r——

SECURITY CLASSIFICATION OFf THIS PAGE (WtanDats Entered)

v -~ o - s) = », ;:,{-(“-’.‘8 7
unciassirep - |, O 2

BEAD INSTR! “TIONS
REPORT DOCUMENTATION PAGE BETORE 20N EeEinr poRS
‘ 1. REPORT NUMBLR 2. 6OVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER
>
§. TITLE (andSubtitie) 5. TYPE OF REPORT § PERIOD COVERED
[To) Ada Compiler Validation Summalr)[: RSeU%ogg.éz_T?ﬁesg t. 1 02 June 1989 to 02 June 1990
- i i A, - i oS e
O gﬁée((;%gsgégé)i,fggoggrzll:li?%i:sgersmn 6. PERFORMING DRG. REPORT WUMBLA
S 7. AUTHOR(s) 8. CONTRACT OR GRANT WUMEER(s)
< IABGq
- Ottobrunn, Federal Republic of Germany.
C\] [7. PLRFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT WUMBERS
<L | 1azc,
| Ottobrunn, Federal Republic of Germany.
‘::‘ 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
< Ada Joint Program Office
United States Department of Defense pEm 3 TS
Washington, DC 20301-3081
14. MONITORING AGENCY NAM: & ADDRESS(/f different from Controliing Office) 15. SECURITY CLASS (of thisreport)
1ABG UNCLASSIFIED
’] -
Ottobrunn, Federal Republic of Germany. 152 EEEtSEEE”“””’°°""°"°"‘°

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBLUTION STATEMINT (of the abstractentered nBiock 20 If g.Herent from Report)

UNCLASSIFIED

DTIC

DEGO 41989

B

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue onreverse s:de f necessary and identify by biock number)

20. ABSTRACT (Continue onreverse si0e (f necessary and ident:fy by biock number)
TeleSoft, TeleGen2 Ada for SUN-396i, Version 1.4, Ottobrunn, West Germany, TeleGen2 Ada
for SUN 23861, Version 1.4, SUN 386i under SUNOS, Version 4.0.1 (Host & Target), ACVC

1.10

DD YU 1473 t0IT10N OF § WOV 85 IS OBSOLETE
1A 73 $/N 0302-1F-014-0601 UNCLASSIFIED

/ é& &-s_: SECUR)ITY CLASSIFICATION OF THIS PAGE (whenDate Entered)

’ R

s

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada for SUN-386i Version 1.4

Certificate Number: #89060271.10138

Host: SUN-3861 under Sun0S, Version 4.0.1

Target: SUN-386i under Sun0OS, Version 4.0.1
Testing Completed 2 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

flo. L0

IABG mBH, Abt. SZT
Dr. §. Heilbrunner
Einsteinstr. 20
D~8012 Ottobrunn
West Germany

AL g ———

Ada validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

S, 0 Dhonf

Ada Joint Program Office
Dr John Solomond
Director

Department of Defense
Washington DC 20301

AVF Control Mumber: AVF-IABG-036

Ada COMPILER
VALIDATION SUMARY REPORT:
Certificate Humber: #8%0602I1.10138
TeleSoft
TaleGen2 Ada for SUN-386i Version 1.4
SUN-3861 Host and Target

Completion of On-Site Testing:
2 June 1989

Prepared By:
IABG mbH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Prapared For:
Ada Joint Program Office
United Statas Department of Defense
Vashington DC 20301-3081

CHAPTER 1

s
« e

CHAPTER

Do

|35 2 35
. .

CHAPTER

(¥

W W W w i w i
« ¢ e e o s & o s »
B R R e I« Y S I Ry VN N o
« o s

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

. .
[B - S VVRY 6 I o

to 1

w DD

TABLE OF CONTEHNTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT .

USE OF THIS VALIDATION SUMMARY REPORT .
REFERENCES . .

DEFINITION OF TERMS .

ACVC TEST CLASSES .

CONFIGURATION INFORMATION .

CONFIGURATION TESTED
TYPLEMENTATION CF«RlFTWRISTICS

TEST INFORMATION

TEST RESULTS oe
SUMMARY OF TEST RESULTS BY CLASS

SUMMARY OF TEST RESULTS BY CHAPTER
VITHDRAWN TESTS . e e e e e
INAPPLICABLE TESTS
PRCCESSING, AND EVALUATIOV %ODI CA

TEST,

ADDITIONAL TESTING INFCRMATION
Prevalidation . e e e
Test Method .

Test Site .

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

e W D

. 14

. 14
. 14
. 15
. 15
« « . . 15
TIONS . 19
. 19
. 20
. 20

TEST PARAMETERS

o

¢

WITHDRAWN TESTS

"Qﬁb

*
[

Acoossion PFor

NTIS CRARI
DTIC TAB

Unranounced
Justifioation

S

¢
8]

——

COMPILER AND LINKER OPTIONS ~

Dist

y |
p’ |

—

By
Dlgtribution/
Avallablllty Codea
Avail sndjor |
Special

INTRODUCTION

CHAPTER 1

INTRODUCTION

VR

This Validation Summary Report (VSRY describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms wused within it and thoroughly
reports the rasults of testing this compiler wusing the Ada Compiler
Validation Capability. (ACVC).: An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
nust conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard. =

e Yt e M

<

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the charactaristics of
particular operating systems, hardware, or implementation strategies. All
+~: damendencies observed during the process of testing this compiler are
given in this report. -

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suites of standardizad tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1legal 1language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but 1is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

‘__/"'"""’ Trm— e
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing perfermed on an
Ada compiler. Testing was carried out for the following purposeas:

INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures established by the Ada Joint Program QOffice and administered by
the Ada Validation Organization (AVO}. On-site testing was completed 2
June 1989 at TeleLOGIC AB, Sweaden.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Ccnsistent with the rational laws of the originating country, the AVO nmay
make €ull and fres public disclosurs of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"”
(5 U.s.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
raport.

The orranizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
arvailable to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt. SIZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

Inc.,

—j

INTRODUCTION

N 1.3 REFERENCES
1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validatien Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION CF TERMS

ACYC

Ada
Commentary

Ada Standard

Applicant

AVF

AvVO

Compiler

Failed Test

Host

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

]

INTRODUCTICN

Inapplicable An ACVC test that wuses featurss of the language that a
Test compiler is not required to support or =rmay legitimately
support in a way other than the one expected by the test.

Passed Test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not wused to check
Test conformity to the Ada Standard. A test may be 1incorract

because 1t has an invalid test objzctive, fails to meet its
tast objective, or contains illegal or arroneocus use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and 1illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. €Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There ars no explicit preogram components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class 3 test is
passed if no errors are detactad at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal 1language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada progranms
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message 1indicating the
result when it is executad.

Class D tests check the compilation and exscution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to axecute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test 1is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implenentation to reject progranms
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or 1illegal Ada programs involving
multiple, separately compiled wunits are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L, test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an arror message before any
declarations in the main program or any units referenced by the main
program are elaborated. 1In some cases, an implamsnsit:i:n 23y legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable taests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizaticns allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class ¢ tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECKX_FILE is
checked by a set of executabls tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACYC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

(W]

IHTRODUCTION

¢ walues--for anpla an

customized according to implementat b X
2s ussd for this val dxulon is

illegal file name. A list of th
provided in Appendix C.

A compiler must correctly process 2ach of the tests 1in the suite and
demonstrata conformity to the Ada Standard by either meeting the pass
criteria givan for tha test cr by sbowing that the tast is inapplicablz to
the 1implementation. The applicability 2f a test to an implementation 1is
considered sach time the implomarncation 1is ralidataz4d. A *=2st that 1is
inapplicable for one ~wvalidation 1s 2ot necassarily *n=ppl cabla

subsequent validation. Any test that was determinad to contain an 11
language construct or an errcnecus language construct is withdrawn from
ACVC and, thersforzs, 1is not wused 1in testing a compiler. The te
withdrawn at the time of this validation ars given in Appendix D.

P on
[1TINS)

(7 3 ORI A 1
ct o
D 1~

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Cox

23

ACVC Version: 1.10

ilzr: TeleGen2 Ada for SUN-3861 Version 1.4

Certificate Number: #890602I1.10138

Hosf Computer:

Machine:

Operating System:

Memory Size:

Target Computer:

Machine:

Operating System:

Memory Size:

SUN-3861
Sun0S, Version 4.0.1

8 MB

SUN-3861
Sun0S, Version 4.0.1

g MB

CONFIGURATION INFORMATION

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to 4

t2rmina the behavior of

a compiler 1in those arsas of the Ada Standard that parmit implementations
to diffar. Class D and E tests spscifically check for such implementation
differences. However, tests 1n other <classes also characterize an
implementation. The tests denonstrate the folleowing characteristics:

a.

Capacities.

1) The compiler cor.actly processes £ conpilation
containing 723 variables in the san=z declarative part. (See
test D29002K.)

2} The compiler corractly processes tests containing
loop statements nested to 65 levels. (Se= tests D5%A03A..H
(8 tests).)

3) The compiler corractly 27255¢8 2sts containing

oronas t2s
block statements nested to 65 levals. {Se2e test DS56001B.)

4) The compiler correctly processes tasts containing
recursive procedures separataly compiled as subunits nested to
17 levels. {See tests D64005E..G (3 tests).)

Predefined types.

1) This implementation supports the additional predefined types
LONG_INTEGER and LOMG_FLOAT in the package STANDARD. F)
tests B8600LT..Z (7 tests).)

Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests 4c not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1} Some of the default initialization expressions
for record components are evaluated before any value is
checked for membership in a corponent's suhtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same

precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses no extra bits for extra range. (See test C35903A.)

[§¥]

CONFIGURATION INFORMATION

4) CONSTRAINT_ERROR is raised for pre-defined integer comparison
tests, NUMERIC_ERROCR is raised for largest intcger comparison
and membership tests and no exception is raissd for pre-
defined integer membership tests when an integer 1literal
operand in a comparison or membership test 1is outside the
range of the base type. (See test C45232A.)

5) No exception is raised when a 1literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6} Underflow 1is gradual. {See tests (C45524A..Z (26 tests).)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACYC tests do not specifically
attampt to determine the method of rounding, the test reasults
indicate the following:

1) The method used for rounding to integer 1is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to 1longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer 1in static universal
real expressions is round away from zero. (See test C4A01l4A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises NUMERIC_ERROR for a
two dimensional array subtype where the large dimension is the
second one.

2) CONSTRAINT_ERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

3) NUMERIC_ERROR 1s raised when an array type with
SYSTEM.MAX_INT + 2 components 1is declared. (See test
C36202B.)

I

5)

5)

7)

)

CONFIGURATION INFORMATIOHW

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no excesption. (S=e test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR when tha
length ¢f a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

In assigning one-dinmensional array typss, the expression 1is
evaluated in its entirety befeore CONSTRAINT_ERROR is
raised when checking whether the expression's subtvre 1is
compatible with the target's subtype. (See test C52013A7.)

In assigning two~dimensional array types, the axpression
is not evaluated in its entirety bhefore CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC_ERROR or
CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, lengths must match in array
slice assignments. This implementation raises

no exception. (See test ES52103Y.)

f. Discriminated types.

1)

In assigning record types with discriminants, the expression
is evaluated in its entirety before
CONSTRAINT_ERROR 1is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

g. Aggregates.

1)

2)

In the evaluation of a multi-dimensional aggragate, the test
results indicate that index subtype checks are
made as choices are evaluated. (See tests C43207A and
C432078.)

In the evaluation of an aggregate containing subaggregates,

not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

12

CONFIGURATION INFORMATION

3) CONSTRAINT_ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtyne. (See test
E43211B.)

Pragmas.

1) The pragma INLINE is supported for procsdurss. but nct for
functions. (See tests LAJOO4A..B (2 tests), EA3004C..D (2
tasts), and CA3004R..F (2 tests).)

Generics.

This implementation creatss a dependence between a generic body
and thesz units which instantiate it. s allowed by AT1-0048/11,
if the bHedy is ~ompiled after a unit that instantiates it, then
that unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CA1Q12x, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CAl1012A and
CA2009F.)

J) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CAl012A.)

4) Generic non-library ©package Dbodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogran becdias can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodias and their subunits can Le
compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and hodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic 1library package specifications and bodies <can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9)

CONFIGURATION INFORMATION

Generic unit bodies and their subunits can be
compiled in separate coxpilations. (See test CAIDI1A.)

Input and output.

1)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101C, ZE2201D,
and EE2201E.)

The package DIRECT_IO cannot be instantiated with
unconstrained array types or racord types with
discriminants without defaults. (See tests AE2101H, EE2401D,
and EE24016G.)

Modes IN_FILE and OUT_FILE are supportsd for SEQUENTIAL_IO.
(See tasts CE2192D..E, C22102Y, and CE2102P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supportaed for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tasts CE3102E and CEJ102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL_IO. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE 9operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are given names and not
deleted when closed. (See test CE210837.)

Temporary direct files are not given names and not
deleted when closed. (See test CE2108C.)

Temporary text files are not given names and not deleted
when closed. (See test CE3112A.)

14)

15)

(=3
(P8
~—

_‘

CONFIGURATION INFORMATIONM

Morz than one internal £ils can be associatad with
sach external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

More than one internal fil=s can be associated with
@ach external file for direct filss when reading only. (See
tests CE2107F..H (3 tests), CE2110D and CE2111H.)

More than one internal fils can be associatad with
each external [ils for t2xt files when reading only (See
tests CE3111A..E (5 tests), CE31148B, and CE3115A.)

‘

- TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 313 tests were inapplicable to this implementation.
All inapplicable tests were procsssed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVYF concludes that the testing results demonstrate acceptable
conforaity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1129 2019 17 23 45 3369
Inapplicable 2 9 296 0 5 1 313
Vithdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT TEST CHAPTER TOTAL
2 3 4 5 6 1 8 g 10 11 12 13 14
Passed 198 573 544 245 172 99 160 332 132 36 250 341 278 3360
N/A 14 76 136 3 0 0 6) 5 0 2 28 43 313
Wdrn 1 1 0 0 0 0 0 2 0 9 1 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 13717

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACYC Version 1.19
at the time of this validation:

E28005C A390056G B97102E C97116A BC3009B CD2A62D

CD2A63A CD2A63B CD2A63C CD22a63D CD2A66A CD2A668B
CD2A66C CD2A66D CD2AT3A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE21071 CE3111C

CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that 1is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt 1is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 313 tests were inapplicable for

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

4
;

TEST INFORMATION

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35508I, C35508J, C35508M, and C35508N are not applicable because
they 1include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementaticn is
not required to support such representation clauses.

C35702A and B860QL1T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT_INTEGER:

£45231B 453043 C455028 €455038 C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAX_MANTISSA greater than
32.

C86001F is not applicable because, for this implementation, the
package TEXT_IO 1is dependent upon package SYSTEM. These teasts
recompile package SYSTEN, making package TEXT_IO, and
hence package REPORT, chsolete.

B86001X, €45231D, and CD71901G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B86001Y is not applicable because this implemantation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predafined floating-noint type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.2.h and
Appendix F of the Ada Standard).

LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for functions.

P~
.

!’.

TEST INFORMATION

CD1009¢C, (CD2x41A..B (2 tests), CD2A41E and CD2A42A..0 (10 tests)
are not applicablz beacausa of restrictions on 'SIZE length clauses
for floating point types.

CD2A61I..J (2 tests) are not applicable because of restrictions on
'SIZE length clauses for array types.

CD2A84B..I (8 tests) and CD2A84K..L {2 tests) are not applicable
because of restrictions on 'SIZE length clauses for access types.

AE2101C, EE2201D, and EE2201E use instantiations of packags
SEQUENTIAL_IO with unconstrainsd array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G wuse instantiations of packags
DIRECT_IO with wunconstrained array types and record types with
discriminants without defanlts. Thess instantiations aras rejected
by this compiler.

CE2102D 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable becauses this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F is 1inapplicable because this implementation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

C221021 is 1inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2102J 1is 1inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IC.

CE21020 is inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports OPEN
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO.

aa.

ab.

ac.

ad.

ae.

af.

ag.

ah.

ai.,

aj.

ak.

al.

an.

an.

TEST INFORMATION

CE2102S is inapplicable because this implamentation supports RESET
with INOUT_FILE mode fcr DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN
with IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

CE2192V is inapplicable because this implementation supports OPEN
with OUT_FILE mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET
with OUT_FILE nmode for DIRECT_IO.

CE2107B..E (4 tests), CE2107L, CE2110B, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for sequential files. The proper exception 1is raissd when
multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported by this implementation.

CE3102F is inapplicable because text file RESET is sugppeorted by
this implementation.

CE3102G is inapnlicable be-3use text file deletion of an external
file is supported by this -plementation.

CE3102I is inapplicable because text file CREATE with OUT_FILE
mod2 is supported by this implementation.

CE3102J is inapplicable because text file OPEN with IN_FILE mode
is supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is not supported by this implementation.

CE3111B, CE3111D..E (2 tests), CE3114B, and C(CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tasts will require mnmodifications of code,
processing, or evaluation in ordar to conmpansate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
lagitimate implementation behavior prevents the successful completion of an
{(otherwise) applicabls test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test 1into subtests so that all errors are datacted; and
confirning that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the %test (such as raising
one exception instead of anothar).

Modifications were required for 16 tests.

The following tests were split because syntax errnrs at one point resulted
in the compiler not detecting other errors in the test:

B71001E 371001K B71001Q B71001W BA3006A BA3006B
BA30QTB SA30N08A BA3003B BA3013A (6 and TH)

Tests C€34005G, C34005J and C34006D returned the result FAILED because of
false assumptions that an element in an array or a record type may not be
represented more compactly than a single object of that type. The AVO has
ruled these tests PASSED if the only message of failure occurs from the
requirements of T'SIZE due to the above assumptions (T is the aray type).

Tests CD2C11A and CD2Cl1B contain 'SIZE length clauses for task types which
were insufficient for this machine. These tests were modified to include a
'SIZE clause of 2K.

IABG uses a modified body for the support package REPORT that prints an
IABG specific time stamp. For the test CDSO03E, this body caused this test
to raise STORAGE_ERROR because of a stack overflow. So for this test, the
standard report package was used.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TeleGen2 Ada for SUN-386i Version 1.4 was submitted to the AVF
by the applicant for review, 2Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

)
N

TEST INFORMATION

3.7.2 Test Method

Testing of the TeleGen2 Ada for SUN-386i VYersion 1.4 using ACYC Version
1.10 was conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host computer: SUN-3861

Host operating system: sun0S, Versicn 4.0.1

Target computer: SUN-3861

Target operating system: Sun0S, Version 4.0.1

Compiler: TeleGen2 Ada for SUN-386i Version 1.4

A streamer cassette containing the ACVC in the original distribution format
was loaded to a UNIX machine with an Ada compiler where it was customized
using AVF tools to remove withdrawn tests and tests requiring unsupported
floating-point precision. Tests that make use of implementation specific
values were also customized. Tests requiring modifications wers lcaded in
thair modified form. The ACVC was then transferrzd by Ethernet fo the host
machina.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the
SUN-3861i. Results were then transferred by Ethernet to a VAX 8530 where
they were printed and evaluated.

The compiler was tested using command scripts provided by TeleSoft
and reviewed by the validation team. The compiler was invoked with the
command

ada -v -V 1000 -n (main program’ (compilation files>
and linked with the command

ald (main program>
for the Chapter B tests, the additional qualifier ~L was included 1in the
compiler call. See Appendix E for details of these and all possible option
switches.
Tests were compiled, linked, and executed (as appropriate) using a single
coaputer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at TeleLOGIC AB, Sweden and was completed on 2 June
1989.

—

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submitted the following Declaration of Conformance
concerning the TeleGen2 Ada for SUN-3861 Varsion 1.4

DECLARATION OF CUNFORMANCE

Campiler Implementor: TELESOFT
2Ada Valdation Facility: IABG, West-Germany
ACVC Version: 1.10

Base Campiler Name: TeleGen2 Ada for SUN-386i
Version: 1.4
Host Architecture ISA: SUN~386i
0S & version #: SunOS, version 4.0.1

Target Architecture ISA: Same as host
OS & version #: Same as host

Implementor’s Declaration

I, the urndersigned, representing TELESOFT, have implemented
no deliberate extensions to the Ada Language Standard ANSI/MIL~
STD 1815A in the campiler listed in this declaration.

I declare that TELESOFT is the owner of record of the Ada
language campiler listed above and as such is responsible for
maintaining said campiler in conformance to ANSI/MIL~STD 1815A.
All certificates and registrations for the Ada language compiler
listed in this declaration shall be made only in the owner’s
corporate name.

20 July, 1989
Telelogic AB, Ada Products Division

:\ f ~
\ o
\ ‘\, ‘P‘;;)JA _&._\.4 A Y™l

Stefan Bjornson, Manager, Systems Software

owner’s Declaration

I, the undersigned, representing TELESOFT take full respon-
sibility for implementation and maintenance of the Ada campiler
listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that the Ada language
campiler listed, and its host/target performance is in campliance
with the Ada Language Standard ANSI/MIL~-STD 1815A.

20 July, 1989
Telelogic AB, Ada Products Division

A

—_—S L = -
L. S S

Stefan Bjomsm, Managﬁr~ sy'stens Software

u

_}

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencias corrzspond Lo
implementaticn~-dependent pragmas, t¢ certain nmachine-depandent cenventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The 1implementation-dependant
characteristics of the TelzGen2 Ada for SUN-386i Version 1.4, as described
in this Appendix, are provided by TeleSoft. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

Implementation~-specific portions of the package STANDARD, which are not a
part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG_INTEGER is range -2147483648 .. 2117483647;

type FLOAT is digits 6 range -1.70141E+38%8 .. 1.70131E+38;
type LONG_FLOAT is digits 15
range -8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E-14 range -86300 .. 35400;

end STANDARD;

TR e . ey @ :‘,' ':" . "‘ - . .1-..‘_.,‘_,__
¥ _:,k-‘- ym‘.‘g\.«%avg’w.. e ,:ﬂ'f'w- «w"" u«*r*'* -Q'f‘mﬁ'ﬁ"i w:' ','.-.:..\-'.:.‘m: PEIPRIE Epidyoetr

TeleGen2 User Guide for UNIX

8.6. LRM Annotations

TeleGen2 compiles the full ANSI Ada language as defined by the Reference Manual for the
Ada Programming Language (LRM) (ANSI/MIL-STD-1815A). This section describes the
portions of the language that are designated by the LRM as implementation dependent for the
compiler and run-time environment.

The information is presented in the order in which it appears in the LRM. In general,
however, only those language features that are not fully impiemented by the current release of
TeleGen2 or that require clarification are included. The features that are optional or that are
implementation dependent, on the other hand, are described in detail. Particularly relevant are
the sections annotating LRM Chapter 13 (Representation Clauses and Implementation-
Dependent Features) and Appendix F (Implementation-Dependent Characteristics).

8.6.1. LRM Chapter 2.

‘LRM 2.1] The host and target character set is the ASCII character set.

[LRM 2.2 The maximum number of characters on an Ada source line is 200.

-

(LRM 2.8] TeleGen2 implements all language-defined pragmas ezcept pragma Optimize. If
pragma Optimize is included in Ada source, the pragma will have no effect.

Limited support is available for pragmas Memory _Size, Storage_Unit, and System_Name:
that is, these pragmas are allowed if the argument is the same as the value specified in the

System package.
Pragmas Page and List are supported in the context of source/error listings; refer to the
end of Chapter 3 for more information.

8.6.2. LRM Chapter 3.

(LRM 3.2.1] This release of TeleGen2 does not produce warning messages about the use of
ininitialized variables. The compiler will not reject a program merely because it contains such

variables.

[LRM 3.5.1] The maximum number of elements in an enumeration type is 32767. This
maximum can be realized only if generation of the image table for the type has been deferred, and
.here are no references in the program that would cause the image table to be generated.
Deferral of image table generation for an enumeration type, P, is requested by the statement:

pragma Images (P, Deferred);

Refer to “‘Implementation-Defined Pragmas,” later in this chapter, for more information on
pragma [mages.

(LRM 38.5.4] There are two predefined integer types: Integer and Long_Integer. The attributes
of these types are shown in Table 8-7. Note that using explicit integer type definitions instead of
predefined integer types should resuit in more portabie code.

8-44 UG-1313N-V1.2(386/UNIX) @ 1989 TeleSoft 1SMAYS89
R

el

LR S SRR T 1-. A~ (L IO] . . . - . L.
. [N “- LT e P POl Q N M it i e o on e .
e R R S R i e B e b S ey, i D g e T B e S b SR s AR RN

PROGRAMMING GUIDE

Table 8-7. Attributes of Predefined Types Integer and Long_Integer

Attribute Type
- Integer | Long_Integer
["First 32768 | -2141483648
'Last 32767 2147483647
'Size 16 32
'Width 6 11

[LRM 3.5.8] There are two predefined floating point types: Float and Long_Float. The
attributes of types Float and Long_Float are shown in Table 8-8. This floating point facility is
based on the [EEE standard for 32-bit and 64-bit numbers. Note that using explicit real type
definitions should lead to more portable code.

The type Short _Float is not implemented.

Table 8-8. Attributes of Predefined Types Float and Long_Float

. Type
Attribute Float | Long_Float

"Machine_Overfows .Tm

"Machine _Rounds TRUE . TRUE

"Machine_ Radix 2 P2

"Machine_Mantissa 24 | 53

"Machine_Emax 127 1023

‘Machine_Emin -125 I -1021

"Mantissa 21 51

'Digits 6 15

‘Size 32 | 64
“Emax 34 204
i 'Safe _Emax 125 ! 1021

'Epsilon 9.53674E-07 3.88178E-16
'Safe_Large 4.25253E+37 2.24711641857789E 307
'Safe_Small 1.17549E-38 2.22507385850721E-308
'Large 1.93428E +25 2.357110087081438E+-61
'Small 2.58494E -26 1.99469227433161E-62

8.6.3. LRM Chapter 4.
(LRM 4.10] There is no limit on the range of literal values for the compiler.

(LRM 4.10] There is no limit on the accuracy of real literal expressions. Real literal
expressions are computed using an arbitrary-precision arithmetic package.

1SMAYS9 UG-1313N-V1.2(386/UNIX) @ 1989 TeleSoft 8-45
N |

TeleGen2 User Guide for UNIX

8.6.4. LRM Chapter 9.

[LRM 9.6] This implementation uses 32-bit fixed point numbers to represent the type
Duration. The attributes of the type Duration are shown in Table 8-9.

Table 8-9. Attributes of Type Duration

Attribute | Value
Delta 0
'First -86400
'Last 86400

[LRM 9.8] Sixty-four levels of priority are available to associate with tasks through pragma
Priority. The predefined subtype Priority is specified in the package System as

subtype Priority is Integer range 0..63;
Currently the priority assigned to tasks without a pragma Priority specification is 31; that is:

(System.Priority'First + System.Priority’'Last) / 2

[LRM 9.11] The restrictions on shared variables are only those specified in the LRM.

8.6.5. LRM Chapter 10.

[LRM 10] All main programs are assumed to be parameteriess procedures or functions that
return an integer resuit type.

8.6.6. LRM Chapter 11.

(LRM 11.1] Numeric_Error is raised for integer or floating point overflow and for divide-by-
zero situations. Floating point underflow yieids a resuit of zero without raising an exception.

Program_Error and Storage_E:rror are raised by those situations specified in LRM Section
11.1. Exception handling is also discussed in the “Exception Handling™ section earlier in this

chapter.

8.6.7. LRM Chapter 13. As shown in Table 8-10. the current release of TeleGen2 supports
most LRM Chapter 13 facilities. The sections below the table document those LRM Chapter 13
facilities that are either not implemented or that require explanation. Facilities implemented
exactly as described in the LRM are not mentioned.

8-46 UG-1313N-V1.2(386/UNIX) ©® 1989 TeleSoft 15SMAYS9

_

‘ . P . v . " .
NEARLE .- - -
' -we - s

-h—-v

Y -'-9 --.‘,L“ "i,~ ¢
n\""‘g‘: b i'\ 2 S~ F e

BT T S
- e : =

St

PROGRAMMING GUIDE

Table 8-10. Summary _of LRM Chapter 13 Features for TeleGen2

13.1 Representation Clauses

Supported, except as indicated below (LRM 13.2 -
13.5). Pragma Pack is supported. ezcept for dynam- : ;
ically sized components. For details on the!
TeleGen2 implementation of pragma Pack, see Sec-
tion 8.6.7.1.

13.2 Length Clauses

Supported:
'Size
'Storage. Size for collections
"Storage_Size for task activation
Small for fixed-point types

Note: length clauses can be used to reduce the 'Size
of data types.

13.3 Enumeration Rep. Clauses

Supported. ezcept for type Boolean or types derived !
from Boolean. (Note: users can easily define a non-
Boolean enumeration type and assign a representa-
tion clause to it.)

13.4 Record Rep. Clauses

Supported ezcept for records with dynamically sized
components. See Section 8.6.7.4 for a full discussion !
of the TeleGen2 implementation. ‘

Address Clauses

[41]

13.

Supported for: objects (including task objects).

Vot supported for: packages, subprograms. or task
units. Task entries are not applicabie to TeleGen2
host compilation systems.

See Section 8.6.7.3 for more information.

13.5.1 Interrupts

Not applicable to TeleGen2 host compilation sys«z
tems. i

13.6 Change of Representation

Supported. ezcept for types with record representa- |
tion clauses.

R
Q
]
[
-
3
[
a
a.
[~
>~
(nd
=
'y
o3
o
2]
L g
-
[
<
~
1]
L)
1]
[]
]
I

I5SMAYS9 UG-1313N-V1.2(386/UNIX) @® 1989 TeleSoft 8-47

. . P L W -
ARV S VRTINS 3 -

et e R
. . P e Y AT - T SRR Pt - el S e 2 - *

e at vy S T i %y e L S % PP TR T L P st b v ’
e R A, S Y S N A R A R RS S T e T Y LR e

o Wi . B

TeleGen2 User Guide for UNIX

Table 8-10. Summary of LRM Chapter 13 Features for TeleGen2 (Contd)

--=--= Continued from the previous page -----
13.7 Package System Conforms closely to LRM model. Refer to Section |
8.6.7.7 for details on the TeleGen2 implementation.
13.7.1 System-Dependent Named | Refer to the specification of package System (Sec-
Numbers tion 8.6.7.7).
13.7.2 Representation Attributes Implemented as described in LRM ezcept that:
'Address for packages is unsupported.
'Address of a constant yields a null address.
13.7.2 Representation Attributes of | See Table 8-8.
Real Types
13.8 Machine Code [nsertions Fully supported. The TeleGen2 implementation
defines an attribute, 'Offset, that, along with the |
language-defined attribute 'Offset, allows addresses
of objects and offsets of data items to be specified in
stack frames. Refer to Section 8.3 for a full descrip-
tion on the implementation and use of machine code
insertions.
13.9 Interface to Other | Pragma Interface is supported for Assembly, C. and
Languages UNIX. Refer to Section 8.4 for a description of the
implementation and use of pragma I[nterface.
13.10 Unchecked Programming Supported except as noted below (LRM-13.10.1 and |
{ 13.10.2). i
13.10.1 Unchecked Storage Deallo- | Supported ezcept jor types with length clauses for
cation storage size. ,
13.10.2 Unchecked Type Conver- | Supported ezcept for unconstrained record or arraylz
sions types. ‘

8.6.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeleGen2
implementation.

-a. With Boolean Arrays. You may pack Boolean arrays by the use of pragma Pack.
The compiler allocates 16 bits for a single Boolean, 8 bits for a component of an unpacked
Boolean array, and 1 bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array: the one below that illustrates a packed Boolean array:

UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 1SMAYS9

e —

8-48

. . T . S-S =
iy $TL L P A R A] f'.u.-.. x ﬁ. ‘? # _
[D BST RS g, ','B L T PO ‘-.an—w'u—\ﬂ-_ 42 DLﬂu 4-115_5,\..."'... l'-_“'-‘. -’(E 'hf’

ETE TN S AT ot e T ey ~els o E.,_ ’ 2, taie
-

PROGRAMMING GUIDE

..~

-=e—aeaw Unpacked Boolean array:

Unpacked_Bool_Arr_Type is array (Natural range 0..1) of Boolean
U B Arr: Unpacked “Bool _Arr_Type := (True,False);

MSB LSB
7 0

Element 0
0 | Element 1

+eeee-ee— Packed Boolean array:

Packed Bool Arr Type is array (Natural range 0..6) of Boolean;
pragma Pack (Packed Bool Arr_Type);
P B Arr: Packed Bool Arr Type := (P_B_Arr(0) => True,
P “B_Arr(3) = “True, others =) False);

MSB/HOB LSB/LOB
13 7 0
ojojojojolola]ojolOoyj0]10]j0]|0loj1

P B_Arr

b. With Records. You mayv pack records by use of pragma Pack. Packed records follow
these conventions:

1. The total size of the record is a muitiple of 8.
2. Packed records may cross word boundaries.
3. Records are packed to the bit level if the elements are themselves packed.

Below is an example of packing in a procedure, Rep_Proc, that defines three records of different
engths. Objects of these three packed record types are components of the packed record Rec.
The storage allocated for Rec is 16 bits: that is, it is maximally packed.

1SMAYS9 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8-49

*—

TeleGen2 User Guide for UNIX

procedure Rep_Proc is

type Al is array (Natural range O .. 8) of Boolean;
pragma Pack (Al);

type A2 is array (Natural range O .. 3) of Boolean;
pragma Pack (AZ2);

type A3 is array (Natural range O .. 2) of Boolean;
pragma Pack (A3);

type A_Rec is

record
One : Al
Two ;A2
Three : A3;

end record;
pragma Pack (A_Rec);

Rec : A_Rec;
begin
Rec.0ne := (0 => True, 1 =) False, 2 =)> False,
3 => False, 4 => True, S => False,
6 => False, 7 => False, 8 => True);
Rec.Two (3) := True;
Rec.Three (1) := True;

end Rep_Proc;

8.6.7.2. Length Clauses (LRM 13.2]. Length clauses of the form *‘for T'Storage_Size use
<expression>;"” (where T is a task type) specify the size to be allocated for that task’s stack at
run time. The use of this clause is encouraged in all tasking applications to control the size of the
applications. Otherwise, the compiler may default this value to a large size. TeleGen2 allows
you to specify storage for a task activation using the 'Storage_Size attribute in a length clause.

8.6.7.3. Enumeration Representation Clauses [LRM 13.3]. Enumeration representation
clauses are supported, except for Boolean types.

Performance note: Be aware that use of such clauses will introduce considerable overhead
into many operations that involve the associated type. Such operations include indexing an array
by an element of the type. or computing the 'Pos, 'Pred, or 'Succ attributes for values of the

type.
8.6.7.4. Record Representation Clauses [LRM 13.4]. Since record components are

subject to rearrangement by the compiler. you must use representation clauses to guarantee a
particular layout. Such clauses are subject to the following coanstraints:

= Each component of the record must be specified with a component clause.

= The alignment of the record is restricted to mods 1 and 2, byte and word aligned.
« Bits are ordered right to left within a byte.

=« Components may cross word boundaries.

Here is a simple example showing how the layout of a record can be specified by using
representation clauses:

8-50 UG-1313N-V1.2(386/UNIX) @ 1989 TeleSoft 15SMAYS89

“

._.;.. e "‘ nem \.,. oo f- Sl e P . ., . R s T s e e e T .- -
N .
"nuu*a NQ !1 .¢ dvh.w'p

‘\ -2 7* e oA 4\. bt e e s ""‘,-—"‘w‘.,,,~ - M‘"
«f.e..:"-"'v- K-t X e‘& D i T ST “»‘l? E‘ -*“ L e e M T e 2 T T

PROGRAMMING GUIDE

package Repspec_Example is
Bits : constant := l;
Word : constant := 4;

type Five is range O .. 16#1F#;
type Seventeen is range O .. 16#1FFFF%;
type Nine is range O .. 511;

type Record_Layout_Type is record
Elementl : Seventeen;
Element2 : Five;
Element3 : Boolean;
Element4 : Nine;
end record;

for Record Layout_Type use record at mod 2;
Elementl at OsWord range O .. 185;
Element2 at O=Word range 17 .. 21;
Element3 at OsWord range 22 .. 22;
Element4 at OsWord range 23 .. 31;

end record;

Record_Layout : Record_Layocut.Type;
end Repspec_Example;

8.6.7.53. Address Clauses [LRM 13.5!. The Ada compiler supports address clauses for
objects, subprograms, and entries. Address clauses for packages and task units are not
supported.

Address clauses for objects may be used to access hardware memory registers or other
known memory locations. The use of address clauses is affected by the fact that the
System.Address tvpe is private. For the 30386 target. literal addresses are represented as
integers, so an unchecked conversion must be applied to these literals before they can be passed
as parameters of type System.Address. For exampie. in the examples in this chapter the
following declaration is often assumed:

function Addr is new Unchecked_Conversion (Long Integer,System.Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturally, user programs may implement a different convention. Below is a sample program that
uses address clauses and this convention. Package Systemn must be explicitly withed when using
address clauses.

with Systenm;

with Unchecked_Conversion;

procedure Hardware _Access is
function Addr is new Unchecked_Conversion (Long Intege-, System.Address);

Hardware Register : integer;
for Bardware Register use at Addr (16#FF0000%);

begin
en& . ﬁardwa.re_.\ccess ;
1SMAYS9 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8-51

.‘ v ,...\M

q—.

"‘- “\)J.‘l’ ;\‘

-t”ai ""-‘- \.\‘h-!‘

SRR

TeleGen2 User Guide for UNIX

When using an address clause for an object with an initial value, the address clause should
immediately follow the object declaration:

0bj: Some.Type := <ipit._expr>;

for O0bj use at <addr_expr>;
This sequence allows the compiler to perform an optimization wherein it generates code to
evaluate the <addr_expr> as part of the elaboration of the declaration of the object. The
expression <init_expr> will then be evaluated and assigned directly to the object, which is stored
at <addr_expr>. If another declaration had intervened between the object declaration and the
address clause, the compiler would have had to create a temporary object to hold the
initialization value before copying it into the object when the address clause is elaborated. If the
object were a large composite type, the need to use a temporary could result in considerable
overhead in both time and space. To optimize your applications, therefore, you are encouraged
to place address clauses immediately after the relevant object declaration.

As mentioned above, arrays containing components that can be allocated in a signed or
unsigned byte (8 bits) are packed, one component per byte. Furthermore, such components are
referenced in generated code by 80386 byte instructions. The following example indicates how
these facts allow access to hardware byte registers:

with System;
with Unchecked_Conversion;
procedure Main is
function Addr is new Unchecked _Conversion (Long._Integer, System.Address);
type Byte is range -128..127;
HW_Regs : array (0..1) of Byte;
for HW_Regs use at Addr (164FFF310%4);

Status_Byte : constant integer := 0;
Next_Block Request: coastant integer := 1;
Request_Byte : Byte := 119;

Status : Byte;

begin

Status := HW_Regs(Status Byte);

HW_Regs (Next_Block Request) := Request_Byte;
end Main;

Two byte hardware registers are referenced in the example above. The status byte is at location
16#FFF310# and the next block request byte is at location 16#FFF3114.

Function Addr takes a long integer as its argument. Long_Integer’Last is 1637FFFFFFF <,
but there are certainly addresses greater than Long_Integer'Last. Those addresses with the high
bit set. such as FFFA0000, cannot be represented as a positive long integer. Thus, for addresses
with the high bit set, the address should be computed as the negation of the 2’s complement of
the desired address. According to this method, the correct representation of the sample address
above would be Addr(-16#00060000#).

8.6.7.6. Change of Representation [LRM 13.6]. TeleGen2 supports changes of
representation, except for types with record representation clauses.

8-52 UG-1313N-V1.2(386/ UNIX) ® 1989 TeleSoft 1SMAY89

N SR

bl - '.'.'.‘...
v e ..

PROGRAMMING GUIDE

8.6.7.7. The Package System [LRM 13.7|. The specification of TeleGen2's implementation
of package System is presented in the LRM Appendix F section at the end of this chapter.

8.6.7.8. Representation Attributes [LRM 13.7.2]. The compiler does not support
’Address for packages.

8.6.7.9. Representation Attributes of Real Types [LRM 13.7.3]. The representation
attributes for the predefined floating point types were presented in Table 8-3.

8.6.7.10. Machine Code Insertions [LRM 13.8]. Machine code insertions, an optional
feature of the Ada language, are fully supported in TeleGen2. Refer to the ‘“Using Machine Code
nsertions™ section earlier in this chapter for information regarding their implementation and

examples on their use.

8.6.7.11. Interface to Other Languages [LRM 13.9]. In pragma Interface is supported for
Assembly, C, and UNIX. Refer to Section 8.4 for information on the use of pragma Interface.
TeleGen2 does nat currently allow pragma Interface for library units.

8.6.7.12. Unchecked Programming [LRM 13.10|. Restrictions on unchecked
programming as it applies to TeleGen2 are listed in the following paragraphs.

(LRM 13.10.2] Unchecked conversions are allowed between types (or subtypes) T1 and T2 as
long as they are not unconstrained record or array types.

8.6.8. LRM Appendix F for TeleGen2. The Ada language definition allows for certain
target dependencies. These dependencies must be described in the reference manual for each
implementation. in an “Appendix F' that addresses each point listed in LRM Appendix F.
Table 3-11 constitutes Appendix F for this impiementation. Points that require further
clarification are addressed in the paragraphs that foilow the table.

1SMAYS9 UG-1313N-V1.2(386/UNIX) @ 1989 TeleSoft 8-53

_

i ~ . - . - . . R : . LI t C. .
B g T el N AT R0 i el 8 e S AL AL T R g A B T Tl s D e S et s g T e r e RN e W et el LT o e
RPNl o St SO DS 33 E S 2o SNl L s el h 3 MRS R A P Mt LT A St TR T = "4 J

TeleGen2 User Guide for UNIX

Table 8-11. LRM Appendix F for TeleGen2

(1) Implementation-Dependent Pragmas | (a) Implementation-defined pragmas: Comment, |
! Linkname, Images, and No_Suppress (Sec:ion !
| 3.6.8.1). |

Predefined pragmas with implementation- !

dependent characteristics:

|
[
= [nterface (assembly, UNIX, and C). .1

(Section 8.4). Not supported for |

library units. I
= List and Page (in context of source error i
i compiler listings) (Section 3.7.1.3). !

po .

(2) Implementation-Dependent Astri- | TeleGen2 uses one implementation-defined atctri- |
butes bute. 'Offset, which, along with the attribute 'Ad-
dress, facilitates machine code insertions by allowing
user programs to access Ada objects with little date
movement or setup. These two attributes and their
usage were described in *‘Using Machine Code Inser-
tions.” earlier in this chapter. !
"Address is not supported for packages. '

113) Package System « See Section 8.6.7.7.

! (4) Rescrictions on Representation } Summarized in Table 8-10. :
f Clauses j i
: (3) Implementation-Generated Names | None

An expression that appears in an object address
clause is interpreted as the address of the first

| (6) Address Clause Expression Interpre- ‘
X }
! storage unit of the object.
|
1

tation

1(7) Restrictions on Unchecked Conver- | Summarized in Table 8-10.

sions

ceeeess Continued on the nezt page ~-ee---

8-54 UG-1313N-V1.2(386/UNIX) @ 1989 TeleSoft 15MA YS9

el et e’ L

< - L lT h e - ColE L
,; PRI -’.‘“ s i)‘ .r\ ’-\:h,g ,--‘o.,'.t a. h ol AT, "- iad 7‘\ . T
e el S e TR ~-“H S Dt s R R -

".'E '."‘:"__l.
°- 'H.--s LN ‘Y T WA T T
‘—'\.‘.:?. i ® -\:c-..‘\-Fp'\-l SRl \-

PROGRAMMING GUIDE

Table 8-11. LRM Appendix F for TeleGen2 (Contd) :

<=e-=s= Continued from the previous page -------

(8) Implementation-Dependent Charac- | 1. In Text_lO, the type Count is defined as follows:
teristics of the [/ O Packages. type Count is range 0..System.Max_Text_I0_Count;
- or 0..Max_Int~1 OR 0..2_147_483_646

In Text 1O, the type Field is defined as follows:

~

subtype Field is integer range
System.Max_Text_1O _Fieid;

3. In Text_IO, the Form parameter of procedures
Create and Open is not supported. (If you sup-
ply a Form parameter with either procedure, it
is ignored.)

4. Sequential_IO and Direct_IO cannot be instan-

tiated for unconstrained array types or discrim-
inated types without defaults.

5. The standard library contains preinstantiated

versions of Text_]O.Integer IO for types Integer
i and Long_Integer and of Text_10O.Float_IO for
E types Float and Long_Float. We suggest that |
! you use the foilowing to eliminate muitiple in-
} stantiations of these packages: j
|

[nteger Text 1O |
Long_Integer_Text_IO :
E Float _Text IO

i Long_Float _Text _IO

8.6.8.1. Implementation-Defined Pragmas. There are four implementation-defined
pragmas in TeleGen2: pragmas Comment, Linkname, [mages. and No_Suppress.

8.6.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the
oject code. [ts syntax is:

pragma Comment (<string_literal>);

where **<string_literal>"" represents the characters to be embedded in the object code. Pragma
Comment is allowed only within a declarative part or immediately within a package specification.
Any number of comments may be entered into the object code by use of pragma Comment.

8.6.8.1.2. Pragma Linkname. Pragma Linkname is used to provide interface to any routine
whose name can be specified by an Ada string literal. This allows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a subprogram name that has been
previously specified in a pragma Interface statement. The second is a string literal specifying the

1ISMAYS9 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8.55

W T U .

- . - . " .. -.... - e - .. - - Y - - ° M - .

O PR S ST S ST AR et P ‘";\--“ N ey e 2 e g T e L BENRAR
i L b L S T S R et R - Ty R AGn o Pl T D e A - ey e AL ook}, oo T
SRS TR R B S AT R AR R e LT PSSR e B R LA S R TN B ok SIS e R I Y ety ST,

TeleGen2 User Guide for UNIX

exact link name to be employed by the code generator in emitting calls to the associated
subprogram. The syntax is:

pragma Interface (assembly, <subprogram_name>);
pragma Linkname (<subprogram_name>. <string_literal>);

If pragma Linkname does not immediately foilow the pragma Interface for the associated
program. a warning will be issued saying that the pragma has no effect.

A simple example of the use of pragma Linkname is:

procedure Dummy_Access(Dummy_Arg : System.Address);
pragma Interface (assembly, Dummy Access);
pragma Linkname (Dummy_Access, "_access");

8.6.8.1.3. Pragma Images. Pragma Images controls the creation and allocation of the image
1nd index tables for a specified enumeration type. The image table is a literal string consisting of
enumeration literals catenated together. The index table is an array of integers specifying the
location of each literal within the image table. The length of the index table is therefore the sum
of the lengths of the literals of the enumeration type: the length of the index table is one greater

than the number of licerals.

The syntax of this pragma is:

pragma Images(<enumeration_type>. Deferred);
-e OF -«
pragma Images(<enumeration_type>. Immediate);

The default, Deferred. saves space in the literal pool by not creating image and index tables for
an enumeration type unless the ‘Image. 'Value, or 'Width attribute for the type is used. If one of
these attributes is used. the tables are generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in more than one compilation unit. more
than one set of tables is generated. eliminating the benefits of deferring the table. In this case.

sing
pragma lmages(<enumeration type>, Immediate);

will cause a single image table to be generated in the literal pool of the unit declaring the
1umeration type.

For a very large enumeration type. the ieng.h of the image table will exceed Integer’Last
{the maximum length of a string). In this case. usii.g either

pragma lmages(<enumeration type>. Immediate);

or the 'Image, "Value, or ‘Width attribute for the type will result in an error message from the
compiler.

8.6.8.1.4. Pragma No._Suppress. No_Suppress is a TeleGen2-defined pragma that prevents
the suppression of checks within a particular scope. [t can be used to override pragma Suppress
in an enclosing scope. No_Suppress is particulariy useful when yov have a section of code that
relies upon predefined checks to execute correctly. but you need to suppress checks in the rest of

8-36 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 1SMAYS9

Y. wde Lt . e

Vel 4 a - -

- R DI ., . ~ Lo - N
[RAY o LU IR T I PRTAL VI P 2 NGt S RV T T 7 SR S RISV Tyt 2 VLSVt Y SIS
M\ L=l u--.r':‘-..u PLRCEAG XA i M PSR S ARSI o oo T S

PROGRAMMING GUIDE

the compilation unit for performance reasons. /
Pragma No_Suppress has the same syntax as pragma Suppress and may occur in the same
places in the source. The syntax is:

pragma No_Suppress (<identifier> [, [ON =>| <name>]);

where <identifier> is the type of check you want to suppress (e.g., access_check: refer to

LRM 11.7)

<name> is the name of the object, type /subtype, task unit, generic unit, or subprogram

within which the check is to be suppressed; <name> is optional.

If neither Suppress nor No_Suppress are present in a program, no checks will be suppressed.
You may override this default at the command level, by compiling the file with the —i(nhibit
option and specifying with that option the type of checks you want to suppress. For more
information on —i(nhibit. refer to Chapter 3.

If either Suppress or No_Suppress are present, the compiler uses the pragma that applies to
the specific check in order to determine whether that check is to be made. If both Suppress and
No_Suppress are present in the same scope, the pragma declared last takes precedence. The
presence of pragma Suppress or No_Suppress in the source takes precedence over an —-i(nhibit
option provided during compilation.

8.6.8.2. Package System. The current specification of package System is provided below.

15MAYS9 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8-57
S

R R R R T EEEEE———

e
E ARt K N Lol 1Y

C

- -
- -l RN . e et R R

e 2L A e A e TS Y ST T S 1 N g e YD B R U S DeeliTh Tt eu L T
Rl A - E YL) e R e T o X R T L s E o s aton WO S R T a0 a8 T et S ien Lyl

Y ORGSR

TeleGen2 User Guide for UNIX

PACKAGE System IS

TYPE Address is Access Integer;
TYPE Subprogram Value is PRIVATE;

TYPE Name Is (TELEGEN2);
System_Name : CONSTANT name := TELEGENZ;

Storage _Unit : CONSTANT := 8;
Memory_Size : CONSTANT :a (2 ** 31 -1

-- System-Dependent Named Numbers:

Min_Int : CONSTANT := -(2 ** 31);

Max_Int : CONSTANT :a (2 #** 31) - 1;

Max Digits : CONSTANT :a 15;

Max_Mantissa : CONSTANT := 1

Fine Delta : CONSTANT :a 1.0 / (2 ** Max Mantissa);
Tick : CONSTANT := 10.0E-3;

-- Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE Q0 .. 63;

PRIVATE

END System;

8.6.8.3. Representation Clause Restrictions. Restrictions on representation clauses within
TeleGen2 were discussed in “**LRM Chapter 13,” earlier in this section.

8.6.8.4. Implementation-Generated Names. There are no implementation-generated
names to denote impiementation-dependent components.

8.?.8.5. Address Clause Expression Interpretation. An expression that appears in an
object address clause is interpreted as the address of the first storage unit of the object.

8.6.8.8. Unchecked Conversion Restrictions. Restrictions on unchecked conversions were
discussed in *“Unchecked Programming," earlier in this section.

8-38 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 1SMAYS9

2t Ll een TITLo T e

& g . v . N L P PR WA B St e

P T S - LICHEE T '~":,_':'.'-3—
BE W el e 3 AR Y

% L e ‘
RSO S S ol oo s 03

2 2 I

PROGRAMMING GUIDE

8.6.8.7. Implementation-Dependent Characteristics of the I/O Packages. (-

1. In Text_IO, the type Count is defined as follows:
type Count is range O..lLong.Integer’lLast - 1

2. In Text_IO, the type Field is defined as follows:
subtype Field is integer range O..Text._ Manager.Field’Last:

3. Sequential_JO and Direct _1O cannot be instantiated for unconstrained array types or
discriminated types without defauits.
4. The standard library contains preinstantiated versions of Text_IO.Integer_IO for type

Integer and Long_Integer and of Text_JO.Float_IO for type Float and Long_Float. It
is suggested that the following be used to eliminate multiple instantiations of these

packages:
Integer Text_IO
Long_Integer _Text_[O
Float _Text 10O
Long_Float_Text. 1O
1SMAYS9 UG-1313N-V1.2(386/ UNIX) © 1989 TeleSoft 8-59

*—

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-depandent valuss, such
as the raxinum length of an input line and invalid file names. A tast that
makes use of such wvalues is identified by the extension .TST in its file
nanme. Actual values to be substituted are representasd by names that begin
with a dollar sign. A value must be substituted for each of these names

before the test 1is run. The values used for this validation ars given
below:

Name and Meaning Value

SACC_SIZE 32

iAn integer 1literal whoses value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 199 * 'A' & '1°
An identifier the size of the
maximun input line length which
is identical to $BIG_ID2 except
for the last character.

SBIG_ID2 199 * 'a' & '2°
An identifier the sizz of the
maximum input line langth which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 100 « "A" & '3' & 99 * '}
An identifier the sizz of the
maximum input line length which
is identical to $BIG_ID4 -except
for a character near the middle.

Name and Meaning

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the aiddla.

$SBIG_INT_LIT
An integer 1literal of wvalue 298
with enough leading zeroes so

that it 1is ths size of tha
maximum line length.

SBIG_REAL_LIT
A universal real 1litzral of
value 690.0 with enough lezading
zeroes to be the size of ths
maxizua line lsangth.

$BIG_STRING1

A string literal which when
catenated with BIG_STRING2
yields the image of BIG_IDI.
SBIG_STRING2
A string literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.
$BLANKS
A sequence of blanks twenty
characters 1less than the size
of the maximum line length.
SCCUNT_LAST
A universal integer
literal whose valiue is
TEXT_IO.COUNT'LAST.
$DEFAULT_MEM_SIZE
An integer literal those 1l1ue
is SYSTEM.MEMORY_SIZE.
$DEFAULT_STOR_UNIT
An integer literal whose value

is SYSTEM.STORAGE_UNIT.

TEST PARAMETERS

-
f‘
w
'_J
o
)]

100 =~ 'A' & '4' & 99 * 'A’

197 * '9* & "298"

195 * '0' & "690.0"

LN L & 100 * 'Al & L LI

LI & 99 x IAI & l1| & ree

189 « * ¢

2_147_483_646

2147483647

Mame and Meaning

SDEFAULT_SYS_NAME
The value of the constant
SYSTEM.SYSTEM_NAME.

SDELTA_DOC
A real literal whose value 1is
SYSTEX.FINE_DELTA.

$FIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

SFIXED_NAME
The name of a predefined
fized-point type cther than
DURATICH.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any wvalue
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE_NAMEL
aAn external fils name which
“contains invalid <characters.

SILLEGAL_EXTERNAL_FILE_NAME2
An external file name which
is too 1long.

Value

TELEGEN2

2#1.04E-31

1000

NO_SUCH_TYPE

NO_SUCH_TYPE

100_000.0

131_073.0

63

BADCHAR * °/%

/NONAME/DIRECTORY

TEST PARAMETERS

Name and fzaning

SINTEGER_FIRST
A universal
whose value 1is

integer literal
INTEGER'FIRST.

SINTEGER_LAST
A universal
whose value 1is

integer literal
INTEGER'LAST.

$INTEGER_LAST_PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any 7value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose
is SYSTEM.MAX_MANTISSA.

value

SMAX_DIGITS

Maximum digits supported for

floating-point types.
SMAX_IN_LEN
Maximum input line length

permitted by the implementation.

SMAX_INT
- universal
whose value is

integer litsral
SYSTEM.MAX_INT.

SMAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_INT+1.

Talue

-32768

32767

(9%)
(g8]
-~
N
w

-100_000.0

~131_973.0

31

15

21474813647

2_147_483_648

TEST DPARAMETERS

Nane and M2aning

SMAX_LEN_INT_BASED_LITERAL

A universal integer based
literal whose value is 2#11#%
with enough 1leading zeroes in

the mantissa to be

long.

MAX_IN_LEN

SMAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value 1s 16:F.E: with
2nough 1leading zerces in the
mantissa to be MAX_IN_LEN long.

SMAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including the quote
charactars.

SMIN_INT
A universal integer literal

whose value is SYSTEM.MIN_INT.
SMIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"MUIL;" as thz only statement in

its body.
SNAME
A name of a predefined numeric

type other than FLOAT, INTEGER,

SHORT_FLOAT, SHORT_INTEGER,

LOMNG_FLOAT, or LONG_INTEGER.
SNAME_LIST

A list of enumeration literals

in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT
A based 1integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

——

TEST PARAMETERS

Valusz

"2:" & 195 % 'O & "11:"

15 & 103 « "9 & "FLE:"

L] & 198 *x IAI & tey

-2147483648

32

NO_SUCH_TYPE_AVAILABLE

TELEGEN2

164FFFFFFFEY

MName and Y=aning

SNEW_MEM_SIZE

An intager litaral whose value
is a permitted argument for
pragma MEMORY_SIZE, other than
SDEFAULT_MEM_SIZE. If there is
no other value, then use
SDEFAULT_MEM_SIZE.
SHEW_STOR_UNIT
An integer litsral whose value

is a permitted argument for
pragma STORAGE_UNIT, other than
SDEFAULT_STOR_UNIT. 1If there is
no other permitted value, then

use value of SYSTEM.STORAGE_UNIT.

SNEY_SYS_NANE
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE
An integer literal whose value
is the number of bits required

to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK
A real literal
SYSTEM.TICK.

whose value is

TEST PARAMETERS

Value

2147483647

TELEGEN2

32

0.01

.
”'

WITHDRAVN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at

the time of validation testing for the reascns indicated. A reference of
the form AI-ddddd is to an Ada Commentary.

E28005C This tast axpects that the string "-- TOP OF PAGE. --
63" of line 204 will ippear at the top of the listing page due
to a pragma PAGE in line 203; but linz 203 contains text that
follows the pragma, and it is this that nmust appear at the top
of the page.

A390056 This test unreasonably expects a component clause to
pack an array component into a minimum size {(line 30).

B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative {(line 31).

C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the avaluation

of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations
will he detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illagality need not be detacted until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an irray object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

(%]

VITHDRAWN TESTS

CD2263A..D, CD2a66A..D, CDZA73A..D, CD2a76A..D [16 tests] These
tasts wrongly attenmpt to check tha size of objects of a derived
type {for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length <¢lause and attribute, whose interpretation 1is
considered problematic by the WG9 ARG.

CD2A81G, CD2A33G, CD2A34N & M, & CD50110 {5 tests] Thase tasts
assum2 that dependsnt tasks will terminate while thes main pro-
gram executes a loon that simply tests for task ta2rmination; this

is not the case, and the main program may loop 1indafinitely
(lines 74, 85, 86 & 96, 86 & 95, and 58, resp.).

CD2B15C & CD7205¢C These tssts expect that a 'STORAGE_SIZE
length clause provides preciss contreol over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be axpectad.

CD2D11B This <test givas a SMALL representation clause for a
derived fixed-point type {at line 30) that definss a sat of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-20099, all model numbers of a

derived fixed-point type must be representable values of the
parent type.

CD50078 This tast wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D (5 tests] These tests check
7arious aspects of the use of the thrse SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

CDT105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be a%t least SYSTEM.TICK--particular instances of change navy be
less (line 29).

CD72038, & CD7204B These tests use the 'SIZE length clauss and
attribute, whose intarpretation is nornsidersd problematic by
the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a ‘task's
activation as though it were like the specification of storage
for a collection.

VITHDRAWN TESTS

CE21071I This test requiras that 2bjzers of two similar scalar
types be distinguished when re2ad from a fils--DATA_ZRROR is
expected to ba raised by an attempt to read one object as of
the other type. However, it is not clear ezactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

CE3111C This test requires certain behavior, when two files are
associated with the same external file, that 1s not raquired by

the Ada standard.

CE3301A This test contains several calls to END_OF_LINE &
END_OF_PAGE that have no parametar: these calls were intended
to specify a file, not to rzfer to STANDARD_INPUT (lines 103,
107, 118, 132, & 136).

CE34118 This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_ZRROR is raised
by a subsequent PUT opzsration. 3ut +the former operation will
generally raise an sxception dus t2 2 lack of available disk
space, and the test would thus encumber validation testing.

COMPILER AlID LINKER OPTIONS

APPENDIX E
COMPILER AND LINKER OPTIONS

This appendix contains an 2xplanation of the conpilar
and linker options aviilable for this =ompiler.
References and page numbers 1in this appendix are
consistent with compiler documentation and not with
this report.

ACR{1) USER COMMANDS VCREL
NAME
acr — Sun Ada Create-Subliibrary utility
SYNOPSIS
acr -f] -V vsm_size; i-m max_size: sublibi.sub ...
DESCRIPTION

The acr command creates an empty Ada sublibrary for each sublibrary named on the command
line. [t builds both the sublibrary file and the corresponding object directory. The sublibrary file
is a database that holds intermediate code and other data generated by a compilation. It has the
file extension ".sub™; this extension is optional when using acr. The object directory hoids the
object code generaced by the compilation or binding process, and has the file extension ".oby™.

Once the sublibrary is created and initialized with the aer command. it can then be used as a
working eiement of the Ada program library dacabase to receive and store output from Ada
compilations. See the Sun Ada User Guide for a full description of sublibraries and how they are
used in Ada compilations and in Sun Ada library management utilities.

OPTIONS
-f Force creation of the sublibrary even if one of the name specified already exists. Use of
this option causes the old sublibrary to be overwritten.

-m maz_size

Set the maximum size of the the sublibrary database file to max_size pages. The pages
are allocated in 1-Kbyte (1024-byte) blocks. Max size must be an integer value between
1.000 and 32,000. This value should not be arbicrarily large, as the library concains &
fixed-size page table whose size is proportional to the value parameter. The value is less
than 1000 units because of the internal sublibrary catalog size. The default size is 8192
Kbytes (about 3 MB), which allo ss the sublibrary to hold as many units such that their
size adds up to 8 MB subject to the 1000 umics cacalog limic.

-V vem_size
Set the size of the Virtual Space Manager's buffer space to vsm_size Kbytes. The default
vsm _size for the command is 1300 Kbytes.

The optimal value for vsm _size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Sun Ada User Guiae.

SEE ALSO
acp(1). ada(1), als(1), amv(1), arm(1)

Sun Ads 1.2 Last change: 18 February 1988 1

s S R ———

——

s ADALL) USER COMMANDS AD A1

NAME
ada - Sun Ada Compiler

SYNOPSIS
ada [l libname| -t templibi [-V vsm _sizei :-C ni -E ni
{=mm: unit [-b, -T n, -P options, -p objects. -o filei!
[-O key !-G -I file|! |-LFSdeksvxi input_spec

DESCRIPTION
The ada command calls the Sun Ada compiler, which comprises the front end, middle pass, code

generation, and list generation phases. By defauit the fronc end, middle pass, and code generacion
phases are executed. This process results in the generation of object modules. which are put into
the object directory of the working sublibrary. Optionally, the Ada binder and nacive linker may
be be invoked to create an executable file.

The command terminator, input_spec, indicates the file or files to be compiled. - Any number and
combination of files may be specified. up to the maximum line length. Files listed on the
command line that have no extension are given the extension ".ada" by the compiler. Source files
that have the ".ada" extension are assumed to contain Ada text to be compiled, whereas source
files that have che ".ilf" extension are assumed to contain a list of files to be compiled.

The temporary errors file is created in /tmp as errorXXXXXX, with the "XXXXXX" being
replaced with the compilation process number to prevent file name collision.

Compilation errors as weil as compiler driver errors (e.g. "file not found") are output to stderr.
Informational output will also be directed to stderr. Banner messages as provided by the -v option
are examples of informational output.

OPTIONS
Library Specification Options:
-l ltdbname ,

Use libname as the file concaining the sublibrary list. The sublibrary list is che ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitced,
and the -t option is not used, the default lsblst.alb is assumed to be the library. -l cannot
be used with -t.

-t templid
Use templib as a temporary sublibrary list for this process. The -l option must not be
used when the -t option is given. The default sublibrary list file is not read. The first
sublibrary in the list is the working sublibrary. Tefplib may be specified as
"sublibl,sublib2..." or as "sublibl sublib2 ...". -t cannot be used with -l.

-V vamn_size
Set the size of the Virtual Space Manager's buffer space to vsm_size Kbytes. The default
vsm_size for the command is 2000 Kbytes.
The optimal value for vsm _size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Sun 4da User Guide.

Compiler Ezecution Control Optiona:

-En Abort compilation after n errors. Only errors detected by the front end phase are counted.
The default is 999. Each error me.sage type is counted independently of the others. For
example, in the default situation, the user may have 998 warning messages and 998 syntax

errors and the compilation will not abort.

-m unit
Treat "unit” as a main program. Aflter all files named in the input specification have been

Sun Ada 1.2 Last change: !5 February 1988 1

e

AbAa(n)

-V

Output

-2

-d

<0 key

-X

Sun Ada 1.2

USER COMMANDS DA

compiled, the Ada binder and native linker are invoked. An executable file named unut is
left in the currenc directory. [f the main unit has aiready been compiied. it does not have
to be in the input file(s]. However, it must be present in the current working sublibrary.
If the -m option is used, appropriate binder'linker options {-m, -b. -T, -P, -p) are passed
to the binder/linker (see aid(1)).

Be verbose. Announce each phase as it is entered.

Control Options:

Only report errors: do not produce any objects. This option causes only the front end to
be executed. The front end detects all syntax errors and most semantic errors in the Ada
source code. Some errors, however, can be detected only by the middle pass and code
generator; such errors will not be detected when the -e option is specified. Examples of
such errors are the those involving the legality of specific representacion specifications and
violation of code generator capacity limitations. This option is meaningiess when used
with -k, -d. -O. and -x. since each of the latter options requires the production of code
generated after front end processing.

Keep the intermediate code (High Form and Low Form) for unit bodies in the library. By
default, the intermediate code for bodies is deleted from the library after code generation
to minimize library size. The intermediate code is used by the Ada Cross-Referencer (see
azr(l)) and the Source-Level Debugger (see adbg(l) and the -d option of the ada
command) and operated on by the Global Optimizer (see aopt(1) and the -O option of the
ada command). The -k option must therefore be used if any of these three programs are to
be used for any unit in the current source file. {An exception is that -k need not be used
when the -d option is used, since use of -d automatically sets -k.)

Provide for debugging. This option causes the code generator to save information needed
by the Ada debugger, adbg, in the Ada program library. This information is used for
mapping between source and object code locations, and for locating data objects. The -d
option also causes some additional information to be output in object modules. However,
there is no impact on generated code per se. Use of -d automatically sets the -k option.

Optimize code for each unit being compiled. The optimizer optimizes each unit separately
as it is being compiled and does not make cross-unit optimizations. The argument to the
-O option, key, must be present and must immediately follow the option. This argument
provides details about how the units are to be compiled. For example, one of the key
arguments indicates whether subprograms being optimized may be called from parallei
tasks. See aopt(1) for information sbout acceptable key vaiues.

Two other options may be used in conjunction with -0O:

-G Generate a call graph for the unit(s) being optimized. Refer to aopt(1) for more
information. Note: in the Sun Ada User Guide, a discussion on the use of the -G
option with ada is deferred to the Global Optimiser chapter.

I file Inline the subprograms listed in "file". Refer 1o aopt(l) for more information.
Note: in the Sun Ada User Guide, a discussion on the use of the -l option with
ada is deferred to the Global Optimizer chapter.

Generate profiler informaction and put it in the object module. Profiler information

includes execution timing and subprogram call information. [f code is compiled with the
-x option. that option must also be used with the a/d command when the program is

bound and linked (see ald(1)).
Use software floating-point instead of the default MC688881 hardware floating-point

Last change: 13 February 1988 2

_

. ADA(L) USER COMMANDS \DA)

support.

Listing Control Options:

-L Output a source listing interspersed with error information to sourcefile.l, where
"sourcefile” is the name of the user-supplied source file without the Ada extension. If an
input-list file is to be processed, a listing file is generated for each source file in the input
list. Each resulting listing file has the the same name as the source file, except it has an
" " extension appended Lo it. For exampie, when this option is used with an input list
that contains 10 source file names, 10 listing files are generated as a result of the
compilation. If the -F option is used, the listing wiil not be interspersed. Instead, errors
will follow all the source lines.

-F Do not intersperse errors in source listing; put them after all source lines. This option is
used only wich the -L opcion.

-Cn Provide n source lines as context with error messages. The default is I, which is the
erroneous line itself. Context lines are placed before and after the error line in the error
message.

-S Send a source/assembly listing to unit.s. where "unit" is the name of the unit in the user-
supplied source file. [f an input-list file is specified, a listing file is generaced for each
source file in the input-list file. For example, when this option is used with an inpuc-list
file that contains 10 source file names, 10 listing files are generated as a result of the
compilation.

SEE ALSO .
acmp(1), aep(1l). aer(1), ald(1), als(1), amv(1), aopt(l), arec(l), arei(1l), arm(1),
asd(1), axr(1)

Sun Ada 1.2 Last change: 1S February 1988 3

—

L]

—-——

ALD(1

NAME

) USER COMMANDS VLT

ald - Sun Ada binder/linker

SYNOPSIS

ald |-l libname ! -t templibi i-V vsm sizei =T n. -P aptionsi :-p objects|
{«0 name| -|bsvx, mainunit

DESCRIPTION

The ald command cails the Ada binder and linker. This command outputs the executable program
to file mainunit. The binder and linker are executed by default. The user may exclude the linker
from the run.

A library may be specified by using the default library file. liblst.alb. specifying a library file with
the -l option, or specifying a temporary library lisc on the command line, by using the -t option.

Option pass-through to the native linker iy provided.
The binder puts an elaboration code file, mainunit.obm, in the working sublibrary directory.

If the native linker is not invoked, a link scripc file. mainunit.lnk. is put in the current directory.
This script file may may also be modified by the user so that ocher object code or special linker
options are used.

OPTIONS -

Library Speciﬁcat-ion Options:

<] lzbname
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries thac collectively define the Ada Program Library. If this option is omicted,
and the -t option is not used, the default /idlst.aid is assumed to be the library. -l may not
be used with -¢.

-t templib
’ Use templib as a temporary sublibrary list for this process. The -| option must not be
used when the -t option is given. The defauit sublibrary lisc file is not read. The first
sublibrary in the list is the working sublibrary. Templib may be specified as
"sublibl.sublib2..." or as "sublibl sublib2 ...". -t m 1y not be used with -l

-V vam gize
Set the size of the Virtual Space Manager's buffer space to vsm_size Kbytes. The default
vsm _size for the command is 2000 Kbytes.

The opcimal value for vsm _size depends on the amount of system memory available and
the number of concurrent users. For a [ull description see the Sun Ada Lser Guide.

Other Options:

-b Run binder phase only. Elaboration code and a link script are produced. The link script
is put in the file mainunic.lnk.

-8 Use software floating-point support. By default, MCG68881 hardware-floating point
support is used.

-0 name

Use "name" instead of "mainunit" as the name of the executable fie.

-P options
Pass options to the native linker. options must be a quoted scring. This option is provided
as an escape to allow use of all native linker options without producing and editing a link
script. An example is: ald -P -t -r’' . Refer to the Sun Ada User Guide for more

Sun Ada 1.2 Last change: 17 February 1988 1

ALD(1) USER COMMANDS ALD(1)

information. *
-p objects

Pass objects to the native linker. objects must be a quoted string; it may inciude archive

files. This option is typically used with pragma Interface and the -l native linker option.

objects may be specified as "objectl object2 ...". An example is: ald -p ‘cosine.o

‘usr. ltb - libm.a’. Refer to the Sun Ada /ser Guide for more information.

Note: the -p and -P options are used to provide compatibility with the System V Incerface
Definition while dealing with the non-System V compatible {d command [-Ix).

«T n Trace back depth of exception report. When a run-time exception occurs. the name of the
unit and the line number of where the exception occurred are displayed with a call chain
history. The number n, which is 15 by default, defines the levels of call chain history.

-v Be verbose. Announce each phase as it is entered. o

-X Link in the execution profiler's run-time support routines. During program execution.
these run-time support routines record the profiling daca in memory, then write the data
to files as the program terminates. Units to be profiled must be compiled with the -x
option of the sda command.

BUGS AND ENOWN LIMITATIONS
The body of the main program must reside in the current working sublibrary.

SEE ALSO
ada(l)

Sun Ada 1.2 Last change: 17 February 1988 2

et

