
UNCLASSIFIED "
SECUR!7V CLASSIFICA'IO Of THIS PAGE (WtinDataEntered)

REPORT DOCUMENTATION PAGE ,t EmO.",,t -OS

1. REPORT NUMBER 12. 6OV7 ACCESSION NO. 3. RECIPIENT-S CATALOG NUMfBiR

4. TITLE (anedSubtille) 5. TYPE Of REPORT & PERIOD COVERED

Ada Compiler Validation Summary Repo r t:Te.eSol. 02 June 1989 to 02 June 1990
TeleGen2 Ada for Sun-386i Version 1.4, SUN-38 oSt

I and (Target), 89060211.10138 6. PLRFORMING.4)RG. REPOR NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

41t IA G4
T Ottobrunn, Federal Republic of Germany.

N , . PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

< IABG,
AREA A WORK UNIT NUMBERS

Ottobrunn, Federal Republic of Germany.

11. CONTROLLING OFFICE NAME AND APDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 3.. NU. O FAULa
Washington, DC 20301-3081

14. NONITORING AGENCY NAME & ADDRESS(fdfferent from ControllingOffce) 15. SECURITY CLASS (ofthis report)
UNCLASSIFIEDIABG, C"

Ottobrunn, Federal Republic of Germany. M5|. U N/ICATIO,'DOw% RADING_____________________________________N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. OISTRIBiA IO, SIArEME.NT (of the absra? enferedin Block 20 If d, ferent from Report)

UNCLASSIFIED

DI~DTIC

1,. SUPP6 M.AR' NOTES ECTE

SDEC0 41981

2I. R[YWR DS (ContinUe On ree Side if necessry and identify by block number)

Ada Programming language, Ada Compiler Validation Sumirary Report, Ada
Compiler Validation Capability# ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessay nc ',denrf by block number)

TeleSoft, TeleGen2 Ada for SUN-396i, Version 1.4, Ottobrunn, West Germany, TeleGen2 Ada
for. SUN 2386i, Version 1.4, SUN 386i under SUNOS, Version 4.0.1 (Host & Target), ACVC

1.10

DO , 1473 ITION or I NOV 65 IS oSOLETE
t J1AN1 S/N o022-L-o14S-o UNCLASSIFIED

. . . .
SECU Y CLASSIFICATION O r HIS PAGE (w h en D ata

nE

tere d)

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada for SUN-386i Version 1.4

Certificate Number: #89060211.10138

Host: SUN-386i under SunOS, Version 4.0.1

Target: SUN-386i under SunOS, Version 4.0.1

Testing Completed 2 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

IABG tAt Z
Dr. S. Heilbrunner
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

A Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr John Solomond
Director
Department of Defense
Washington DC 20301

AVF Control Number: AVF-IABG-036

Ada COMPILER
VALIDATION SUMARY REPORT:

Certificate Number: #8406021. . 0138
TeleSoft

TeleGen2 Ada for SUN-386i Version 1.4
SUN-386i Host and Target

Completion of On-Site Testing:
2 June 1989

Prepared By:
IABG mbH, Abt. SZT

Einsteinstr. 20
D-8012 Ottobrunn

West Germany

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 3
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2 CONFIGURATION INFORMATION 7

2.1 CONFIfGURATION TESTED 7
2.2 ?LEMTJTAT!ON CHARACTERISTICS. 8

CHAPTER 3 TEST INFORMATION14

3.1 TEST RESULTS 14
3.2 SUMMARY OF TEST RESULTS BY CLASS 14
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 15
3.4 WITHDRAWN TESTS15
3.5 INAPPLICABLE TESTS 15
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 19
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation19
3.7.2 Test Method 20
3.7.3 Test Site 20

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

A@oession For

APPENDIX C TEST PARAMETERS "TS-CRA&I
DTIC TAB 0

APPENDIX D WITHDRAWN TESTS JUDInoune0, 311:t I f Io Ion-

APPENDIX E COMPILER AND LINKER OPTIONS " By________
Distribution/
Availability Cl0es

jAvOli and/or

Diat SpeciaDtiL eLa

INTRODUCTION

CHAPTER 1

INTRODUCTION
4

This Validation Summary Report (VSnY describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability. (ACVC)., An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.-

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All

ii.-endencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

INTRODUCTION

To attempt to identify any language constru:cts supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 2
June 1989 at TeleLOGIC AB, Sweden.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make fu:ll and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION CF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed Test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

l I f 2

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
Test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed Test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
Test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

INTRODPCTI ON

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an impl-mAn: .ay legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

INTRODUCTIO!

customized according to i.p7eaentltizn-s;?cmfiz *7lues--for exampla, an
illegal file name. A list of th ralues used for this ";alidation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implmentation is -alid.ated. A test thit is
inapplicable for one validation is not necessarily inavplicab!i f'r a
subsequent validation. Any tcest that vias determined to contain in ille-gal
language construct or an erroneous language construct is withdra-rn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Co:.pilir: TeleGen2 Ada for SUN-386i Version 1.4

ACVC Version: 1.10

Certificate Number: #890602II.10138

Host Computer:

Machine: SUN-386i

Operating System: SunOS, Version 4.0.1

Memory Size: 8 MB

Target Computer:

Machine: SUN-386i

Operating System: SunOS, Version 4.0.1

Memory Size: 8 MB

CONFIGURATION INFORmATION

2.2 iMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler cot.ectly processes a compilation
containing 723 variables in the same declarative part. (See
test D290O2K.)

2) The compiler correctly processes tests containing
loop statements nested to 65 levels. (See tests D55A03A..H
(8 tests).)

3) The compiler correctly processes tests containing
block statements nested to 65 levels. 'See test D56001B.)

4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

I) This implementation supports the additional predefined types
LONGINTEGER and LONrGFLOAT in the package STANDARD. '!ee
tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests dc not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) Some of the default initialization expressions
for record components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses no extra bits for extra range. (See test C35903A.)

CONFIGURATION INFORMATION

4) CONSTRAINTERROR is raised for pre-defined integer comparison
tests, NUMERIC-ERROR is raised for largest integer comparison
and membership tests and no exception is raised for pre-
defined integer membership tests when an int-ger literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

5) No exception is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC-ERROR or
CONSTRAINT-ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises NUMERIC-ERROR for a
two dimensional array subtype where the large dimension is the
second one.

2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

3) NUMERICERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

CONFIGURATION INFORHATIOU

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINTERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

6) In assigning one-dimensional array typas, the expression is
evaluated in its entirety before COU;STATIT_!RROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression
is not evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC-ERROR or
CONSTRAINTERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, lengths must match in array
slice assignments. This implementation raises
no exception. (See test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluated. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONFIGURATION IfFORMATION

3) CONSTRAITTERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is supported for procedures. but nct for
functions. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

i. Generics.

This implementation creates a dependence between a generic body
and those "nlts which instantiate it. As ailwed by AI-0048/11,
if the body is oompiled after a unit that instantiates it, then
that unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CA1012, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CAlOl2A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bcdies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

CONFIGURATION INFORMATION

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA10IIA.)

j. Input and output.

1) The package SEQUENTIAL_1O cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101C, EZ2201D,
and EE2201E.)

2) The package DIRECT 10 cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

3) Modes INFILE and OUT-FILE are supported for SEQUENTIAL_10.
(See tests CE2102D..E, CZ2102N, and CE2!02P.)

4) Modes IN-FILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

5) Modes IN-FILE and OUT-FILE are supported for text files.
(See tests CE3102E and CE31021..K (3 tests).)

6) RESET and DELETE operations are supported for
SEQUENTIAL_IO. (See tests CE2102G and CE2102X.)

7) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

8) RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

10) Temporary sequential files are given names and not
deleted when closed. (See test CE21OSA.)

11) Temporary direct files are not given names and not
deleted when closed. (See test CE2108C.)

12) Temporary text files are not given names and not deleted
when closed. (See test CE3112A.)

CONFIGURATION INFORMATION

13) '!ore than one internal file can be associated with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

14) More than one internal file can be associated with
each external file for direct files when reading only. (See
tests CE2107F..H (3 tests), CE2110D and CE2111H.)

15) More than one internal file can be associated with
each external ile for text files when reading only (See
tests CE3111A..E t5 tests), CE3114B, and CE3115A.)

'7I

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 313 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results denonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1129 2019 17 23 45 3360

Inapplicable 2 9 296 0 5 1 313

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT TEST CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 573 544 245 172 99 160 332 132 36 250 341 278 3360

N/A 14 76 136 3 0 0 6 0 5 0 2 28 43 313

Vdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A8IG CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 313 tests were inapplicable for

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

TEST INFORMATION

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C355081, C35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementaticn is
not required to support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

d. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT_IUTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

e. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAX MANTISSA greater than
32.

f. C86001F is not applicable because, for this implementation, the
package TEXT_10 is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_IO, and
hence package REPORT, obsolete.

g. B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG-INTEGER, or SHORTINTEGER.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORT-FLOAT.

j. CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.2.h and
Appendix F of the Ada Standard).

k. LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for functions.

TEST INFORMATION

1. CDlO09C, CD2A4!1A..B (2 tests), CD2A41E and CD2A42A..J (10 tests)
are not applicable because of restrictions on 'SIZE length clauses
for floating point types.

m. CD2A61I..J (2 tests) are not applicable because of restrictions on
'SIZE length clauses for array types.

n. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because of restrictions on 'SIZE length clauses for access types.

o. AE2101C, EE220!D, and EE220IE use instantiations of package
SEQUENTIALIO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

p. AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT_1O with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

q. CE2102D is inapplicable because this implementation supports
CREATE with IN-FILE mode for SEQUENTIAL_10.

r. CE2102E is inapplicable because this implementation supports
CREATE with OUT-FILE mode for SEQUENTIAL_10.

s. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT_10.

t. CE21021 is inapplicable because this implementation supports
CREATE with IN-FILE mode for DIRECTIO.

u. CE2102J is inapplicable because this implementation supports
CREATE with OUTFILE mode for DIRECTIO.

v. CE2102N is inapplicable because this implementation supports OPEN
with IN-FILE mode for SEQUENTIALIO.

w. CE21020 is inapplicable because this implementation supports RESET
with IN-FILE mode for SEQUENTIALIO.

x. CE2102P is inapplicable because this implementation supports OPEN
with OUT-FILE mode for SEQUENTIAL_IO.

y. CE2102Q is inapplicable because this implementation supports RESET
with OUT-FILE mode for SEQUENTIALIO.

z. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECTIO.

TEST INFORMATION

aa. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECT_10.

ab. CE2102T is inapplicable because this implementation supports OPEN
with IN-FILE mode for DIRECT_10.

ac. CE21l2U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECT_10.

ad. CE2102V is inapplicable because this implementation supports OPEN
with OUT FILE mode for DIRECT_10.

ae. CE2102W is inapplicable because this implementation supports RESET
with OUT FILE mode for DIRECTIO.

af. CE2107B..E (4 tests), CE2107L, CE2110B, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for sequential files. The proper exception is raised when
multiple access is attempted.

ag. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

ah. CE3102E is inapplicable because text file CREATE with INFILE mode
is supported by this implementation.

ii. CE3102F is inapplicable because text file RESET is supported by
this implementation.

aj. CE3102G is inapp!icable bp'ause text file deletion of an external
file is supported by this 'Dlementation.

ak. CE3102I is inapplicable because text file CREATE with OUT-FILE
mode is supported by this implementation.

al. CE3102J is inapplicable because text file OPEN with IN-FILE mode
is supported by this implementation.

am. CE3102K is inapplicable because text file OPEN with OUT-FILE mode
is not supported by this implementation.

an. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

TEST INFORMATION

3.6 TEST, PROCESSINlG, AND EVALUATION MODIFICATION'S

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 16 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B71001E 371001K B7100IQ B7!OI7 BA3006A BA3006B
BA3007B BA3008A BA3008B BA3013A (6 and 7M)

Tests C34005G, C34005J and C34006D returned the result FAILED because of
false assumptions that an element in an array or a record type may not be
represented more compactly than a single object of that type. The AVO has
ruled these tests PASSED if the only message of failure occurs from the
requirements of T'SIZE due to the above assumptions (T is the aray type).

Tests CD2C11A and CD2CIB contain 'SIZE length clauses for task types which
were insufficient for this machine. These tests were modified to include a
'SIZE clause of 2K.

IABG uses a modified body for the support package REPORT that prints an
IABG specific time stamp. For the test CD5003E, this body caused this test
to raise STORAGE-ERROR because of a stack overflow. So for this test, the
standard report package was used.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TeleGen2 Ada for SUN-386i Version 1.4 was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

1

TEST INFORMATION

3.7.2 Test Method

Testing of the TeleGen2 Ada for SUN-386i Version 1.4 using ACVC Version
1.10 was conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host computer: SUN-386i
Host operating system: SunOS, Version 4.0.1
Target computer: SUN-386i
Target operating system: SunOS, Version 4.0.1
Compiler: TeleGen2 Ada for SUN-386i Version 1.4

A streamer cassette containing the ACVC in the original distribution format
was loaded to a UNIX machine with an Ada compiler where it was customized
using AVF tools to remove withdrawn tests and tests requiring unsupported
floating-point precision. Tests that make use of implementation specific
values were also customized. Tests requiring modifications were loaded in
their modified form. The ACVC was then transferred by Ethernet to the host
machine.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the
SUN-386i. Results were then transferred by Ethernet to a VAX 8530 where
they were printed and evaluated.

The compiler was tested using command scripts provided by TeleSoft
and reviewed by the validation team. The compiler was invoked with the
command

ada -v -V 1000 -m <main program) <compilation files>

and linked with the command

ald (main program)

for the Chapter B tests, the additional qualifier -L was included in the
compiler call. See Appendix E for details of these and all possible option
switches.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at TeleLOGIC AB, Sweden and was completed on 2 June
1989.

2 f

DECLARATITON OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Telegoft has submitted the following Declaration of Conformance
concerning the TeleGen2 Ada for SUN-386i Version 1.4

IDEHf~aATII OF

ompiler Implemno: TELESOFT

Ada Valdation Facility: IABG, West-Germary
ACVC Version: 1.10

Base Compiler Name: TeleGen2 Ada for SUN-386i
Version: 1.4

Host Arhitecture ISA: SUN-386i
OS & version #: SunOS, version 4.0.1

Target Architecture ISA: Same as host
CS & version #: Same as host

Inmlemmo' s Declaratior

I, the undersigned, representig TELESOT, have implemented
no deliberatq extensions to the Ada Language Standard ANSI/MIL-
STD 1815A in the compiler listed in this declaration.

I declare that TELESOFT is the owner of record of the Ada
language compiler listed above and as such is responsible for
mintaining said compiler in conformance to ANSI/MIL-STD 1815A.
All certificates and registrations for the Ada language compiler
listed in this declaration shall be made only in the owner's
corporate nam.

20 July, 1989
Telelogic AB, Ada Products Division

Ste-fan Bjornson, biar, Systems Software

Owner's Declaration

I, the undersigned, representing TEESOFT take full respon-
sibility for inplementatin and maintenance of the Ada ompiler
listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that the Ada language
compiler listed, and its host/target performance is in ccmpliance
with the Ada Language Standard ANSI/NJL-STD 1815A.

20 July, 1989
Telelogic AB, Ada Products Division

. .,ef an B , MSystems Software

A??E IDIX F OF THE Ada STANDARD

APPENDTX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent prignas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the TeleGen2 Ada for SUN-386i Version 1.4, as described
in this Appendix, are provided by TeleSoft. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

Implementation-specific portions of the package STANDARD, which are not a
part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG-INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.7014!E-138;
type LONGFLOAT is digits 15

range -8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E-14 range -86400 .. ?9400;

end STANDARD;

TeleGen2 User Guide for UNIX

8.6. LRMN1 Annotations

TeleGen2 compiles the full ANSI Ada language as defined by the Reference Manual for the
Ada Programming Language (LRM) (ANSI/MIL-STD-1815A). This section describes the
portions of the language that are designated by the LRM as implementation dependent for the
compiler and run-time environment.

The information is presented in the order in which it appears in the LRM. In general.
however, only those language features that are not fully implemented by the current release of
TeleGen2 or that require clarification are included. The features that are optional or that are
implementation dependent, on the other hand, are described in detail. Particularly relevant are
the sections annotating LRM Chapter 13 (Representation Clauses and Implementation-
Dependent Features) and Appendix F (implementation-Dependent Characteristics).

8.6.1. LR.M Chapter 2.

,LRM 2.1] The host and target character set is the ASCII character set.

[LRM 2.2] The maximum number of characters on an Ada source line is 200.

(LRM 2.81 TeleGen2 implements all language-defined pragmas except pragma Optimize. If
pragma Optimize is included in Ada source, the pragma will have no effect.

Limited support is available for pragmas Memory_Size, Storage-Unit. and System.Name:
that is, these pragmas are allowed if the argument is the same as the value specified in the
System package.

Pragmas Page and List are supported in the context of source/error listings; refer to the
end of Chapter 3 for more information.

8.6.2. LRM Chapter 3.

[LRM 3.2.11 This release of TeleGen2 does not produce warning messages about the use of
ininitialized variables. The compiler will not reject a program merely because it contains such

variables.

[LR.M 3.5.11 The maximum number of elements in an enumeration type is 32767. This
maximum can be realized only if generation of the image table for the type has been deferred, and
.here are no references in the program that would cause the image table to be generated.
Deferral of image table generation for an enumeration type, P, is requested by the statement:

pragma Images (P, Deferred);

Refer to "'Implementation-Defined Pragmas," later in this chapter, for more information on
pragma Images.

(LLM 3.53.41 There are two predefined integer types: Integer and Long..nteger. The attributes
of these types are shown in Table 8-7. Note that using explicit integer type definitions instead of
predefined integer types should result in more portable code.

8-44 UG-1313N.V1.2(386/UN1D) Q) 1989 TeLeSoft 15MAY89

PROGRAMMvfING GUIDE

Table 8-7. Attributes of Predefined Types Integer and Long-znteger

Attribute Type

I Integer Long..Jnteger

'First -32768 -2147483648
'Last 32767 2147483647

'Size 16 32
'Width 6 ii

[LRM 3.5.8] There are two predefined floating point types: Float and Long-Float. The
attributes of types Float and Long..Float are shown in Table 8-8. This floating point facility is
based on the IEEE standard for 32-bit and 64-bit numbers. Note that using explicit real type
definitions should lead to more portable code.

The type Short-Float is not implemented.

Table 8-8. Attributes of Predefined Types Float and Long-Float

Attribute 1Type
Float j Long-Float

'Machine-Overflows TRUE TRUE
'Machine-Rounds TRUE TRUE
'MachineRadix 2 2
'Machine.Mantissa 24 33
'Machine.Emax 127 1023

'Machine.Emin -125 -1021

'Mantissa 21 51
'Digits 6 15
'Size 32 64

'Emax 84 204
'Safe.-Emax 125 1021

'Epsilon 9.53674E-07 3.88178E-16

'Safe-Large 4.25253E-37 2.24711641857789E -307
'Safe-Small 1.17549E-38 2.22507385850721 E- 308
'Large 1.93428E--25 2.57110087081438E -i61
!Small 2.58494E-26 i.99469227433161E-62

8.6.3. LRM Chapter 4.

(LRM 4.101 There is no limit on the range of literal values for the compiler.

(LLM 4.10J There is no limit on the accuracy of real literal expressions. Real literal

expressions are computed using an arbi trary-precision arithmetic package.

ISMAY69 UG-313N-V1.2(386/UN1X) Q) 1969 TeleSoft 8-45

TeleGen2 User Guide for UNIX

8.6.4. LRM Chapter 9.

[LRLM 9.6] This implementation uses 32-bit fixed point numbers to represent the type
Duration. The attributes of the type Duration are shown in Table 8-9.

Table 8-9. Attributes of Type Duration

Attribute Value

'Delta 0
'First -86400
'Last 86400

(LRM 9.8] Sixty-four levels of priority are available to associate with tasks through pragma
Priority. The predefined subtype Priority is specified in the package System as

subtype Priority is Integer range 0..63;

Currently the priority assigned to tasks without a pragma Priority specification is 31: that is:

(System.Priority'First + System.Priority'Last) / 2

[LR.M, 9.11] The restrictions on shared variables are only those specified in the LRM.

8.6.5. LRM Chapter 10.

[LRM 10) All main programs are assumed to be parameterless procedures or functions that
return an integer result type.

8.6.6. LRI Chapter 11.

[LR.M 11.11 Numeric.-Error is raised for integer or floating point overflow and for divide-by-
zero situations. Floating point underflow yields a result of zero without raising an exception.

ProgramrnError and Storage-Error are raised by those situations specified in LRM Section
11.1. Exception handling is also discussed in the "'Exception Handling" section earlier in this
chapter.

8.8.7. LRM Chapter 13. As shown in Table 8-10. the current release of TeleGen2 supports

most LRM Chapter 13 facilities. The sections below the table document those LRM Chapter 13
facilities that are either not implemented or that require explanation. Facilities implemented
exactly as described in the LRM are not mentioned.

"-46 UG1313N.V 1.2(386/UNIX) Q 1989 TeleSoft 15MAY89

I . . ,,,

PROGRAMMING GUIDE

Table 8-10. Summary of LRMI Chapter 13 Features for TeleGen2

13.1 Representation Clauses Supported, except as indicated below (LRM 13.2 -

13.5). Pragrna Pack is supported. except for dynam-
ically sized components. For details on che
TeleGen2 implementation of pragma Pack, see Sec-
tion 8.6.7.1.

13.2 Length Clauses Supported:
'Size
'Storage-Size for collections
'Storage-Size for task activation

'Small for fixed-point types

Note: length clauses can be used to reduce the 'Size
of data types.

13.3 Enumeration Rep. Clauses Supported. except for type Boolean or types derived
from Boolean. (Note: users can easily define a non-

Boolean enumeration type and assign a representa-
tion clause to it.)

13.4 Record Rep. Clauses Supported except for records with dynamically sized
components. See Section 8.6.7.4 for a full discussion
of the TeleGen2 implementation.

13. Address Clauses Supported for: objects (including task objects).
.Vot supported for: packages, subprograms, or task
units. Task entries are not applicable to TeleGen2
host compilation systems.
See Section 8.6.7.5 for more information.

13.5.1 Interrupts Not applicable to TeleGen2 host compilation sys-
tems.

13.6 Change of Representation Supported. except for types with record representa-
tion clauses.

------ Continued on the next page-

IMAY0 UG-13-1 3N-V1.2(336/UNIX) Q 1989 TeleSoft 8-4

TeleGen2 User Guide for UNIX

Table 8-10. Summary of LRM Chapter 13 Features for TeleGen2 (Contd)

------ Continued from the preious page-

13.7 Package System 1 Conforms closely to LRM model. Refer to Section
8.6.7.7 for details on the TeleGen2 implementation.

13.7.1 System-Dependent Named Refer to the specification of package System (Sec-

Numbers tion 8.6.7.7).

13.7.2 Representation Attributes Implemented as described in LRNM ezcept that:
'Address for packages is unsupported.

'Address of a constant yields a null address.

13.7.3 Representation Attributes of See Table 3-8.
Real Types

13.8 Machine Code Insertions Fully supported. The TeleGen2 implementation
defines an attribute, 'Offset, that, along with the

language-defined attribute 'Offset, allows addresses
of objects and offsets of data items to be specified in
stack frames. Refer to Section 8.5 for a full descrip-
tion on the implementation and use of machine code

insertions.
n3.9 Iterface to Other Pragma Interface is supported for Assembly, C. and

Languages UNIX. Refer to Section 8.4 for a description of the

implementation and use of pragma Interface.

13.10 Unchecked Programming Supported except as noted below (LR.M13.10.1 and I
13.10.2).

13.10.1I Unchecked Storage Deallo- Supported ezcept for types with length clauses for

cation storage size.

13.10.2 Unchecked Type Conver- Supported ezcept for unconstrained record or array

sions types.

8.6.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeleGen2

implementation.

-a. With Boolean Arrays. You may pack Boolean arrays by the use of pragma Pack.

The compiler allocates 16 bits for a single Boolean. 8 bits for a component of an unpacked

Boolean array, and 1 bit for a component of a packed Boolean array. The first figure illustrates

the layout of an unpacked Boolean array: the one below that illustrates a packed Boolean array:

6-48 UC,1313N-VI.2(386/UNDC) Q) 1989 TeleSoft 1SMAY89

d I I 9 * -.---

PROGRAMMLNG GUIDE

-Unpacked Boolean array:

Unpacked Bool Arr Type is array (Natural range 0..1) of Boolean
U_BArr: Unpacked-Boo _Arr.Type := (True,False);

MSB LSB
7 0

0 1 Element 0

0 0 Element 1

Packed Boolean array: -

PackedBool Arr Type is array (Natural range 0. .6) of Boolean;
pragma fack-(PackedBool ArrType) ;
P B Arr: PackedBool Arr Type := (P B Arr(O) => True,
-P-B_Arr(S) => True, otEhers => Falie);

MSBIHOB LSB/LOB

15 7 0101010101010101I0 0 01010101010111
PBArr

b. With Records. You may pack records by use of pragma Pack. Packed records follow

these conventions:

1. The total size of the record is a multiple of 8.

2. Packed records may cross word boundaries.

3. Records are packed to the bit level if the elements are themselves packed.

Below is an example of packing in a procedure, Rep.Proc, that defines three records of differenc
engths. Objects of these three packed record types are components of the packed record Rec.

The storage allocated for Rec is 16 bits: that is. it is maximally packed.

15MAY89 UG313N-VI.2(3$6/UNI)) 1989 TeleSoft 6-49

° , -, . •-

TeleGen2 User Guide for UNIX

procedure RepProc is

type Al is array (Natural range 0 .. 8) of Boolean;
pragma Pack (Al),

type A2 is array (Natural range 0 .. 3) of Boolean;
pragma Pack (A2);

type A3 is array (Natural range 0 .. 2) of Boolean;
pragma Pack (A3)

type A-Rec is
record

One Al;
Two A2;
Three : A3;

end record;
pragma Pack (ARec);

Rec :.Rec;

begin
Rec.One (0 => True, 1 => False, 2 => False,

3 => False, 4 => True, 5 => False,
6 => False, 7 => False, 8 => True);

Rec.Two (3) True;
Rec.Three (1) := True;

end Rep.._Proc;

8.6.7.2. Length Clauses [LRM 13.21. Length clauses of the form "for T'Storage,.Size use

<expression>;" (where T is a task type) specify the size to be allocated for that task's stack at

run time. The use of this clause is encouraged in all tasking applications to control the size of the

applications. Otherwise, the compiler may default this value to a large size. TeleGen2 allows

you to specify storage for a task activation using the 'Storage-Size attribute in a length clause.

8.6.7.3. Enumeration Representation Clauses [LRM 13.3]. Enumeration representation
clauses are supported, except for Boolean types.

Performance note: Be aware that use of such clauses will introduce considerable overhead

into many operations that involve the associated type. Such operations include indexing an array

by an element of the type, or computing the 'Pos, "Pred, or 'Succ attributes for values of the

type.

8.6.7.4. Record Representation Clauses [LRM 13.41. Since record components are

subject to rearrangement by the compiler, you must use representation clauses to guarantee a

particular layout. Such clauses are subject to the following constraints:

" Each component of the record must be specified with a component clause.

" The alignment of the record is restricted to mods 1 and 2, byte and word aligned.

" Bits are ordered right to left within a byte.

" Components may cross word boundaries.

Here is a simple example showing how the layout of a record can be specified by using

representation clauses:

60 UG-1313N-VI.2(3$6/UNIX) Q 1989 TeleSoft 15MAY89

n d I I-.2 I II I - , , . .

PROGRAMCMLNG GUIDE

package Repspec.Example is
Bits : constant := 1;
Word : constant 4;.

type Five is range 0 .. 16#1F#;
type Seventeen is range 0 .. 16#1FFFF#;
type Nine is range 0 .. 511;

type Recor_Layout-_Type is record
Elementl : Seventeen;
Element2 : Five;
Element3 : Boolean;
Element4 : Nine;

end record;

for Record-Layout_Type use record at mod 2;
Elementl at O-Word range 0 .. 16;
Element2 at O-Word range 17 .. 21;
Element3 at 0-Word range 22 ,. 22;
Element4 at 0*Word range 23 ,. 31;

end record;

Record-Layout : RecordLayout-.Type;
end RepspecExample;

8.6.7.5. Address Clauses [LRM 13.51. The Ada compiler supports address clauses for
objects, subprograms, and entries. Address clauses for packages and task units are not
supported.

Address clauses for objects may be used to access hardware memory registers or other
known memory locations. The use of address clauses is affected by the fact that the
System.Address type is private. For the 30386 target. literal addresses are represented as
integers, so an unchecked conversion must be applied to these literals before they can be passed
as parameters of type System.Address. For example. in the examples in this chapter the
following declaration is often assumed:

function Addr is new Unchecked-Conversion (Long-Integer,System.Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturally, user programs may implement a different convention. Below is a sample program that
uses address clauses and this convention. Package System must be explicitly untked when using
address clauses.

with System;
with Unchecked-Conversion;
procedure Hardware..-Access is

function Addr is new Unchecked-Conversion (Longjntege-, System.Address);
Hardware..Register : integer;
for Hardware.Register use at Addr (16#FFOOOO#);

begin

end "Hardware.Access;

15MAYO9 UtG-1313N-VI.2(3$6/UN1X)) 1989 TeleSoft 8-51

TeleGen2 User Guide for UNIX

When using an address clause for an object with an initial value, the address clause should
immediately follow the object declaration:

bj: Some-Type := <init._expr>;
for Obj use at <addr.expr>;

This sequence allows the compiler to perform an optimization wherein iL generates code to
evaluate the <addr.expr> as part of the elaboration of the declaration of the object. The
expression <init-expr> will then be evaluated and assigned directly to the object, which is stored
at <addr.expr>. If another declaration had intervened between the object declaration and the
address clause, the compiler would have had to create a temporary object to hold the
initialization value before copying it into the object when the address clause is elaborated. If the
object were a large composite type, the need to use a temporary could result in considerable
overhead in both time and space. To optimize your applications, therefore, you are encouraged
to place address clauses immediately after the relevant object declaration.

As mentioned above, arrays containing components that can be allocated in a signed or
unsigned byte (8 bits) are packed, one component per byte. Furthermore, such components are
referenced in generated code by 80386 byte instructions. The following example indicates how
these facts allow access to hardware byte registers:

with System;
with Unchecked-Conversion;
procedure Main is
function Addr is new Unchecked-Conversion (Long-Integer, System.Address);
type Byte is range .128.. 127;
UW.Regs : array (0..1) of Byte;
for HWRegs use at Addr (16#FFF310#);

Status..Byte : constant integer := 0;
Next..Block__Request: constant integer := 1;
Request-Byte : Byte := 119;
Status : Byte;

begin
Status : = HLRegs(Status_-Byte);
EWRegs (NextBlockRequest) : = Request.Byte;

end Main;

Two byte hardware registers are referenced in the example above. The status byte is at location
16v#FFF310# and the next block request byte is at location 16#FFF311#.

Function Addr takes a long integer as its argument. Long..nteger'Last is 16#7FFFFFFF4,
but there are certainly addresses greater than Lon g._nteger'Last. Those addresses with the high
bit set. such as FFFAOOOO, cannot be represented as a positive long integer. Thus, for addresses
with the high bit set, the address should be computed as the negation of the 2's complement of
the desired address. According to this method, the correct representation of the sample address
above would be Addr(- 16#00060000#).

8.6.7.6. Change of Representation [LRM 13.61. TeleGen2 supports changes of
representation, except for types with record representation clauses.

8-2 UG-1313N-V1.2(386/UNIX)) 1989 TeleSoft 15MAY89

PROGRAMMING GUIDE

8.6.7.7. The Package System [L.RM 13.71. The specification of TeleGen2's implementation
of package System is presented in the LRM Appendix F section at the end of this chapter.

8.6.7.8. Representation Attributes [LR.M- 13.7.2]. The compiler does not support
'Address for packages.

8.6.7.9. Representation Attributes of Real Types [LPIM 13.7.31. The representation
attributes for the predefined floating point types were presented in Table 8-8.

8.6.7.10. Machine Code Insertions [LRM 13.8]. Machine code insertions, an optional
feature of the Ada language, are fully supported in TeleGen2. Refer to the "Using Machine Code
nserions" section earlier in this chapter for information regarding their implementation and

examples on their use.

8.6.7.11. Interface to Other Languages [LRM 13.91. In pragma Interface is supported for
Assembly, C, and UNIX. Refer to Section 8.4 for information on the use of pragma Interface.
"eleGen2 does not currently allow pragma Interface for library units.

8.6.7.12. Unchecked Programming [LRM 13.10). Restrictions on unchecked
programming as it applies to TeleGen2 are listed in the following p3ragraphs.

(LR. M 13.10.21 Unchecked conversions are allowed between types (or subtypes) Ti and T2 as
long as they are not unconstrained record or array types.

8.6.8. LRM Appendix F for TeleGen2. The Ada language definition allows for certain
target dependencies. These dependencies must be described in the reference manual for each
implementation. in an "Appendix F" that addresses each point listed in LRM Appendix F.
Table S-I constitutes Appendix F for this implementation. Points that require further
clarification are addressed in the paragraphs that follow the table.

15MAY69 UG-1313N-VI.2(386/UNIX) Q) 1989 TeieSoft 8-53

TeleGen2 User Guide for UND(

Table 8-11. LRM Appendix F for TeleGen2

(1) Implementation-Dependent Pragmas (a) Implementation-defined pragmas: Comment,
Linkname, Images, and No.Suppress (Sec'ion
8.6.8.1).

(b) Predefined pragmas with implementation-

dependent characteristics:

- Interface (assembly, UNIX, and C).
(Section 8.4). Not supported for
library units.

* List and Page (in context of source'error
compiler listings) (Section 3.7.1.3).

(2) Implementation-Dependent Attri- TeleGen2 uses one implementation-defined attri-
butes bute. 'Offset, which, along with the attribute 'Ad-

dress, facilitates machine code insertions by allowing
user programs to access Ada objects with little date
movement or setup. These two attributes and their
usage were described in "'Using Machine Code Inser-
tions. earlier in this chapter.
'Address is not supported for packages.

(3) Package System See Section 8.6.7.7.
(4) Restrictions on Representation Summarized in Table 8-10.

Clauses

(5) Implementation-Generated Names None

(6) Address Clause Expression Incerpre- An expression that appears in an object address
ration clause is interpreted as the address of the first

storage unit of the object.

(7) Restrictions on Unchecked Conver- Summarized in Table 8-10.
sions

.......- Continued on the next page-

84.4 UG.1313N-VI.2(386/UNIX) Q 1989 TeleSoft 15MAY89

.. * .. .A; :- , . ; " _ - . . : . , --. , : -- - S _ .. % ,. . - 4. *.: -.... t. . . _. e * . - .

PROGRAMMING GUIDE

Table 8-11. LRM Appendix F for TeleGen2 (Contd)

---- Continued from Mea previous page-

(8) [mplementation-Dependent Charac- I. In Text__O, the type Count is defined as follows:

teristics of the 1/O Packages. type Count is range 0..Syscem.A.ax _Text-IOCounE;

- or 0..Max_Jnt-1 OR 0..2-.147-483-646

2. In TextO, the type Field is defined as follows:

subtype Field is integer range

System.Ma.xText O..Field;

3. In TextIO, the Form parameter of procedures

Create and Open is not supported. (If you sup-
ply a Form parameter with either procedure, it

is ignored.)

4. Sequential.IO and Direct-_O cannot be instan-
tiated for unconstrained array types or discrim-
inated types without defaults.

5. The standard library contains preinstantiated
versions of Text-1O.Integer JO for types Integer

and Long-Integer and of TextJO.Float-IO for
types Float and Long__F'loat. We suggest that
you use the foilowing to eliminate multiple in-

stantiations of these packages:

IntegerText -10
Long-_nteerTex TO
FloatText1O
Long-Float -Text_-O

8.6.8.1. Implementation-Defined Pragmas. There are four implementation-defined

pragmas in TeleGen2: pragmas Comment. Linkname. Images, and No.Suppress.

8.6.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the

oject code. Its syntax is:

pragma Comment (<stringiteral>);

where "'<stringliteral>" represents the characters to be embedded in the object code. P-agma

Comment is allowed only within a declarative part or immediately within a package specification.

Any number of comments may be entered into the object code by use of pragma Comment.

8.6.8.1.2. Pragma Liknam e. Pragma Linkname is used to provide interface to any routine

whose name can be specified by an Ada string literal. This allows access to routines whose

identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a subprogram name that has been

previously specified in a pragma Interface statement. The second is a string literal specifying the

15MAY69 UG-1313N-VI.2(386/UNDC) Q 1969 TeleSoft 6-$5

TeleGen2 User Guide for UNIX

exact link name to be employed by the code generator in emitting calls to the associated
subprogram. The syntax is:

pragma Interface (assembly, <subprogram.name>);

pragma Linkname (<subprogran..name>. <stringliteral>);

If pragma Linkname does not immediately follow the pragma Interface for the associated
program. a warning will be issued saying that the pragma has no effect.

A simple example of the use of pragma Linkname is:

procedure Dumy.ccess(DummyArg : System.Address);

pragma Interface (assembly, Dummy..Access);

pragma Linkname (Dummyccess, '-access');

8.8.8.1.3. Pragma Images. Pragrna Images controls the creation and allocation of the image
nd index tables for a specified enumeration type. The image table is a literal string consisting of

enumeration literals catenated together. The index table 's an array of integers specifying the

location of each literal within the image table. The length of the index table is therefore the sum
of the lengths of the literals of the enumeration type: the length of the index table is one greater

than the number of literals.

The syntax of this pragma is:

pragma Images(<enumeraciontype>. Deferred);
-or .-

pragma Images (<en unera tion -type>. Imrnediate);

The default, Deferred. saves space in the literal pool by not creating image and index tables for

an enumeration type unless the 'Image. 'Value, or 'Width attribute for the type is used. If one of
these attributes is used. the tables are generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in more than one compilation unit. more

than one set of tables is generated. eliminating the benefits of deferring the table. In this case,
sing

pragma mages(<enumeration type>. Immediate);

will cause a single image table to be generated in the literal pool of the unit declaring the

numeration type.

For a very large enumeration type. the ;eng.h of the image table will exceed Integer'LasL

(the maximum length of a string). In this case. -isi.g either

pragma Images(<enumerationtype>. Immediate);

or the 'Image, 'Value. or 'Width attribute for the type will result in an error message from the
compiler.

8.6.8.1.4. Pragmna No Suppress. No-Suppress is a TeleGen2-defined pragma that prevents

the suppression of checks within a particular scope. It can be used to override pragma Suppress

in an enclosing scope. No-Suppress is particulariy useful when yot, have a section of code that

relies upon predefined checks to execute correctly. but you need to suppress checks in the rest of

-56 TUG-1313N-V1.2(386/UNlX) T 1989 TeleSoft 15MAY89

-C' k.

PROGRAMMLNG GUIDE

the compilation unit for performance reasons.

Pragma No-Suppress has the same syntax as pragma Suppress and may occur in the same
places in the source. The syntax is:

pragma No-Suppress (<identifier> [, [ON =>J <name>]);

where <identifier> is the type of check you want to suppress (e.g., access-check: refer to
LRMi 11.7)

<name> is the name of the object, type/subtype, task unit, generic unit, or subprogram
within which the check is to be suppressed; <name> is optional.

If neither Suppress nor No-Suppress are present in a program, no checks will be suppressed.
You may override this default at the command level, by compiling the file with the -i(nhibit
option and specifying with that option the type of checks you want to suppress. For more
information on -i(nhibit. refer to Chapter 3.

[f either Suppress or No.Suppress are present, the compiler uses the pragma chat applies to
the speciflc check in order to determine whether that check is to be made. If both Suppress and
No.Suppress are present in the same scope, the pragma declared last takes precedence. The
presence of pragma Suppress or No-Suppress in the source takes precedence over an -i(nhibit
option provided during compilation.

8.6.8.2. Package System. The current specification of package System is provided below.

15MAY89 UG-1313N-VI.2(386/UNIX) Q 1969 TeleSoft 8-57

TeieGen2 User Guide for UN.X

PACKAGE System IS

TYPE Address is Access Integer;

TYPE Subprogram Value is PRIVATE;

TYPE Name IS (TELEGEN2);

System-Name : CONSTANT name := TELEGEN2;

Storage Unit : CONSTANT := 8;
MemorySize : CONSTANT :- (2 ** 31) - 1;

-- System-Dependent Named Numbers:

Min Int : CONSTANT := -(2 ** 31);
Max- nt : CONSTANT := (2 ** 31) - 1;
Max-Digits : CONSTANT := 15;
Max Mantissa : CONSTANT :- 31;
Fini Delta : CONSTANT := 1.0 I (2 ** Max-Mantissa);
Tick : CONSTANT :- 10.OE-3;

-- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 63;

PRIVATE

END System;

8.6.8.3. Representation Clause Restrictions. Restrictions on representation clauses within
TeleGen2 were discussed in "LR.Mv Chapter 13," earlier in this section.

8.6.8.4. Implementation- Generated Names. There are no implementation-generated
names to denote implementation-dependent components.

8.6.8,5. Address Clause Expression Incrprecation. An expression that appears in an
object address clause is interpreted as the address of the first storage unit of the object.

8.8.8.8. Unchecked Conversion Restrictions. Restrictions on unchecked conversions were
discussed in "Unchecked Programming," earlier in this section.

8.88 UG-1313N-VI.2(386/UNVC) (D 1989 TeleSoft ISMAY89

PROGRAMMING GUIDE

8.6.8.7. Implementation-Dependent Characteristics of the I/O Packages.

1. In Text.IO, the type Count is defined as follows:

type Count is range O..Long-anteger'Last - 1

2. In TextJO, the type Field is defined as follows:

subtype Field is integer range O..Text-Wnager.Field'Last:

3. Sequential-1O and DirectUO cannot be instantiaced for unconstrained array types or

discriminated types without defaults.

4. The standard library contains preinscantiated versions of TextJO.IntegerIO for type

Integer and Long.Jnteger and of Text-.O.Float-_O for type Float and Long-Float. It
is suggested that the following be used to eliminate multiple instanciacions of these

packages:

Inte-er-Text-JO
Long-_ntegerTexcJO
FloatText1O
Long Floac-Text_-O

1SMAY89 UG-1313N-V1.2(386/UNIX) Q 1989 TeleSoft 8-9

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the :axi.tm length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIG_ID1 199 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to SBIG_ID2 except
for the last character.

SBIGID2 199 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to SBIGIDI except
for the last character.

SBIG_ID3 100 * 'A' & '3' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to SBIGID4 except
for a character near the middle.

TEST PARAMETES

Name and Meaning Value

SBIGID4 100 * 'A' & '4' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to SBIGID3 except
for a character near the middle.

SBIG_INT LIT 197 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of thp
maximum line length.

SBIGREALIIT 195 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
mamimus line length.

SBIG_STRINGI '"' & 10 * 'A' &1

A string literal which when
catenated with BIG_STRIiG2
yields the image of BIG_IDI.

SBIG_STRING2 '"' & 99 * 'A' & '' &"
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGID1.

SBLANKS 180 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2_147_483_646
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.

SDEFAULT..!EM_SIZE 2147483647
An integer literal uhose ":7ie
is SYSTEM.MEMORYSIZE.

$DEFAULT_STOR_UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

TEST PARAMETERS

rTane and :eaning Value

SDEFAULTSYS-NAME TELEGEN2
The value of the constant
SYSTEM.SYSTEMNAME.

SDELTADOC 2#I.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELDLAST 1000
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHTYPE
The name of a predefined
fixed-point type other than
DURATIONS.

SFLOAT_NAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG-FLOAT.

$GREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEI BADCHAR * /%
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILENAME2 /NONAME/DIRECTORY
An external file name which
is too long.

TEST ?ARA 'ETERS

Name and '!eaning Value

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

SINTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUSI 3273
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESSTHANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any 7alue
in the range of DURATION.

$LESSTHAN DURATION BASE FIRST -131073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSADOC 31
An integer literal whose value
is SYSTEM.MAX)MANTISSA.

SMAX DIGITS 15
Maximum digits supported for
floating-point types.

SMAXINLEN 200
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal

whose value is SYSTEM.MAXINT.

$NAX_INTPLUSI 2_147_483_648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

TEST PARAMETERS

Name and Meaning Valui

$MAX LEN INT BASED LITERAL "2:" & 195 * '0' & "11:"

A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be 11AXINLEN
long.

SMAXLEN _REAL BASEDLITERAL "1" 3 '0 & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL '"' & 198 * 'A' &
A string literal of size
MAXIN _LEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASK_- SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
""TU!L;" as the only statement in
its body.

SNAME NOSUCHTYPE.AVAILABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NAMELIST TELEGEN2
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASED_INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

TEST PARAMETERS

Name and Ifeaning Value

SNEW_!EMSIZE 2147483647
An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, other than
SDEFAULT MEM_SIZE. If there is
no other value, then use
SDEFAULTEIEMSIZE.

$TEW_STORUNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE-UNIT, other than
$DEFAULTSTOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

S!E'JASYS A!E TELEGEN2
A value of the type SYSTEM.NAME,
other than SDEFAULTSYS NAME. If
there is only one value of that
type, then use that value.

STASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at
the time of validation testing for the reasons indicated. A reference of
the form AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OFTHE GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

71THDRAWN TESTS

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

h. CD2ASIG, CD2A33G, CD2A341 & M, & CD50110 [5 tests] These tests
assume that dependent tasks will terminate vhile the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 36 & 96, and 58, resp.).

i. CD2BI5C & CD7205C These tests expect that a 'STORAGE-SIZE
length clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2DlIB This test jives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D (5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

o. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

VITHDRAVN TESTS

p. CE21071 This test requires that objects of t'.,o similar scalar
types be distinguished .hen read from a file--DATAERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

r. CE3301A This test contains several calls to END OF LINE &
END OF PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARDINPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column nunber be
set to COUNT'LAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

"0'-fPILER .UD LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

This appendix contains an explanation of the compiler
and linker options available for this -ompiler.
References and page numbers in this appendix are
consistent with compiler documentation and not with
this report.

• .\(' (I} t .ER COMM,. \ \1% I? ll

NAIM
acr - Sun Ada Create-Sublibrary utility

SYNOPSIS
acr -f -V vsm sizer -im max size, subiib,.sub ...

DESCRIPTION
The act command creates an empty Ada sublibrary for each sublibrary named on the command
line. It builds hotih the sublibrarv file and the corresponding object directory. The sublibrary fl1-
is a database that holds intermediate code and other data generated by a compilation. It has the
file extension ".sub"; this extension is optional when using act. The object directory holds the
object code generated by the compilation or binding process, and has the file extension ".obj".

Once the subiibrary is created and initialized with the act command. it can then be used as a
working element of the Ada program library database to receive and store output from Ada
compilations. See the Sun Ada User Guide 'or a full description of sublibraries and how they are
used in Ada compilations and in Sun Ada library management utilities.

OPTIONS
-" Force creation of the sublibrary even if one of the name specified already exists. Use of

this option causes the old sublibrary to be overwritten.

-m max ctZe
Set the maximum size of the the sublibrary database file to max size pages. The pages
are allocated in -Kbyte (1024-byte) blocks. Max size must be an integer value between
1.000 and 32,000. This value should not be arbitrarily large, as the library coDains a
fixed-size page table whose size is proportional to the value parameter. The value is less
than 1000 units because of the internal sublibrary catalog size. The default size is 8192
Kbytes (about 5 MB). which alto.'s the sublibrary to hold as many units such that their
size adds up to 8 MB subject to the 1000 units catalog limit.

-V rn sitze
Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm size for the command is 1500 Kbytes.

The optimal value for vsm size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Sun Ada Ueer Gsac.

SEE ALSO
acp(1). ada(l), als(i), amv(1), arm(i)

Sun Ada 1.2 Last change: IS February 198

AUA i) SER (J.MMAN[), \l) \ I

NA.a
ada - Sun Ada Compiler

SYNOPSIS
ada (-I libname -t templibi J.V vsm sizei ;-C ni '-E ni

1-nm unit (-b, -T n, -P options, -p objects. -o filei!
[-O key!-G -1 file! !-LFSdeksvxi input spec

DESCRIPTION
The ado command calls the Sun Ada compiler, which comprises the front end, middle pass, code
generation, and list generation phases. By default the front end, middle pass, and code generation
phases are executed. This process results in the generation of object modules. which are put into
the object directory of the working sublibrary. Optionally, the Ada binder and native linker may
be be invoked to create an executable file.

The command terminator, input .spec, indicates the file or files to be compiled. Any number and
combination of files may be specified. up to the maximum line length. Files listed on the
command line that have no extension are given the extension ".ada" by the compiler. Source iles
that have the ".ad&" extension are assumed to contain Ada text to be compiled, whereas source
files that have the ".ilf" extension are assumed to contain a list of files to be compiled.

The temporary errors file is created in /tmp as errorXXXXXX, with the "XXXXXX" being
replaced with the compilation process number to prevent file name collision.

Compilation errors as well as compiler driver errors (e.g. "file not round") are output to stder.
Informational output will also be directed to atderr. Banner messages as provided by the .v option
are examples of informational output.

OPTIONS
Library Specification Option.:

-1 libname
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted,
and the .t option is not used, the default fibS:t.alb is assumed to be the library. -l cannot
be used with -t.

-t ternplib
Use templib as a temporary sublibrary list for this process. The -1 option must not be
used when the -t option is given. The default sublibrary list file is not read. The first
sublibrary in the list is the working sublibrLry. Tefnplib may be specified as
"sublibl,sublib2..." or as "sublibi sublib2 ... ". -t cannot be used with -1.

-V warn size
Set the size of the Virtual Space Managers buffer space to vsm size Kbytes. The default
vsm size for the command is 2000 Kbytes.

The optimal value for vsm .size depends on the amount of system memory a, alabie and
the number of concurrent users. For a full description see the Sun .4da User Guide.

Compiler Ezecution Control Options:

-E n Abort compilation after n errors. Only errors detected by the front end phase are counted.
The default is 999. Each error me,sage type is counted independently of the others. For
example, in the default situation. the user may have 998 warning messages and 998 syntax

errors and the compilation will not abort.

-M unit
Treat "unit" as a main program. After all files named in the input specification have been

Sun Ada 1.2 Last change: IS February L988

AI)A(I) VSEI (OM,1,ANI)S \D \i I

compiled, the Ada binder-and naLive linker are invoked. An executable file named urin is
left in the current directory. If the main unit has already been compiled. it does not have
to be in the input file(s). However, it must be pre-tent in the current working sublibrary.
If the -m option is used, appropriate binderlinker options (-m. -b, -T. -P. -p) are passed
to the binder/linker (see ald(l)).

-v Be verbose. Announce each phase as it is entered.

Output Control Options:

-e Only report errors: do not produce any objects. This option causes only the front end to
be executed. The front end detects all syntax errors and most semantic errors in the Ada
source code. Some errors, however, can be detected only by the middle pass and code
generator- such errors will not be detected when the -e option is specified. Examples of
such errors are the those involving the legality of specific representation specifications and
violation nf code generator capacity limitations. This option is meaningless when used
with -k. -d. -0. and -x, since each of the latter options requires the production of code
generated after front end processing.

-k Keep the intermediate code (High Form and Low Form) for unit bodies in the library. By
default, the intermediate code for bodies is deleted from the library ater code generation
to minimize library size. The intermediate code is used by the Ada Cross-Referencer (see
azr(1)) and the Source-Level Debugger (see adbg(l) and the -d option of the ada
command) and operated on by the Global Optimizer (see aopt(l) and the -0 option of the
ad, command). The -k option must therefore be used if any of these three programs are to
be used for any unit in the current source file. (An exception is that -k need not be used
when the -d option is used, since use of -d automatically sets -k.)

-d Provide for debugging. This option causes the code generator to save information needed
by the Ada debugger, adbV, in the Ada program library. This information is used for
mapping between source and object code locations, and for locating data objects. The -d
option also causes some additional information to be output in object modules. However,
there is no impact on generated code per se. Use of -d &utomatically sets the -k option.

-0 key Optimize code for each unit being compiled. The optimizer optimizes each unit separately
as it is being compiled and does not make cross-unit optimizations. The argument to the
-0 option, key, must be present and must immediately follow the option. This argument
provides details about how the units are to be compiled. For example. one of the key
arguments indicates whether subprograms being optimized may be called from parallel
tasks. See aopt(l) for information about acceptable key values.

Two other options may be used in conjunction wi'ta -0:

-G Generate a call graph for the unit (sl being optimized. Refer to aopt(I/ for more
information. Note: in the Sun Ada Ueer Guide, a discussion on the use of the -G
option with ada is deferred to the Global Optimiser chapter.

-I file Inline the subprograms listed in "file". Refer to aopt(l) for more information.
Note: in the Sun Ada User Guide, a discussion on the use of the -1 option with
ad. is deferred to the Global Optimizer chapter.

-x Generate profiler information and put it in the object module. Profiler information
includes execution timing and subprogram call information. If code is compiled with the
-x option. that option must also be used with the aid command when the program is
bound and linked (see ald(I)).

- Use software floating-point instead of the default MC68881 hardware floating-point

Sun Ada 1.2 Last change: 13 February 1988 2

' AVA(L SEH (I(Il lS.' \l)\l I)

support.

L.sting Control Options:

-L Output a source listing interspersed with error information to sourcefile.l. where
"sourcefile" is the name of the user-supplied source file without the Ad& extension. If an
input-list file is to be piocessed, a listing file is generated for each source file in the input

lis.. Each resulting listing file has rhe the same name as the source file, except it has an
".1" extension appended to it. For example, when this option is used with an input list
that contains 10 source file names, 10 listing files are generated as a result of the

compilation. If the -F option is used, the listing will not be interspersed. Instead, errors
will follow all the source lines.

-F Do not intersperse errors in source listing; put them after all source lines. This option is
used only with the -L option.

-C n Provide n source lines as context with error messages. The default is 1, which is the

erroneous line itself. Context lines are placed before and after the error line in the error
message.

-S Send a source/asembly listing to unit.s. where "unit" is the name of the unit in the user-
supplied source file. It an input-list file is specified, a listing file is generated for each

source file in the input-list file. For example, when this option is used with an input-list
file that contains 10 source file names, 10 listing files are generated as a result of the

compilation.

SZE ALSO
A a1p(l), Lp(l), acr(1), asddl), as(l), aj *(a), aopt(l), are(l), arel(), a 3(l),

asd(1), a='(1)

Sun Ad& 1.2 Last change- 15 February 1988

ALL)()tER (1)MM N) \1.1)(I i

NA.MZ

aid - Sun Ada binder/linker

SYNOPSIS
aid 1-1 libname -t templibi .V vsm size :-T n; -P optionsi :-p objectsi

!*o namel .Ibsvx. mainunit

DESCRIPTION
The aid command calls the Ada binder and linker. This command outputs the executable program
to file mainunit. The binder and linker are executed by default. The user may exclude the linker

from the run.

A library may be specified by using the default library file. liblst.alb. specifying a library file with
the -1 option, or specifying a temporary library list on the command line, by using the -t option.

Option pass-through to the native linker is provided.

The binder puts an elaboration code file, mainunit.obm, in the working sublibrary directory.

If the native linker is not invoked, a link script file. mainunit.lnk. is put in the current directory.
This script file may may also be modified by the user so that other object code or special linker
options are used.

OPTIONS
Library Specification Options:

-1 libnzmC
Use libname as the file containing the sublibrary list. The sublibrawr list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted,
and the -t option is not used, the default liblit.alb is assumed to be the library. -1 may not
be used with -t.

-t templib
Use templib as a temporary sublibrary list for this process. The -I option must not be

used when the -t option is given. The default sublibrary list file is not read. The first
subiibrary in the list is the working sublibrary. Templib may be specified as
"sublibl.sublib2..." or as "sublibi sublib2 -t rr y not be used with -1.

-V Usm size

Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm size for the command is 2000 Kbytes.

The optimal value for vim size depends on the amount of system memory available and

the number of concurrent users. For a full description see the Sun Ada Ueer Guide.

Other Options:

-b Run binder phase only. Elaboration code and a link script are produced. The link script
is put in the file mainunit.lnk.

-a Use software floating-point support. By default, MC68881 hardware-floating point
support is used.

-o name

Use "name" instead of "mainunit" as the name of the executable file.

-P options
Pus options to the native linker. options must be a quoted string. This option is provided

as an escape to allow use of all native linker options without producing and editing a link
script. An example is: aid -P '-t r' . Refer to the Sun Ada User Guide for more

Sun Ada 1.2 Last change: 17 February 1988

S.ALD(i) 1slIH ('),1NI) I

information.

-p objects
Pass objecta to the native linker. objecta must be a quoted string; it may include archive
files. This option is typically used with pragma Interface and the -1 native linker option.
objects may be specified as "objectl object2 An example is: aid -p 'cosine.o
/usr,'ib'ibrn.a'. Refer to the Sun Ada (l'er Guide for more information.

Note: the -p and -P options are used to provide compatibility with the System V Interface
Definition while dealing with the non-System V compatible Id command (-ix).

-T n Trace back depth of exception report. When a run-time exception occurs. the name of the
unit and the line number of where the exception occurred are displayed with a call chain

history. The number n, which is 15 by default, defines the levels of call chain history.

-v Be verbose. Announce each phase as it is entered.

-x Link in the execution profiler's run-time support routines. During program execution.
these run-time support routines record the profiling data in memory, then write the data
to files as the program terminates. Units to be profiled must be compiled with the -x
option of the ada command.

BUGS AND KNOWN LMh0TATIONS
The body of the main program must reside in the current working sublibrary.

SE ALSO
ada(l)

Sun Ada 1.2 Last change: 17 February 1968

