AD-A214 953

9)/ 3D

UNCLASSIFIED A .

SEZURITY CLASSIFICATION OF THIS PAGE (Wrer Data Entered

REPORT DOCUMENTATION PAGE

RIAD INSTR_CTIONS
BETTRE TOMD _£epeNC FOPN

1. REPORT WuMBLR

]2. 6OVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUmEER

4. TITLE (anoSubtitie)
Ada Compiler Validation Summary Report:TeleSoit,

5. TYPt Of REPORT & PERIOD COVERED

02 June 1989 to 02 June 1990

e. PERFORNMG"ORG. REPORT WUMBER

Teleten2 Ada for 386 UNIX V.3, Version 3.23, Nimbus VX
(80386) svstem {Host & Target), 89060211.10139

Y. AUTHOR(s)

TARGs

Ottobrunn, Federal Repubtlic of Germany,

8. CON RACT OR GRANT WUME(R(s)

8. PERFORMING ORGAN;ZATION AND ADORESS

IABG,
Ottobrunn, Federal Republic of Germanv.

10. PROGRAM ELEMENT PRIJEC
AREA & WORK UNIT NUMEERS

11. CONTROLLING OFFICE NaMg AND ADDRESS

Ada Joint Program Office

United States Department of Defense
Washington, DC 20301-3081

12. REPORT DATE

{13 RUWETR UF PEGLS

14, MONITORING AGENIY WAML B ADDRESS(/f gifferent from Controling Office)

IABG,
Ottobrunn, Federal Republic of Germanv,

15. SECURITY CLASS (ofthisreport)
UNCLASSIFIED

158 EEE&SEEE'ICATION/ DOWNSRATDING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17, DISTRIBLTION STATEMINT (ofthe abstractentered nBiock20 Ifa-Herent from Report)

18. SLPP_EMINTAZY NOTES

19, KEYWIRIS (Continue onreverse s:de .fnecessary and dentify by block numbper)

1815A, Ada Joint Program Office, AJPO

Ada Programrming language, Ada Compiler Validation Summary Repcrt, AZa
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation O“fice, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRALT (Continue onreverse side if necessary and dent.fy by block number)

TeleSort, TeleGen?2 Ada for 386 UNIX V.3, Version 3.23,

Ottobrunn,
VX (80386) svstem under Interactive UNIX sys V.3.2 (Host & Target), ACVC 1.10.

West Germany, Nimbus

DD 121
1 JAN 73

1473 EDITION OF 1 WOV 6% 1S 0BSOLETE

S/N 0102-LF-014-8801

UNCLASSIFIED

5— SLCURITY CLASSIFICATION OF THIS PALE (whenData Entered

1
i

Ada Conmpiler Validation Summary Report:

Compiler Name: TeleGen2 Ada for 386 UNIX V.3 Version 3.23
Certificate Number: #390602I1.10139
Host: Nimbus VX (20385) systan

under Interactive UNIX sys V.3.2

Tar samne a5 hest

«Q
[¢V]
ot

Testing Cecmpletad 2 Jurns 1933 Using ACYC 1.12

This report has been raviewed and is approved.

oo U

IABG mbH, Abt. SZT
Dr. S. Heilbrunner
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

A P —

Ada Validation Organization
Dr. John F. Kramer

- Institute for Defense Analyses
Alexandria VA 22311

o, O &g/

£da Joint Program Office
Dr John Solomond
Director

Cepartment of Defense
Washington DC 20301

AVF Control Number: AVF-TABG-033

Ada COMPILER
VALIDATION SUMMARY REPORT:
1ficate Tu~har: $230602I1.1013%3
Tzi280ft
TelaeGen2 Ada for 386 UNIX V.3 Version 3.23
Nimbus VX (30386) system

Completion of On-Site Testing:
2 June 1989

Prepared By:
IABG abH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

CHAPTER 1

[P N N
e e e

[y

CHAPTER

(3]

ot

CHAPTER

(%)

L W W Lo W W W
. . . .

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX D

[§ 2 I ST T I SN

(SN

N R RTINS I TR UVRr A=

w o

INTRODUCTION

PURPOSE OF THIS Y3ALIDAT
REFERENCES . . .
DEFINITION OF TERMS
ACVC TEST CLASSES

CONFIGURATION INFORMATION .

CONFIGURATION TESTED

IVPLEFENTAT* 1 CHARRFTERISTICS

TEST INFORMATION

TEST RESULTS

SUMMARY OF TEST RESULTS BY CLASS
SUMMARY OF TEST RESULTS BY CHAPTER

AITHDRAWN TESTS
INAPPLICABLE TESTS

TEST, PROCESSING, AND EVALUATION
ADDITIONAL TESTING INFORMATION

Prevalidation .
Test Method .
Test Site .

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

COMPTILER AND LINKER OPTIONS

ICN SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT .

—

/=N DV SE UV I o 3 B)

13

.13
14

14

‘ODIFIC T ONS . 18

. 138
.19
19

Accession For

NTIS GRAKL E?

DTL" TAL 0
Unrwnounced J
Justirioation
By .

Distr‘bn?ion/

Availabilltv Codes
[Avaltl and/or
Spectal

|

Dist

z
I
P

INTRODUCTION

CHAPTER 1

INTRODUCTION

-

This Validation Summary Report “t¥SR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler wusing the Ada Coanpiler
Yalidation <Capability (ACVC). An Ada compiler nmust be implemented
according to the Ada Standard, and any implementaticn-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
aust be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results prcduced
during wvalidation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada conpiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler oproperly
inplements 1lagal 1language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but 1is permittaed by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

INTRCDUCTION

1.1 DPURPOSI OF THIS YALIDATION SUIMARY REPCRT

This VSR documents the rasults of the wvalidation tasting performed on an
Ada ceompiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supportad by
the compiler but required by the Ada Standard

AN

To deftermine that the implamentaticn-dependsnt behavieor is allowad

by the Ada Standard

Testing of this compiler was conducted by the AVF ac~ording to
proceduress established by the Ada Joint Program Office and administer:? bv

the Ada Validation Organization (AVQ). On-site tasting 733 conmpleted =2
Juns 1239 at T=212L2GIC AB, Jv=24zn.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
nake full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act”
{5 U.S.C. #552). The results of this wvalidation ipply only to the
computers, operating systems, ind compiler versions identifiad in this
raport.

The organizations represanted on the signature page of this report do not
represent or warrant that all statsments set forth in this report are
accurate and complete, or that the subject compiler has no nonconformitias
to the Ada Standard other :han thosz presented. <Copia2s of this report ars
available to the public from:

Ada Information Clearinghouse

Ada Joint Progran 2ffice

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3031

or from:

TABG mbH, Abr. SIT
Einsteinstr. 293
D-8012 Ottobrunn
West Germany

INTRODUCTION

a

W
W

ct U

i
2
AV

s
Lh SNV
ML
[TR
wv

ST
T
joa

this r=anort or thz validation test vrasults should b
list=d abov

[I

3
h

or okt
[\
javpge)
-+

[OTN A1

[o W)
}a

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard street
Alexanaria YA 22311

1.3 REFERENCES

1. PReferancs Manual for the Ada Programming Language,
ANSI/MIL-STD~-1815A, February 1983 and ISO 8652-1987.

tJ

Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

s
1
fon)

2
S

n

Compliar Validation Tapability Implemesnterc' Guide, SofTech,
., December 1985.

i
(9}

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACTC The Ada Compiler Validatisn Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commantary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
forn AI-ddddd.

Ada Standard ANSI/MIL-STD-1315A, Fabruary 1983 and IS0 8652-1987.
Applicant The agency requesting validation.

AVFE The Ada Validation Facility. The AVF 1s responsible for
conducting compiler wvalidations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVYVC has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for 7alidation of Ada
compilers. The AVO provides administrative and technical

INTRODUCTION

pors for Ada validations to ensure conslstant practices.

5u

3

Compiler A processor for the Ada language. In <the <context of this
report, a compiler 1is any language processor, including
cross-compilers, translators, and interpretars.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.
Tnapplicable An ACYC test that uses features of the language that a
test compilar 1s not required to support or may legitimately

support in a way other than the one expacted by the test.

Passed tast An ACVC test for which a compiler generates the expected

result.

Target The computer which exscutss the code generatad Dby the
compilar.

Tast A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not wused to check
test conformity to the Ada Standard. A test may be 1incorrect

because it has an invalid test objective, fails tno neaet its
test objective, or contains illegal or erronecus use of the
anguage.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACVYC. The ACYC
contains bcth legal and 1llegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which 1
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with <certain language constructs which cannot be verified at run
time. There are no 2xplicit program components in a Class A test to check
semantics. For example, a <Class A& test <checks that reserved words of
another language {(other than those already reservad in ths Ada language!

[I V1

wn
[A
O 3 w W
b

pa-

(IS
(S I S RV VRN Y

3oy
ron

[

n

[I DY

U b

oduces £}
he

W "o -

D n
o
3 (L
(9]

e

ct

g

1]

3
O

(v b4 po
A 13w
iy

i U)

[§9)
s
t?
L S o O W)
(‘) W oA
(o]
{1
'U [P
L §]
4o
b
oty)

(RS

le a
a Class
caedad,
successf

3
[]

f Y]

[

'N rn

onm

LU P

w

P
t

=
(

L5 T SR TS

a0

S
IL

-

Class E tests are
inplementation-dependent

of

the *test is classified as inapplicable.

axpacted

INTRODUCTI

3“d

the

3 ccapller detects 1llegal 1language

cutable.

n listing is exzmined to
the test 1s detected.

~antains 1s det

usage.
fach test in this class is compiled and

varifv that every syntax

A Class B test w's passed 1f

re that

~
A3

res

l2gal Ada progranms
ast is self-checking
age 1indicating the

system £o ensur
cuted. Each Class

JOT APPLICABLE s

ation and execution capacities of a compiler.
uiremants placed 2n a2 compiler by the Ada

2xamnplz, the number of :1dentifisars
number of units in a library--a ”Oﬂpller
Class D test and still be 31 conferming
D test fails to compile because the capac1ty of the
If 3 Class D
it is self-checking and produces a PASSED or

"3 N

23

e

[A TS A

O o O

ra

(¥R)—-‘
|

i

-

b

3

et 0

13
«
3

b

]

£y
-1
A

b

ully

ED message during execution.

to exacute successfully and check
options and resoclutions of ambiguities in the Ada

Standard. Each (Class E test 1s self-checking and procduces a NOT
APPLICABLE, DASSED, or FAILED nmessage when 1t 1s conpiled and =2xecuted.
However, the Ada Standard permits an 1implementation to reject programs
containing some features addressed by Class E tests during compilatiocn.
Tharefara, a Class E test is passed by a compiler if 1t 1is compiled
successfully and exacutes to produce a PASSED message, or 1f it 1s rejected

by the compiier for an allowable reascn.

7lass L 2373 check that incomplaete or 1llagal Ada pregrams involving
~ulrinla, separately compiled units are detascted and not allowed to
ax2cite. C11ss L tests are comniled separately and execution is ittempted.
A Class L test passes if it 1s rejected at link time--that 15, aa attampt
o axecut2 the main program must generats an error message hefore any
dz-laratizns in the =main program or any unifs referenced by the nain
pragram are elaborated. 1In some cases, an iaplementation nmay lagitimately
detact arrnors 4during compilation 2f the tast.

Tws libriry uni%s, the package REPORT and the procedura CHECX_FILE, support

che ga2lf-checking feat

orovides *he nechanism by which

0T APPLIZABLE results.
o 4ef23% 32ma canmpiler
wonld ecircusvant 2

tast

ures of the axecutable tests. The package REPCRT
axecutable tests report PASSED, FRAILED, or

It also provides a set of identity functions used
optinmizations allowed by the Ada Standar? that

nbjective. The procedure CHECK_FILE is usa2d to

INTRODUCTION

sheck o wha cantzents 58 Tkt filzs writtezn by som: 2f the Class T wssts for
Zhaptar 14 of the ida Standard Thz aperation 25 RIPORT and THECK_FILE 1is
chacked by a set of executablz tasts These tests produce messaga2s that
are 2xanined to verify thit “he unlts ire operiting corractly. If rhese
Uni*ts are not operating correctly, then the validatisn is not attampred.
The rtaxt of 2ach *test in the ACYC follows convzantions that are intended o
ansur2 rthit thz <2s%s are v=zasonably portiblz withcut ncdification Tor
avanpla, *the tests mak2 use 2f only the basic set of 55 ~haracters, czntiin
lines with a maxinun lzangth of 72 ctharactars, use small numeris 7aluss. and
tests, However, some ftasts contain viluese that raguive “h2 fs2s- %2 b2
customized according %o 1xpl=smentiation-specific wvalues--Icr =2xamnla. an
1llegal £ile nane. A list 2f <he wvalues used for <his wal:idat:ion :is
provided in Appendix 7

A cempiler nust correctly process =2ich 2f the

demonstrate confcrmity *to <he Ada Standard

criteria given for the t2st 2r -2y shewing shars

the 1aplementation. The 3pp.iziziliity of 1 3
considerzd each time th:2 1mplamentatisn 1s 713 S
inapplicable for one wvalidatiocn nct a2 Ly i"app l”lb;e for 3
subsequent wvalidation. Any test that was determ lned ro contain an 1llegal
language construct or an erroneous languags censtrict is withdrawn from the

ACYC and, ther=fore, 1s 1ot used 1in testing a compller. The *+asts
withdrawn at the time of rthis 7al:idation are given in Appendix D.

Pl died LAt TAITIAGY M A
CONFIGURATICN ITUFIRMATICON

CHAPTER 2

COURIGURATION THFoRUMALTION

and:idite compilatisn svstanm f£or this validatison was tzst2d undar
wing ccnfiguration:

Toeemeilovy ToliZanl Mda for iAo UIn 7LD Yiarzion o

iI77 Yarsion 1.2

Tartifizate Munmber: #82Q492I1.172123

Host Ccmputer:
Machine: Mimbus VX 137134) s
Zperiting 3Systan: Tntaractive UNIX sys 7.1.2

Memory Siz=: tJ M3

¢l

(1%

(9]
P

ons of

1 Zempiler 1in
to differ.

differences.
inmplementation.

3.

o

'~(Dv —“l"‘\f"“ BRIt

CONFIGURATICH

AT plAmETemT ~
TATION CHARACTERIS

Predefined types.

IHFORMATICN

the purpeoses of wvalidating compilers is to detzrmine the hehavwior sf
those ar=as of the 3ida Standard that pernit ’ﬂp-erentatl ns
Class D and E tests speciiically check for such :implezentat:cn
Howevar, %tests in othar classes alsc ~characterize 3n

The tests demcnstrate the fcllowing charactaristics:

Capacities.

1) The compiler corractly Jrocasses 3 zampillaticon
containing 723 variablas in the same daclarative part 1320
test D2900ZK.!

2) The compller corractly srocesses tasts3 zantaining
lcop statements nested %o 55 lavals {Sez tasts DI5A03A..H
{3 tasts}).)

3! h2 compilar corvettly oroC233ES t28%5 Tontiining
block statements nesnad w5 45 l272l3 "Se2 *23% D5500)

1} The ~ompllar corractly nrocasses tas*s z7ntilning
racursive procedures separitely sompiled 3s subunits nested e
17 levels. ({Sze tasts DA4005E..G (3 tests).)

1} This implementation supports the additiocnal przdefinad <vypes
LCHG_TUTEGER and LOMT _FLOAT in the ni1t%3ge
STANDARD. (Ses tests 386901T..Z (7 tests).)

Expression evaluatio

The order in which =xpressions ir= avaluatad and the “ime 3%t which

constraints are checked are not d=2{ined by "he language Yhilz2

the ACTC tests do not specifically attempt *o defarmine *h arder
of 2wvaluation of pra2ssions, test rasults indicat: th: following

1} Sorme of “he defanlt initialization 2XDPrassians
fsr record components are =2vainatad before any 112 i3
checked for mambarzchip in 1 component's subtyre. ‘Se rag*
73211740

2) Asszignments f£ar subtypes ar= performed with “ha 331m2
precision as the base type. {See test £35712B.)

3, This tmplementation uses 20 2xXtra bits for extra precision ind
1525 no 2xtra bits for extra range. (3See tast C3IE903A.)

COUFISURATION INFORMATION

1) TONSTRAINT_ERROP 15 riis=q for sraz-definad intager
compariscn tests, NUMERIC_ERROR is raised [{or large © integer
comparison and membership tests and no exception is raised for
pre-defined 1integer membership tests when in intz2ger literal
operand 1n a comparison or membership taest 1s outside the
range of the base type. (See t2st C452327.)

5} NUMERIC_ERROR is raisad when a 1literal operana in Y
fixed-point comparison or nembsrship test 1s cutside the range
of the base type. (Se2 “est C452821))

6} Underflow 1s gradual.
Rcunding.

The method by which values are rounded in type conversirmns is not
defined bv the language. While the ACVC tests do not spacifically
attempt to determine the method of rcunding, the test results
indicate the following:

1V The rathod used for rounding to integer 1s round to even.
(See tests C46012A..Z 26 tests).)

2} The anethcd used for rounding to longest integer 1s round
to even. (See tests C46012A..2Z (16 tests).)

3) The method us2d for roundirng %o 1integer 1in static universal
real expressions is round away from zero. (See test C4A014A.)

Arriy types.

An implementation is allowed to raise NUMERIC_EZRROR or
CONSTRAINT_ERROR fo- an array having a 'LENGTHY that axceeds
STANDARD.INTEGER'L . and/or SYSTEM.¥AX_INT. Tor this
implementation:

1} Declaration of an array type or subtype declaration with nmore
~han SYSTEM.MAX_INT componants ralises MNUMERIC_ER®CR for 13

two dimensional array subtype whera the large dirmensicn is thz
second one. (See test C360033)

[S9]
~—

CONSTRAINT_ERROR is raisad when 'LENGTH 1s apnliad %o 2n
array *“ype with INTEGER'LAST + 2 components. (See teast
£3652024.)

3) NUMERIC_ERROR is raisad when an array type with
SYSTEM.MXT_INT + 2 components 1is {eclared. fSee test
C36202B.,

4) A packed BOOLEAN array having = 'LENGTH exceeding INTIGER'LAST
raisas no exception. (See test C52103X.)

CONFIGURATION INFCORMATION

%) A packed twon-dimensional 200LEAN arrav «ith nqore than
INTEGER'LAST corponents raises CONSTRAINT_EZRROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test CS52104Y.)

6) In assigning one-dimensicnal array types, the expression 1is
avaluated in its entirety before CONSTRAINT_ERRCR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C520134.)

7) In assigning two-dimensional array types, the expressicn
is not evaluated in its entirety before CONSTRAINT_ERROR is
raised when <checking whether the expression's subtyne 1is
compatible with the target's subtype. (See test C52013A.)

3V A null array with one dimension of length greatar
than INTEGER'LAST nay raise NUMERIC_ERROR or
CONSTRAINT _ZRROR =2ither when declared or assigned.
ilternatively, 1n implamentatisn ~ay accept the
dzclaration. However, lengths must match in array
slice assignments. This implementation raises

no exception. (See test E52103Y.)

Jiscriminatad. types.

1y In assigning record types with discriminants, the expression
is evaluated 1in 1its entirety before CONSTRAINT_ERROR is
raised when <checking whether the expression's subtype 1is
compatible with the target's subtype. {See test C520131.)

Aggregates.

1) In the evaluation of 3 multi-dimensional aggregate, the test

results indicate that index subtype checks are
made as choices ar= evaluated. (See tests <C43207A and
C432078B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before bheing checked for
identical bounds. (See test E43212B.)

3) CONSTRAINT_ERROR is raised after all choilces are
evaluated when a bound in a non-null raage of 1 non-null
aggregate does not belong to an index subtype. (See test
$432118.)

Pragmas.
1) The pragma INLINE is supported for procedures, but not for

functions. (See tests LA3O04A..B (2 tests), EA3004C..D (2
tests), and CA3QQ4E..F (2 tests).)

[

CONFIGURATION INFORMATION

Generics.

This implementation creatss a Jdependence between a generic body

and those units which instantiate it. As allowad by AI-0043/11,

if the body is compiled after a unit that instantiates 1it, then
that unit becomes obsol=zte.

1) Generic specifications and bodi=zs can be compiied
in separate compilations. (See tests CAl012A, <CAZ009C,
CA20Q9F, BC3204C, and BC32Q05D.)

2) Generic subprogranm declarations and bodies cian te
compiled in separate compilations., {See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
ba compiled in s2parate compilaticns. {Sze test
£210123.)

4) Generic non-library package bedies as subunits can
be compiled in separate compilations. (See test Ca2009C.)

5) Genaric non-library subprogranm bedies cin be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separata conmpilations. {See tests CAa2009C,
BC3204C, and BC3205D.)

8) Generic 1library package specifications and bodies can
be compiled in separate compilations. {See tests
BC3204C and BC3203D.)

9) Generic unit bodies and their subunits can be

compiled in separate compilations. (See test CA3011A.)

Input and output.

1)

The package SEQUENTIAL_IO cannot be iInstantiatad with
unconstrained array types or record types with
discriminants without defaults. {See tests AE2101C, EE2201D,
and EE2201E.)

9)

10)

11)

12)

13)

14)

15)

CONFIGURATION INFORMATION

The rackage DIRECT_IO cannot be instantiated with
unconstrained array tynas or record types with
discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
{See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILEZ, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE and OQUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL_IO. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are suppcrted for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3194C, CE3110X, and
CE3114A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are given names and not
deleted when closad. (See test CEZ108A.)

Temporary direct files are given names and not
deleted when closed. (See test CE2108C.)

Temporary text files are given names and not deleted
when closed. (See test CE3112A.)

More than one internal fils <can be associatad with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

More than one internal file can be associited with
each external file for direct files when reading only. (See
tests CE2107F..H (3 tests), CE2119D and CE2111H.)

More than one 1internal £file can be assoclated with
each external file for text files when reading only. {See
tests CE3111A..E (5 tests), CE3114B, and CE31151.)

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 313 tests were inapplicable to this 1implementation,
211 inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the teasting reasults dzmonstrats acczptable
conformity to the Ada Standard.

3.2 SUMMARY COF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L
Passed 1271120 2019 17 23 45 3350
Inapplicable 2 9 296 0 5 1 313
Withdrawn 1 2 35 0 6 0 14

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 3 1 11 12 13 14
Passed 198 573 544 245 172 99 160 332 132 36 250 341 278 3360
HN/A 14 76 136 3 9 0 6 9 5 0 222 43 313
Wdrn 1 1 0 0 0 0 0 2 0 0 1 38 4 14
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests werz withdrawn from ACYC Version 1.19

at the time of this wvalidation:
E28005C A350056G B97102E C97116A BC30098B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A6HA (D2A66B
CD2A66C CD2A66D CD2AT3A CD2AT3B CD2A73C CD2A73D -
CD2AT76A CD2AT6B CD2ZAT6C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CDS0110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD72038B CD7204B CD7205D CE21071I CE3111C

CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 TINAPPLICABLE TESTS

Some tests do nct apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that 1s either 1inapplicable or
withdrawn. The applicability of a test to an implementation is considered
2ach time a validation 1s attempted. A test that is inapplicable for one
ralidation attempt 1s not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 313 tests were inapplicable for

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX _DIGITS:

C24113L..7 (14 tests) C3S705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

TEST INFORMATION

£35708L..¥Y (11 *asts) C35302L..2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C16012L..2 (15 tests)

C355081I, C35508J, C35508M, and C35508N are not applicable because
they 1include enumeration representation clauses for BOOLEAN types
in which the representation valuess are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-0032%, this implementaticn is
not required to support such reprasentaticn clauses.

C35702A and B86QOLIT are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this
implementation does not support 1 predefined type SHOPT INTEGER:

452318 C45304B C43502B C425038 €45504B
C45504E C456118 C156138B C45614B C45631B
C45632B B52004E CS55BQ7B BS55B09D B86QOLYV
CD7101E

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAX MANTISSA greater than
32.

C86001F is not applicable because, for this implementation, the
package TEXT_IO 1is dependant upon package SYSTEM. These ‘tests
recompile package SYSTEM, making package TEXT_IO, and
hence ©package REPORT, obsolete.

B86QO1X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B860Q01lY is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CA2009C, CA2009F, BC3204C and BC3205SD are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.2.h and
Appendix F of the Ada Standard).

LA3004B, EA3004D, and CA3Q04F are not applicable because this
implementation does not support pragma INLINE for functions.

i
i

]

w.

TEST INFORIATION

7DLA09C, CD2A41AL.B (2 tests), CD2ad
ire not ap“chable because of restric
for floating point types.

CD2A61I..J (2 tasts) arz not applicable because of restrictions on
'ST2E l=ngth clauses for arrav tvpes.

CD2A84B..I (8 tests) and CD2A34K..L {2 tests) are not applicable
becausa 2f restricticns on "SIZE length clauses f~r access types.
AF2:0.C, EE2281iD, and EEZ2I01E us:z instantiaticns of package

SEQUENTIAL IO with unconstrained array types and reccrd types vith
discriminants without defaults. These instantiaticns are reijected
by this compiler.

AE2101H, EE2401D, and EE2401G wuse instantiations of package
DIRECT_IO with uncenstrained array ¢types and record types with
discriminants without d=2faults. Thase instantiations are rejected
by this compiller.

CE2102D 1is 1inapplicable because this inplementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable Dbecause this implementation supports
CREATE with QUT_FILE mode for SEQUENTIAL_IO.

CE2102F 1is 1inapplicable because this implementation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

E2102I is 1inapplicable becauss this implenantation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2192J 1is 1inapplicable because this implementation supports
CREATE with QUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable hecause this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable hacause this implamentation supperts OCPEN
with QUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicablz because this implementation supports RESET
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO.

ac.

ah.

an.

15 toapnliczabls ka7iuse this
UT FILE ~od2 £or DIRECT I0.
£2102T 1s 1inapplicablz because this
PP

with IN_FILE node

CE2107B.

applicable
the same external fi

with
for

CE2107G..H {

for DIRECT_IO.

nipplicable because this i
node for DIRECT_IO.

e because this
DIRECT_IO.

Lo N ol

(4 tests), CE2107L,
because multiple iater
when

r=

"
I3

-

1’1
1

12

Tha

13
a
2

s (U =2t

~
)
o)
i

2 tests), CE2110D, and

2ESET

mplamentaticn supports RESET

OPEN

implamentation

suppor+ts RISET

CEIZ111D
be

ara not
associated

writing
ised when

and

w wu

CE2111H are not applicable

because multiple internal files cannot he associited with the same

2xtarnal file when one or more fi1les 1s writing for direct

files.

The proper exception is raised when multiple access is attempted.

CE3102E is inapplicable because text
1s supported by this implementation.

files CREATE with IN_FILE mode

CE3102F is inannlicable because tex* £il2 RESIT i3 gurnorted by
this ilmplementation.

CE3102G is inapplicable because text fils dezlatisn of an 2xtarnal
file is supported by this implementation.

CE31021 is inapplicable because text £fils CREATE with OQUT_FILE
mode is supportad by this implementiatinn.

CE3102J is inapplicable because taxt file OPEN with IN_FILE nxcde
is supported by this implementation.

CE3102K is inapplicable because taxt fils OPEN with AUT_FILE n~ode
is not supported by this implementation.

CE3111B, CE3111D. (2 tests), CE3114B, and CE3115A 1ars not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access

is attempted.

TEST INFORMATICH

.2 TEST O FROCEISIVG, AVD ZVALUATION MCDITTTATICUS

I 1s 2xpa2cted ¢ scme tasts will raquire zcdificaticns of =zcde,
$rIcessing, or 2valuation in order =+o <compensate for legitinate
irplamentation behavior. Modifications are "ado bj thz AVF in cases vwhere
i2gitimate impleme nfaflon hehavior pravents the successful completion of an
‘otherwisa’ applicabls zst. Examples of such =aedifications include:
adding a length clause t2 alter the default size of a collection; splitting
1 71358 3 ‘rest 1nto subtests so that all a2rrors are detacted; and
sonfirmiang “hat nmessages produced by an exescutabls tzst daronstrat:
zrrnformiag behavior that was net anticipatad by the tast fsuch as raising
sne exczpnian instz2ad of another).

The following *tests wer= spilt because syntax 2rrors it one point resultad
i a2

Y

not compilar not detectlng other errors in the test:
’RTIINLE 3ITIATLE 8710019 BTLAALY 3a300624 BA200%B
220378 Fasu0da BAJOUSB 3322137 {5 and T¥)
Tests (€34005G, C€34005J and C349006D returnad the result FAILED because ~f
false assumptions that an element in an array or a racord type may not be
represented more compactly than a singla object of that type. The AVO has
rulad these tests PASSED if the only message of failure occurs from the
requiraments of T'SIZE due to the above assumptions (T is the aray tyvpe).

Tasts CD2CL1A and CD2C11B contain 'SIZE length clauses for task types which
vera insufficient for this machine. These tests were modifiad tc include a
SIZT clause of IX.

IABG uses 3 modifisd body for the support package REPORT that prints an
I2BG specific time stamp. For the test CD599?E, this body caused this tect
to raise STORAGE_ERROR because of a stack overflow. So for this test, the
standard report package was used.

<«
<
b}

3.7 ADDITIOMAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a s2t of test results for ACVC Version 1.10 produced
by the TeleGen2 Ada for 336 UNIX V.3 Varsion 3.23 was submi“ted to the
AV® by the applicant for raview. Analysis of these results demonstrated
that the compiler succassfully passed all applicable tests, and the
zompiler exhibited the expected behavior on all inapplicable tests.

-

TEST INFORMATION

Testing of the T2leGen2 Ada for 386 UNIX V.3 Version 3.23 using ACVC
Yersion 1.19 was conducted on-site by a vilidation team from the
AVF. The configuration in which the testing was performed is
describ=d by the following designations of thardware and software
cempenants:

Host computer: Nimbus VX (80386) systenm
Host nperating systenm: Tnteractive UNIX sys V.3.2
Target computing sysftem: same as host

A streamer cassette containing the ACVC in original distribution format was
loaded to a UNIX machine with an Ada compiler where it was customized to
remove withdrawn tests and tests requiring unsupported flcating-point
precision. Tests that make use of implementation specific values were also
customized. Tests requiring modifications were loaded in their modified
forn. It was then transferred via EZthernet and s%r-imer cassetits to the
Nimbus V¥ system machine.

After the test files were loaded to disk, the full set of tests was
compiled, 1linked, and all executable tests were run on the Nimbus VX
system. Results were transferred via streamer cassette and Ethernet to a
YAX 8530 where they were printed and evaluated.

The compiler was tested using command scripts provided by TeleScft
and reviewed by the validation team. The compiler was tested wusing the
compiler call

ada -v -V 1000 -n <{main progranmn’ (compilation files»
and linked with

ald -v -V 1000 ¢nmain program>

The -L qualifier was used for class B tests. See Appendix E for an
explanation of these and other compiler and linker switches.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Tast output, compilation listings, and job logs wera
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the wvalidation team were also archived.

3.7.3 Test Site

Testing was conducted at TelelLOGIC AB, Sweden and was completed on 2 June
19239.

DECLARATION OF COMNFORMANCE

APPENDIX A

DECLARATION OF CONFARMANCE

21250ft has subnitted th 1lcowing Deslaraticn of Confornmance
concirning the Telzfenl Ad S 234 UNIDOYL.Y Varsicn 3,22

DECLARATION OF CONFURMANCE

Campiler Implementor: TELESOFT
Ada Valdation Facility: IABG, West-Germany
ACVC Version: 1.10

Base Compiler Name: TeleGen2 Ada for 386 UNIX V.3
Version: 3.23
Host Architecthre ISA: Intel 80386 in Nimbus VX system
QS & version #: Inmteractive UNIX sys V.3.2

Target Architecture ISA: Same as host
OS & version #: Same as host

Implementor’s Declaration

I, the undersigned, representing TELESOFT, have implemented
no deliberate extensions to the Ada Lanquage Standard ANSI/MIL~
STD 1815A in the compiler listed in this declaration.

I declare that TELESOFT is the owner of record of the Ada
lanquage campiler listed above and as such is responsible for
maintaining said compiler in conformance to ANSI/MIL~STD 1815A.
All certificates and registrations for the Ada language caompiler
listed in this declaration shall be made only in the owner’s

corporate name.

20 July, 1989
Telelogic AB, Ada Products Division

e R

. \(\
) D/ 2 N
Stefan BJjornsan, Manager Systens Software

Owner’s Declaration

I, the undersigned, representing TELESOFT take full respan-
sibility for implementation and maintenance of the Ada campiler
listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that the Ada language
compiler listed, and its host/target performance is in compliance
with the Ada language Standard ANSIMIL~STD 1815A.

20 July, 1989
Telelogic AB, Ada Products Divisian

. T SN Yoo
Stefan Bjomscn, Managex Systems Software

PPENDIX B

APPENDIX F OF THE Ada STANDARD

The anly 3llowad implementation denendanciss nzrraspond -3
implimentation-dzrendsnt 2ragnas, Lo certain nachine-dgpendent CORTEnTIONS
35 ~=n723ned in chapter 13 cf the Ada S«andard, and to <certain aliowed
rastrictisns on reprasentition clauses. The 1implementition-dependent
~haracteristics of the TeleGen2 ada for 386 UNIX V.3 Version 3.23, 1s
dsscribed in this Appendix, are provided by TeleSoft. Unless specifically
~atad otherwise, raferences in this appendiz are to compiler documentaticn
and not fto this report Implementation-specific portions of the package
STANDARD are given 1in A“oende F.

N .

R Y R "“C”"—""‘, I I

e S BN R IR T i R U RIS @:25‘:‘3‘.”):4**"

TeleGen2 User Guide fur UNIX

8.6. LRM Annotations

TeleGen2 compiles the full ANSI Ada language as defined by the Reference Manual for the
Ada Programming Language (LRM) (ANSI/MIL-STD-1815A). This section describes the
portions of the language that are designated by the LRM as implementation dependent for the

compiler and run-time environment.

The information is presented in the order in which it appears in the LPM. [n general.
nowever, only those language features that are not fully implemented by the current release of
TeleGen2 or that require clarification are included. The features that are optional or that are
implementation dependent, on the other hand, are described in detail. Particularly relevant are
the sections annotating LRM Chapter 13 (Representation Clauses and I[mplementation-
Dependent Features) and Appendix F {Implementation-Dependent Characteristics).

8.6.1. LRM Chapter 2.
‘'LRM 2.1} The host and target character set is the ASCIl character set.
'LRM 2.2] The maximum number of characters on an Ada source line is 200.

'LRM 2.8] TeleGen2 implements all language-defined pragmas ezcept pragma Optimize. if
pragma Opcxrmze ts inciuded in Ada source. the pragma will have no effect.

Limited support is availabie for pragmas Memory _Size. Storage_Unit. and Svstem_Name:
that is, these pragmas are allowed if the argument is the same as the value specified in the
System package.

Pragmas Page and List are supported in the context of source/error listings: refer to the
end of Chapter 3 for more information.

8.6.2. LRM Chapter 3.

'LRM 3.2.1; This release of TeleGen2 does not produce warning messages about the use of
ininitiaiized variabies. The compiler will not reject a program merely because it contains such

variabies.

iLRM 3.5.1] The maximum number of elements in an enumeration tyne is 32767. This
maxin. um can be realized oniy if generation of the image table for the type has been deferred. and
.here are nu references in the program that would cause the image table to be generated.
Deferrai cf image table generation for an enumeration type. P, is requested by the statement:

pragma [mages (P, Deferred):
Refer to ‘Implemen:ation-Defined P.agmas,” later in this chapter, for more information on

pragma [mages.

(LRM 3.5.4] There are two predefined integer types: [nteger and Long_Integer. The attribuies
of these types are shown in Tabie 8-7. Note that using explicit integer type definitions instead of
predefined integer types should result in more portable code.

8-44 UG-1313N-V1.2(388/UNIX) © 1989 TeleSoft 1SMA YS9

L RS-

b./!

Py BUAGE S RRE P St GRS e R i R g s

in et W e e g e SF S Lamal o L e b A 0 e s et e AR —
R T ST B e L A S R R U L e TN A —

PROGRAMMING GUIDE

Table 8-7. Attributes of Predefined Types Integer and Long_Integer

| Attribute ;_ [:Type |
; | Integer | Long_Integer |
First | -32768 | -2147433648 |
' "Last | 32767 | 2147483647 |
i'Size . 16 - 32 :
| "Widch '8 I11 |

" 'LRM 3.5.8) There are two predefined floating point types: Float and Long_Fiocat. The
attributes of types Float and Long_Float are shown in Table 8-3. This floating point facility is
based on the I[EEE standard for 32-bit and 64-bit numbers. Note that using explicit real type

aefinizions shouid lead to more portabdle code.

The type Short _Float is not implemented.

Table 8-8. Attributes of Predefined Types Float and Long_Float

; Attribute I : Type

; . Float ' Long_Float

' 'Machine_Overdows | TRUE . TRUE

' 'Machine_Rounds | TRUE " TRUE ;

. "Machine_Radix -2 2 |

' "Machine_Mantissa | 24 $ 53 f

' "Machine_Emax o127 . 1023 7

' "Machine_Emin b -125 | =102

! "Mantissa } 21 {3l

' "Digits | 6 13 ;

. 'Size | 32 | 64 l
‘Emax 34 i 204 \

- 'Safe_Emax | 125 | 1021 i

- "Epsilon | 9.33674E-07 | 3.88178E~16 :

' 'Safe_Large 4.25253E+37 { 2.247116418577T89E ~307

 'Safe_Small | 1.17349E-38 ’ 2.22507385850721E-308 |

' 'Large | 1.93428E~25 | 2.37110087081438E~61

- ‘Small i 2.38494E-26 | 1.99469227432161E-62

8.6.3. LRM Chapter 4.

‘'LRM 4.10| There is no limit on the range of literal values for the compiler.

'LRM 4.10] There is no limit on the accuracy of real literal expressions. Real literal

expressions are computed using an arbitrary-precision arithmetic package.

15MAYS89 UG-1312N-V1.2(3868/UNIX) © 1989 TeleSoft

8-45

=, .
' o T T e P T SR I
R N A U P T TR T T A Y N U L D e SO TR R e i

et B Pl S,y

ST N NI S B A SR S
DA SR TUL SN

B N et e T D 1T g Y, ST
C A A e ama” it Rt T T VL e ot e Lo ¥

TeleGen2 User Guide for UNIX

8.6.4. LRM Chapter 9.

'LRM 9.6/ This implementation uses 32-bit fixed point numbers to represent the type
Duration. The attributes of the type Duration are shown in Table 8-9.

Table 8-9. Attributes of Type Duration

| Attribute | Value |

‘'LRM 9.8] Sixty-four levels of priority are available to associate with tasks through pragma
Priority. The predefined subtype Priority is specified in the package System as

- subtype Priority is Integer range 0..63;

Currently the priority assigned to tasks without a pragma Priority specification is 31; that is:

(System.Priority'First -~ System.Priority'Last) / 2

LRM 9.11] The restrictions on shared variables are only those specified in the LRM.

8.6.5. LRM Chapter 10.

'LRM 10|/ All main programs are assumed to be parameteriess procc'ires or functions that
return an integer result type.

8.6.6. LRM Chapter 11.

‘'LRM 11.1] Numeric_Error is raised for integer or floating point overflow and for divide-by-
zero situations. Floating point underflow yieids a result of zero without raising an exception.

Program_Error and Storage_Error are raised by those situations specified in LRM Section
11.1. Exception handling is also discussed in the "*Exception Handling’’ section eariier in this

chapter.

8.6.7. LRM Chapter 13. As shown in Table 3-10. the current release of TeleGen2 supports
most LRM Chapter 13 facilities. The sections below the table document those LRM Chapter 13
facilities that are either not implemented or that require explanation. Facilities implemented
exactly as described in the LRM are not mentioned.

8-46 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft I5MAYS89

3"‘""’ "t‘ ""(- == —s“""’"‘"\"v:“ﬁ»lsv

Tt

PR [KIS '\m. z 1'
AR L T VI SRR P P .'.‘_:A-v -Lsr.

PROGRAMMING GUIDE

Table 8-10. Summary of LRM Chapter 13 Features for TeleGen2

13.1 Representation Clauses | Supported. except as indicated beiow (LRM 13.2 -
13.3). Pragma Pack is supported. ezcept for dynam-
icaily sized components. For details on the:
TeleGen2 implementation of pragma Pack. see Sec-
' tion 3.6.7.1

i1 13.2 Length Clauses Supported: ;
‘ 3 ‘Size ‘
' 'Storage_Size for coilections

J ‘Storage_Size for task activation

) 'Small for fixed-point types

& " Note: length clauses can be used to reduce the ‘Size -
of data types. ;

13.3 Enumeration Rep. Clauses Supported. ezcept for tvpe Boolean or types derived
; from Boolean. (Note: users can easily define a non-

’ ! Boolean enumeration type and assign a representa- |
: ! tion clause to it.)

13.4 Record Rep. Clauses | Supported ezcept for records with dynamically sized -
! components. See 3ection 8.6.7.4 for a full discussion

. of the TeieGen2 implementation.

Supported for: objects (including task objects). [

1113.5 Address Clauses ;
| .Vot supported for: packages. subprograms. or task

units. Task entries are not applicable to TeleGen2
host compilation systems. i
See Section 3.6.7.3 for more information.

13.3.1 Interrupts . Nou applicable to TeleGen2 host compilation sys--
tems.
12.6 Change of Representation Supported, ezcept for types with record representa-

~ion clauses.

15MAYS89 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8-47

- . - ‘ . . - .. e

. . . o . . = el N
- - . . - e T e T At A e ® K SO T e e : e e p [P - AT W7 -

~ TR T e T TN R S, Mg a6 TN b ocmrr T N A N At AN e Lo N S Y e Pty s € ot . LT AR T T

i ; oo g T I R A A T s T N T e s e D T T o A T R g e e S S e e

2D et -l .

TeleGen2 User Guide for UNIX

Table 8-10. Summary of LRM Chapter 13 Features for TeleGen2 (Contd)

------ Continued from the previous page -----

—T
13.7 Package System ' Conforms closely to LRM model. Refer to Section
i | 3.6.7.7 for details on the TeleGen2 impiementation.
13.7.1 System-Dependent Named | Refer to the specification of package System (Sec-

Numbers . tion 8.6.7.7).

Implemented as described in LRM ezcept that:
'Address for packages is unsupported.
"Address of a constant vields a null address.

13.7.2 Representacion Attributes

See Table 3-8. ‘

113.7.3 Representation Attributes of |
! Real Types !
Il13.3 Machine Code Insertions | Fully supported. The TeleGen2 implementation
L | defines an attribute. 'Offset, that, along with the
language-defined actribute 'Offset, ailows addresses
of abjects and offsets of data items to be specified in
stack frames. Refer to Section 8.5 for a full descrip-
tion on the implementation and use of machine code .
insertions. ‘ |
13.9 [nterface o Other | Pragma Interface is supported for Assembly, C. and
Languages UNIX. Refer to Section 8.4 for a description of the
I implementation and use of pragma Interface. |

1 13.10 Unchecked Programming f Supported except as noted below (LRM 13.10.1 and
13.10.2).

storage size.

13.10.2 Unchecked Type Conver- | Supported ezcept for unconstrained record or array .

113.10.1 Uncnecked Storage Deallo-) Supported ezcept for types with length clauses for
]
|
sions !

!
|
{ cation
l
|

types.

8.6.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeleGen2

impiementation.

a. With Boolean Arrays. You may pack Boolean arrays by the use of pragma Pack.
The compiler allocates 16 bits for a single Boolean. 3 bits for a component of an unpacked
Boolean array, and . bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array: the one below that illustrates a packed Boolean array:

8-48 UG-1313N-V1.2(3868/UNIX) © 1989 TeleSoft 15MAYS89

eeeeeeeeeeeee—————————— |

PROGRAMMING GUIDE

Unpacked Boolean array:

Unpacked Bool Arr_Type is array (Natural range 0..1) of Boolean
U B Arr: Unpacked Bocl Arr_Type := (True,False);

MSB LSB

7 0
0 1 | Element 0
0 0 | Element 1

--——---— Packed Boolean array: -——-—

Packed Bool Arr_Type is array (Natural range 0..6) of Boolean;
pragma Pack (Packed Bool Arr_Type);
P B Arr: Packed Bool Arr Type := (P_B_Arr(O) => True,
P B _Arr(3) = “True, others => False);

MSB/HOB LSB/LOB
13 T 0
ololo{ololofoloflolo[olo]o]olo [1]

b. With Records. You may pack records by use of pragma Pack. Packed records follow
these conventions:

1. The total size of the record is a multiple of 8.

2. Packed records may cross word boundaries.

3. Records are packed to the bit [evel if the elements are themseives packed.

Below is an example of packing in a procedure, Rep_Proc, that defines three records of different
‘engths. Objects of these three packed record types are components of the packed record Rec.
Lne storage allocated for Rec is 16 bits; that is, it is maximally packed.

15MAYS89 UG-1313N-V1.2(388/UNIX) © 1989 TeleSoft

e ———————,————

‘{4 - . - e ',~ e T O
. “ e e

- L ,‘”"‘J‘-,_w .'_.\iw I T Sl s v e
T - 3 By S
~ ;-&, ‘N"r" ": g ’2’3 - '\tu‘- -N\'tﬂxd—“‘.‘:‘)

- e

:_'.:_3—‘"\"." e P 3 '#“J.&:’_}!ﬂ"" 'ﬂ.v-,,., -;‘0-10"' '*{‘-\Miﬁ‘b'_ r~:‘_;h S e e ST

Fol e e wt -—

PROGRAMMING GUIDE

package Repspec_Example is
Bits : constant := 1;
Word : constant := 4;

type Five is range O .. 16#1F%;
type Seventeen is range O .. 16#1FFFF§;
type Nine is range O .. 311;

type Record Layout_Type is record
Elementl : Seventeen;
Element2 : Five;
Element3 : Boolean;
Element4 : Nine;
end record;

for Record_Layout_Type use record at mod 2;
Elementl at OsWord range O .. 16;
Element2 at OsxWord range 17 .. 21;
Element3 at OsWord range 22 .. 22;
Element4 at O=Word range 23 .. 31;

end record;

Record _Layout : Record Layout_Type;
end Repspec_Example;

8.6.7.5. Address Clauses [LRM 13.5]. The Ada compiler supports address clauses for
objects, subprograms. and entries. Address clauses for packages and task units are not

supported.

Address clauses for objects may be used to access hardware memory registers or other
xnown memory locations. The use of address clauses is affected by the fact that the
System.Address type is private. For the 80386 target. literal addresses are represented as
integers. so an unchecked conversion must be applied to these literals before they can be passed
as parameters of type System.Address. For exampie, in the examples in this chapter the
following declaration is often assumed:

function Addr is new Unchecked_Conversion (Long Integer,System.Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturaily, user programs may implement a different convention. Below is a sample program that
uses address clauses and this convention. Packar~ System must be explicitly withed when using
address clauses.

with System;

with Unchecked .Conversion;

procedure Hardware_Access is
function Addr is new Unchecked Conversion (Long Integer, System.Address);

Bardware Register : integer;
for Hardware _Register use at Addr (164FFO000%);

begin

ené'ﬁardware_Access;

15MAYS9 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8-51

.,

T aa e PR

. Se. v o m e
I S . s

L el Teel . e L~ - . . RN PR IS “-c e o PPN ——nA s
O BT e AR B\ R ety T - : Y Yea?7 o A e et = > U sy e =y 5 e A .
T A e e e e e e R e A T e S R L e A oy D B 8 e T a4t B

L e 1S T e’ s m—

TeleGen2 User Guide for UNIX

When using an address clause for an object with an initial value, the address clause should

immediately follow the object declaration:

Obj: Some_Type := <init_expr>;

for Obj use at <addr_expr>;
This sequence allows the compiler to perform an optimization wherein it generates code to
evaluate the <addr_expr> as part of the elaboration of the declaration of the object. The
expression <init_expr> will then be evaluated and assigned directly to the object, which is stored
at <addr_expr>. If another declaration had intervened between the object declaration and :the
address rlause. the compiler would have had to create a temporary object to hold the
initialization value before copying it into the object when the address clause is elaborated. If the
object were a large composite type. the need to use a temporary could result in considerable
overnhead in both time and space. To optimize your applications, therefore, you are encouraged
to place address clauses immediately after the relevant object declaration.

As mentioned above. arrays containing components that can be allocated in a signed or
unsigned byte (8 Dits) are packed, one component per byte. Furthermore, such components are
referenced in generated code by 80386 byte instructions. The following example indicates how
these facts allow access (0 nardware byte registers:

#ith System;
with Unchecked Conversion;

procedure Main is
function Addr is new Uachecked Conversion (Long Integer, System.Address);

type Byte is range -128. 127:
HW_Regs : array (0..1) of Byte;
for HW_Regs use at Addr (16#FFF310%};

Status_Byte : constant integer := O;

Next _Block Request: constant integer := 1;
Request_Byte : Byte := 119;

Status : Byte;

begin

Status := HW_Regs(Status_Byte);

EW_Regs (Next_Block _Request) := Request_Byte;
=nd Main;

Two bHyte hardware registers are referenced in the exampie above. The status byte is at location
16=FFF310# and the next block request byte is at location 16FFF311#.

Function Addr takes a long integer as its argument. Long.lInteger'Last is 16%7TFFFFFFF=,
but there are certainly addresses greater than Long_Integer’'Last. Those addresses with the high
bit set. such as FFFA0000, cannot be represented as a positive long integer. Thus, for addresses
with the high bit set, the address should be computed as the negation of the 2’s complement of
the desired address. According to this method, the correct representation of the sample address
above woula be Addr(-16#00060000+).

8.6.7.6. Change of Representation [LRM 13.8]. TeleGen2 supports changes of
representation, except for types with record representation clauses.

8-52 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 1SMAY89
et ——

‘ - e CL T e R . LA
. L~ NS

S T S e s R i Tac BNV S
D T R N a2

LES

B VRIS ey
[, R . NN

PROGRAMMING GUIDE

8.6.7.7. The Package System 'LRM 13.7!. The specification of TeleGen2’s implementation {
of package System is presented in the LRM Appendix F section at the end of this chapter.

8.6.7.8. Representation Attributes LRM 13.7.2]. The compiler does not support
'Address for packages.

8.6.7.9. Representation Attributes of Real Types [LRM 13.7.31. The representation
atcributes for the predefined floating point tvpes were presented in Tabie 8-3.

8.6.7.10. Machine Code Insertions 'LRM 13.8|. Machine code insertions. an optional
feature of the Ada language. are fully supported in TeleGen2. Refer to the *Using Machine Code
Insertions’’ section earlier in this chapter for information regarding their implementation and

exampieg on their use.

8.6.7.11. Interface to Other Languages LRM 13.9i. In pragma Interface is supported for
Assemnply, C. and UNIX. Refer to Section 3.4 ‘or information on the use of pragma Interface.
TeleGen2 does not currently allow pragma Interface for library units.

8.6.7.12. Unchecked Programming LRM 13.10]. Restrictions on unchecked
programming as it appiies to TeleGen2 are listed in the {ollowing paragraphs.

'LRM 13.10.2] Unchecked conversions are allowed between types (or subtypes) T1 and T2 as
long as they are not unconstrained record or array -ypes.

8.6.8. LRM Appendix F for TeleGen2. The Ada language definition allows for certain
target dependencies. These dependencies must e described in :he reference manual for each
implementation. in an “‘Appendix F' that addresses each point listed in LRM Appencix F.
Table 3-11 constitutes Appendix F for :this implementation. Points that require further
clarification are addressed in the paragraphs that foilow :he table.

15MAYS89 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8.53

L ___________________
LRGEN :’;".:*:E,‘::*::"*’t;*":": S s T T e i o R e .
TeleGen2 User Guide for UNIX
Table 8-11. LRM Appendix F for TeleGen2
) | {
(1) Implementation-Dependent Pragmas | (a) Implementation-defined pragmas: Comment, ;
3 Linkname. Images, and No_Suppress (Section °
% 3.6.8.1). |
: (b) Predefined pragmas with implementation- |
i dependent characteristics: :'
|
;’ = Interface (assembly, UNIX, and C). i
| (Section 8.4). Not supported for |
; library units. !
| = List and Page (in context of source/error :
| compiler listings) (Section 3.7.1.3). j
(2) Impiementation-Dependent Attri- i TeleGen2 uses one implementation-defined attri- |
butes ! bute, 'Offset, which, along with the attrivute "Ad- |
i dress, facilitates machine code insertions by allowing |
| user programs to access Ada objects with little date “
1 movement or setup. These two attributes and their
| usage were described in *“Using Machine Code Inser-
| . v . . . :
tions,’” earlier in this chapter.
"Address is not supported for packages.
1{3) Package System | See Section 8.6.7.7. :
1(4) Restrictions on Representation f Summarized in Table 8-10. ‘
Clauses
(5) Implementation-Generated Names | None }
(6) Address Clause Expression [nterpre- | An expression that appears in an object address .
tation ! clause is interpreted as the address of the ﬁrsz :
| storage unit of the object. i
(T) Restrictions on Unchecked Conver- | Summarized in Table 8-10.
sions |
«e--w=- Continued on the nezt page ----=--
8-54 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 15MAYS89

R

R M o ok S R A

R A L ol el

T TR T

*,\‘,'- R
S R RO Rl SITRE e

PROGRAMMING GUIDE

Table 8-11. LRM Appendix F for TeleGen2 (Contd) r
--=-=-- Continued from the previous page ------- ‘

type Count is range 0..5ystem.Max_Text_IO_Count:
--or 0..Max_Int—1 OR 0..2_147_483_646 J

2. In Text_JO, the type Field is defined as follows: |

|(8) Implementation-Dependent Charac- x} 1. In Text_JO, the type Count is defined as follows:
teristics of the ['O Packages. :

subtype Field is integer range
' System.Max_Text_10 _Field; |

3. In Text_IO, the Form parameter of procedures
Create and Open is not supported. (If you sup- '
ply a Form parameter with either procedure. it
is ignored.)

4. Sequential IO and Direct_IO cannot be instan-
tiated for unconstrained array types or discrim-
inated types without defaults. i

versions of Text_IO.Integer O for types Integer '
and Long_Integer and of Text_[O.Float_IO for |
types Float and Long_Float. We suggest that -
you use the following to eliminate muitiple in-
stantiations of these packages:

i Tnteger_Text IO
_} Long.Integer_Text_1O i
l’ Float_Text_JO
! Long_Float _Text IO ‘

l 5. The standard library contains preinstantiated
!
i
I

4.6.8.1. Implementation-Defined Pragmas. There are four implementation-defined
pragmas in TeleGen2: pragmas Comment, Linkname, Images. and No_Suppress.

8.6.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the
bject code. [ts syntax is:

pragma Comment { <string_literal>);

where **<string_literal>" represents the characters to be embedded in the object code. Pragma
Comment is allowed only within a declaraiive part or immediately within a package specificatisa.
Any number of comments may be entered into the object code by use of pragma Comment.

8.6.8.1.2. Pragma Linkname. Pragma Linkname is used to provide interface to any routine
whose name can be specified by an Ada string literal. This allows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a subprogram name that has been
previously specified in a pragma Interface statement. The second is a string literal specifying the

15SMA Y89 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8-55

ST e, T
e AF et

—ror L s e Uit ST Tl
B R Lot I = T S s AN Loy
s TR AT L IR IR W I

A AR S S PY e

TeleGen2 User Guide for UNIX

exact link name to be employed by the code generator in emitting calls to the associated

subprogram. The syntax is:

pragma Interface (assembly, <subprogram_name> };
pragma Linkname (<subprogram_name>, <string_literal>);

If pragma Linkname does not immediately foilow the pragma Interface for the associated
program, a warning will be issued saying that the pragma has no effect.

A simpie example of the use of pragma Linkname is:

procedure Dummy Access(Dummy_Arg : System.Address);
pragma [nterface (assembly, Dummy_Access);
pragma Linkname (Dummy_Access, "_access?);

8.6.8.1.3. Pragma Images. Pragma [mages controis the creation and allocation of the image
and index tables for a specified enumeration type. The image table is a literal string consisting of
enumeration literals catenaced together. The index table is an array of integers specifying the
location of each literal wichin the image table. The length of the index table is therefore the sum
of wne .engths of the literals of the enumeration zype: the length of the index table is one greater
than the number of literals.

The syntax of this pragma is:

pragma Imnages(<enumeratiou_type>, Deferred):
e OF =
pragma lmages(<enumeration_type>, Immediate);

The defauit, Deferred. saves space in the literal pool by not creating image and index tables for
an enumeration type uniess the ‘Image. 'Value, or 'Width attribute for the type is used. If one of
these atiributes is used. the tables are generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in more than one compilation unit. more
than one set of tables is generated, eliminating the benefits of deferring the table. I[n this case.

sing

pragma Images(<enumeration type>, Immediate);
wiil cause a single image table to be generated in the literal pool of the unit declaring :ae
numeration type.

For a very large enumeration type. the length of the image table will exceed Integer'Last
{the maximum length of a string). I[n this case, using either

pragma Images(<enumeration type>, Immediate);

or the ‘Image, "Value. or 'Width attribute for the type will result in an error message from the
compiier.

8.6.8.1.4. Pragma No_Suppress. No_Suppress is a TeleGen2-defined pragma that prevents
the suppression of checks within a particular scope. [t can be used to override pragma Suppress
in an enclosing scope. No._Suppress is particularly useful when you have a section of code that
reiies upcn predefined checks to execute correctly, but you need to suppress checks in the rest of

8-56 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 15MAY89

D) S el e 1 e Tl Y M T et Sk T e e 2 esa IS 4 g ok
R = I SRR MEPSEY] 3 Lt Mol e T ke s e D T e cl s T

PROGRAMMING GUIDE

~he compiiation unit for performance reasons.
Pragma No_Suppress has the same syntax as pragma Suppress and may occur in the same

olaces in the source. The svntax is:

pragma No_Suppress (<identifier> [, [ON =>| <name>]};

wnere <identifier> is the type of check you want to suppress (e.g.. access_check: refer %o

LRM 1L.7)

<name> is the name of the object. type,/subtype. task unit. generic unit, or subprogram

within which the check is to be suppressed: <name> is optional.

If aeither Suppress nor No_Suppress are present in a program, no checks will be suppressed.
You may override this default at the command level, by compiling the file with the —i(nhibit
option and specifying with that option the type of checks you want to suppress. For more
information on —i{nhibit. refer to Chapter 3.

f either Suppress or No_Suppress are present, the compiler uses the pragma that applies to
the specific check in order to determine whether that check is to be made. If both Suppress and
No_Suppress are present in the same scope, the pragma declared last takes precedence. The
presence of pragma Suppress or No_Suppress in the source takes precedence over an —i{nnibit

option provided during compilation.

8.6.8.2. Package System. The current specification of package System is provided below.

15MAYS9 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8-57

. C -
5% ; T gy 7
£ AW PY S Lial Vet S S L

- ~_‘ N el L I Db LN A ARYPAR I et -l . < et e s .. .
P o TRt D e L e T N A T T TN e ,*_"s“f',‘,f_\‘:’? ',"':',.': 5’1\ = «_5- “w fom T s
- — — e i = - - Tagnl =10 SRbA S ; .-

TeleGen2 User Guide for UNITX
PACKAGE System IS

TYPE Address is Access Integer;
TYPE Subprogram_Value is PRIVATE;

TYPE Name IS (TELEGEN2);
System Name : CONSTANT name := TELEGENZ;

Storage Unit : CONSTANT := 3;
Memory Size : CONSTANT := (2 ** 31) ~ 1;

-- System-Dependent Named Numbers:

Min Int : CONSTANT := (2 ** 31);

Max -at : CONSTANT := (2 == 31) - 1;

Max Digits : CONSTANT := 15;:

Max_Mantissa : CONSTANT :a 31;

Fine_Delta : CONSTANT :=2 1.0 / (2 **x “ax Mantissa);
Tick : CONSTANT := 10.0E-3;

-- Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE J .. 63;

PRIVATE

END System;

L 8.6.83.3. Representation Clause Restrictions. Restrictions on representation clauses within
. . . , . S . .
[2:eGen2 were discussed in *LRM Chapter (3.7 2artier in this section.

8.6.8.4. Implementation-Generated Names. There are no impiementation-generated
names o denote impiementation-dependent components.

8.6.8.5. Address Clause Expression I[cterpretation. An expression that appears in an
sDject address ciause is interpreted as the address of the first storage unit of the object.

8.6.8.8. Unchecked Conversion Restrictions. Restrictions on unchecked conversions were
discussed in *Unchecked Programming,"” eariier in this section.

8-58 UG-1313N-V1.2(3868/UNIX) © 1989 TeleSoft 1SMAYS9

N
B R A S S e T ST e AT AL s E e e R A ek S R e m e
PROGRAMMING GUIDE
8.6.8.7. Implementation-Dependent Characteristics of the I/0Q Packages. (
1. In Text_IO, the type Count is defined as follows:)
cype Count is range O..Long Integer’Last - 1
2 In Text_IO, the type Field is defined as follows:
subtype Field is integer range O..Text Manager.Field'Last;
3. Sequential IO and Direc: IO cannot be instantiated for unconstrained array types or
discriminated types without defaults.
4. The standard library contains preinstantiated versions of Text_IO.Integer_IO for type
Integer and Long._Integer and of Text_IO.Float IO for type Float and Long_Float. It
is suggested that the following be used to eliminate multiple instantiations of these
packages:
Integer_Text_IO
Long_Integer_Text IO
Float _Text JO
Long_Float_Text IO
15MAYS9 UG-1313N-V1.2(386/UNIX) © 1989 TeleSoft 8.59

. e

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Zz2r+ain tests in the ACYC maks usa of inplementation-dspendent vwalues, such
33 %hz maxioun langth o of an inpet lins and inralid f-le nanss. A test that
makzs us2 of such values 1s identifizd Ly the sxtensiza LTST 1n 1ts file
name. actual values to be substituted ars represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
balow:

fame and Meaning Value

SACC_SIZE 32

AD 1nteger literal whose v3lns
is the number of bits sufficient
to hold any value of an access
type.

$BIA_ID1 199 » "A' & "1
An identifier the size of the
zaximum input line length which
is identical to $BIG_ID2 except
for the last character.

S§3IG_ID2 199 * 'A" &
Aan 1identifier the size of the
maximum 1nput line length which
is identical to $BIG_ID1 except
for rhe last character.

(3]

3BIG_ID3 100 = 'A' & '3 & 39 * 'A’
An 1dentifier the size of the
maximum input line length which
1s identical to SBIG_ID4 except
for a character near the middle.

-

REW

W

and f:aning

A"

*

[

_ID4

An 1identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except

for a character near the middle.

(s}

~
M

$BIG_INT_LIT
An integer litzral of vilue 2938
#ith enough 1leading =zeroces so
that 1t 1s the size of the
raxinum line length.

$BIG_REAL_LIT
A universal real literal of
value $90.0 with enough l=ading
z2roes to be the size of the

~ ey - Y V- R
JAXITUD Sine LIhgthl.

SBIG_STRINGL
A string literal which when
catenated with BIG_STRING2
vields the image of BIG_IDI1.

$BIG_STRING2
A string literal which when
catanated to the end of
BIG_STRING1 vyields the image of

$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.

3COUNT_LAST
A universal integer
literal whose 7alue is

TEXT_IO.COUNT'LAST.

SDEFAULT_MEM_SIZE
An integer literal whose wvalue
1s SYSTEM.MEMORY_SIZE.

SDEFAULT_STOR_UNIT
An integer literal whose value
is SYSTEM.STORAGE_UNIT.

TEST PARAMETERS

Valna

100 = '3’

=
e
'
(¥e)
[Ne)
*
34

197 = '3 & "298"

195 * '0' & "590.0"

19 & 100 * 'Al & L]

P &99 * 'Al & lll & Ty

189 = " !

2_147_483_645

2147483647

Minz and Mszaning

$DEFAULT_SYS_NAME

The ralue of the sonstant
SYSTEM.SYSTEM _NAME.

$DELTA_DOC
A real literal whose 7alue 1is
SYSTEM.FINE_DELTA.

SFIELD LAST
A universal integer
literal whosa value 1s
TEXT_IO.FIELD'LAST.

SFIXSD_NAME
The name of a predefined
fixed-point tymne other than
DURATION.

SFLOAT_MAME
The name of a predefined
floating-point type other than
T LOAT, SHORT_FLOAT, or

LONG_FLOAT.

SGREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST o¢r any walue
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIDRITY
An integesr literal whose value
1s the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE_NAMEl

An external file name which

contains 1inwvalid characters.
SILLEGAL_EXTERNAL_FILE_NAME2

An external file name which

is too long.

TEZST PARAMETERS

1l ue

TELEGEN2

2#1.04E-31

1309

NO_SUCH_TYPE

MO_SUCH_TYPE

100_900.0

131_073.0

53

BADCHAR * " /%

/NONAME/DIRECTORY

SINTEGER_FIRST
A universal integer literal
whose 7value 1s TINTEGER'FIRST.

SINTEGER_LAST
A universal
whose value is

integer literal
INTEGER 'LAST.

SINTEGZR_LAST_PLUS_1
A universal

integer literal

ST~

SLEZSS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATIOM'FIRST or any value

T - - - -~ & (25 D at
in ths range I DURATIOH.

SLESS_THAN_DURATION_BASE_FIRST

2 universal real literal that 1is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY
An integer literal whose value
1s the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose
is SYSTEM.MAX_MANTISSA.

valne

SMAX_DIGITS

Maximum digits supported for

floating-point types.
SUAX_IN_LEN

Mazimum 1nput line length

permitted by the implementation.

A universal integer litzral

whose value 1s SYSTEM.MAX_INT.
SUMAX_INT_PLUS_1

) universal integer 1liftarial

whose value 1s SYSTEM.MAZ_INT+1.

TEST PARAMETERS

Valua

-32768

32767

32758

~100_000.0

-131_073.0

15

200

2117483647

2_147_482_648

L)

Mame ind Meaning

$UAX_LEN_INT_BASED_LITERAL

A universal intager based
literal whose wvalue 1s 2#114
with enough 1leading zeroes in
the mantissa to be MAX_IN_LEN
long.

$MAX_LZN_REAL_BASED_LITERAL
A universal real based literal
whose value 1s 16:F.E: with
enough leading =zeroes in the
mantissa to be MAX_IN_LEN long.

SMAX_STRING_LITERAL
A string literal of
MAX_IN_LEN, including the
characters.

size
quote

SMIN_INT
A universal
whose value is

integer literal
SYSTEM.MIN_INT.

SMIN_TASK_SIZE
An integer literal vwhose value
1s the number of bits required
to held a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
1ts body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,

SHORT_FLOAT,
LONG_FLOAT, or

SHORT_INTEGER,
LONG_INTEGER.

SNAME_LIST
A list of enumeration literals
in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT
A Dbased
highest

integer literal whose
order nonzero bit
falls in the sign bit
position of the representation

for SYSTEM.MAX_INT.

TEST PARAMETERS

Yalue

|l2:ll & 193 * IOI & llll:"
16" & 193 x 0" & "FLE:"
P & 198 * lAl & 110t
-2147483648

32

NO_SUCH_TYPE_AVAILABLE

TELEGEN2

164FFFFFFFES

Mam2 and Meaning

SHNEW_MEM_SIZE

An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, other than

SDEFAULT_MEM SIZE. 1If there 1is
ns ~ther valre. then use
SDEFAULT MM SIZE.

SNEW_STOR_UNIT

An integer literal whose valus

is a permitted argunent for
pragma STORAGE_UNIT, other than
SDEFAULT_STOR_UNIT. [If there is
no other permitted wvalue, then

use value of SYSTEM.STORAGE_UNIT.

1 7alue of the type SYSTEM.IAME,
other than $DEFAULT_SYS_NAME. If
there is only one value of that
then use that value.

STASK_SIZE
An integer lit=ral whose value
is the number of bits required
to hold a task object which has
a single sntry with one 'IN CUT'
varanetear.

STICK
A real literal
SYSTEM.TICK.

whose value 1is

TEST PARAMETERS

- o -
T TAEY

32

0.91

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A referenca of the fcrn
AI-ddddd is to an Ada Commentary.

1. E28005C This tas*t expects that the string "-- TOP OF PAGE. -
63" of line 204 will ippear 2% the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 39).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
waift altarnative (line 31).

d. C97116A This test contains --. . -~ litions, and it assumes that
guards are evaluated indivrisibly. A conforming implementation
may use interleaved execution in such a way that the avaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF_THE_GUARD results 1in a call to REPORT.FAILED at one of
lines 52 ~r 56.

@®

BC3009B This teast wrongly =2xpects that circular instantiaticns
will be detected in several compilation units even though none of
the units is illegal with raspect to the units it depends on; by
AI-00256, the ill=gality need not be detected until execution 1is
attemptad (line 9%5).

f. CD2A62D This test wrongly requires that an array object's size
te no greater than 1¢ although its subtype's size was specified
to be 40 (line 137).

wl

[

WITHDRAWN TESTS

e
1

TTOOAAIALLD, CD2AASALLD, TTIMNT3ALLT, TD2RTAALLD TLS5 tests) These
tast wrongly aftftempt to check the sizz of obizcts of 31 derive?
type (for which a 'SIZE lsngth ~lausz 1z ¢given) by passing them
t 1 derived subprogram ‘which i1oplisinly convert:s them to the
parent type (Ada standard 3.4:11)) . Additionally, they use the
"SIZE length clause and attribute whose iafterpratation is
censiderad prshlamatic by the WG9 ARJ.

JIC2MTLG, CTDIACIS, SULACAN oM, Lo fTECIIn R oengen] Thezz t2¢¢:
assumz rthat despendant tasks will tarminatz whil:z <he rain pro-
gram 2xacut2s a loop that simply tasts for task farminatisn; this
1s not the case, and the main progran 23y lcoccp indsfinitaly
‘lin=2s 74, 35, 8% & 3¢, 36 & 96, and 58, resp.)

CD2B15C & (CD7205C Thesz tests expsct that 1 'STORAGE_SIZEZ
langth <clause provides ©precise control over trhe number of
designatad objects in a collection; the Ada standard 13.2:15
allows that such zontrol rust nct be z2xjectad.

£D2DLl3 This test gives a SMALL rerzr:isczntaticn clause for a
derivad fixed-point type fat lins 39) that defines a set cof
model numbers that are not necessarily reprasented 1in the
parant type; by Commentary AI-00099, all model numbers of a

derived fixed-point type amust be rapressntable values of the
parent type.

CD59078 This ta2st wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-

related subprogram (line 303).

£D7004B, ED
various asp
withdraws ¢

7005C & D, ED7D06C & D [5 tasts] These tests check
zeots of the use of the threse SYSTEM pragnas; tha AVO
hese tests as being inappropriate for wvalidation.

CDp7135A This ftest raquiras that succassive calls to CALENDAR.
LOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is c¢cnly the expected Srzgozency o change that nust
he 3t least SYSTEM.TICK--particular 1nstancas nf 2shinga may be
less ‘line 29).

CD7203B, & CD72043 Thase t:sts use the 'SIZE length clause 1and
attributes, whcse interpratation is 7nonsidarad pvezlamatic hy
the WG3 ARG.

ZD7205D This *test checks an invalid ft=st objectiwa:; 1t treats
*ha specificzation of storage to be raserved for a task's
activation is thongh it wers like the specification of storage

for a collection.

"
.

w

WITHDRAWN TESTS

IE2IDTI This tast raqguirss tha%t chjscts of two similir scilar
types be distinguished when read from a2 £112--DATA_ZRROR is
expected to be raised by an attempt to read cne object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 99)

CE3111C This taest requiras certain behavior, when two files are
assnciatad with the same external filz. that 15 not required by

the Ada standard.

CE3301a This test <contains several calls to END _OF_LINE &
END_OF_PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 118, 132, & 1335,.

CE34118B This test requires that a text file's column number be
set to COUNT'LAST in order to check tnat LarOJT_ERROR 1is raised
=y 1 subsaqguant PUT cparation. But th2 former oneration will
zanarally riisz an 2xception due to a lack of avgllakle disk
space, and the tast would thus encumber validation testing.

CCMPITIR AND LIVUXER CPTIONS

- PP AN

APPENDIX E

COMPILER AND LINKEK OPTIONS

"ha descripclon in this appendix is given in terms of
th: TeleGen2 Ada SUN-386i compiler, which has axactly
the same options with exactly the same meaning.
References and page numbers in this appendix ars
consistent with compiler documentation and not with
this report.

ACR) I SER COMMANDS VCRTT
NAME
acr — Sun Ada Create-Suhbitbrary utility
SYNOPSIS
aer -1 -V vsm size; ‘-m max_size: sublibi.sub ...
DESCRIPTION
The acr command creaces an empty Ada sublibrary for each sublibrary named on the command
line. It builds both the sublibrary file and the corresponding object directory. The sublibrary file
1s a database that holds intermediate code and other data generated by a compilation. It has the
file extension ".sub"; this extension is optional when using acr. The object directory holds the
object code generated by the compilation or binding process, and has the file extension " ob)"
Once the sublibrary 13 created and initialized with the aer command. it can then be used as a
working elcmant of the Ada program library database to receive and store output from Ada
comptiations. See the Sun Ada User Guide for a full description of sublioraries and how they are
used in Ada compilations and in Sun Ada library managemenc utilities.
OPTIONS
-f Force creation of the sublibrary even if one of the name specified already exists. Use of
this option causes the old sublibrary o be averwritten.
-m maz_size
Set the maximum size of the the sublibrary database file to max_size pages. The pages
are allocaced in 1-Kbyte (1024-byte) blocks. Max size must be an integer value between
1.000 and 32.000. This value should not be arbitrarily large, as the library contains a
fixed-size page table whese size is proportional to the value parameter. The value is less
than 1000 units be~zi.e of the internaj sublibrary catalog size. The defauit size is 8192
Kbytes (about 8 MBJ, which allows the subiibrary to hold as many units such chac therr
size adds up to 3 MB subject to the 1000 units catalog limut.
-V vem_size
Set the size of the Virtual Space Manager’s buffer space to vsm _size Kbytes. The default
vsm_size for the commaad is 1500 Kbytes.
The optimal value for vsm_size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Sun dda L'ser Guiuc.
SEE ALSO

Sun Ada 1.2 Last change: 13 February 1988

acp(l). ada{1), als(1), amv(1), arm(1)

\DA) USER COMMANDS VD)

NAME
ada - Sun Ada Compiler

SYNOPSIS
ada -l libname -t templib -V vsm sizet -Cn: -E n:
-m unit -b. -Tn, -P options.ip objects. -0 file:
O key -G -1 fle:: -LFSdeksvx input spec

DESCRIPTION
The ada command calls the Sun Ada compiler. which comprises the front end. middle pass. ~ode
generation, and list generation phases. By default the front end. middle pass. and code generation
phases are executed. This process results in the generation of object modules, which are put ntwo
the object directory of the working sublibrary. Optionally. the Ada binder and native linker may
be be invoked to rreate an executabile file.

The command terminator, inpuc_spec, indicates the file or files to be compied. Any number 2nd
combination of files may be specified, up to the maximum line length. Files listed on :he
command line that have no extension are given the extension " ada" by the compiier. Source djes
that have the " ada" extension are assumed to contain Ada text to be compiled. whereas source
files that have the ".ilf" extension are assumed to contain a list of fils= to be compiled.

The temporary errors file is created in /tmp as errorXXXXXX with the "XXXXXX" being
replaced with the compilation process nu.noer to prevent file name collision.

Compilation errors as well as compiler driver errors (e.g. "file not found™) are output to stderr.
[nformational output will also be directed to stderr. Banner messages as provided by the -v option
are examples of informational output.

OPTIONS
Library Specificatian Optiona:

-1 itbname
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. [f this option is omitted.
and the -t option is not used, the default /1bist.alb is assumed to be the library. -l cannot
be used with -¢.

-t templih
Use templib as a temporary sublibrary list for this process. The -l option must not be
used when che -t opcion s given. The defauit sublibrary list file is not read. The irst
sublibrary in the list is the working sublibrary. Tempiib may be specifiea s
"sublibl.sublib2..." or as "sublibl sublib2 ...". -t cannot be used with -l.

-V vemn_aize
Set the size of the Virtuai Space Manager’s buffer space to vsm size Kbytes. The defauit
vsm_size for the command is 2000 Kbytes.

The optimal value for vsm _size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Sun Ada Lier Guide.

Comptler Ezecution Control Options:

-E n Abort compilation after n errors. Only errors detected by the front end phase are counted
The default is 999. Each error message type is counted independently of the others. For
example, in the default situation, the user may have 398 warning messages and 998 syntax

errors and the compilation wiil not abort.

-m unit
Treat "unit"” as a main program. After all files named in the input specification have been

Sun Ada 1.2 Last change: 15 February 1983

YRR

Qutput

-e

-k

-d

-0 key

-X

Sun Ada 1.2

USER COMMANDS PR

compiled. the Ada binder-and native linker ars nvoked. An executable nle named unit is
left in the current directory. If the main unit has alreadyv deen compiled. it does not have
to oe in the input file{s). However. it must be present in the current working subiibrary
[f the -m option 1s used. appropriate binder-linker options {-m. -b, -T. -P, -p} are passed
to the binder: linker (see ald(1}}.

Be verbose. Announce each phase as it is encered.

Control Options:

Only report errors: do not produce any objects. This option causes only the front end to
be executed. The front end detects all syntax errors and most semantic errors in the Ada
source code. Some errors, however, can be detected only by the middle pass and code
generator; such errors will not be detected when the -e option s specified. Examples of
such errors are fne those involving the legality of specific representation specifications and
violation of code generator capacity limitations. This option is meaningiess when used
with -k, -d. -O. and -x. since each of the latter options requires the production of code
generated after front end processing.

Keep the intermediate code (High Form and Low Form) for unit bodies in the library. By
default. the intermediacte coae for bodies is deleted from the library after code generation
to minimize library size. The intermediate code is used by the Ada Cross-Referencer (see
azr{l)) and the Source-Level Debugger (see adbg(l) and the -d option of the ada
command} and operated on by the Global Optimizer {see aopt{l) and the -O option of the
ada command)}. The -k option must therefore be used if any of these three programs are to
be used for any unit in the current source file. {An exception is that -k need not be used
when the -d option is used, since use of -d automatically sets -k.)

Provide for debugging. This optior ~auses the code generator to save information needed
by the Ada debugger, adbg, in the Ada program library. This nformation is used for
mapping between source and object code locations. and for locating data objects. The -d
option aiso causes some additional information to be output in object modules. However,
there is no impact on generated code per se. Use of -d automatically sets the -k option.

Optimize code for each unit being compiled. The optimizer optimizes each unit separately
as 1t 1s being compiled and does not make cross-unit optimizations. The argument to the
-O option, key, must be present and must immediately follow the option. This argument
provides details about how the units are to be compiled. For exampie. one of the key
arguments indicates whether subprograms being optimized may be called from parallei
tasks. See aopt(1) for information about acceptable key vajues.

Two other options may be used tn conjunction with —-O:

-G Generate a call graph for the unit(s) being optimized. Refer to aopt(l) for more
information. Note: in the Sun Ada User Guide. a discussion on the use of the -G
option with ada is deferred to the Global Opuimizer chapter.

-1 file Inline the subprograms listed in "file". Refer to aopt/I) for more information.
Note: in the Sun Ada User Guide, a discussion on the use of the -l option with
ada is deferred to the Global Optimizer chapter.

Generate profiler information and put it in the object module. Profiler information

includes execution timing and subprogram call information. If code 1s compiled with the
-x option. that option must aiso be used with the ald command when the program s

bound and linked (see ald(1}).
Use software floating-point instead of the defauit MCB88881 hardware floating-point

Last change: 15 February 1988 2

USER CONMMANDS VDN

support.

Listing Control Options:

Output a source f{isting interspersed with error information to sourcefile.l, where
"sourcefile’” is the name of the user-supplied source file without the Ada extension. If an
irput-list ile 1s to be processed, a !isting file is generated for each source file in the input
list. Each resulting listing file has the the same name as the source file, except it has an
" 1" axtension appended Lo it. For example, when this option s used with an inpuyt list
that contains 10 source file names. 10 listiaw files are generated as a resuit of the
comgilation. [f the -F option is used. the listing will not be interspersed. Instead errors
will foilow all vhe source lines.

D¢ .ot intersperse errors in source listing: put them after ali -,urce lines. This option is
used only with the -L option.

Provide n source lines as context with error messages. Th- default is 1. which is the
erroneous iine itseif. Context lines are placed before and after the error line in the error
Mmessage.

Send a source assembly listing to unit.s. where "unit” is the name of the unit in the user-
supplied scurce file. If an input-list file is specified. a listing file is generated for each
source file in the inpu.-list file. For example, when this option is used with an input-list
file that contains 10 source file names. 10 listing files are generated as a result of the
compilation.

acmp(1l). acp(l). acr(l), ald(1), als(1). amv(1l). aopt{l). arec(l), arei(l), arm(1),
asd(1l). axx(1)

' ALY
-L
-F
-Cn
-3
SEE ALSO
Sun Ada '.2

Last change: |5 February 1988 3

* \LDi USER COMMANDS Vi

NAME
ald - Sun Ada binder linker

SYNOPSIS
ald -llibname -t tempiibi -V vsm size: -T n. -P options, -p objects:

-0 name: -.bsvx. mainunit

DESCRIPTION
The aid command calls the Ada binder and linker. This command outputs the executable program
to file mainunit. The binder and linker are executed by default. The user may exclude the linker
from the run.
A library may be specified by using the default library file, libist.alb. specifying a library file with
the -l option, or specifying a temporary library list on the command line, by using the -t option.
Option pass-through to the native linker is provided.
The binder puts an eiaboration code file, mainunit.obm, in the working sublibrary directory.
If the native linker is not invoked, a link script file, matnunit.lnk. is put in the current directory.
This script file may may also be modified by the user so that other object code or special linker
options are used.

OPTIONS

Library Specification Options:

-l libname
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted,
and the -t option is not used, the default (tblst.alb is assumed to be the library. -l may not
be used with -t.

-t templih
Use templib as a temporary sublibrary list for this process. The -l option must not be
used when the -t option is given. The default sublibrary list file is not read. The first
sublibrary in the list is the working sublibrary. Tempiib may be spec.fied as
“sublibl.sublib2..." or as "sublibl subiib2 ...". -t may not be used with -l.

-V usm s1ze
Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm _size for the command is 2000 Kbytes.

The optimai value for vam size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Sun Ada User Guide.

Cther Options:

-b Run binder phase only. Elaboration code and a link script are produced. The link seript
1s p'1e in the file mainunic.ink.

-3 Use software floating-point support. By default, MC68881 hardware-floating point
suppoct i3 used.

-0 name
Use "name" instead of "mainunit" as the name of the executable file.

-P options
Pass options to the native linker. options must be a quoted string. This option is provided
as an escape to allow use of ail native linker options without producing and editing a link
script. An example is: ald -P -t -r' . Refer to the Sun Ada User Guide for more

.

Sun Ada 1.2 Last change: 17 February 1988 1

vs

\LD 1,

USER CONMMANDS LDy

information.

-p objects

-V

-X

Pass 0bjects to the native linker. objects must be a quoted string: it may include archive
files. This option is typically used with pragma Interface and the -l native linker option.
objects may be specified as "objectl object? .." An example is: ald -p ‘cosine.o
usr {th ltbm.a’ Refer to the Sun dda ['ser Guide for more information.

Note the -p and -P options are used Lo provide compatibility with the System V [nterface
Definition while dealing with the non-System V compatible id command |-]x).

Trace back depth of exception report. When a run-time exception occurs. the name of the
unit and the line number of where the exception occurred are displayed with a call chain
history. The number n, which is 13 by default, defines the levels of call chain history.

Be verbose. Announce each phase as it is entered.

Link in the execution profiler’'s run-time support routines. During program execution.
these run-time support routines record the profiling data in memory, then write the data
to files as the program terminates. Units to be profiled must be compiled with the -x
option of the ada command.

BUGS AND ENOWN LIMITATIONS
The body of the main program must reside in the current working sublibrary.

SEE ALSO

adal(l)

Sun Ada 1.2

[

Last change: 17 February 1988

