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1.  INTRODUCTION
.~ The analytical study of the nature of interlaminar stresses near

stresgifree edges has been the subiect of substantial research interest.
Such studies are significant because the high interlaminar stresses or
stress singularities near stress-free edges may cause delamination failure
as shown by experimental investigations;f$-34. Also the accurate predic-
tion of these stresses may be useful in the design of test specimens for
investigation of laminate strength\tﬂl. One of the first analytical
studies on interlaminar stresses near stress-free edges was published by
Pipes and Pagano £6]. 1In their study, finite difference technique was
applied to a symmetric finite-width composite Taminate subjected to uniform
uniaxial strain. Subsequently other techniques were used to solve similar
problems. \Among thise éfe the boundary layer or the perturbation method
(6-8], Galerk1n method‘[Q] and the finite element method [10-13]. However,
in these studies the exact nature of stress singularities at the free edges
were not taken into account in the formulation. Therefore, perhaps except
for Reference 13, the accuracy of solutions near thé free-edge interface
appears marginal at best. In the finite element analysis reported in
Reference 13, extremely fine meshes were used near the free-edge interface,
resulting in a finite element model with a large number of degrees of free-
dom. Recently the exact nature of stress singularities near the free-edge
interfaces in cross ply and angle ply composites has been investigated
[14-18]. Reference 18 also includes interlaminar stress distribution
determined by the boundary collocation metihod.

In this report, we present an efficient hybrid finite element method

for analysis of interlaminar stress or free edge effect in symmetric




composite laminates subject to uniform uniaxial strain. Both cross ply
and angle ply laminates are considered. The main feature of the present
study is the use of a special hybrid element with an embedded stress singu-
larity. The effectiveness of the hybrid finite element method, when applied
to problems with a singularity, such as a crack, has been amply demonstrated
by Pian and other people [19-21]. Especially the bi-material crack
analysis by Lin and Mar [22] is quite relevant to the present interlaminar
strass analysis.

In the next section, a formulation for both special and regular hybrid
elements are given. Numerical examples are treated in the third section.
A detailed discussion on the determination of assumed stress and displace-

ment field is included in the Appendix.




2.  FORMULATION

2.1 Problem Description

Figure 1 shows a long, symmetric cross ply or angle ply composite
Taminate loaded in the 2z direction. The laminate has four plies, each
with thickness h. The width of the laminate is 2b. For the region
away from the ends, the laminate can be considered to be subject to uniform
uniaxial strain e_, = e_ [5,23], and the displacement u, v and w in

22 0
X, y and z directions respectively can be written as

u = U(x,y)
v = V(xs.V) (])
W=e 7+ W(x,y)

where U, V, W are functions independent of z. For cross ply laminates

W(x,y) = 0. Also stress is independent of 2z, and thus equilibrium egs. are:

oo r:To}
XX 4 XY -
X oy
90 90
Xy o4 XY -
X * y 0 (2)
] 3
oz , Py .,
ax y

Thus the problem reduces essentially to a two-dimensional boundary value

problem in x,y plane. For cross ply laminates Oyz = 2 = 0.




2.2 Hybrid Finite Element Formulation

In hybrid finite element approximation, a cross section of the laminate:-
normal to the z coordinate is divided into two regions, (see fig. 2).

The cross-hatched region in fig. 2 contains both the ply interface and the
stress-free edge. Since stress singularity is present at the junction of
the ply interface and the stress-free edge, this region is modeled by a
single special hybrid element with proper stress singularity terms. The
rest of the plane is modeled with many ordinary hybrid elements.

For actual formulation of hybrid finite elements, we may start from
the Hellinger-Reissner principle or the modified complementary energy
principle [24-25]. Both are two-field variational principle with displace-
ment and stress components as independent variables.

For the Hellinger-Reissner principle, the functional R is expressed

as follows:

- - 1 ) -
TR = f Uij €45 dv - J 5 Sijkz Gij g dv J T'i u, ds (3)
v

where
05 3 = stress tensor
- 1 . . .
=3 (U, s tu, )=
€557 2 (“1,3 “3,1) strain tensor in terms of displacement
vector

u, = displacement vector
S = compliance tensor
T. = applied traction vector
V = volume of the solid body

S = portion of the surface where traction is applied




The stationarity of TR leads to

where

Se.. = %—(6u. o+ oSuL L) (5)

In eq. (4), &Eij and Gcij can be interpreted as virtual strain tensor
and virtual stress tensor respectively. For the problem to be considered
here, the traction vector T} = 0. Now if V] represents the volume of

the special element and V2 the rest, then GnR = 0 can be expressed as

SwR = GTTR] + &n =0 (6)

where

(A) Regular Element

The region away from the free-edge ply interface is modeled by regular
hybrid stress elements since no singularity is expected there. The finite
element modeling is accomplished by using the expression for GnRz in
eq. (7). For the problem considered here, the volume integral in eq. (7)

reduces to an integral over area AZ' Written in matrix form,

GwR2=f6€ngA+jqu (e - ¢) dA (8)

Ay Ay




The superscript T represents the transpose.

Since e,, =&, = ¢, is given, the strain vectcr € and the stress

vector ¢ are expressed in component form as follows:

Xy /

g
XX

o
yy

o = % Gyz g (10)

( oy )

"For cross olv laminates, € _=¢._ =0 _=¢ =0. Similar expressions
s ois * fyz T Tzx yz ZX ar Express

hold true for &8¢ and &o. Strain vector ¢ is related to stress vector

g through the followiny eq.

e=Botey (M)

where B 1is now a modified compliance matrix, and €0 plays the role of

an inivial strain vector. See Appendix A.1 for derivation of B and €0

Substituting eq. (11) into eq. (8)

smp =I G_ZquAw‘J 8o (e-Bo-g)dA (12)
2




For finite element approximation, the displacement vector u is assumed in

each element as

u=Ng, (13)
where

N = shape function matrix

9a = element nodal displacement vector

Then symbolically

o |

= g'ge (14)

and also

-~

se = B sq, (15)

The assumed stress field satisfies equilibrium in each element, and can

be expressed as

g=Pg (16)
where

P = stress shape function matrix

8 = the vector of unknown stress parameters
Also,

§c =P § (17)

- ~ ~

Substituting eqs. (13) - (17) into eq. (12)

Smp =% [ageT gT B+ egT (Gg,-Hs -G )] (18)

2




where

The <t notation indicates summation over all regular elements.

eq. (18),

for arbitrary &8. From eq. (20)

L

where

1}
™
O

O
1]
D

n
2]
O

0

From

(20)




is the element nodal load vector due to prescribed strain €y

The regular elements in the present study are four node element with
isoparametric representation for the assumed displacement field. The
assumed stress field is linear and satisfies equilibrium equation within -
each element. Thus for the cross ply cases, a regular element has eight

nodal degrees of freedom and the following stress field with seven stress

parameters:
9ex - B + BoX + B3y
oyy T By * BgX * gy (25)
Oy T B7 7 Bg* T BY '

For angle ply case, an element has twelve nodal degrees of freedom. For
the assumed stress field, the following Tz and °yz components are

added to those in eq. (25)

Oxz = Bg * EgX * BypY

Uyz = B]] + 8]2x - Bgy
(B) Special Element

The special eiement incorporates stress singularity. In addition, the
stress-free condition along the edge and the bonding condition along the ply

interface are exactly satisfied, (See fig. 4.).

Using the divergence theorem, GnR]in eq. {7) can be transformed to




Sm. = f T, 56& + J 6T, (u, - u,) dsS (27)

for stress which is in equilibrium and also compatible. In eq. (27)
u; is the displacement integrated from stress and is independent of Uj.

Written in matrix form,

srp = I su' TdS + J sTV (T - u) dS (28)
L S
1 1
Since
N
u U{x,y)
u = v = V(x,y) > (29a)
W g,z t w(x,y)J
and
.
u U(x,y)
u= 9§ v =9 Vixy) (29b)
w | g2 + Wix,y)
GnR can be rewritten as
1
_T T -
smp =[ suU Ids+[ 6T (U -U) dS (30)
L S
1 1
10




where
(7
U=4¢7V (31)
W
and
.
Y OT 7
Tx Ixx cxy Oxz e
1= T 8oy o, ol ¢ (32)
\ Té / | %z Gyz czzj t n

In eq. (32), 2, m and n are the components of a unit vector normal to
the surface. Similar expressions hold for U, §U and §T. In eq. (28),
integration is defined over the surface. However, for the present problem,
it reduces to a line integral along the element boundary.

For finite element approximation, it is convenient to separate ¢ and

U such that

(33)

[ e
n
&
+

Here °g term is constant stress predetermined to take care of the €0

term in eq. (11). The *g terms represent the assumed stress and are

free of ¢ terms. The °g and *U vectors correspond to og and *g

respectively. The pair % and % satisfies equilibrium, compatibility

~

and stress-free conditions along the edge as well as the bonding condition

along the ply interface. See Appendix A.2 for details. The pair *U and

N

4J----IIIllllll......l.l...lI.llllllllllllllllllllll.llllll.l.lll...llllll..l.li



*g also satisfies all these conditions.

Symbolically, the assumed stress *g can be expressed as

*s = P B (34)

~ ~

where 8 1is the vector of unknown parameters. The *g vector includes
singular as well as regular stress terms. From eqs. (32) and (33), we may

write
T=7*T+7T (35)
And then, from eq. (32) and (34), *T may be written symbolically as

*T=Rg8 (36)

*=L8 (37)

The displacement vector E' js assumed in terms of element nodal displace-

ment vector %e such that

-~

[ e |

=Nq, : (38)

The N matrix now represents the shape function matrix along the element
boundary.
With eqs. (36) to (38), Smp in eq. (28) can be written as
1

T.T T T (

sz] = 69 Gg, - Hs -G) (39)

e

where

12




dsS

0
1=

H=LBTLdS
1
90=L R °T ds
1
_ To
QQ—LB U ds

(40)

The H matrix is symmetric although the integrand RT L isnot. It

should be noted that the path of line integral in eq. (40) does not

include the stress-free edge and the ply interface.
path does not cross the singular point.

hybrid formulation for analysis of cracked solids [19].

o

9e - H

or

w
it
X
]

i

n

[
[¥m)
o
(X 2]
[ o o4

Ry

T
% (Ee 9e - Qe)

-

Thus the integration
In fact, this is the essence of

From eq. (39)

(41)

(42)

13




where

G (43)

is the stiffness matrix of the special element and

0. =6t g, - Q

o G, (44)

0

is the element load vector.

The special element used in the present study has nine nodes as
shown in Fig. 3. The displacement between two nodes is linear and thus
compatible with the adjacent regular elements. The number of unknown
parameters in the g8 vector is three for cross ply case and four for

angle ply case. See Appendix A.3 for details on the assumed stress field.

(C) Summing or Assemblying
The finite element equation for the whole problem is derived by

summing SWR] and 6nR such that
2

(kq-Q =0 (45)

Now the summation notation stands for summing or assemblying over all

elements and

g = global nodal displacement vector
k = global stiffness matrix
Q-= global load vector

14




For arbitrary &g, we obtain
kq=20

which can be solved for 9.

15




3.  NUMERICAL EXAMPLES

The effectiveness of the present method has been tested by solving
three examples of four-ply laminates. They are [90°/0°]S and [0°/90°]S
cross ply laminates and a [145°]S angle ply laminate as shown in fig. 5.
The geometrical dimensions and material properties used in the present
study are given as follows:

(a) geometry

half width b = 24"
ply thickness h = 3"
(b) material property
E]] = 20.0 x 106 psi
E., = 2.1 x 10° psi
22 :
V12 = V23 = V31 = 0-2]
6, = Gy = Gy = 0.85 x 10° psi

These properties are the same as those used by other people [5,9,12]. Due
to symmetry, only a quarter of the section (the upper left part) was modeled.
Two different meshes, coarse and fine, were used to check convergence.

Figure 6 shows these meshes in scale. The number of nodes for the coarse

and fine meshes are 111 and 159 respectively.

(A) Cross Ply Case

Figures 7 and 8 shows stress distribution along the 90°-0° ply
interface at y = h for both [90°/0°]S and [0°/90°]S laminates. These

results are for the fine mesh. Although they are not shown, solutions

16




obtained by the coarse mesh are very close t5 those by the fine mesh,

indicating convergence. Note that for convenience a new coordinate x is
introduced as shown in fig. 2. The x coordinate is introduced such that
X = 0 at the free edge and x = b at the center.

Another measure of convergence is to check the value of free parameter
By corresponding to the singular stress term. For the [90°/0°]S laminate,

the computed values of By are 0.1044 x 108 € for the coarse mesh and

0.1036 x 108 € for the fine mesh. For the [O°/9O°]S laminate, these

values are -0.4384 x 106 € for the coarse mesh and - 0.4338 x 106 €0
for the fine mesh.

In fig. 7, normal stress ®uy shows high gradient near the free edge
for both [0°/90]S and [90°/0°]S laminates. The [9O°/0°]s case is
particularly interesting. Results reported by Wang and Crossman [9] and
Spilker [12] indicates very small Oy at the free edge. On the other
hand, the present result shows ever-increasing high positive normal stress
confined to extremely narrow region at the edge. This result is in agree-
ment with that by Raju [13], and clearly indicates existence of stress
singularity. It appears that, although Wang and Crossman, and Spilker
used very fine meshes near the edge, the size of elements was not small
enough to capture the detailed picture. Meanwhile the size of elements
used in reference 13 at the edge was extremely small, resulting in a model
with an excessively large number of unknowns. Figure 8 shows Oxy distri-
bution. It attains maximum value very close to the free edge. Of course

it drops to zero at the free edge itself.
(B) [#45°] Angle Ply Case

In this example, computed values of g8, are 0.1131 x 108 ¢ for

0
the coarse mesh and 0.1123 x 108 € for

17




the fine mesh, indicating convergence. Figures 9 and 10 show the computed
stress distribution along the ply interface at y = h. Figure 9 indicates
ever-decreasing (negative) o,y near the free edge, indicating singular
stress. However, cyy approaches zero as X increases. In addition, shear
stress Oz shows an ever-increasing trend toward the free edge. Other stress
components, O x® ny’ o 2ares of course, zero at the free edge. Shear
stress Oz is almost constant away from the free edge, in accordance with
the classical lamination theory. It attains maximum near the free edge
before it drops to zero. The normal stress yx also reaches maximum
near the free edge and then quickly reduces to zero at the free edge itself.
The result for shear stress ny is not presented here because its magni-
tude is very small compared with other components.

Figure 11 shows cyy along the free edge. Here we observe a sharp
change in magnitude near the ply interface. This behavior is consistent
with the existence of stress singularity. The results presented here agree
with those in reference 13. However, in reference 13, an extremely fine
mesh had to be used, and the exact nature of stress singularity could not

be determined within reasonable accuracy.

18




4.  CONCLUSION

Numerical results indicate that the hybrid finite element formulation
involving a special element with embedded stress singularity is a very
efficient means for accurate determination of interlaminar stress distri-
bution. For both cross ply and angle ply symmetric laminates considered
here, the present method provides converged stress values near the junction
of the stress-free edge and the ply interface. These stress values are
much more accurate than those obtained by others using conventional finite
element models that do not include proper singularity. With the present
formulation, it is possible to use a much more coarse finite element mesh,

resulting in a substantial improvement in computing effort.

19
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Fig. 1. A symmetric composite laminate

under uniform uniaxial strain.
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Fig. 2. A quarter of the section modeled.
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Fig. 3. Four-node regular hybrid element.
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Fig. 4 Nine-node special singular hybrid element.
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APPENDIX

A.1 ANISOTROPIC ELASTICITY WITH PRESCRIBED UNIFORM UNIAXIAL STRAIN

For three-dimensional solids, the three equations of equilibrium are

expressed in terms of stress components T X’ °yy .. . ny;
acxx . 30)(.y . aoxz .
3X dy 92
30 30 30
MRS ARSI A AU 7Sy
X oy 3z
I} o0 90
XZ ., _yz ., 22 _
X 3y 3z
The six strain components €yx’ eyy, e . Exy are related to the
six stress components as follows:
= + + + +
€xx - 511 %xx ¥ 512 9yy 313 937 * Syg %yz 515 92x * 16 Oy

€yy = 521 Oxx ¥ 522 Oyy t 503 955 * S04 9y ¥ Sp5 Tpx ¥ Sp6 9yy
€22 = 331 %xx * 332 Oyy * 833 952 * 33, Oyz ¥ S35 9,5 * S35 xy
€., =39S + o

yz = 91 Oxx * S42 ouy * 543,922 * 344 Oyz * Sg5 9,5 * Sag Oxy

€2x = 551 9xx * 352 Oy ¥ 353 %52 ¥ Ss4 Sz ¥ S5 0,y * S56 Txy
Exy S61 %xx ¥ S62 Oyy ¥ 363 922 * 64 Ovz ¥ 365 %2x * 66 Ixy
34

(A.1.0)

(A.1.2)




where S]], S]2 etc. are compliance coefficients. The strain-displacement

relation is expressed as

E =.a_u_
XX 93X
Lo
yy 3y
o
€22 ~ %z
3y W (A.1.3)
= ¥ 4 2n
®yz ~ 3z By
e = oW 3U
Zx  9x oz
3y VvV
= 22 4 2¥
€xy 3y = ax

where u, v and w are displacement components ir x, y and z directions
respectively.

If the body is subjected to uniform uniaxial strain e stress

2z~ fQ°
components do not vary along the z direction [23]. Then the equilibrium

equation reduces to

56 90

XX + XY = 0

aX 3y

3o 3c

XY, ¥ g (A.1.4)
3ax 3y

30xz 30 b4

5x Py O

Now from the third equation of (A.1.2)

S S ) ) )

=1
g =

2z Sg3 (e = S37 oy - 36 Oxy

(A.1.5)

32 %y T 234 ®yz T 735 9%«

35




Substituting (A.1.5) into the remaining

obtain
Cxx - B]]c
syy = BZ]G
€yz © Bgy0
€.x - Bg1o
exy = 8610
where
Bis 7 Sij

XX

+ B

XX

+8

XX

+B

XX

+
XX

3733

S

+ B]ZOyy

B14%y2

220yy * B24°yz *

42°yy * B44°yz + B

520yy ¥ B54°yz *

B62°_yy * B64°yz *

33

For symmetric angle ply case

B,, =B

14 24

By, =B

16 26

In matrix form, eq.

"™
[}

1o

1Q
+

=B

= Byg

(A1

34

[
lo
]
o

.6) can be written as

36

b]SCZX

B25°zx

45°% zx

55%2x

Bgsoyz

<+

+

(i,j =1,2,8,5,6)

five equations in

B]6qu
Bog%xy
B

46° xy

B56°xy

BeeO xy

eq. (A.1.2), we
S
13
+— ¢
533 0
S
23
+ e ¢
533 0
S
+ gﬂﬁ- g (A1.6)
33
Se
£3
+ €
533 0
S
63
+— ¢
533 0
(A.1.7)
(A.1.8)
(A.1.9)




with

€

XX

Yy
€= q e, 0 (A.1.10)

ZX

11 16

B = = 5 x 5 matrix (A.1.17)

6] « . . 866

g=<¢ o > (A.1.12)

€g ° S = (A.1.13)
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For the present problem, the displacement components u, v, w can

be expressed as

u = U(x,y)
v = V(x,y) (A.1.14)
w =

egZ ¥ W(x,y)

Then the strain-displacement relation is written as

= 3l
€xx X
e =3
Yy ay
= 3W
vz = 3y (A.1.15)
= oW
€zx ~ 3x
- 8U 8V
€xy ~ 3y T 3x

For cross ply laminate, further simplification is possible since
yz ZX

(A.1.16)

yz ZX
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The equilibrium equation now reduces to

90 90
XX + XY 0
IX ay
(A7)
Ls 90
___xl + Y = 0
ax 3y
Also
S
= 13
Exx - B11 %xx T B2 Syy ¥ 33 &0
S23
xy = Be6 Ixy
and
e =23V
XX 93X
£y ® % (A.1.19)
e =, 3V
Xy 3y X
39




A.2  CONSTANT STRESS FIELD**

The role of predetermined constant stress field is to separate terms
involving prescribed strain €, from the assumed stress field and the
corresponding assumed displacement field. For the present special element,
the constant stress term satisfies the stress-free condition aiong the free
edge. In addition, the constant stress field and the displacement field
integrated from the constant stress field satisfy the bonding condition

along the ply interface.

A.2.1 Cross-Ply Case

For the coordinate system shown in figure 4, the stress-free condi-

tions are:
u = u =
x cxy 0 (R.2.1)
=T
at 6 = 2
and
oxxl = cxyl =0 (A.2.2)
= . X
at 6 = 2
The bonding condition along 6 = 0° are
u_ L
cxy OX)’
u. L
%yy yy (h2.3)
W=t o
Woa vt

** The senior author has recently noticed a similar development in ref. 17
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The superscripts u and 2 stand for the upper layer and the lower layer

; 0 ] 0
respectively. The constant stress components Oyx °yy , °xy that
satisfy the above stress-free and the bonding conditions are

O, U_0, % _g4
XX Yy

(A.2.4)

where ¢ 1is a constant to be determined as follows. Substituting the

constant stress terms in eq. (A.2.4) inco eq. (A.1.18) and integrating,

we obtain the corresponding displacement components 0 and %Y for
the upper layer as follows
o,u u 513u
VT = (B e+ g ) x
33
523u (A.2.5)
o,u _ u
VT = (Byp c t g U €) ¥
33
excluding the rigid body modes. Similar expression holds for
displacement components OUQ and °Vz. Then from the displacement
continuity at the 90° - 0° ply interface.
S, .Y S, .
u 13 - 2 13
(312 c+ ———E-eo) X = (B]2 c + g——z eo) X (A.2.6)
33 33
41




-

Solving for ¢, we obtain

A.2.2 Angle-Ply Case

Now stress-free conditions are:

0§ U o U s o U - 0
XX Xy X2
=T
at 6-2
and
02=02'=09"=0
XX Xy X2
at 8 =-%

The bonding conditions along the piy interface (o = 0°)

Xy Xy
[¢]
Yy Yy
yz yz

and

<
c
1
<
©

42

(A.2.7)

(A.2.8)

(A.2.9)

are,

(A.2.10)

(A.2.11)




The constant stress components that satisfy the above stress-free and the

bonding conditions are

(A.2.12)

Substituting this stress state into eq. (A.1.15) and integrating, we obtain

the corresponding displacement fields.

eq. (A.2.11) of displacements along the ply interface

Then from the matching condition

¢, = 0 (A.2.13)
and
s. U s %
¢ = %, =%, b= - l‘€° ~ (2. 23 (A.2.14)
(Bgp™ - Bgp™) Syzu Sy
or since
u L
Bg,™ = - Bgp
s, = - 5.* (A.2.15)
53 53 -2
u 2
S33 S33
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for symmetric angle ply,

e S u
o, u_o & _ _ _"o0°753
Opy * Oy -—-——~————-B T (A.2.16)
52 733
In addition,
g U
o U _ uo_ u 13
33
Sp3.
oyu _ uo_ U
v (822 %y + o U eo) y (A.2.17)
33
ol - o
Similar expressions hold for stress 0°xx£ C 0°xy£ and displacement

0,2

0UZ, %% and %' for the lower Tayer.
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A.3  ASSUMED STRESS FIELD (SINGULAR AND NONSINGULAR)

The assumed stress and the corresponding displacement fields satisfy
all governing equations of elasticity, the stress-free condition over the
free edge and the bonding condition along the ply interface. In order to
ensure convergence, the assumed stress must include singular terms [26].

The determination of singular stress fields proceeds as follows.

A.3.1 Cross-Ply Case

By introducing a stress function F(x,y) such that

0 =.a_25
XX ayz
2
3 F
g =<5 (A.3.1)
Yy g8
oLk
Xy IXay

the equilibrium equation (A.1.17) is always satisfied, and the compatibility
among strain components in eq. (A.1.18) leads to the following fourth-order

equation for F,

4 4 4
3 F 3 F 3

B,, =5+ (2B, +B. ) ——= + B, =7 =0 (A.3.2)
22 ax4 12 66 8x28y2 1 ay4

-n

The above equation has the general solution of the following form:

F(x,y) = F (x +ny) (k =1,2,3,8) (A.3.3)

where My is a root of the following fourth order algebraic equation.

45




4 2 _

The solutions to the above equations constitute two conjugate pairs. Thus

if i and uy are two distinct roots, then

¥3 1
(A.3.5)

Mg T Up

where ET is the conjugate of Uy etc. In order to determine the singu-
lar stress field and also the non-singular stress fields, we express Fk

as

(x+uy)* 2
Fk(x + uky) = Ak m—m (A.3.6)

where Ak is a coefficient and o 1is a quantity to be determined by an
eigenvalue analysis. The local coordinates x and y are related to

the polar coordinates r and o as follows (fig. 4).

X = r cose
(A.3.7)
Yy = r Cose
Then
X+ pys=r Ck (A.3.8)
where
C, = cose + u, sine (A.3.9)
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From eq. (A.3.1), the non-constant stress components are expressed as

4 2 a
u_ o u u u
*cxx =T kil Ak (“k ) (Ck )
4 a
e U_ 0 u u
Oy r kz'l Ak (Ck ) (A.3.10)
4 a
u_ _ .o u u u
*cxy =-r kil A mg (Ck )

for the upper layer. The corresponding displacement components are deter-

mined by integrating eq. (A.1.18)

a+] 4 a+l
u_r u_u u
Ve (A e (&)
(A.3.11)
at+l 4 a+l
u _ u U u
e B AC e (60D
where
) 2
P = By we * By
(A.3.12)

G = Byy e * B/

Similar expression holds for the lower layer. Note that €0 term does
not appear in the above equation since it was taken into account by the

constant stress field and the corresponding displacement in the previous

section.
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Applying the bonding condition along 6 = 0,

kgl A (cku)Ol ) k; A (Ckﬂ)al

k; Aku uku (Cku)cl ) k; Akz ukﬂ (Ck‘Q)a
kgl Aku pku (Cku)u+] ) kg] Ak“ Dk2 (Ckl)a+1
kgl Aku qku (Cku)c‘+1l i kg] Aki qk2 (Cki)a+1

The above equation can be rewritten in matrix form as

A= 1A
where

4 u\
A
u

7] A2

A= 7
A3
AU
L4 )

48

(A.3.13)

(A.3.14)

(A.3.15)




(A.3.16)

. 4 - . * - -
and T isa 4x4 matrix Since 9 Iy 0 at

g = %—(cose = 0, sing = 1),

4 2+a
u u

t AT (w)

k=1 K Tk

"
[en]

(A.3.17)
4 T+a
t AY(wY) =0
ks Kk

And also =0 at 5 = - %-(cose = 0, sing = -1)

[ 3]
I
Py
P
—
[]
h=
~
)
N
1]
(o]

(A.3.18)
4 14

L 2
t AT (-u7) =0
k=1 K K

Equations (A.3.17) and (A.3.18), in conjunction with eq. (A.3.14),7eads to

a system of homogeneous equations for 5“ as:

49




C(a) AY = 0 (A.3.19)

where C(a) 1is 4 x4 matrix with the unknown a. For nontrivial 5“,
the determinant of g(a) must be equal to zero, which leads to an eigen-
value problem. The eigenvelue o« can be either real or complex. For

singular stress,
-1 < Re{a) < 0 (A.3.20)

where Re(x) is the real part of «. For the material properties used in
the present problem, the first eigenvalue corresponding to stress singularity
is a = - €.333888.

Us'ng eigenvalues and eigenvectors determined from eigenvalue analysis.

we may construct the assumed stress and displacement field as follows:

n Qs 4 2 :1_,
XX i=] k=1 k Q=Q1 k k ~1
n o 4 %
u - u u 1
o = LT ' Re [ (A () ]y (A.3.21)
i=] k=1 a=a,
*°u=-gra"Re[z(A“) “(c“)ai]'
d i=1 k=1 K ‘emay Mk Mk &
50




and

*Y

*y

where B], .

the following

Y2

and thus

Pes2 =

U2

Cre2

n i
r u u u
= I Re [ £ (A7) p, (C.7) ]s8.
i=] a14'] k=1 k a=a, k k 1
(A.3.22)
n ra1+] 4 u u u "
= I Re [ £ (A7) q. (C.7) ] e,
i=1 o1 ksl K a=a, K K ‘

- B, are unknown free parameters. In the above expression,

relations are utilized.

= T k = 1,2) (A.3.23)
P

- a;‘ (k = 1,2) (A.3.24)

=Ck

In the present study, a three term (n = 3) approximation was used.

A.3.2 Angle Ply Case

The stress components are now expressed in terms of stress functions

F(x,y) and w(x,y) such that

XX

g
yy

= 3—% (cont'd)
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o - BF
Xy IX3y
= 3¢
%z ~ 3y (A.3.25)
= . Y
yz aX

The compatibility among strain components in eq. (A.1.5) leads to the

following two homogenous equations for F and y:

LyF + Lyy = 0 (A.3.26a)
LyF + Lyw = 0 (A.3.26b)
where the differential operators L2’ L3 and L4 are given as
2 2 2
3 9 3
Ly = By —5 - 2By =o— + By —5
2 44 ax2 45 3xa3y 55 ayz
a3 ( ! 33 (8 ) 53 33
L, = - B,, —x + (B, +8B — - +B. )—= + By —x
3 24 ax3 25 "46 axzay 14 756 axayz 15 ay3
(A.3.27)
34 34 (2 ) 84
L, =8B - 2B + (2B,,+8B
4 272 axI 26 ax§3y 12 " 766 axzayz
- 2B 34 + B ._34_
16 axay§ N ay4

Combining eqs. (A.3.26a) and (A.3.26b) leads to

52




2
(Lt, - L") F=0 (A.3.28)
The above equation has the general solution of the form

F(x,y) = Fe (x + uky) (k =1,2,...6) (A.3.29)

where M is a root of the following sixth order equation;

2
24(u) Rz(u) - 237 (u) =0 (A.3.30)
with
2,(u) = Bee u - 2B, u + B
2\ 55 H 45 ¥ 44
3 2

) 4 3 2
2alu) = Byy w' - 2Byg u™ + (2By,+Bgg) u™ - 2By0 w + By

The solutions to the eq. (A.3.30) constitute three conjugate pairs. There-

fore if My Mo and g are three distinct roots, then

uk+3 = uk (k = 132’3) (A3.32)

Also from eq. (A.3.26b) the solution for ¥, can be expressed as

d Fk(X+Uky)

WXt wy) = - A aner T (A.3.33)
k K kdx+uky
where
23{uy) A.3.34
T (A-2:30
53




Again, using polar coordinates r and © (fig. 4)
x+tu y=r (cos & + My sing) = r Ck (A.3.35)
where

€, = Cos 8 + sin © (A.3.36)

Introducing Fk and ¥y into eq. (A.3.25)

*cxxu - kgl Aku (uku)z(cku)“

*cyyu -0 k; Aku (Cku)"l

*oxy“ =-r° kg] A b (ck“)“ (A.3.37)
*°xzu = @ kg] Aku xku uku (Cku)a

a
w U o U, u .U
oy = B A N (&)

The corresponding displacements are determined by integrating eq. (A.1.6)

without €0 terms. They are written as

atl 6 atl
Y = ?ETT k1=:1 I\ku pk'J (Cku) {cont'd)
54




atl 6 a+l
u_r u_u u
Ve A % (&)
(A.3.38)
at+l 6 a+l
u_r u_u u
W= T kil A Ty (ck )
where
“=B u ( uf+8 U_g U Uy, U U U g U
Pk 1 Wy 12 "°16 "k Tk ‘P15 ¥k T4
By Bog
U_, u u _ u u u
9 = B]Z My -+-—1I- 826 + Ak (st —E;—) (A.3.39)
Mk
B,,Y B,,!
u u_u 24 u u u 44
ne SBypue i m B A (Bys ™
Yk k
S{milar expressions hold for the lTower layer with coefficients Akz.
From the bonding conditions along ¢ = 0°, |
6 6
u u 2 %
r Ay =L ATwu
k=1 k "k k=1 k "k
6 6
T Aku = 3 Akl
k=1 k=1
6 6
u L %
I A A =L A7 (cont'd)
ksl KK e kK
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: 6 6
u_u_ L2
e e P T A R
6 6
u u _ ') ')
I Al gl - I At a (A.3.40)
6 6
T Aku rku = Ak2 rkg
k=1 k=1

The above six equations provide a relationship between Aku and Akz.

From the stress-free conditions at 6 = %

6 2+a
u u _
I Ak (uk ) =0

6 J+a

> Ak“ (uk“) (A.3.41)

\
o

6 1+a
T Aku Ak" (uku) =0

k=1

and also from the stress-free conditions at o = - %

6 2+
L L

]
o

6 1+a

2 L )
b Ak (-uk ) (Cont d)

]
o
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6 1+a
L. 2 2 .
ki] Ak Xk (-uk ) =0 (A.3.42)

Combining eqs. (A.3.40), (A.3.41) and (A.3.42), we obtain a system of

homogeneous equations

Cla) A = 0 (A.3.43)
where
A
A=) f | (A.3.44)
A;“

and C(a) is a 6x6 matrix with eigenvalue «. For the material proper-
ties used in .his study and *45° layer, the first eigenvalue corresponding
to stress singularity is a = - 0.0255756.

Using eigenvalues and the corresponding eigenvectors, we may construct
the assumed stress and displacement fields. For example, for assumed

stress *o u’

XX
n a, 6 ¢4
u _ i u u u
Yo LI Re [r "z (A) S (€.) 1., (A.3.45)
i=] k=1 a=a,
with
2
Sku = (Uku)

The other assumed stress components have a similar expression with proper

definition of Sku as follows:
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g U
Stress Components Tk
*g U 1.0
Oyy o
%, U _u
ny Mk
u u u
oy M i
*x, U L, u
°yz Ak
For assumed displacement *Uu,
n U.i+] 6 C!-+.I
u _ r u u u
i=] 3 k=1 A=A,

1

The expression for *VY 1is obtained by replacing pku in eq. (A.3.46)
with qku. Likewise, the expression for *! js obtained by replacing

u . u . . . 2 AN A
Py with L Similar expressions hold for Oyx “°° °xy » U7, *V" and
- for the lower layer. The coefficients Bys Bp . . . are unknown
free parameters. In the present study a four term approximation (n=4)

was used.
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