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PURPOSE

This report presents the results of a test program on partially
prestressed concrete fender pile concepts. The pile concepts and tests
support a Test and Evauluation Master Plan (TEMP) of .June 1984 entitled
"Development of Prestressed Concrete Fender Piles" (Ref 1). This
project is part of the Ports Systems Project of the Shore and Offshore
Facilities Program. The tests not oanly governed the course of the
fender pile program but uncovered essential findings in material and
structural behavior for application to design, analysis, and life cycle
of other waterfront facilities, partial and falien prestressed concrete,
and high strength concrete.

PROBLEM BACKGROUND

The Naval Facilities Engineering Command (NAVFAC), through the
Naval Civil Engineering Laboratory (NCEL), has initiated a project to
develop prestressed concrete fender piles for use at Navy port faciii-
ties. This project consisted of designing and detailing promising
concepts, which was accompanied by analytical investigation of mech-
anical behavior and flexural energy absorbing characteristics. This was
followed by three cycles of testing, evaluating, and redesigning the
concepts.

This report covers the test and evaluation program and implications
on design. The design of the complete pier fender system 1is shown
schematically in Figure 1. The economic advantaye of concrete fender
piles over wood and steel, and the development of analytical models for
flexural design are covered in References 2 through 4. The main empha-
sis of the analytical efforts was to maximize the flexural energy
absorbing characteristics of the piling prior to spalling the concrete
cover while controlling the reaction force to the pier.

A fender pile must be able to flexurally withstand service berthing
impacts with little or no damage. However, it is realistic to expect an
"extreme" berthing event that will occur at some rare interval during
the lifetime of the fender pile. A fender pile must be capable of
withstanding an extreme event while sustaining spall damage to the
concrete cover to avoid exposing permanently deformed reinforcing steel.
Although this damage is not defined as pile failure since a significant
amount of energy can be absorbed after spalling and prior to collapse,
spalling of the concrete with the resulting exposed steel and permanent
deflection would require that the pile be replaced. Service berthing
impacts have been defined as 70 ft-kips of energy or less while an
extreme berthing event has been defined as 140 ft-kips of energy (Ref
3). A goal was set for individual, 65-foot fender piles (Figure 1) to
be capable of sustaining an ultimate flexural energy capacity of at
least 20 ft-kips prio- to any permanent damage (such as concrete spal-
ling).




TEST OBJECTIVE

The primary objective of laboratory testing was to demonstrate
fender pile energy absorrtion characteristics and provide test results
to verify the analysis techniques used to develop the more promising
concepcs. Behavic: and performance were compared as functions of the
various parameters among coniigurations.

The configurations evolved to control censtructicn costs, retard
crack growth, and reduce end reactions while maximizing energy capaci-
tance at service loads and post-ultimate range. The tests further
demonstrated the cyclic behavior of partially prestressed concrete in
flexure. A major function of prestress was to control crack width and
growth to preclude the use of coated strands for corrosion control.
Through cyclic testing, the 1limits of pile response under repeated
service Tloadings before wunacceptable damage were determined. The
nhiectives were met through mechanical testing and measuring the
load-deformation response,

The goal of cyclic response was to sustain 80 percent of uitimate
load energy (16 ft-kips for a 65-foot span) for 125 load cycles at a
single load point without damage to the compression zone, and to control
residual crack width to Tess than 0.012 inch. It is recognized that
cycling Toad at a single point to a constant level in the laboratory is
more severe than field service where load will vary in magnitude and
location along the length of the pile. With the load point moving along
the span and the possibility of autogenus crack healing, the residual
crack widths in service will not be as severe. The residual crack width
Timit was set from American Concrete Institute (ACI) recommendations and
previous work (Ref 3).

SCOPE

The testing was limited to lateral loading and simple supports on
rollers. Although load repetition was included, loading was applied
slowly without any dynamic effects.

Seven configurations were evaluated (Figure 2, A through G).
Within each configuration the prestress strand arrangement was held

constant while other parameters were varied. The following parameters
were varied among the configurations and within each configuration:

1. Prestress force

2. Confinement steel (spiral) ratio and <pacing

3. Confinement steel configuration

4. Concrete strength

5. Concrete type

6. Addition of conventional Tongitudinal reinforcing

7. lateral ties (additional to spiral)

8. Length of shear span

A total of 31 pile specimens were fabricated and laboratory tested.
Piles of all configurations except Configuration G were detailed by ABAM
Engineers who prepared constructicn drawing< and technical specifica-
tions for casting by J. H. Pomeroy. Tnc.. of Petaluma, California.




Piles fabricated by Pomeroy were numbered consecutively from MKl through
MK29 (MK15 was not fabricated). Three Configuration G piles were
detailed by William L. Simon and Associates. Raymond International
Builders prestress plant in Long Beach, California, fabricated Con-
figuration G piles which were denoted as COLCL, COLO2, and COLO3.
Physical dimensions, constituents, and material properties for the
configurations were drawn and tabulated on the construction drawings and
decuments in Appendix A. All concepts employed 1/2-inch-diameter,
7-wire, Grade 270 prestressing strands. Pile sections wcre detailed in
a balanced flexural design; that is, the steel reached limiting steel
stress (270 ksi) simultaneously as the concrete reached limiting strain
(0.003) (Ref 5).

The specimens were tested in two-span lengths. The first series of
specimens included MK1 through MK8. They were 60 feet 3 inches 1in
tength, and were tested in a span of 58 feet with concentrated loads at
15 feet from one support. Hereafter, these tests will be referred to as
the long span tests. The 60-foot lengths presented unnecessary fabrica-
tion expenditures and handling problems. Test objectives could be met
with shorter, more manageable lengths. Ultimate moment, wuitimate
strain, effect of confinement, and other parameters are independent of
length. Further, within the elastic range, none of these parameters are
dependent on the load location. Consequently, the remaining specimens
were cast 33 feet in length and tested in 30-foot spans with a concen-
trated load at midspan (except two tests on MK13 and MKI14, with loads
applied 7 feet from a support to establish the effect of high shear on
tendon anchorage). In addition to the cast 33-foot specimens, undamaged
35-foot sections from MK3, MK5, MK6, and MK8 were also tested in 30-foot
spans. All 30-foot span tests will be herein referred to as the short
span tests.

Details of all configurations are tabulated in Table 1. The spiral
configurations, cross ties, lightweight (LW) concrete, and fiber rein-
forcement (FR) were attempts to improve post-ultimate behavior by
confinement of concrete in the compression zone. Spiral shape tradeoff
must weigh the 1larger confined cross-sectional area provided by a
rectangle against the more efficient confinement shape provided by a
circle. Since rectangular confinement shape may lead to premature
spalling of the unconfined cover as the interior compressive forces tend
to alter its shape, it was suspected that the rectangular spiral would
be less efficient than the circular in post-ultimate response even
though 4 larger area of the section is confined by a rectangular spiral.

Configuration A

Seven test piles were cast with 20 prestress tendons arranged in a
circular pattern tied with W1l wire (ASTM A82 Grade 70) circular spiral
with a 3-inch design pitch. (Measured pitch varied from 2 to 3.5
inches.) MKl through MK3, MK7, MK8, and MK29 used normal weight con-
crete (8,000-psi design strength) while MK4 used 1lightweight concrete
(7,000-psi design strength). Lightweight concrete with a lower modulus
was expected to be more energy absorbant under service load. The design
prestress was 60 ksi per strand in MKl through MK4 for an effective




concrete prestress of 567 psi. MK29 had a siight increase in effective
concrete prestress to 600 psi. The effective prestress force was
increased to a design value of 150 ksi per strand to produce an
effective concrete prestress of 1,417 psi in MK7 and MK8.

Configuration B

Two test piles were cast as MK5 and MK6 using normal weight con-
crete. Prestressing tendons were arranged in a rectangular pattern
confined by no. 3-bar (ASTM A615 Grade 60), square spiral and cross
ties. The spiral pitch was 3 inches and the -ross tie spacing was 6
inches. The design effective prestress was 60 ksi per strand to produce
an effective concrete prestress of 567 psi. No. 6 longitudinal bars
were placed at midheight of the cross section.

Configuration C

Thirteen piles were cast in Configuration C with 16 prestress
strands with an effective prestress of 48 ksi per strand for an effec-
tive concrete prestress of 450 psi. The strands were arranged in a
symmetric, rectangular configuration with W5 wire square spiral. MK9
through MK14 and MK20 and 21 had 3-inch pitch single wire spiral. MK1é
and MK17 had 4-1/2-inch pitch single spiral, while MK18 and MKI9 had
6-inch pitch single spiral. MK23 had 3-inch pitch, doubled wire spiral.
A1l piles of Configuration C were cast with normal weight concrete but
MK20 and MKZ21 were fiber reinforced (see Appendix A).

Configuration D

Two piles were cast in Configuration D with the same strand con-
figuration and prestres: force as Configuration C. However, No. 6
lTongitudinal bars were added to the cross section at midheight and No. 3
cross ties were added at 6-inch spacing. MK22 had double W5 wire spiral
with 3-inch pitch, while MK24 had single W5 spirail at 3-inch pitch.

Configuration E

Three test piles, MKZ25 through MKZ27, were cast in Configuration E
using normal weight concrete with 20 strands in a different pattern than
Configuration B (strand centroid nearer to the extreme compression and
tension faces) and prestressed to an effective level of 600 psi. Double
wrapped W5 wire square spiral with 3-inch pitch was used in MK25 and
MK26, while a single wrap, 3-inch pitch W5 spiral was used in MK27. No
cross ties or conventional reinforcing was employed.

Configuration F
MK?8 was cast with normal weight concret» in Configuration F with

the same prestress level and configuration as Configuration E but using
No. 3 stirrups at 3-inch spacing as confinement reinforcing.




Configuration G

This concept differs from all the others by employing the least
number of prestress strands and smallest cross-sectional area while
using higher strength concrete (12,000-psi design strength). Configura-
tion G utilized 14 prestress strands in an unsymmetric pattern. To
provide a uniform concrete prestress of 540 psi, each strand layer was
pretensioned in proportion to the product ~f number of strands per layer
and distance from the section centroid. Initial strand *tension varied
from 30.4 kips in each of the two top strands to 8.7 kips in each of the
six bottom strands. W6.5 wire rectangular spiral was employed. COLOI
had 4-inch spiral pitch while COLOZ and COLO3 had a 6-inch spiral pitch.

Response Measurements

Load-displacement and the following lcad-strain characteristics
were determined by the tests: cracking limit, elastic limit, ultimate
strength, cover spalling, and the extent of the plastic zone. C(ollapse
characterization, maximum displacement, ruptured prestressing tendons,
and spalied concrete zones were also documented when encountered prior
to reaching maximum displacement constraints. A constraint displacement
was set at 36 inches for the load point (an operational constraint based
on pier geometry).

Measured strains in the pile section were used to locate the
neutral axis in bending and to estimate the stress/force in the pre-
stressing steel. Material strain correlated to loading is very im-
portant in validation of behavioral analytical models for prestressed
piles.

Materials

Normal weight concrete for the specimens designated MK was designed
for a 28-day strength of 8,000 psi and a prestress release strength of
4,500 psi. Two-inch fibers were added to the mix of MK20 and MK21 n
accordance with ACI 544 .1R-82. Normal weight concrete for the COLO
designated specimens was designed for a 28-day cylinder strength of
12,000 psi. Silica fume, fly ash, and super plasticizers were used to

obtain the high strengths. Silica fume with limits on tricalcium
aluminate (6 to 10 percent) also adds to the concrete durability and
should help in corrosion control. Lightweight concrete for MK4 was

designed for a 28-day strength of 7,000 psi. Prestressing strains were
ASTM A416 Grade 270 stress relieved, low relaxation. Wire spirals were
ASTM AB2 cold drawn Grade 70. A1l conventional reinforcement was ASTM
A615 Grade 60.

TEST SETUP

The Toad tests were conducted on the rail test system embedded in
the concrete floor of Building 570 at NCFl. The piles were laterally
loaded to produce maximum moment at the Jload point. Figure 3 is a

photograph of the test frame during a load test. The test frame and
fixtures were fabricated from standard AISC sections. Machined rollers
were employed at each reaction point and the Jload point was pinned
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(Tateral'y restrained). The compreos<or-driven hydraulic load system
consistea of four, 6-inch-diameter ram< with Jd-foot strokes. Maximum
hydraulic pressure was 1,800 psi.  The ram<, which were laying horizon-
tally, applied lateral loading to the pile in a plane parallel to the
floor, bending the pile about its major (stronye<t) axis. The compres-
sion farce of che pile (hydrauiic ram load ~ide) was the "top" of the

nile at casting. The entire test assembly wa< anchored to the rail
system embedded in the floor. Load ind rveactions were applied thraough
2- by 14-inco bearing pads consisting nf a l-inch <teel plate with
1/2-inch plywcod for bearing distribution. The pile weight waS Sup-

parted at 15-fcot interval< on greased tetion ctrip<.  The piles rested
nn their "sides” on two teflon strips with 4 grease layer between them

and were efasily pnsitinned by hand after tie piles were placed on the
cuppnrts with forklift<.  The pile< were tabiicated with a 3/8-inch side
draft for easy form removai. Thi<s ‘mpiie. that the compression face
(tnp) was 3:4 inch wider than the tenoinn taon

Long Spans

f. <chematic nf the long <pan Toading arvangement i< shown in Figure
4. The pile lengths were 60 feet 2 inche< and the test length was 58
feet with shear span< of 15 feet and 42 teet on either side of the load
noint. The end of the test pile of the ~hort <hear <pan was marked 'SA"
while the end of the lana <pan was marbed "FA" dyring fabrication. The
reactions wave:

= y ) 3
Rep = 0,26 kips

and

Rep = 1789 kips

The maximum mement wvas (at the point of load):

Mo = 11,130 kip-ft

where P is the applied concentrated load in Vips
Short Span-

The shorter piles were single point loaded at midspan except MK13A
and MKI14A (MK13 and MK14 were retested after cycling the load at mid-
span), which were loaded 7 feet from the SA end support as shown in the
schematic of Figure 5. The spans were 30 feet. In addition to the
33-foot cast specimens, undamaged 35-foot lengths of previously tested
60-foot specimens MKZ2, MK5, MK6, and MK& were also tested in 30-foot
spans (MK2A, MKS5A, MK6A, and MK8A). Fnd reaction< for midspan loading
were:

R

= Rep = 0.5P kips

EA SA

and maximum moment at the point of load wa<




My = 7.5P kip-ft

P

Since the prestress <trands were subject to much larger service
stress ranges than encountered by corventional prestressed members, the
Poisson effect on the strands required a longer anchorage to fully
develop the strand tensile strength. MKI3A and MKI4A woere tested to
verify that the full sectional moment capacity could be developed prior
to an anchorage failu » in a 7-foot shear span. FEnd reactions for MKI3A
and MK14A were:

R

I

EA 0.203P kips

RoA

and maximum moment for MKY3A and MK14A was:

I

0.797P kips

My = 5.58P kip-ft

p

INSTRUMENTATICN AND DATA ACQUISITICN

Sensors were selected for obtaining a direct anaiog of Jload,
strain, and deflection. Houston Scientific gages (Figure 6) with a
Tinear range of 5 feet were used for large displacements near the load
point. Bourne's linear potentiometers (Figure 7) with a 1-foot qage
Tength were used at the other Tloca‘ions. Six-in~h length, paper back,
wire SR-4 strain gages were attached to the exterior surface of the
piles (sides, top, and bottom). Internal strain gqaaes were embedded in
the compres<ion zone of selected piles.

A 100-kip capacity Baldwin SR-4 1load cell was used to measure the
applied jacking 1load, P. The 1lcad cell had & _pherical head that
simulated a pinned (laterally restrained) load point. It was calibrated
in NCEL's 400,000-pound test machine prior to the pile tests.

To measure crack widths during selected tests (including all cyclic
tests), crack gages were placed across cracks in the vicinity of the
load point. Avongard gage (Figure 8) used in the long pile tests had a
range of 10 mm and estimated resolution of 0.05 mm. Electronic gages
(clip gages shown in Figure 9) employed in the shorter length tests had
a range of 13 mm and a resolution of 0.003 .:m or better. Calibration
curves were derived for the crack gages by comparison with known
tengths.

long Spans

A total of 20 channels of data were taken during eachk long span
test. A schematic of strain and deflection gage locations with identi-
fying notations is aiven in Figure 4. Deflection was measured at nine
locations along the pile span using linear potentiometers. The loca-
tions were: the load point, five pnints an the 43-foot shear span, and
three points on the 15-foot shear span.




SR-4 strain gages in sets of three were mounted on the upper side
of the specimens at three locations: at the load point, and at the
middie of each shear span (rFigure 4). A set of three included gages
mounted near extreme tension fiber, neutral axis, and extrsws Sompres-
sion fiber. A photograph of a set of three gages mounted to the side of
the test pile is shown in Figure 10. A1l SR-4 electrical resistance
strain gages were calibrated by shunting krown resistances across one
arm of the Wheatstone bridge circuit.

Concrete strain was also measured in the interior of MK1, MK2, MK4,
MK5, and MK7 (in both tension and compression zones) at the point of
toad application using Reinforced Concrete Strain Meters manufactured by
Carlson Electronics of Campbell, California (Ref 6). The strain meters
were 3-foot-long rods hollowed to contain strain sensing devices (Figure
11).  The rods were threaded to bond to the concrete. The strain
sensing device contained two electrical resistance strain sensing
elements. One wire increased in length and resistance with strair while
the other decreased. The ratio of electrical resistance was directly
proportional to length change and the total resistance was directly
related to temperature. The strain sensing elements were wired into a
Wheatstone bridge. The strain meters were used with a Carlson MA-4 Test
Set which provided a readout of resistance and ratio values. Calibra-
tion constants were supplied by the manufacturer. Figure 12 is a
photograph of a concrete strain meter with the MA-4 Test Set.

The pretensioning in the elastic wire elements was adjusted to
provide full linear range in either compression or tension. The meters
placed in the compression zone were preset by the manufacturer for full
range in compression while those placed in the tension zone were preset
for full tension. The meters were tied in place to the spiral cage
adjacent to a top and bottom prestress tendon (Figure 13). Lead wires
were run out through the compression face about 3 feet from the meters.

The long span test data chain for transferring electronic signals
from all the sensors, except the Carlson meters, is shown by schematic
in Figure 14. Signals carrying the effects of the various mechanical
actions (strain, deflection, etc.) were transmitted by cable to ampli-
fiers with carrier signal generators onto a data Tlogger for analog-to-
digital conversion and printout. Validyne SG71 signal conditioners/
amplifiers were employed for all data channels. The data logger, a
programmable Digistrip III by Kaye Instruments, Inc., provided an LED
readout and an integral printer for permanent record. The Digistrip III
included two microprocessors (one for data acquisition and one for
output operations), which controlled data scan and acquisition, scaling
tn engineering units, and ocutput readout and printing. Sensor inputs
were sequentially scanned (manual mode of operation) as outlined in the
TEST PROCEDURES section of this report, and the analog signals were
converted to digital form and printed out with appropriate conversion
factors to the correct engineering units (inch, in/in, etc.). Time of
incremental recording was included and the engineering terms and units
were preprogrammed for printout alse,

Short Spans

Fifteen or more parameters were continuously recorded during the
tests of the <sharter piles. These included: load, six strains




(external and internal gages), six displacements, and two or three crack
widths. Deflection and strain transducer locations are <.own in Figure
5.

Six SR-4 electrical resistance strain gages were epoxied along the
pile depth at the point of load application. Two were located oun the
compression face (extreme compression fiber) near the corners of the two
sides, one on the tension face, and three on the side at 2, 3.5, and 5
inches from the compression face. Figure 15 is a npnhotograph showing
external strain gage instailation. An Eaton internal strain gage (6
inch, CGl129) was embedded inside the spiral of the compression zone.
Crack widths were measured with clip gages fabricated similar to the
ones described in ASTM E399. The ciip gages were typicaily employed in
pairs as shown ir Figure 9. Upon failure, the crack widths at the crack
gage locations were checked with a caliber.

A1l 16 sensor outputs were processed through a Validyne Model MCI
signal conditioner/amplifier, then recorded on a Honeywell 101 magnetic
tape recorder. Six channels (deflection and interrnal strain) were
branched to a backup recording on a TEAC R-71 cassette recorder.
Loadpoint displacement, load, and maximum compression strain was moni-
tored in real time for continuous test control using a Honeywell 1858
strip chart recorder. Further process control was provided by real time
plots of load versus loadpoint deflection on a Houston Instrument 100
Recorder X-Y pen plotter. Figure 16 is a data chain chart of the short
pile tests.

TEST PROCEDURES

Using forklifts, the test piles were placed in the load frame onto
silicon greased teflon pads supporting the pile's weight. Final posi-
tioning was done by hand. All instrumentation was attached after
positioning the pile in the test frame. All SR-4 electrial resistance
strain gages and deflection gage fixtures were epoxied to ihe test piles
24 hours in advance of the load tests. The instrumentation was checked,
calibrated, and zeroed 30 minutes before starting the loading. Concrete
cylinder tests were made to determine the concrete strength and stress-
strain properties. Concrete stress-strain curves were derived for only
the first eight specimens, MKl through MK8, to be used in the develop-
ment of the analytical model for the piles. These concrete stress-
strain curves are given in Appendix B while concrete strengths are
tabulated in Table 1.

Pretest readings of the Carlson meters embedded in the long piles
provided average concrete strain for estimating prestress Tloss and
current prestress. These values are tabulated in Table A-1 of
Appendix A.

Two types of quasi-static tests, monotonic and cyclic, were con-
ducted at deflectinn rates of 1 in/sec. The loading in monotonic tests
was increased until the pile failed in flexure or the deflection limit
was reached. In cyclic tests the loading was applied and removed
repeatedly in an attempt to simulate pile s<service conditions. Both
monotonic and cyclic tests were conducted on all configurations. After
completion of cyclic loadings in the ‘service load range,” piles were
loaded to failure.
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Long Span Mornotonic Loading

The long span tests were load controlled prior to ultimate Jload
when the pile behavior was somewhat linear, and were deflection con-
trolled after ultimate load while the pile was deforming more plas-
tically. After an initial preload of approximately 3,000 pounds, the
lToad increments were maintained at 1,000 pounds. Loading was controiled
by the hydraulic loading ram operator, who monitored the output from the
load cetl with a digital voltmeter. After ultimate loading, displace-
ment increments of 1/2 inch were applied to the test pile. At each
increment, all electronic gages were scanned, recorded, and printed with
the data logger. Ratio and resistance readings from the internal gages
(when present) were made with the MA-4 Test Set. The test proceeded
until the prestress strands on the tension face failed or when the
deflection timit was reached. Deflectivn limits on the long span tests
were set at 36 inches. Post-test conditions were documented by photo-
graphs and spall zone characteristics were noted.

lLong Span Cyclic lLoadinag

Cyclic tests proceeded as in the monotonic tests except that the
piles were unloaded and reloaded in the working range prior to their
ultimate load for up to 37 cycles. A preload was applied prior to the
first cycle, wherein the concrete tensile strength was slightly exceeded
producing at least 3 cracks on the tension face near the Tload point.
Three cracks were marked for application of Avondgard crack gages.
After releasing the load, the crack gages were applied across the
completely closed cracks with quick setting epoxy and allowed to set
securely before starting the first complete load cycle. Avongard crack
gages were examined for crack width changes to determine if the pre-
stress forces were sufficient to close the concrete tensile cracks after
the load was removed. MKl was cycled to 15 kips, 18 kips, 20 kips, and
35 kips while MKZ2 was cycled to 25 kips and 35 kips. Test increments
were similar to the monotonic tests and crack progress was marked on the
pile surfaces. After the load cycling was completed, the piles were
loaded to failure as in the monotonic tests.

Short Span Monotonic Test Procedures

Monotonic tests proceeded at a continuous and constant deflection
rate of 1 in/sec until all the tension strands failed or the deflection
Timit was reached; whereupon, the 1load was removed. The deflection
Timits on the short spans were set at 3U inches so the monotonic tests
were completed in 30 seconds or less.

MK3A, MK6A, MKBA, MK9, MKI0O, MK23, and MK24 were loaded monoton-
ically to failure. MKI16, MK17, MKI8, MK20, MK22, COLO1l, and COLO2 were
first precracked then monotonically loaded to failure. MK13A and MK14A
were monotonically loaded to failure 7 feet from the support after being
subjected to midspan cyclic loading (MKI3 and MK14, respectively).
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Short Span Cyclic Loading

A service load Tlevel of 80 percent of the ultimate energy corre-
sponds to a maximum moment of 326 kip~ft and a load of 43.4 kips in the
short piles loaded at midspan. Cyclic loading of the short piles was
set at levels below the maximum service level. Cyclic loading was
continuously applied at the rate of 1 in/sec, from zero to a constant
load level of 40 to 80 percent of the ultimate load energy. Depending
on the survivability of the compression zone and the residual crack
width, load levels were step increased and the cyclic process continued.
If the specimens could not attain or maintain the previous cyclic load
level due to deterioration of the compression zone, then deformation was
continued until failure or defiection limits were reached.

Short piles and cycled load levels were as follows:

MKSA . . . . . . . . . 250 cycles to 43.4 kips
then 100 cycles to 50.0 kips
then 100 cycles to 55.0 kips

MK11 . . . o oo 259 cycles tu 43.4 «ips

(could not maintain 43.4 kips on cycle
260)

kips

MK12 . . . . . . 300 cycles to 33
38.5 kips

ihén. 200 cycles to

MK13 . . . ... 100 cycles to 43.4 kips (no cyclic
failure)

MK14 . . . . . . L. 100 cycles to 43.4 kips (no cyclic
failure)

MK19 . . . . . . . .. 100 cycles to 41.2 kips (no cyclic
failure)

MK21 . . . . . . . .. 10 cycles to 43.4 kips (no failure during
cyclic loading)

MK2S . . . . . . L. 200 cycles to 43.4 kips

MKee . . . . . . L. 50 cycles to 38 kips
then 50 cycles to 40 kips
then 50 cycles to 42 kips
then 50 cycles to 44 kips
then 11 zycles to 46 kips

MK27 . . . . L 150 cycles to 40 kips
then 50 cycles to 42 kips
then 117 cycles to 44 kips

MK28 . . . . . . . .. 150 cycles to 39 kips
then 100 cycles to 42 kips
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then 100 cycles to 44 kips

then 148 cycles to 46 kips
MKey . . . . . . L. 150 cycles to 38 kips

then 100 cycles to 40 kips

then 52 cyrles tn 42 kins
coLos. . . ... 250 cycles to 43.4 kips

Successive cyclic load levels were selected considering concrete
cumulative compression fatigue from proceeding cycles and residual crack
width (crack closure) on the tension face. Concrete fatigues rapidly
when stressed in excess of 75 percent of the ultimate compressive
strength and deteriorates the compression zone which reduces flexural
capacity. Residual tension crack widths of 0.012 inch or more were
considered wunsatisfactory in preventing strand corrosion while in
service. During cyclic load tests, the compression zone was closely
monitored visually and by strain gages for evidence of deterioration
while crack gages continuously sensed crack opening. Tnus, the Tload
level and number of cycles were determined at which compression zone
deteriorated and/or crack closure exceeded 0.012 inch. Whenever a pile
satisfactorily resisted a series of cycles at a given load level, the
load level was increased and the pile was subjected to another series.
The final load cycle was extended to failure except for MK13 and MK14,
which was monotonically loaded to failure at 7 feet from the support
after being subject to 100 load cycles at midspan.

DATA REDUCTION

Deflection and strain were plotted as a function of applied load
and moment. Moment-curvature relationships were obtained from loading,
cross-section strain, and post-ultimate deflection. Energy absorption
was also calculated as a function of load and deflection.

Curvature

Curvature for moment-curvature relationships was determined from
strain readings (assuming linear distribution of strain across the
section) prior to ultimate load and from deflection gages during post-
ultimate loading. Prior to ultimate load, cross-section strain values
at the load point (includirg internal gage readings) were fitted to a
linear relationship and curvature was determined from:

¢ = EC/C (u strain/in)

where & is the concrete strain at the outermost compression fiber and C
is the Sepﬁh from the outermost compression fiber to the neutral axis.

After ultimate load, deflection values from the load point deflec-
tinn gage and the two adjacent gages (one an either <ide) were used in a
curvature relationship derived from the equation nf a ciccle in Carte-
sian coordinates where the point of origin is the lowest point on the
circle:




2 2

XT+ Y +DX+EY =0

and the radius of curvature, R, is determined from:

-
-1 102 2
R = 5 \WD + E

For the deflected pile, choosing the load point as the origin and
displacement differentials as Y values on either side of the load point
{at X = +24 and -24 inch), the radius of curvature can be determined
by solving 2 equations with 2 unknowns:

22
4 (YQ + Yr + 8)

- _,-3__ 2
Oy 7

2

- - v )2 -
R = Y, T Y)Y, Y -8

from which the curvature is obtained:
¢ = 1/R

where Y and Y are the differences between the load point deflection
and the"deflections measured at points 24 inches on either side of the
load point. Curvature was obtained only for those test piles with
internal gages and those piles with three or more strain gages across
the compression zone.

Energy Absorption

The energy (external work), E, absorbed by the test piles, was
obtained from the area of the load-deflection response at the point of
load:

E=4yPD
p

where P jis the applied JToad increment and D_ is the deflection at the
applied load. P

Energy increments were calculated from products of load and de-
flection increments:

BE. = ((P_+ P _)/2)(D - D ;)

where the subscripts n and n-1 designate consecutive data points.
Running values of total energy were calculated and tabulated for each
data point:

E = E .+ &t
n n-1 n

The total absorhed energy at the end of the test was:

N
F = (1/2) ) (P + P D -0

n=1

n-l)

where N is the total number of data points<
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Long Pile Tests

Data from the data logger printout were loaded into the data base
program, SYMPHONY, on an IBM PC. After statistical analysis, deflected
shapes were also derived as a function of Jloading. The calculated
parameters were also plotted using SYMPHONY. In addition to the com-
puterized data base, other observed parameters during cyclic loading
such as crack width and growth, change in stiffness, shifting of the
neutral axis, and general deterioration were incorporated with strain
and deflection for a qualitative assessment of prestress loss.

Short Pile Tests

Similar parameters were analyzed for the short piles. Data from
the FM analog tapes were digitized using an analeag-to-digital conver-ion
board in the PC, o with a Norland NI 2000A Waveform and Data Analysis
System. Deflectio~, strain, curvature, and energy were plotted directly
from the Norland o an X-Y plotter while the digitized data on the PC
were statistically smoothed and plotted with SYMPHONY.

RESULTS

Data plots of the load response are presented in sets for each
specimen in Appendix B. The data sets also include stress-strain plots
from concrete cyiinders as well as photographs of the test piles showing

crack patterns and spalling. Summaries of the load responses are
tabulated in Table 2 including ultimate deflection, energy absorption,
and other observed data. "Ultimate" data values are defined as those

values related to maximum loading (or moment) where concrete spalled in
the compression zone. Cyclic test results are tabulated in Table 3 and
include residual strain and residual crack widths.

Configurations B and E with normal weight concrete (MK5, MK6, and
MK28) demonstrated the best overall structural results by absorbing the
most energy and loading as weil as exhibiting more strain softening and
plasticity while sustaining the Jeast damage at ultimate loading.
Plastic behavior is characterized by a constant load as deformation
increases; whereas, strain softening show< a distinct load decrease with
increased deformation.

Concrete Mechanical Properties

[n additicn to the cylinder tests made at prestress transfer, tests
were conducted on representative cylinder<s of each pile for strength, f!
and stress-strain curves. Strengths are tabulated in Tables 1 through
while stress-strain plots with Young's Modulus are provided with the
long pile data sets in Appendix B. Two type< of tests were conducted:
(1) a test in accordance with ASTM (469, and (2) a test with SR-4
electrical strain gages applied to the cylinders. Both gave similar
results; however, the ASTM (469 measurement< were terminated prior to
failure to protect the test frame and qgages from the energy release of
the failure process. The stiffness of the test machine caused a rapid,
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explosive failure so it was not possible to define the descending
portion of the stress-strain curve after ultimate strength.
The ACI equation relating Young's modulu< of concrete, E , to its
. . - . c
unit weight, w, and compressive strength, fr

e =333 [p

Cc \“C
tends to overestimate the stiffness derived from the measured stress-
strain behavior. The ACI equation was not intended for use with high
strength concrete. A relationship for high strength concrete developed
by Morales (Ref 7) better fits the test results:

: 6 1.5
E. = (84,0000 (Fl  + 1.0X107)(w/145)

The normal weight congrete averaged 145 1h/ft3‘ while the lightweight
concrete was 121 1b/ft™.

Monotonic Response

Appendix B contains photographs and data plots of load-deflection,
moment-curvature, deflection distribution, energy deflection, moment-
energy, residual crack width, and load-strain for all piles. A summary
of ultimate responses is given in Table 2. Deformation (deflection and
curvature) response of the piles to lateral load was linear wup to
ultimate load and could be characterized by a bilinear relationship with
a transition region. The initial elastic response occurred prior to
cracking on the tension face of the cross section. The response then
transitioned to another Tlinear curve with about 1/5 as much stiffness
(depending on prestress and concrete strength) up to ultimate loading
where the concrete cover in the compression zone spalled due to lack of
confinement. The ultimate compressive strain was 0.003 or targer. In
the short span tests, bilinear response was observed up to an ultimate
load of about 55 kips with a transition at cracking near 17 Kkips.
Example preultimate load-deflection plots for 30-foot span tests are
given in Figure 17.

Spalling the concrete cover at ultimate loading resulted in a
sudden loss in load carrying capacity directly related to the loss of
concrete area. The compression concrete fractured longitudinally and
along the spiral layer from the edye of the Inad bearing plate for a
distance into the short shear span ("AE" end) of the test piles (see
photographs in Appendix B). Concrete <palling severely damaged the
piles. A pile in service would be permanently deformed and would
require replacement after ultimate loading. Since the concrete spalled
along the spiral, reducing the area of the compression zone, depth of
concrete clear cover, and spiral geometry are major factors in deter-
mining the moment carrying capacity after ultimate loading. Thus, the
loss after spalling was greater for Configuration A with circular
spirals than for all configurations with the rectangular spirals or
ties.

After concrete spalling and the subsequent loss in load carrying

capacity, there was strain softening and/or plastic deformation response
until the prestress tendons on the ten<ion <ide nf the cross section
15




started to rupture (or in the cases of MK18, MK19, and MK25 through MK28
the strands did not all rupture but continued tu carry a high load as
the strands slipped through the concrete after bond breakdown). Example
1nad-deflection plots showing post-ultimate response are given in Figure
18. The prestrescing tendons of the circular pattern (Configuration A)
broke in sequence while those of the rectangular patterns all failed at
once or slipped through the concrete as the bond broke down and limiting
deformation was attained. Failure was designated at the point of
tensile strand rupture or when deflection limits were exceeded even
though the test piles continued to carry load.

Spalling of the cover at ultimate ioad in the short span tests was
accompanied by a load loss of about 10 percent and was followed by a
plastic and strain softening response. Behavior was consistent for all
Configuration C piles except that strain softening was nonexistent in
MK20, MK21, and MK23. Strain softening was so prevalent in MK9, MK10,
MK18, and MK19 that it increased the energy dissipation by over 300
percent beyond ultimate energy levels,

Slippage of the tension strands was noted in the piles with Tower
lateral confinement. Slippage and bond failure was characterized by
spalling of the tension face cover and longitudinal cracks along the
pile sice at the tension strand level. The slippage was greatest for
the Tlargest spiral pitch (6 inches). Spalling and cracking on the
tension face reached several feet on either side of the load point in
MK18 and MK19. Little distress in spiral reinforcement was observed,
but rupture occurred in one wrap of COLO3 and yielding was observed in
one wrap of MK7.

After cover spalling, the highest energy release was observed when
the core concrete would gradually crush in the case of wider spiral
pitch (as in COLOl1). This increased the distance between the centroid
of the compression zone and the neutral axis from the top surfacc, and
shortened the internal moment arm with all or mest ot the tension
strands unbroken. The cause to thic behavior seems to be lack of
confinement. Further, wider spiral pitch allowed unbonding of the
strands over several feet from the point of maximum moment (MK18 and
MK19). In the presence of more confinement reinforcement, all strands
broke soon after compression concrete spalling (COLD2, MK22, and MK23).
Lower concrete strength may have been a secondary factor when combined
with less confinement.

Curvature, ¢, was derived from cross-sectional strain data. The
neutral axis moved from the uncracked section centroid (prior to tensile
cracking) steadily toward the compression face as ultimate load was
approached. The neutral axis probably dropped just prior to ultimate
loading (cracks ceased to progress into the compression zone), but this
could not be verified due to limitations of the strain gages. Moment-
curvature plots are included in Appendix B.

Energy Absorption
Energy was plotted versus deflection and moment for each test and
presented in the data sets of the Appendix B. The energy-deflection

curves were characteristically "S" shaped. There was little energy in
the initial elastic response. Similarly, the energy leveled off after

16




strand rupture or bond failure and the load capacity began to fall
toward zero. Energy values at ultimate load and at failure (total
energy) are tabulated in Table 2. Configurations A and B (long piles)
reached energy levels well over 30 ft-kips prior to ultimate load. MK5S
reached 63 ft-kips at failure. Average ultimate energy for the short
piles was about 23 ft-kips with failure energy 2 to 5 times greater.
Examples of moment-energy plots are given in Figure 19.

Initial stiffness of Configuration G piles was greater than other
configurations except those of highest prestress (MK7 and MK8) (Figure
17). Higher stiffness resulted in less energy absorption prior to
ultimate load. Spalling of the concrete cover at ultimate load resulted
in a greater percentage loss of compression concrete and a significant
resistance loss. Post-ultimate response included softening and finally
rupturing of tensile strands. The tests were terminated after exceeding
a midspan displacement 1imit. Not all tension strands ruptured at test

termination. The maximum energy absorption was comparable to other
configurations. Configuration G failure zones extended over Jlarger
areas than observed in the other configurations. The extent of the

failure zone in itself presents no problem, but it is indicative of
ability to absorb energy - a result of bond breakdown which also causes
excessive crack width at service loading. Bond failure was caused by
lTower prestress in the tension strands coupled with lack of confinement.
The spiral cage of COLO1 remained intact while several wraps ruptured in
COLOZ and COLO3. The 6-inch spiral pitch of the latter two resulted in
lower energy levels than COLO1, which had a 4-inch pitch. The opposite
was found in other configurations.

Fiber-Reinforced Concrete

The steel fibers of MK20 and MK21 provided better concrete confine-
ment after ultimate strength. Fiber-reinforced concrete produced higher
ultimate load (15 percent higher). There was less compression zone loss
and smaller decrease in internal moment arm which resulted in a pre-
mature and sudden failure of the tension strands before the fiber
confinement could fully benefit the post-ultimate ductile behavior.
This design oversight could have been corrected with lower strength
concrete or more prestressing strands. Due to the early rupture of the
strands, these two piles demonstrated the lowest overall energy dis-
sipation.

Increased Prestressing

Within Configuration A, the two specimens (MK7 and MK8) that were
prestressed 2~1/2 times more than all other configurations sustained no
ultimate loading enchancement. However, the stiffness of MK7 and MK8
was almost twice that of the others which resulted in half the energy
absorption at ultimate loading (20 to 22 ft-kip). Energy absorption at
failure was also substantially less for higher prestress force. Higher
prestressing force may have caused greater distress to the confinement
reinforcement. There was spiral yielding in MK7.

Small prestress force changes did nui cause noticeable stiffness
differences (Figure 17). However, the lowest prestress used in Con-
figuration C resulted in the highest post-uitimate energy capacity. For
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example, MK9, MK10, MK18, and MK19 sustained from 4 to 5 times the
ultimate energy through the post-ultimate range (Table 2). This energy
capacity was developed at a sacrifice of strand slippage (bond break-
down) and large crack openings having undesirable consequences in the
cyclic behavior.

Lightweight Concrete

Without confinement, the release of energy through spalling at
ultimate load was much more dramatic with lightweight concrete test pile
MK4  The post-ultimate load loss was almost half the ultimate load and
was the worst of the piles tested. The relative strength of bond
between paste and aggregate is greater in the lightweight matrix than
the comparable normal weight concrete. Without a relatively weak
transition zone between paste and aggregate for crack arresting, the
concrete fracture process at spalling progressed unchecked through the
aggregate as easily as the paste. Thus, the spall zone was larger for
MK4 than was generally found with the other test piles. The prestress
strands of MK4 ruptured at failure prior to full development of the
confined strength of the concrete. The 3-3/4-inch spiral spacing in the
spall zone had little effect on the plastic behavior of MK4.

Spiral Geometry

Spiral reinforcing for concrete confinement benefits post-ultimate
load carrying capacity and the extent of the plastic behavior. Square
ties confined more of the compression zone and resulted in the smallest
compression spall zone for the smallest post-ultimate load carrying
loss. Spiral spacing (2 to 3.5 inches) had little effect on the plastic
behavior, but the rectangular configuration was superior due to the
prestress strand configuration. After concrete spalling, square ties
bend (curved) outward between bends (see photos in Appendix B), as
expected, with no sign of yielding. The spiral of MK7 yielded and
necked down at one point. The isolated spiral yielding of MK7 or the
failure in the COLO3 spiral may have been anomalies or side effects of
the higher prestress force since none of the other spirals showed any
indication of yielding.

Cyclic Loading

Table 3 summarizes the cyclic test results including residual crack
width, maximum concrete compressive strain, absorbed energy, and visual
inspection of the compression zone for each cyclic load level. The
distinct bilinear response observed in the single load cycle to failure
was less apparent in subsequent load cycling. Crack lengths grew slowly
with each cycle but abruptly increased with load step increases. Cyclic
load-deflection, residual crack width measurements, and load-to-failure
plots are given in Fiqures 20 through 22 for MK25 (Configuration E).
Similar plots are provided for circular spiral Configuration A (MK29) in
Figures 23 through 25. Measured tensile strain at peak load increased
slightly with each cycle as did the curvature and the deflection. The
neutral axis at ultimate load had shifted to within 5 inches of the
compression face.
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During the cycling process, displacement and curvature increased at
a given loading and residual deformation remained after load removal.
No doubt there was some loss in prestress but not enough to keep tensile
cracks from partially closing when load was removed. There was slippage
over the crack surfaces as evidenced by powdered concrete falling from
open cracks. Residual crack opening (load removal) remained less than
0.012 inch after 100 cycles at 80 percent of ultimate energy for Config-
urations B and E. Continued cycling produced more prestress loss, which
kept cracks from closing completely and caused residual crack width to
increase (Figures 21 and 24).

If damage was not incurred in the compression concrete, then
flexural strength was not reduced from straight, monotonic loading. On
fong span piles with the load cycled 35 times, the cracking closed to
less than 0.05 mm. There was no compression concrete damage, so ul-
timate capacity and energy levels were not impaired by the cycling
process. On the other hand, MK25 through MK29 did not attain full
capacity because of sustained damage to the compression concrete. Only
cyclic loads were applied to MK25 through MK29, which were cycled until
the compression zone spalled rendering them incapable of sustaining the
cycling load Tevel. MK25 through MK29 were subsequently Tloaded to
failure.

Cyclic loading also induced compression zone deterioration in piles
MK5A, MK11, MK13, and MK19. MK]1l showed compression zone deterioration
(cracking) after 40 cycles at a load level equivalent to 80 percent of
ultimate energy. MK13 was damaged after 50 cycles at 80 percent of
ultimate energy, while MK19 was damaged after 80 cycles at 70 percent of
ultimate energy. MK13 and MKIS9 were able to maintain their respective
load levels after 100 cycles, while MKI1 could not sustain cycling to 80
percent of ultimate energy after spalling occurred at 259 cycles and it
was subsequently loaded to failure on cycle 260. MK5A (Configuration B)
was capable of sustaining the greatest amount of load cycling. Compres-
sion zone deterioration was observed after 480 cycles. It was apparent
that deterioration of the compression zone occurred within 100 cycles if
the concrete strain exceeded 0.0022/in/in.

Configuration C exhibited the worst residual crack widths with
cyclic loading. It was difficult to sustain cyclic loading without
residual crack widths exceeding 0.012 inch. Large residual cracks and
deflection are results of compression zone deterioration which was
triggered by excessive concrete compression strain. MK12, loaded at the
equivalent of 40 percent of the ultimate energy level, exhibitad crack
widths of 0.011 inch or less after 100 cycles. The other specimens aof
Configuration C sustained residual crack widths of at least 0.05 inch
after 100 cycles at 80 percent energy level. In contrast, MKS5A (Config-
uration B) exhibited 0.011 inch maximum residual crack width after a
total of 450 cycles.

Cyclic tests of the fiber-reinforced concrete resulted in the
fibers being pulled loose along crack surfaces and preventing crack
closure. At the end of ten cycles the residual crack opening was
0.017 inch, compared to half of that or less for other tests at the same
load level.
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Cycling load from 0 to 43 kips (80 percent ultimate eunergy) pro-
duced a concrete compression strain differential of about 0.00225 in/in
in COLO3 (Configuration G). After 250 load cycles, the residual crark
opening was 0.038 inch and residual midspan deflection was 1.4 inch.

ANALYSIS

The test results in the preultimate (services loed) range agree
well with the analysis methodology and computer prograin developed by
ABAM Engineers (Ref 3) and the use of the Morales Equation to determine
concrete stifiness. ACI equations for Young's Modulus predicted overly
stiff piles resulting in a more conservative analysis with less energy
and smaller displacement predictions. The most accurate refinement to
the analytical approach would be to use measured concrete stress-strain
curves and experimental values of concrete spall strain, but this is not
recommended due to the complexity. A complete explanation of the
analytical approach appears in References 3 and 4.

Configuration C was the most energy ab<orbent. However, due to the
tow prestress, this configuration was poor in cyclic bhehavior (crack

control and compression anncrete deterioration). To correct these
shortcoming<, Configuration £ and F were derived with four additional
prestrec<  strands and increased prestre<s force, This enhanced the

service Toad range without sacrificing energy canacity.
Concrete Strength

Except for the 12,000-psi concrete of Configuration G, concrete
<trength had Tittle effect on the monotonic energy capacity up to
ultimate Toad.  The high <trength concrete was stiffer resulting in
wmallter deflectinns offcetting any increase  in ultimate load. In
contrast, Iower concrete <trvength enhanced the po<t-ultimate onergy
absnripption capacity.

Fffect of Concrete Prestress

Fendey pilec a¢ fleviral membors wore moot effective when pre-
strec<ed to about 1.3 that which a nevmal, axial 1nad bearing pile wouid
be jcostreaced Prestreasing had a maior impact on the flexyral <Uiff-
necs,  energy capacity, cracky width apening, and te oa lesser degree,
Bonding and compro<cinn zane deterinration under cye'ic Toading. The
Towest  effoctive prestrecs (A5 p<i)  exbibited the bighe<t  energy
absorption, but crack widibh opening and compression fene deterioration
was un<atisfactory at the decived <oryvice Jrad Timite, The nighes<t
effective prostrece (7 417 nd) resuyited in a very ~t3itd pile with low
onerqy capacity The other tws levela of proctyess 668 and 600 poi)
yiolded a more <aticfacinry reporco,

Prectyessing at leveis camparable te asta T aa-bearing members
(1,407 poi in Coanfiguration A) wecgited v rracocagyy, <t frews and
Pigher regotion forces fov g giyen enorvgy Teve (0 4 Tower ororgy Teyo’
for a given veactinn). On tho tbes hara et 20T e e gingg Fr -
cveogses from A0 o<1 ta GH0 e syt e Bt tory L var k Nt




without sacrificing stiffness and energy absorption. Based on the
cyclic response of MK?5 through MK29, 600-psi effective prestress
provides the best tradeoff of energy capacity with crack width and
compression zone deterioration.

Spiral Spacing

The majority of monotonic tests were conducted with W5 wire spirals
and a 3-inch pitch, which was equivalent to spiral percentage, p_, of
0.43 percent. There was no apparent effect of confinement reinforcément
on ultimate load or stiffness. There was considerable range of energy
absorption results due to variation of other parameters, particularly
concrete strength. However, the average value of failure energy absorp-
tion of specimens with a 3-inch spiral pitch was less than those with
4 5-inch pitch (p_ = 0.32 percent), which was less than those with 6-
inch pitch (p_ = > 01 percent). Likewise, doubling the spiral (MK22,
MK23) lowered Yhe energy capacity from a single wrap. The greater post-
vltimate energy absorption was attributed to bond breakdown on the
tension face. This caused longitudinal cracks (accompanied by wider
transverse cracking) along the prestress strands allowing the strands to
slip through the concrete accompanied by larger rotations and displace-
ments with slower load decrement.

On the compression face, Tittle can be gained by increasing the
post-ultimate confinement strength of the concrete within the configura-
tions since the strands ruptured on the tension face. There is little
doubt that the full, confined concrete strength was not reached. Fully
developing the confined strength would allow for larger rotations and
the increased concrete strain would lower the neutral axis. Lowering
the neutral axis increases the compression zone and increases the
compression force of the bending couple which would have to be balanced
by an increase in tension force. Since an increase in the tension
forces would be achieved by some combination of increasing the number,
size, or strength of the prestressing strands and increasing the hond
capacity of steel, increasing the plastic detormation region of the test
configurations does not seem realistic. Enclosing a larger area of the
compression zone by spiral would also increase the load carrying and
energy absorbing characteristics. However, this takes away from the 2
inches of minimum cover for spiral and strand corrosion protection.

[t cannot be shown that the cross ties and added conventional steel
at midheight in Configurations B and D enhanced the flexural performance
nf the piles. The enchanced performance of these confiqurations can be
attributed to rectanqular strand configuration anc lower prestress.

Pile Configurations B, E, and F {normal weight concrete), in 65-
foot lengths, can sustain a design working energy absorption of 15
ft-kips and a "rare event" energy ‘evel of 30 ft-kips (ultimate

strength).  Placing the test pile designs in perspective for other
length~: the deflection at the load point, D,. is proportional to the
pite Tength, {, and the langer s<shear <span, B, while the load carrying

rapacity, P . s praportional to L/B. for pile lengthe of 65 feot, it
i~ expected that the deflectior at ultimate moment will increase b 16
percent over the H8-faoat length tect values while the load will decrease
by 4 percent. This results in a less <tiff pile with a higher energy
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absorption capacity. The failure displacement will be less than 36
inches. Shortening the pile will increase stiffness and result in less
deflection at higher loads for a given ultimate moment. For a Jength of
45 ft, P will be 11 percent greater than the 58-foot test values while
the ultiflate deflection will be about 30 percent less than the tests.
Similar values can also be derived from the short pile test results.

Cyclic Response

Unfortunately, the characteristics that enhance energy absorption
under monotonic loading are detrimental to cycliic load response. That
is, low concrete strength and wide spiral spacing (low percentage of
confinement reinforcement) results in bond release and high concrete
<train enhancing energy capacity, but presents poor crack control
(increased residual crack widths) and rapid compression concrete
deterioration.

The concrete strengths of MK25 through MKZ29 did not attain design
strengths of 8,000 psi (test strengths range from 7,070 psi to 7,420
psi).  However, the performance of these piles and the configurations
represented were sunerior to most of the other piles under cyclic
Tpading. This can be attributed to the increase in effective concrete
prestress to 600 psi, the increased number of prestress strands (20),
and more efficient strand confiqguration (in Configurations E and F).
Configuration F (MK28) was the best performer of this group and was only
equalled by MKS5A.  This configuration is better than Configuration E
because of deformations on the confinement steel employed in MK28 (also
employed in MK5). After 150 cycles at a load of 39 kips maximum re-
<idual crack width 0.009 inch, and 50 more cycles at 42 kips, the crack
width was oniy 0.011 inch with no damage to the compression concrete.
This compares with a residual crack width of 0.015 inch after 150 cycles
of 38 kips on circular spiral configuration in MK29. It is also noted
that when <trand stress did not exceed 200 ksi (model prediction) and
rconcrete compression strain did not exceed 0.002 in/in (model prediction
and measured), then no damage was sustained in the compressior zone and
rrack width was controllied within desirable limits.

Frror Analysis

Frrors of the results taken directly from instrument readings
(deflection, strain, load) are a function of the instrumentation relia-
bility but are estimated to be no more than 5 percent. Errors in the
energy results which are products of two instrument values could be
somewhat higher. The values of curvature are the Jleast reliable;
although the strain reading< are reliable within 5 percent, the internal
gages could not be accurately Tlocated during specimen fabrication
because of reinforcing cage flexibility. Curvature values have errors
from 5 to 20 percent (higher errors associated with location of the
Carlson meters). The curvature derivation from deflections also con-
tributed to the higher errors.

The Carlson strain meters and other internal strain gages are no
doubt superior to the SR-4 electrical resistance strain gages. Embedded
in the concrete adjacent to the steel stands, the strain meter provided
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change in length in the steel alsu. The meter measured average strain
regardless of cracking because the rod was bonded to the concrete by its
threaded ends. The possible reliability errors associated with curva-
ture results are mainly due to the lack of confidence in locating the
strain meter position rather than the strain record.

Load cycling presented two more problems regarding internal strain
meters. There is no doubt that the elastic limit was exceeded in the
steel rod encasing the strain sensor (Fy = 72 ksi). However, due to its
240-ksi strength, the elastic steel wire sensor continued to exhibit a
linear resistant-strain response until there was a load reversal (cy-
cling or post-ultimate load loss). The load cycling to higher load may
have also broken down the bond between the strain meter rod and concrete
while the ccncrete near its ultimate strain (0.003) also exhibited
permanent set and nonlinearity. Therefore, response from the strain
meters was suspect at the highest load cycles. Further, the meters
ceased to reflect a realistic average tension strain for post-ultimate
response because of wide cracks concentrated near meter midlength.

The Eaton internal strain gages used on the short piles performed
better than the strain meters under cyclic load. However, the gage lost
capacity after spalling of the compression concrete cover. Internal
strain gages could not be used on the tension side because they are only
6 inches in length (which was the average crack spacing).

SUMMARY AND RECOMMENDATIONS

Several objectives were accomplished with the extensive pile test
program. Camparisons were made for seven prestressing schemes and
configurations. Evaluations were made of the effects of the following
parameters and variables on monotonic and cyclic load response:

Prestress force

Prestress strand arrangement
Confinement steel

Concrete strength

Concrete type

Addition of conventional reinforcing
Lateral ties (additional to spiral)
Length of shear span

O~ U8 W)

Energy absorbing relationships for load ranges of zero up to pile
failure based on lateral load-deflection are provided. Moment-curvature
relationships, deflected shapes, and limiting concrete and steel strains
were also determined. All of these will verify and support analytical
modeling and were necessary to establish design criteria and limita-
tions. The results are applicable to design and analysis of other
concrete structures 1inm marine/industrial environments, to full and
partially prestressed concrete, and to high strength concrete elements.
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Effects of Prestress

It has been demonstrated that partial prestressing (600 psi) is
sufficient to control crack widths to less than 0.012 inch precluding
the use of coated prestressing strands or cathodic protection for
corrosion prevention. However, if the pile's ultimate capacity is
exceeded and the cover concrete is spalled, the exposed confinement
steel and the strands will corrode more rapidly than conventional
concrete steel due to the prestress.

Although a circular spiral would appear to be more efficient than a
rectangular shape for confining the concrete at high Tloadings, the
greater confinement area offered by the rectangular shape more than
offsets this effect. Balanced flexural designs with partial prestress,
normal weight concrete, rectangular strand patterns with square spiral
ties were definitely superior in load carrying capacity, energy absorp-
tion, and post-ultimate behavior. Other pile configurations that
included higher prestress, higher strength concrete, and circular
spirals and strand patterns absorbed less energy. The highest prestress
almost doubled the preultimate stiffness with half the total energy
absorbing capacity. Likewise, lightweight concrete did not show any
significant structural benefits because of the need for extra confine-
ment.

A major advantage of partial prestressing is the control of
cracking and crack widths at service loads. It 1is reasonable, for
repetitive loading, that the upper 1limit of usable elastic energy for
service conditicns (i.e., frequent impacts and load cycles) be set at 16
ft-kips per pile (for a 65-foot length pile). This should keep cracks
closing to within 0.012 inch of being completely closed. Configurations
B, F, and E in 65-foot spans can be designed for at least 30 ft-kips
ultimate energy absorption and still provide more than 100 percent
energy reserve to failure of the prestressed tendons. Ultimate energy
capacity of the circular reinforcement pattern is about 35 ft-kips and
about 40 ft-kips for the rectangular pattern. Failure energy of 50
ft-kips can be obtained for the circular configuration compared to over
70 ft-kips for the rectangular configuration.

Prestress level in the strands should be 60 ksi. Lower prestress
may result in bond failure and higher prestress significantly increases
the flexural stiffness and reduces the energy capacity. A minimum
effective concrete prestress of 600 psi should be provided to offset
tensile stresses during pile handling and driving and for crack cortrol
while in service.

Concrete

It is reasonable to use a balanrec design and limit the concrete
spall strain to 0.003 (including prestress). The Morales equation (Ref
7) or another relationship accounting for high strength concrete should
be used for Young's Modulus of concrete, rather than the ACI equation.

Concrete strength should be 8,000 psi. Although the piles always
exhibit a compression failure mode at ultimate strength, tight control
of 28-day cylinder strength to 8,000 psi insures a better combination of
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higher post-ultimate energy dissipation and design service load Tlevel.
A lower strength degrades crack control and a higher strength increases
stiffness unnecessarily.

Details obtained from the fiber-reinforced concrete were Timited,
but the addition of fibers did not seem to bring any substantial advan-
tage beyond an ultimate strength that was 15 percent above average.
Crack closure was impaired and overall energy dissipation was lowest.
Since the cost per pile is doubled by the addition of fibers, fiber-
reinforced concrete piles are not recommended.

Confinement Reinforcement and Strand Arrangement

Confinement requirements for flexural fender piles are different
from fully prestressed, axial Tload bearing piles. Bond is not as
serious with axially compressed members and the confinement is used to
insure full compression strength development. On the other hand, for a
laterally loaded fender pile, Tlateral reinforcement confines the com-
pression concrete on one face while resisting tensile splitting around
the tension strands (bond failure) on the opposite face. Confincinent
tradeoffs were made to allow some deformation and rotation through
strand slippage to insure energy absorption while controlling crack
widths and providing proper compression confinement.

Rectangular confinement reinforcement equivalent of No. 3 ties with
a 3-inch pitch and a yield strength ~: 60 ksi should be used because it
performed the best of all confinziment arrangements. Deformed reinforce-
ment is superior to smooth wire in a rectangular shape because of the
enhancement to bond strength during cyclic load. Cross ties do not
enhance confinemc.t at service loads and do not substantially benefit
post-ultimats behavior. Smooth circular spiral can be employed but is
Tess efficient in Toad resistance and the design capacity must be
adjusted downward for reduced section efficiency. There will be at
least a 30 percent decrease in total energy capacity for the same number
of prestress strands. On the other hand, there are two advantages to
circular spiral: (1) the ease and availability of spiral fabrication
and, (2) the average clear cover provides more corrosion protection than
rectangular patterns (wider residual crack widths accompany greater
clear cover).

Strand Configurations B, E, and F with 600-psi concrete prestress
and 8,000-psi concrete strength will maintain a cyclic service load
Jimit equal to 80 percent of ultimate energy capacity while keeping
residual crack width less than 0.012 inch and maximum compression con-
crete strain less than 0.0021 in/in (no compression zone damage).

FUTURE RESEARCH

The reaction forces expected from the concrete piles may be harsher
on ships than wood for a given energy input from the ship. Camels or
rub strips may be required for concrete fender pile applications. This
will require further investigation after trial field installations to
determine if it is a problem. Field tests should be conducted over 5 or
more years with internal strain gaged pile, which will provide not only
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a measure of pile performance but will serve as transducers for measure-
ment of loads and impacts during berthings. Observations should con-
tinue over the installation Tifetime.

The multiaxial state of stress in high strength concrete (confine-
ment plus prestress) results in a higher compression capacity than
currently allowed by conventional analysis (ACI). The ultimate
strength, rectangular stress block coefficients currently being employed
by ACI need reevaluation for high strength concrete applications.

The ultimate capacity of high strength concrete was limited by
spalling of the concrete away from the compression face while failure
was triggered by spli.ting of the concrete away from the tensile
strands. These graphically demonstrated the impact of the fracture
process and a limitation of structural concrete design. A complete
understanding of fracture methodology and the variables affecting it
must we acquired to develop techniques to mitigate spaliing on ine
compression face and longitudinal splitting on the tensile side of high
strength concrete structural elements. Ultimately, concrete fracture
mechanics methodology must be developed for successful crack control in
reinforced concrete.
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Figure 6. Houston Scientific linear potentiometer with 5-foot range.

lMigure 7. Bourne's linear potentiometer with 12-inch range.
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Figure 12. Carlson RC mete. and MA-4 test set.

Fiqure 13. Carlson RC meter tied inside reinforcing cage at load point.
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Figure 17. Preultimate load-deflection plots.
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Figure 18. Load-deflection plots for COLO piles.
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Cyclic load-deflection response of MK29.

Figure 23.
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Appendix A
TEST PILE FABRICATION

The test piles were fabricated in accordance with the construction
drawings in Figures A-1 through A-12 by J. H. Pomeroy, Incorporated of
Petaluma, California, and William L. Simons and Associates of Denver,
Colorado. Figure A-13 shows the prestress tendon/spiral cage from the
anchored end of MK1, MKZ2, and MK3. Figure A-14 shows the pouring of
the second batch of concrete used to cast the first three piles.

The piles were cast in the morning and the prestress release was
made the following morning. During the time period between casting and
release, piles and test cylinders were steam cured. A cylinder break
was made for each of the concrete batches just prior the the prestress
release. Release strengths as well as prestressing are tabulated in
Table A-1. After prestress release, the tendons were torched at the
ends and the piles were removed from the forms by crane using lifting
hooks and placed on blocks for air curing until shipment. Test piles
were delivered by truck with a flatbed trailer where they were placed
on timber supports outside the test lab or placed from the truck
trajler directly onto the test frame using two forklifts 1ifting at the
cast-in 1ifting hooks.




Table A-1.

Test Pile Prestress

———— _ _
. ﬁrestrpss Pretest [nitial Prestress Fffective
Test I'ransfer . . b :

. .. a Strain Prestress Lloss Prestress
Pile Strain (u in./in.) (kips) (kips) (Kips)
(u in./in.) p in./in. ips kip:s ips
' —
MK1 50 190 f 207 ! 17 | 190 i
i | !
! ' i
MK2 46 | 192 l 207 { 17 L 190
: , 5
MK4 82 293 214 | 26 | 188
. { {
MKS 212 i 306 207 | 27 180 |
|
MK7 646 [ 770 515 I 68 447 |
— b | i —— - - e —
4 Carlson RC meter readings.
’ Design values.
C 6 . - .2
Eq = 29 x 10 psi and strand area = 0.153 in
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Appendix B
TEST RESULTS




MK?1 Cylinder ASTM C 469

10

8 r— fc’ = 9410 psi

6 -

)
4 -
, E =3.89 X 108 psi
L 1 .
0 1000 2000 3000 4000

Strain - 44 In’in

Figure B-1. Concrete stress-strain curve for MK
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Figure B-5. MKl load-displacement plot for cycles 20, 25, 33, and 38.
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Figure B-6.  MKI moment-curvature plot for cycles 20, 25, 33, and 38.
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Figure B-7. MKl energy-displacement plot for cycles 20, 25, 33, ard 3§.
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Figure D-9. MK1 fir<t cvcle deformed shape for M = 111 and 168 kip-ft.
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Figure B-10. MKI cycle 20 deformed shape for M = 112, 168, and 20N
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Figure B-23. MK?2 <pall zone after failure.
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Figure B-39. MK3 spall zone after failure.

Figure B-40. MK3 tension face cracking at failure.
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Figure B-47. MKA compression spalling at ultimate load.

Figure B-48. MKA load point tension face cracks at ultimate load.
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Figure B-49. MK4 spall zone after failure load.

Figure B-50. MK4 failure near load point.
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Figure B-60.  MKS <nall zone after failure.
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Figure B~61. MKS5 tension face at load point after failure.
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Figure B-70. MK6 concrete spalling at ultimate load.

Figure B-71. MK6 displacement at faiture.
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Figure B-72. MKs spall zone after failiva

Figure B-73. MKE post-failure tension face at load point.
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fFigure B-80. MK7 post-failure spall zone.

Figure B-81. MK7 spiral yield and necking in the spall zone.
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Figure B-90. MK8 ultimate load displacement.

Figure B-91. MK8 ultimate load spalling.
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Figure B-92. MK8 failure displacement.
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Figure B-93. MK8 load point tension face at failure.
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Figure B-106. Post-ultimate compressicn face of MK8A.

figure B-107. Compressior spall zone of MKRA.
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Figure B-108. Post-ultimate tension face of MK8A.
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Figure B-115. MK9 tension side at failure.
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Figure B-117.
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Figure B-119.
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igure B=127. MKIT compres<ion zone deteriovation after 1206 ar
cyrles,




Figqure B-128. MKI1l tension face cracking after 120 and 209 cycles.
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Figure B-150.
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Figure B-131. MKI11 energy-displacement plot.
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Figure B-132. MKI1 compression
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Figure B-133. MK11 crack width after load removal (at point of load).
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Figure B-134.

Figure B-135.

MK12 compression spaliing at failure.

MK1? tension cracking at fariur..
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MK12 moment-energy plot.

Figure B-137.
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Figure B-140. MK13 tension crack after 100 cycles loaded at midspan.

Figure B-141. MK13 compression zone deterioration after 100 cycles.
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Figure B-144. MKI13 crack width after load removal.

Note:

MK13 was first subjected to 100 cycles with the
ioad applied at midspan, then monotonicalily loaded
to failure with the load applied at /7 feet from
one support.




Migure B-
145. MK13A monotonic loaded at 7 feet from one support
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“igure B-146. MK13A compression spalling at failure after monctonic
Toading.

Figure B-147. MKI3A tercicn cracking at failure.
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Migqure B-148. MKI2A lnad-deflection plot at point of load.




Figure B=150. MKI3A energy-displacement plot.
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Figure B-154. MK14 tension crack after 100 cycles loaded at midspan.
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MK14 moment-energy plot.

Figure B-156.
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Figure B-157.

B-94




RESIL

T | [ | ! | !
' l | } i : l
| SRR -
i i : 1 ' |
. . : ! |
o ] |

f ‘ | 1 !

.

o o |
[ i !
[ ¥ |
i IV S |
b |
A j !
,.,/" 4 "‘ . 1
T A |
. /4,/* | :: D
. ! ! i : j (

Figure B-158. MK14 crack width after load removal.

Note: MK14 was first subjected to 100 cycles with the
load applied at midspan, then monotonically loaded
to failure with the load applied at 7 feet from
one support. Result< of monotonic test foilow
on MK14A.




Figure B-159. MKI14A compression spalling at failure monotonic load at 7
feet from support.

Figure B-160. MK14A tension cracks at failure.
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MK14A ioad-deflection plot.
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MK14A energy-displacement plot (at point of load).
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Figure B-165.
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Figure B-170.

1o

-




Figure B-171.
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MKI6 compression strain.




Fiqure B=1/3 MK/ tension cvackimg at faijlure
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Figure B-176. MK17 energy-displacement nlot.




Figqure B-178.

MKT/7 moment-cirvat o

piot.




Figure B-180. MKI18 compression spalling at failure.

oy

[

¢
. |
‘




+
[

T

nlot

MK18 load-deflection

o .
;
oJ
o3 o b :
vt .
_ -
an .
- —— ,T -
o8 .
h- ,rr.
= AN
o B e - —
[

o




\ o .
- ' c

— by

. - - o

- o

_ g 4 b

S by =

\ \ - Q e ~

. T >

c =

\, w —— — - —_— - o

. _ - - o— \ )

= . pad

.\ . | =

3 > - <
T - _ L ¥ o - . = b
N < - = =
N : % e .
— - B rf/ - B T - - = nH\ J/ .A\\I\“_ -

2 AN hes

2 © P

X — N =

——— e — R, N U ~ A e e _ U
=
. . . . AN
\
- t?‘;éivli R . e -
RN N
\ B

Fiqure B-14%,

1
|
1
|
1
!
|
x
]
JJ
Figure B-184.




Figqure B-186.

MK18 compression strain.
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Figure B-187. MK13 compression spalling at failure.
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Fiqure B-190.

MK1Y load-deflection plot.
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MK19 energy-displacement plot.

Figure B-191.
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Figure B-195. MK20 at failure.




Figure B-196. MK20 compression face at failure.

Figqure P-197. MK20 localized cracking at failure
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MKZ0 toad-deflection plot.

Figure B-198.
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MK21 compression strain.

Figure B-204.
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MKZ21 crack width afler load removal.

Fiqure B-205%.
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fFigure B-207. MK22 tension cracking at failure.




MK22 load-deflection plot.

Figure B-208.
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Figure B-210.
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MKZ22 moment-curvature plot.

Figure B-211.
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MK22 moment-curvature plot.

Figure B-212.
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Figure B-214. MK23 at failure.
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Figure B-215. MK23 compression spalling at failure.

Figure B-216. MK23 tension cracking at failure.
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MKZ23 energy-displacement plot.

Figure B~219.
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Figure B-223. Mk24 load-deflection plot.
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Figure B-225. MK24 energy-displacement plot.
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Figure B-229. MK5A compression zone deterioration after 450 cycles.

Figure B-230. MKSA tension face cracks after 450 cycles.
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Figure B-231. MKSA compression spalling at failure.

Figure B-232. MKS5A tension cracks at failure.
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MKSA moment-enerqy plot.

Figure B-234.
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Figure B-263. Tension face after failure.

Figure B-264. Compression face after failure of COLOI.
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Figure B-270. Spalling zone on compression face of COLOZ.

Figure B-271. Tension face of COL02 at failure
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Figure B-277. Compression zone spall of COLO3.

Figure B-278. Tension face of COLO3 after tailure.
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TEXAS A&M UNIVERSITY CE Dept (Herbich). College Station TX: CE Dept {Machemehl), College Station,
TX; CE Dept (Niedzwecki). College Station. TX: CE Dept (Snow). College Station, TX; Ocean Engr Proj.
Colfege Station, TX

UNIVERSITY OF ALABAMA Dir Fac Mgmt (Baker), Birmingham, AL

UNIVERSITY OF ALASKA Biomed & Marine Sci Lib, Fairbanks, AK

UNIVERSITY OF CALIFORNIA CE Dept (Fourney). Los Angeles. CA: CE Dept (Gerwick). Berkeley, CA:
CE Dept (Taylor), Davis, CA

UNIVERSITY OF DELAWARE Engrg Col (Dexter), Lewes, DE

UNIVERSITY OF HARTFGRD CE Dept (Keshawarz), West Hartford, CT

UNIVERSITY OF HAWAII Manoa. Library, "{onolulu, HI: Ocean Engrg Dept (Ertekin), Honolulu, Hl

UNIVERSITY OF ILLINOIS Library, Urbana. IL; Metz Ref Rm, Urbana, IL

UNIVERSITY OF MICHIGAN CE Dept (Richart). Ann Arbor. Ml

UNIVERSITY OF NEW MEXICO NMERI (Falk), Albuquerque. NM; NMERI (Leigh), Albuquerque, NM

UNIVERSITY OF RHODE ISLAND CE Dept (KW Lee), Kingston, RI

UNIVERSITY OF TEXAS CE Dept (Thompson). Austin, TX; Construction Industry Inst, Austin, TX; ECJ
4.8 (Breen), Austin, TX; ECJ 5.402 (Tucker). Austin, TX

UNIVERSITY OF WASHINGTON Applied Phy Lab Lib, Seattle, WA: CE Dept (Mattock), Seattle, WA

UNIVERSITY OF WISCONSIN Great Lakes Studies Cen, Milwaukee, WI

VENTURA COUNTY Deputy PW Dir. Ventura, CA

WASHINGTON DHHS, OFE/PHS (Ishihara), Seattle, WA

ADVANCED TECHNOLOGY, INC Ops Cen Mgr (Bednar), Camarillo, CA

AMERICAN CONCRETE INSTITUTE Library, Detroit, Ml

ARVID GRANT & ASSOC Olympia, WA

ATLANTIC RICHFIELD CO RE Smith, Dallas, TX

BABCOCK & WILCOX CO Tech Lib, Barberton, OH

BATTELLE D Frink, Columbus, OH; New Eng Marine Rsch Lab, Lib, Duxbury, MA

BECHTEL CIVIL, INC Woolston, San Francisco. CA

BLAYLOCK WILLIS & ASSUC T Spencer, San Diego, CA

BROWN & ROOT Ward. Houston, TX

CORRIGAN, LCDR S. USN, CEC. Stanford. CA

CHILDS ENGRG CORP K.M. Childs, Jr, Medfield, MA

COASTAL SCI & ENGRG C Jones, Columbia. SC

COLLINS ENGRG, INC M Garlich. Chicago, IL

COLUMBIA GULF TRANSMISSION CO Engrg Lib, Houston, TX

CONSOER TOWNSEND & ASSOC Schramm, Chicago, IL

CONSTRUCTION TECH LABS. INC G. Corley. Skokie. IL

CONTINENTAL OIL. CO O. Maxson, Ponca City. OK

DILLINGHAM CONSTR CORP (HD&C), F McHale, Honolulu, HI

EARL & WRIGHT CONSULTING ENGRGS lJensen. San Francisco. CA

EASTPORT INTL. INC JH OSborn. Mgr. Ventura, CA

GDM & ASSOC, INC Fairbanks. AK

GEOTECHNICAL ENGRS. INC Murdock, Winchester, MA

GLIDDEN CO Rsch Lib, Strongsville. OH

HALEY & ALDRICH, INC. T.C. Dunn, Cambridge, MA

HAYNES & ASSOC H. Haynes, PE, Oakland. CA

HIRSCH & CO L Hirsch, San Diego. CA

INTL MARITIME, INC D Waish, San Pedro. CA

LEO A DALY CO Honolulu, HI

LIN OFFSHORE ENGRG P. Chow, San Francisco CA

LINDA HALL LIBRARY Doc Dept, Kansas City. MO

MARATHON OIL CO Gamble. Houston. TX

MARINE CONCRETE STRUCTURES, INC W.A. [ngraham, Mectainie, LA

MARITECH ENGRG Donoghue. Austin, TX

MC CLELLAND ENMGRS. INC Library, Houston, TX

MOBIL R&D CORP Offshore Engrg Lib, Dallas, TX

MOFFATT & NICHOL ENGRS R Palmer. Long Beach. CA

MT DAVISSON CE. Savoy. IL

EDWARD K NODA & ASSOC Honolulu, HI

NATL ACADEMY OF ENGRG Alexandna, VA

NEW ZEALAND NZ Concrete Rsch Assoc, Library, Pornrua

NUHN & ASSOC A.C. Nuhn, Wayzata, NM

PACIFIC MARINE TECH (M. Wagner) Duvall, WA




PILE BUCK, INC Smoot, Jupiter, FL

PORTLAND CEMENT ASSOC AE Fiorato, Skokie, IL

SEATECH CORP Peroni, Miami, FL

SIMPSON, GUMPERTZ & HEGER, INC E Hill, CE, Arlington, MA
THE KLING-LINDQUIST, INC Radwan, Philadelphia, PA

TREMCO, INC M Raymond, Cleveland, OH

TRW INC Rodgers, Redondo Beach, CA

TUDOR ENGRG CO Ellegood, Phoenix, AZ

VSE Ocecan Engrg Gp (Murton), Alexandria, VA

WISS, JANNEY, ELSTNER, & ASSOC DW Pfeifer, Northbrook, IL
WOODWARD-CLYDE CONSULTANTS R. Cross, Oakland, CA; West Reg, Lib, Oakland, CA
CHAO, JC Houston, TX

FOWLER, J.W. Virginia Beach, VA

KLIEGER, PAUL CE, Northbrook, IL

PETERSEN, CAPT N.W. Pleasanton, CA

STEVENS, TW Dayton, OH

TAMPA PORT AUTHORITY Engrg Dept (Schrader), Tampa, FL
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SA ANDSD SA ANDSD
1. The technical quality of the report () €) () () ()]6. Theconclusions and recommenda- ) Oy ) () ()
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sources of technical information. ported by the contents of the
report.
2. The report will make significant () )y O oo
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DISTRIBUTION QUESTIONNAIRE
The Naval Civil Engineering Laboratory is revising its Primary distribution lists

SUBJECT CATEGORIES

1 SHORE FACILITIES

2 Construction methods and materials (including corrosion
control, coatings)

3 Waterfront structures (maintenance/deterioratior. control)

4 Utilities (including power conditioning)

5 Explosives safety

6 A.viation Ziwginsering Test Facilities

7 Fire prevention and control

8 Antenna technology

9 Structural analysis and design (including numerical and
computer techniques)

10 Protective construction (including hardened shelters.

shock and vibration studies)
11 Soil/rock mechanics
14 Airfields and pavements

15 ADVANCED BASE AND AMPHIBIOUS FACILITIES

16 Baso facilities (including shelters. power generation. water
supplies)

17 Expedient roads/airfields/bridges

18 Amphibious operations (including breakwaters. wave forces)

19 Over-the-Beach operations (including containerization.
material transfer. lighterage and cranes)

20 POL storage transfer and distribution

TYPES OF DOCUMENTS
85 Techdata Sheets 86 Technical Reports and Technical Notes
83 Table of Contents & Index to TDS

28
29

30
K}

32

ENERGY/POWER GENERATION

Thermal conservation (thermal engineering of buildings. HVAC
systems. energy loss measurement power generation)

Controls and electrical conservation (electrical systems.
energy monitoring and control systems)

Fuel flexibility (liquid fuels coal utilization energy
from solid waste)

Alternate energy source (geothermal power. photovoltaic
puwer systems. solar systems. wind systems. energy storage
systems)

Site data and systems integration (energy resource data.
energy consumption data. integrating energy systems)

ENVIRONMENTAL PRQTECTION

Hazardous waste minimization

Restoration of installations (hazardous waste)

' Waste water management and sanitary engineering

Qil pollution removal and recovery
Air pollution

OCEAN ENGINEERING

Seafloor soils and foundations

Seafioor construction systems and operations (including
diver and manipulator tcols)

Undersea structures and materials

Anchors and moorings

Undersea power systems. electromechanical cables
and connectors

Pressure vessel facilities

Physical environment (including site surveying)

Ocean-based concrete structures

Undersea cable dynamics

NCEL Guides & Abstracts
Physical Security

D None-
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