
U NCL A SS FLE D
S1. C C ASS: f.::,A': to rIS PA, (Do-Da 'e, , [..

REPORT DOCUMENTATION PAGE
" .-.

Ln I A PO" kw& q J. GOO7 ACCESSION. No 3 AECIPI~hl'S CATA.OC kiwiw

Lfl
4. TIT.LE , ., ,r 5 TYPE Of A i oR ! A PERt:: C0,ERE2

Ada Compiler Validation Surjr.ary Report:Rational, 12 July' 19S9 -o 12 July 1990
MC68020 Familv Cross Development Facility, Version 5, R 0O0 6. Pt AOR UiftcO" . AEOP' b,, R
Series 200 Moel 20 (Host) to Motorola 68020 in MVME 135

Sboard (Target), 89072w.1O1 ________________

7 . Ajj1MORjS) 8. CO8478ACI OR 6RAN .. Ew<Wrig ,t Pi tter so AF3

Dayton, OH, USA

9. PjR K wh ORIAN;ZA7'1 AND ADDRSS 1. PR:c oA" P;E2fw
" .

TA.L

Wright-Patterson AFB
AREA & WOR U :T

Dayton, OH, USA

11. C "N'RO LlC, OFfiCE kkw AN: ADDRESS I.Z. REPrR, DATE

Ada Joint Program Office
United States Department of Defense !. N=KL W FA.L5
Washington, DC 20 301-3081

14. MC:TORhk, ACih'Y kA0i & ADDRES(If aferent from Conrolnrg Ofrce) 15. SEC. IT CASS. (o' ', reProt
N,,,C LA SSTFIE D

Wright-Patterson AFB
i5. C ASSI I D ,

Dayton, OH, USA N/A

16. DISIAIB. 1O ,0 S A A M " tofo!.R,s epof)

A;proved for p.blic release; distribution unlimited.

17. DS R8A1 i. % (c ~i e'eo'B ca 2C If a '.eV !fto Ac; "

DTIC
AM. f- I" A fh-0-q.-

DEC04TM It8D

SB L
Ada Prograr~ming language, Ada Compiler Validation Su..-ary Rep::t, Ada
Co7piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/M.'L-STD-
iBiSA, Ada Joint Program Office, AJPO

2C, AES1,AA.1 (Co,,t,nut on ,e~e,jei,d, ,(met eiso,e -6 b, btOocA number)

Rational, MC68020 Fimily Cross Development Facility, Version 5, Wright-Patterson AFB,
RiO00 Series 200 Model L0 under Rational Environment, Version D 11 0 8 (Host) to
Motorola 680 in MV-ME 135 board (bare machine)(Target), ACVC 1. 10.

DO ,u,', 1473 tolio, or tic, 65 Is oesoL(lt
I JA 73S UNCLASSIFIED

/ m ICum mm CLASSIFICATON Of MIS IA I m

Ada Compiler Validation Summary Report:

Compiler Name: MC68020 Family Cross Development Facility, Version 5

Certificate Number: 890712W1.10112

Host: R1000 Series 200 Model 20 under
Rational Environment, Version D 11 0 8

Target: Motorola 68020 in MVME 135 board
(bare machine)

Testing Completed 12 July 1989 Using ACVC 1.10

This report has been reviewed and 4s apprcved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

A a Va idation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-292.0789
89-04-13-RAT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890712W1.10112
Rational

MC68020 Family Cross Development Facility, Version 5
R1O00 Series 200 Model 20 Host and Motorola 68020 in MVME 135 board Target

Completion of On-SiL, Testing:
12 July 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

MEMNO

tABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
2.2 SUM 'Y -F TEST RESL. 1Y CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation3-6
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

-.
Ac essi

For

~N'llS GPAUk
D ri,- TA13
Uunn W.C~d Cl

g t~lut on__

-Av~lbility Codes

lAvill and/or
Dist Spoot&I

II

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

* To determins that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Toint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 12 July 1989 at Sinta Clara CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public divclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation app'y only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Progiamizing Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Comp iler Validation Procedures and Guidelines, Ada Joint
Program Office, January 19

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Ccmmentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO pro-ides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
Lest compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity lo the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not t:eated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODU, ION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units reterenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by whicn execuaulut :stz rcpcrt PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. Theqe tests oroduce messages that
are examined to verify that the units are operating correctly. It these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appeitdix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable foL a

subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: MC68020 Family Cross Development Facility, Version 5

ACVC Version: 1.10

Certificate Number: 890712W1.10112

Host Computer:

Machine: R1O00 Series 200 Model 20

Operating System: Rational Environment

Version D 11 0 8

Memory Size: 32 Megabytes

Target Computer:

Machine: Motorola 68020 in MVME 135 board

Operating System: bare machine

Memory Size: 1 Megabyte

2-1

CONFIGURATION INFORMATION

Communications Network: RS232 serial line

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 level,. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
SHORT INTEGER, LONG FLOAT, and SHORT SHORT INTEGER in package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which

constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903f.)

(4) Sometimes NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparisoa or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is not gradual. (kSe tcsts C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not

defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the fcllowing:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AOl4A.)

e. Array types.

An implementation is allowed to -aise NUMERIC ERROR or
CONSTRAINT ERROR f an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT componenis raises NUMERICERROR. (See
test C36003A.)

(2) NUMERIC ERROR is raised when a null array type with
INTEGER7LAST + 2 components is declared. (See test C36202A.)

(3) NUMERIC ERROR is raised when a null array type with
SYSTEM.RAX INT + 2 components is declared. (See test
C36202B.)

2-3

CONFIGURATION INFORMATION

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression': subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whet Ler the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

h. Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3O1IA.)

j. Input and output

(1) The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101H, EE240D, and EE2401G.)

(3) Sequential, Direct, and Text files are not supported by this
implementation.

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 583 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation and 238 executable tests that use file operations not
supported by the implementation . Modifications to the code, processing,
or grading for 78 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1132 1754 15 16 46 3090

Inapplicable 2 6 561 2 12 0 583

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 543 245 171 99 162 331 137 36 252 265 74 3090

Inappl 14 72 137 3 1 0 4 1 0 0 0 104 247 583

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2D11B CD5007B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered

each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent

attempt. For this validation attempt, 583 tests were inapplicable for the

reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..Y C45321L..Y
C45421L..Y C45521L..Z C45524L..Z C45621L..Z

3-2

TEST INFORMATION

C45641L..Y C46012L..Z

b. C35702A and B86001T are not applicatle because this implementation
supports no predefined type SHORTFLOAT.

c. The following 16 tests are not applicable because this
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

d. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

e. C4AOl3B is not applicable because the evaluation of an expression
involving 'MACHINE RADIX applied to the most precise
floating-point type would raise an exception; since the expression
must be static, it is rejected at compile time.

f. D4AOO4B is not applicable because this implementation does not
support a static universal expression with a value that lies
outside of the range SYSTEM.MININT ... SYSTEM.MAXINT.

g. D64005G is not applicable because this implementation does not
support nesting 17 levels of recursive procedure calls.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORT-FLOAT.

j. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

k. CDlO09C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation does not support
size clauses for floating point types unless the size given is the
same as would have been chosen by the compiler.

1. CD2A61I and CD2A61J are not applicable because this implementation
does not support size clauses for array types, which imply
compression, with component types of composite or floating point
types. This implementation requires an explicit size clause on
the component type.

m. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for
access types unless the size given is 32.

3-3

TEST INFORMATION

n. CD2B15B is not applicable because this implementation allocates
more memory to collection size than is asked for by the test.

o. The following 76 tests are not applicable because, for this
implementation, address clauses may be used only in static scopes:

CD5003B..I (8) CD5011A..I (9) CD5OIlK..N (4)
CD50lQ..S (3) CD5O12A..J (10) CD5OI2L..M (2)
CD5O13A..I (9) CD5013K..O (5) CD5O13R..S (2)
CD5O14A..O (15) CD5O14R..Z (9)

p. AE2101C, EE22O1D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

q. AE21OIH, EE240ID, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

r. The following 238 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102A..C(3) CE2102G. .H(2) CE2102K
CE2102N..Y(12) CE2103C. .D(2) CE2104A..D(4)
CE2105A..B(2) CE2106A. .B(2) CE2107A..H(8)
CE2107L CE2108A. .B(2) CE2108C..H(6)
CE2109A .C(3) CE211OA. .D(4) CE2111A..I(9)
CE2115A .B(2) CE220IA. .C(3) CE2201F..N(9)
CE2204A .D(4) CE2205A CE2208B
CE2401A .C(3) CE240IE..F(2) CE240IH..L(5)
CE2404A .B(2) CE2405B CE2406A
CE2407A. .B(2) CE2408A..B(2) CE2409A..B(2)
CE2410A .B(2) CE2411A CE3102A..B(2)
EE3102C CE3102F..H(3) CE3102J..K(2)
CE3103A CE3IO4A..C(3) CE31O7B
CE3108A..B(2) CE3109A CE3110A
CE3111A..B(2) CE3111D..E(2) CE3112A..D(4)
CE3114A..B(2) CE3115A EE3203A
CE3208A EE3301B CE3302A
CE3305A CE3402A EE3402B
CE3402C..D(2) CE3403A..C(3) CE3403E..F(2)
CE3404B..D(3) CE3405A FE3405B
CE3405C..D(2) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..E(3)
EE3409F CE3410A CE3410C..E(3)
EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A
CE3413C CE3602A..D(4) CE3603A
CE3604A..B(2) CE3605A..E(5) CE3606A..B(2)
CE3704A..F(6) CE3704M..0(3) CE3706D
CE3706F..G(2) CE3804A..P(16) CE3805A..B(2)

3-4

TEST INFORMATION

CE3806A..B(2) CE3806D..E(2) CE3806G..H(2)
CE3905A..C(3) CE3905L CE3906A..C(3)
CE3906E..F(2)

s. CE2103A, CE2103B, and CE3107A are not applicable because this
implementation does not support external file CREATE and OPEN
operations. These tests terminate with an unhandled exception.
(See Section 3.6.)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 78 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B22003B B22004A B22004B B22004C B23004A
B23004B B24001A B24001B B24001C B24005A B24005B
B24007A B24009A B24204B B24204C B24204D B25002B
B26001A B26002A B26005A B28003A B28003C B29001A
B2AO03B B2AO03C B2AO03D B2AO07A B32103A B33201B
B33202B B33203B B33301B B35101A B36002A B36201A
B37205A B37307B B38003A B38003B B38009A B38009B
B41201A B41202A B44001A B44004B B44004C B45205A
B48002A B48002D B51001A B51003A B51003B B53003A
B55AO1A B64001B B64006A B67001H B74003A B910O1H
B95001C B95003A B95004A B95079A BB3005A BC1303F
BC2001D BC2001E BC3003A BC3003B BC3005B BC3013A
BD5008A

C45651A required evaluation modification because the test contains an if
statement with a range that excludes some allowable values and FAILED may
be called. The AVO has ruled that the failure message "ABS 928.0 NOT IN
CORRECT RANGE" may be ignored and the test graded as passed.

D4AO04B was rejected at compile time because it contains a static universal
expression with a value that lies outside of the range
SYSTEM.MIN INT ... SYSTEM.MAXINT. The AVO has ruled this test as not
applicable-to this implementation.

3-5

TEST INFORMATION

CE2103A, CE2103B, and CE3107A required evaluation modification because
these tests do not allow the implementation to raise USE ERROR for external
file CREATE and OPEN operations when these operations are not supported by
the implementation. Execution of these tests terminates with an unhandled
exception. The AVO has ruled these tests as not applicable to this
implementation.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the MC68020 Family Cross Development Facility was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the MC68020 Family Cross Development Facility using ACVC Version
1.10 was conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the

r -- grations of hardware and software components:

Host computer: R1O00 Series 200 Model 20
Host operating system: Rational Znvironment, Version D 11 0 8
Target computer: Motorola 68020 in MVME 135 boara
Target operating system: bare machine
Compiler: MC68020 Family Cross Development

Facility, Version 5

The host and target computers were linked via RS232 serial line.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the R1O00 Series 200 Model 20, then all executable
images were transferred to the Motorola 68020 in MVME 135 board via RS232
serial line and run. Results were printed from the host computer.

3-6

TEST INFORMATION

The compiler was tested using command scripts provided by Rational and
reviewed by the validation team. The compiler was tested using all default
option settin except for the following:

OPTION EFFECT

CreateSubprogramSpecs := False Missing subprogram specs are not
automatically created when a
subprogram body is added to the
program library.

Tests were compiled, linked, and executed (as appropriate) using a single
host and a single target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Santa Clara CA and was completed on 12 July 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

Rational has submitted the following Declaration of
Conformance concerning the MC68020 Family Cross
Development Facility.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor Rational
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH .45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.1

Base Configuration

Base Compiler Name: M68020 Family Cross Development Facility Version: 5
Host Architecture: R1000 Series 200, Model 20
Oper ting System: Rational Environment Version D-11-0-8

Target Architecture: Motorola 68020 in MVME 135 board
Operating System: Bare Machine

Implementor's Declaration

i the undenigned, =presenting Rational. have implemented no deliberate extensions to t.he
Ada Language Standard ANSLIIL-STD- 18 15A in the compiler listed in this declaration.
I declare that Rational is the owner of record of the Ada language corn'ilers listed above
and, as such, is responsible for maintaining said compiler in confor-ance to .kNSI1/.I.STD-
1815A. All certificates and registrations for Ada language compilers(s) listed in "his
deciaration shal be made only in the owners corporate name.

/ 1 Date: _ ___

Ration.i"
David H. Bernstein
Vice President. Product Deveiopment

Owners Declaration

I, the undersigned, representing Rational, take full responsibility for implementation and
maintenance of the Ada compiler(s) Listed abov, and agr:e to the public disclosure of
the final Validation Summary Report I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada Language
S tandard ANSI/MIL-STD- 1815A

Date:
Rauonal
David H. Bernstein
Vice President, Product Development

A- 2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the MC68020 Family Cross Development Facility,
Version 5, as described in this Appendix, are provided by Rational. Unless
specifically noted otherwise, references in this Appendix are to compiler
documentation and not to this report. Implementation-specific portions of
the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER i3 range -32768 .. 32767;
type SHORT-SHORTINTEGER is range -128 .. 127;

type FLOAT is digits 6 range
-16#1.FFFFFE# * 2.0 ** 127 .. 16#1.FFFFFE# - 2.0 ** 127;

type LONG FLOAT is digits 15 range
-16#1.FFFFFFFFFFFFF# * 2.0 ** 1023 . 16#1.FFFFFFFFFFFFF# * 2.0 ** 1023;

type DURATION is delta 16#1.0# * 2.0 ** (-14) range
-16#1.0# * 2.0 ** 17 .. 16#1.FFFFFFFC# * 2.0 ** 16;

end STANDARD;

B-I

Appendix F to the LRM for the Mc68020_Bare Target

The Reference Manual for the Ada Programming Language (LRIM) specifies that certain features of
the language are implementation-dependent. It requires that these implementation dependen-
cies be defined in an appendix called Appendix F. This is Appendix F for the Mc68020Bare
target, compiler Version 5. It contains materials on the following topics listed for inclusion by
the LRM on page F-I:

" Implementation-dependent pragmas

" Implementation-dependent attributes

* Package System

" Representation clauses

* Implementation-dependent components

" Interpretation of expressions that appear in address clauses

" Unchecked conversion

• Implementation-dependent characteristics of I/O Packages

These topics appear in section and subsection titles of this appendix. The appendix contains
other topics mentioned in the LRM as being implementation dependent. For these, a reference
to the LRM is given in the section or subsection title.

IMPLEMENTATION-DEPENDENT PRAGMAS

The M68020 Family cross-compiler supports pragmas for application sottware development :n
addition to those listed in Annex B of the LRM. They are described below, alone with
additional clarifications and restrictions for pragmas defined in Anne\ B of the LRM.

Pragma Main

A parameterless library-unit procedure without subunits can be designated as a main program
by including a pragma Main at the end of the unit specification or body This pra caues
the linker to run and create an executable program when the body ot this -ubprogram :, coded
Before a unit having a pragma Main can be coded, all units in the :c'th closure ot the 11nt m1>t
be coded.

The pragma Main has three arguments:

RATIONAL

M68020 Family CDF Appendix F

" Target. A string specifying the target key. If this argument appears and it does not match
the current target key, the pragma Main is ignored If the Target paramet-r matches the
current target key or does not appear, pragma Main is honored. A single source copy of a
main program may be used for different targets by putting in multiple Main pragmas with
different target parameters and different stack-sizes and/or different heap-sizes.

" Stack_Size: A static intege- expression specifying the size in bytes of the main task stack. If
not specified, the default value is 4K bvtes.

* Heap Size: A static integer expression specifying the size in 'cytes of the heap. If not
specified, the default value is 64K byte;.

The complete syntax for this pragma is:

pragmamain : := PRAGMA MAIN
[(main_option { , main_option })]

mainoption ::= TARGET => simplename I

STACKSIZE => staticinteger expression I
HEAPSIZE => staticinteger expression

The pragma Main must appear immediatelv after the declaration or body of a parameterless
library-unit procedure without subunits.

Pragma Nickname

The pragma Nickname can be used tu give a unique string name to a procedure or function in
addition to its normal Ada name. This unique name can be used to distinguish among over-
loaded procedures or functions in the importing and exporting pragmas defined in subsequent
sections.

The pragma Nickname must appear immediately following the declaration for which it is to
provide a nickname. It has a single argument, the nickname, which must be a string constant

For example:

function Cat (L: Integer; R: String) return String;
pragma Nickname ("Int-Str-Cat");

function Cat (L: String; R: Integer) return String;
pragma Nickname ("Str-Int-Cat")

pragma Interface (Assembly, Cat):

pragma Import-Function (Internal => Cat,
Nickname => "Int-Str-Cat",

External => "CAT$INTSTR_CONCAT",
Mechanism => (Value, Reference))

pragma ImportFunction (Internal => Cat,
Nickname => "Str-Int-Cat",

External => "CAT$STR_INT CONCAT",

-3 RATIONAL

Appendix IV: Appendix F for the McoSO20_Bare Target

Mechanism => (Reference, Value));

Pragmas Import-Procedure and Import-Function

A subprogram written in another language (typically, assembly language) can be called from an
Ada program if it is declared with a pragma Interface. The rules fc- placement of pragma
Interface are given in Section 13.9 of the LRM. Every interfaced subprogram must have an
importing pragma recognized by the M68020 Family cross-compiler, either Import-Procedure
or Import-Function. These pragmas are used to declare the external name of the subprogram
and the parameter-passing mechanism for the subprogram call. If an interfaced subprogram
does not have an importing pragma, or if the importing pragma is inco.rect, pragma interface is
ignored.

Importing pragmas can be applied only to nongeneric procedures and functions.

The pragmas ImportProcedure and Import-Function are used for importing subprograms.
ImportProcedure is used to call a non-Ada procedure; ImportFunction, a non-Ada function.

Each import pragma must be preceded by a pragma Interface; otherwise, the placement rules
for these pragmas are identical to those of the pragma Interface.

The importing pragmas have the form:

inporting_pragma = PRAGMA importingtype
C INTERNAL => I internal name

[EXTERNAL =>] external-name I
[, [PARAMETER TYPES => I

parametertypes]
C RESULTTYPE =>] type mark I I
NICKNAME => string-literal I
MECHANISM =>] mechanisms I

importing-type ::= IMPORTPROCEDURE I IMPORT_FUNCTION I
IMPORTVALUED_PROCEDURE

internal-name : = identifier I
stringliteral -- An operator designator

externalname ::= identifier I string literal

parametertypes N:= (ULL) I (typemark { , type mark I

mechanisms : . = mechanism r.ame I
(mechanism name { , mechanism-name)

mechanism-name : := VALUE I REFERENCE

The internal name is the Ada name of the subprogram being interfaced. If more than one
subprogram is in the declarative region preceding the importing pragma, the correct
subprogram must be identified by either using the argument types (and result type, if a
function) or specifying the nickname.

RATIONAL B-4

M68020 Family CDF Appendix F

If it is used to identify a subprogram with an overloaded internal name, the value of the
Parameter Types argument consists of -a list of type or subtype names, not names of
parameters. Each one corresponds positionally to a formal parameter in the subprogram's
declaration. If the subprogram has no parameters, the list consists of the single word null. For a
function, the value of the Result-Type argument is the name of the type returned by the
function.

The external designator, specified with the External parameter, is a character string that is an
identifier suitable for the MC68020 assembler. If the external designator is not specified, the
internal name is used.

The Mechanism argument is required if the subprogram has any parameters. The argument
specifies, in a parenthesized list, the passing mechanism for each parameter to be passed. There
must be a mechanism specified for each parameter listed in parameter types and thev must
correspond positionally. The types of mechanism are as follows.

" Value: Specifies that the parameter is passed on the stack by immediate value.

" Reference: Specifies that the parameter is passed on the stack by address. Used for
structures having many values.

For functions, it is not possible to specify the passing mechanism of the function result; the
standard Ada mechanism for the given type of the function result must be used by the
interfaced subprogram. If there are parameters, and they all use the same passing mechanism,
then an alternate form for the Mechanism argument can be used: instead of a parenthesized list
with an element for each parameter, the single mechanism name (not parenthesized) can be
used instead.

Examples:

procedure Locate (Source: in String;
Target: in String;
Index: out Natural);

pragma Interface (Assembler, Locate);
pragma ImportProcedure

(Internal => Locate,
External => "STR$LOCATE" ,

ParameterTypes => (String, String, Natural),
Mechanism => (Reference, Reference, Value));

function Pwr (I: Integer; N: Integer) return Float;
function Pwr (F: Float; N: Integer) return Float;

pragma Interface (Assembler, Pwr);

pragma Import-Function
(Internal => Pwr,
ParameterTypes => (Integer, Integer),
ResultType => Float,

RATIONAL

Appendix IV: Appendix F for the Mc68020_Bare Target

Mechanism => Value,
External => "MATH$PWR OFINTEGER");

pragma ImportFunction
(Internal => Pwr,
ParameterTypes => (Float, Integer),
Result-Type => Float,
Mechanism => Value,
External => "MATH$PWROFFLOAT");

Pragmas Export-Procedure and Export-Function

A subprogram written in Ada can be made accessible to code written in another language by
using an exporting pragma defined by the M68020 Family cross-compiler. The effect of such a
pragma is to give the subprogram a defined symbolic name that the linker can use when
resolving references between object modules.

Exporting pragmas can be applied only to nongeneric procedures and functions.

An exporting pragma can be given only for subprograms that are library units or that are
declared in the specification of a library package. An exporting pragma can be placed after a
subprogram body only if the subprogram does not have a separate specification. Thus, an
exporting pragma cannot be applied to the body of a library subprogram that has a separate
specification.

These pragmas have similar arguments to the importing pragmas, except that it is not possible
to specify the parameter-passing mechanism. The standard Ada parameter-passing
mechanisms are chosen. For descriptions of the pragma's arguments (Internal, External,
Parameter Types, Result-Type, and Nickname), see the preceding section on the importing
pragmas.

The full syntax of the pragmas for exporting subprograms is:

exportingpragma PRAGMA exporting type

(INTERNAL =>] internal name
EXTERNAL =>] external-name I

[f , [PARAMETERTYPES =>] parameter-types
RESULTTYPE =>) typemark)]

NICKNAME => string-literal I)
exportingtype EXPORTPROCEDURE I EXPORTFUNCTION
internal-name : identifier I

string_literal -- An operator designator
externalname := identifier I string literal
parameter types : (NULL) I (type_mark { , typemark

Examples:

procedure MatrixMultiply
(A, B: in Matrix; C: out Matrix);

pragma ExportProcedure (MatrixMultiply);
-- External name is the string "Matrix-Multiply"

RATIONAL B-6

M68020 Family CDF Appendix F

function Sin (R: Radians) return Float;
pragma ExportFunction

(Internal => Sin,
External => "SINRADIANS");

-- External name is the string "SIN-RADIANS"

Pragma ExportElaborationProcedure

The pragma ExportElaborationProcedure makes the elaboration procedure for a given
compilation unit available to external code by defining a global symbolic name. This procedure
is otherwise unnamable by the user. Its use is confined to the exceptional circumstances where
an Ada module is not elaborated because it is not in the closure of the main program or if the
main program is not an Ada program. This pragma is not recommended for use in application
programs unless the user has a thorough understanding of elaboration, runtime and storage
model considerations.

The pragma ExportElaborationProcedure must appear immediately following the
compilation unit.

The complete syntax for this pragma is:

pragma_exportelaborationyprocedure
PRAGMA EXPORTELABORATIONPROCEDURE (EXTERNALNAME => external name);

external name::= identifier I stringliteral

Pragmas Import-Object and Export-Object

Objects can be imported or exported from an Ada unit with the pragmas Import Object and
Export-Object. The pragma Import-Object causes an Ada name to reference storage declared
and allocated in some external (non-Ada) object module. The pragma Export-Object provides
an object declared within an Ada unit with an external symbolic name that the linker can use to
allow another program to access the object. It is the responsibility of the programmer to ensure
that the internal structure of the object and the assumptions made by the importing code and
data structures correspond. The cross-compiler cannot check for such correspondence.

The object to be imported or exported must be a vanable declared at the outermost level of a
library package specification or body.

The size of the object must be static. Thus, the type of the object must be one of:

" A scalar type (or subtype)

" An array subtype with static index constraints whose component size is static

" A simple record type or subtype

Objects of a private or limited private type can be imported or exported only into the package
that declares the type.

Imported oojects cannot have an initial value and thus cannot be:

B-7 RATIONAL

Appendix IV: Appendix F for the Mc68020_Bare Target

* A constant

* An access type

* A task type

• A record type with discriminants, with components having default initial expressions, or
with components that are access types or task types

In addition, the object must not be in a generic unit. The external name specified must be
suitable as an identifier in the assembler.

The full syntax for the pragmas Import-Object and Export-Object is:

objectpragma : := PRAGMA object pragmatype
t INTERNAL =>] identifier
, C EXTERNAL => I string_literal I

object pragma_ type 1= IMORTOBJECT I EXPORTOBJECT

Pragma Suppress-All

This pragma is equivalent to the following sequence of pragmas:

pragma Suppress (AccessCheck);
pragma Suppress (Discriminant Check);
pragma Suppress (DivisionCheck);
pragma Suppress (Elaboration-Check);
pragma Suppress (IndexCheck);
pragma Suppress (LengthCheck);
pragma Suppress (OverflowCheck);
pragma Suppress (RangeCheck);
pragma Suppress (Storage-Check);

Note that, like pragma Suppress, pragma SuppressAll does not prevent the raising of certain
exceptions. For example, numeric overflow or dividing by zero is detected by the hardware,
which results in the predefined exception NumericError. Refer to Chapter 5, "Runtime
Organization," for more information.

Pragma Suppress-All must appear immediately within a declarative part.

Pragma InterruptHandler and Address Clauses for Interrupt Handling

Three different mechanisms are available to support interrupt handling: address clauses on task
entries; subprograms identified with pragma Interrupt-Handler; and interrupt-handling queues
that employ both subprograms and task entries.

Simple interrupt handling can be accomplished with address clauses attached to task entries, as
described in the LRM (Section 13.5.1). Note that the task entry must always be available.

As one alternative, interrupt-handling subprograms can be called on some nonspecific,
target-dependent thread. The subprograms run at interrupt level and with some restrictions.

RATIONAL B-8

M68020 Family CDF Appendix F

These handlers may make use of the RuntimeInterface package to control various aspects of
certain tasks. Each interrupt-handling procedure must have a single formal parameter of type
Standard.Integer. The actual value of this parameter and interpretation of it during execution of
the handler is target-dependent.

A pragma associates an interrupt-handling subprogram with a corresponding interrupt vector.
More than one pragma can be applied to a single subprogram if the handler is to be associated
with more than a single interrupt source. The syntax for the pragma is as follows:

procedure HandlerProcedure (TargetDependentParameter : Integer);

pragma InterruptHandler (Handler => HandlerProcedure,
Vector => [address-expression]);

The vector parameter is interpreted by the runtime system. The cross-compiler requires that the
subprogram be declared at the outermost scope. The subprogram will be called directly and no
elaboration check will be performed, even if elaboration checks are enabled. The pragma may
follow either the specification or the body of the subprogram.

The third alternative for interrupt h-- ing is the use of queued interrupts, a combination of the
first two approaches. With queued rupts, a subprogram is called for some functions that
must happen at the time of the int. _pt; it must also clear the interrupt request. After the
subprogram returns to the runtime system, an entry call is enqueued to an associated task entry
so that the entry will be accepted as soon as the task attempts to accept it. Both the subprogram
and the entry must have a single formal parameter of type Standard.Integer, whose
interpretation during execution of the subprogram or rendezvous is target-dependent.

A pragma associates the interrupt-handling subprogram with the task entry and the interrupt
vector. More than one pragma may be associated with a given subprogram and/or task entry if
that subprogram and/or task entry are to serve as handlers for more than one interrupt vector.
The syntax for the pragma is:

type Driver is

entry Handler (TargetDependent Parameter : integer);

end Driver;

T : Driver;

procedure Interrupt-Handler (TargetDependentParameter : Integer);

pragma InterruptHandler (Handler => InterruptHandler,
Vector => [address-expression],
TaskEntry => T.Handler):

There is no address clause on the entry in the task specification.

The compiler ensures that the associated handler and the named task object T are declared at
the outermost scope. The subprogram will be called directly and no elaboration check will be
performed, even if elaboration checks are enabled. The task object must be activated prior to

B-9 RATIONAL

Appendix IV: Appendix F for the Mc68020_Bare Target

receiving the first interrupt. No check is performed at runtime for this prefix condition.

In the event that a task entry calls an interrupt entry using normal entry-calling mechanisms,
that entry call will not be accepted by the called task until the called task accepts the given entry
and no interrupts are pending. This happens even when the normal entry call happens prior to
the interrupt. In other words, although normal entry calls are serviced with a FIFO queue, all
pending interrupt entry calls are processed before any normal entry calls.

The associated procedure is called by the runtime system at interrupt level on an interrupt
stack. The context at the time of the call is the context at the time of the interrupt, not the
context of the associated task. The interrupt-handling procedure is responsible for clearing the
interrupt and performing any device-specific actions required. The interrupt-handling
procedure must conform to a set of restrictions that have not been fully defined but include not
using any tasking features of the language and not raising exceptions. The predefined package
Calendar can be used and dynamic memory allocation/deallocation is allowed. No checks are
performed to ensure that restrictions are not violated, and such violations may have
unpredictable results.

When the interrupt-handling procedure returns, the runtime system enqueues an entry call to
the associated task entry in such a way that it will be accepted as soon as the task is prepared to
accept it. The interrupts are fully buffered and the task will accept one entry call for each
interrupt without respect to the rate at which interrupts are received. For example, if 10
interrupts are received before the task accepts the first, then the 'Count of the associated entrv
will be 10, and 10 accept statements for that entry will be required to reduce the 'Count to 0.
The priority of the task during the rendezvous will be proportional to the priority of the
interrupt and higher than Standard.System.PriorityLast.

The elaboration of pragma Interrupt-Handler has the effect of associating either a task entry or
a subprogram with an interrupt vector. This may result in the propagation of the exception
Standard.ProgramError if the vector already has an associated handler.

IMPLEMENTATION-DEPENDENT ATTRIBUTES

There are no implementation-dependent attributes.

PACKAGE STANDARD (LRM Annex C)

Package Standard defines all the predefined identifiers in the language.

package Standard is

type *Universal_Integer* is ...
type *Universal Real* is ...
type *UniversalFixed* is ...
type Boolean is (False, True);

RATIONAL B-10

M68020 Family CDF Appendix F

type Integer is range -2147483648 .. 2147483647;
type Short_ShortInteger is range -128 .. 127;
type Short_Integer is range -32768 .. 32767;

type Float is digits 6 range -16#1.FFFF FE# * 2.0 ** 127
16#1.FFFF FE# * 2.0 ** 127;

type Long Float is digits 15 range -16#1.FFFF FFFFFFFF_F# * 2.0 ** 1023
.. 16#1.FFFFFFFFFFFFF# * 2.0 ** 1023;

type Duration is delta 16#1.0# * 2.0 ** (-14)
range -16#1.0# * 2.0 ** 17

16#1.FFFFFFFC# * 2.0 ** 16;

subtype Natural is Integer range 0 .. 2147483647;
subtype Positive is Integer range 1 .. 2147483647;

type Character is ...

type String is array (Positive range <>) of Character;
pragma Pack (String);

package Ascii is ...

ConstraintError : exception;
NumericError exception;
StorageError exception;
TaskingError exception;
Program Error exception;

end Stand._a' •

The following table shows the default integer and floating-point types-

Supported Integer and Floating-Point Types

Ada Type Name Size

ShortShort Integer 8 bits

Short-Integer 16 bits

Integer 32 bits

Float 32 bits

Long-Float 64 bits

Fixed-point types are implemented using the smallest discrete type possible; it may be 8, Io, or
32 bits. Standard.Duration is 32 bits.

BRATIONAL

Appendix IV: Appendix F for the Mc68020_Bare Target

PACKAGE SYSTEM (LRM 13.7)

package System is

type Address is private;

type Name is (Mc68020_Bare);

System Name : constant Name := Mc68020_Bare;

Storage Unit : constant : 8;
MemorySize : constant := +(2 ** 31) - 1;

Min Int constant : -(2 ** 31);
Max Int constant +(2 ** 31) - 1;

Max Digits : constant := 15;
Max Mantissa : constant := 31;
Fine Delta : constant := 1.0 / (2.0 ** 31);
Tick : constant := 1.0 / 125_000.0;

subtype Priority is Inueger range 0 .. 255;

function To Address (Value : Integer) return Address;
function To-Integer (Value Address) return Integer;

function "+" (Left Address; Right : Integer) return Address;
function "+" (Left Integer; Right : Address) return Address;
function ... (Left Address; Right Address) return Integer;
function ... (Left Address; Right : Integer) return Address;

function "<" (Left, Right Address) return Boolean;
function "<=" (Left, Right : Address) return Boolean;
function ">" (Left, Right : Address) return Boolean;
function ">=" (Left, Right Address) return Boolean;

-- The functions above are unsigned in nature. Neither Numeric Error
-- nor ConstraintError will ever be propagated by these functions.

-- Note that this implies:

-- ToAddress (Integer'First) > ToAddress (Integer'Last)

-- and that:

-- ToAddress (0) < ToAddress (-I)

RATIONAL B- 12

M68020 Family CDF Appendix F

-- Also, the unsigned range of Address includes values which are
-- larger than those implied by Memory-Size.

A a-s Zer : c:onstant Address:

private

end System;

REPRESENTATION CLAUSES AND CHANGES OF REPRESENTATON

The N4C68020 CDF support for representation clauses is described in this section with reference
to the relevant section of the LR.M. Usage of a clause that is unsupported as specified in this
section or usage contrary to LRM specification will cause a semantic error unless specifically
noted.

Length Clauses (LRM 13.2)

Length clauses are supported for the M68020 Family CDF as follows:

" The value in a 'Size clause must be a positive static integer expression. 'Size clauses are
supported for all scalar and composite types, including derived types, with the following
restrictions:

- For all types the value of the size attribute must be greater than equal to the minimum size
necessary to store the largest possible value of the type.

- For discrete types, the value of the size attribute must be less than or equal to 32.

- For fi,ed types, the value of the ;ize attribute must be less than or equal to 32.

- For float types, the size clause can only specify the size the type would have if there were
no clause.

- For access and task types, the value of the size attribute must be 32.

- For composite types, a size specification must not imply compression of composite
components. Such compression must have been explicitly requested using a length clause
or pragma Pack on the component type.

" 'StorageSize clauses are supported for access and task types. The value given in a
Storage-Size clause may be any integer expression, and it is not required to be static.

" 'Small clauses are supported for fixed point types. The value given in a 'Small clause must
be a non-zero static real number.

B-13 RATIONAL

Appendix 1V; Appendix F tor the NIco,Wt0 Bare Tarlt

Enumeration Representation Clauses (LIVI 13.3)

Enumeration representation clauses are supported with the following restrictions.

* The values given in the clause must be in ascending order.

" Every enumeration literal must have a unique integer value assigned to it.

" The allowable values for an enumeration clause range from (Integer'First - 1) to Integer'Last.

" Negative numbers are allowed.

Record Representation Clauses (LRM 13.4)

Both full and partial representation clauses are supported for both discriminated and
undiscriminated records. The static simple_e-xpression in the alignment clause part of a
record representation clause (see LRM 13.4 (4)) must be a power of two with the following
limits: I <= static_simple_expression <= 16.

The size specified for a discrete field in a component clause must not exceed 32.

Implementation-Dependent Components

The LRIM allows for the generation of names denoting implementation-dependent components
in records. For the M68020 Family CDF, there are no such names visible to the user.

Address Clauses (LRM 13.5)

Address clauses can be applied to objects. The address must be determinable at compile time,
but it need not be Ada static (as defined in the LRNM, Section 4.9). The 'Address attribute does
not produce a ccmpile-tirne static value. Addresses must be specified using constants and
operators from package System. Objects to which address clauses apply must not appear
within anyh subprograms or task body.

Address clauses for interrupts: Address clauses may be attached to a task entry. The task entry
must be available at the time of the interrupt for this kind of interrupt handling.

Change of Representation (LRM 13.6)

Change of representation is supported wherever it is implied by support for representation
specifications. In particular, type conversions between array types or record types may cause
packing or unpacking to occur; conversions between related enumeration types with different
representations may result in table lookup operations.

OTHER IMPLEMENTATION-DEPENDENT FEATURES

RATIONAL B-14

%168020 Famzlv CDF Appendix F

Machine Code (LRVl 13.8)

Machine-code insertions are not supported at this time.

Unchecked Storage Deallocation (LRI 13.10.1)

Unchecked storage deallocation is implemented by the generic function
Unchecked Deallocation defined by the LR'M. This procedure can be instantiated with an
object type and its access type resulting in a procdure that deallocates the object's storage.
Objects of any type may be deallocated.

The storage reserved for the entire collection is reclaimed when the program exits the scope in
which the access type is declared. Placing an access type declaration within a block can be a
useful implementation strategy v, hen conservation of memory is necessary. Space on the free
list is coalesced when objects are deallocated.

Erroneous use of dangling references may be detected in certain cases. When detected, the
exception Storage-Error is raised. Deallocation of objects that were not created through
allocation (ie through UncheckedConversion) may also be detected in certain cases and raises
Storage-Error.

Unchecked Type Conversion (LRVI 13.10.2)

Unchecked conversion is implemented by the generic function UncheckedConversion defined
by the LRM. This function can be instantiated with Source and Target types resulting in a
function that converts source data values into target data values.

Unchecked conversion moves storage units from the source object to the target object
sequentially, starting with the lowest address. Transfer continues until the source object is
exhausted or the target object runs out of room. If the target is larger than the source then the
remaining bits are undefined. Depending on the target computer architecture, the result of
conversions may be right or left aligned.

Restrictions on Unchecked Type Conversion

* The target type of an unchecked conversion cannot be an unconstrained array type or an
unconstrained discriminated type without default dis-criminants.

" Internal consistency among components of the target type is not guaranteed. Discriminant
components may contain illegal values or be inconsistent with the use of those discriminants
elsewhere in the type representation.

CHARACTERISTICS OF I/O PACKAGES

External files are not supported for Direct-[o, Secuentiallo, or Text lo. Direct lo and
Sequential-lo may not be instantiated with unconstraii,ed array types or unconstrained record
types not having default discriminants.

1 RATIONAL

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG IDI (l..253 => 'A', 254 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIG ID2 (1..253 => 'A', 254 => '2')
An identifier the size of the
maximum input line length which
is identical to $BIG IDI except
for the last character.

SBIG ID3 (l..126 => 'A', 127 => '3', 128..254 => 'A')
An identifier the size of the
maximum input line length which
is identical to $BIG ID4 except
for a character near the middle.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (l..126 => 'A', 127 => '4', 128..254 => 'A')
An identifier the size of the
maximum input line length which
is identical to $BIG ID3 except
for a character near the middle.

$BIG INT LIT (i..251 => '0', 252..254 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..249 => '0', 250..254 => "690.0")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 => '"', 2..128 => 'A', 129 => '"')
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDi.

$BIG STRING2 (1 => '"' 2.-127 => 'A', 128 => '1',
A string literal which when 129 => '"')

catenated to the end of
BIG STRING1 yields the image of
BIG-ID1.

$BLANKS (1..234 => '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 1000000000
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 2147483647
An integer literal whose value
is SYSTEM.MEMORYSIZE.

SDEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME MC68020_BARE
The - value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 0.0000000004656612873077392578125
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 2147483647
A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXED NAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NO SUCH FLOAT NAME
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 1.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER THAN DURATION BASE LAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 255
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAMEl \NODIRECTORY\FILENAME
An external file name which

contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
An external- file name which
is too long.

$INTEGER FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

SINTEGER LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -1.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -131073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 254
Maximum input line length
permitted by the implementation.

SMAX INT 2147483647
universal integer literal

whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+l.

$MAX LEN INT BASED LITERAL (1..2 => "2:", 3..251 => '0',
Suniversal- integer based 252..254 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN LEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

SMAX LEN REAL BASED LITERAL (1.3 => "16:", 4.-250 => '0',
A universal real based literal 251..254 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL (I => '"', 2..253 => 'A1, 254 => '"')

str-ng literal of size
MAX IN LEN, including the quote
characters.

$MIN INT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

SMIN TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME SHORTSHORTINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONG INTEGER.

$NAME LIST MC68020_BARE
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEW MEM SIZE 2147483647
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no other value, then use
$DEFAULT MEM SIZE.

c-5

TEST PARAMETERS

Name and Meaning Value

$NEW STOR UNIT 8
An inTeger literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEW SYS NAME MC68020 BARE
; value of the type SYSTEM.NAME,
other than SDEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 8.OE-06
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
acray component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 36.-

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

D-1

WITHDRAWN TESTS

tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
a tha. d c-ent *azlkz %:ll term~i-te while the main pro-.am
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2D1lB: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

p. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

D-2

VITHDRAWN TESTS

q. CE311IC: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

i. CE33O1A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,
132, and 136).

s. CE3411B: Lnis tesL L=quires that a exL fie's r'oi :v umber be set to
COUNT'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But te former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

