
UNCLASSIFLED
SEcUP:'' CLASSIf , ,A'ION OF THIS PAGE (W,'reD rT,ered) __

REPORT DOCUMENTATION PAGE Ut-t Co.rs
1. REPORT 0jSBER I. 6OVT ACCESSION NO. 3. RECIPIENT S CATALOG DIU0EER

4. TITLE (&Md $ Sbr0e) 5 TYPE Of REPORT & PERIOD COVERED

M Ada Compiler Validation Summary Report:TeleSoft 01
Ln [Floden2 Ad Cur 386 UNIX V.3, Version 3.23, Nimbus UxN 02 June 1989 to 02 June 1990

(8038n) s,stem (Host & Target), 89060211.10139 a. PERFORMING .'R REPORT NUMBER

7 7. AiJTNORJS) 8. CON RACT OR GRANT NuMEER(s)

Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORANIZATIO AND ADDRESS 10. PROGR&A ELEMENT. PR2ECT. TASK
AREA & WORK UhTT NuOm5[R5

IABG,
Ottobrunn, Federal Republic of Germany.

11. CONTRO.LING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 13 .
Washington, DC 20301-3081

14. NOhITORihG AGEN.Y NAM. I ADDRESS(If different from Controihng Offie) 15. SECLRIYT CLASS (OfthSt epOrI)

IABG, UNCLASSIFIED

Ottobrunn, Federal Republic of Germany. ASa oLSCATO ,D0w'RAZIhG
I_ N/A

16. D1STRIBjTIOh STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRB.Tj0% STA'Em:%' (of the obs-ram erte,ee,n8'ock20 IfaferetfromnRepor)

UNCLASSIFIED

DTC18. S PPE,;'-A,i N:7ES S EE E To4l q; i

DEC 04 1989

19. KEywi 'S (Cont,r,' e on reverse sdf f neceru r) nd identify by block number)

A ,3 Prograr.--ing language, Ada Compiler Validation Surriary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation O'fice, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Confnue On reverse sied n feressary nm'dent,f> by block number)

TuleS,ft, Tele(;en2 Ada for 386 UNIX V.3, Version 3.23, Ottobrunn, West (;ermanv, Nimbus

%, (x0386) s';tem under Interactive UNIX sys V.3.2 (Host & Target), ACVC 1.10.

DD ' 1473 tiol o~ r i ov 6, is oeso..:,t
I JAN 3 sN 0102-LF-014-6B01 UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS PAGE (irhenOetsf ented$@ // ,_,

Ada Compiler Validation S1 mmary Report:

Compiler Name: TeleGen2 Ada for 386 UNIX V.3 Version 3.23

Certificate Number: #39060211.10139

Host: Nimbus VX (204S6) system
under Interactive UNIX sys V.3.2

Target: same as host

Testing Ccmplete. 2 June 1939 Using ACVC 1.1D

This report has been reviewed and is approved.

IABG mbH, Abt. SZT
Dr. S. Heilbrunner
Einsteinstr. 20
D-3012 Ottobrunn
West Germany

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Joint Program Office
Dr John Solomond
Director
Lepartment of Defense
Washington DC 20301

AVF Control Number: AVF-IABG-033

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate u-her: #89060211.10139
7- -soft

TeleGen2 Ada for 386 UNIX V.3 Version 3.23
Nimbus VX (80386) system

Completion of On-Site Testing:
2 June 1989

Prepared By:
IABG mbH, Abt. SZT

Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

TABLE OF CONTIENTS

CHAPTER I INTRODUCTION 1

1.1 P;URPCSE DF THIS ALITION SUMMARY REPORT . . . 2

1.2 USE OF THIS VALIDATION SU'MARY REPORT 2
1.3 REFERENCES 3
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2 CONFIGURATION INFORMATION 7

. CONFIGURATIONJ TESTED. 7
2.2 I.PLEMENTATION CHARACTERISTICS. 8

CHAPTER 3 TEST INFORMATION13

3.1 TEST RESULTS13
3.2 SUMMARY OF TEST RESULTS BY CLASS 13
3.3 SUMMARY OF TEST RESULTS BY CHAPTER14
3.4 WITHDRAWN TESTS14
3.5 INAPPLICABLE TESTS14
3.c TEST, PROCESSING, AND EVALUATION MODIFICATIONS 18
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation 13
3.7.2 Test Method19
3.7.3 Test Site19

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

Accession For

APPENDIX C TEST PARAMETERS Aces i For
NTIS ;?A&l OO
DTI, ".Ij

APPENDIX D WITHDRAWN TESTS U L"i, .,.1ced
J'k) o t Ion

APPENDIX D COMP:LER AND LINKER OPTIONS By
Distr biton

Availabllity Codes
iAval1 and/or

Di spectan

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report 'tVSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Conpiler
Validation Capability (ACVC). An Ada compiler rust be implemented
according to the Ada Staiidard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, iiid nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results prcduced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATIONr SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To dotermine that the implementaticn-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF acwording to
procedures established by the Ada Joint Program nffire and administe:: b7
the Ada Validation Organization (AVO). On-site testing .las completed 2
June 1339 at TeleLOG:C AB, Sueden.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act'
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the kda Standard other zhan those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program ffice
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

INTRODUCTION

Duest'zns r3;Irding this report or the validation test results should be
dlrected to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Screet
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-!815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Coopiler Vaidation Capability Impiementerc' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard AUSI/MIL-STD-1315A, February 1983 and ISO 3652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

INTRODUCTIOr

s'4port for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The cnputer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to 7eet its
test objective, or contains illegal or erroneous use of the
I a.n uage.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to wbich it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.

Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reser'ved words of
another language (other than those already reserved in the Ada language)

INTRODUC T ION

eot r a ed as reser:. rcr-. s b" an Aa -cm pier. 71ass A test .s
7aS d f no errors are detec ' at :omp, a, .d Pth pr rm. executes
-D produce a PASSED message.

:1ass B tests check -hat a compiler detects illegal language usage.
alass B tests are nct executable. Each test in this class is compiled and

r r.sul in a listing is e:::mined to verify that every syntax
semant:: error in the test is detected. A Class B test is passed if
r:reie :onstruct that it contains is detected by the compiler.

-:ass tests -heck the run t_:e system to ensure that legal Ada programs
c;n be crrectly compiled and executed. Each Class C test is self-checkin
and produces a PASSFD, FAILED, or NOT APPL:CABLE message indicating the
resul- when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no caacry requirements placed n a compiler by the Ada

itn f d r some paraet rs--f-r zx :ccle, the number of identifiers
.. .ited -.n ra ccmp lator. or the n....r of units in a library--a compiler
.ay refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FArLED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Tb-re'ire, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASS11 message, or if it is rejected
by the compiler for an alluwable reason.

-ass t .ests check that incomplete or illegal Ada programs involving
oul t1ple, separately compiled units are detected and not allowed to
execute. Class u tests are copiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--zria is, = attempt
to execute the main program must generate an error message before any
decl rations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
-ell-checking features of the executable tests. The package REPORT

provides the mechanism by which executable tests report PASSED, F'ILED, or
NOT APPL:CABLE results. It also provides a set of identity functions used
'o defat soe co.piler optimizations allowed by the Ada Standarl that
would carc'.o'ent a test objective. The procedure CHECK-FILE is used to

INT rOCDUCT On;

c nntents text f.I.es ,r tten by some of the Class o-"sos for
hapte r 14 of the Ada Standard. The -eration of dT n
checked by a set of executable tests. These tests produce messages that
are examined to verify that The units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of, each lest in the ACVC follows conventions that are intended to
ensure that th2 tests are r-easonably portable wathout .. ification. For

mp~.e, the tests make use of only the basic set of 55 characters contain
lines with a maxmu lngth 7 ' cha racers, use smnall nimeric aar
tests. However, some tests cntoon -s-lue hat req'r hebe
customized according to Inplementt--n-specific ":a7ues--for e:amnle in

illegal tiIe nam. A list of the values used for 'his -:ali-tcn -s
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test ,r by shcwingtht ha test os ip: abe '7
the implementation. The appincch t ot f test to en .. . en1taon Os

considered each time the implementat-on is vried. A tes- hat s
inapplicable for one validation is not necessarily inapplicabla for A
subsequent validation. Any test that was determined to contain an illeqal
language construct or an erroneous language constrict is withdrawn from the

and, therefore, is not used in testing a comp er. The tests
wiC an, t t t o s a n grin i n D
withdrawn at the timne of this ialidation are givien in Appendix D.

CHAPTER 2

-3FPURATION T E STD

'he :-andidate compi~ation sytmfor th s vililaticr. 4as -estes :'

fsI1low 1ng on f u r a t ion

Host Computer:

M!ach,_ne: *Ti-bus Vx ~'3~sse

Cpera-::q 3ystert: :lteractie UNIX sys ..

Memcry 3_,.e: 11 MB

Tar;et o" ptn Syste m: s-e as hs'

CNF:URATICI NFORMAT-'T

Dni of the purposes of validating compilers is to et'rne the behavior cf
a compiler in those areas of the Ada Sand ard that per:iit implemerLt ations
to differ. Class D and E tests speck.fiollycheck for such _mpl .e.. -entataon
differences. However, tests in other classes also .characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The ccmp le correctly prccesses a ccpila:
containing 723 var:ables in the same declarative part. (See
test D29002K.'

2) The compiler correct'y crocesses tests ccrTran:n
loop statements nested to 65 levels. (See tests DE5AC3A..H
(3 tests).)

3) The coopzier ':'ot--v pty r~cesses t~sts Tn iit.... ~ ~ ~ ~ on _ ale etD5n'.
block statements nested to 65 le'vels 'See test D56,01B.)

4) T t ompii '- processes tests ccntainirg
recursive procedures separately co-piled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

This ..plementaton supports the additional predefined typ es

STANDARD. ;See tests 336001T..Z (7 tests).)

c. Expression evalulaton.

The order in which expressions are evaluated and the toe at which
constraints are checked are not defined by the language. Wh-e

the AC'IC tests do not spec-ficaily atteopt t: determine the
of evaluation of expressions, test results indcat9 the follow:n;:

1) Sore of he default initialization express.ns
for record components are evaluated before any value i3
checked fo-erberh_:p in a components su type. See -S

2) %sSignmen-s for subtypes are performed -e

precision as the base type. (See test C357i2B.)

3; Th-s implementation uses no extra bits for extra precision a-!

uses no extra bits for extra range. (See test C35903A.(

cOFTOURAT:ON ::FORM!ATIMI

4) CNSTRAINT_ERROR is raised fo ore-defined integer
comparison tests, NUIERIC_ERROR is raised Zor large ! integer
comparison and membership tests and no exception is raised for
pre-defined integer membership tests when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See tost C45232A.)

5) NUMERIC_ERROR is raised when a literal operana in a
fixed-point comparison or membership test is outside te range
of the base type. (See test C45252.)

6) Underflow is gradual. !Se= tests C45524A..2 (26 tests).)

d. Rounding.

The method by which values .re rounded in type conversi-ns is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

!1 The -ithod used for rounding to integer is round to even.
(See tests C46012A..Z f26 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal

real expressions is round away from zero. (See test C4A014A.)

e. Array types.

in implementation is allowed to raise NUI!ERICERROR or
CONSTRAINT_ERROR fn- an array having a 'LENGTH that exceeds
STANDARD.INTEGER'L and/or SYSTEM.MAX_INT. For this
implementation:

1) Declaration of an array type or subtype declaration '.ith Tore
than SYSTEM.MAXINT components raises NUMERC_ERCR for a
two dimensional array subtype where the large dimension is the
second one. (See test C36003A)

2) CONSTRAINT_ERROR is raised when 'LENGTH is applied to in
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

3) NUMERIC_ERROR is raised when an array type with
SYSTEM.YA7_INT + 2 components is leclared. (See test
C36202B.;

4) A packed BOOLEAN array having n LENGTH exceeding ::TEGER'LAST
raiser no exception. (See test C52103X.

CONFIGURATION INFORMATION

A packed! two-dimensional BOOLEAN array; with more than
.NTEGER'LAST components raises CONSTRAINTERROR 4hen the

length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression
is not evaluated in its entirety before CONSTRAINT _RROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

3) A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERICERROR or
CONSTRAINTERROR either when declared or assigned.
Alternatively, an implementation -ay accept the
declaration. However, lengths must match in array
slice assignments. This implementation raises
no exception. (See test E52103Y.)

f. Discriminated-types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluated. (See tests C43207A and
C43207B.)

2) in the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

3) CONSTRAINT ERROR is raised after all choices are
evaluated when a bound in a non-null ra.ge of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is supported for procedures, but not for
functions. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

CONFIGURAT10D1T INFORMATION

i. Generics.

This implementation creates a dependence between a generic body
and those units which instantiate it. As allowed by AI-0043/l,
if the body is compiled after a unit that instantiates it, then
that unit becomes obsolete.

1) Generic specifications and bodies can be copiled
in separate compilations. (See tests CAIOI2A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CAI012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
b2 compiled in separate compilations. (See test

11IO2A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3OllA.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3203D.)

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

j. Input and output.

1) The package SEQUENTIAL iO cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE21OIC, EE2201D,
and EE2201E.)

CONFIGURATION INFORMATION

2) Th package DIRECT_0 cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE21OlH, EE240ID,

and EE240lG.)

3) Modes IN FILE and OUT-FILE are supported for SEQUENTIALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

4) Modes INFILE, OUT_FILE, and 7TIOUT FILE are supported for
DIRECT_10. (See tests CE2102F, CE2102I..J (2 tests), CE212R,
CE2102T, and CE2102V.)

5) Modes INFILE and OUT FILE are supported for text files.
(See tests CE3102E and CE3lO2I..K (3 tests).)

6) RESET and DELETE operations are supported for
SEQUENTIAL_10. (See tests CE2102G and CE2lO2X.)

7) RESET and DELETE operations are supported for DIRECT_10.
(See tests CE2102K and CE2102Y.)

8) RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE314C, CE3110A, and
CE3ll4A.)

9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

10) Temporary sequential files are given names and not
deleted when closed. (See test CE2108A.)

11) Temporary direct files are given names and not
deleted when closed. (See test CE218C.)

12) Temporary text files are given names and not deleted
when closed. (See test CE3112A.)

13) More than one internal file can be associated with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2lO2L, CE2110B, and
CE2111D.)

14) More than one internal file can be associated with
each external file for direct files when reading only. (See
tests CE2107F..H (3 tests), CE2110D and CE2111H.)

15) More than one internal file can be associated with
each external file for text files when reading only. (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 313 tests were inapplicable to this i-plementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing reslts demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1129 2019 17 23 45 3360

Inapplicable 2 9 296 0 5 1 313

'Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SU 4[ARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 3 9 10 11 12 13 14

Passed 198 573 544 245 172 99 160 332 i32 36 250 341 278 3360

N/A 14 76 136 3 0 0 6 0 5 0 2 23 43 313

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 243 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests wer dwn from.C Version 1.10
at the time of this ';lidation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D -
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2BI5C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
!ralidation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 313 tests were inapplicable for

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

TEST INFORMATION

C3r703L. .Y (14 tests) C35302L...Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35508I, C35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEANI types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementation is
not required to support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

d. The following 16 tests are not applicable because this
implementation does not support a predefined type SHOPTINTEGER:

C45231B C45304B '45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

e. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAXMANTISSA greater than
32.

f. C36001F is not applicable because, for this implementation, the
package TEXT_IO is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_IO, and
hence package REPORT, obsolete.

g. B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT-INTEGER.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B8600IZ is not applicable because this implementation supports no
predefined floating-point type with a nane other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

j. CA2009C, CA2@09F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.2.h and
Appendix F of the Ada Standard).

k. LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for functions.

TEST HIFORATION

. D . ..OM, CD2A4!A. B (W tests), CD2A4E and ,M A. A.J (1 tons)
are not applicable because of restrictions on 'SIZE length clauses
for floating point types.

m. CD2A61I..J (2 tests) are not applicable because of restrictions on
'STZE length clauses for array types.

n. CD2A84B..! (8 tests) and CD2A34K..L (2 tests) are not applicable
because of restrictions on 'SIZE length clauses for access types.

o. AE2MIC, EE22.D, and EE220IE use instantiations of package
SEQUENTIAL_10 with unconstrained array types and record types vith
discriminants without defaults. These instantiatics are rejected
by this compiler.

p. AE2101H, EE240ID, and EE2401G use instantiations of package
DIRECT-1O with unconstrained array types and record types with
discriminants without iefaults. These instantiations are rejected
ly this compiler.

q. CE2!02D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIAL_IO.

r. CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIAL_10.

s. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECTIO.

.21021 is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECT_iO.

u. CE2!02J is inapplicable because this implementation supports
CREATE with OUT FILE mode for DIRECT_10.

V. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIAL 10.

w. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode tor SEQUENTIAL_10.

x. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIAL_IO.

y. CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIAL_IO.

z. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECTIO.

TEST INFORMATION

b. CE21T is iapplicablb because this implement aton suports RESET
.ith INOUTLE mode for DRECTP .

ab. CE2102T is inapplicable because this impleentat ion supports OPEN
with INFILE node for DIRECTPD.

ac. CE2102U is inapplicable because this impl.eoentation supports RESET
with IN FILE .ode for DIRECT _0.

ad. CE21O2V is ina-plicable because this iplsuppors OPEN
with OUTFILE -ode for DIRECT_1O.

..CE2..2 is inapplicable because this impiementation supports RESET
with OUT FILE node for DIRECT :0.

af. CE2107B..E (4 tests), CE2107L, *E2lIOB. and CEIIID are not
applicable because multiple internal files cannot be associated
with the sane external file when ne cr core files is writing
for S...q1':. ',:i aI . es -he proper exc ention is raised when
..ultiple a.ccess is attempted.

ag. CE2107G..H (2 tests), CE211D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

ah. CE31O2E is inapplicable because text file CREATE with INFILE mode
is supported by this implementation.

-i. CE3!02. s inaon-iable because text file T is sunnorted by
this implementation.

aj. CE3IO2G is inapplicable because text file deletion of an external
file is supported by this implementation.

ak. CE31021 is inapplicable because text fil CREATE with OUTFILE
mode is supported by this implementatlon.

al. CE3102J is inapplicable because text file OPEN with IN_FILE node
is supported by this implementation.

am. CE31O2K is inapplicable because text file OPEN -iith OUT_FIL.E node
is not supported by this implementation.

an. CE3111B, CE3lllD..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

TEST INFORMATICN

:s expected that some tests will _ .. ood: i ticns of code,
:r:cessing, or evaluation .n order to compensate for legitimate
-pie.mentaticn behavior. Modifications are made by the AVF in cases where

7egitlmate :mplementation behavior prevents the successful completion of an
'otherwise'" applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
aC lss B test t nt subtests so that al errors are d tect ed a nd

-IIng q 'hat messages produced by an eecut ab e tst demonstrate
nformi:g behavior that was not inticipatid by the test (,such as raisin.

ne exceoi-on instead of another)

: -d ficalons c. ere required for ? tests.

The followig tests were spiit because syntax errors at one point resulted
in the ccmptier not detecting other errors in the test:

E'B7OQ B CI'1. BA3006A BI30O;B
3A 3 3 A , 12A BA3OOkB BA3313A (6 and 7>!)

Tests C34005G, C34005J and C34006D returned the result FAILED because ^f
false assumptions that an element in an array or a record type may not be
represented more compactly than a single object of that type. The AVO has
ruled these tests PASSED if the only message of failure occurs from the
requirements of T'SIZE due to the above assumptions (T is the aray type).

Tests CD2C!lA and CD2CllB contain 'SIZE length clauses for task types which
were insufficient for this machine. These tests were modified to include a
'SIZE clause of 2K.

TABG uses a modified body for the support package REPORT that prints an
IABG specific time stamp. For the test CD5Ot0E, thii body caused this test
to raise STORAGEERROR because of a stack overflow. So for this test, the
standard report package was used.

3.7 ADDT'TOAT TESTING INFOR.MATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC version l.10 produced
by the TeleGen2 Ada for 386 UNIX V.3 Version 3.23 was submitted to the
AIF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

TEST INFORMATION

3.7.2 Test :ethcd

Testing of the TeleGen2 Ada for 386 UNIX V.3 Version 3.23 using ACVC
Version 1.10 was conducted on-site by a validation team from the
AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software
components:

Host computer: Nimbus VX (.30386) system
Host ioerating system: Tnteractive UNIX sys V.3.2
Target computing system: same as host

A streamer cassette containing the ACVC in original distribution format was
loaded to a UNIX machine with an Ada compiler where it was customized to
remove withdrawn tests and tests requiring unsupported floating-point
precision. Tests that make use of implementation specific values were also
customized. Tests requiring modifications were loaded in their modified
form. it was then transferred via Ethcrnet and str-aer czssette to the
Nimbus VX system machine.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the Nimbus VX
system. Results were transferred via streamer cassette and Ethernet to a
VAX 8530 where they were printed and evaluated.

The compiler was tested using command scripts provided by TeleScft
and reviewed by the validation team. The compiler was tested using the
compiler call

ada -v -V 1000 -m <main program> (compilation files>

and linked with

ald -v -V 1000 <main program>

The -L qualifier was used for class B tests. See Appendix E for an
explanation of these and other compiler and linker switches.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at TeleLOGIC AB, Sweden and was completed on 2 June
1989.

| | • .

DECLARATION OF CONFORMANCE

APPENDix A

DECLARATION OF CO NFrOPYANCE

Te~~o~ A3submi-~ed The ---I:'iin;7 7--c-ar~ai c~f Conformance
c-nci>nin A- if> 7~T . 3 7rsicn 3.-1

CECIRATICH OF CQ2FU4944M

Ccupiler Implementor: TELESOFt
Ada Vaidation Facility: LABG, West-Germany

ACVC Version: 1.10

Base Canpiler Name: TeleGen2 Ada for 386 UNIX V.3
Version: 3.23

Host Architecture ISA: Intel 80386 in Nimbus VX system
OS & version #: Interactive UNIX sys V.3.2

Target Architecture ISA: Same as host
CS & version #: Same as host

Inplementor' s Declaration

I, t!- urdersigned, represening TELESOFT, have implemented
no deliberate extensions to the Ada Language Standard ANSI/MIL-
.S'D 1815A in the compiler listed in this declaration.

I declare that TELESOFr is the owner of record of the Ada
language ccmrileu listed above and as such is responsible for
maintaining said compiler in conformance to ANSI/MIL-SID 18!5A.
All certificates and registrations for the Ada language compiler
listed in this declaration shall be made only in the owner/s
corporate name.

20 July, 1989
Telelogic AB, Ada Products Division

Stefan Bjmrnscn, Manager, SystemT Software

Owner's Declaration

I, the undersigned, representing TELESOFr take full respon-
sibility for implementation and maintenance of the Ada copiler
listed above, and agree to the public disclosure of the final
Validaticn Summary Report. I declare that the Ada language
compiler listed, and its host/target performance is in cat liance
with the Ada Lanquage Standard ANSI/MIL-SID 1815A.

20 July, 1989
Telelogic AB, Ada Products Division

Stefan Bjorasai, Manage, Systems Softare
N

PP17 F OF TiE ".a STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementatfcn dependencies c7,rr spond
i: I -:,tt: n- en:7" t s. , tc~certa:n . .nedeent con nons

........ 1n chapter 13 of the Ada Staniard, and to certain a, oed
S on reprsentation clauses. The implementation-dependent

characterlstics of the TeieGen2 Ada for 336 UNIX V.3 Version 3.23, as
described in this Appendix, -are provided by TeleSoft. Unless specifically

noted otherwise, references in this appendix are to compiler documentation

and not to this report. Implementation-specific portions of the package

SANDARD are given in Appendix F.

TeleGen2 User Guide fur UN-.L

8.6. LRIM Annotations

TaleGen2 compiles the full ANSI Ada language as defined by the Reference Manual for the
.4da Programming Language (LRM,) (ANSI;,IIL-STD-1815A). This section describes the
portions of the language that are designated by the LRNM as implementation dependent for the
compiier and run-time environment.

The information is presented in the order in which it appears in the L..M. In general.
however, only those language features that are not fully implemented by the current release of
TeieGen2 or that require clarification are included. The features that are optional or that are
implementation dependent, on the other hand, are described in detail. Particularly relevant are
tne sections annotating LRM Chapter 13 (Representdtion Clauses and impiementation-
Dependent Features) and Appendix F Itmplementation-Dependent Characteristics).

8.6.1. LR-M Chapter 2.

L RM 2.11 The host and target character set is the ASCll character set.

'LRM 2.21 The maximum number of characters on an Ada source line is 200.

'LIR-M 2.81 TeleGen2 implements all language-defined pragmas ezcept pragma Optimize. if

pragma Optimize is included in Ada source, the pragma will have no effect.

Limited support is availabie for pragmas Memoryize. Storage-Unit. and System-Name:
that is, these pragmas are allowed if the argument is the same as the value specified in the

.vstem package.

Pragmas Page and List are supported in the context of source/error listings: refer to the
end of Chapter 3 for more information.

8.6.2. LR-M Chapter 3.

'LR.M 3.2.1' This re!ease of TeleGen2 does not produce warning messages about the use of
ininitialized variables. The compiler will not reject a program merely because it contains such
variabies.

?LRM 3.3.11 The maximum number of elements in an enumeration ty'e is 32767. This
maxin im can be :eaiized only if generation of the image table for the type has been deferred, and
.here are Pn references in the program that would cause the image table to be generated.
Deferral cf :mage cable generation for an enumeration type. P, is requested by the statement:

pragma Images (P, Deferred);

Refer to "Implementation-Defined P~agmas," later in this chapter, for more information on

pragma images.

[LIRM 3.5.41 There are two predefined integer types: Integer and LongInteger. The attribu.es
of these types are shown in Table 8-..7. Note that using explicit integer type definitions instead of
predefined integer types should result in more portable code.

8-44 UG-1313N-V1.2(386/UN1X) (D 1989 TeleSoft 15MAY89

PROGRAMMI-NG GUIDE

Table 8-7. Attributes of Predefined Types Integer and Long-Integer

TypeAttribute T

Integer Long__Integer

'First -32768 -2147483648

'Last 32767 2147483647
Size 16 32

'Width 6 11

.LR.M 3.5.81 There are two predefined floating point types: Float and Long.Fioat. The

attributes of types Float and LongFloat are shown in Table 8-8. This floating point facility is
based on the 1EEE standard for 32-bit and 64-bit numbers. Note that using explicit real type

ciefinit,;ons shouid lead to more portable code.

The type Short_..F'oat is not implemented.

Table 8-8. Attributes of Predefined Types Float and Long-Float

Attribute Type

Float LongFloat

'MachineOverflows TRUE TRUE
'Machine.Rounds TRUE TRUE
" 'Machine-Radix 2 2
'Machine_vMantissa 24 53
M'achine.Emax 127 1023

" vMachineEmin -125 1 -1021

' Mantissa 21 51

'Digits 6 15
'Size i32 64

'Emax 34 204

'Safe-_ max 125 1021

'Epsiion 9.53674E-07 8.88178E- 16

'Safe..Large 4.25253E-37 2.24711641857789E-307
'Safe-Smali 1.17349E-38 2.22507385850721E-308

'Large 1.93428E-25 2.5711008708 1438E-61
"Small 2.58494E-26 1.99469227433161E-62

8.6.3. LRM Chapter 4.

'LRM 4.101 There is no limit on the range of literal values for the compiler.

LRLM 4.101 There is no limit on the accuracy of real literal expressions. Real literal
expressions are computed using an arbitrary-precision arithmetic package.

15MAY89 UG-131?N-V1.2(386/TJNLX) Q 1989 TeleSoft 8-45

TeleGen2 User Guide for CLN'

8.6.4. LR-M Chapter 9.

'L RM 9. 61 This implementation uses 32-bit fixed point numbers to represent the type
Duration. The attributes of the type Duration are shown in Table 8-9.

Table 8-9. Attributes of Type Duration

Attribute Value

'Delta 0
'First -86400
•'Last 86400

LRM 9.81 Sixty-four levels of priority are available to associate with tasks through pragma
Priority. The predefined subtype Priority is specified in the package System as

subtype Priority is Integer range 0..53;

Currently the priority assigned to tasks without a pragma Priority specification is 31; that is:

(System.Priority'First - System.Priority'Last) / 2

*LRM 9.11, The restrictions on shared variables are only those specified in the LRNI.

8.6.5. LR- Chapter 10.

'LRM 101 All main programs are assumed to be parameteress rocc'nres or functions that
return an integer result type.

8.6.6. LRM Chapter 11.

'LRM 11.1l Numeric-Error is raised for integer or floating point overflow and for divide-by-
zero situations. Floating point underflow yields a result of zero without raising an exception.

Program-Error and Storage-Error are raised by those situations specified in LRM Section
11.1. Exception handling is also discussed in the "Exception Handling" section eariier in this
chapter.

8.6.7. LRM Chapter 13. As shown in Table 8-10, the current release of TeleGen2 supports
most LRM Chapter 13 facilities. The sections below the table document those LRM Chapter 13
facilities that are either not implemented or that require explanation. Facilities implemented
exactly as described in the LRM are not mentioned.

8-46 UG-1313N-VI.2(386/UNIX) (D 1989 TeleSoft 15MAY89

PROGRAMMING GUIDE

Table 8-10. Summary of LILM Chapter 13 Features for TeleGen2

i[13.1 Representation Clauses Supported. except as indicated below (LRM 13.2 -

13.5). Pragma Pack is supported. ezcept for dynam-
icaily sized components. For details on the
TeleGen2 implementation of pragma Pack, see Sec-
tion 3.6.7.1.

13.2 Length Clauses Supported:

'Size
'Storage.Size for collections
"Storage.Size for task activation
'Small for fixed-point types

Note: length clauses can be used to reduce the 'Size

of data types.
13.3 Enumeration Rep. Clauses Supported. ezcept for type Boolean or types derived

from Boolean. (Note: users can easily define a non-
Boolean enumeration type and assign a representa-
tion clause to it.)

13.4 Record Rep. Clauses Supported ezce t for records with dynamically sized
components. See Section 5.6.7.4 for a full discussion
o. the TeieGen2 implementation.

13.5 Address Clauses ,,upportd for: objects (including task objects).
.Vot supported for: packages, subprograms, or task
units. Task entries are not applicable to TeleGen2

host compilation systems.
See Section 3.6.7.3 for more information.

13.5.1 Interrupts Not applicable o TeleGen2 host compilation sys-
tems.

13.6 Change of Representation Supported. except for types with record representa-
:ion ciauses.

------ Contznued on the nezt page-

15MAY89 TJG-1313N-V1.2(386/TJNI) @ 1989 TeleSoft 8-4

TeleGen2 User Guide for UNLX

Table 8-10. Suxnunary of LR.I Chapter 13 Features for TeleGen2 (Contd)

------ Continued from the previous page-

13.7 Package System Conforms closely to LRN model. Refer to Section
8.6.7.7 for details on the TeleGen2 impiementation.

13.7.1 System-Dependent Named i Refer to the specification of package System (Sec-
Numbers . tion 8.6.7.7).

13.7.2 Representation Attributes Implemented as described in LRM except that:
'Address for packages is unsupported.

'Address of a constant yields a null address.

1 3.7.3 Representation Attributes of See Table 3-8.

Real Types

13.8 fachine Code Insertions Fully supported. The TeleGen2 implementation

defines an attribute. 'Offset, that, along with the
language-defined attribute 'Offset, ailows addresses

of objects and offsets of data items to be specified in

stack frames. Refer to Section 8.5 for a full descriD-
tion on the implementation and use of machine code

insertions.

S13.9 tnterace to Other Pragma Interface is supported for Assembly, C. and

Languages UNIX. Refer to Section 8.4 for a description of the

implementation and use of pragma Interface.

K3 .10 Uncheckei Programming Supported except as noted below (LRM 13.10.1 and13.10.2).

13.10.1 tnchecked Storage Deailo- Supported except for types with length clauses for

cation storage size.

13.10.2 Unchecked Type Conver- Supported except for unconstrained record or array

sions types.

8.6.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeleGen2

impiementation.

a. With Boolean Arrays. You may pack Boolean arrays by the use of pragma Pack.
The compiler allocates 16 bits for a single Boolean. S bits for a component of an unpacked

Boolean array, and i bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array: the one below that illustrates a packed Boolean array:

8-48 UG-.313N-V1.2(386/UNIX) (g) 1989 TeleSoft 152MAY89

Zi .ti; L

PROGRAMMING GUIDE

Unpacked Boolean array:

Unpacked_Bool _ArrType is array (Natural range 0..1) of Boolean
U_B Xrr: Unpacked_Bool_ArrType := (True,False);

MSB LSB
7 0

0 I Element 0

0 0 Element I

Packed Boolean array:

PackedBoolrrType is array (Natural range O..6) of Boolean;
pragma Pack (Packed BoolArrType);
P B Arr: Packed BoofArrType := (P_B_Arr(O) => True,

P-BArr(5) => True, others => False);

MSB'HOB LSB/LOB
15 7 0lolototo oolololo!,0olololo olo lI

I P B-Arr

b. With Records. You may pack records by use of pragma Pack. Packed records follow
these conventions:

1. The total size of the record is a multiple of 8.

2. Packed records may cross word boundaries.

3. Records are packed to the bit level if the elements are themselves packed.

Below is an example of packing in a procedure, RepProc, that defines three records of different
engths. Objects of these three packed record types are components of the packed record Rec.
I ne storage allocated for Rec is 16 bits: that is, it is maximally packed.

15MAY89 UG-1313N-VI.2(386/UNIX) (g) 1989 TeleSoft 8-49

PROGRAMMING GUIDE

package Repspec.Example is
Bits : constant 1;
Word : constant 4;.

type Five is range 0 .. 16#1F#;
type Seventeen is range 0 .. 16#1FFFF#;
type Nine is range 0 .. 511;

type Record.Layout__Type is record
Elementl : Seventeen;
Element2 : Five;
Element3 Boolean;
Element4 Nine;

end record;

for RecordLayoutType use record at mod 2;
Elementl at 0-Word range 0 .. 16;
Element2 at O*Word range 17 .. 21;
Element3 at OWord range 22 .. 22;
Element4 at O*Word range 23 .. 31;

end record;

Record-Layout : Record-LayoutType;
end Repspec_Example-;

8.6.7.5. Address Clauses [LR.M 13.5]. The Ada compiler supports address clauses for
objects, subprograms, and entries. Address clauses for packages and task units are not
supported.

Address clauses for objects may be used to access hardware memory registers or other
known memory locations. The use of address clauses is affected by the fact that the
System.Address type is private. For the 80386 target. literal addresses are represented as
integers, so an unchecked conversion must be applied to these literals before they can be passed
as parameters of type System.Address. For example, in the examples in this chapter the
following declaration is often assumed:

function Addr is new Unchecked-Conversion (Long-integer,System. Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturally, user programs may implement a different convention. Below is a sample program that
uses address clauses and this convention. PackaC- System must be explicitly unthed when using
address clauses.

with System;
with UncheckedConversion;
procedure Hardware..Access is

function Addr is new UncheckedConversion (Long-Integer, System.Address);
HlardwareRegister : integer;
for HardwreRegister use at Addr (1#FFOOOO#);

begin

end HardwareAccess;

15MAY89 UG-1313N-V1.2(386/UNIX) (g) 1989 TeleSoft 8-51

TeleGen2 User Guide for UNLX

When using an address clause for an object with an initial value, the address clause should
immediately follow the object declaration:

Obj: Some.Type := <init.-expr>;
for Obj use at <ador-expr>;

This sequence allows the compiler to perform an optimization wherein it generates code to
evaluate the <addr-expr> as part of the elaboration of the declaration of the object. The
expression <init-expr> will then be evaluated and assigned directly to the object, which is stored
at <addr-expr>. If another declaration had intervened between the object declaration and the
addr-!s -lause. the compiler would have had to create a temporary object to hold the
initialization value before copying it into the object when the address clause is elaborated. If the
object were a large composite type. the need to use a temporary could result in considerable
overhead in both time and space. To optimize your applications, therefore, you are encouraged
to place address clauses immediately after the relevant object declaration.

As mentioned above, arrays containing components that can be allocated in a signed or
unsigned byte (8 bits) are packed, one component per byte. Furthermore, such components are
referenced in generated code by 80386 byte instructions. The following example indicates how
these facts allow access o hardware byte registers:

with System;
with Unchecked-Conversion;
procedure Main is
function Addr is new UncheckedConversion (Long-Integer, System. Address);
type Byte is ringe -128. 127:
E1W.Regs : array (0..1) of Byte;
for EWNRegs use at Addr (16'FFF310i)

Status__Byte : constant integer := 0;
Next-3ock_.Request: constant integer 1;

Request_Byte : Byte := 119;
Status : Byte;

begin
Status := aW-Regs(Status.yte);
HWRegs (Next.BlockRequest) : = Request-.Byte;

end Main;

Two byte hardware registers are referenced in the example above. The status byte is at location
16=FFF310# and the next block request byte is at location 16,iFFF311#.

Function Addr takes a long integer as its argument. LongInteger'Last is 16,7FFFFFFF-',
but there are certainly addresses greater than Long-Integer'Last. Those addresses with the high
bit set. such as FFFAOOOO, cannot be represented as a positive long integer. Thus, for addresses
with the high bit set, the address should be computed as the negation of the 2's complement of
the desired address. According to this method, the correct representation of the sample address
above would be Addr(-16#00060000#).

8.6.7.6. Change of Representation ILRIM 13.61. TeleGen2 supports changes of
representation, except for types with record representation clauses.

8-52 UG- 1313N-V1.2(386/UNIX) (D 1989 TeleSoft 15MAY89

PROGRAIMMLNG GUIDE

8.6.7.7. The Package System LR.,M 13.71. The specification of TeleGen2's implementation
of package System is presented in the LRM Appendix F section at the end of this chapter.

8.6.7.8. Representation Attributes LRM 13.7.2]. The compiler does not support
'Address for packages.

8.6.7.9. Representation Attributes of Real Types rLRM 13.7.31. The representation
attributes for the predefined floating point types were presened in Table 8-3.

8.6.7.10. Machine Code Insertions 'LRM'YF 13.8]. Mfachine code insertions, an optional

feature of the Ada language. are fully supported in TeleGen2. Refer to ,he -Using Machine Code
Insertions" section earlier in this chapter for information regarding their implementation and

exampies on their use.

8.6.7.11. Interface to Other Languages LR-M 13.91. In pragma Interface is supported for

Assembly, C. and UNIX. Refer to Section 3.4 :or information on the use of pragma Interface.

TeleGen2 does not currently allow pragma Interface for library units.

8.6.7.12. Unchecked Programming 'LRN 13.101. Restrictions on unchecked
programming as it applies to TeleGen2 are listed in the following paragraphs.

'LRM 13.10.21 Unchecked conversions are allowed between types (or subtypes) T1 and T2 as

long as they are not unconstrained record or array ypes.

8.6.8. LRIM Appendix F for TeleGen2. The Ada language definition allows for certain

target dependencies. These dependencies must je jescribed in :ne reference manual for each

implementation. in an "Appendix F" that addresses each point listed in LR\1 Appenuix F.
Table 3-11 constitutes Appendix F for this implementation. Points that require further

ciarification are addressed in the paragraphs that follow -he table.

151MAY89 UG-1313N-V1.2(386/UNL) (g 1989 TeleSoft 8-53

TeleGen2 User Guide for UNDX

Table 8-11. LRM Appendix F for TeleGen2

(1) Implementation-Dependent Pragmas (a) Implementation-defined pragmas: Comment,
Linkname, Images, and No-Suppress (Section
3.6.8.1).

(b) Predefined pragmas with implementation-
dependent characteristics:

Interface (assembly, UNIX, and C).
(Section 8.4). Not supported for
library units.

- List and Page (in context of source/error
_compiler listings) (Section 3.7.1.3).

(2) Impiementation-Dependent Attri- TeleGen2 uses one implementation-defined attri-
butes bute, 'Offset, which, along with the actrLZ.ute 'Ad-

dress, facilitates machine code insertions by allowing
user programs to access Ada objects with little date
movement or setup. These two attributes and their
usage were described in "Using Machine Code Inser-

* tions," earlier in this chapter.
'Address is not supported for packages.

' 3) Package System ISee Section 8.6.7.7.

(4) Restrictions on Representation Summarized in Table 8-10.
Clauses

(5) Implementation-Generated Names None

(6) Address Clause Expression [nterpre- An expression that appears in an object address
-arion clause is interpreted as the address of the ,irst

storage unit of the object.

(7) Restrictions on Unchecked Conver- Summarized in Table 8-10.
S sions .

.......- Continued on the nezt page-

8-54 UG-1313N-V1.2(386/UNX)() 1989 TeleSoft ISMAY89

PROGRA.MMLNG GUIDE

Table 8-11. LILM4 Appendix F for TeleGen2 (Coutd)

------------Continued fromn the previous page-

()Implementation- Dependent Charac- 1 . In Text-JO. the type Count is defined as follows:

teristics Of the 1, 0 Packages. type Count is range 0. .3ystem..Max _ Text-J.Cout

I -- or 0..M~x.Jnt- I OR 0..2-147-4849-646

I2. In Text-JO, the type Field is defined as follows:

subtype Field is integer range

3ystemn.Ma~x..Text1O Field;

3. In Text-JO, the Form parameter of procedures

Create and Open is not supported. (If you Sup-

ply a Form parameter with either procedure, it
is ignored.)

4.Sequential-10 and Direct-2O cannot be instan-

tiated for unconstrained array types or discr-im-

inated types without defaults.

5. The standard library contains preinstantiated

I versions of TextJO. Intever-1O for types Integer

and Long-Integer and of Text-JO.Float-JO for

types Float and Long-Float. We suggest that

you use the following to eliminate muitiplein

stantiacions of these packages:

Long-Integer..Text-JO

Floar...Text-JO

Lon g-loat -Text _O

6 .6.8.1. Implement ation-Defined Pragmas. There are four implementation-defined

pragmas in TeleGen2: pragmas Comment, Linkname. Images, and No-Suppress.

8.6.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the

bject code. Its syntax is:

pragma Comment (<string--iteral>)

where -'<string 'Iteral>" represents the characters to be embedded in the object code. Pragma

Comment is allowed only within a declarative part or immediately within a package specifica~ion.

Any number of comments may be entered into the object code by use of pragma Comment.

8.6.8.1.2. Pragina Linkname. Pragma Linkname is used to provide interface to any routine

whose name can be specified by an Ada string literal. This allows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a subprogram name that has been
previously specified in a pragma Interface statement. The second is a string literal specifying the

15AMAY89 UG-1313N-VI.2(386/VNDC) ©g 1989 TeleSoft 8-55

-. ~~~7 - -c -

TeleGen2 User Guide for UNL

exact link name to be employed by the code generator in emitting calls to the associated

subprogram. The syntax is:

pragma Interface (assembly, <subprogramname>);

pragma Linkname (<subprogramaname>, <stringliteral>);

If pragma Linkname does not immediately follow the pr~gma Interface for the associated

program, a warning will be issued saying that the pragma has no effect.

A simpie example of the use of pragma Linkname is:

procedure DummyAccess(Dummy-Arg : System. Address);

pragma Interface (assembly, Dummy_.Access);

pragma Linkname (Dummy..ccess, "-access');

8.6.8.1.3. Pragma Images. Pragma Images controls the creation and allocation of the image
tnd index tables for a specified enumeration type. The image table is a literal string consisting of

enumeration literals catenated together. The index cable is an array of integers specifying the
location of each literal within the image table. The length of the index table is :herefore the sum
of tne ,tngths of the literais of the enumeration type: the length of the index table is one greater

than the number of literals.

The syntax of this pragma is:

pragmna Images(<enumeratiou,_type>, Deferred):
- or--

pragma Images(< enumeration-type>, Immediate);

The default, Deferred, saves space in the literal pool by not creating image and index tables for

an enumeration type uniess the 'image. 'Value, or 'Width attribute for the type is used. If one of

.hese attributes is used. the tables are generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in more than one compilation unit. more

than one set of tables is generated, eiiminating the benefits of deferring the table. In this case.

sing

pragrna Images(<enumeration _type>, Immediate);

wil cause a single image table to be generated in the literal pool of the unit declaring :ie

numeration type.

For a very large enumeration type. the length of the image table will exceed Integer'Last

rhe maximum length of a string). In this case, using either

pragma Images(<enumerationtype>, Immediate);

or the 'Image, 'Value, or 'Width attribute for the type will result in an error message from the

compiler.

8.6.8.1.4. Pragma No-Suppress. No.Suppress is a TeleGen2-defined pragma that prevents

the suppression of checks within a particular scope. It can be used to override pragma Suppress

in an enclosing scope. No..Suppress is particularly useful when you have a section of code that

reiies upon predefined checks to execute correctly, but you need to suppress checks in the rest of

8-50 UG-1313N-V1.2(386/UNIC) () 1989 TeleSoft 15MAY89

PROGRAMINfNG GUIDE

tne compiiation unit for performance reasons.

Pragma No-Suppress has the same syntax as pragma Suppress and may occur in the same

pIaces in the source. The syntax is:

pragmpra -No._Suppress (<identifier> r, (ON =>i <name>]);

wnere <identifier> :s the type of check you want to suppress (e.g.. access-check: refer to

LRM 11.7)

<nane> is the name of the object. type'subtype. task unit. generic unit, or subprogram
within which the check is to be suppressed: <name> is optional.

If neither Suppress nor No.Suppress are present in a program, no checks will be suppressed.

You may override this default at the command level, by compiling the file with the -i(nhibit

option and specifying with that option the type of checks you want to suppress. For more

iniormation on -i(nhibit. refer to Chapter 3.

:f either Suppress or NoSuppress are present, the compiler uses the pragma that applies to

the specific check in order to determine whether that check is to be made. If both Suppress and

NoSuppress are present in the same scope, the pragma declared last takes precedence. The

presence of pragma Suppress or No-Suppress in the source takes precedence over an -i(nhibit

ooion Provided during compilation.

8.6.8.2. Package System. The current specification of package System is provided beiow.

15MAY89 UG-1313N-V1.2(388/UNX) (L 1989 TeleSoft 8-57

. *

TeleGen2 User Guide for UNLK

PACKAGE System IS

TYPE Address is Access Integer;
TYPE SubprogramValue is PRIVATE;

TYPE Name IS (TELEGEN2);

SystemName : CONSTANT name : TELEGEN2;

Storage Unit : CONSTANT := 3;
Memory_Size : CONSTANT := (2 ** 31) - 1;

-- System-Dependent Named Numbers:

Min !nt CONSTANT -(2 31);
Max-:nt CONSTANT := (2 31) - 1;
Max Digits CONSTANT := 15;
MaxMantissa CONSTANT := 31;
Fine Delta CONSTANT := 1.0 / (2 ** Max Mantissa);
Tick CONSTANT : 0.OE-3;

-- Other System-Dependent Declarations

SUBTYPE Priority IS integer .RANGE 0 .. 63;

PRIVATE

TND System;

(3.6.8.3. Representation Clause Restrictions. Restrictions on representacion clauses within

Te.e(en2 were discussed in "LRM Chapter 11," eariier in this section.

8.6.8.4. Implemencacion-Generated .Names. There are no imptementacion-generated
names to denote impiernentacion-dependent components.

8.6.8.5. Address Clause Expression Interpretation. A.n expression that appears in an

,blect address ciause is interpreted as the ad-rcss of "he first storage unit of the object.

8.6.8.6. Unchecked Conversion Restrictions. Restrictions on unchecked conversions were

discussed in "-Unchecked Programming," eariier in this section.

8-58 UG-1313N-V1.2(386/UNL) (g 1.989 TeleSoft 15MAY89

. . .

PROGRAMMING GUIDE

8.6.8.7. Implementation-Dependent Characteristics of the I/O Packages.

1. In Text2O, the type Count is defined as follows:

type Count is range 0..Long..nteger'Last 1

2 In Text2O, the type Field is defined as follows:

subtVDe Field is integer range 0. .Text_Vanager.Field'Last;

.equentialJO and Direcl__iO cannot be instantiated For unconstrained array types or

discriminated types without defaults.

4. The standard library contains preinstanciated versions of Text _O.IntegerJ1O for type
Integer and LongInteger and of TextJlO.Float-_O for type Float and LongFloac. it
is suggested that the following be used to eliminate multipie instantiations of these

packages:

lntegerText _O

Long_!ntegerText TO
FloatText _O
Long-FloatTextIO

15MAY89 UG-1313N-V1.2(386/UNC) (9) 1989 TeleSoft 8-59

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

'akas use of such values is identifiid ly O xwKson. TST in ins file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

;ame and Meaning Value

SACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SB!I_IDI 199 * 'A' '1'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 199 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to $BIG_IDI except
for the last character.

SBIG_ID3 100 * 'A' & '3' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

TEST PARAMETERS

Name ani H anin4

$B!G_ID4 100 * 'A' & '4' & 99 '
An identifier the size of the
maximum input line length which
is identical to $B!G_ID3 except
for a character near the middle.

$BIGINTLIT 197 * '0' & "298 '

An integer !itaral of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG_REALLIT 195 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the

SBIG _STRING! ... & 100 * 'A' &
A string literal which when
catenated with BIG_STRING2
yiells the i:age of BIGIDl.

$BIG_STRING2 ... & 99 * 'A' & '1' &

A string literal which when
catenated to the end of
BIG_STRING1 yields the image of
B!GT1.

$BLANKS 180 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

3COUNTLAST 2_147 483 646
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.

DEFAULT_MEM_SIZE 2147483647
An integer literal whose value
is SYSTEM.MEMORYSIZE.

SDEFAULT_STORUNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

TEST PARAMETERS

We and MeaniUng 7''ue

$DEFAULTSYSNAME TELEGEN2
The *alue of the :onstant
SYSTEM.SYSTEMNAME.

SDELTA_DOC 21. 0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

SFIELD_LAST WOO
A universal integer
literal whose value is
TEXT_O.FIELD LAST.

$FIXEDNAME MO_SUCHTYPE
The name of a predefined
fixed-point type other than
DURAT ION.

SFLOAT_NAME 1O_SUCHTYPE
The name of a predefind
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG_FLOAT.

SGREATER_THANDURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any 7alue
in the range of DURATION.

SGREATER_THAN_DURATION_BASELAST 131_073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH_?RIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL_EXTERNALFILE_NAMEl BADCHAR *

An external file name which
contains invalid characters.

$ILLEGALEXTERNAL_FILENAME2 M/ONAME/DIRECTORY
An external file name which
is too long.

TEST PARAMETERS

[e n 1 M:eanig V~al e

-.-TEGERFIRST -32768
A universal integer literal
whose ;alue is INTEGER'FIRST.

SINTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

'INTEGERLASTPLUS I 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THANDURATION -100_000.0
A universal real literal that
!,es between DURATION'BASE'FIRST
and DURATION'FTRST or any value
4-- -he r -,2 -,- DU'AT!CN.

SLESSTHANDURATIONBASE_FIRST -131_073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEI'.PRIORITY.

,,.AiN, ISSA DOC 31
An integer literal whose value
is SYSTEM.MAX_MANTISSA.

SMAXDIGITS 15
Maximum digits supported for
floating-point types.

MAX IN LEN.I 200
M Ixium input line length
permitted by the implementation.

S.AX 2147483647
A universal integer literal
whose value is SYSTEM.MAX_:N.

Z,.AXINTPLUSl 2147_483 648
A universal integer literal
whose value is SYSTE:..MAXINT+l.

TEST PARAMETERS

,!ame and Meaning Value

$'!AX_LEN_INTBASEDLITERAL "2:" & 195 * '0' & "11:"
A universal integer based
literal whose value is 2#l1#
with enough leading zeroes in
the mantissa to be MAX IN LEN
long.

$"AXLE!TREALBASEDLITERAL "16:" & 193 * '0' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRINGLITERAL fil & 198 * 'A' &1..
A string literal of size
MAX INLEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPEAVAILABLE
A name of a predefined numeric
type other than FLOAT, INTEGER.
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG-INTEGER.

$NAMELIST TELEGEN2
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

TEST PAR-Er7ETRS

Na:7e and "ean.-

$NEWMEM _SIZE 2147433647
An integer literal whose Value
is a permitted argument for
pragma ME.ORY SIZE, other than
$DEFAULT_ IEMSIZE. If there is
n -ther va -e, then use
DEFAUL7 ' , -SIZE.

SNEWSTORUNIT 8
An integer literal whose ;aaue
is a permitted argument for
pragma STORAGEUNIT, other than
$DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEm!,.STORAGE UNIT.

Al "alue of the type SYSTE. A.""E,
other than $DEFAULTSYS NA2ME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the ti-e of
validation testing for the reasons indicated. A reference of the fcrm
AI-ddddd is to an Ada Commentary.

a. E23005C This test expects that the string "-- TOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 2037 but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains - itions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OF THEGUARD results in a call to REPORT.FAILED at one of
lines 57 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

WITHDRAWN TESTS

.3 ..D, C.... . -.D, ::7.3A. , .'6A.. :D r6 tests' These
tests wrongly attempt t- -heck the sce of objects of a iei,-e

type (for which a SIZE length cla.se ic Hven) by passing them
to a derived subprogram '. h - onvtrc- thm to the
parent type (Ada standard 3.4:14)). Additionally, thcy use the
'17E length clause and attribute, whose interpretation is
~cnsi e roblematic by the 7G9 ARG

assume that dependent tasks will termiat rhile the main pro-

gram executes a loop that simply tests f-r ts- trsinatin this
is not the case, and the main program may cop indefinitely

'lines 74, 35, 96 96, 36 & 96, and 53, resp.).

i. CD2BI5C & CD7205C These tests expect that a 'STORAGESIZE
length clause prnvides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be exoec.
CDDB T e ves a 5ALL rete..s.nta'n clause for a

D 3 his tst give ML ersna..

derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTE" pragmas; the AVO
withdraws these tests as being inappropriate for v;alidation.

.7. CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-0020!, it is only the expected r-oq'ency of' chnte that must
he at least SYSTEM.TICK--particular instances of change may be
less line 29).

n. CD7203B, & CD72043 These tf-sts use the 'SIZE length clause and
attribute, whose interpretation 1s considered problematic by
the VG9 ARG.

o. CD7205D This test checks an invalid test objectie: it treats
the specification of storage to be reserved for a task's
act':ation as t.hough it were like the specification of storage
for a collection.

WITHDRAWN TESTS

- E21071 This test requires that objects of two similar scalar
types be distinguished when read from a file-DATAERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE3111C This test requires certain behavior, when two files are
assnciated with the same external file. that is not required by
the Ada standard.

r. CE3301A This test contains several calls to END OFLINE &
ENDOFPAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 113, 132, & 13W.

s. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check tnut LuAOdT_ERROR is raised
ly a subsequent PUT operation. But the former nperation will
;,nera!!y raise an exception due to a lack of availle disk
space, and the test would thus encumber validation testing.

-717 PTLR AND 7 1' KE7 CPTI1ONS

APPENDIX E

COMPILER AND LINKER OPTIONS

['he desuripcLon in this appendix is given in terns of
the -eleGen2 Ada SUN-386i compiler, which has exactly
the same options with exactly the same meaning.
References and page numbers in this appendix are
consistent with compiler documentation and not with
this report.

(R I I SF:R (u\l.M \\I,

N A.ME
acr - Sun Ada Creas.e-Subizbrary utility

SYNOPSIS
acr -r -V vsm size :-in max size, sublib,.sub...

DESCRIPTION
The acr comT, mand creates an empty Ada sublibrary for each sublibrary named on the command
line. It builds hoi.h the sublibrary file and the correspbnding object directory. The sublibrarv file
is a database that holds intermediate code and other data generated by a compilation. It has the
file extension ".sub"; this extension is optional when using acr. The object directory holds the

object code generated by the compilation or binding process, and has the file extension " obj"

Once the subiibrary is created and initialized with the aer command, it can then be used as a
working elcment of the Ada program library database to receive and store output from Ada

compilations. See the Sun Ada User Guide for a full description of sublibraries and how they are
used in Ada compilations and in Sun Ada library management utilities.

OPTIONS
-f Force creation ,1' the sublibrary even if one of the name specified already exists. Use of

this option causes the old subibrary to be mverwritten.

-m rnax size
Set the maximum size of the the sublibrary database file to max size pages. The pages
are allocated in 1-Kbyte (1024-byte) blocks. Max size must be an integer value between
1.000 and 32,000. This value should not be arbitrarily large, as the library contains a

fixed-size page table whr",e size is proportional to the value parameter. The value is less
than 1000 units bo'-:'Le of the internal sublibrary catalog size. The default size is 3192

Kbytes (about 3 MB), which allows the sublibrary to hold as many units such that theu
size adds up to 3 MB subject to the 1000 units catalog limit.

-V .m size

Set the size of the Virtual Space Manager's buffer space- to vsm size Kbytes. The default
vsm size for the command is 1500 Kbytes.

The optimal value for vsm size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Sun Ada User Guac.

SEE ALSO
acp(1). adaIl), als(1), amv(i), arm(1)

Sun Ada 1.2 Last change: 18 February 1988

L) A It) I ER OlA['

N A.M.E

ada - Sun Ada Compiler

SYNOPSIS
ada -i libname -t templib, -V vsm size' -C n. -E n,

-m unit -b. -T n, -P options. -p objects, -o filei,
0 key -G -I file' -LFSdeksvx mputspc,:

DESCRIPTION
The ada command calls the Sun Ada compiler, which comprises the front end. middle pass. -0d1P
generation, and list generation phases. By default the front end. middle pass. and code generation
phases are executed. This process results in the generation of object modules, which are put nto
the object directory of the working sublibrary. Optionally. the Ada binder and native linker may
be be invoked to create an executable fle.

The command terminator, input spec, indicates the fie or files to be compiled. Any number ind
combination of files may be specified, up to the maximum line length. Files listed on .he
command line that have no extension are given the extension " ada" by the compiler. Source .ies
that have the " ada" extension are assumed to contain Ada text to be compiled. whereas source
files that have the "ill" extension are assumed to contain a list of E:-. to be compiled.

The temporary errors file is created in itmp as errorXXXXXX, with the "XXX.X.X" being
replaced with the compilation proce-s nunoer to prevent file name collision.

Compilation errors as well u compiler driver -rrors (e.g. "file not found") are output to stderr.

Informational output will also be directed to stderr. Banner messages as provided by the -v option
are examples of informational output.

OPTIONS
Library Specification Options:

-1 libnamc
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted.

and the -t option is not used, the default liblt.aib is assumed to be the library. -l cannot
be used with -t.

-t templib
Use templib as a temporary sublibrary list for this process. The -1 option must not be
used when the -t option is given. The default sublibrary list file is not read. The irst
sublibrary in the list is the working sublibrary. Tenplib may be specifiei 13
"subliblsublib2..." or as "sublibi sublib2 ... " *t cannot be used with -1.

Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm size for the command is 2000 Kbytes.

The optimal value for vsm size depends on the amount of system memory &'& liable and

the number of concurrent users. For a full description see the Sun Ada Uaer Guide.

Comptler Execution Control Options:

-E n Abort compilation after n errors. Only errors detected by the front end phase are counted

The default is 999. Each error message type is counted independently of the others. For

example, in the default situation, the user may have 998 warning messages and 998 syntax

errors and the compilation will not abort.

-n unit
Treat "unit" as a main program. After all files named in the input specification have been

Sun Ada 1.2 Last change- 15 February 1988

\1)\: I SL1 E (. (, \IN.\\Ih- .l\

compiled, the Ada. binder and naLive linker arp inoked. An executable nle named unit is
left in the current directory. If the main unit has already oe.n compiled. it does not niave
to oe in the input file(s). However. it must be pre!ent in the current working subiibrary
If the -m option is used. appropriate binderlinker options (-m, -b, -T. -P, -p) are passed
to the binder linker (see ald(1)).

-v Br verbose. Announce each phase as it is entered

Output Control Options:

-e Only report errors: do not produce any objects. This option causes only the front end to
be executed. The front end detects all syntax errors and most semantic errors in the Ada
source code. Some errors, however, can be detected only by the middle pass and code
generator: such errors will not be detected when the -e option is specified. Examples of
such errors are he those involving the legality of specific representation specifications and
violation of code generator capacity limitations. This option is meaningless when used
with -k. -d. -0. and -x. since each of the latter options requires the production of code
generated after front end processing.

-k Keep the intermediate code (High Form and Low Form) for unit bodies in the library. By
default, trie intermediate cocie for bodies is deleted from the library after code generation
to minimize library size. The intermediate code is used by the Ada Cross-Referencer (see
axnj)) and the Source-Level Debugger (see adbq(l) and the -d option of the ada
command) and operated on by the Global Optimizer (see aopt(1) and the .0 option of the
ada command). The-k option must therefore be used if any of these three programs are to

be used for any unit in the current source file. (An exception is that -k need not be used
when the -d option is used, since use of -d automatically sets -k.)

-d Provide for debugging. This optio.- -auses the code generator to save information needed
by the Ada debugger, adbg, in the Ada program library. This information is used for
mapping between source and object code locations, and for locating data objects. The -d
option also causes some additional information to be output in object modules. However,
there is no impact on generated code per se. Use of -d automatically sets the -k option.

-O kel Optimize code for each unit being compiled. The optimizer optimizes each unit separately
as it is being compiled and does not make cross-unit optimizations. The argument to the
-O option, key, must be present and must immediately follow the option. This argument
provides details about how the units are to be compiled. For example, one of the key
arguments indicates whether subprograms being optimized may be called from parallel
tasks. See aopt(1) for information about acceptable key values.

Two other options may be used in conjunction with -0:

-G Generate a call graph for the unit (s) being optimized. Refer to aopt(l) for more
information. Note: in the Sun Ada User Guide. a discussion on the use of the -G
option with ada is deferred to the Global Optimizer chapter.

-I file Inline the subprograms listed in "file". Refer to aopt/1) for more information.

Note: in the Sun Ada User Guide, a discussion on the use of the -1 option with

ada is deferred to the Global Optimizer chapter.

-x Generate profiler information and put it in the object module. Profiler information

includes execution timing and subprogramn call informaltion. If code is compiled with the

-x option, that option must also be used with the aid command when the program is

bound and linked (see aid(f)).

-s Use software floating-point instead of the default MC88881 hardware floating-point

Sun Ada 1.2 Last change: 15 February 1988 2

support.

Liting Control Options:

-L Output a source listing interspersed with error information 1o sourcefile.l, where
"sourcefile" is the name of the user-supplied source file without the Ada extension. If an
irput-list file is to be processed. a 'isting 51le i5 generated for each source file in the input
,ist Each resulting listing nile has rhe .ne same name as ,he source file. except it has an
" 1" extension appended Lo it. For example, when this option is used with an input :ist
that contains 10 source file names. 10 listi.ih files are generated as &. reult of the
comrilation. If the -F option is used. the listing will not be interspersed. Instead errors
will folio, &.1l Lhe source lines.

-F Du .iot intersperse errors in source listing: put them after all -urce lines. This option is
used only with the -L option.

-C n Provide n source lines as context with error messages. Th _ default is 1. which is the
erroneous line itself. Context lines are placed before and after the error line in the error
message.

-S Send a source, assembly listing to unit.s, where "unit" is the name of the unit in the user-
supplied source file. If an Input-list file is specified. a listing file is generated for each
source file in the inpc -list file. For example. when this option is used with a.n input-lisn
file that contains 10 source file names. 10 listing files are generated as a. result of the
compilation.

SEE ALSO
acmp(l), acp(1), acy(1), ald(l), als(1). amv(1), aopt(1). arec(I), arel(1), arm(1),
asda '2 aLt (F1)

Sun Ada 1.2 Last change! 15 Februai-y 1988 :

N A ME
aid - Sun Ada binder, linker

SYNOPSIS
aid -1 libname -t Lempiibi -V vsm size. -T n -P options, -p objects.

-o name, -,bsvx, mainunit

DESCRIPTION
The aid command calls the Ada binder 4nd linker. This command outputs the executable program
to fije matnuntt. The binder and linker are executed by default. The user may exclude the linker
from the run.

A library may be speciied by using the default library file. liblst.alb. specifying a library file with

the -1 option, or specifying a temporary library list on the command line, by using the -t option.

Option pass-through to the native linker is provided.

The binder puts an elaboration code file, mainunit.obm, in the working sublibrary directory.

If the native linker is not invoked, a link script file, mainunit.ink. is put in the current directory.

This script file may may also be modified by the user so that other object code or special linker
options are used.

OPTIONS
Library Specification Optiona:

-1 libname
Use libname as the file containing the sublibrar-y list. The subiibrary list is the ordered set

of sublibraries that collectively define the Ada Program Library. Lf this option is omitted.

and the -t option is not used, the default liblat.alb is assumed to be the library. -1 may not
be used with -t.

-t ternplib

Use templib as a temporary sublibrary list for this process. The -l option must not be
used when the -t option is given. The default sublibrary list file is not read. The first
sublibrary in the list is the working sublibrary. Templib may be spec.fied as
"sublibi.subhb2..." or as "sublibl sublib2 ...". -t may not be used with -1.

-V 'jrm itze

Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm size for the command is 2000 Kbytes.

The optimai value for vsm size depends on the amount of system memory available and

the number of concurrent users. For a full description see the Sun Ada User Guide.

Other Options:

-b Run binder phase only. Elaboration code and a link script are produced. The link script

is pit in the file mainunit.ink.

-9 Use sortware floating-point support. By default. MC68881 hardware-floating point
suppo"t is used.

-O name

Uie "name" instead of "mainunit" as the name of the executable file.

-P options
Pass options to the native linker, options must be a quoted string. This option is provided

as an escape to allow use of all native linker options without producing and editing a link

script. An example is: aid -P '-t -r' Refer to the Sun Ada User Guzdc for more

Sun Ada 1.2 Last change: 17 February 1988

information.

Pass o96ecta to the native linker objects must be a quoted string; it may include inrchive

files. This option is typically used with pragma Interface and the -1 native linker option.
ob)tecta may be specified as "objecti object2 .. ," An example is: aid -p 'cosne.o

usr 4ib hibm.a" Refer to the Sun Ada User Guide for more information.

Noe the -p and -P optionr are used to provide compatLibility with the System V Interface
Definition while dealing with the non-System V compatible Id command -Lx).

-T n Trace back depth of exception report. When a run-time exception occurs, the name of the
unit and the line number of where the exception occurred are displayed with a caml chain
history. The number r, which is 15 by default, defines the levels of call chain history.

-v Be verbose. Announce each phase as it is entered.

-x Link in the execution profiler's run-time support routines. During program execution.
tnese run-time support routines record the profiling data in memory, then write the data

to files as the program terminates. Units to be profiled must be compiled with the -x

option of the ada command.

BUGS AND KNOWN LLITATIONS
The body of the main program must reside in the current working sublibrary

SEE ALSO
ada(1)

Sun Ada 1.2 Last change: 17 February 1988

