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Optimal

Richard F. Freund, Naval Ocean Systems Center

Abstract. This paper describes a mathematical
programming approach to finding an optimal,
hetercogencous suite of processors 1o solve
supercomputing problems. This techmique, called
SuBLICORCUITENC y, WOTKs Luat Wiicit tiie COMPULALIONal
requirements are diverse and significant portions of the
code are not tightly-coupled. It is also dependent on new
methods of benchmarking and code profiling, as well as
eventual use of Al techniques for intelligent management
of the selected supcrconcurrent suite.

Keywords. Superconcurrency, Supercomputing,
Code Profiling, Benchmarking, Optimal Sclection,
Amdahl's Law

1. Objective

Ercegovac [1988] has recently looked at the
feasibility of a suite of heterogeneous processors to solve
supercomputing problems. Resnikoff {1987} and Kamen
[1989] have examined the cost-cffectiveness of
supercomputers (one generally finds the smaller mini-
supers to be morc cost-cffective than the largest-sized
processors). Bokhari [1988] has investigated partitioning
problems among various types of processors. There are
scveral reasons for partitioning.  First many large codes
have diverse computational types. Sccond the vari-
super-speed parallel and vector processors have quii
different performance profiles on these types, often
amounting to scveral orders of magnitude. Tiisa
commonplace observation and a corollary of Amdahl's
Law [1967] that any single type of supercomputer, often
spends most of its time computing code types for which
it is poorly designed. If we could configure our processor
suite so that each processor could spend almost all its
time on code for which it is well designed, the overall
increase in speed could be orders of magnitude over what
is now achicved by conventional supercomputing.

Superconcurrency is a general technigue for
matching and managing optimally configured suiles ot
super-speed processors.  In particular this paper shows a
general method for choosing the most powerful suite of
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heterogencous parallel and vector supercomputers for a
:iven problem set, subject o a tixed constraint, such as
cost. The duai problem could find minimal cost
contiguration for a fixed speed requirement. Thus the
Optimal Sclecton Theory is @ mathematical program for
which one wishes to minimize the total time spent on
the sum of all code subscgments. The method s
mathematically dependent on a new methodology of code
profiling of the problem scts being implemented and a
ncw methodoe.ogy of analytica! benchmarking. The
formulation also rests on two mathematical assumptions
outlined below. The intent is to use this technique to
provide supercomputing power for Naval Command and
Control (C2) problems, however this paradigm should
work for many classcs of supercomputing problems. The
basic result is that for a computational problem that has a
diverse set of computational types, not all tightly-
coupled, the optimal solution is a heterogencous suite of
parallel and vector processors rather than a single
supercomputing architecture. This solution is called
superconcurrency both because it is an approach to
supercomputing and because it concurrently uscs
concurrent (vector and parailel) processors.

2. Mathematical Formulation

Let us state the basic problem as a linear (actually
integer) program. We want to get the most power we
can, given some overall cost constraint. More
mathematically we wish to maximize the power (or

speed) function, P We do this by minimizing a timg
function. T, giving the time taken on a code, so that P
= T-1. T is defined on the two-variable range, K x
S. K is the setof potential machine choices, X =
{Xi} where the X are candidate architectures.

S isa non-overlapping sct of all code subscgmients, It
thus S = U S and S N s = ifj # K. The
choice of the §; defines the code profiling and analytical
henchmarking problem. We will shortly look at




motivation and explanation of this point. We denote C
as the overall cost constraint, {Ci} as the set of costs
corresponding to the {X;} and {t;} as the sctof
corresponding time funciions, re., 4l Si) ix the e

taken by machine X; on code segnent 8. Let |
denote the set of all possible indices of one machime type
per segment with Vi denoting the number of such
machines used per segment. Let Vy be the number of
machines of type 1 (which may be G machine X not
in indexed configuration). Then the mathematical
programming problem can now be stated as:

(1) MINIMIZE

T(X;, Sj) = Zi e 1y li(.\'j)/\’i
such lhutZiVi C; <C

Because of assumptions we witl he able to make
later about lincarity, we will want to group together all
code subsegments of the same type, ¢.g., vectonzable
cade subsegements, or onges susceptible to parallel:sm.

Thus we will divide 8 into equivalence classes, G, by
code type. For convenience we will index these chisses
by the et subsegment of that type, ¢.g.,

0 = { Sjl S = SJ where = denotes having same

code type}. We will later use the notation li((')'k) to

denote 1,(0y) = Z [i(SJ') tor all 85 ¢ Ok.

3. Vector-only Example

Let us consider first an intuitive example using
pomarily vectorizable code. Typically some portion of
the code will be decomposable and some non-
decomposable. By decomposable vector code we mean
vectorizable code for which the original problem can be
broken up into some small number of independent
vectorizable subcodes. et us consider a specific code
cxample. Suppose it to be 30% decomposable
vectorizable and S50% non-decomposable vectonizable,
Suppose turther that the overall cost constraint 1s $2M
and that we have a choice of three machines. Machme x|
Costs $2M and speeds up vectorizable code (over some
hascline scalar system) by a factor of 5. Machine x5
costs SIM and speeds up vectorizable code by a factor of
of 4. Finally machine x 3 costs 51/3M and speeds up
vectorizable code by 30 We can enumerate the possible
solutions that satisfy the cost constraing, namely:

SOLUTION SUITE P
1 1 x) S.00
2 AR .31
3 a4 3y 6.09
3 6 X3 S04

Solution 1 clearly gives an overall speed-up factor
(on the total vectorizable codey of P = 5. Solution 3
sives aspeed-up factor of 4 on the non-decomposable
vedtor portion con which we use machine Xy and a
specdup ol adntle better than 12 (12.8) on the
decomposable pormion. The nme relative to the onginal
scalar basehine s 172 * 14 tor the half of the vector code
that 1s non-decomposible. Assuming the decomposable
code s distributed evenly over all four machines, the time
for the other halt of the codeas 1/2* 14 * (75 * 1/3 +
2504, Sumiming these two yields a total tme
relative to the origmal scalar baseline ume of 1/8 +
S/128 or 21/128. Thus it has an overall speed-up factor

of P =69 (128/721). Similarly we can compute that

for solution 2, P =533 (16/3) because the total time
relative to the ongmal scalar baseline is 1/2* 1/4 + 1/2
*(1/2* 1/4) = 3/16. For solution 4 the relative toral

ume is 1/2* 1/3 + 1/2*(1/6 * 1/3) so P =5
(36/7). Thus solution 3 is optimal.

4. Underlying Assumptions

One of the fundamental performance limiung
factors of vector or parallel supercomputers has been the
performance characterstics of such architectures on codes
and algorithms tor which they are not well designed.
This 1s because such machines have generally been used
on entire codes and large codes usually have signiticant
portions which are not vectorizable or portions which are
not parallel. The underlying motivation tor this paper is
the desire to understand how o map the vanous atomic
code portions to the types of architectures for which they
are best sited. Three of the resulting needs that follow
from this are a distributed mntelligent network system
(DINS) to control and schedule such code/architeciure
matching, and new kinds of analvucal henchmarking and
code protiling (hricfly discussed below),

There are two fundamental mathemtical
assumptions used in this paper. Oneas the hineanty of
cach machine's charactenstic tme function, 1, i,
Ii(S,') is assumed to be lincar m code scgment fength
I\Jl (or imphed length due to, say. DO loops).
Actuaily this s normally an ivahd assumption when

considering the relationship of machine behavior across
cade types! However we will be makimg this assumntion




only when considering the effect of any machine type
against optimally matched code. This 1s equtvalent to
saytng that each type of architecture acts lincarly
(asymptoticaliy) on that type of code for which it is best
suited, €.g., a vector machine takes twice as long to
process a vector of length 1000 as of length SOt Itis
precisely because to this assumption of lincarity that we
can legitimately refer to Ii(Gj) as well as [i(sj)-
Similarly we will assume the decrease in ume due to
multiple copics of the same machine on optimally
matched and decomposable code to be fincar.

5. Mathematical Reformulation
Since we are supposityg all the time functions, ;.
w be tinear, we can write caoh sech function ag:

(o) = oitg(o)) + B

where the Bi are overhead factors the Q4 are speed up
factors (thus O are such that typically 0 < o <<

1. and t(y represents some bascline ime function such

as that derived from, say, a VAX. Siice we are primarily

interested in asymptotic results, we will ignore the Bi
and simplify the expression to be:

ti(cj) = C('lt(\(Gj-)

Now for any given code, S , let it {or at 12ast its "hot
spots”) be divided into non-overlapping subscgment sets,
(S)-. Let th be the percentage of time spent by the
bascline machine on code subsegment set GJ: e,
I()(Gj) = T[J'. Thus we have the bascline pereentages
given by:

T()(S):t()(zjcj) = Zj ty (o))
= ZJTCJ = ]

Finally we need to deal with the speed-ups given in the
decompaosable cases (vector decomposable or all parallel
types). As mentioned above we assume that for V
processors this will give a hinear speed-up ol 'V, ic., for

Voprocessors with characteristic time function, Ii, we

will have total ume given by /Vi~ It will he
understood that V; 1s 1 for non-decomposable cases.

This gives us a reformulation of the original
mathematical program as:

(2) MINIMIZE

T(X;, 0)) = Zi £ l.jli(Gj)/Vi
= Ziz'l.jainj/\'i

1 ~ - I
such that Zivi ¢, = C

(where Vi may be (1f machine X not in optimal
configuration)

6. Multi-type Fxample

Let us consider a more complicated example than
carlier. i ithis we shall have different types of vector,
scalar, and parallel subcode. We will suppose we have
code that is 50% vectorizable (354 non-decomposable
and 15% decomposable), 209 fine-grain paralle], 200
coarse-grain parallel, and 10% scalor For cach of the
possible machines below, we shall give spee-y factors
on code for which they e designed. as well as scala
speed-up (over some baseline), in case the machine 1s
used for scalar code. We shall also assume that cach type
of machine only achicves scalar speed on code for which
it s not designed, ¢.¢., a vector machine will be assumed
to get only scalar speed on parallel code. Suppose our
overall cost constraing is SIM. Let our vector machines
be: xy with cost $M, vector speed ap of 10, and scalar
speed-vp of 2, x5 with cost STM, vector speed-up of 5.
and scalar speed-up of 2, and x3 with cost S1/3M, vector
speed-up of 3, and scalar speed-up of 1. Let our fine-
grain parallel machines be: xg with cost SEM, parallel
speed-up of 15, x5 with cost S1/3M, parallel speed-up of
6, and scalar speed-up of 1. Let our coarse-grain paraliel
machines be: xg with cost SIM, parallel speed-up of 4,
scalar speed-up of 1, and x7 with cost SI/AM, parallel
speed-up ol 2, and scalar speed-up ot 1. Finally let xg be
a scalar machine with cost S14M and speed-up of 2.

Once solution would be 1o spend S4M on the
highest performing vector machine, xq. and i fact this is
the traditonal supercomputing solution. This solution
gives o specd-up factor of 10 on the vector portion and a
speed-up of 2 on the rest. Thus its total time relative o
the original scalar baschine 15 1720+ 1/4 = //20. Thus
it has an overall speed-up fuctor of P = 333, This
solution is not nearly optimal! Consider a solution of
one xo, three x3 . 0ne vy and one xg. This solution
has overall speed-up ot 5 on the non-decomposable
vector, better than 12 on the decomposable, 15 on the
finc-grain, 4 on the coarse-grain, and 2 on the scalar.
Thus its total time relative to the onginal scalar bascline
INERAVATESR R VAT (A T VAR SATAE VA) R A R IRS
274+ 1720 Thus it has an overall speed-up factor of P =
5.139. Furthermore this does not even consider the
secondary advantage of this multi-machine solution that




the machines not being used on this code at any one ume
are available for other work. This example is, we
believe, representative of a wide class of supercomputing
problems in which the best total speed-up comes from a
multi-machine solution in which re one machine is a
traditonai supcrcomputer.

7. Mixed Strategies

There is an extenston of the mathematical
program, (2), above when we want a mixed strategy of
optimizing several project applications with varying

priorities. Suppose there are Q projects, Pi. k=t ...

Q) with relative weightings kk and Zk )Vk = 1.

Where several application projects need to be
accomodated by the optimum choice of a mix of
processors, we may weight the times spent on the code
profiles types in each project by the importance of that
project and use the sums of these derivative times (again
suitably calibratcd to add up to 1) to determine the
relative need for processors to handle different code profile
types. For example, suppose there are just two projects,
a high-priority one with weighting 7\1 = (.7, and a low-
priority ong, with }\2 = 0.3, If a particular profile type
appears in just the high-priority project, the percentage of
time that it takes up i wie higii-priority project can be
weighted by 0.7, whereas if it appears also in the low-
priority project, the percentage of time that profile type
takes in the low-priority project weighted by 0.3 would
be added to the original weighted value to give the overall
value to contribute to minimizing time under the cost
coustraints.

Supposc there are M profile types, my,
(k=1,...,M) with relative time requirements that are
calibrated to sum to 1 for each project. Then we have an
M x @ inatrix 10 express the distribution of time
needed to handle the code profile types for the projects and
a QQ x 1 matrix of importance values associated with the
various projects which can be multiplied to produce an
M x 1 matrix of weigited times for the different code
profiles. These weighted times can then be used, once
scaled to add to 1, as the th for the code profiles in (2)
above,

If the prionitics of the different projects are used 1n
this way, the original assignment of the prioritics to
projects will need to take into account the quantity of
code for the project, since the process of scaling of the
utnes needed {ur code of different types is done by project,
and distinctions of code volume among the projects are

thereby erased. If there are QQ projects each with seme

proportion of the total importance value of 1, we have for
the jth code profile type:

o Z Sy

0; = kAT

The new GJ s can be scaled so that they add up to
to produce new T's 1o replace the old TT;'s in equation
(2y. This revision will permut the evaluation of the
optimum mix of processors to be sensitive 1o priontics
favoring some projects. Note that “project” can be
interpreted as "project application™ if 1t is felt that within
a project some applications have different prionitics than
others. With this interpretaton, (G will just be a larger
real number.

8. Code Types and Benchmarking

Benchmarking and Code Profiling - As discussed
carlier, tire basic approach of this paper is contingent
upon breaking down the overall code into groups of
scgments within which the processing requirements are
the same or homogencous. The segments of
homogencous type are assigned to optimal processors for
that type. Before that can be done, it is necessary to take
two benchmarking type steps. The first, called code-type
profiling 1s a code specific tunction to identify the
"natural” types of code that are actually present and group
the code segments by type. Types that might be
identificd include vectorizable decomposable, vectorizable
non-decomposable, finc/coarse-grain parallel,
SIMD/MIMD parallei, scalar, special purpose, c.g., FFT
or specialized sort algorithm, ctc. The sccond step, called
analytical benchmarking is an analysis of how the
available processors perform on the identificd types, L.c.,
this identifics processors that arc appropriate solutions for
cach code type. Thus it is more analytical than come
previous technigues that simply looked at the overall
result of running a processor on a benchmark entire code
or sct of loops (without any real analysis of how the
myriad of relevant {actors contributed). However it
should be pointed out that recent research by Dongarra
{1989] on LINPACK and Murphy [1989] on Livermore
Loops provides some insight to the processes involved,
Both code profiling and analytical benchmarking are now
being undertaken by the Superconcurrency Rescarch Team
(SRT) at the Naval Ocean Systems Center (NOSC). Ou
initial research at Profiling/Benchmarking was directed at
several large Naval C2 problems and a suite of
potentially matching mini-supers/parallel processors
(including small Connection Machine, DAP, Ardent,
Encore, Butterfly, and Convex). Most of the C2
applications we have looked at so {ar have been relatively
looscly-coupled and we have found it feasible to break
them up (manually) into homogeneous portions and
assign them to appropriate processors. From the
processor (benchmarking) peint of view, our most
interesting resuit to date 1s how consistently the long
vector problems are much better done on SIMD




(Connection Machine or DAP) processors rather than
VECLOr Processors.

Bandwidth and Mixed Types - Tightly and
medium-coupled portions of code will be more dilficult 1o
break up and assign to different processors and the ability
1o do this will rest in part on the bandwidths of the
storage devices and distributed network used. In these
cases, it may be necessary to assign mixed type code to
the best processor available. This can always be done
optimally with a superconcurrent approach but on an ad
hoc basis with reduced theoretical value.

Distributed Intelligent Network System (DINS) -
One of the most active current research areas of the SRT
is DINS. DINS will be a reasoning system that uses
information from Code Profiling, Analytical
Benchmarking, and network bandwidth 1o optimally
assign portions of code 10 appropriate processors. In a
general sense, this is similar to current rescarch in load
balancing and priority assignment. However the
information to be used will be the three sources
mentioned above with the primary aim of optimal
matching code portions to processors rather than {the
sccondary) factors of load balancing and priority
assignment. Since DINS will reason about processors
actually available to it, this means that we can achieve
configuration control at different sites even though there
may be a different superconcurrent suite at each.
Similariy DINS will continue to function and assign a
second best processor if a first choice 1s unavailable or
down. Thus DINS is robust and survivable. Likewisc it
is compatible with evolutionary development; when a
ncw processor 18 introduced because of changing
technology, we simply replace the old benchmarking data
with the new. The features of robustness, configuration
control, survivability, tailorability, and ¢volutionary
development arc essential for Naval C2 problems.

9. Superconcurrency

The underlying premise of this paper is that many
cades, and particularly many scts of codes, have a
heterogeneous set of computational types. The solution,
called superconcurrency, is nothing more than the
commonsensical approach of sclecting a heterogencous
suite of processors that most »ffectively addresses this
diverse setof requirements. The solution 1s expressed as
a mathematical program with all that implics about the
cxistence of an optimal solution. This approach requires a
morc analytical way of benchmarking and code profiling
in order to analyze the power of various processors on
atomic portions of code. Superconcurrency has the
potential of achicving orders of magnitude greawer speed
over conventional supercomputers it the code profiling
techniques show the overall application to be quite
diverse in its requircments. The future addition of a
Distributed Intelligent Network System to manage a
superconcurrent suite of vector and parallel processors
offers the potential of robustness, configuration control,

survivabihity, atlorability, and cvolutionary
development.
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