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heterogeneous parallel and vector supercomputers for a

Abstract. This paper describes a mathematical given problem set, subject to a fixed constraint, such as

programming approach to finding an optimal, cost. The duai problem could find minimal cost
hetereogeneous suite of processors to solve configuration for a fixed speed requirement. Thus the
supercomputing problems. This technique, called Optimal Selection Theory is a mathematical provram for

oz~rccicurrency, work,,L ,cit Gie computzALIOnai which one wishes to minimize the total time spent on

requirements are diverse and significant portions of the the sum of all code subscgments. The method is

code are not ightly-coupled, It is also dependent on new mathematically dependent on a new methodology of code
methods of benchmarking and code profiling, as well as profiling of the probem sets being implemented and a
eventual use of Al techniques for intelligent management new methods.ogy c analytic.it benchmarking. Tile

of the selected superconcurrent suite. formulation also, rests on two mathematical assumptions
outlined below. The intent is to use this technique to
provide supercomputing power for Naval Command and

Keywords. Superconcurrency, Supercompu~ting, Control (C2) problems, however this paradigm should
Code Profiling, Benchmarking, Optimal Selection, work for many classcs of supercomputing problems. The
Amdahl's Law basic result is that for a computational problem that has a

diverse set of computational types, not all tightly-
1. Objective coupled, the optimal solution is a heterogeneous suite of

Ercegovac [1988] has recently looked at the parallel and vector processors rather than a single
feasibility of a suite of heterogeneot' processors to solve supercomputing architecture. This solution is called
supercomputing problems. Resnikoff 1 19871 and Kamen superconcurrency both because it is an approach to
[1989] have examined the cost-effectiveness of supercomputing and because it concurrently uses
supercomputers (one generally finds the smaller mini- concurrent (vector and parallel) processors.
supers to be more cost-effective than the largest-sized
processors). Bokhari [ 19881 has investigated partitioning
problems among various types of processors. There are 2. Mathematical Formulation
several reasons for partitioning. First many large codes Let us state the basic problem as a linear (actually
have diverse computational types. Second the vari integer) program. We want to get the most power we
super-speed parallel and vector processors have qui can, given some overall cost constraint. More
different performance profiles on these types, often mathematically we wish to maximize the power (or
amounting to several orders of magnitude. It is a speed) function, P. We do this by minimizing a time
commonplace observation and a corollary of Amdahl's
Law [1967] that any single type of supercomputer, often function, T, giving the time taken on a code, so that P
spends most of its time computing code types for which
it is poorly designed. If we could configure our processor - 1 T is defined on the two-variable range, X x
suite so that each processor could spend almost all i1s S. X, is the set of potential machine choices, X,
time on code for which it is well designed, the overall
increase in speed could be orders of magnitude over what { xI where the Xi are candidate architectures.
is now achieved by conventional supercomputing. S is a non-overlapping set of all code subsCgments. s :

Superconcurrency is a general technique for thus S U sj and Sj n Sk = 0 if j # k. The
matching and managing optimally configured suites of
super-speed processors. In particular this paper shows a choice of tie S- defines the code profiling and analytical
general method for choosing the most powerful suite o benchmarking problem. We will shortly look at



motivation and explanation of this point. We denot C
ais the overall cost constraint, IC i 1 as the set of cI,,sts SOLUTION SUITE P

corresponding to the { Xi and 1 ti } as the set of I t.0

corresponding time functions, i.e., tiS ) is Iht" tmtn . - .)

tken by machine X i on code segment Sj. et I 4 0 x 514

denote the set of all possible indces of one inacthine t\ pC

per segment with V i denoting tile ttIlbler Of such SO!I tiIti I c arlN 'L V,5 at overall qcd- up faCtor

machines used per segment. Let V i be the nunhcr of (on the total vec Iiltable co(tC) of P 5. Soluttion 3

machines of type i (wAich iay be () if machite Xi ,t ,., e a Need- tip lt.t r of 4 ott it. ttk-dc otnposale

in indexed configuration). Trhen tile mathetatical \C t ' l io t tti ll t1 . ich \C usc Illat inc X and a

programming problem can now be stated as: sp'c(Itp of a little better than 12 12,S) on the
dccomrxtsablc portion. lie tirie relative to tile original
Nealar basclinC is 1/2 * 1/4 for the hall of the vector code

(1) MINIMIZE Iha I, molt-dccotlt (os; ilc. Assuming th.le dccotIpo,;ablc
code is distributed eveily over all four machines, tle tillic

T(X i , Sj) - " I li(') V Ior the other half of tlte codc is 1/2" 1/4 * (.75" I /1
.25 * 1/4). Sunlloitg these two yields a total time
relative to the original scalar baseline tinte of 1i, +

such that iVi C i < C. 5/128 or 21/128. Thus it has an overall speed-up factor

olP = 6.09 (128/21 ). Similarly we can compute that

Because of assumptions we wtil be able to make for solution., 2 P = 5.33 (10/3) because the total tillic
later abxut linearity, we will walt to group together all
code subsegmenLs of the sante type, e.g., vecto i able rIt!v, to )h, ,rigial scalar baseline is 1/2 * 1/4 + 1/2

code subsegements, or ones susceptible to paralleisM. (1/2 * 1/4) = 3/16. For solution 4 the rc!ative lolafl

Thus we will divide S into equivalence classes, Gs, by time is 1/2 * 1/3 + 1/2 * (1/6 * 1/3) so P = 5.14

code type. For convenience we will index these classes (36/7). "hus solution 3 is optimal.
!)y the ";'rst subsegment of that type, e.g.,

( { sl S 1  Sj, where ( denotes having sanc 4. Underlying Assumptions
n()e of ithe fundantiontal lertm tance liitiig

code type}. We will later use the notation [i( Gk ) to factors of vector or parallel superconputlers has been the
pertfonitancc characteristics of such architectures on codes

denote ti(O k ) = ti(S ) for all Sj t" (k" and algorithns for which they are not well designed.
Thlis is bCk ausC such machines have gterally been used
on entire codes and large codes usually have signilt~llit

3. Vector-only Example portilns ,vhichlt are not vectori,able or portions which are
3 . us consider first an intuitive example using not parallel. The underlying motivation for this paper Is

pi Imarilv vectorizable code. Typically somc portion l the sire to Undcrstand how to map the various atomic

thC code will be decot posable and Soleic lion- c port cuts to tle types tfarcitires for which tltcy

decimposable. By deconltpLsable vector le vwe mican arc best stited. Three itf the resutitg needs that follow

\cctiri/able code for whtich the original problkm can b fro Itlis arc i (listributcd intelligent network systeitt

brok en up into sonme sitall number of independent ()I NS) to cottrol and scht li c such cde/architetore
v .tsut lest s ctidr a slImI t tnlhilg, aid new kinds of analtical Crichiirk in andvectaori/ale Suppoe it Isst IS o 5() lt S'c o flabl ' code prolilin! ilbriclv dliscu,,sed bloxw.

e \atiiplc. Sitppose it to be, 5)11 dIc ip.'cl
vec tiri.abl e and 50/( I tI cC lc l)satIhC vectori/abc.
Stippose further that tlte overall cost constraint is s2 lT cre arc 'tIs o (unt)lietal tttathen'i ca ril
anl thit we have a choice of tlhrcc tachincs. Maclic x I . StiIions used itt ttis paper.

costs $2% and speeds ip vectori/able cole (over siOlllct cach ina liitc's ciharacterti. ic fti c litn, ti, i.e..
baseline scalar systcn) by a factor of 5. Machine x- ti(s j ) IS assiUlicd to he I inear ill code seWgiltit lengtht
costs I M and speeds up vectorizable code by a fact ir of
o 4. Finally machine x ; costs 1l3M attd spceds ip ISj (or iltnpltcd lcni'h due to, say. DI loops).

vcctirizable code by 3. We can ettinicraic ilt po ssiblc Actualy this is norially ai invalid assuniption v ien
solitions that satisfy the cost constraint, niatcly: coisidteriitg tte relatioslthip itl inachine bchavior across

code types! I lowever wc will be maiking this assttint ot



only when considering the effect of any machi ne t pe (2) mimizi-l/
against optimally matched code. This is equivalent, to
saying that each type of architecture acts linearly jjtiG
(asymptotically) on that type of code for which it is best1(x )
suited, e.g., a vector machine take,, twice as long to
process a vector of lengtn 1 000 as of' lerigtti Ut.It is 1.
precisely because to this assumptionl of linearity that w\e C1 7.J /VI J

can legitimiately reftcr to ai( s well as t j)

Similarly we will assume the dlecrease in time due to MKI that I v. C _

multiple copies of the same machine on optimal ly (where Vi rniv be ()if' imachi ne not In Optimal
maithed and decomposable code to be linear, coill i uration)

5. Mathematical Reformulation 6. Multi-type Example
Since we are supposii:g all the tirne functions. tP L et U~s consider a mor, oipl icatetl exaniple tli:iii

to be iic ar, -;e- can write ea2: uc fLIrICtiO2. 2-:arl icr. In th is we Thai I have diiffe'rent types of- vector,

ti(. ) -: Uto(Gj ) + f.scalar, and parallel subcodc. 'We Will Suppose we have
ricode that is 5(1% vectorizable 035( non -decomnposable

and 15tr deccomposable), 20 , fine-grain parallel, '101

\\ here the PI are overhead factors the (Xi are speed L11 coarse-ramn parallel, and I W0% scaks' For each of the
possiblenahnsom Nc shlegk slie, i, 'actors

factors (thuLs (X aie such that tv pically 0. (i< or. .,o(!, for which tlk y aic decsigned. as well as scalai

1 , and to represents some baseline timec function such speed-tip (over some baseline), inl case the machine is

as that derived from, say, a VA*X. Siiuce we arc primarily used for scalar code. WVe shiallI also assuIme that each tpeFi
of' machine only achieves scalar speed onl code for which

initrested in as niptotic results, we~ wIl ignore the Pi it is not decsigned, e.g,., a vector machine will be assumed
and simplify the expression to bc: to get only scalar speed onl parallel codle. Suppose our

tie. ) = C~,(joverall cost constraint is S4M. Let our vector mnachines
l'Jiiibe: x I with cost S4 N, vector ,,pucd ;p of' 1M, and scalai

spee-d-up of 2, x-) with co,:t SI M, vector speed-up of 5.
Now for any given code, S , let it (or at teast its "hot ?nd scir spezl-tp ot'2. and .%; witjh costS I/3 eco

po~ts" bdivided into non-overlapping subsegmnlt sets, speetbup of 3, and scalar speed-up of' I. Let otir fine-

G- Let b e the percentage of time spent by the grain parallel machines be: x4 with cost S I M, parallel

baseline machine on code subsegmntt set G j .iC., S pCed -p U I0f I15, x~ with 11cost S I/3M , parallelc speed(I- up1( ni

tp(Gj = ) 1 TChtus we l'thtie basel ine cicna" 6, and :;calar speedI-ip of' 1. Let our coarse-grain paral lel

hav-c percentages achinecs he: x6  writhl cost S I N , parallel sp eed-tp of 4.

,saa/lC~-pO'1 and \ 7 with cost S l/3N1, parallel
Io(S )- ~ L~) - 11 ( ) peed-up of 2, diti scalar speed-up of l. Finally let xtbe

JJ 11j Ii scalar machine with cost SI/4 NIl and speed-tip of- 2.

j 1t1j O!ne solution would be to spend S4.NI on -the
highest performing vector mnachine, x 1, and in 11iCt this is

the traditonal sti jercomptlting solut ion. Tb i solution
Fi nally we need to deal Wvith thle SpCed-tw)S g\el Inl 111C gives a speed-tip fatctor of' 10( onl the \'ector portion aind a
deecomyss)able cases (vector decomposable or all parallel speed-utp of 2 onl thle rest. ITius its total timec relat i\ e to

t'e onci nal scalar baseline is 1/2(0 4- 1/4 - "/20. Thus
t\ k). A menione abve w assme tat fr \it has an overall speed-up factor (If P1 = 3.33.Tbi

I)rOCSSOrs thi\, will give a linear speed-up of V, i.e. .for solution is not nearly optimal! Coinsitder a solution of

V loci)ee\N(rs with chiaracteristic tn[ie lunction. i, one '! fl. the 10oe m1ne1 isslto
has overall speed-tip o11 5 oIn thle tn-dcconlposable

will have total timei givenl by t /V. It wIll bc vector, better than 1 2 on thle decomiposable, 15 on the
understood that Vi is I for n(In-(lecomp(Isable cases. fine-graiti, 4 on thle coarse-grain, and 2 or, the scalar.

Thus its total timec relative to tho original scalar baseline
This gives tis a reformiulation of' the ioirlal s .35/5 + .15 * 1/4 * (.25 * 1/5 + .75 * 1/3) + .2/11:)4
tuathemnat ical pogramn as: .2/4 + .1/2. Thus it has an overall speed-tip Iactor of' 11=

5. 139. Furthermore this does not even consider thle
sci lda rv atlvan taize of this in tlt i - iathi ne solution that



the machines not being used on this code at any one time proportion of the total importance value of 1, we have for
are available for other work. This example is, we the jth code profile type:
believe, representative of a wide class of supercomputing
problems in which the best total speed-up comes from a G;
multi-machine solution in which .- one machine is a -I,k

traditonai sulkrcomputer. The new 3 j's can he scaled so that they add up to 1

7. Mixed Strategies to produce new Ij's to replace the old T'j's in equation

There is an -. tension of the nathem:tica! (2 1. This revikion will permit the valu..inn of the
program, (2), above when we want a mixed strategy of optimum mix of processors to be sensitive to priorities
optimizing several project applications with varying favoring some projects. Note that "project" can be

interpreted as "project application" if it is felt that within
priorities. Suppose there are Q projects, Pk (k. ... a project some applications have different priorities than

others. With this interprctaton. Q will jut be a larger
Q) with relative weightings k and k Xk real number.

8. Code Types and Benchmarking
Where several application projects need to be Benchmarking and Code Profiling - As discussed

accomodated by the optimum choice of a mix of earlier, tlie basic approach of this paper is contingent
processors, we may weight the times spent on the code upon breaking down the overall code into groups of
profiles types in each project by the importance of that segments within which the processing requirements are
project and use the sums of these derivative times (again the same or homogeneous. The segments of
suitably calibrated to add up to 1) to determine the homogeneous type are assigned to optimal processors for
relative need for processors to handle different code profile that type. Before that can be done, it is necessary to take
types. For example, suppose there are just two projects, two benchmarking type steps. The first, called code-type
a high-priority one with weighting kI = 0.7, and a low- profiling is a code specific tanction to identify the

priority one, with X'- = 0.3. If a particular profile type "natural" types of code that are actually present and group
"- " the code segments by type. Types that might bea

appears in j ust the high-priority project, h-- percentage of tecd emnsb ye ye htmgtb
appeta ijt thesui.e high-priority project percenage identified include vectnrizable decomposable, vectorizable
time that it takes up i f, .he higi-priori aroject can he non-decomposable, fine/coarse-grain parallel,
weighted by 0.7, whereas if it appears also in the low- SIMD/MIMD parallei, scalar, special purpose, e.g., FFT
priority project, the percentage of time that profile type or specialized sort algorithm, etc. The second step, called
takes in the low-priority project weighted by 0.3 would analytical benchmarking is an analysis of how the
be added to the original weighted value to give the overall available processors perform on the identified types,
value to contribute to minimizing time under the cost this identifies processors that are appropriate solutions for
coistraints. each code type. Thus it is more analytical than some

previous techniques that simply looked at the oerall
Suppose there are M profile types, M k,  result of running a processor on a benchmirk entire code

(k= 1...,M) with relative time requirements that are or set of loops (without any real analysis of how the

calibrated to sum to I for each project. Then we have an myriad of relevant factors contributed). However it
should be pointed out that recent research by Dongarra

M x Q matrix to express the distribution of time [19891 on LINPACK and Murphy 119891 on Livermore
needed to handle the code profile types for the projects and Loops provides some insight to the processes involved.

a Q x I matrix of importance values associated with the Both cmie profiling and analytical benchmarking are now
various prokects which can be multiplied to produce an being undertaken by the Superconcurrency Research Team

M X I matrix of weighted times for the different code (SRT) at the Naval Ocean Systems Center (NOSC). Oui
initial research at Profiling/Benchinarking was directed at

profiles. These weighted times can then be used, once several large Naval C2 problems and a suite of

scaled to add to 1, as the 7j for the code profiles in (2) potentially matching mini-supers/parallel processors
above. (including small Connection Machine, DAP. Ardent,

Encore, Butterfly, and Convex). Most of the C2

If the priorities of the dlifferent projects arc used in applications we have looked at so far have been relatively
this way, the original assignment of the priorities to hxosely-coupled and we have found it feasible to break
projects will need to take into account the quantity of them up (manually) into homogeneous portions and
code for the project, since the process of scaling of the assign them to appropriate processors. From the
ui,,i, iieded fOr code of different types is done by project, processor (benchmarking) point of view, our most
and distinctions of code volume among the projects are interesting result to date is how consistently the long

vector problems are much better done on SIMDthereby erased. If there are Q projects ceich with some



(Connection Machine or DAP) processors rather than survivability, tailorability, and evolutionary
vector processors. development.
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9. Superconcurrency
The uiderlying premise of this paper is that many

codes, and particularly many sets of codes, have a
heterogeneous set of computational types. The solution,
called superconcurrency, is nothing more than the
commonsensical approach of selecting a heterogeneous
suite of processors thal, rTnt ffectively addresses this
diverse set of requirements. The solution is expressed as
a mathematical program with all that implies about the
existence of an optimal solution. This approach requires a
more analytical way of benchmarking and codie profiling
in order to analyze the power of various processors on
atomic portions of code. Superconcurrency has the
potential of achieving orders of magnitude greatel sped
over conventional supercomputers if the code profiling
techniques show the overall application to be quite
diverse in its requirments. The future addition of a
Distributed Intelligent Network System to manage a
supcrconcurrent suite of vector and parallel processors
offers the potential of robustness, configuration control,


