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1. INTRODUCTION

Jhe analytical study of the nature of interlaminar stresses near

stress-free edges has been the subject of substantial research interest.

Such studies are significant because the high interlaminar stresses or

stress singularities near stress-free edges may cause delamination failure

as shown by experimental investigations ' i--]3.. Also the accurate predic-

tion of these stresses may be useful in the design of test specimens for

investigation of laminate strength'j41. One of the first analytical

studies on interlaminar stresses near stress-free edges was published by

Pipes and Pagano D]. In their study, finite difference technique was

applied to a symmetric finite-width composite laminate subjected to uniform

uniaxial strain. Subsequently other techniques were used to solve similar

problems..Among th se are the boundary layer or the perturbation method

[6-8], Galerkin method T9] and the finite element method D 0-13]. However,

in these studies the exact nature of stress singularities at the free edges

were not taken into account in the formulation. Therefore, perhaps except

for Reference 13, the accuracy of solutions near the free-edge interface

appears marginal at best. In the finite element analysis reported in

Reference 13, extremely fine meshes were used near the free-edge interface,

resulting in a finite element model with a large number of degrees of free-

dom. Recently the exact nature of stress singularities near the free-edge

interfaces in cross ply and angle ply composites has been investigated

E14-18]. Reference 18 also includes interlaminar stress distribution

determined by the boundary collocation method.

In this report, we present an efficient hybrid finite element method

for analysis of interlaminar stress or free edge effect in symmetric
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composite laminates subject to uniform uniaxial strain. Both cross ply

and angle ply laminates are considered. The main feature of the present

study is the use of a special hybrid element with an embedded stress singu-

larity. The effectiveness of the hybrid finite element method, when applied

to problems with a singularity, such as a crack, has been amply demonstrated

by Pian and other people [19-21]. Especially the bi-material crack

analysis by Lin and Mar [22] is quite relevant to the present interlaminar

stress analysis.

In the next section, a formulation for both special and regular hybrid

elements are given. Numerical examples are treated in the third section.

A detailed discussion on the determination of assumed stress and displace-

ment field is included in the Appendix.
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2. FORMULATION

2.1 Problem Description

Figure I shows a long, symmetric cross ply or angle ply composite

laminate loaded in the z direction. The laminate has four plies, each

with thickness h. The width of the laminate is 2b. For the region

away from the ends, the laminate can be considered to be subject to uniform

uniaxial strain c : o  [5,23], and the displacement u, v and w in

x, y and z directions respectively can be written as

u = U(x,y)

v = V(x,y) (1)

w = E0
z + W(x,y)

where U, V, W are functions independent of z. For cross ply laminates

W(x,y) = 0. Also stress is independent of z, and thus equilibrium eqs. are:

xx + xy 0ax ay

+ (2)ax y

ax ay

aaz+ acy 0
ax ay

Thus the problem reduces essentially to a two-dimensional boundary value

problem in x,y plane. For cross ply laminates axz = ayz = 0.

3



2.2 Hybrid Finite Element Formulation

In hybrid finite element approximation, a cross section of the laminate.

normal to the z coordinate is divided into two regions, (see fig. 2).

The cross-hatched region in fig. 2 contains both the ply interface and the

stress-free edge. Since stress singularity is present at the junction of

the ply interface and the stress-free edge, this region is modeled by a

single special hybrid element with proper stress singularity terms. The

rest of the plane is modeled with many ordinary hybrid elements.

For actual formulation of hybrid finite elements, we may start from

the Hellinger-Reisqner principle or the modified complementary energy

principle [24-25]. Both are two-field variational principle with displace-

ment and stress components as independent variables.

For the Hellinger-Reissner principle, the functional nR is expressed

as follows:

IT f ijE:iidl -J f - ijk Oij Ok , dV -J T u dS ()
V V SC

where

Oij =stress tensor

Cij T (u i ' j + u. i) = strain tensor in terms of displacement

vector

ui displacement vector

Sijkz = compliance tensor

Ti = applied traction vector

V = volume of the solid body

S = portion of the surface where traction is applied

4



The stationarity of rR leads to

.R aiij 6Ei dV+! ( ij-Cij ) iai dV- Ti6uidS 0 (4)

V V

where

:Zj (6u + 6uj i) (5)6Tj 2 i'j '

In eq. (4), 67.. and 6a.. can be interpreted as virtual strain tensor

and virtual stress tensor respectively. For the problem to be considered

here, the traction vector Ti = 0. Now if V1  represents the volume of

the special element and V2  the rest, then 6nR = 0 can be expressed as

6IR = 6 Rl + 6R2 = 0 (6)

where

= Rk  j 6ijdV +  (ciJi ) 6aidV (k:1,2) (7)

Vk Vk

(A) Regular Element

The region away from the free-edge ply interface is modeled by regular

hybrid stress elements since no singularity is expected there. The finite

element modeling is accomplished by using the expression for 6nR2 in

eq. (7). For the problem considered here, the volume integral in eq. (7)

reduces to an integral over area A2. Written in matrix form,

6 fR2 f 6 -Ta dA + 6T ( )dA (8)
A2  A2

5



The superscript T represents the transpose.

Since zz Fzz C 0 is given, the strain vector e and the stress

vector a are expressed in component form as follows:

xx

yy

= s(9)
- yz

zx

xx

yy

0 (10)
- : yz

zx

oxy

For cross oly laminates, = = a = = 0. Similar expressionsyz zx yz zx

hold true for Sc and 6o. Strain vector c is related to stress vectur

o through the following eq.

= Ba + c (11)

where B is now a modified compliance matrix, and co plays the role of

an initial strain vector. See Appendix A.l for derivation of B and o*

Substituting eq. (11) into eq. (8)

6 R2 J 6J-T a dA* T  - B a - co)dA (12)

A2  2

6



For finite element approximation, the displacement vector u is assumed in

each element as

u = N ge (13)

where

N = shape function matrix

e = element nodal displacement vector

Then symbolically

:B- qe (14)

and also

6c B 6 e (15)

The assumed stress field satisfies equilibrium in each element, and can

be expressed as

o = P (16)

where

P = stress shape function matrix

s = the vector of unknown stress parameters

Also,

'5 : P 6R (17)

Substituting eqs. (13) - (17) into eq. (12)

6R zt E [6qeT GT a + 68T (G q - H a - Go)] (18)

R 2 e e - 0

7



where

G TEdA

f= pT B P dA (19)

go pT c. dA

The E notation indicates summation over all regular elements. From

eq. (18),

G ge - H - = 0 (20)

for arbitrary 66. From eq. (20)

a = H-1 (9 9e - go) (21)

Substituting eq. (21) into eq. (18)

6T GT 1-I

67R2 = Z 9e T H (G qe Go)

(22)
T

Iqe k e - 9e)

where

ke = GT H- I G (23)

is the element stiffness matrix and

Q GT H- 1 G (24)

9e = - -o

8



is the element nodal load vector due to prescribed strain e

The regular elements in the present study are four node element with

isoparametric representation for the assumed displacement field. The

assumed stress field is linear and satisfies equilibrium equation within -

each element. Thus for the cross ply cases, a regular element has eight

nodal degrees of freedom and the following stress field with seven stress

parameters:

a = B + a2x + a3y

ayy = 64+ 65 x + 66y (25)

xy 7 - 6x - y

For angle ply case, an element has twelve nodal degrees of freedom. For

the assumed stress field, the following axz and ayz components are

added to those in eq. (25)

axz =8 + 69 x + a oY

(26)
Gyz =ll + 6l2

x - agy

(B) Special Element

The special element incorporates stress singularity. In addition, the

stress-free condition along the edge and the bonding condition along the ply

interface are exactly satisfied, (See fig. 4.).

Using the divergence theorem, "R 1 in eq. (7) can be transformed to

9



R J Ti 6 ui + J Ti (i " ui) dS (27)

SI Sl

for stress which is in equilibrium and also compatible. In eq. (27)

ui  is the displacement integrated from stress and is independent of ui.

Written in matrix form,

6T 1  T dS + 6TT( - u) dS (28)
S1 S

Since

u = v = V~~)(29a)

w C 0z + W(x'y)

and

u 1 V(x,y) (29b)

t FI 0oZ + 7W(x,y) f

67Rl  can be rewritten as

R 6UTT dS+l f 6 T (U - U)dS (30)

Sl  SI

10



where

g= _ 7(31)

and

T x a xx a xy Crxz

= y =a m (32)

Tz C xz Cyz azz n

In eq. (32), z, m and n are the components of a unit vector normal to

the surface. Similar expressions hold for U, U and 6T. In eq. (28),

integration is defined over the surface. However, for the present problem,

it reduces to a line integral along the element boundary.

For finite element approximation, it is convenient to separate a and

U such that

(33)

U = *U + 0U

Here a term is constant stress predetermined to take care of the c-o

term in eq. (11). The *q terms represent the assumed stress and are

free of e terms. The 0U and *U vectors correspond to 0 and *a

respectively. The pair 0U and 0a satisfies equilibrium, compatibility

and stress-free conditions along the edge as well as the bonding condition

along the ply interface. See Appendix A.2 for details. The pair *U and

11



*0 also satisfies all these conditions.

Symbolically, the assumed stress *q can be expressed as

*0 = P (34)

where B is the vector of unknown parameters. The *a vector includes

singular as well as regular stress terms. From eqs. (32) and (33), we may

write

T = *T + °T (35)

And then, from eq. (32) and (34), *T may be written symbolically as

*T = R a (36)

The *U vector is also expressed symbolically as

*U = L $ (37)

The displacement vector U is assumed in terms of element nodal displace-

ment vector qe such that

U= N q (38)

The N matrix now represents the shape function matrix along the element

boundary.

With eqs. (36) to (38), 67 R in eq. (28) can be written as

R GeT Ta + 6qeTo+ T Q + " (39)

where

12



= RT N dS
1

1: RT L dS
1

(40)

go = R T 0T dS
1

9o =  R T Ou dS

The H matrix is symmetric although the integrand RT L is not. It

should be noted that the path of line integral in eq. (40) does not

include the stress-free edge and the ply interface. Thus the integration

path does not cross the singular point. In fact, this is the essence of

hybrid formulation for analysis of cracked solids [19]. From eq. (39)

§ ge - @o " = 0

or

= H-1 (G ge (41)

Substituting eq. (41) into eq. (39),

6-RI = 69eT GT H"I (G qe " 9o) + 6qeT Qo

(42)

6 eT (k e ?e 9e)

13



where

k= GT Hl G (43)Re - ~ ~

is the stiffness matrix of the special element and

9e = GT H-1 Go - 9o (44)

is the element load vector.

The special element used in the present study has nine nodes as

shown in Fig. 3. The displacement between two nodes is linear and thus

compatible with the adjacent regular elements. The number of unknown

parameters in the a vector is three for cross ply case and four for

angle ply case. See Appendix A.3 for details on the assumed stress field.

(C) Summing or Assemblying

The finite element equation for the whole problem is derived by

summing 67R1 and 6iR2 such that

61TR = 6qe T (k ) =e q(k q - Q) = 0 (45)

Now the summation notation stands for summing or assemblying over all

elements and

g = global nodal displacement vector

k = global stiffness matrix

Q = global load vector

14



For arbitrary 6q, we obtain

k q =Q (46)

which can be solved for q.

15



3. NUMERICAL EXAMPLES

The effectiveness of the present method has been tested by solving

three examples of four-ply laminates. They are [90*/0*]s and [00/900]s

cross ply laminates and a [±45'] s angle ply laminate as shown in fig. 5.

The geometrical dimensions and material properties used in the present

study are given as follows:

(a) geometry

half width b = 24"

ply thickness h = 3"

(b) material property

l= 20.0 x 106 psi

E22= 2.1 x 106 psi

V12 v23 = v3= 0.21

2= G23 = 31= 0.85 x 106 psi

These properties are the same as those used by other people [5,9,12]. Due

to symmetry, only a quarter of the section (the upper left part) was modeled.

Two different meshes, coarse and fine, were used to check convergence.

Figure 6 shows these meshes in scale. The number of nodes for the coarse

and fine meshes are III and 159 respectively.

(A) Cross Ply Case

Figures 7 and 8 shows stress distribution along the 90*-0* ply

interface at y = h for both [900/00] s and [0/90] s laminates. These

results are for the fine mesh. Although they are not shown, solutions

16



obtained by the coarse mesh are very close to those by the fine mesh,

indicating convergence. Note that for convenience a new coordinate x is

introduced as shown in fig. 2. The x coordinate is introduced such that

x= 0 at the free edge and x = b at the center.

Another measure of convergence is to check the value of free parameter

al corresponding to the singular stress term. For the [90°/O0]s laminate,

the computed values of al are 0.1044 x 108 C for the coarse mesh and

0.1036 x 108 C0 for the fine mesh. For the [0°/90] s laminate, these

values are -0.4384 x 106 e for the coarse mesh and -0.4338 x 106 Eo

for the fine mesh.

In fig. 7, normal stress ayy shows high gradient near the free edge

for both [0/90]s and [900/00] laminates. The [90°/0]s case is

particularly interesting. Results reported by Wang and Crossman [9] and

Spilker [12] indicates very small ayy at the free edge. On the other

hand, the present result shows ever-increasing hiah positive normal stress

confined to extremely narrow region at the edge. This result is in agree-

ment with that by Raju [13], and clearly indicates existence of stress

singularity. It appears that, although Wang and Crossman, and Spilker

used very fine meshes near the edge, the size of elements was not small

enough to capture the detailed picture. Meanwhile the size of elements

used in reference 13 at the edge was extremely small, resulting in a model

with an excessively large number of unknowns. Figure 8 shows a xy distri-

bution. It attains maximum value very close to the free edge. Of course

it drops to zero at the free edge itself.

(B) [±450] s Angle Ply Case

In this example, computed values of 8I are 0.1131 x 108 Co  for

the coarse mesh and 0.1123 x 108 C for

17



the fine mesh, indicating convergence. Figures 9 and 10 show the computed

stress distribution along the ply interface at y = h. Figure 9 indicates

ever-decreasing (negative) a near the free edge, indicating singularYY

stress. However, a approaches zero as x increases. In addition, shear

stress z shows an ever-increasing trend toward the free edge. Other stress

components, xx' a xy' xz are, of course, zero at the free edge. Shear

stress axz is almost constant away from the free edge, in accordance with

the classical lamination theory. It attains maximum near the free edge

before it drops to zero. The normal stress axx also reaches maximum

near the free edge and then quickly reduces to zero at the free edge itself.

The result for shear stress a is not presented here because its magni-xy

tude is very small compared with other components.

Figure 11 shows a along the free edge. Here we observe a sharpYY

change in magnitude near the ply interface. This behavior is consistent

with the existence of stress singularity. The results presented here agree

with those in reference 13. However, in reference 13, an extremely fine

mesh had to be used, and the exact nature of stress singularity could not

be determined within reasonable accuracy.

18
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4. CONCLUSION

Numerical results indicate that the hybrid finite element formulation

involving a special element with embedded stress singularity is a very

efficient means for accurate determination of interlaminar stress distri-

bution. For both cross ply and angle ply symmetric laminates considered

here, the present method provides converged stress values near the junction

of the stress-free edge and the ply interface. These stress values are

much more accurate than those obtained by others using conventional finite

element models that do not include proper singularity. With the present

formulation, it is possible to use a much more coarse finite element mesh,

resulting in a substantial improvement in computing effort.
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Fig. 1. A symmetric composite laminate

under uniform uniaxial strain.
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Fig. 3. Four-node regular hybrid element.
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Fig. 4 Nine-node special singular hybrid element.
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APPENDIX

A.1 ANISOTROPIC ELASTICITY WITH PRESCRIBED UNIFORM UNIAXIAL STRAIN

For three-dimensional solids, the three equations of equilibrium are

expressed in terms of stress components axx' a yy xy;

aax _a aaxz
S+ a + - = 0
ax ay 3z

aoy+ ay + =cy 0(A.)
ax ay az

a'xz + aa o

ax ay az

The six strain components xx y, y xy are related to the

six stress components as follows:

xx S 1 + S + S zz S1  zx + S1

x Sl 2axx + 2 yy S 3 azz+ S 4 ayz 5 1zx 6 axy

S + S+ S a + S + S+ S
Cyy S21 0xx +$ 22 ayy+ S23 0 zz $24 Cyz $25 z $26 axy

zz 31 xx S32 ayy $33  zz $34  yz S35 azx S36 a xy

(A.l .2)c + S +S +5 +5 +S

yz $41 axx $42 yy S43,azz S44 7yz $45 azx S46 7xy

Ezx $ 51 (xx S52 +yy S53 azz S54 cyz S55 azx +S 56 axy
= +S+a+ +

Exy S61 axx + S62 yy + 63 a zz+ S64 ayz + S65 azx + S66 xy
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where $11 , S12 etc. are compliance coefficients, The strain-displacement

relation is expressed as

: au
xx ax

=av
yy ay

aw
zz az

v + w 
(A.1 .3)

yz az ay

Saw + auCzx ax az

au + ;v
xy ay ax

where u, v and w are displacement components in x, y and z directions

respectively.

If the body is subjected to uniform uniaxial strain Ezz =cot stress

components do not vary along the z direction [23]. Then the equilibrium

equation reduces to

ax-x + v 0

ay

ac ac
xy + yy 0 (A.1 .4)

;x By

xz + yz 0
T ay

Now from the third equation of (A.l.2)

zz = S 1 o - S31 0xx - $32 0yy - 34 Oyz - 35 azx - S 36 axy)

(A.1 .5)
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Substituting (A..5) into the remaining five equations in eq. (A.1.2), we

obtain

Sl

=B a + BlCY + B14 ay + + B + 3 0
Cxx B11 axx 12ayy 4az 35zx 6x

S

yy = 21a7xx + 220yy + B24ayz + 25azx + 26 xy + -3 0

C B a + B a + B 4aYZ + B45 o + B + $ (A..6)yz B41 xx +  42 yy B44 yz zx B46c'xy +S 33  0O  (. 6

= + + y +Ba + S53
+zx 51 xx 52 yy 54yz 55zx 56xy S 3

S6 3
:x + Ba + BG + B + B S3 0

xy B6 1 a x B6 2 yy B64 ayz B650xz B66 ° xy +S

where

B.S SJ3 (i,j = 1,2,4,5,6) (A.1.7)
i Sij - S3 3

For symmetric angle ply case

814 : B24 = B34 = B54 : 0
(A.1.8)I

B16 B 2 6 =B 3 6 =B 6 =0

In matrix form, eq. (A.1.6) can be written as

c = B a + co (A.l.9)
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wi th

c
Xx
c yy

yz  
(A.1.10)

zx

c xy

B 1  . B16

B = 5 x 5 matrix (A . I)

B61  B6 6

axx

yy (A..12)

xy

S13

S23
£4 3 (A.1 .13)=O S43 S 3

S53

S63
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For the present problem, the displacement components u, v, w can

be expressed as

u = u(x,y)

v = V(x,y) (A.1.14)

w = e0z + W(x,y)

Then the strain-displacement relation is written as

Cxx ax

avCyy ay

_ aW (A.1 .15)
yz ay

3W
ZX= a"

au + av
Cxy Dy ax

For cross ply laminate, further simplification is possible since

0yz :zx 0

(A.1 .16)

Cyz =  zx
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The equilibrium equation now reduces to

xx + xY 0
ax By

(..l .17)

xY+ Y= 0
ax ay

Also

xx 11 "xx 12 yy + aO

-B 2 1  + B2 2  S + e23 (A.l.18)
C yy 21 G x 2 OYY + 33

Cxy B66 axy

and

au
xx ax

3V (A.1 .19)
yy By

exy auB + aBx
By a x
3u av
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A.2 CONSTANT STRESS FIELD**

The role of predetermined constant stress field is to separate terms

involving prescribed strain c from the assumed stress field and the

corresponding assumed displacement field. For the present special element,

the constant stress term satisfies the stress-free condition along the free

edge. In addition, the constant stress field and the displacement field

integrated from the constant stress field satisfy the bonding condition

along the ply interface.

A.2.1 Cross-Ply Case

For the coordinate system shown in figure 4, the stress-free condi-

tions are:

au u =0 (A.2.1)°xx = xy

at 7
=

and

axx 9 oxy 1 0 (A.2.2)

at e :  - r2

The bonding condition along e = 0* are

u - I
axy =xy

ayy a yy
uu =U (A.2.3)

U U

V = Vk

** The senior author has recently noticed a similar development in ref. 17.
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The superscripts u and k stand for the upper layer and the lower layer

respectively. The constant stress components xx , xy that

satisfy the above stress-free and the bonding conditions are

0 U=0 9.a a
xx yy

o u 0 = 0 (A.2.4)xy : xy

o u 0o £

yy yy

where c is a constant to be determined as follows. Substituting the

constant stress terms in eq. (A.2.4) into eq. (A.l.18) and integrating,

we obtain the corresponding displacement components 0U" and 0 for

the upper layer as follows

=c + Sl~ co  x0°uU= (B12U S1
S33u

u (A.2.5)

°vU = (B22U c + ) (A.2O5)

S33

excluding the rigid body modes. Similar expression holds for

displacement components °U and °V. Then from the displacement

continuity at the 90' - 00 ply interface.

u S3 u  S13 "

(B12U c + ,3u x = (B1 ' c +1 Co ) x (A.2.6)
$33u  S33
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Solving for c, we obtain

€ S1 u

C -C 0 __3 _ 13 (A.2.7)
B12U - B12 $33 $33u

A.2.2 Angle-Ply Case

Now stress-free conditions are:

u u u = 0 (A.2.8)
xx xy xz

at 8 = -1
2

and

= 0 0 = 0 (A.2.9)
axx xy a xz

at IT
2

The bonding conditions along the piy interface (e = 0°) are;

a =0
xy xy

u
yy yy (A.2.10)

u 2,
ayz =yz

and

U =U

Vu V (A.2.11)
Wu =W
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The constant stress components that satisfy the above stress-free and the

bonding conditions are

yy ayy 1

0 yzU = °ayz = c 2

0axyU = U axy = 0 (A.2.12)

O U 0 2. = 0
xz = OaXZ

0 U 0 =0
axx a xx

Substituting this stress state into eq. (A.l.15) and integrating, we obtain

the corresponding displacement fields. Then from the matching condition

eq. (A.2.11) of displacements along the ply interface

c2 = 0 (A.2.13)

and

c o = 0 - -= oC S53u $53) (A.2.14)(B52u B52.t) S33u  $53-t

or since

B52  = - B52

S53 = " 53k (A.2.15)

S3 3u 33
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for symmetric angle ply,

o yyU = 0 5yy B Co $53  (A.2.16)

52 33

In addition,

S1
u

0uU = (B1 u °ayu + 1 3 C ) x
23 3U 0

0uu + S 23 ) y (A.2.17)
22 °yy S33u 0

0°Wu = 0

0 =0

Similar expressions hold for stress Oxx a xy and displacement

°U', °V£ and W for the lower layer.
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A.3 ASSUMED STRESS FIELD (SINGULAR AND NONSINGULAR)

The assumed stress and the corresponding displacement fields satisfy

all governing equations of elasticity, the stress-free condition over the

free edge and the bonding condition along the ply interface. In order to

ensure convergence, the assumed stress must include singular terms [26].

The determination of singular stress fields proceeds as follows.

A.3.1 Cross-Ply Case

By introducing a stress function F(x,y) such that

2F=a2F

"xx -y2

a 
(A.3.1)

YY a x2

a2 F
aa

xy axay

the equilibrium equation (A.I.17) is always satisfied, and the compatibility

among strain components in eq. (A.1.18) leads to the following fourth-order

equation for F.

F + 2 B (A.3.2)
22 ax4 B12  66 ax 2 2 l ay 4

The above equation has the general solution of the following form:

F(x,y) = Fk (x + Pky) (k = 1,2,3,4) (A.3.3)

where Pk is a root of the following fourth order algebraic equation.
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BII 4+ (2 B12 + B66 ) + B22 = 0 (A.3.4)

The solutions to the above equations constitute two conjugate pairs. Thus

if U, and P2 are two distinct roots, then

P3:u I

(A.3.5)

V4 =2

where p, is the conjugate of uI etc. In order to determine the singu-

lar stress field and also the non-singular stress fields, we express Fk

as

A (x + lky) + 2 (A.3.6)

Fk(X + "ky  A (a+2)(a+ )

where Ak is a coefficient and a is a quantity to be determined by an

eigenvalue analysis. The local coordinates x and y are related to

the polar coordinates r and e as follows (fig. 4).

x = r cose

(A.3.7)y = r cose

Then

x + uky = r Ck  (A.3.8)

where

Ck = cose + Uk sine (A.3.9)
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From eq. (A.3.1), the non-constant stress components are expressed as

4 2
*0 = ra E AkU (uku)  (CkU)xx k=l

4

*a = r z A (Ck ) (A.3.10)
k=l

4
*0xU = a 4 z AkuU(Cku)

X,~1 k=I

for the upper layer. The corresponding displacement components are deter-

mined by integrating eq. (A.l.18)

r.+l 4 U )+l
k= Aku pk u

(A.3.11)

*Vu = r +l 4 u U (a+l

E+ l Aku qk (Ck)

where

Pk= B11 k + B1 2

(A.3.12)

q = B12 "k + B22/Pk

Similar expression holds for the lower layer. Note that c0 term does

not appear in the above equation since it was taken into account by the

constant stress field and the corresponding displacement in the previous

section.
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Applying the bonding condition along 6 = 0,

4 a 4
E AkU (CU) = E Ak91 (C Y)

k=l k=l

4 a 4 c
E Aku u (Cku )  z Ak 21 k (Ckk)

k=l k k k=l

(A.3.13)

4 U ( +I 4 1+I
EAku fu (CAu E A pk1 (CJ)

k=l k k k k=l

4 u u+ 4 , +I
E Aku qU (Ck) =z Ak P z (CkZ)

k=l k=l

The above equation can be rewritten in matrix form as

Au =T A (A.3.14)

where

A1 uA2

u 
(A.3.15)

A4
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A1

A2 (A. 3.16)

A 4

and T is a 4x4 matrix. Since *a Ux u *0 y u 0 at

e = j- (cose = 0, sine = 1),

42a

k=1 Aku (Pku) = 0

(A.3.17)

4 a

E= A k (Uk) = 0

And also *a *C= o =0 at e= -1(cose =0, sine -1)xx xy 2

42a
E A 0
k= I k (-)l' )

(A.3.18)

4 1+ci

k=1Al (~t

Equations (A.3.17) and (A.3.18), in conjunction with eq. (A.3.14),leads to

a system of homogeneous equations for A u as:
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C( Au = 0 (A.3.19)

Uwhere C(a) is 4x 4 matrix with the unknown a. For nontrivial A

the determinant of C(a) must be equal to zero, which leads to an eigen-

value problem. The eigenvalue a can be either real or complex. For

singular stress,

-l < Re(a) < 0 (A.3.20)

where Re(a) is the real part of a. For the material properties used in

the present problem, the first eigenvalue corresponding to stress singularity

is a = - C.333888.

Using eigenvalues and eigenvectors determined from eigenvalue analysis.

we may construct the assumed stress and displacement field as follows:

u n OL 4 U2( uai
*a u = Z r 1 Re [ :l (AkU) (uk ) (CkU) i

xx i=I k~l
1

n c, 4u.

, Z r 1 Re [ Z (AkU) (Ck)] i (A.3.21)

il k=l *1

n a, 4 Ci
i u = r 1 Re [z (AkU) uk (CkU) ]

k=l i
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and a.+ a +1

,U r Re [ S (AkU) Pku (CkU) ] i
i ai+l k=l a=c.

1

(A.3.22)
n a +l 4 ai+l

*Vu  r + Re E (AkU) qku  (Cku 6
i=l k=l1.) i

1

where B1, Sn are unknown free parameters. In the above expression,

the following relations are utilized.

(k = 1,2) (A.3.23)

and thus

Pk+2 Pk

qk+2 = qk (k = 1,2) (A.3.24)

Ck+ 2  = Ck

In the present study, a three term (n = 3) approximation was used.

A.3.2 Angle Ply Case

The stress components are now expressed in terms of stress functions

F(x,y) and *(x,y) such that

2

=2F (cont'd)
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a2 F

xy axay

4 (A.3.25)
axz y

yz ax

The compatibility among strain components in eq. (A.I.5) leads to the

following two homogenous equations for F and p:

L4 F + L3 = 0 (A.3.26a)

L3F + L2p = 0 (A.3.26b)

where the differential operators L2, L3  and L4 are given as

a2  22
L B a2 - 2B45 -;

2  B 2

2 44 ax2  4 xay +55 y2

L3 + a3  (B +8 ;3  +3
3 B24  3 5 4 2 14 56 -- 2 15 3

ax 2546 ax ay Bxay ay

(A.3.27)

a4  a4  B 4

L4 = B22 -T - 2B26  Ty-- + (2B12 + 66) 2 2
ax ax ay ax ay

a4

- 2B16  - + 8 ay
16axay a I y

Combining eqs. (A.3.26a) and (A.3.26b) leads to
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(L4 L2 - L3
2) F = 0 (A.3.28)

The above equation has the general solution of the form

F(x,y) = Fk (x + Pky) (k 1,2,...6) (A.3.29)

where Pk is a root of the following sixth order equation;

k4(u) Yv) - 32 (P) 0 (A.3.30)

with

2

Yu) = B55 2 - 2B45 u + B44

3(1p) = B15  3 - (B14 +B 56 ) P2 + (B25 +B 46 )I - B24  (A.3.31)

.4(v) = B11  4 _ 2B16  + (2B12+B66) ' - 2B2 6  + B22

The solutions to the eq. (A.3.30) constitute three conjugate pairs. There-

fore if Il' 2 and P3 are three distinct roots, then

k+3 = k(k = 1,2,3) (A.3.32)

Also from eq. (A.3.26b) the solution for *k can be expressed as

d Fk(x+ Pky)
*k(x + Pky )  Xk d(x + ukyy) (A.3.33)

where

k P10 (A.3.34)
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Again, using polar coordinates r and e (fig. 4)

x + 'uk Y= r (cos e + Pk sine) = r Ck (A.3.35)

where

C k = cos 6 + vksin e (A.3.36)

Introducing F k and ipk into eq. (A.3.25)

*0 U = 6 Ak (~U(CU )a

XX k=l

6a
*0 yyU r O A~L k CkU)

k=l

U6 a (
ky ' l A k)'kU (k) (A.3.37)

6a
*0 ~=rctk=l A~kIk cU

6 U CUa

The corresponding displacements are determined by integrating eq. (A.1.6)

without e terms. They are written as

ra +l 6 E A k (C (cont'd)
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r1+l 6 u +lV
u  r u qU (CkU )

+ l k=l Aku

(A.3.38)

u rc+l 6 Ca+l
*wU +l E: Aku rk (Ck)k=l

where

u 2

Pk = B 1 
u (uku) + B2 u - Bl6 Uuk u+xku(Bl5u k uB14 U)

uB u
qu= B u u + B22  - B26  + ku (B25U " 24) (A.3.39)

rkU B4U
u +k B24 U B U + ,k (B45u - B44 u

k 14 +k _ _ B46u  k 45U

"k 1 k

Similar expressions hold for the lower layer with coefficients Ak.

From the bonding conditions along e = 00,

6 6E A u E A
k=l N k=l

6 6

E Aku = 6 Ak2
k=l k=l

6 6
E A = E A X (cont'd)

k=1 kk k=l k k
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6 6
E P = Akt pk

k=l k pk  k=l

6 6

. AkU q u = E (A.3.40)
k=l k=l k

6 6
E Ak U r Ak rk

k=l r k=l

The above six equations provide a relationship between AkU and Ak

From the stress-free conditions at e = 2
2

6 2+a

E A

k=l Aku (uku ) = 0

6 l+a
k: Aku ( lku) = 0 (A.3.41)

k=l

6 l +am

kz A u U A u (Uku)  0

and also from the stress-free conditions at = 2

6 2+a
kE Akt ('Pkk) = 0

k=l

6 I+a
: Ak ('Uk) = 0 (cont'd)
k15
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*6

z AkL Xk (-k ) = 0 (A.3.42)

k=lk

Combining eqs. (A.3.40), (A.3.41) and (A.3.42), we obtain a system of

homogeneous equations

C(a) Au = 0 (A.3.43)

where

Au =, { (A.3.44)

A 6

and C(a) is a 6x6 matrix with eigenvalue a. For the material proper-

ties used in his study and ±45' layer, the first eigenvalue corresponding

to stress singularity is a = - 0.0255756.

Using eigenvalues and the corresponding eigenvectors, we may construct

the assumed stress and displacement fields. For example, for assumed

stress *axx

, u n a i 6 U)U(CU i
= ZE Re [r r (AkU SkU k i  (A.3.45)

x i =l k=l C .

with
2

Sku = (ku)

The other assumed stress components have a similar expression with proper

definition of Sk as follows:
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Stress Components Sk

*0 u 1.0
YY

0UU

xy -Pk

*axz Uk

yz k

For assumed displacement *Uu,

n i +l 6 ).+l
E Re[r (Aku) u )  (A.3.46)

i l 1 i + I  k'l a=a i

The expression for *Vu is obtained by replacing pku  in eq. (A.3.46)

with qkU. Likewisc, the expression for *Wu is obtained by replacing

Pku with rkU. Similar expressions hold for axx ... axy , *9 *V and

*W for the lower layer. The coefficients 5l, B2  . are unknown

free parameters. In the present study a four term approximation (n=4)

was used.
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