a matrix of values.
scenario arguments are used, this time based on a se- If a process sees a matrix of all O's. it must decide
quence of scenarios, ai, a,,.; each successive pair 0, and similarly for 1. Also, it is possible to construct
of scenarios looks the same to some process, which a chain of matrices. M 2. ,..., Ilk, starting with a
therefore behaves in the same way in both cases. This riatrix of all 0's and ending with a miatrix of all l's.
leads to a contradiction when the constraints imposed where for each i, there is some execut ion with at most
by the problem statement are applied to some of the 2 faulty processes, in which some nonfaulty process
scenarios. sees M, and some nonfaulty process sees A, (so
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the decisions would have to be the same). This is a over fairly easily. (For comparison, note that Feldman
contradiction. The successive matrices in the chain and Micali [52] have a new constant expected time
can be constructed by converting one 0 entry to a randomized Byzantine agreement algorithm for the
1 at each step, moving down the columns; at each case where a small probability of error is allowed.)

step, two faults are necessary to produce an execu- Babaoglu, Stephenson and Drummond [17] showed
tion in which the two views can be presented to two similar lower bounds for models in which broadcast
processes. communication, rather than point-to-point communi-

This construction was done using an explicit con- cation, is used. Their bounds depend on the "broad-
struction of the executions; I don't know whether an cast degree".
implicit construction via a simple generator might be The paper [36] contains a lower bound for the
possible, as it was for the scenario work. number of rounds required for distributed processes

This lower bound was extended to the case where to reach approximate agreement on a real number
the processes participating in the algorithm are per- (rather than exact agreement on a value). A chain

mitted to authenticate messages, in [43] and [37]. The argument is used to show that no approximate agree-
proofs in those papers are also chain constructions; ment algorithm can converge too fast, in the case of
however, these constructions are much more compli- Byzantine faults: for any k-round approximate agree-
cated than the one in [561. There is also some diffi- ment algorithm, there must be some executions such
culty in defining what it means for a system to permit that the ratio of the range of output values to the
authentication of messages. range of initial values is at least (t/nk)k.

The lower bound was further extended to the case The simplest style of approximate agreement algo-
where the only kind of fault permitted was simply a rithm, one that repeats a simple 1-round averaging
stopping fault. Versions of this result appeared in sev- algorithm k independent times, does not meet this
eral unpublished notes (by Hadzilacos, by Fischer and bound, but rather achieves a ratio of around (t/n)k.
Lamport and by Merritt), so that it became part of (It converges more slowly than the lower bound indi-
the folklore, before it was finally written up by Dwork cates). Another lower bound in [36] shows that this
and Moses. They incorporated this work into their is the best that can be achieved by an algorithm with
work on knowledge [47], believing that using explicit such a round-by-round structure. The argument is
formal definitions of the "knowledge" that a process another chain argument.
has during an execution would provide a helpful way These impossibility results left open the question
of looking at constructions such as these chain argu- of whether a better algorithm might be possible if
ments. (For example, if a process can see a certain it were not required to be round-by-round. Fekete
matrix in either of two executions constructed for the answered this question positively [50], giving a clever
chain in [56], we can say that the process does not counterexample algorithm that uses information from
"know" which of the two executions it's in.) It's still prior rounds: some fault detection is carried out and
not clear to me whether or not the formal knowledge then the results of processes known to be faulty are
definitions help in explaining the combinatorial con- ignored. This is one of the first examples where de-
struction for the stopping fault lower bound; however, tection of Byzantine faults was shown to lead to im-
Dwork and Moses were able to generalize this lower proved results; it came about because of an impossi-
bound to yield results for other problems of reaching bility conjecture.
"common knowledge" in synchronous systems. (In Fekete's work in [50] and [51] contains lower bounds
fact, they were able to do more, in particular, to an- on the rate of convergence for crash and omission
alyze exactly which patterns of failures required the fault models, analogous to those for Byzantine faults.
protocol to run for t + 1 rounds.) Again, chain arguments are used.

Moses and Tuttle extended the work in [47] to other Thus, there are many lower bound results for the
fault models [86]. They obtained algorithms that ter- number of rounds required to solve consensus prob-
minate as quickly as possible in all executions; in fact, lems, all based on chain arguments. The kinds of
they were led to these algorithms by considering the models used here are primarily fairly straightforward
impossibility results. (Along the way, they produced synchronous state machine models, augmented in
a simpler version of the t + 1 round lower bound for some cases with knowledge definitions.
stopping faults.)

Coan proved a t + 1 round worst-case lower bound 2.2.3 Number of Messages
for consensus for randomized algorithms, assuming
that no erroneous answers are allowed [34]. In this Dolev and Reischuk [42] proved lower bounds on the
case, the result for deterministic algorithms carried number of iessages and number of signatures re-

Page 7



quired for Byzantine agreement algorithms that use impossibility of reaching consensus in asynchronous
authentication, using scenario-style arguments. systems, even when the message system is reliable,

and even if the processes communicate via broadcast

2.2.4 Asynchronous Impossibility Results primitives, if there is the possibility of even a single
stopping fault.

So far, the bounds I've described for consensus pro- Just as for the t + 1 lower bound on rounds, we
tocols have been mainly for synchronous algorithms, began our work on this problem by guessing that a
and they have all been quantitative (lower bound) solution was possible (for t faults, if n was sufficiently
results. There has also been a lot of work on ab- large relative to t). We had already had experience
solute impossibility results for purely asynchronous extending some synchronous agreement algorithms to
algorithms, the asynchronous setting; in the asynchronous set-

The "Two Generals" result in [61] should proba- ting, processes can wait to hear from all but t pro-
bly be classified as the first impossibility result for cesses, so adding some extra processes sometimes per-
consensus in an asynchronous distributed system, al- mits an algorithm to compensate for the uncertainty
though it isn't so much the asynchrony that is im- of the missing messages. Again, we worked on both
portant here, but rather the uncertainty of message directions alternately, until the final result arose from
delivery. This result says that it is impossible for two a counterexample.
distributed processes communicating via an unreli- The version of our proof that I like best was devel-
able message system to reach consensus. oped by Bridgeland and Watro; similar ideas appear

The proof presented in [61] is pretty informal; when in recent work of Tautenfeld, Katz and Moran [981.
I worked it out formally it looked like a chain argu- For simplicity, we restrict attention here to Boolean
ment, but of a slightly different sort from the chains values only.
constructed for the round bounds. If v is a Boolean value, we say that a configura-

Starting from an execution in which both processes tion C is "v-valent" if v is the only possible decision
decide, say on value v, a chain of executions is con- value reachable from C; we say that C is "bivalent" if
structed by successively removing the last message both values are reachable. First, it is shown that any
receipt event. Each pair of consecutive executions asynchronous consensus protocol that is resilient to a
looks the same to one of the processes, and the two single fault has a bivalent initial configuration. Next,
processes must decide on the same value in each exe- it is shown that any asynchronous consensus proto-
cution; it follows that a decision of v is reached by col that has an initial bivalent configuration and that
both processes, in all the executions in the chain, works correctly when there are no faults must have a
Among the executions in the chain is a "null" exe- reachable configuration C in which there is a decider
cution in which no messages are ever received; start- process p. This means that frorp C, it is possible for
ing from this null execution, the chain can be further p to take some finite sequence of steps leading to a
extended to produce another null execution in which "0-valent" configuration, and also some other finite
neither process starts with initial value v, and yet sequence of steps leading to a "l-valent" configura-
a decision of v is reached by both processes. Un- tion; that is, p can make the decision on its own.
der some reasonable assumptions about initial values
and their relationship to the final decisions, it can be
shown that such an execution should not result in a
decision of v.

A similar argument is used by Koo and Toueg [69] c
to show the impossibility of achieving any knowledge
gain in an asynchronous network, in the presence of p o only

even transient communication failures.
Halpern and Moses (64] have used formal notions o - ,aeznt i. vaj e

of knowledge to describe the result of [61]. They also
show that, in a precise sense, common knowledge can-
not be gained in an asynchronous system. The tech- llZ.2a Aecderprocc

niques are basically similar to Gray's. Chandy and The reason this is true is roughly as follows. The
Misra [29] also show a similar result. problem statement implies that we can't have an in-

The next impossibility result I know about for finite execution consisting of bivalent configurations
asynchronous consensus is my result with Mike Fis- in which all processes continue taking steps and all
cher and Mike Paterson in [55]. This result shows the messages eventuially get delivered. Therefore, there's
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a reachable bivalent configuration C and a particu- which the configuration stays bivalent (by analyzing
lar message m in the message system such that any the ways in which decisions are made).
configuration resulting from delivering m is univa- The modeling issues were interesting here. As in
lent. Then there are two "neighboring" configura- the earlier papers on shared memory, this paper con-
tions D and E (that is, one a child of the other) such tains a carefully-developed formal model for asyn-
that delivering m from one leads to 0-valence and the chronous computation, but this time specially tai-
other leads to 1-valence. This can only happen if the lored to message communication. The model isn't
"neighbor edge" corresponds to a step of the same very complicated, but it is a little annoying that the
process p that is the recipient of m. But this means modeling work starts from scratch, borrowing nothing
that p is a decider. from previous work in model development for asyn-

D) chronous shared memory systems. Since both kinds

deliver mr of systems deal with ideas such as admissibility and
control of actions, it seems that a common foundation
could have been used. It would be very nice if there

0-valent were some body of common definitions that people
could use for asynchronous computing impossibility

dv results, that would remove some of the overhead of

1-valent the model section of each paper.
Another problem with the model in this paper is

Figure 3,N hborn configuraulons D and E leading to that some of the particular aspects of the model, such
conftgur-uons of opposLC valence as the particular protocol used by the nodes in in-

teracting with the message system, seem very spe-
But such an algorithm with a decider, say p starting cial. Perhaps a more general model could have been

from configuration C, cannot be resilient to a single useful here, in trying to apply this result to slightly
fault. This is because the rest of the system, operat- different settings. I have since redone this proof for
ing on its own starting from C, is required to decide my class using the general "I/O automaton" model
either 0 or 1, but it can't tell whether p has already for asynchronous concurrent computation, (defined in
decided differently. [79, 801), but I can't yet tell how much of an improve-

Here again, as for the shared memory work and ment this is.
all other work on asynchronous algorithms, it is im- This paper, unlike most impossibility results, has
portant to be careful about stating and using admis- had lots of attention, even from practitioners. For ex-
sibility assumptions (the liveness assumptions about ample, one system designer's reaction was to say "of
how the system runs). Here, the admissibility as- course" - this theorem formalized an intuition that
sumptions are that the non-failed processes continue she had already had ab,_,ut distributed systems. This
to take steps (as long as there are steps to be per- doesn't mean that she "knew" the result in the sense
formed), and that all messages eventually get deliv- that theoreticians mean (that they can prove it), but
ered. It is possible to get much easier proofs, for ex- rather that her experience with things like commit
ample, if messages are not required to be delivered; protocols had led her to believe that this kind of
one such proof is given in [28]. thing could not be done. She probably would not

Our original proof was similar to this one, but it have known exactly what couldn't be done - formu-
turned the ideas around; we assumed the existence lating the precise assumptions on which such results
of a resilient algorithm and arrived at a contradic- depend is the sort of delicate analytical task that will
tion. As usual, the contradiction involved construct- probably always be left to the theoreticians.
ing a bad admissible execution. The new proof or- Distributed system designers to seem now to be
ganization is better because it is not just a proof by generally aware of the limitation expressed by this
contradiction, but also gives some positive informa- result. I sometimes hear people describing their sys-
tion about (non-fault-tolerant) asynchronous consen- tem designs by saying that the system cannot achieve
sus protocols. a certain behavior because of this known limitation;

The general technique used here is to analyze the they then go on to describe the weaker guarantees
ways in which the system configuration can move that their systems do make. In one case, system de-
from being bivalent to being univalent, showing that signers were surprised that what they believed their
none of them can work properly in all cases. Or, system was guaranteeing was in fact impossible; they
turning the proof around, starting with a bivalent did not give up on their project, though - rather, they
configuration, construct an admissible execution in used the new knowledge to holp them clarify their
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claims about what their system did. So it seems that imply some of the new register results.
this impossibility result has had the beneficial effect Attiya, Dolev and Gil [9] extended some of the work
of helping (or forcing) system designers to clarify their in [41] to consider Byzantine faults, not just stopping
claims about their system. faults. They considered asynchronous processes with

This result has seen some follow-on technical work. time-bounded communication. They gave an impos-
There have been positive results, including counterex- sibility result that shows that a process cannot he
ample algorithms for variations of the problem and guaranteed to decide in a bounded number of its own
some algorithms that may be interesting in them- steps. The argument is a simple bivalence argument,
selves. There have also been related impossibility similar to arguments in 141). They also proved a 3t
results. vs. t process impossibility result, using a scenario

For example, Ben-Or [19] and later Rabin [91] de- argument.
vised interesting randomized algorithms that circum- Welch [100] presented a nice reducibility argument
vent the impossibility result; these algorithm even- that yields one of the main impossibility results of
tually decide with probability one, and never violate [41] directly from the result of [55]. The reducibility
safety properties. Also, Dwork, Lynch and Stock- uses a fault-tolerant version of Lamport's distributed
meyer [46] devised consensus algorithms for the case clock idea [74].
where the problem definition is weakened to allow Moran and Wolfstahl [85] gave two generalizations
nontermination if certain nice timing conditions (i.e., of the result of [55], one using a similar proof and
upper bounds on message delivery time) fail. (An in- one using a reducibility from the result of [55]. They
teresting technical open question remains about the defined two graphs to represent the problem being
time requirements for consensus in the model of [46].) solved: an input graph for the possible input vectors.

Dolev, Dwork and Stockmeyer [41] noticed that and an output graph for the allowable decision vectors.
there were several different kinds of asynchrony in (In each graph, an edge joins two vectors if t ey differ
the execution model of [55], e.g., asynchrony of mes- in exactly one component.) Their results show the
sages and of processes. They classified systems, based impossibility, in the presence of one faulty process,
on the various combinations of these factors, and ob- of performing any task that ha, a connected input
tained impossibility results for many of these cases graph and a disconnected decision graph.
(and algorithms for some). The impossibility results Bridgeland and Watro [24] presented more impos-
were proved using bivalence arguments similar to that sibility results generalizing [55), using similar proofs.
in [55]. Their work also originated the notion of a "decider",

Their proofs proceed by contradiction, construct- described above.
ing bad executions; these executions had to be care- Attiya, Bar-Noy, Dolev, Koller, Peleg and Reischuk
fully de-igned not only to satisfy admissibility as- [10] presented three impossibility results for the "pro-
sumpti- ,un like the ones for asynchronous systems, but cess renaming problem", wherein anonymous pro-
also to satisfy additional requirements of partial syn- cesses that start with distinct names from a large ID
chrony as required by the various cases. They ana- space are supposed to decide on distinct names from
lyzed the ways in which decisions must be made, e.g., a fixed (smaller) ID space. They showed that renam-
locally to a single process, and showed that none of ing with n names is impossible; the argument is again
them can work correctly in all cases, e.g., a resilient very similar to that of [55], using geneializations of
protocol must be able to proceed without the deciding the sort obtained in [85]. (Some special argument
process. In some cases, they obtained impossibility of is needed to show the bivalence of an initial config-
2-resilient consensus, rather than 1-resilient consen- uration.) There is a very interesting open question
sus (because analysis of the decision point showed remaining here, about whether the lower bound for
that the rest of the system might have to proceed t faults can be extended from n + 1 Io n + t names.
without 2 processes, in order to produce a contradic- An algorithm in their paper shows tl.at n + i names
tion). suffice.

The models used in [41] are quite detailed and spe- They also showed that the problen cannot be
cialized, for example, in their assumption that time solved with 2t processes, using a simple scenario ar-
has a minimum granularity; it makes me think that a gument. Finally, they considered an order-preserving
more abstract or general model could have been used version of the problem, which they showed to have
here. For example, some recent work on impossibil- an interesting and large lower bound (for which they
ity results for atomic register problems seems quite have a matching upper bound). The reason so many
similar to some of th work in [41]; if the earlier work names are required is that processes sometimes have
were stated in a more general way, perhaps it would to decide on names for themselves while there are still
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t silent processes; in this case, they need to reserve proved using similar bivalence arguments.
enough space for all possible relative orderings among
those processes and between those processes and the 2.2.5 Commit
others.

Biran, Moran and Zaks [20] extended the [85] work The commit problem is a particular kind of binary-
to a characterization of what can be done with one valued consensus problem, where the two values are
faulty process. Their characterization has a pleas- known as "commit" and "abort". This problem re-
ing graph-theoretic flavor, in terms of input graphs quires agreement and termination; in addition, a
and decision graphs. More specifically, they proved "commit rule" should be satisfied, e.g., saying that
a variant of the [85] imposslbiiity results, plus a new if any initial values are "abort" the decision must be
result giving a second graph-theoretic condition im- "abort", while if all initial values are "commit" and
plying impossibility. On the other hand, they were there are no failures, then the final result is "com-
able to obtain a protocol for the case where both of mit". The impossibility result of [55] implies that the
these conditions fail. They also utilized the graph commit problem cannot be solved in an asynchronous
characterization to get a lower bound on the number setting, so it is usually considered in synchronous and
of messages require. Taubenfeld, Katz and Moran partially synchronous models.
[98] have made preliminary attempts to extend the Dwork and Skeen [48] considered the commit prob-
work in [85] to characterize what can be done in the lem in a synchronous complete network model. They
presence of t faulty processes. proved a lower bound of 2n - 2 messages for every

Loui and Abu-Amara [76] proved results about the failure-free execution that results in a commit de-
impossibility of resilient consensus in shared-memory cision. This proof is based on a simple argument
rather than distributed models, in case the allowable that there must be a path of messages from every
operations on shared memory are reads and writes, process to every other (or a wrong decision could
and also in case they are test-and-sets. The ideas result). This proof was redone using formal no-
used here are very similar to those used for the related tions of knowledge by Hadzilacos [62]. Dwork and
distributed results. The similarity between the ideas Skeen also proved lower bounds on the number of
used in these two settings reinforces my intuition that rounds required in failure-free executions, based on
there is an awful lot that is fundamentally the same the same fact (the existence of paths of messages be-
in the two environments. tween pairs of processes) and an assumption about

They proved the impossibility of 1-resilient consen- bounded bandwidth. Segall and Wolfson [6] gen-
sus for read-write shared memory. The construction eralized the Dwork-Skeen message bound result to
is very similar to that in [55] and [41]: a bivalence ar- give a lower bound on the number of message hops
gument with a simple case-analysis about the decision needed for solving the commit problem in incomplete
point. They also proved impossibility for 2-resilient networks.
consensus for test-and-set shared memory, in the spe- Coan and Welch [33] considered the commit prob-
cial case of binary values. This is another bivalence lem in a partially synchronous model, for randomized
argument, but, as in [41], this time analysis of the de- algorithms for which eventual termination is required
cision point shows that all except 2 processes might with probability 1. Also, a commit decision is only re-
have to proceed in order to produce a contradiction. quired in case all processes have initial value "abort",
Both of these results extend immediately to fully re- the execution is failure-free and all messages are de-
silient algorithms - algorithms that tolerate arbitrary livered within a fixed bound time b that is known to
numbers of faults - a fact that was useful in the work the processes. The main point of their paper is actu-
on atomic registers that I will describe later. Chor, ally an upper bound result: a fast randomized corn-
Israeli and Li [30] also proved the first of the two mit protocol for n > 2t; in order to argue that this
impossibility results in [76]. protocol is close to optimal, they showed two limita-

In the asynchronous consensus work based on tions. First, they showed that, no solution is possible
shared memory, admissibility considerations are sim- if n < 2t. This proof does not seem to be a scenario
pier than they are in the distributed work. Here it is argument like the other proofs of lower bounds on
only necessary to ensure that (non-failed) processes the number of processes (at least not. obviously); it's
continue to take steps, it is not necessary to worry a complex explicit construction of had admissible ex-
about ensuring message delivery. ecutions. (Perhaps a higher-level argument might be

Thus, there are many closely related results that possible.)
describe what cannot be done in fault-tolerant asyn- The second impossibility result in [33] says that
chronous systems. Nearly all of these results are it is not possible for each ,ructs to niak, a d'ci-
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sion within a bounded expected number of its own i.e., a program designed to adapt synchronous algo-
steps. (The time bound for the protocol in the pa- rithms for use in (reliable) asynchronous networks.

per is measured in terms of a non-local asynchronous The techniques are generally similar to those used in
round measure.) The proof of this result is a bivalence [8], and are based on the necessity of communication
argument that allows construction of not just a single between various pairs of nodes between pulses of the
non-deciding execution, but of lots of long nondecid- synchronous algorithm being simulated. This proof,

ing executions. (This is in order to obtain a bound for however, uses some fancier graph theory.

the average.) This is an interesting extension of the Lundelius and Lynch [77] proved a lower bound on
bivalence technique. Note that the two impossibility how closely software clocks of (nonfaulty) distributed
results of [33] are among the very few impossibility re- processes can be synchronized, in terms of tho uncer-
suits that make interesting claims about randomized tainty in the message delivery time between pairs of
protocols. processes. In particular, we obtained an interesting

tight bound of 2c(1 - 1/n) for complete graphs. The
idea is to represent an execution by a diagram as in

2.2.6 Synchronization [8], but with message edges tagged with message de-

I am here grouping certain synchronization problems livery times. This diagram can be "stretched" as be-

together with the consensus problems, since they in- fore, but this time keeping the new message delivery

volve processes agreeing on when to perform actions. times within the allowable bounds, and everything

Arjomandi, Fischer and Lynch [8] proved a lower will still look the same to all the processes. Applying

bound on the time for an asynchronous, reliable net- inequalities representing the constraints of the prob-

work to carry out a simple synchronization task - to lem to the various stretched diagrams gives a contra-

perform s "sessions", in each of which all the pro- diction.

cesses in the network must perform at least one out- Dolev, Halpern and Strong [44] gave a lower bound
put event. The result is a lower bound of approxi- similar to that in [77], but characterizing the closeness
inately sdon the time for performing 8 sessions, where of synchronization obtainable along theO real time

d is the diameter of the network. Since a synchronous axis. That is, they proved a lower bound on how
system would only require time s, this amounts to close the real times can be when two processes' ad-
a provable difference in the time complexity of syn- justed clocks have the same value, whereas our result
chronous and asynchronous systems. is a lower bound on how close the adjusted clock val-

The proof idea is simple. First, note that an ex- ues can be at the same real time.
ecution can be iepresented by a diagram with time Halpern, Megiddo and Munshi [63] extended the re-
lines for processes and connecting edges for messages. sults of [77] to other kinds of graphs besides just corn-
These time lines and connecting edges represent de- plete graphs, using the same basic kind of stretching
pendencies among events. Such a diagram can be arguments. (The characterization for general graphs
"stretched" without violating the dependencies, and is not as nice as for complete graphs, however.)

processes will not be able to tell the difference. Now,
if an execution takes too little time, it can be parti- 2.3 Shared Registers
tioned into r- 1 short intervals, inti, 1 < i < r- 1, in
each of which there is insufficient time for a message Now I reconsider shared memory asynchronous algo-
to propagate between a certain pair of processes, pi rithms, in a setting similar to the one I started this
and qi. Then it is possible to modify the execution talk with. In the past couple of years, there has been
by stretching its diagram so that all steps of pi fol- a lot of interest in problems about implementing dif-
low all steps of qi in interval inti; if the pi and qi are ferent kinds of shared registers in terms of other kinds
chosen appropriately, the modified execution will not of shared registers, generally in a "wait-free" manner.
contain r sessions. Lamport's paper [71] includes one impossibility re-

This result demonstrates that lower bounds can be suit - a result that says that atomic registers can-
proved on time, even in asynchronous networks. This not be implemented in terms of regular registers un-
is not usually done, but I see no good reason why less the readers write. The proof is based on a new
not. Appropriate ways of measuring time are avail- axiomatic partial ordering model introduced in [71].
able for asynchronous systems, such as those defined The proof is only sketched, and involves an explicit
in [90],[81],[79]. and [83]. Proving such lower bounds construction of bad executions. Although the result
is a good area for future research. is probably correct, I do not. believe that it actually

Awerbuch [16] proved a time/communication follows as claimed from the axiomatic model given in
tradeoff lower bound for any network synchronzzer, that paper.
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Herlihy's interesting paper [65] contains impossi- this general model to describe registers. It is also not
bility results and also universality results. He noted clear whether the axiomatic model or the I/O au-
a connection between (fully-resilient) consensus re- tomaton model is better for describing these results,
suits and the (wait-free) implementation of atomic or whether the two should somehow be combined.
registers. Namely, if one type of data object can im- The I/O automaton model is not often used for
plement fully resilient consensus and another cannot, reasoning about shared memory algorithms. This is
then the first data object cannot be implemented in because that model handles input and output events
terms of the second, in a wait-free manner. (There separately; for reasoning about shared memory algo-
is a close connection between the full resiliency prop- rithms, one would often like to avoid handling these
erty and the wait-free property, although they origi- two kinds of events separately, treating an invocation
nated in different contexts.) In particular, the objects of an operation on a shared objects and a correspond-
I described above in connection with [76], (read-write ing response as indivisible. (For example, the models
objects and binary test-and-set objects) plus others in [81] and in [76] do this.) However, in the work on
described by Herlihy, cannot provide wait-free imple- wait-free shared registers, It is appropriate to handle
mentations of objects with more powerful operations these two events separately, making I/O automata a
such as general test-and-set. reasonable model. The major point about atomic ob-

The proofs are bivalence arguments, but they are jects is that they make it appear "as if" accesses were
actually somewhat simpler than the proofs in [76], performed indivisibly; this suggests that it might be
because the notion of admissibility used here is less useful to have two models (or two instances of one
restrictive than that used in the results on 1-resilient general model), one like [81] in which the accesses are
and 2-resilient consensus. The full resiliency assumed indivisible and one like I/O automata in which they
here means that the only liveness condition needed are not; connections between the two models should
for admissibility is that some process continue taking be proved.
steps, i.e., that the execution be infinite. It is some- It is still not clear to me what the proper formal
what easier to construct infinite non-deciding execu- definition of the "wait-free" property should be. Per-
tions than non-deciding executions satisfying some haps it should be defined (as in [65]) in terms of a
extra admissibility conditions. bounded number of process steps, perhaps in terms of

Again turning the proof around in the style of [24], an asynchronous time measure, and perhaps in terms
implicit in this work is a lemma that says that fully of failure resiliency. This needs more work.
resilient consensus implies the reachability of another
kind of "decider" configuration: one that is bivalent 2.4 Computing in Rings and Other
but for which any step of any process leads to a uni- Networks
valent state (in one step). This is a different notion
of a decider from the one used by Bridgeland and Wa- Now I switch to another area in which the proofs
tro; theirs involves a particular process forcing either are very different from the ones 1 have considered so
of two different decisions in some number of its own far. This area contains many impossibility results,
steps, whereas Herlihy's means that any process can most involving the message cost of carrying out vari-
force a decision in one step. This simplified notion of ous computations in a network. The case most com-
decider leads to simpler proofs here than in [24] and monly studied is that of a ring network.
[55]. Some of these results are based on a distance ar-

Thus, the bivalence technique is useful (indirectly) gument: in a ring, it takes many messages to get in-
in getting more than just consensus impossibility re- formation from one place to another. Another basic
suits. Here, reducibilities show its utility in proving idea is symmetry. For instance, a ring containing in-
that some kinds of objects can't be implemented in distinguishable processes is a very symmetric configu-
terms of other kinds. ration; if it is to accomplish a task involving breaking

Some interesting modeling issues arise. For exam- symmetry, some process p must send a message; then
pie, Lamport's impossibility proof sketch in [71] is because of symmetry, all processes indistinguishable
based on his axiomatic partial ordering model. Her- from p will also send messages.
lihy's work, on the other hand, uses I/O automata. There are so many results in this area that I
His method of using I/O automata to model registers couldn't really classify them very well. Many of the
differs from the way they are used to model regis- results seem related; for instance, there are many re-
ters in [21] and [95] Herlihy uses special "scheduler" sults giving lower bounds of Q(n log n) on the number
machinery not used in the other work. Some work of messages required to solve certain problems in a
still seems needed to determine the best way to use ring. Some work still seems 1,, be reqiiru-d in unify-
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ing these results. size n/2. If such a double segment is unable to gen-
erate lots of messages on its own, then consider an

2.4.1 Absolute Impossibility Results Based execution in which the two halves first quiesce, then
on Symmetry some additional messages flow starting at the merge

point. Because of the limitation on number of mes-

The earliest paper giving im possibility results in this s ,in fore a tio o u the m erge nn otb propage
sages, information about the merge cannot propagate

area seems to be the very interesting paper of An- as far as the middle of either of the two halves before
gluin [7], which proves the impossibility of electing a the double segment quiesces.
leader in various graphs. The processes in her model So this means that there must be a large set S of
are indistinguishable, and they have no inputs, so all length n/2 segments such that any double segment
that can be used to distinguish them is their posi- composed of segments in S quiesces without infor-
tion in the network graph. But many graphs have mation about the merge propagating as far as the
symmetries that will prevent a guarantee of distin- midpoint of either half. Now consider what happens
guishing any process - anything that one process can when any number of segments in S are formed into a
do, the others symmetric to it might do also. The ring. They have executions in which the length n/2
paper identifies symmetry properties of graphs that segments quiesce first, then the additional messages
lead to impossibility of leader election. This paper propagate from merge points (but not as far as the
can be credited for the now well-known and simple midpoints of the S segments), until quiescence occurs.
folk theorem that says that it is impossible to elect a This means that each individual process' decision can
leader in a ring (with a non-randomized algorithm), only depend on local information: information about
if processes do not have unique ID's. its own S segment and about its nearest adjacent S

One unusual feature of this paper is that it uses a segment. But then inconsistencies can arise based
model based on Hoare's CSP. This is the only example on different ring arrangements: the fact that some of
I can think of, of CSP being used for an impossibility these rings elect a leader implies that others can elect

result. It has many features that seem to me to be more than one leader.

too distracting for such proofs. Much attention is devoted in this paper to the

Johnson and Schneider [67] gave impossibility re- design of an appropriate formal model for message-

suits related to Angluin's for several different prob- passing systems, as is suggested by the paper's title.

lems using several different models; the models are pachl, Korech an Rotem [ x the

based on CSP, read-write shared memory, and vari- Pachl, Korach and Rotem [87] extended the
ables with locks. Other related results appear in [231. t(n log n) lower bound of [25] to the average case,

for asynchronous deterministic leader-election algo-

rithms. The techniques are similar. They also proved
2.4.2 Lower Bounds for Rings a lower bound for unidirectional rings in which pro-

Many lower bound results have been proved expressly cesses are interrupt-driven, using a different style of
for ring networks, argument based on the special structure of such al-

Burns [25] proved an Q(n log n) lower bound on the gorithms. Such algorithms are essentially determinis-
number of messages required to elect a leader in an tic; what happens at each process can be viewed as a
asynchronous ring. The key idea is the limitation transformation from input strings to output strings.
of local knowledge based on how far information can Pachl [8] extended the results of [87] to the case of
travel - it. takes k messages to propagate information randomized algorithms where a nonzero probability
to a process distance k away. The proof does not of erroneous outputs is permitted. Related results
require any special assumptions about process ID's: were proved by Duris and Galil [45] and Bodlaender
processes can have distinct ID's chosen from any ID [221.
space. Burns' proof depends heavily on the asynchrony;

Roughly speaking, Burns' proof shows inductively for instance, construction of bad executions involves
on n that there are a large number of segments forcing subsegments to quiesce separately. then to
of length n each of which is capable of generating quiesce around the merge points. Frederickson and
Q(r log n) messages on its own (without any comnmi- Lynch [581 considered the same problem for syn-
nication arriving from the endpoints). For the induc- chronous rings. In the synchronous case, the absence
tive step, suppose there are many segments of size of a message might be regarded as a special 'null
n/2 each of which can generate lots of messages, and message", and used to communicate something. We
try to get some of size n that also can generate many showed that this apparent extra capability do,,sn't
messages. Suppose they don't exist. Consider all pos- help - an f?(n log n) lower bound still holds.
sible ways of concatenating pairs of the segments of Now special restrictions are needed on the algo-
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rithm in order to obtain the lower bound. Namely, teresting computable functions, including AND and
the algorithm is required either to be comparison- MAX. This bound contrasts with the O(n log n)
based, or to use a very large ID space relative to the bounds that hold for the case where the processes
running time. The result for the second assumption have distinct ID's.
follows by a reducibility from the result for the first, The proof involves constructing a "fooling pair" of
by a Ramsey's Theorem argument; the argument says rings, R, and R2 , where R1 is very symmetric, but R2
that with enough ID's, the algorithm must behave like need not be, together with a process p which has a big
a comparison algorithm on some subset of the ID's. neighborhood that is the same in both rings but which

The idea of the first proof is that many mes- is required to decide differently in the two rings. Then
sages are required to break symmetry. Consider for messages must propagate to p from outside the com-
example the ring consisting of processes with ID's mon neighborhood (in both rings). However, when
0,4,2,6,1,5,3,7. a process sends a message in R1, many symmetric

o processes must also send messages.
The proof for the synchronous case uses a simi-

lar argument, but now it only yields a lower bound
of 0(nlogn), because of the possible utility of null

3 2 messages. Now a stronger definition is needed for a
fooling pair, in which both R1 and R2 must be very

5 6 symmetric. Then it can be shown that the algorithm
causes many messages to be sent in both R1 and R2.

The lemmas used in [14] are slightly different from
those used in [58]; instead of analyzing chains of mes-

FigurAe 4 syrreu'ic r" goC siz 8 sages in detail, they are stated in terms of less de-
tailed information about the number of rounds at

This ring is very symmetric, up to comparisons, which some message is sent. As in [58], much effort
In particular, adjacent segments of length 2k are is devoted here to producing the strong symmetries
comparison-equivalent. So everything looks the same needed for rings whose sizes are not powers of two.
(up to comparisons) to processes 2k apart until some Several other recent papers contain results re-
chain of (real, not null) messages spans a distance of lated to those in [14]. Moran and Warmuth [84]
at least 2k . Until then, if one process sends a message, proved a lower bound of Q(n log n) for the number
so does every process a multiple of 2 k away. of bits required to compute any "nontrivial" function

It is easy to produce highly symmetric rings of size on a deterministic ring with indistinguishable pro-
equal to any power of 2. Much of the effort in the cesses. Attiya and Mansour [12] gave a proof that
paper is devoted to producing highly symmetric rings any "non-quasi-permutation-frie" regular language
when n is not a power of 2. requires Q2(n log n) messages, using the synchronous

This paper also contains a counterexample algo- theorem from [14]. Attiya and Snir [13] considered
rithm. This algorithm shows that you cannot remove the average case for deterministic algorithms, in the
all assumptions about ID's or running time. For oth- asynchronous setting. They showed a lower bound
erwise there is a very time-consuming algorithm (its of £2(n log n) for the average number of messages re-
time complexity depending exponentially on the ID's quired by any deterministic algorithm for computing
actually in use) with only O(n) messages. This algo- an arbitrary "nonlocal" function. Roughly speaking,
rithm does not seem to be very interesting in itself, they showed that there are many sequences of pru-
but it is interesting because it demonstrates the need cesses of any given length k in which messages are
for the assumptions in the lower bound, sent by the center process in the sequence at, round

Attiya, Snir and Warmuth, in [14] used similar k (in a synchronous execution of the algorithm); this
ideas to those in [581 but took them much further, implies that many messages are generated in an "av-
They considered the case where there are no ID's built ,rage ring". This lower bound extends easily to ran-
in, but (for certain problems) processes may start domized algorithms that admit no probability of er-
with input values. The object is for the processes ror, using a simple reduction. However, if nonzero
to compute some function (invariant under circular error probability is allowed, then the lower bounds
shifts) of the input vector, fail (and an O(n) algorithm exists).

They considered both asynchronous and syn- Abrahamson, Adler, Iligham and Kirkpatrick
chronous rings. For the asynchronous case, they ob- proved a collection of amazing lower bounds for ran-
ta.ned an Q(n 2 ) message lower bound for many in- dumized algorithms for solving certain problems. e.g.,
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"solitude detection", in a ring. They allowed a from all processes. Ini that case, the leader needs to
nonzero probability of error, and measure the commu- initiate messages again. The paper [59] also contains
nication bit complexity. The model is asynchronous, an f(n') lower bound for the case where the ring size
but it's unidirectional and interrupt-driven, so (as in is unknown.
[87]) its behavior is very constrained. Thus, I have described a collection of bounds for

They studied many different cases, e.g., in which ring computations that depend mainly on symmetry,
the ring size is either known or unknown, and in which on the distance messages have to travel, and on cross-
decisions are revocable or irrevocable. The lower ing sequence arguments. It seems to me that there is
bounds are quite complicated-looking functions, but some good work still to be done in coalescing, gener-
what's most amazing is that they are tight. alizing and simplifying this work.

One key idea is the following. If the expected cost
of computations in a particular ring is low, then for 2.4.3 Lower Bounds for Coniplete Graphs
some fixed boundary in the ring, and for some fixed
short sequence of messages, computations having that Some lower bounds on the number of messages have
sequence at that boundary occur with reasonably also been proved for complete graphs. Korach,
high probability. Then it is possible to splice together Moran and Zaks [701 proved tight lower and up-

multiple copies of that ring, by cutting and splicing at per bounds for some distributed problems in a com-
the designated boundary. Then with reasonably high plete asynchronous network of processes. They ob-

probability, solitude will be verified erroneously in the tain Q(n log n) lower bounds for leader election and

spliced ring. This argument can be thought of as a spanning tree determination, and 2(r 2) for certain
sophisticated form of symmetry-breaking, incorporat- matching problems. Afek and Gafni [3] proved simi-
ing ideas reminiscent of crossing sequence arguments lar bounds to those in [70], for leader election; theirs,
in Turing machine theory. (Some of the techniques however, extend to the synchronous case, and they

used in this work also extend to proving lower bounds also prove time bounds.

on the best case bit complexity for a nondeterministic
algorithm.) 2.4.4 Lower Bounds for Meshes

The model definitions are an important part of this Abu Amara [2] showed a lower bound of (57/32)n
work, because the results are very sensitive to slight on the number of messages required for comparison-
variations in assumptions. Unfortunately, these def- based leader election in a synchronous mesh consist-
initions do impose a lot of overhead on the reader. ing of n nodes.
This work contains different sets of problem state-
ments, strong ones for the algorithms and correspond- 2.4.5 Lower Bounds for General Graphs
ing weak ones for the impossibility results, thus mak-
ing each result as strong as possible. Other related bounds have been proved for gen-

Mansour and Zaks [82] considered the case where eral graphs. Santoro [94] proved a lower bound of
the ring starts with a leader, but where the ring size Q(n log n + e) for leader election in general graphs.
is unknown. Even with a leader, interesting lower The n logn component results from the correspond-
bounds still hold for other reasons. They showed that ing bound for rings. The e component is based on a
recognition of any nonregular set requires Q2(n log n) "folk irgument" that all edges need to be traversed,
bits of communication. in order to ensure that no other nodes are hidden in

Finally. Goldreich and Shrira [59] proved an the middle,
Q(nlogn) lower b ound on the number of messages Awerbuch, Goldreich, Peleg and Vainish [15]
for function computation in an -synchronous ring in proved a very nice lower bound that says that it's nec-
which one link might fail, even if the ring has a leader essary to "involve" all the edges in a network in order
and the ring size is known. The basic idea is that the to solve certain problens, such as broadcast commu-
leader needs to hear from everyone; to ensure this, nication, election, constructing a minimum spanning
it must initiate messages in both directions, which tree, or counting the number of nodes in the net-
need to propagate until they reach the broken link (if work. This implies that the number of fixed-length
any), and then responses must come bdck. but, " iode messages needed is at least e. The argument is for
doesn't know if it's adjacent to a broken link; to be comparison-based algorithms, but can be extended to
safe, it might have to behave as if it were even if it is more general algorithms using Ramsey Theory tech-
not, and send messages back toward the leader. This niques similar to those used ini [58] This result builds
means that the leader might get messages reflected on an earlier weaker result by Reischuk and Koshors
back from "fake extremities" and still not have heard in [93].
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The result follows as in [94] in case no one knows that a bound on the best case number of packets per
identity of neighbors, so this work supposes that each message would have been needed for a result such
node knows the identity of its immediate neighbors. as our second. We as theoreticians are supposed to
Then it cannot be proved, as in [94], that a mes- identify such hidden assumptions.
sage actually gets sent on each edge; however, bad In fact, although we did not think so at the time,
executions based on duplicate graphs with pairs of it turns out that this technical-sounding assumption
crossover edges demonstrate that a node must some- is necessary! For, Attiya, Fischer, Wang and Zuck
how find out additional information about its neigh- [11] have recently devised a counterexample algo-
bor; roughly speaking, this involves the node receiv- rithm that works with finitely many headers, but does
ing a message containing the identity of the neighbor, not have such a best-case bound! (At the time we
to use for comparison. An extension of the result found out about this result, we were trying to prove
gives a weaker lower bound on the number of mes- that such an algorithm was impossible.) Although
sages if nodes know about their neighbors to distance this algorithm, is very interesting as a counterexam-
up to b, b > 1. pie algorithm it not practical, since it uses more and

Yamashita and Kameda [101, 102] proved impossi- more packets, even in the best case, to send later and
bility results about computation in general graphs in later messages. This means the network operation
which the nodes are indistinguishable and have par- must get slower, and s 1 o w e r, and s
tial information about the graphs. 1 o w e r ... Some interesting open

questions remain about the rate at which the num-
Communication Protocols ber of packets required must grow with the number

of messages delivered.

There have been some isolated impossibility results We found defining the model to be a difficult part
about communication protocols; it seems as if there of the work in [78]. We used I/O automata; in fact,
is much more to be done here. this was our first attempt to use I/O automata to

Aho, Ullman, Weiner and Yannakakis [4] showed prove impossibility results. We found getting the for-
that certain kinds of data link behavior cannot be mal definitions right to be exceedingly tricky, espe-
achieved with protocols composes of finite-state ma- cially compared to the informal way in which we first
chines of particular sizes. The arguments are based on discussed the ideas. Much of the difficulty, as usual,
the limitations imposed by small numbers of states. involved the proper handling of admissibility. An-
Arguments use case analysis. other difficulty involved modeling the interaction of

Lynch, Mansour and Fekete [78] gave impossibil- algorithms; the components about which we prove
ity results for implementing desirable data link be- impossibility results interact with other components,
havior (reliable message delivery) in terms of typical the "physical channels". Thus, constructing a coun-
physical channel behavior (less reliable packet deliv- terexample requires not only giving a bad execution,
ery), in either of two cases: (1) if crashes can occur but also constructing a particular physical channel
that cause a loss of memory, or (2) if there are only that interacts with the algorithm to generate the bad
a bounded number of packet headers for use on the execution. Admissibility must also be handled prop-
physical channel and a best case bounded number of erly for the physical channels.
packets are required to deliver each message. It is not clear what impact the choice of the I/O

The basic idea of the proofs is that the physical automaton model had on the difficulty of this work.
channel cali "steal" some packets, while it accom- My feeling is that the model worked rather well, even
plishes the delivery of messages. This is because the though the definitions in [78] are not easy to under-
algorithms are supposed to tolerate packet loss. Then stand. I think that some of the difficulty is due to the
the "stolen" packets can be used to fool the receiver subtlety of the concepts and some due to the fact that
procesF into thinking another message is to be deliv- our definitions could still use some polishing. But I
ered. think the basic model is well suited to expressing all

These theorems have apparently seemed natural to the required concepts.
people in the practical communication protocols com- Spinelli [97] also proved essentially the same im-
munity, in fact almost part of the "folk wisdom". Our possibility result as the first, one in [78], on crash-
proofs serve to make these intuitions rigorous. They tolerance. A completely different style of impossibil-
also make the necessary assumptions explicit, some- ity result about communication protocols appears in
thing that network designers might not think about [18]; the authors prove a linear lower hound oi the
because they take them for granted. For instance, I amount of time required for deterministic broadcast
doubt that a network designer would have realized in a multiaccess medium.

Pae 17



2.6 Miscellaneous Ideas related to local knowledge have been used im-
plicitly in proofs since the beginning, although in the

Coan, Kolodner and Oki [32] proved the only exam- past few years there has been some work in trying to
pIe I have of an impossibility result for concurrently- make the use of knowledge explicit.
accessible databases. It gives simple proofs of limita- There are many reasons for the limits on local
tions on what types of transactions can execute in a knowledge in distributed settings. Uncertainty arises
partitioned network. This looks like a good area for from asynchrony, failures, and unknown inputs. In-
future work. formation about other parts of the system might not

Yao [103] and many others have written a series be communicated quickly because of limitations on
of papers about the communication complexity of communication media, e.g., the size of shared inem-
computing particular functions, where the inputs are ory, the bandwidth of message channels, or the dis-
distributed between several (usually 2) participants. tance information must travel.
The results are lower bounds on the number of bits Many specific techniques are used, all manifesta-
that need to be transmitted. The arguments are tions of the limitation of local knowledge. I have
information-theoretic, mentioned pigeonhole arguments for bounds on the

The one example I know involving cryptographic number of values of shared memory, scenario arqu-
protocols (outside of the authenticated Byzantine ments for bounds on the number of processes, chain
agreement work) is the work of Dwork and Stock- arguments, primarily for lower bounds on rounds for
meyer [49] giving limitations of the power of interac- consensus problems, bivalence arguments for impos-
tive proof systems in which the components are finite sibility of decision problems, communication diagram
automata. The limitations are based on the structure stretching arguments for time and message bounds
of finite-state machines. for synchronization problems, symmetry arguments

Chandy and Misra [29] showed that termination for impossibility and message lower bounds for net-
detection requires at least as many messages as the work computations, especially for ring computations,
underlying computation whose termination is being distance arguments for message bounds in low-degree
detected. They also proved a simple lower bound networks such as rings, crossing sequence arguments
on the number of messages required for distributed for ring computations, message-stealing arguments
solutions to the dining philosophers problem. The for communication protocols, and finite-state argu-
proofs use formal reasoning about knowledge. ments for FSA-based algorithms.

Finally, Anderson and Gouda [6] devised a new Also, some proofs make use of reducibilities to infer
proof of the impossibility of building an arbiter out of impossibility results from others that have previously
Boolean gates (the -arbiter glitch") problem. Their been proved.
proof is based on discrete bivalence considerations
rather than continuous considerations such as the
other proofs in the literature. They make a restrictive 3.2 Connections with Formal Model-
assumption that there not be any gates with outgo- ing
ing wires connected back to inputs of the same gate The work of doing impossibility proofs is tightly in-
(even with delay on the wire). It would be interest- tertwined with the work of defining formal models.
ing to understand what happens if this restriction is Firbi, impossibility proofs need to be based on rig-removed.Frtimosbltprosnetobbaeonig

orous and well-designed formal models. It may be
possible to avoid using formal models if one is inter-

3 General Comments ested only in designing algorithms. But it is not possi-
ble to fake an impossibility proof- such a proof makes

So what can be distilled from this survey" no sense at all without rigorous description. That is
not to say that one shouldn't work on an impossibility
proof at an informal level: the final product, however,

3.1 The Basic Ideas That Make The needs to be carefully described.
Proofs Work There are many features that make a mnodel appro-

priate fOr inipossiblity proofs. Of coii rs. if needs to
There is only one fundamental underlying idea on be rigorous. It must permit sparate descriptions of
which all of the proofs in this area are based, and the problems to be solved and of the allowable iniple-
that is the limitation imposed by local knowledge in a mentations. It nust provide a proper treatment of
distributed system. If a process sees the same thing admissibility and control of actions. Problem state-
in two executions, it will behave the same in both. ments must. be sufficiently "tight*' to serve as a rea-
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sonable contract between a specifier and an imple- an area to carry out the basic proofs. (Sometimes
mentor. (They should neither say too little nor too complex and specialized problems can be shown to
much.) Problem statements must be sufficiently clean be impossible using reducibilities, or by being special
to be invoked repeatedly as justifications for steps of cases of a result about simple, more general systems.)
a construction. Finally, implementation models need It is also important for problem statements to be as
to be clean and simple. (It is neither feasible nor in- general as possible, although generality seldom comes
teresting to prove impossibility results about a messy on the first try.
implementation model.) In a paper with contrasting possibility and impos-

A by-product of work on impossibility proofs is the sibility results, it is not unusual to find two different
development of formal models with the nice features statements for the "same" problem - a strong state-
listed above. If an area has only algorithms, but no ment for the algorithms and a weak statement for
impossibility results, I don't believe it is likely that the impossibility results. This strategy is a way of
the models that arise are likely to have the same fea- making each result as strong as possible.
tures. In particular, the problem statements are not
likely to be either tight or clean. 3.4 The Process of Working on Such

When many people get involved in proving upper Proofs
and lower bound results in an area, the problem state-
ments and implementation assumptions used in that How does one go about working on an impossibility
area tend to get a lot of careful discussion, which in proof? The first thing to do is to try to avoid solv-
turn helps lead to convergence on good sets of as- ing the problem, by using a reducibility to reduce
sumptions. some other unsolvable problem to it. If this fails,

The use of formal models forces people to make you next consider your intuitions about the problem.
their assumptions explicit. This helps to expose sub- This might not help much either: in my experience,
tie differences in assumptions, which often leads to my intuitions about which way the result will go have
many variations on the same problem, with corre- been wrong about 50% of the time.
sponding different results. Then it is time to begin the game of playing the

On the negative side, it is certainly true that the positive and negative directions of a proof against
use of rigorous formal models imposes overhead on each other. My colleagues and I have often worked al-
the presentation of results; for impossibility results, I ternately on one direction and the other, in each case
think this is unavoidable. until we got stuck. It is not a good idea to work just

on an impossibility result, because there is always the

3.3 Problem Statements unfortunate possibility that the task you are trying
to prove is impossible is in fact possible, and some

I have some general remarks about appropriate kinds algorithm may surface.
of problem statements for impossibility results. An interesting interplay often arises when you work

First, the problems must be stated precisely. This alternately on both directions. The limitations you
does not mean that they have to be stated in a formal find in designing an algorithm - e.g., the reason a par-
language such as temporal logic. It does mean that ticular algorithm fails - may be generalizable to give a
they must make sense in terms of a basic mathemati- limitation on all algorithms. This is how we found the
cal model that can be used for describing implementa- lower bound in [56]. Conversely, the reasons that an
tions and for carrying out the necessary mathematical impossibility proof fails can sometimes be exploited
arguments. to devise counterexample algorithms. This is how we

It is not enough for the problem statements to be found the no lockout algorithm in [26].
precise; the problems also need to be well-chosen - Arriving at a careful statement of the problem is
crisp and simple. This makes it a lot easier to invoke usually an iterative process. It usually takes a while
the problem statements when carrying out construc- just to get it correct: it's easy to make the prob-
tions of bad executions. It also makes it more likely lem statement too strong (e.g., by requiring that a
that the results obtained will be fundamental. resource be granted without saying that the envi-

It is very hard to work on a direct impossibility ronment must always return the resource), in which
proof for solving a very complex distributed com- case impossibility results might hold for trivial rea-
puting problem, e.g., for implementing a fancy dis- sons. It's also easy to make the statement too weak,
tributed UNIX in the presence of certain faults of the in which case trivial counterexample algorithms can
implementing processors, perhaps with a certain cost. arise.
One needs to extract simple prototyp,- prohlems from With some luck, this iterative prucez.s evvitually
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leads to an interesting problem statement and a corre- or system development work alone.
sponding impossibility result; then the problem state- Sometimes impossibility proofs lead to interesting
ment should be "polished". Assumptions that are work on ways of getting around the inherent limi-
not needed can be eliminated, so that impossibility tation. For example, many randomized algorithms
is proved based on the weakest possible set of re- have been produced in order to get around the in-
quirements. The problem statement should be made herent cost previously proved for deterministic and
as general and elegant as possible. (For example, nondeterministic algorithms. Examples include Ben-
in the impossibility result of [55], we weakened the Or's asynchronous fault-tolerant consensus algorithm
usual consensus validity conditions after the fact to in [19], Itai and Rodeh's randomized algorithms for
include any algorithm with the option of reaching ei- leader election without identifiers in [66] and Feldman
ther of two different decisions. This meant that the and Micali's fast algorithm for synchronous consensus
result was strong enough to apply to commit algo- [52].
rithms. We also noticed after the fact that we could The close connections between impossibility proofs
strengthen the power of the message system from in- and modeling means that impossibility results help in
dividual sends to atomic broadcast; this strengthen- the development of formal models. Models produced
ing weakens the requirements of the algorithm, since for impossibility proofs have many nice features, as I
it now is only required to work in a stronger environ- discussed earlier. They are not only useful for prov-
ment.) ing impossibility results; they also have other uses,

I find that one of the hardest aspects of work- such as specification and verification of algorithms
ing out problem statements and impossibility proofs and software.
(especially for asynchronous systems) is the proper Finally, I think that an understanding of impossi-
treatment of admissibility. The definitions and proofs bility results in an area is an important part of un-
must ensure that all (non-failed) processes continue derstanding the fundamental ideas of that area.
to take steps, or all messages are delivered, or that
other appropriate liveness conditions are satisfied, in 3.6 Unified Models
the bad admissible executions that are constructed.

A pet question of mine is what we can do to reduce

3.5 What Good Are Impossibility Re- the need for so much definitional and modeling work

suits? for impossibility results. Those of us who prove im-
possibility results get tired of writing those long and

What good are impossibility results, anyway? They formalism-laden definitions sections, and I am sure
don't seem very useful at first, since they don't allow most people are tired of reading them. Since such
computers to do anything they couldn't previously, precision is necessary, it seems that the only hope is

Most obviously, impossibility results tell you when to try to avoid repeated work by using a standard
you should stop trying to devise or improve an algo- model as the foundation. I am not sure yet how suc-
rithm. This information can be useful both for theo- cessful that will be.
retical research and for systems development work. A unified model could provide a standard way of

It is probably true that most systems developers, coping with ideas that appear repeatedly. For exam-
even when confronted with the proved impossibility plc, the I/O automaton model provides more-or-less
of what they're trying to do, will still keep trying to standardized ways of presenting algorithms and prob-
do it. This doesn't necessarily mean that they are ob- lem statements (for an asynchronous setting), and has
stinate, but rather that they have some flexibility in a built-in treatment of admissibility and of control of
their goals. E.g., if they can't acromplish something actions. These considerations arise in many differ-
absolutely, maybe they can settle for a solution that ent results, in many areas, including shared memory
works with "sufficiently high probability". In such a algorithms, distributed consensus and network algo-
case, the effect of the impossibility result might, be rithms.
to make a systems developer clarify his/her claims Use of a unified model that spans several areas
about what the system accomplishes, could facilitate the application of results from one

Proving impossibility results causes us to take a area to another area, e.g., the application of consen-
very analytical approach to understanding the area. sus results to mutual exclusion or register problems.
It causes us to state carefully exactly what assump- (This is true not just for impossibility results.)
tions (about the execution environment and the prob- I have tried using both of the general models I
lems) the results depend on. This sort of detailed in- have been involved with, in impossibility proofs. The
formation does not normally arise from or algorithm model of [81] was not that successful for this purpose,
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but in retrospect I think it was mainly because it is teiministic algorithms; it seems necessary to analyze
a shared-memory model and we were trying to use very complex probabilistic interactions between the
it for inappropriate settings such as message-passing algorithms and adversaries havir various amounts of
systems. The I/O automaton model has been used knowledge and power. The area of adversarial com-
recently, and seems reasonably successful. puting is one that really could use improved under-

I have considered recasting some earlier results in standing, and impossibility results for randomized al-
terms of I/O automata. In the early work on mutual gorithms would surely contribute to that understand-
exclusion, the definitions did not establish a clean ing.
boundary around the algorithms, allowing their inter-
active behavior to be clearly specified at that bound-
ary and making it possible to compose the algorithms 3.8 They're Easy
with others to build a system. I/0 automata could Impossibility proofs are much easier in our area than
remedy this. On the other hand, I/O automata have in most others. This is because the limitation of local
one drawback for this area: the fact that they treat in- knowledge is the fundamental fact about the setting
puts and outputs as separate events means that they in which we work, and it is a very powerful limitation.
might tend to treat some things non-atomically that
could be treated atomically. This could complicate
the proofs. 4 Future Directions

I think that impossibility results about atomic reg-
isters could expressed well using I/O automata. For
consensus, the result of [551 and other related results 4.1 Technical Open Questions
can also be redone using I/O automata; the new pre- I mentioned a few open questions earlier. These are
sentations seem to me to be a little simpler than the summarized here.
old. The synchronization result of [8] can also be
redone using I/O automata rather than our shared- 1. In the no-lockout mutual cxclusion work in [26],
memory model, and the new presentation seems much is the "forgetting" assumption necessary?
simpler and more natural than the old.

I don't expect a unified model to be a panacea. 2. In the consensus work in [46], where some as-
There are many ideas that are not common to all work sumptions are made about time for message de-
in the area, such as special assumptions about timing livery, what are the exact time bounds required
and failures. Each result would probably still need to for consensus?
be preceded by a description of its own set of special
conditions. But perhaps these might constitute less 3. With what probability can consensus be guaran-
overhead than before. Perhaps the use of a general teed by randomized algorithms, in the presence
model might help to identify which of the differences of a large number t of faults relative to the total
are essential, and remove the others, number n of processes?

It does not actually seem that thinking about a
general model such as the I/O automaton model has 4. What is the exact number of process names re-
yet been very helpful in getting insight while working quired by the process renaming problem of [10];
on the combinatorial results. So far, their use has is it n + I or n + t or somewhere in between?
been solely in producing clear and rigorous presenta-
tions (and finding mistakes in intuitions). 5. In the data link work of [78], how fast must the

number of packets grow with time? (Some new

3.7 Randomized Algorithms results appear in [99], in the current PODC.)

So far, there have been very few interesting impos- 6. More results in the style of [65] should be possi-
sibility results for randomized algorithms. The main ble. Exactly what objects can and can't be ira-
examples I have mentioned are [68, 60, 33, 1]. Of plemented in terms of what, other objects, in a
course, one would expect fewer impossibility results wait-free manner, or not in a wait-free manner?
for randomized algorithms, because less is impossi- What are the associated time bounds?
ble with such algorithms, but some more should be
provable than exist currently. 7. Can the result, in [6] b, extended to the case in

It is much harder to reason about the limitations which the circuit does not have a loop-free re-
of randomized algorithms than ahnut tho'e of de- strictinn?
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4.2 Other Areas randomized algorithms. More work is needed on con-
cepts relating different problems, such as reducibili-Impossibility results in distributed computing theory ties and complexity or computability classes. (Such

have been concentrated into a few subareas. It should classes have been very useful elsewhere in complexity

be possible to expand the set of problems being con- theory.)

sidered, by looking at other areas. There will be some

initial work required to identify crisp problems suit-
able for impossibility results.

Although some of these areas have already been 4.4 Modeling
well "mined" for basic algorithms, the same is not
true for impossibility results (and counterexample al- More work is needed in developing good models for
gorithms). Some results could arise based on the folk use in proving impossibility results for distributed
wisdom of the areas. Some suggestions for areas are: computing. A general model is desirable; I/O au-

tomata are one possibility, but there may be others.
1. Communication protocols: Not very much has If I/O automata are to be used, they need to be aug-

been done yet. There is still more to under-

stand about the relationship between the data mented in various ways, e.g., with time definitions as

link layer and the physical layer, and there are in [83].. It will still sometimes be necessary to develop
models tailored for specific areas. Perhaps a general
model can be used, with special structure added on

2. Real-time processing: It would be nice to have a to fit it to each area.

theory to describe the fundamental combinato-
rial properties of real-time systems. Impossibil-
ity results should be an important part of this. 4 U f and Generalizing Results
Note that both this and the preceding area re-
quire models for timing-dependent algorithms. It may be useful to try to unify the work that's al-

3. Parallel computing: There has been lots of com- ready been done, in the way that [54] unified a large

binatorial work in this area, but the models collection of n < 3t lower bounds. In particular, the

(PRAM's, etc.) are different from those com- results about ring computation could use such coa-

monly used in our area. We might want to con- lescing. There seem to be too many Q2(n log n) lower

sider models for parallel computing that are sim- bounds!

ilar to the models that have been considered in There seems to be something very similar about
our area - involving asynchrony and failures, for the problems of mutual exclusion, consensus, serializ-
example. ability, leader election, and even global snapshots. So

there should be similar inherent limitations on solving
4. Databases: Little has been done so far. This area these problems. Are there common proof techniques,

is characterized by complex problems and algo- or even reducibilities here?
rithms; it is necessary to identify simple, crisp Although there are 100 proofs, maybe there are
problems. It might be possible to prove limita- only six ideas - perhaps it is possible to prove the
tions on the ability of systems to guarantee se- Six Fundamental Theorems of Distributed Comput-
rializability with liveness, e.g., based on limited
information provided to each object, or based on ing, from which all of these other results will follow!

kinds of faulty behavior. Results might be ob-
tained about specific data types or transaction
types. 5 Conclusions

4.3 Other Styles of Results
I've tried in this talk to give you a good picture of the

I would like to see more lower bounds on time for history, status and flavor of research in impossibility
asynchronous algorithms, such as [8]. Such bounds proofs for distributed computing. I hope you're con-
have been underemphasized so far. Time mea- vinced that it is an interesting and fruitful area for
sure definitions appropriate for asynchronous sys- research. Now with some luck, skill and inspiration,
tems, such as those in [90, 81, 79, 83] must be used. we can continue to make great strides, proving more
More work is also needed on impossibility results for and more things to be impossible!
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