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Preface

This report is a collection of material that has been used
in courses on searchk, detection and localization modeling. 1Its
organization follows to some extent material by S. M. Pollock in
Selected Methods and Models in Military Operations Research which
is listed in the report bibliography. The report is not intended
to be a text on these subjects. In particular, in some areas it
does not provide the depth of coverage that is found in the book
Search and Detection by Alan R. Washburn which is cited in this
rveport as Reference 22.

In the third revision, typographical and other errors have
been corrected and, in addition, changes and additions have been
made to Sections XII and XIV of the report.
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I. Detection Models and Signal Detection The :xry .

Signal detecticn theory is the basis for analyzing the
detection models that are described in this report.{*In signal
detection theory, the decision making portion of a detection
system is called the receiver and a detection experimert is the
observation by a receiver ~f input data accumulated during some
time interval. The data that is related to a target is called
signal. Thz data that is not related to the target i: called
noise, In general, the target data is associated with a
1ocalizatiqp regi?githat in some cases is called a resclution
ceil. ﬁhen gr&eteééion experiment is performed, either the event
Hg = {(the receiver input is noise) or its complemant
H; = (the receiver input is signal and noise) wili occur. 1In
the first detection mcdels that are described here, after
analysis of the input data by a receiver, either the event
Dy ={the receiver decides the input is noise} or its complement
D; = {the receiver decides the input is signal and noise} will
also occur. Detection mndels for which Dy is the complement of
Dy are called binary detection models or forced choice detection
models. Four events which are important in binary detection
models are indicated in the Venn diagram of Figure 1.

The Venn diagram emphasizes a decision problem that is
agsrociated with a receiver that can be modeled using : binary

detect,on model. The problem is this: Uncer what conditionrs

should the event D; occur? That is, under what conditions




should a receiver decide that the input data accumulated during

the observation time interval is signal and noise?

Ho Hy
Do Dg n Hg Dg n Hl
Dy Dy n Hg D; n Hy

Figure 1. Four events of importance in binary detection models.

In the detection mcdel descriptions that follow, the
following notatio: and terminology are used: pg = P(Dy|Hg), the
probability of D; aiven H,, is called the false alarm
probability; pg = P(D;|H;), the probability of D; given H;,
is called the detection probability and P = P(H;), the
propaidility of H;, is called the prior probability.

In the detection models, the input to a receiver is
determined by & stochastic process that has the following
characteristics: 1t is a random noise proce .s when there is no
target data and it is a random noise process plus a signal
process when there is target data. Although the receiver input
process in scme cases might appear to be determined by a
continuous parameter stochastic process, because of the finite
amount of information (unigue data) contained in a boinded

sequence 9f finite length, a discrete parameter stochastic
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process is sufficient to determine the receiver input in these
cases. This is established formally by the stochastic sampling
theorem. Cunsequently, in these models, the input to a receiver
is determined by a sequence or random variables Y;, «¢+ ,¥, and
an observation yields a sequence of values yqy,...yp.

Three detection models are described in Section III. In the
first model, the signal process is a deterministic process. In
the second and third, the signal process is a random process. To
define a random noise process or a random signal process, only
the joint distribution of the finite sequence of random variables
that determine the process needs to be specified. If the signal
process is a deterministic process, the signal values can be

deternired before an observation is performed. To defina the

process in this case, only these values need to be specified.




II. Decision Criteria

To simplify the discussion of decision criteria and
decision rules, a receiver's input will be assumed to be
determined by a single decision random variable Y. In this
case, the input process in determined by the conditional
distribution function Fy(y|Hp) when the input is noise alone
and by the conditional distri‘:tion function Fy(y|H;) when the
input is signal plus noise.

The condition that a receiver's input is required to
satisfy in order that the event D; will occur can be specified
in terms of a decision rule. For the assumed case, a decision
rule is a rule which determines for every observable value of Y
the decision that the receiver is to make. The decision rule can
cred to he 2 function #{y)} which relatas each
observable value y to one or the other of the 'ollowing two
commands: dg = “decide that the receiver input was noise" and
d; = "decide that the receiver input was signal and noise".
Choosing a decision rule @(y) defines a set 1 of observable
values of Y such that the event Dy = ( Y & 02 }.

The prob.em which was considered in Section I can now be
restated in the following way: What criterion should be adopted
in order to determine a decision rule or, equivalently, its

corresponding set 1 ? A desirable characteristic tor a criterion

is suggested by the following argument: Counsider the odds in

favor of H; given y is observed. That is, consider .




P(H1lY = y)/P(HglY = y). One might expect that y would be a
member of the set 1 if and only if y made this ratio equal to
or greater than some value k. But this is equivalent to defining
fl as follows: N = { y : L(y) 2 K} where L(y) is the
likelihood ratio associated with an observed value y and K is
a constant related to the constant k. This suggaste that
choosing an optimum criterion is equivalent to choosing an
optimum value for K. Four specific decision criteria are defined
next in terms of K. For each criterion, 0 has the above
form. But for each criterion the choice of K 1s different.

The decision criteria are:

1. The Neyman-Pearscn Criterion: Choose 0 so that pg4
is a maximum subject to the constraint that pg < a where a |is
the constant K 1is chosen so that pg = «a.

2. ‘The Bayes Criterion: cChoose 1 80 that the expected
cost of a receiver's decision is a minimum. For a continuous
decision random variable, K = [{(cjp9-Coo)/(c01~-C11)]°(2-P)/P if
16 > oo and cg3 > ;33 Where cj4 is the cost of Dj n Hy.

3. The Ideal Observer Criterion: Choose 0 so that the
probability that the -eceiver nakes an incorrect decision is a
minimum. K = (1-P)/P for a contirucus decision random varjiable.

4. The Minimax Criterion: <Choose 0 when P is unknown so

that the maximum expecte.i cost of a receiver's decision is a

minimum. If c;g > cgg and cpy > c13, then




K = [(clo-coo)/(COI—cll)]-(1—P*)/P* for a continuous decision
random variable. Here, P* is the value of the prior probability
P that would make the expected cost of a rcceiver's decision a
maximum if P were known and the Bayes Criterion were used.

If a model which specifies the conditional distributions
Fy(y|Hg) and Fy(y|H;) and a decision rule are adopted, then
the value of pg and the value of pyg are determined. This
pair of values (pf,pq) is called a receiver operating point.
If the decision rule results from using a likelihood ratio
criterion such as one of the four listed above, then it will
involve the parameter K since 0 = (y: L(y) 2 K). And, for a
given value of K, since 0 uniquely determines the pair
(p£.Paq), a single operating point results. By varying K, a set
of cperating pointe can ke generated which determines a receiver
operating characteristic curve or ROC curve. Different ROC
curves can be produced by chanyging either one or both of the
conditional distributions which implies either a change in the
signal process or a change in the noise process.

A decision rule which results from using a likelihood ratio
criterion in a model ir which the input process is determined by
a set of m random variables can be expressed in terms of a set
R as follows: 0 = ( (Y1, *°** .¥Ym) : L{Y1, °*° ¥u) 2 K} where

K is specified in the same way that it is when m = 1.




III. Three Binary Detectiaon Modsls

Three detection models are examined in this section.

For the first two detection mcdels; the input stochastic process
for an observation is defined by a time sequence of continuous
random variables. The random variables represent a sample from a
continuous parameter stochastic process which is sampled at times
such that the random variables are independent. For the third
detection model, the input stochastic process is a counting
process and it is defined by a single discrete random variaple
that is equal to the number of events that are counted during the
observation.

Model I: In the first detection model, a sampled noise
value is a value of a ncrmally distributed random variable with
¢ and with known variance o¢°. And a sampied signail
value is a know value of a deterministic variable. Thus, the
input process corresponding to an observation consists of some
nunber m of independent normal random variables Y;, *°+ ,¥Ygy
each with variance o'. And, for { = 1,2, *++ ,m, when a signal
is not present the mean of Y; is zero and when a signal is
present the mean is sj;. The result of using a likeiihood ratio
decision rule in the model can be expressed in terus of a random
variable Z. This random variable is called a crosscorrelation
statistic and it is defined by 7 = £ 8;-Y; where the sum index
1 =1,2, *«+ ,m here and in the remainder of this section.

However, it is more convenient to express the result in terms of

a statistic V which is detired by V = 2/0,. 1In terms of t{his




random variable, the conditional probabilities pg and pg are
given by: pg =1 — 8(v*) and pgq = 1 ~ #(v* - dt) where @
symbolizes the standard normal cumulative distribution function,
v* = (1/0,)+(0'In K + (1/2) £ s]), is determined by tha decision
rule and d = % si/o. is called the detection index.

Often, the input stochastic process represents a quantity
whose square 1is proportional to power. In such a case, the
average receiver input power is the random variable = Yi/m. If
a signal is not present, the expected average receiver input
power is N = £ o'/m = ¢' where N is called the noisa. The
average receiver input signal power is § = % si/m where 8§ is
called the sigmal. In these terms, 4 = m*(S/N) where S/N is
called the signal-to~ncise ratio.

If a receiver's input can be considered to be a time
sequence of continuous voltage values such as in the case of a
sohar receiver, in some cases a frequency representation can be
used that involver the concept of receiver bandwidth. In these
cases, the noise process is assumed to be such that m = t/§t
where t is the integration time (the duration of an
observation) and &t is the time between samples with
§t = 1/{2(BW)] where BW 1is the bandwidth and &t is
determined by the sampling thecrem. This implies that the
detection index can be written as d = 2t-(BW)-(S/N). By
defining Ng as the power spectral density where Ng = N/BW  the

detection index can also be wiitten as d = 2t-(S/Ng).




In Reference 2, the conditions required by the first model
are called Case I and in the following sections the first model
is called the Case I model. A receiver that processes data
such that it would implement 2 likelihood ratio decision rule
under the conditions of the first model is called a matched
filter or crosscorrelation detector. If the description of the
input noise is adeguate, a Tase I wmodel can be used to obtain an
estimate of an upper bound on a detection system's performance,
since all the intormation necessary to defirne the signal is
assumed to be known.

Model II: In the seccnd detection model, a sampled noise
value is a value of an independent normal random variable with
mean zero and with known variance o'. And a sampled signal
value is an independent random variable with mean zero and with
known variance og. Thus, the input process corresponding to an
cbservation consists cf some number m of inrdependent normal
random varjables Y;,++¢,Y, each with mean zerc and each with

varisnce o' when a signal is not present and each with variarce

¢' + gg when a signai is present. The result of applying a
likelihood ratio decisinn rule in this model can be expressed in
terms of a statistic X which is defined by X = I Yi.

When a signal is not present, + e statistic X/N has a

chi-square distrikbution with m es of freedom. When a

signal is present, the statistic t+3}) has a chi-sguare

distribution with m degrees of freedom. So, in terms of these




the two conditional probabilities pg and pg

two statistics,
are: pg = P(Xa 2 x*/N) and pg = F(X& 2 (x*/N)-[1/(1+8/N)}}
where X is a chi-square random variable with m deqgrees of
treedom, x* is a number which Js determined by the decision rule
and S/N 1is the signal-to-noise ratio. A receiver that would
implement a likelihood ratio decision rule under the conditions
of the second model is called an energy detector or sguare law
detector.

The mean of a chi-square random variable with m degrees of
freedom is m and the variance is 2m. By the central limit
theorem, as the number of degrees of freedom of a chi-square
random variable becomes large, it can be approximated by a normal
random variable that has the same mean and variance. Therefcre,
approvimated by pe = 1 - #[1.*/N - m)/(2m)})

and "
ang e,

ca2n b

1

™ . a
Pr d
1

and pg = 1 - #{([1/(1+S/N;1[x*/N - m - m+(S/N)1/(2m)}}. And,
with v* = [(x*/N - m)/(2m)}] and 4 = (m/2)+(S/N)*, this
becomes: pr =1 - Q(V*) and pg =1 - 0{[1/(1+S/N)]-(v* - d*)}.
Based on the above approximation, if the noise N |is
gignificantly larger than the signal S, then pg and pq can
be approximated by: pg = 1 - #(v*) and pgq = 1 - #(v* - a}).
An?, if the concept of bandwidth is applicable so that the sa\ple
size m = 2t-(BW) , then d = t-(BW)(S/N)'. In Reference 2, the
conditions required for this approximation are callea Case II and
in the following sections this limiting form of the second model

Case II model.

is called the




Model IIX: In the third detection model, a sampled noise
value and a sampled signal value are values of independent random
variables that are determined b+ independent Poisson processes
that arc¢ observed for a time interval t. The noise process is
characterized by a counting rate a, the signal process is
characterized by a counting rate ag and the noise and signal
processes are additive. This implies that when the input is
noise alone, the input is a Poisson random variable with
parameter a-*t, the expected number of noise ccunts, and when the
inpuc is signal and noise, the input is a Poisson random variable
with parameter (a + ag)-'t, the expected number of noise and
signal counts.

For a likelihood ratio decisiop rule, pf =1 - P(Y*7t't)
and pg =1 - P[y*;(a + ag)+°t] where y* is a threshold value
that is determined by the decision rule and P(y:8) represents
tl'e Poisson cumulative distribution function with parametexr 6.
When © 1is large, the cumulative distribution function can be
appreoximated by the cumulative distribution runction of a normal
random variable that bhas the same mean and variance. Using this
approximation for cases where da°*t is sufficiently large, since
both the mean and variance of a Poisson random variable are equal
to 8, pg=1-2(v') and pg =1 - #({1/(1 + ag/a)}j(v* - ahy)
where v* = (y* - at)/(at)} and d = a-t-(ag/a)*. 1If, in
addition, a 1is sigrificantly larger than ag, that is, if

ag/a << 1 as well ag a-t >> 1, then pg and pyg can be

approximated by: pg =1 - Q(v*) and py =1 - $(v* - d‘).
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The third detection model might be used to describe a
receiver whose input for an cbservation is the number of photons
counted by a radiation detector in situvations where a‘t; the
expected number of counts when no signal is present, is of the
order of thirty or more.

When a likelihood ratio decision rule is used in the three
models discussed above, for the first model and under limiting
conditions for the second and third modelaz, the following result
is obtained: pg =1 - #(v¥*) and pg = 1 - #(v* - al) where the
value of v* depends on the noise power N for the first and
second models. For a sonar receiver described by the first
model, that is, by the Case I model: d = 2t (BW)(S/N). For a
sonar receiver described under the limiting conditicns for the
second model, that is, by the Case II model, d = %:{BW){(5/N}°.
So, in either a Case I model or a Case II model of a sonar
receiver, the detection index d is a function of the time
baniwidth product ¢t-(BW)} and the signal-to-noise ratio S/N.
Since sonar equations relate S/N to system, target and

environmental parameters, a sonar egquation can be used to relate

S/N to these parameters in a model of a sonar receiver.




IV. General Datection Models

The detection modeis that have been coasidered to this
peint are based on binary detection theory. After each
observation, a receiver decides either that the input
corresponding to the observation was noise or else it decides it
was signal plus noise. However, in some detection systems this
decision is delayed. In a computational sense, a model of such a
detection system is generally complex relative to a binary
detection model. To illustrate this, consider an active sonar
system whose receiver includes an operator. Suppose the
probability that the operator will detect a target echo has been
determined in a laboratory experiment in which the operator was
required to decide after each input corresponding to a resolution
cell that either the input was a target echo (signal) and noise
or the input was noise alone. In addition, suppose that under
operational conditions the opexator normally delays this
decision. Then, in general, the probability that the operator
will decide that the input corresponding to a resclution cell
that contains a target is a target echo and noise will not bhe
equal to the probability of the event in the forced choice
experiment. And, in addition, the probability that the operator
will decide the input corresponding to a resolution cell that
does not contain a target is a target echo and noise will not be
equal to the probability of this event in the forced choice

experiment. Consequently, in general, the value of koth pg and

i




pg for an operational environment will be different than that
for the laboratory environment.

One model that has been proposed to deal with this kind of
situation defines the event that a receiver decides that the
input corresponding to a resolution cell is signal and noise to
be equivalent to the event that out of n consecutive
observations at least k of thea would result in the decision
that the input was signal and noise in a forced choice
experiment. The model is said to be based on an k-out-of-n
detection criterion. With this criterion, the probability that a
target will be first detected on the jth cbgervation can be
found as follows: Determine the 2J sequences of forced choice
resnonses that could result for a sequence of i consecutive
obgervations. Next, determine the probability of occurrance f£or
each sequence that first satisfies the k-out-of-n detection
criterion on the jtP observation. The probability of first
detection on the jth observation is equal to the sum of these
probanilities. The cumulative probabiiity of detection at the

jth observation is the sum of the probabilities of first

detection on the iR observation for i = 1,2, ++¢ ,3.




V. Signal--to-Noise Ratio Detection Models

in some radar and sonar detection models, for a
specified value of ppg, a minimum acceptable value of pg is
defined. This wminimum acceptable value of pq and the specified
value of pg define what can be called a minimum acceptable
signal-to-noise ratio (5/N), if pq 1is a ncndecreasing
function of signal-to-noise ratio. In some sonar detection
models, (S/N)p in decibels is called the detection threshold
Dr. In symbols, DT = 10 log(S/N)gx. If the minimum acceptable
value of pg 1is .5, then DT is usually called the recognition
differential RD. The difference between the signal-to-noise
ratio in decibeis and RD (or DT) is callad the signal excess
SE. In symbols, SE = 10 log(S/N) - RD.

One interpretation of signal excess is that for a
localization region containing a target detection occurs with
probal Llity one if SE 2 0 and with probability zero if SE <« 0.
This interpretation provides the basis for defining detection in
the three encounter detection models that are discussed in
Secticn VII. A more consistent interpretation of signal excess
is: If SE 2 0, then the probability of detection pq is
greater than or equal to the minimum acceptable value (.5 1if
recognition differential RD is used to define signal excess).
For cases where pg Increases rapidly with signal excess in the

neighborhood of zero signal excess, tae two int«rpratations ray

be operationally equivalent. For a discussion of this point as




well as a discussion of an operational case in which receiver
decisions are delayed, see Reference 3.

Signal excess (signal-to-noise ratio) detection models
provide a basis for general detection models, in particuiar,
models that describe nonstationary noise and signal processes and
randomly changing decision rules. This is illustrated by the
models described in Section VII. In addition, aignal excess
models provide a basis for delayed receiver decision mndels.

This is illustrated by the active sonar detection models in both
Refarence 4 and Reference 5 that are based on a k-out-of-n
detection criterion. 1In all of these models, the signal-to-noise
ratio and the recognition differential are random variables.

Using X(t) to represent a random vavriable corresponding to
an index time T© and a subscript to identify ths randem variable
in such models, for a passive sonar receiver, the signal-tc-noise
ratio in decibels associa.ed with a decision at the index time
is: Xgp(t) - Xpp(t) - [Xyp(t) - Xpr(t)l. 1In this expression,

SL represents source level, TL represents transmirsion loss,
NL represents noise level and DI represents directivity index.
Since signal excess SE is defined to be the difference in
decibels between the signal-to-noise ratio aid the recognition
differential (or detection threshold}, it too 1s a random

variable and, for any decision time t, one can write:

(1) Xggp(t) = Xgp(t) - Xppr(t) - [Xyp(t) - Xpp(t)] - Xgp(t).

The distributions of the random variables on the right side of

Equation 1 determine the distribution of the signal excess. In
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the passive sonar detecticn model described 1n Reference 6,
Xgr(t), Xgp(t) and, ir effect, Xyp(t) are normally
distributed random variables while Xpr(t) is a uniformly
distributed random variable. 1In the three sic \al excess models
that are described in Sectiocn VII, all of the random variables in
Equation 1 are normally distributed.

It is sometimes convenient to write Equation 1 as follows:
(2) Xgg(t) = SE(t) + X(t).
In Equation 2, SE(t) is the expected value of the signal excess
determined by the following expected value equation:
(3) SE(t) = SL(t) - TL(t) - [NL(t) - DI(t)] - RD(t)
where each term on the right represents the expected value of the
indicated random variable and X(t) is a random variable that
determines the stochastic character of the signal excess. Since
SE(t) is the mean of Xgg(t); by Equation 2, the mean of X(t)
is equal to zerc and the standard deviation of X(t) is equal to
the standard deviation of Xgg(t). If o represents the
gtandard deviation of Xgg(t) and the random variables on the
righi side of Equation 1 are statistically independent, then
« = oéL + oéL + oﬁL + 061 + aﬁD. This relation has been used to

determine a standard deviation for the signal excess in

operational models.




V1. General Encounter Models

A basic problem associated with search modeling is that
of determining the probability that a target will be detected by
a detection system during an encounter with cne or more detection
systems. In the encounter models that are considered in this
report, during a search, observations are made of a aeries of
localization regions. The probability of detection on an
observation is P(D; n Hy). The probability of a false alarm on
an observatjon is P(Dy; n Hg). In these models, the time to
resolve a false alarm is ignored. However, pgq and pg are
assumed to be determined by some criterion such that pg is an
operationally reasonable value.

Using the order number of a decision rather than its time as
am indax r ion decisions for localization regions
that contains a target and a random variable N to represent the
decision order number at which detection first cccurs, the

probability of detection during an encounter can be written as:

P(N<n) = P(N<m) + P(N=mtl) + »+¢« + P(N = n) or egually as
P(Nsn) =1~ [1-P(N<mwj]-(1l~gpp) *** (1 -~ gp) where
gi = P(N = i|N < i—i) is the probability of the event detection

at the ith gecision conditioned on the event no detection at an
earlier decision and 1 € m € n. The second expression is
generally of greater interest than the first expression, since
gij can usually be more directly related to operational
parameters such as range and cnvironuental conditions that

determine a target's detectability than can P(N = i).

18




With a time rather than the order number to index a decision
and a random variable T to represent the time index at which
detection first occurs, P(N < n) becocmes P(T < t,) with
P(T S tp) =1 - (1 - P(T < ty)]+ (1 - g(ty4r)] = [1 - g(tp)]
whera g(tj) = P(T = t4|T stj_;)-

If g(t;) << 1 for i =1,2, *++ ,n, then, to a first
approximation, 1ln[1 - g(tj)] = -g(tj) for 1 = 1,2, -+« ,n and
P(T S ty) =1 - [1 ~ P(T S ty) ] exp[-E g(ty)]. This follows

since P(T < tp)

[

1 - ({1 - P(T £ ty))eexp(E In(1l - g(ty)] where

]

the sum index i w+l, *++ ,n. A continuous analog to this
approximation can be used to describe an encounter for which
g(ty) << 1 for i = m,m+1l, -+ ,n and decisions during the
encounter can ke considered to occur continuously. That is, the
time of an uvbservation corresponding to a dscision and the tims
between decisions are both negligible relative to the time of the
encounter.

The analog can be developed as follows: First, let &t be
the time between decisions, then tj = i-6t and the probability
of detection P(T < tp) =1 - [1 - P(T £ ty) ] exp[-T 71(tj)- 5t)
where 7T(tj) = (1/8t)-g(ty) is a detection rate function

(a probability of detectior. per unit time) and, in terms of §t,

the probability g(tj) = P[T = i-ft|T < (i-1)-5t).

If T is considered to be a continuous random variable, the
expression for P(T < tj) akove indicates that the sum in the
exponent should be replaced by an integral whose integrand is a

continuous function 7T(t). If 1T(t) can be determined, then,
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with g(tj) a3 a guide, the cumulative probability of detection
P(T < t) can be def. ed by:

(4) T(t) = 1im {(1/6t) P(t < T S t+5t|T < t))

where the limit is for &t approaching zero. Equation 4
implies the differential equation: dp(t)/dt = {1 - p(t)]-T(t)

where p(t) = P(T € t). A solution to this equation is:

tn
(5) P(T £ tn) =1 - [1 - FT < tm)] exp[—Itm T(t)dt)

where t is the time index for a decision during an encounter, tm
is some time during the encounter and tn > tm. A 7(t) that is
based on a visual detection model is described in Reference 7.
If the detection capability of a detection system is assumed to
depend on a target's position relative to the detection system
during an encounter but not toc depend on the clock time, then the
tina index of a decision can ba a reiative index thai deiermines
the target position that is associated with a decision rather
than the clock time associated with the decision.

The above results apply to the case of an encounter between
a target and a collection of detection systems. However, if ths
detection systems are not collocated, it is generally convenient
to describe encounters of this kind in terms of encounters
between the target and the individual detection systems. In
either case, if the event target detection for a detection system
is not independent of the event for other detection systems, then
in order to describe this in an encounter model the correlation
betweeri the input to the detection system and the inputs to the
other detection systems must be specified. This has been done in
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some modeis as follows: First determine the probability of
detection for each system acting alone. Let Pj be the
probability that the ith system detects the target during the
encounter under this condition. Next, consider twoc cases: In
the first case, the random factors that determine detection for a
systen ara independent of those that determine detection for the
remaining systems. In the second case, the random factors that
determine detection for the systems are completely dependent. In
the first case, the probability that at least one system detecte
the target is given by: Py =1 - (1 - Pj)-(1 - Py) -+ (1 - Pp)
where un is the number of detection systems involved. 1In the
second case, the probabkility that none of the systems detect the
target is given by: 1 - fn = 1 -~ Py where Py 2 Py for

i=1,2, **+ ,n since if the ath systasm does ncet detect the
target, none of the remaining systems -ill detect it. The
probability that x«t least one system detects the target is given
by: P =a*Pp + {1 - a)P;y where a determines the degree of
correlation and ¢ € a £ 1., A way to determine a value for a

is described in Reference 8.



VII. Three Signal Excess Encounter Models
In the three models described in this secticn,

detection is defined in terms of signal excess as it is in
Section V. Each model determines a cumulative probability of
detection for a target in an encounter with a passive sonar
system. An observation in the medels is indexed by time and the
index can usually be ccnsidered to be the time at the end of the
observation. During an encounter, observations are made of one
or a series of lccalization regions. By implication, a false
alarm can occur for a iocalization region that does not contain a
target during an observation since the value of RD (or DT) is
deterwined by some specified false alarm probability. However,
as thsy are generally used, signal excess models do not account
for false alarms. This can be viewed as equivalent to modeling
the time to resolve a false alarm to be effectively zero.

To determine signal excess in the models, it is convenient
to use Equation 2. For each decision in an encounter, there is a
random variable X(t) defined by Equation 2 that determines the
random character of the sig al excess. For a sequence of
decisions, the set of these randcm variables ordersd by their
time index constitutes a stochastic process. And the joint
distributions of these random variables determines the nature of
the stochastic process. In the three encounter models described
in this section, the stochastic process is called a lambda-sigma
jump process. The time series that are generated by lambda-sigma

Jjump processes are represented by the plot in Figure 2 below.
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The jumps in the time series occur at timee determined by a
Poisson process with a mean jump rate lambda. This implies that
the time between jumps is a random variakle with an exponential
distribution and that the expected times between jumps v |is

equal to the reciprocal of lambda.

1 T T T T T T T time

Figure 2. A time series representing a realization of a lambda-
sigma jump process. On the plot, o in dB equals one unit on
the vertical axis and 71 equals one time unit on the horizontal

axis.

From Figure 2, note that the observed values of neighboring
randomr variables are egual unless a jump has occurred between
the observations. When a jump occurs, the first ran”»m variable
after the jump is normaily distributed with mean zero and

variance ot

and it is independent of all the random variables
before the jump. Conditicored on a jump rattern, this random

vuriable and all the random variables between it and the next
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jump are dependent and the correlation coefficient between any
pair is one. That is, if the value of the signal excess is known
at some time, then all of the values between the last jump before
that time and the first jump after that time are also known.
However, since the jumps occur randomly, knowing the value of the
signal excess with certainty at some time does not determine the
values of the signal excess with certainty at neighboring times.
In the unconditioned case, the correlation coefficient between
the random variables X(t) and X(t+7v) 1is equal to 1/e. For
this reason, 1 1is referred to as a relaxation time.

It appears that the use of the lambda-sigma jump psrocess is
based more on past practice than on experimental justification.
In this regard, see Reference 9. By referring to Equation 1, it
can be seen that the lambda-sigma jump prccess is determined by
the sum of the stochastic processes that detéermine the randem
variables on the right side of this equation. Although the sunm
of a collecticn of normal random variables is a normal random
variable, the sum of a collection of lambda-sigma jump processes
is not a lambda-sigma jump prxocess. This suggests that if the
lambda-sigma jump prrocess does adequately describe the
variability of the signal excess, then the majority of the
variability of the signal excess may be due to a single cne of
its elements. For example, transmission loss.

In the three encounter models described below, detection is
defined ir. terms of signal excess as described in Section IV and

decisions are indexed by a time that can usually be considered to
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be the time of the decision. During an encounter, observations
are made sequentially of one or a series of localization regions
(resolution cells). For a localization region that does not
contain a target, the signal observed during the observation of
the region is zero. For these observations, the time to resolve
a false alarm is zero. However, since the value of RD {or DT)
is finite and consequently the false alarm probability is not
zerb, by implication, the cost associated with a false alarm is
not zero.

The First Passive Sonar Encounter Detaction Model: This
model describes an encounter in terms of a series of decisicne
with each decision based on the signal excess Xgg(t) at a time
corresponding to the end of an observation. The observations are
of equal duration and the integration time that determines the
recognition differential is equal to the duration of the
cbservations. In the model, Xgg(t) is determined by a laxbda-
sigma jump process. For an encounter of m ok servations in
which SE(t) is unimodal and in which the time of the single
maximum is prior to or at the end of the encounter, it is shown
in Reference 10 that the prcbability p that detection will
occur during the encounter is given by the fnllowing equation:
(6) P=1=-[(1 -pc)/(1 ~Bpcl]*(1 = Bepy) *** (1 = B*Pm)
where B =1 - exp(-ft/1) and pj = #[{SE(ty)/0] for 1 =1,2,
ses ,m. Here, &t incicates the duration of an ohservation and
¢ indicates the standard normal cumulative distribution function

as before. The integer ¢ is the index of a decision time t.
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for which SE(t.) is greater than or equal to SE(tj) £for any
time ti and t; < t, < tg.

As 1 approaches zerc, B approaches one and Equation 6
approaches this form:
() p=1-(1~-pj) *** (1 - Pn).
In this limit, the signal excess random variables are all
independent. Note that Equation 7 applies without the condition
that SE(t) be unimodal.

As 1 approaches infinity, § approcaches zero and
Equation 6 approaches this form:
(8) p = pg-
In this limit, the correlation coefficient between any pair of
signal excess random variables is ejqual to one. Note that

e A

Equation 8 applies without t

PR A
e condi

unimodal. Equation 8 defines a complete dependence encounter
model.

The Second Passive Sonar Encounter Detection Model: This
model is in a sense a third limiting form of the first passive
sonar encounter detection model. In this l:mit, the time between
decisions approaches zero. However, in this limit the
integration time that determines the recognition differential is
noct equal to &t and it does not approach zero. It is, in
effect, chosen by the user of the model through the user's choice
of the value for the recognition differential. For an encounter

that begins at tl1 a«nd ends at t2 and for which Xgg(t) is

uetermined by a lambda-sigma jump process and SE(t) is




unimodal, it is shown in Reference 10 that for this limit,

Equation 6 has the following form:

t2
3 p=1-(1- p(tc)]'expl'(i’T)'Itl p(t) at]

wvhere p(t) = #[SE(t)/0] and where now t. is the encounter
time such that SE(t.;) is greater than equal to S8E(t) Ior any
other encounter time t and t1 < t, < t2.

The Third Passive Sonar Encounter Datection Model: This
model describes an encounter between a target and a passive sonar
detection system in which detection occurs during an ancounter if
the average value of the square of the continucusly observed
signal-to~noise ratio over a time interval of length u is
greater than or equal to the square of the signal-to-noise ratio
that date;minas the recegniticn differential for an intagration
time equal to u. With Kk(s) the random signal-to-noise ratio
at a time s and Ry(u) the random sigral-to-noisme ratio that
determines the random recognition differential for an integration
time u, detection during an encounter occurs at the first time

t that the following inequality is satisfied:

t
(10) (1/u) Jt-u [R(8)/Rp(u)]* des 2 1
where the time origin is chosen so that t 2 0 and where the
integration time u =t for t <ty and u = tg for t 2 &
where t; is a maximum integration time. The random integrand
in the inequalitv is related to the random signal excess at the
time 8 for an integration time u. The relation is:

(11) 10 log [R(8)/Tp(u)])® = 2[SE(s:;u) + X(8)]
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where SE(s;u) 1is the expected value of the signal excess at a
time 8 for an integration time u and X(s) is the random
component of the signal excess at the time s. In the model, 'iif;
X(s8) is determined by a lambda-sigma jump process and SE(s;u)
is determined by an expected value sonar equation with a
reccgnition differential RD(u) = 10 leog rp(u). Hexre, xp(t) is
the value of the signal-to-noise ratin that gives a probability
of detection equal to .5 for an integration time t and a
specified probability of false alarm pgs. With the signal
detection process described by a Case II signal detection modsl,
the detection index necessary to give the required operating
point (pf,.5) 1s related to the integration time t and the
signal-to-noise ratio rn(t) by:

A~
A

11~ LY
= u-~{

A Fa 4
‘J"lL‘. e

L]
m\ 3

{12} '
where BW 1is the bandwidth of the receiver. For a spectrum
analyzer, BW would be the bandwidth corresponding to a given
fregquency resolution and d would be the detection index
required in order to be at the operating point (pg,.5) for a
signal that was contained within a bandwidta: BW. Since d in
Equation 12 must be the same for t =u and t = tgo,

(13) RD(u) = 5 log(tg/u) + RD{tq)

vhere tg is the maximum integration time. Then, since

SE(s;u) - SE{s;tg) = RD{tgy) - RD(u), by using Equation 13 and

Equation 11, Relation 10 becomes:

It (1/5) [X{s) + SE(s:tp) - 5 12g(tp))
t-u 10 ds 2 1

(14)




where as above the time origin is chosen mso that + 2> 0, the
integration time u =t for t <ty and u=tg for t 2 t,
and wvhere SE(s;tp) 1is the expected value of the signal excess
at the time 8 for a recognition differential determined by an
integration time tg. In an encounter, detection occurs the
first time that Relation 14 is satisfied.

As is pointed out in Reference 11, the appeal of the Third
Passive Sonar Encounter Detection Model relative to the Second
and First Passive Sonar Encounter Detection Models is that it
appears to more closely describe the detection process in passive
sonar detection systems that display their prccessed data tc an
operator in a continucus manner over a time window of duration
tg. However, results reported in Reference 12 indicate that the

difference between the three models may not be significant in

some types of =2ncounters.




VIII. Straight Line Encounters

Suppose a target's detectability depends on its range
from a detection system and that the probability of detection is
effectively zero beyond a range rp for any target azimuth. 1In
this report, an encounter between the target and the detection
system is the event that the range between the target and the
detection system is less than or equal to rp. In addition,
suppose ry is small enocugh so that when the target and the
detection syscem are having an encounter they can be considered
to be moving on planes parallel to a tangent plane to the earth's
surface at some point in their vicinity. If this is the case,
then while the target and detection system maintain a constant
course and speed during an encounter, the encounter is called ¢
straight line encounter.

A straight line encounter can be described in terms of a two
dimensional rectangular coordinate system whose plane is parallel
to the tangent plane to the earth. If the coordinate system is
stationary relative to the detection system with the detection
system located at the »Hrigin and is oriented so that the target's
motion is parallel te the y-axis and is in the positive
y-direction, then the target's x-coordinate during a straight
line enccunter will be constant. The constant is equal to the
target's horizontal range at the closest point of approach (CPA)
on the straight line track on which the target is moving relative
to the detection system during the encounter. Tais range is

called the target's lateral range.
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A complete straight line encounter is a straight line
encounter that begins at a range from a detection system that is
greater than or equal to r, and continues past CPA to a rangs
from the detection system that is again equal to or greater than
rp- Let p(x) be the cumulative probakility that a target is
detected by a detection system in a complete straight line
encounter in which the target's lateral range is x. Then the
function p(x) defines what is called a lateral range curve or
lateral range function.

Let p be the probability that a target is detected during &
conmplete straight line encounter. If the lateral range of a
target in a straight line encounter is assumed to be a continuous
random variable X
for |x| < a/2 and px) = 0 for |x| > a/2, then the
probability that a target will be detected during a complete

straight line encounter is given by:

(15) p = (1/a) me p(x) dx

where the limits of integration can be used since the value of
p(x) is zero for x| > a/2. Equation 15 suggests a measure of
a detection syst:m's capability toc detect a target in a straight

line encounter. The measure W is called sweep width and

(16) W= Eo p(x) dx.
With this definition, Equation 16 bscomes: p = (i/a)-W.




IX. Two Intermittent Signal Encounter Models

In the intermittent signal encounter models that are
described in this section, an encounter is a complete straight
line encounter, and during an encounter a target either emits a
signal (an acoustic transient) or its presence (a visible
submarine mast) is the cause cf a signal at various times. Two
cases are considered: 1In the first case, the signals occur
periodically, the signals are of length 5§t and the time between
the occurrence of signals is 1 where 1 > §t. In the second
case, 6t = 0 (the signals are instantaneous) and the signals
occur at tima2s determined by a Poisson process for which the
expected time between signals is equal to 7T1. In the model, the
detectability of & target signal depends on a target's horizontal
range from a detection system, but on no other factors. If a
signal occurs while the target is within a range r, it will be
detected. For a continuous signal the lateral range function of
a detection system for a target is: p(x) =1 for |x|] s r and
p(x) = 0 for |Ix| > r where the horizontal range r is
determined by the characteristics of the detection system and the
target. The geometry for an encounter is shown in Figure 3
below.

For intermittent signals, the length of a target's track
relative to a detection system on which a signal will be detected
is 2-(xr*® - x')* + w-ét where w is the speed of the target
relative to the detection system. So, a target's exposure time

during an ncounter is (2/w)-({(r* - x’)* + &t.
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For pericdic signals, there are two cases. In the first

case, r 2 we(1 - 8tj)/2. 1In this case, the signals result in the
following lateral range func*ion:

p(x) = 0 for |x| >r
(17) p(x) =1 for |x| < (r* - [we(1 ~ st)s/2)%;!

p(x) = [(2/(w*1)]-(x* - x*)} + st/1 otherwise
In the second case, r < w*(7 - §t)/2 and the middle equality
in Equation 17 does not apply.

For signals that are instantaneous and whose occurrence is
determined by a Poisson process, the signals result in the
following lateral range function:
a8 p(x) = 1 - exp(=[2/(weT)}+(r* - x*)}) for |x| <

pix) =0 for lxl > r.

Target

Figure 3. The encounter geometry for the two intermittent signal

models described here.




For signals whose occurrence is determined by a Polsson
process and for which &t > 0, signals can overlap. If this is
allowed, then Equation 18 can be modified to describe this case
by adding 58t/1 to the term in the exponent of Equation 18 that
is within the square brackets. In particular, note that this
modified Equation 18 can be approximated by the bottom equality
in Equation 17 when (2/we7)(r* - x')’ + 8t/7 << 1. This
implies that when the expected time 7t between signals is large
relative to the exposure time (2/w)(xr" - x’)i + §t, the periodic
signal model and the Poisson random signal model are effectively
equivalent.

If st =G and r < (we1)/2, for the periodic intermittent

signal, W = wer*/(v-T). With the above approximation, this is
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X. A Random Search Model

a search of a region in which a target moves on a track
that consists of a number of straight segments placed in such a
way that in a limiting sense every section of the region is
equally likely to be searched on a segment is referroed to as a
random search in Reference 6. nepresentation of a search regicn
with the track segments that could be imagined to be the tracks

of a random search are shown in Figure 4.

\\

\ //A\
S~ \
L

/’/
L

Figure 4. A search region and a track that could be described as

a random search track.

Two developments of a model to describe this kind of search
are contained in this section. The first developmeat is based on
the following conditions: 1. A target is at a fixed position
within a defined search region. 2. A searcher's track is a
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sequence of straight line segments that are within the search
region. 3. The searcher's detection system is such that while on
a track segment, a rectangle is searched that is contaiped within
the search region, is of length equal to the length of the track
segment and is oriented so that its long axis is parallel to the
track segment. 4. The probability that the searcher's detection
system will detect a target while on a track segment with a
search rectangle that does not contain the target is zero. The
probability that the searcher's detection system will detect a
target while on a track segment with a search rectangle that
contains the target is p(x) where x is the target's lateral
range for the track segment and p(x) is the lateral ranga curve
for a complete straight line encounter lateral range x. A
represeatation of a ssarch ractangle is shown in Figure 5 helow.
S. The track segments are located in such a way that the event
that the target is within the search rectangle associated with a
track segment is independent of the event that the target in the
search rectangle associated with any other track segment. And
the probability of the event is equal to the ratio of the area of
the search rectangle to the area of the search region and, given
a target is within a4 search rectangle, its position is uniformiy
distributed over the rectangle.

Condition 4 implies tnat the random search model is based
on the concept of a complete straight line encounter. The
definition of an encountei:: that is incended hare is that given in

Section VI. This implies that in the random search model the
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time to resolve a false alarm is zero. However, for the model,
Pq and py are considered to be determined by some criterion
such that pg is less than one. Cnseguently, although the time
to resoive a false alarm is zero in the model, the cost
associated with a ralse alarm is not zero. (A simple ijwdel that
accounts for the time to resolve false alarms is descrised in
Peference 13.) Condition 4 also implies that when a searcher is
on a track segment with a search rectangle that contains a
target, the encounter is a conmplete straight line encocunter. And
Condition 5, which can be considered to specify a random
arrangement of the track segments, implies that when this is the
case, for the complete straight line encounter, the target’s
lateral range is a random variable that is uniformly distributed
between -pb/2 and b/2 where b is width of the search
rectangle (the dimension of the rectancle perpendicular to the

associated track segment).

Swept Area

Track

Figure 5. A track segment and its associated search rectangle.

that could correspond to a search with an aircraft mounted

infrared detection systemn.




Based on the above considerations, the probability that a
target will be detected while a searcher is on a track segment
with an associated search rectangle that contains the target is

given by:

(19) r-‘-)oo p(x} fy(x) dx = W/b

where fy(x) = 1/b for -b/2 < x £ b/2 and fyx(x) = 0 and

p(x) = 0 otherwise. Note that the left side ¢f Equation 19
applies to any complete straight line encounter in which the
target's lateral range for the encounter is considered to be a
random variahle with a distributicen determined by the proeobability
density function fy(x). If it is not given that the target is
within the search rectangle associated with a track segment, then
the uncenditional probability that the target will be detected on
the track segment is given by: (W/b)-+(8A/A) where B&SA 1is the
area of the search rectangle associated with the track segment
and A is the area of the search region. With 1 the length of
the rectangle, &A = b+l and the probability becomes: (W-1)/A.
Then, since the event that the target will be in the search
rectangle of a track segment is independent of the event that it
will be in the search rectangle of any other track segment, the
probability ©» that a random search consisting of m track
segnents will detect the target is given by:

1 - (1 - (W-13)/AJ(1 - (W-13)/A] -++ [1 - (W-lp)/A] where 1j

is the length of the ith  track segnent. The probability is

also given by: p = 1 -~ exp(Z In[l - (W-1j)/A]} where the sunm




index i =1,2, ¢+ ,n. If (W¢lj)/A << 1 for i 1,2, *°* ,n,
then this expression can be approximated by:

(20) P= 1 - exp[-(W'1l)/A]

where 1 =% 1; is the track length of the search. Equation 20
is known as the random search formula.

The second development of the random search formula is based
on Equation 5 and a detection rate for & random search given by:
T(t) = Wev(t)/A. With this detection rate and Equation &, the
random search formula is given by:

(20a) P(T £ t) =1 ~ exp {~[W-1(t)]/A)
where 1l(t)} is the track length for a random search that starts

at time 0 and ends at time t and

[t

(20b) 1{e) = ]5 vie) ds.

Replacing P(T £ £t) by p and 1l(t) by 1 gives Equation 20.
In the form of Equation 20a, the random search formula indicates
explicitly the relation between the probability of detection and
the duration of a random search. Note that Equation 20a implies
that the sweep width iz independent of speed over the range of
speeds in the encounter.

As 1n example 2pplication, consider the periodic signal
mocdel of Section IX with 6t =0, r < (w*1}/2 and v(t) = v,
For this case, p = 1 - exp[-(w*r'/A)-{t/7)].

Reference 14 contains an example of an appl.cation of the
method used in the second develcpment of the random search

fcrmula to a2 random seavrch where the search region expands with

time.




XI. Ladder and Barrier Search Models
In sone barrier searches, the barrier search track 1is a

ladder search track relative to a reference system that moves
with the target. This fact is used in the barrier search model
development that follows the two ladder search model developments
below. The first ladder search model is referred to as an ideal
ladder search model because of the idealizations that are
involved in its description of a ladder search. The second
ladder search model is r :ferred to as a degraded ladder search.
It can be considered to describe a ladder searci: track in which
navigational errors result in omissions and overlaps in covurage.

An Ideal Ladder Search Model: The model is based on the
following conditions: 1. A ladder search region is a rectangle
that containe a fived tarast. 2. During a search of the region,
the searcher's detection system moves on a set of m parallel
track segments of lengt't b separated by a distance s8. 3. As
the detection system moves along a track segment, it searches a
rectangular strip of length b and width s within the search
region. 4. The m rectangular strips that correspond to the m
track segments completely cover the ladder search region with no
overlap. 5. If a target is within the rectangular strip
corresponding to a track segment, then there will be a complete
straight line encounter between the target and the detectiocn
system when the detection system moves along the track sagment
and the lateral rance ¢« the encounter will be uniformly

distributed across the width of the strip. If the target is not
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in the rectangular strip, then there will not be an encounter and
the probability that the target will be detected while the

detection system is on the track segme¢ 1t is zero.

g ——

<- g —p

Figure 6. A schematic representation of a ladder search geometry
for a case in which the ladder search track segments are
superimposed on and bisect their corresponding rectangular

strips.

Since targets oittside of the rectangular strip that
corrasponds to a track segment cannot be detected while a
detection system is on the track segment because of Condition 5,
in the model, the sweep width W of a searcher's detection
system must satisfy the relation W < & . In particular, W = s
only holds when the detection system detects a target that is in
a rectangular strip with prokability one for ary target lateral
range. This kind of detection system is sometimes referred to as

a cookie cutter detection system. However, this terminoloyy can
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be misleading since it suggests the detection system detects
equally well for all azimuths. But this is not a requirement on
the system in order that W = g.

The ideal ladder scarch model implies that if the cencitions
of the model are satisfied, then the probability p that a
target will be detected by a an ideal ladder search is given "w:
(21) p = Ws
where W/s < 1. The quantity W/s is called the coverage
factox in this case.

A Degraded Ladder Search Model: The atove model implies
perfect navigation in addition to other idealizations. A wodel
of a ladder search is given in Reference 6 that could be used
for cases in which this is a poor assumption. The model which is
refer ed to herea as a degraded ladder search model can be
considered to describe navigational inaccuracies in terms of
omissions and cverlaps of the rectangular strips. It can be
developed as follows: Consider a random search in the ladder
search region whose tracxkx length is equal to the search track
length required tec complete an ideal ladder search, that is, a
track length 1 = m+b. The degraded ladder search model
describes the result of omissions and overlaps in a ladder search
to be such that the probability of detection for this random
search is equal to the probability of detection for the degraded
ladder search. Consequently, since the area of the ladder search

region is mes+b, for the degraded ladder search model:

(22) p=1- exp(~W/s).




Here, the requirement that the coverage facto W/8 £ 1 for
Equation 21 can be relaxed. However, it should still be
considered as an approximate condition.

The coudition that the target be fixed within the
rectangular search region is critical to both Equation 21 and
Equation 22. However, these results are also applicable to a
search for a moving target under the conditions that are
described next.

A Barrier Scarch Model: A target moves with a constant
course and a constant speed u. Both the target's course and the
target's speed are known by a searcher. The searcher establishes
a barrier of width bk that is perpendicular to the target's
frack and maoves on the barrier with a speed v > u. The bavrrier
is designed so that in a reference system relative to the target
the barrier search is a ladder search that satisfies the
conditions for a ladder search that are given above. There are
two cases to consider: 1. The barrier is established in front of
the target. 2. The barrier is established behind the target.

From the search geometry for a barrier established in front
o. the target, it can be seen from Figure 7 bhelow that
® = gin“l(u/v) and 4 = ve1 where 17 = 8/(v + u) is the time to
move from one search leg to the next. The angie 6 and the
perpendicular distance 4 that depend on u, v and &, and the
wilth of the bacrier b are the gquantitias that are required in

order to establish the barrier operationally.




varget
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‘/////;;;rcher

Figure 7. A barrier search track shown for a barrie - established
in front of the target. The track is shown in a reference system

fixed relative to the earth.

For a karrier that is established in front of a target, one
of three barrier types will result. A barrier's type is
determined by the relation cf the distance 4 to the distance
g = ut where the time t = b/(v? - u’)% is the time to complete
a search leg (cross the barrier). The barrier type is determined
as follows: 1. For g < d, the barrier is an advancing barrier.
2. Tor g : d, the barrier is a stationary barrier.

3. For g > d, he bar-rier is a retreating barrier.

For a barrier established benhind the target, there is only
one barrier type and it is called an overtaking barrier. For an
overtaking barrier, © = sin"l(u/v) as for a barrier established
in front of the target. But, for an overtaking barrier,

r=8/(v-u) and d = v+3/(Vv - uj.
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Given the target crosses the barrier, the probability of
detection for an ideal barrier saarch is given by Equation 21
and the probability for a degraded barrier search is given by

Equation 22 where the terminology refers to the nature of the

jadder search in the reference system moving with the target.
A Jdiscussion of an application of these two equations to a search

for a magnetic anomaly target is given in Reference 15.
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XXI. A Target State Estimation Procedure

A target state estimaticon procedure based on bearing
observations is developed in this section that generates point
estimates of a target's position and velocity vector coordinaces
in a rectangular cocordinate system. The procedure is based on a
model in which bearing errors are unknown and are not determined
by random variables with known distributions. Because Jf this,
cenfidence regions for the estimates are not generated by the
procedure. However, for a moving target, it illustrates general
characteristics of bearings only target mction analysis (TMA).
The model is defined as follows: 1. The target moves in a plane
with a constant but unknown course and speed. 2. Observations of
the target are made from known positions at known times. 3. The
observations provide only target bearings with unknown &rrors.

The model geometry is shown in Figure 8.

North Y

/ dj = rij*sin (f; - 8j)

(Xt (1) ,¥¢(1)] estimate

r; range estimate
observed 6; [

bearing bearing estimate

[Xa{i),¥Yo(l)] ® observer

x East

Figure 8. The geometry of the target motion analysis model.
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‘‘he procedure criterion is: For observations from n positions,
choose target position estimates and target velocity component
estimates uy and u, that make the sum of the sguares of the
algebrai~ distance between the estimated positions and their
corresponding observed bearxing lines a minimum. From Figure 8,
it can be seen that th¢ algebraic distance can be written as

dj = [xg(i) - xo(i)}+cos 85 - {ye(il) - yo(i)])+sin €4. Because of
the requirement that the target move with constant course and
speed during the encounter, the number of independent estimates
is reduced from 2n to 4, wuy , uy and any two pcsition
estimates x¢(3), ye(d). In the following development, j = 1
and with i = 2,3, +++ ,n the remaining estimates are given by:
Xg(1) = xg(1) + uyp-(tj - t1) and ye(d) = yp(1) + uy-(ty - t).
To determine "best" estimates of the target state parameters,
take the partial derivative of the sum S = I (dj)* with reapect
to sach of them. Then set the four partial derivatives equal to
zero. This creates four linear equations in x¢(1), Ye(l), uy
and Uy whose solution are the desired esti.mates xy(1), y¢(l),
uy and uy. In matrix notatjon, the eguations can be
represented by AX = B where the elements of X are:

X131 = X (1), X271 = ye(l), X33 = Uy and X437 = Up. A necessary
condition for a unigue sclution for X 1is that n 2 4.
Otherwise, the determinant of A will be equal to zero. The
procedure can also be used if a target's course and speed are
constant and known and, in particular, if the target is

stationary so that uy and uy, both equal uero. Ian this case,

47




since the numbex of unkrowns is two, the number of linear
equations is ailso two and a necessary condition for a unique
solution is n 2 2.

Now, suppose the observations are at ongitions and times
that correspond to the positions and times of an observer moving
on some constant course at some constant speed (including zero
speed). In this case, the observation position coordinzates are
related by the following equations: xg(i) = Xg5(1) + vy(tj =~ tq)
and yq(i) = yq(1) + vy(ti - t3) where vy and vy are the
required velocity components of the observer. Using thess
equations of moticn, the matrix equation 2X = B can be
transformed to the matrix equation AX'= 0 where the elemants
of the matrix X are related to the elements of the matrix X'

() - B(O(l:l, x

. [ ]
by the equations: X3y = X

A ar £\
L bl & o 0 R X R

[ S

1l
' ]

Since the linear equations represented by ax' = 0 are
homogenous, they do not have unique solutions and consequently
neither do the equations represented by AX = B. However, if
there is at least cone observation whose time and position is not
determined by the above equations of motion, then the
transformation from X to X' «cannot be made, and in general a
unique solution for X can be found. If the observations are
made from a platform that is moving with a constant course and
speed, this condition can be achieved by either changing the
course, the speed or both prior to completing the observations.

Estimation models that describe bearing error as a random
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variable provide a basis for determining confidence regions for
point estimates. A model is developed in Refererice 16 that does
this for either target bearing observations made from two or more

points simultaneously or for a target that is stationary relative

to the cobservation points.




XJIIX. Position Distributions That Thange with Motion
Target motion models provide a basis for determining

position distributions that change with target motion. In this
saction, two classes of target motion models are considered. Iu
the first class, a target moves in a plana with a constant course
and speed and the course and speed are independant of the
target's position. 1In the second clase, a targe: moves in a
plane but its course or speed changes during the merion. Threa
méembers of the first class are develioped first. 7This is followed
by a brief discussion of some npodels of the second ~lass.

Motion Models of the First Class: For the first class of
motion models, the joint density function of the distripution
that determines a target's coordinates X(t) and Y(t) at some

time € » 0 can be determined by:

00
(23) fx(t)'y(t)(x,y;t) = wa J =00 fx(o)'y(o)(q,s;O) fv,w(v,w) dvdw
where V =1U,, W = Uy and Uy and Uy are the random
variables that determine the target's velocity components uy

and Uy and v = uy, w = Uy, g =% ~ v+t and s =y ~ w-t.
Equation 23 can be developed as follows: To first order,
fx(t)’y(t)(x,y:t) §xty 1is the probability that a target's
coordinates are in an slement of area &x&8y and for given values
of v, w and t, target positions in an element of area &qis
will be translated tc an element of area §&x5y that is identical
in form and size to §g-8s. And so, to first order,

£X(0)ry(0) (4,50} Buse fy,wlu,v) 5svéw is the probability that

the target!s coordinates at time 0 are in an element of are.




§gés that is located such that the target's coordinates will be
in the element of area §x8y at time t since x = q + vt and
Yy =8 + wet, And, to first order, the sum of such probabilities
for all pairs of values of v and w is alsc the probsbility
that the target's ccoordinates at time t are in the eslement of
area &x8y. 1In the limit after equating the two expressicns for
this probability and cancelling the common factor §x-8y,
Egquation 23 results.

The First Motion Model: In the first model, X(0) and
¥Y(0) are both independent normal random variables with means uy
and by and equal standard deviations o. However, Uy and Uy
are not normal and they are not independent randcm variables. 1In
this model, Uy = u-sin & and Uy = u-cos & where ¢ is the
randenm variabie that determines the target's course and u is
the targets speed which is known. S9, only a value for the
random variable ¢ is required to determine the target's
velocity. In the model, & has a uniform distribution ~var the
interval 0 teo 27 and it is convenient to chose the
rectangular coordinate system so that the means u, and Hy are
each equal to 0. Then, with the circular normal distribution
determining the raadom position coordinates and with the
distribution that is described above determining the random
velocity components , in the coordinates u and ¢, the integral

of Equation 23 is a single integral over ¢ and the integrand

of the integral is (1/2wn0’) exp[-(g" + 8')/20"] (1/2%) where




now q = ¥ ~ u-tesin¢ and s =y - urtscos ¢. Integration

gives fy(t),y(t)(X,yYit) as:

(24) (1/2%0%) exp(-[x* + y* + (u-t)*)/2c*) Ig[(x* + v*)}eu-t/o")
where t > 0 and I, indicates the hyperbolic Bessel function of
zeroth order. In Reference 6, fy(t),y(t)(X,¥:t) 1is plotted for
several values of t in terms of r = (x' + y’)*, the target's
range from the origin. The plots show a characteristic of the
distribution that can be indicated as feallows: First, replace
(x* + y=)§ by r in fyit),y(t)i%x,¥;t). Next, multiply and
then divide fX(t),Y(t)(r;t) by exp(-r*ust/c*)*- This gives:
(25) 1/(2n0")exp(-[1/(20")}(r - u-t)*}Ig(r-u-t/o*)exp(~r-u-t/o’)
where t 2 0. As noted in Reference 17, Iy(z)-exp(-z) is a
slowly decreasing function that asymptotically approaches
l/(zﬂz)§ ag8 z increases. Tihe conseguancs of thig is that a
plot of fy(¢),y(t)(rit) against r for values of t greater
than 4-0/u has the appearance of a normal density function.

A target's random rectangular coordinates X(t) and Y(t)
and its random bearing ©(t) and range R(t) from the origin
are related by: X(t) = R(t)+'sin 6(t) and Y¥Y(t} = R(t)-.cos 8(t).
Using these relatiors, fx(t),y(t) (X, ¥it) can be transformed to
the joint density function fp(¢y),@(t)(r,ait) of the random
variables R(t) and ©(t). To do this, replace x* + y* by «r°
in Expression 24. Then multiply the resulting expression by r,

the Jacohian of the transformation. This gives the expressior:

(26) (1/2m)(r/2mo®) exp(-(r® + (u-t)*}/20%') Ig(r-u-t/o) ';;




where 0 <r and © < a < 2x. And, this ils the joint density
function fp(¢),e(t)(¥,ait). By inspection, the marginal density
function of fg(t)(a;t) of ©(t) 1is 1/2n over the interval 0
to 2% and the marginal density function fR(t)(r;t) of R(t)
is Expression 26 multiplied by 2=.

The Second Motion Model: In the second model, X(0) and
Y(0) are independent normal random variables with means iy, and
wy and standard deviations ¢, and oy that determine a
target's random position coordinates at time ¢6. And U, and
Uy are independent normal random variables with means i, and
iy and standard deviation o, that determine a target‘s random
velocity components. BRecause of these ccnditions, the target
coordinates are X{t) = X{0) + Uy t and Y¥Y(t) = ¥Y(0) + Uy't at

time t. This implies that X(t) and Y{t) arse inds

andoant
. LSV WSS W

normal random variables with 1 eans py + Uyt and Wy + ﬁy~t
and with standard deviations oy + oj*t® and o§ + oy°t*. The
model describes a bivariate normal position distribution whosze
center moves with a constant velocity determined by 1, and ﬁy
and which becones more and more circular as its standard
deviations increase with the passage of time. Although the
targets joint density can be fournd Ny using Equation 23, this
procedure is more direct. For another discussion of the first
and second models, see Reference 7.

The Third Motion Model: In the third model, the target is
at the origin oi a rectangular coordinate system at time zero.

After that, it: position is uniformly distributed on a circular
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disk of rar ius up*t centered at the origin. This implies that
the joint density function of the position distribution is:

(27) £x(t),v(t) (X,¥it) = 1/(Weup-t*t)

for t > C where x' + y' < ugp-t’ and that the joint density
function of the distribution of the random variables ©(t) and
R(t) that determine a target's bearing from the origin is:

(28) frR(t),ect) (r.ait) = r/{®meup-t")

for t > 0 where 0 < r £ up"t and 0 £ a < 2+,

Since the values of r and a are independent and the joint
density function is equal to the procduct of 1/(2-w) and
2.r/(up°t*), the random variables R(t) and 6(t) are
independent and fR(t)(u) = 2+r/(up*t’) whare 0 < r < up't znd
fe(t)(a) = 1/(2*%x) where 0 < ¢ < 2°a. These two marginal
distributions can be achieved by choosing at time 0 a course ¢
from the uniform distribution with density: fg(¢) = 1/(2+w)
where € £ ¢ < 27 and a speed U from the triangular
distribution with density: fy(u) = 2-u/up where 0 < u < uy.
These choices defin the third moction mcdel.

Motion Models of the Second Class: For the second class of
rmotion mndels, a target's course or speed or both can change. In
general, a monte carlo simulation method is required in order to
determine a position distribution that is based on such a model.
As an example of cases in which the distribution can be described
analytically, see Reference 18 and Reference 19. As an example
of a case in which it ca. not, suppose a ta 'get's initial

position is describked in terms of .. number assigned to a
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subregion in the xy-plane where the number assiqned represents
the probability that the subregion contains the target at an
initial time. 1In addition, suppose for each subregion a course
and speed distribution is determined by assigning numbers to
course and speed pairs where a number represents the probability
the target will have the course and speed at the initial time
given it is in tae subregion at that time. Next suppose for each
course and speed pair there is a time distribution that
determines the duration of the course and spe ( pair and that the
time distribution is determined by a number assigned to sach
discrete time point where the number represents the probability
that the target's course and speed pair will be determined by a
new course and syeed distribution. By extending this kind of
procedure and then implementing it in a monte carlo simulation,
one can generate complex position distributions that describe a

target's position at discrete time points.
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XIV. Position Distributions That Change with Search

For the models that are considered here, a target is
within a reqgion that has been divided .nto subregions or cells.
And, for each cell, a number has been assigned to the cell that
is interpreted as the probability that the taxget is within the
cell. The set of these probabilities constitute a position
distribution. Suppose information becomes available that a
search has been conducted for the target and that the target has
not been detected. Or suppose the information is that the target
has been detected. In the first case, negative information is
availabie that can be used to modify the position distribution.
In the second case, positive information is available that can be
used to modify the positicon distribution.

Pogition Distributions and Negative Information: For a
region that contains a target and cocnsists of n subregions, let
the event §; = (the target is in the ith subregion}). And let
the avent C = {(no contact). Then, given no contact in a search
of the region, the targets's position distribution can be
modified as follows:

(29) P(sjlc) = P(C|sj) P(S;)/P(C)

where i =1,2, *+« ,n and P(C) = % p(E:sj)-p(sj) with the sum
index 3 = 1,2, *++- ,n. Note that Equation 29 can be obtained
by using Bayes theorem. To illustrate how Equation 26 might be
used, suppose that a search in a subregion is considered to be a
random search and that the sweep width of detection system

against the target depends on subregion beiny searched. For this




case, let Aj; be the area of the ith subregion and lat Wi be
the sweep width in that subregicn. Then, given no contact in a
search of a subregion, P(C|Sj) = exp[-(Wj+1j)/Aj] where 1; is
the track length of the searcher in the ith subregion. Given
values for P(S;), Wj/A; and 13 for {i =1,2, «+¢ ,n, a
position distribution can be determined that has been modified by
the negative information.

Posjtion Distributions and Positive Info -mation: 1In the
case of positive information, the eveitc C = {a contact} occurs.
Then. given a contact in a search of the region, the target's
position distribution can be modified as follows:

(30)  P(sjlc) = P(c|s;)P(Si)/P(C]

where P(C) = £ P(C|S4)+P(54) and the sum index j = 1,2, ++- ,n.
To illustrate a way Equation 30 might be used, suppose that a
contact is a lina of bearing detection or an omnidirectional
sensor detection and that the cells are range cells. Then, with
r; a range identifying the ith cell and R a random variable,
P(sjlc) becomes P(R = r;|c), P(C|S{) becomes P(C|R = rj) and
P(Sj) becomes P(R = rj). In a continucus aralog of this,
fr(ric) replaces P(5;i|lc), P(C|R = r) replaces P(C|Sj) and
fr{r) replaces P(Sj!}.

Position Distributions and Uncertain Information: The event
C is the union of the two events: T, = {(a true contact) and
Fo = {(a false contact)!. And the event C is the un on of two
events: Tz = (a true no centact) and Fg = (a false no contact)

The correspondence between €, €, S3i, Sj, Tg, Fo, T and

Q7
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Fg and the events of the Venn diagram in Figure 1 are as
follows: C corresponds to D;, C corresponds to Dg, Sj
corresponds to Hy, Sj corresponds te Hg, To corresponds to
(D, n H;), Fc corresponds to (D n Hg), Ts corresponds tc
(Dp n Hg) and Fg corresponds t« (Do n Hyp).

Using the above relations, after a search of a region that
has resulted in a contact, the target's position distribation can
be defined by:

(31) P(Sjlc) = P(S{|Ts) *P(TclC) + P(Si|Fs)P(FclC)

where i =1,2, **+ ,n since To =T nC, Fc=FnC and
P(sjlc) = [P(54{ n Tc) + P(S§ n Fo)1/P(C). The probability

P = P(TCIC) has been c. 1led the credibility of the contact. 1In
terms of p Equation 31 becomes:

{32) P{51iC} = P{Si|Tc) P + P(8;i{Fc) (1 - p).

Again using the above relations and p = P(Tg|C), after a
search of a region that has resulted in no contact, the target's
position distribution can be defined by:

(33) P(sjlc) = P(siiTs) P + P(SilFe)- (2 - P)
where i = 1,2, ¢+ ,n.

The values of P(Tc|Sj) and of P(FglSy) = 1 - P(Tc|Sy)
are determined by the characteristics of the search in the jtP
subregion for j = 1,2, +*°+ ,n. With values for these two
probabilities, P(S;|T.) = P(Tc|Si) P(Si)/(Z P(TCISj)°P(Sj)] and
P(Sj|Fg) = P(Fglsj)-P(si)/(= P(Fzl85)-P(54)].

In one positive information model, p is determined -

subjectively based on the detection system and the nature oi the
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search and P(S{|Fg) = P(Sj). This choice for P(5i|Fc) could
be based on the argument: Given the detection system and the
nature of the search, for a search that ends in a false contact,
the target was not yet detectable. Consequently, a search that
ends in a false contact supplies no information about a target's
location. This argument implies that there have been no missed
dr “ections during the search.

In a negative information wodel, in keeping with the above
choice for P(Sj|Fc), one might choose P(Sj|Tg) = P(81). This
choice for P(Sjii:c) could be based on an argument that is a
parallel to the one for the choice above for P{$j|Fc): Given
the detection system and the nature of the search, for a seaxch
that ends in a true no contact, the target was not yet
detectable. Consequently, a search that ends in a true ne
contact supplies no information about the target's location. 1In
keeping with the above ccmment, this argument implies that it
false alarms occurred during the search, then they were resolved.

If p=1, then C = T (& detection) and, using the above
expression for P(S{|Tc), Equation 32 becomes identical to
Equation 30. Note that 1 - p corresponds to P(Hg|D;) and not
to P(Dy|Hg) which is pg.

If p=0, then C = Fg (a missed detection) and, using the
above expression for P(Si|Fg), Equation 33 becomes identical

to Equation 29.
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XV. Search Models and Search Theory

Search theory provides a basis for determining optimal
search plans for a target whose motion and location are
determined within some bounds. Here, an optimal search plan is
one for which the probkability of finding a target within a given
length of time is a maximum, the expected time to find a target
is a minimum given the target is found or a search plan for which
some other optimal search criterion is satisfied.

Search theory results are based on models of the search
process. To the degree that a search model describes a search
process, an optimal search plan for a target that is based o.: the
search model should provide guidance for the development of an
operationally feasible search plan. However, because of the
iimitations of analytical search models, an optimal search pian
that is based on an analytical search model may give only initial
guidance in this regard. The optimal search plans that are
described below illustrate this. The search plans are based on
the random search model. Because of this, the requirement on the
location of search track segments is not realizable and the time
to resolve false alarms is ignored.

Optimal search plans based on search models implemented
through a monte carlo simulation are not considered here.
However, with sufficient information, such plans have the
potential of being both implementable and more optimal in a real

sense than an optimal search plan based on an analytical search

model.




Three Optimal Search Plans: Tile tnhreae optimal search plans
differ in their criterion for an optimal search plan. However,
each one is based on the following search model: A target is
fixed at some point in a region that consiste of n subregions.
A search in a subreqg on is a random search in the sense of the
definition in Section X and a searchers sweep width there is a
constant. In addition, a search of a subregion will not detect a
target which is in another subregion. To determine a plan, let
Si = {(the target is in subregion i} for i =1,2, -+ ,n and
let pj = P(Sij) be the prior probability that the target is in
the i*h subregion. Let W; be the sweep width in the ith
subregion. Let & = Aj/W; where A; is the area of the ith
subregion anc §j is the expected tracl' length to find the
target by a search of the i‘l* subregion given the target is in
the ith subregion, a characteristic length. The probability P
that the target will be detected by a ra.adom search is given by:
(34) P=3 [1 - exp(-13/64)]1°Pi
where the sum index i =1,2, ¢« ,n and 13 is the track
length of the search in the ith szubregion.

The first criterion: Choose 1j aat P is a maximun
subject to the two constraintg: 1. 1 =% 13 and 2. 134 2 0
where the index i = 1,2, <« ,n. Determining this choice is a
nonlinear optimization problem whose solution is given in

Reference 20. It is:

f

13/84

1;/81

In(py/8;) - L(k) i=1,2, ¢¢¢o , k
(35)

G i = K+l . v+2, ¢++ . n
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where L(k) = (1/28j)-2[8j°1n(pj/8j)] - l/ESj and the sum index
i=1,2, »++ ,k, where the subregions are relabeled so that the
following order relation holds: p3/8§; > pa/83 > *++ > pp/8, and
where k 1is chosen so that for k+1 the solution for 1y,
using L(k+1) is either negative or zero.

The sacond criterion: Choose 1; so that P is a wmaximum
subject to the two constraints: 1. ¢ =X ¢y and 2. ¢y 20
where the index i =1,2, -+ ,n, ¢ = kj°1; is the cost of the
search in the i'P subregion and ki is the cost per unit track
length in that subregion. For this criterion, the solution to
the corresponding nonlinear optimization problem can be obtained
from Equation 35 by replacing &; by e€§ = kj°84 arnd labeling

the subregions so that pjy/€j4 > p3/€i > *** > pp/€j. The basis

=)

e s - - .- . . PR g )
or this can bs seen by replacing 13/8;3; by 1is eguivalsnt

e]

3/€i 1in the exporiential term in Equation 232.

The third criterion: Choose i 8o that the expected
utility of the search is a maximum subject to the two
constrajnts: 1. 1 =2 14 and 2. 1lj 2 0 where the index
i=1.2, .+ ,n. For this criterion, the solution to the
corresponding nonlinear optimization problem can be obtained from
Equation 31 by replacing pj by i where gqj = uj*pj and uy
is the utility of detecting the target given it is in the ith
subregion. And, in addition, labeling the subregions so that

qQ1/81 > 93/85 > +++ > gq,/é,. The basis for this can be seen by

multiplying the summation term in Equation 34 by uj so that




the resulting equation gives the expected utility of the search
given the utility of not detecting the target is zero.

Equation 35 can be used to determine an order of search for
the subregions which will affectively minimize the expected track
length required to detect a target given it is detected. To do
this, divide the available track length 1 into uvinits small
enough so that with a single unit only the 13t gsubregion would be
searched. Then allocate one unit to the search of the 18t
subregion. If the search is unsuccessful, determine the optimum
allocation for twe units. Then search with a second unit so that
the first search with the first unit plus the second search with
the second unit satisfy the optimum allocation for two unita. 1f
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the ssarch is unsuccossiul, ntinue in thisg fashion until either

the target is found or all the track length is expended. That

this allocation order will effectively minimize the expected

track length required to detect a target given it is detected can ;
be argued as follows: Let L be the track length at detection,

let 1, be a unit of track length and let n be the number of

units. Th:n the value of the probability P(L £ i-1ly) that the

target will be detected on or befora the ith step of the search

for the given alloccation order will be greater than or equal to

its value for any other allocation order with the same allocation

step size. Since the value of P(L $ 1) wiil be egual to its ‘B
value for any other allocaticn order of the optimum allcocation

and since P(L < i-1,|L s 1) = P(L s i-1y)/P(L < 1), the value of

the distribution function Fp(i*1,JL < 1) = P(L € i1,|L 1)
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will be greater than or equal to its value for any othar

allocation order. This implies that the expeacted track length
given detection E(LIL < 1) = £ [1 - Fp(i-1,|L € 1)] where the
sum index i =1,2, -+ ,n ig eftectively a miuimum for the
given allocatiun order. A search based on the optimum allocation
given by Equation 35 and the given allocation order is
eguivalent to the fcllowing search: Aaftexr an allncation of track
length 1, and ar unsuccessful search, new values for P(Sj) are
calculated using Equation 29 and then Equation 35 1s used with
these new values to determine the next optimum allocation. A
dAiscuasion of this prccedure is given in Reference 6. And arn
example of its application is given in Reference 21.

Equation 35 also defines an optimal search plan for a
detecticn sy:stem that searches beams and can be described by
Equation 33 by replacing 13 by tj where t3 is tae time the
itr pecn is searched and by replacing 64 by v; where 13, a
characteristic time, is the expected time to dstect the target by
a search of the ith bpeam given the target is in the iR bean.

For 2 more extensive discussion of search theory and ita

application to military operations ressarch, see Reference 22.
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