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Preface

This report is a collection of material that has been used
in courses on search, detection and localization modeling. Its
organization follows to some extent material by S. M. Pollock in
Selected Methods and Models in Military Operations Research which
is listed in the report bibliography. The report is not intended
to be a text on these subjects. In particular, in some areaa it
does not provide the depth of coverage that is found in the book
Search and Detection by Alan R. Washburn which i& cited in this
report as Reference 22.

In the third revision, typographical and other errors have
been corrected and, in addition, changes and additions have been
made to Sections XII and XIV of the report.
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I. Detection Models and signal Detection The •ry

Signal detection theory is the basis for analyzing the

detection models that are described in this report. "In signal

detection theory, the decision making portion of a detection

system is called the receiver and a detection experiment is the

observation by a receiver nf input data accumulated during some

time interval. The data that is related to a target is called

signal. The data that is not related to the target it. called

noise. In general, the target data is associated with a

localization region that in some cases is called a resolution
- ý 3

cell. When a detection experiment is performed, either the event

H0 = (the receiver input is noise) or its complement

H, = (the receiver input is signal and noise) will occur. In

the first detection models that are described here, after

analysis of the input data by d receiver, either the event

Do =(the receiver decides the input is noise) or its complement

D, = (the receiver decides the input is signal and noise) will

also occur. Detection models for which D1  is the complement of

DO are called binary detection models or forced choice detection

models. Four events which are important in binary detection

models are indicated in the Venn diagram of Figure 1.

The Venn diagram emphasizes a decision problem that is

asF.ociated with a receiver that can be modeled using i binary

detection model. The problem is this: Un'er what conditions

should the event D, occur? That is, under what conditions



should a receiver decide that the input data accumulated during

the observation t.A'me interval is signal and noise?

HO H1

DODo AHO Do nH,

D1D, nHO D1 n H

Figure 1. Four events of importarnce in binary detection models.

In the detection mcdel descriptions that follow, the

following notatioi and terminology are used: pf - P(DIIH0 ), the

probability of D, given HO, ie called the false alarm

probability; pd =P(D11H1 ), the probability of D, given H1,

is called the detection probability and P = P(H1 ), the

pronali)ility of 111, is called the prior probability.

In the detection modela, the input to a receiver is

determined by & stochastic process that has the following

characteristics: It is a random noise proce s when there is no

target data and it is a random noise process plus a signal

process when there is target data. Although the receiver input

process in somfi cases might appear to be determined by a

continuous parameter stochastic process, because of the finite

amount of information (unique data) contained in a boxinded

sequence of finite length, a discrete parameter stocha& tic
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process is sufficient to determine the receiver input in these

cases. This is established formally by the ;tochastic sampling

theorem. C,,nsequently, in these models, the input to a receiver

is determined by a sequence of random variables Y1 , --- ,Ym and

an observation yields a sequence of values Yl,...ym.

Three detection models are described in Section III. In the

first model, the signal process is a deterministic process. In

the second and third, the signal process is a random process. To

define a random noise process or a random signal process, only

the joint distribution of the finite sequence of random variables

that determine the process needs to be specified. If the signal

process is a deterministic process, the signal values can be

determined before an observation is performed. To define the

process in this case, only these values need to be specified.

3



II. Decision Criteria

To simplify the discussion of decision criteria and

decision rules, a receiver's input will be assumed to be

determined by a single decision random variable Y. In this

case, the input process in determined by the conditional

distribution function Fy(ylHo) when the Input is noise alone

and by the conditional distri'' tion function Fy(yiHl) when the

input is signal plus noise.

The condition that a receiver's input is required to

satisfy in order that the event D1 will occur can be specified

in terms of a decision rule. For the assumed case, a decision

rule is a rule which determines for every observable value of Y

the decision that the receiver is to make. The decision rule can

b cc.i~dcred to be a function *1U% which ral ta .. .. ach

observable value y to one or the other of the *ollowirnq two

commands: do = "decide that the receiver input was noise" and

di = "decide that the receiver input was signal and noise".

Choosing a decision rule 0(y) defines a set n of observable

values of Y such that the event D1 = ( Y z f ).

The problem which was considered in Section I can now be

restated in the following way: What criterion should be adopted

in order to determine a decision rule or, equivalently, its

corresponding set n ? A desirable characteristic for a criterion

is suggested by the following argument: Consider the odds in

favor of Hl given y is observed. That is, consider

4



P(HlIY = y)/P(HoIY = y). One might expect that y would be a

member of the set n if and only if y made this ratio equal to

or greater than some value k. But this Is equivalent to defining

[1 as follows: Ii = ( y : L(y) L K ) where L(y) is the

likelihood ratio associated with an observed value y and K is

a constant related to the constant k. This suggests that

choosing an optimum criterion is equivalent to choosing an

optimum value for K. Four specific decision criteria are defined

next in terms of K. For each criterion, n has the above

form. But for each criterion the choice of K is different.

The decision criteria are:

1. The Neyman-Pearscn Criterion: Choose a so that Pd

is a maximum subject to the constraint that pf S a where a is

a spcfe vaAua "&o a -o44UU A--G4 random variable,-

the conet~nt K is chosen so that pf = a.

2. The Bayes Criterion: Choose a so that the expected

cost of a receiver's decision is a minimum. For a continuous

decision random variable, K = [(c 1 0 -c 0 0 )/(c 0 1 -c 1 1 )],(l-P)/P if

cI0 > coo and c0o > f!11 where cij is the cost of Di n Hj.

3. The Ideal Observer Criterion: Choose n so that the

probability that the -eceiver makes an incorrect decision is a

minimum. K = (I-P)/P for a contiruous decision random variable.

4. The Minimax Criterion: Choose n when P is unknown so

that the maximum expecte.i cost of a receiver's decision is a

minimum. If cl 0 > c 0  and c 0 1 > c1l, then

5



K = [(cI 0-c 0 0 )/(c 0 1-c 1 1)]'(l-P*)/P* for a continuous decision

random variable. Here, P* is the value of the prior probability

P that would make the expected cost of a receiver's decision a

maximum if P were known and the Bayes Criterion were used.

If a model which specifies the conditional distributions

Fy(yIHO) and Fy(yIHl) and a decision rule are adopted, then

the value of pf and the value of Pd are determined. This

pair of values (Pf,Pd) is called a receiver operating point.

If the decision rule results from using a likelihood ratio

criterion such as one of the four listed above, then it wilr

involve the parameter K since f = (y: L(y) - K). And, for a

given value of K, since 0 uniquely determines the pair

(PfPd), a single operating point results. By varying K, a set

of cperat•nq --ints can to nratp which determinee a receiver

operating characteristic cuive or ROC curve. Different ROC

curves can be produced by changing either one or both of the

conditional distributions which implies either a change in the

signal process or a change in the noise process.

A decision rule which results from using a likelihood ratio

criterion in a model in which the input process is determined by

a set of m random variables can be expressed in terms of a set

n as follows: 1 = ( (yl, -- " ,ya) : L(yl, --- ,Yu) Ž K ) where

K is specified in the same way that it is when m = I.

6



III. Three Binary Detection Models

Three detection models are examined in this section.

For the first two detection models, the input stochastic process

for an observation is defined by a time sequence of continuous

random variables. The random variables represent a sample from a

continuous parameter stochastic process which is sampled at times

such that the random variables are independent. For the third

detection model, the input stochastic process is a counting

process and it is defined by a single discrete random variable

that is equal to the number of events that are counted during the

observation.

Model I: In the first detection model, a sampled noise

value is a value of a normally distributed random variable with

mizan zero- and wthknown. v-ar-JAc a'-~ Andl a sampied miann!

value is a know value of a deterministic variable. Thus, the

input process corresponding to an observation consists of some

number m of independent normal random variables Y1 , --- ,Ym

each with variance a'. And, for i - 1.2, -- ,m, when a signal

is not present the mean of Yi is zero and when a signal is

present the mean is si. The result of using a likelihood ratio

decision rule in the model can be expressed in terms of a random

variable Z. This random variable is called a crosscorrelation

statistic and it is defined by 7 - I si-Yi where the sum index

1 = 1,2, .-. ,m here and in the remainder of this section.

However, it is more convenient to express the result in terms of

a statistic V which is defined by V - Z/oa. In terms of this

-7



random variable, the conditional probabilities pf and Pd are

given by: pf = I - *(v*) and Pd = I - 0(v* - dt) where #

symbolizes the standard normal cumulative distribution function,

v= (1/az). (a'In K + (1/2) E si), is determined by the decision

rule and d = E si/o is called the detection index.

Often, the input stochastic process represents a quantity

whose square is proportional to power. In such a case, the

average receiver input power is the random variable S YI/M. If

a signal is not present, the expected average receiver input

power is N = E o'/m = a' where N is called the noise. The

average receiver input signal power is S = E sj/m where S is

called the signal. In these terms, d - m.(S/N) where S/N is

called the signal-to-noise ratio.

If a receiver's input can be considered to be a time

sequence of continuous voltage values such as in the caso of a

sonar receiver, in some cases a frequency representation can be

used that involver the concept of receiver bandwidth. In these

cases, the noise process is assumed to be such that m - t/6t

where t is the integration time (the duration of an

observation) and St is the time between samples with

8t = l/[2(BW)] where BW is the bandwidth and 6t is

determined by the sampling theorem. This implies that the

detection index can be written as d - 2t-(BW)-(S/N). By

defining N0 as the power spectral density where N0 - N/BW, the

detection index can also be wiitten as d - 2t-(S/No).

a



In Reference 2, the conditions required by the first model

are called Case I and in the following sections the first model

is called the Case I model. A receiver that processes data

such that it would implement a likelihood ratio decision rule

under the conditions of the first model is called a matched

filter or crosscorrelation detector. If the description of the

input noise is adequate, a Case I model can be used to obtain an

estimate of an upper bound on a detection system'R performance,

since all the information necessary to define the signal is

assumed to be known.

Model II: In the second detection model, a sampled noise

value is a value of an independent normal random variable with

mean zero and with known variance a'. And a sampled signal

value is an independent random variable with mean zero and with

known variance oa. Thus, the input process corresponding to an

observation consists of some number m of independent normal

random variables Yl,-..,Ym each with mean zero and each with

variance o' when a signal is not present and each with variance

a' + aY when a signal is present. The result of applying a

likelihood ratio decision rule in this model can be expressed in

terms of a statistic X which is defined by X = E ¥i.

When a signal is not present, i". e statistic X/N has a

chi-square distribution with m -es of freedom. When a

signal is present, the statistic ?I.J) has a chi-square

distribution with m degrees of freedom. So, in terms of these

9



two statistics, the two conditional probabilities pf and Pd

are: Pf = P(Xj Ž x*/N) and Pd = P(X! ! (x*/N).([/(l+S/N)])

where X* is a chi-square random variable with m degrees of

freedom, x* is a number which J.s determined by the decision rule

and S/N is the signal-to-noise ratio. A receiver that would

implement a likelihood ratio decision rule under the conditions

of the second model is called an energy detector or square law

detector.

The mean of a chi-square random variable with m degrees of

freedom is m and the variance is 2m. By the central limit

theorem, as the number of degrees of freedom of a chi-square

random variable becomes large, it can be approximated by a normal

random variable that has the same mean and variance. Therefore,

pi and tic~ e, Aproxiimatd by no = I - tri- */IN - m)/(2m)i)

and Pd = 1 - {([i/(I+S/Nj][x*/N - m - m.(S/N)i/(2m)i). Arid,

with v*= [x*/N - m)/(2m)½] and d = (m/2).(S/N)', this

becomes: pf = 1 - o(v*) and Pd = 1 - #([I/(l+S/N)].(v* - di)).

Based on the above approximation, if the noise N is

significantly larger than the signal S, then pf and Pd can

be approximated by: pf = 1 - #(v*) and Pd = 1 - *(v* - di).

Anl, if the concept of bandwidth is applicable so that the sa-Iple

size m = 2t-(BW) , then d = t.(BW)(S/N)'. In Reference 2, the

conditions required for this approximation are callea Case II and

in the following sections this limiting form of the second model

is called the Case II model.

0



Model III: In the third detection model, a sampled noise

value and a sampled signal value are values of independent random

variables that are determined b' independent Poisson processes

that ar( observed for a time inter-al t. The noise process is

characterized by a counting rate a, the signal process is

characterized by a counting rate as and the noise and signal

processes are additive. This implies that when the input is

noise alone, the input is a Poisson random variable with

parameter a-t, the expected number of noise ccunts, and when the

inpuL- is signal and noise, the input is a Poisson random variable

with parameter (a + as).t, the expected number of noise and

signal (:ounts.

For a likelihood ratio decision rule, pf = I - P(y*; a.t)

and Pd = 1 - P[y*;(a + as).t) where y* is a threshold value

that is determined by the decision rule and P(y;O) represents

tie Poisson cumulative distribution function with parameter 0.

When 8 is large, the cumulative distribution function can be

approximated by the cumulative distribution function of a normal

random variable that has the same mean and variance. Using this

approximation for cases where a't is sufficiently large, since

both the mean and variance of a Poisson random variable are equal

to 8, pf 1 - *(v*) and Pd = 1 - f([1/(l + as/a)i](v* - di))

where v* = (y* - ut)/(at)i and d = aet.(as/a)'. If, in

addition, a is significantly larger than a., that is, if

as/a << 1 as well as a-t >> , then pf and Pd can be

approximated by: pf = 1 - f(v*) and pd = I - *(v* - d t ).

11



The third detection model might be used to describe a

receiver whose input for an observation is the number of photons

counted by a radiation detector in situations where a-t, the

expected number of counts when no signal is present, in of the

order of thirty or more.

When a likelihood ratio decision rule is used in the three

models discussed above, for the first model and under limiting

conditions for the second and third modela, the following result

is obtained: pf = 1 - 0(v*) and Pd = 1 - #(v* - di) where the

value of v* denends on the noise power N for the first and

second models. For a sonar receiver described by the first

model, that is, by the Case I model: d = 2t.(BW)(S/N). For a

sonar receiver described under the limiting conditions for the

second model, that is, by the Case II model, d t.. (o/ps) '' CA

So, in either a Case I model or a Case II model of a sonar

receiver, the detection index d is a function of the time

ban iwidth product t-(BW) and the signal -to-noise ratio S/N.

Since sonar equations relate S/N to system, target and

environmental parameters, a sonar equation can be used to relate

S/N to these parameters in a model of a sonar receiver.

12



IV. General Detection Models

The detection models that have been coasidered to this

point are based on binary detection theory. After each

observation, a receiver decides either that the input

corresponding to the observation was noise or else it decides it

was signal plus noise. However, in some detection systems this

decision is delayed. In a computational sense, a model of such a

detection system is generally complex relative to a binary

detection model. To illustrate this, consider an active sonar

system whose receiver includes an operator. Suppose the

probability that the operator will detect a target echo has been

determined in a laboratory experiment in which the operator was

required to decide after each input corresponding to a resolution

cell that either the input was a target echo (signal) and noise

or the input was noise alone. In addition, suppose that under

operational conditions the operator normally delays this

decision. Then, in general, the probability that the operator

will decide that the input corresponding to a resolution cell

that contains a target is a target echo and noise will not be

equal to the probability of the event in the forced choice

experiment. And, in addition, the probability that the operator

will decide the input corresponding to a resolution cell that

does not contain a target is a target echo and noise will not be

equal to the probability of this event in the forced choice

experiment. Consequently, in general, the value of both Pd and

13



pf for an operational environment will be different than that

for the laboratory environment.

One model that has been proposed to deal with this kind of

situation defines the event that a receiver decides that the

input corresponding to a resolution cell is signal and noise to

be equivalent to the event that out of n consecutive

observations at least k of them would result in the decision

that the input was signal and noise in a forced choice

experiment. The model is said to be based on an k-out-of-n

detection criterion. With this criterion, the probability that a

target will be first detected on the jth observation can be

found as follows: Determine the 2i sequences of forced choice

resnonses that could result for a sequence of j consecutive

observations- Next, determine the probdaiLty of U ULL•&*n for

each sequence that first satisfies the k-out-of-n detection

criterion on the jth observation. The probability of first

detection on the jth observation is equal to the sum of these

probabilities. The cumulative probability of detection at the

jth observation is the sum of the probabilities of first

detection on the ith observation for i = 1,2, ... ,J.

14



V. Signal-to-Noise Ratio Detection Models

In some radar and sonar detection models, for a

specified value of pr, a minimum acceptable value of Pd is

defined. This minimum acceptable value of Pd and the specified

value of pf define what can be called a minimum acceptable

signal-to-noise ratio (S/N)m if Pd is a nondecreasing

function of signal-to-noise ratio. In some sonar detection

models, (SIN)m in decibels is called the detection threshold

WT. In symbols, Ur = 10 log(S/NK). If the minimum acceptable

value of Pd is .5, then DT is usually called the recognition

differential RD. The difference between the signal-to-noise

ratio in decibels and RD (or DT) is called the signal excess

SE. In symbols, SE = 10 log(S/N) - RD.

One Interpretation of signal excess is that for a

localization region containing a target detection occurs with

probal Llity one if SE ? 0 and with probability zero if SE < 0.

This interpretation provides the basis for defining detection in

the three encounter detection models that are discussed in

Se ttion VII. A more consistent interpretation of signal excess-

is: If SE Ž 0, then the probability of detection Pd is

greater than or equal to the minimum acceptable value (.5 if

recognition differential RD is used to define signal excess).

For cases where pd increases rapidly with signal excess in the

neighborhood of zero signal excess, the two inti rprstations may

be operationally equivalent. For a discussion of this point as

15 •-



well as a discussion of an operational case in which receiver

decisions are delayed, see Reference 3.

Signal excess (signal-to-noise ratio) detection models

provide a basis for general detection models, in particular,

models that describe nonstationary noise and signal processes and

randomly changing decision rules. This is illustrated by the

models described in Section VII. In addition, signal excess

models provide a basis for delayed receiver decision models.

This is illustrated by the active sonar detection models in both

Reference 4 and Reference 5 that are based on a k-out-of-n

detection criterion. In all of these models, the signal-to-noise

ratio and the recognition differential are random variables.

Using X(t) to represent a random variable corresponding to

an index time t anoi a subuuriPt tu Identify -th. rnd.o varIable

in such models, for a passive sonar receiver, the signal-to-noise

ratio in decibels associa-ed with a decitdon at the index time

is: XSL(t) - XTL(t) - [XNL(t) - XDI(t)]. In this expression,

SL represents source level, TL represents transmirsion loss,

NL represents noise level and DI represents directivity index.-

Since signal excess SE is defined to be the difference in

decibels between the signal-to-noise ratio aid the recognition

differential (or detection threshold), it too is a random

variable and, for any decision time t, one can write:

(1) XSE(t) = XSL(t) - XTL(t) - [XNL(t) - XDI(t)I - XRD(t).

The distributions of the random variables on the right side of

Equation 1 determine the distribution of the signal excess. In

16



the passive sonar detecticn model described in Reference 6,

XSL(t), XRD(t) and, in effect, XNL(t) are normally

distributed random variables while XTL(t) is a uniformly

distributed random variable. In the three sic ial excess models

that are described in Section VII, all of the random variables in

Equation 1 are normally distributed.

It is sometimes convenient to write Equation 1 as follows:

(2) XSE(t) = SE(t) + X(t).

In Equation 2, SE(t) is the expected value of the signal excess

determined by the following expected value equation:

(3) SE(t) = SL(t) - TL(t) - (NL(t) - DI(t)] - RD(t)

where each term on the right represents the expected value of the

indicated random variable and X(t) is a random variable that

determines the stochastic character of the signal excess. Since

SE(t) is the mean of XSE(t); by Equation 2, the mean of X(t)

is equal to zero and the starndard deviation of X(t) is equal to

the standard deviation of XSE(t). If a represents the

standard deviation of XSE(t) and the random variables on the

right side of Equation 1 are statistically independent, then
2 a a a a

S= 4SL + 4TL + N1, + 4DI + 4RD. This relation has been used to

determine a standard deviation for the signal excess in

operational models.

17



V1. General Encounter Models

A basic problem associated with search modeling is that

of determining the probability that a target will be detected by

a detection system during an encounter with one or more detection

systems. In the encounter models that are considered in this

report, during a search, observations are made of a aeries of

localization regions. The probability of detection on an

observation is P(D 1 n H1 ). The probability of a false alarm on

an observation is P(D 1 n H0 ). In these models, the time to

resolve a false alarm is ignored. However, Pd and pf are

assumed to be determined by some criterion such that pf is an

operationally reasonable value.

Using the order number of a decision rather than its time as

an~~~ inda t --------------- teci. -e-r-A--------ri o --_ 7aiai ein

that contains a target and a random variable N to represent the

decision order number at which detection first occurs, the

probability of detection during an encounter can be written as:

P(N : n) = P(N : a) + P(N = u+l) + --- + P(N = n) or equally as

P(N S n) = 1 - [1 P(N 5 %)]-(1 - g 1m+) .'" (I - gn) where

gi = P(N = ltiN • i-l) is the probability of the event detection

at the ith decision conditioned on the event no detection at an

earlier decision and 1 5 m ! n. The second expression is

generally of greater interest than the first expression, since

gi can usually be more directly related to operational

parameters such as range and environmental conditions that

determine a target's detectability than can P(N = i).
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With a time rather than the order number to index a decision

and a random variable T to represent the time index at which

detection first occurs, P(N ! n) becomes P(T • tn) with

P(T 5 tn) = I - (I - P(T : tm)].[l - g(tm+1)] .o. [1 - g(tn)]

where g(ti) - P(T - tilT Sti 1 ).

If g(tj) << 1 for i = 1,2, ... ,n, then, to a first

approximation, ln[1 - g(tj)] - -g(ti) for 1 - 1,2, ... ,n and

P(T 5 tn) = 1 - [1 - P(T 5 tm)].exp[-E g(ti)]. This follows

since P(T 5 tn) = 1 - (I - P(T 5 tm)].exp[E ln[l - g(ti)] where

the sum index i = n+l, ... ,n. A continuous analog to this

approximation can be used to describe an encounter for which

g(ti) << 1 for i = m,m+l, --- ,n and decisions during the

encounter can be considered to occur continuously. That is, the

Lime of ctit to.I a' decision an t=&

between decisions are both negligible relative to the time of the

encounter.

The analog can be developed as follows: First, let St be

the time between decisions, then ti = i-6t and the probability

of detection P(T 5 tn) = I - [1 - P(T 5 tm)]'exp[-E r(ti)St]-

where r(ti) = (1/6t).g(ti) is a detection rate function

(a probability of detectior. per unit time) and, in terms of 6t,

the probability g(ti) = P[T = i'ftIT 5 (i-l).8t].

If T is considered to be a continuous random variable, the

expression for P(T < ti) above indicates that the sum in the

exponent should be replaced by an integral whose integrand is a

continuous function ¶(t). If r(t) can be determined, then,
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with g(ti) as a guide, the cumulative probability of detection

P(T < t) can be def ed by:

(4) 1(t) = lir ((i/6t) P(t < T • t+StIT S t))

where the limit is for St approaching zero. Equation 4

implies the differential equation: dp(t)/dt - [I - p(t)].r(t)

where p(t) = P(T • t). A solution to this equation is:

11-n
(5) P(T : tn) = 1 - [i - P(T ! tm)] exp[-Jtm r(t)dt]

where t is the time index for a decision during an encounter, tm

is some time during the encounter and tn > tm. A T(t) that is

based on a visual detection model is described in Reference 7.

If the detection capability of a detectton system is assumed to

depend on a target's position relative to the detection system

during an encounter but not to depend on the clock time, then the

tiie index ot a qeciqinn can he a relative index .[..L d.Le.ml.....

the target position that is associ-ated with a decision rather

than the clock time a3sociated with the decision.

The above results apply to the case of an encounter between

a target and a collection of detection systems. However, if the

detection systems are not collocated, it is generally convenient

to describe encounters of this kind in terms of encounters

between the target and the individual detection systems. In

either case, if the event target detection for a detection system

is not independent of the event for other detection systems, then

in order to describe this in an encounter model the correlation

between the input to the detection system and the inputs to the

other detection systems must be specified. This has been done in
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some models as follows: First determine the probability of

detection for each system acting alone. Let Pi be the

probability that the ith system detects the target during the

encounter under this condition. Next, consider two cases: In

the first case, the random factors that determine detection for a

system ara independent of those that determine detection for the

remaining systems. In the second case, the random factors that

determine detection for the systems are completely dependent. In

the first case, the probability that at least one system detects

the target is given by: PY = 1 - (I - PI)-(l - P 2 ) ... (I - Pn)

where n is the number of detection systems involved. In the

second case, the probability that none of the systems detect the

target is qiven by: 1 - Pn 1 - P. where P. 2 P1 for

i =1,2, .-. ,n since if the mth system does not detect the

target, none of thi remaining systems ill detect it. The

probability that iat least one system detects the target is given

by: P = a.PD + '1 - u)'PI where a determines the degree of

correlation and 0 : a S 1. A way to determine a value for a

is described in Refercnce 8.
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VII. hiree Signal Excess Encounter Models

In the three models described in this section,

detection is defined in terms of signal excess as it is in

Section V. Each model determines a cumulative probability of

detection for a target in an encounter with a passive sonar

system. An observation in the models in indexed by time and the

index can usually be considered to be the time at the end of the

observation. During an encounter, observations are made of one

or a series of localization regions. By implication, a false

alarm can occur for a localization region that does not contain a

target during an observation since the value of RD (or DT) is

determined by some specified false alarm probability. However,

as they are generally used, signal excess models do not account

for false alarms. This can be viewed as equivalent to modeli-iy

the time to resolve a false alarm to be effectively zero.

To determine signal excess in the models, it is convenient

to use Equation 2. For each decision in an encounter, there is a

random variable X(t) defined by Equation 2 that determines the

random character of the sig al excess. F3r a sequence of

decisions, the set of these random variables ordered by their

time index constitutes a stochastic process. And the joint

distributions of these random variables determines the nature of

the stochastic process. In the three encounter models described

in this section, the stochastic process is called a lambda-sigma

jump process. The time series that are generated by lambda-sigma

jump processes are represented by the plot in Figure 2 below.
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The jumps in the time series occur at times determined by a

Poisson process with a mean jump rate lambda. This implies that

the time between jumps is a random variable with an exponential

distribution and that the expected times between jumps T is

equal to the reciprocal of lambda.

SdB

l i '1 n u T I- time

Figure 2. A time series representing a realization of a lambda-

sigma jump prozess. On the plot, a in dB equals one unit on

the vertical axis and r equals one time unit on the horizontal

axis.

From Figure 2, note that the observed values of neighboring

random variables are equal unless a jump has occurred between

the observations. When a jump occurs, the first ran,"'m variable

after the jump is normally distributed with mean zero and

variance a' and it is independent of all the random variables

before the jump. Conditioned on a jump Fattern, this random

variable and all the random variables between it and the next
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jump are dependent and the correlation coefficient between any

pair is one. That is, if the value of the signal excess is known

at some time, then all of the values between the last jump before

that time and the first jump after that time are also kuiown.

However, since the jumps occur randomly, knowing the value of the

signal excess with certainty at some time does not determine the

values of the signal excess with certainty at neighboring times.

In the unconditioned case, the correlation coefficient between

the random variables X(t) and X(t+r) is equal to 1/e. For

this reason, r is referred to as a relaxation time.

It appears that the use of the lambda-sigma jump process is

based more on past practice than on experimental justification.

In this regard, see Reference 9. By referring to Equation 1, it

can be seen that the lambda-sigma jump prccess is deter-mined by

the sum of the stochastic processes that determine the random

variables on the right side of this equation. Although the sum

of a collection of normal random variables is a normal random

variable, the sum of a collection of lambda-sigma jump processes

is not a lambda-sigma jump process. This suggests that if the

lambda-sigma jump process does adequately describe the

variability of the signal excess, then the majority of the

variability of the signal excess may be due to a single one of

its elements. Fox example, transmission loss.

In the three encounter models described below, detection is

defined in terms of signal excess as described in Section IV and

decisions are indexed by a time that can usually be considered to
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be the time of the decision. During an encounter, observations

are made sequentially of one or a series of localization regions

(resolution cells). For a localization region that does not

contain a target, the signal observed during the observation of

the region is zero. For these observations, the time to resolve

a false alarm is zero. However, since the value of RD (or DT)

is finite and consequently the false alarm probability is not

zero, by implication, the cost associated with a false alarm is

not zero.

The First Passive Sonar Encounter Detection Model: This

model describes an encounter in terms of a series of decisions

with each decision based on the signal excess XSE(t) at a time

corresponding to the end of an observation. The observations are

of equal duration and the integration time that determines the

recognition differential is equal to the duration of the

observations. In the model, XSE(t) is determined by a lambda-

sigma jump process. For an encounter of m otiervationb in

which SE(t) is unimodal and in which the time of the single

maximum is prior to or at the end of the encounter, it is shown

in Reference 10 that the probability p that detection will

occur during the encounter is given by the following equation:

(6) p = 1 - [(1 - pc)/(l - O'Pc))](l - 0'Pl) (1 - P'PM)

where 1 = 1 - exp(-&t,/) and pi = O'SE(ti)/a] for i - 1,2,

,m. Here, 8t innicates the duration of an observation and

0 indicates the standard normal cumulative distribution function

as before. The integer c is the index of a decision time tc
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for which SE(tc) is greater than or equal to SE(ti) for any

time tj and t1 5 tc 5 tm.

As Y approaches zero, • approaches one and Equation 6

approaches this form:

(7) p = 1 - (1 pi) (1 - Pm).

In this limit, the signal excess random variables are all

independent. Note that Equation 7 applies without the condition

that SE(t) be unimodal.

As r approaches infinity, 8 approaches zero and

Equation 6 approaches this form:

(8) P = PC-

In this limit, the correlation coefficient between any pair of

signal excess random variables is equal to one. Note that

Equation 8 applies without the condition that SE-t) be

unimodal. Equation 8 defines a complete dependence encounter

model.

The Second Passive Sonar Encounter Detection Model: This

model is in a sense a third limiting form of the first passive

sonar encounter detection model. in this limit, the time between

decisions approaches zero. However, in this limit the

integration time that determines the recognition differential is

not equal to ft and it does not approach zero. It is, in

effect, chosen by the user of the model through the user's choice

of the value for the recognition differential. For an encounter

that begins at tl dznd ends at t2 and for which XSE(t) is

uetermined by a lambda-sigma jump process and SE(t) Is
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unimodaJ, it is shown in Reference 10 that for this limit,

Equation 6 has the following form:
t2

(9) p = 1 (1 - P(tc)l]eXp[-(/'r). tl p(t) dt]

where p(t) = #[SE(t)/c] and where now t. is the encounter

time such that SE(tc) is greater than equal to SE(t) Zor any

other encounter time t and tl 5 tc 5 t2.

The Third Passive Sonar Encounter Detection Model: This

model describes an encounter between a target and a passive sonar

detection system in which detection occurs during an encounter if

the average value of the square of the continuously observed

signal-to-noise ratio over a time interval of length u is

greater than or equal to the square of the signal-to-noise ratio

thtdelt-ermis .t. rcognition differential fni an integration

time equal to u. With R(s) the random signal-to-noise ratio

at a time s and Rm(u) the random signal-to-noise ratio that

determines the random recognition differential for an integration

time u, detection during an encounter occurs at the first time

t that the following inequality is satisfiedt

(10) (1/U) ft-u [R(s)/Rm(u)]' ds Ž I

where the time origin is chosen so that t ; 0 and where the

integration time u = t for t < to and u - to for t 2 to

where to is a maximum integration time. The random integrand

in the inequality is related to the random signal excess at the

time s for an integration time u. The relation is:

(11) 10 log [R(s)/rm(u)]' = 2[SE(s;u) + X(s)]

27



where SE(s;u) is the expected value of the signal excess at a

time s for an integration time u and X(s) is the random

component of the signal excess at the time s. In the model,

X(s) is determined by a lambda-sigma jump process and SE(s;u)

is determined by an expected value sonar equation with a

recognition differential RD(u) = 10 log im(u). Here, rm(t) is

the value of the signal-to-noise ratio that gives a probability

of detection equal to .5 for an integration time t and a

specified probability of false alarm pf. With the signal

detection process described by a Case II signal detection model,

the detection index necessary to give the required operating

point (pf,.5) is related to the integration time t and the

signal-to-noise ratio rm(t) by:

%- .A. I L

where BW is the bandwidth of the receiver. For a spectrum

analyzer, BW would be the bandwidth corresponding to a given

frequency resolution and d would be the detection index

required in order to be at the operating point (pf,. 5 ) for a

signal that was contained within a bandwidt'i BW. Since d in

Equation 12 must be the same for t = u and t = to,

(13) RD(u) = 5 log(t 0 /u) + RD(t 0 )

where to is the maximum integration time. Then, since

SE(s;u) - SE(s;to) - RD(t 0 ) - RD(u), by using Equatlon 13 and

Equation 11, Relation 10 becomes:

ft (1/5)[X(s) + SE(s;to) - 5 ]oq(t0)]
(14) t-u 10 ds Ž 1
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where as above the time origin is choset so that t * 0, the

integration time u = t for t < to and u = to for t t to

and where SE(s;to) is the expected value of the signal excess

at the time s for a recognition differential determined by an

integration time to. In an encounter, detection occurs the

first time that Relation 14 is satisfied.

As is pointed out in Reference 11, the appeal of the Third

Passive sonar Encounter Detection Model relative to the Second

and FirEt Passive Sonar Encounter Detection Models is that ft

appears to more closely describe the detection process in passive

sonar detection systems that display their processed data to an

operator in a continuous manner over a time window of duration

to. However, results reported in Reference 12 indicate that the

difference between the three models may not be significant in

some types of encounters.
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VIII. Straight Line Encounters

Suppose a target's detectability depends on its range

from a detection system and that the probability of detection is

effectively zero beyond a range rm for any target azimuth. In

this report, an encounter between the target and the detection

system is the event that the range between the target and the

detection system is less than or equal to rm. In addition,

suppose rm is small enough so that when the target and the

detection system are having an encounter they can be considered

to be moving on planes parallel to a tangent plane to the earth's

surface at some point in their vicinity. If this is the case,

then while the target and detection system maintain a constant

course and speed during an encounter, the encounter is called z

straight line encounter.

A straight line encounter can be described in terms of a two

dimensional rectangular coordinate system whose plane is parallel

to the tangent plane to the earth. If the coordinate system is

stationary relative to the detection system with the detection

system located at the irigin and is oriented so that the target's

motion is parallel to the y-axis and is in the positive

y-direction, then the target's x-coordinate during a straight

line encounter will be constant. The constant is equal to the

target's horizontal range at the closest point of approach (CPA)

on the straight line track on which the target is moving relative

to the detection system during the encounter. Iris range is

called the target's lateral range.
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A complete straight line encounter is a straight line

encounter that begins at a range from a detection system that is

greater than or equal to rm and continues past CPA to a range

from the detection system that is again equal to or greater than

rm. Let p(x) be the cumulative probability that a target is

detected by a detection system in a complete straight line

encounter in which the target's lateral range is x. Then the

function p(x) defines what is called a lateral range curve or

lateral range function.

Let p be tha probability that a target is detected during a

complete straight line encounter. If the lateral range of a

target in a straight line encounter is assumed to be a continuous

andum " varabl 'A' ith a uni-form ..d4i .._ib u tio

for lxi 5 a/2 and pkx) = 0 for lxj > a/2, then the

probability that a target will be detected during a complete

straight line encounter is given by:

(15) p = (1/a) T.. p(x) dx

where the linits of integration can be used since the value of

p(x) is zero for Ixi > a/2. Equation 15 suggests a measure of

a detection system's capability to detect a target in a straight

line encounter. The measure W is called sweep width and

(16) W - r--w p(x) dx.

With this definition, Equation 16 becomes: p - (1/a)-W.
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IX. Two Intermittent Signal Encounter Nodels

In the intermittent signal encounter models that are

described in this section, an encounter is a complete straight

line encounter, and during an encounter a target either emits a

signal (an acoustic transient) or its presence (a visible

submarine mast) is the cause of a signal at various times. Two

cases are considered: In the first case, the signals occur

periodically, the signals are of length 8t and the time between

the occurrence of signals is i where r > 6t. In the second

case, 6t = 0 (the signals are instantaneous) and the signals

occur at times determined by a Poisson process for which the

expected time between signals is equal to T. In the model, the

detectabilitj of a target signal depends on a target's horizontal

range from a detection system, but on no other factors. if a

signal occurs while the target is within a range r, it will be

detected. For a continuous signal the lateral range function of

a detection system for a target is: p(x) - 1 for lxi , r and

p(x) = 0 for Wxi > r where the horizontal range r is

determined by the characteristics of the detection system and the

target. The geometry for an encounter is shown in Figure 3

below.

For intermittent signals, the length of a target's track

relative to a detection system on which a signal will be detected

is 2-(rW - x')t + w.St where w is the speed of the target

relative to the detection system. So, a target's exposure time

during an ncounter is (2/w)o(r" - x')l + &t.
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For periodic signals, there are two cases. In the first

case, r a w.(r - St)/2. In this case, the signals result in the

following lateral range function:

p(x) = o for lxi > r

(17) p(x) = 1 for jxj < (r' - [w-(r - 8t)/2]t)|

p(x) = [2/(w.r)]-(rl - x')i + 6t/r otherwise

In the second case, r < w.(r - &t)/2 and the middle equality

in Equation 17 does not apply.

For signals that are instantaneous and whose occurrence is

determined by a Poisson process, the signals result in the

following lateral range function:

p(x) - 1 - exp(-[2/(w-y)].(r* - x')1) for lxi : r
(18)

y
Target

r

-. x

Figure 3. The encounter geometry for the two intermittent signal

models described here.
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For signals whose occurrence is determined by a Poisson

process and for which &t > 0, signals can overlap. If this is

allowed, then Equation 18 can be modified to describe this c:ase

by adding St/Y to the term in the exponent of Equation 18 that

is within the square brackets. In particular, note that this

modified Equation 18 can be approximated by the bottom equality

in Equation 17 when (2/w.T)(r* - x')i + St/¶ << 1. This

implies that when the expected time T between signals is large

relative to the exposure time (2/w)(r' - x')i + St, the periodic

signal model and the Poisson random signal model are effectively

equivalent.

If St 0 and r < (w.r)/2, for the periodic intermittent

signal, W w=-r/(v-T). With the above approximation, this is

also the sweep width for the Pulsson random signal modal.
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X. A Random Search Model

A search of a region in which a target moves on a track

that consists of a number of straight segments placed in such a

way that in a limiting sense every section of the region is

equally likely to be searched on a segment is referrod to as a

random search in Reference 6. ±tpresentation of a search region

with the track segments that could be imagined to be the tracks

of a random search are shown in Figure 4.

----4

Figure 4. A search region and a track that could be described as

a random search track.

Two developments of a model to describe this kind of search

are contained in this section. The first development is based on

the following .conditions: 1. A target is at a fixed position

within a defined search region. 2. A searcher's track is a
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sequence of straight line segments that are within the search

region. 3. The searcher's detection system is such that while on

a track segment, a rectangle is searched that is contained within

the search region, is of length equal to the length of the track

segment and is oriented so that its long axis is parallel to the

track segment. 4. The probability that the searcher's detection

system will detect a target while on a track segment with a

search rectangle that does not contain the target is zero. The

probability that the searcher's detection system will detect a

target while on a track segment with a search rectangle that

contains the target is p(x) where x is the target'. lateral

range for the track segment and p(x) is the lateral range curve

for a complete straight line encounter lateral range x. A

repre~uenatlJ.ua c- a saach actnfl iS 0...1.........iewfi A~w

5. The track segments are located in such a way that the event

that the target is within the search rectangle associated with a

track segment is independent of the event that the target in the

search rectangle associated with any other track segment. And

the probability of the event is equal to the ratio of the area of

the search rectangle to the area of the search region and, given

a target is within a search rectangle, its position is uniformly

distributed over the rectangle.

Condition 4 implies tnat the random search model. is based

on the concept of a complete straight line encounter. The

definition of an encounter: that is intended here is that given in

Section VI. This implies that in the random search model the
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time to resolve a talse alarm is zero. However, for the model,

Pd and pf are considered to be determined by some cri~erion

such that pf is less than one. Crnsequently, although the time

to resolve a false alarm is zero in the model, the cost

associated with a calse alarm is not zero. (A simple iodel that

accounts for the time to resolve false alarms is described in

Reference 13.) Condition 4 also implies that when a searcher is

on a track segment with a search rectangle that contains a

target, the encounter is a complete straight line encounter. And

Condition 5, whi=h can be considered to specify a random

arrangement of the track segments, implies that when this is the

case, for the complete straight line encounter, the target's

lateral range is a random variable that is uniformly distributed

between -b/2 and b/2 where b is width of the search

rectangle (the dimension of the rectangle perpendicular to the

associated track segment).

Swept Area

Track

Figure 5. A track segment and its associated search rectangle.

that could correspond to a search with an aircraft mounted

infrared detection system.
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Based on the above considerations, the probability that a

target will be detected wrhile a searcher is on a track segment

with an associated search rectangle that contains the target is

given by:

(19) p(x) fX(X) dx = W/b

where fx(x) = 1/b for -b/2 S x 5 b/2 and fX(x) = 0 and

p(x) = 0 otherwise. Note that the left side of Equation 19

applies to any complete straight line encounter in which the

target's lateral range for the encounter is considered to be a

random variable with a distribution determined by the probability

density function fx(x). If it is not given that the target is

within the search rectangle associated with a track segment, then

the unconditional probability that the target will be detected on

the track segment is given by: (W/b).(SA/A) where SA is the

area of the search rectangle associated with the track segment

and A is the area of the search region. With 1 the length of

the rectangle, &A = b-1 and the probability becomes: (W.l)/A.

Then, since the event that the target will be in the search

rectangle of a track segment is independent of the event that it

will be in the search rectangle of any other track segment, the

probability p that a random search consisting of m track

segments will detect the target is given by:

1 - [I - (W-1 1 )/A][I - (W.1 2 )/A] - (1 - (W-In)/AI where li

is the length of the ith track segment. The probability is

also given by: p = 1 - exp(Z ln[1 - (W.li)/A]) where the sum
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index i = 1,2, --- ,n. If (W.li)/A << 1 for j 1,2,

then this expression can be approximated by:

(20) p = I - exp[-(W.l)/A]

where 1 = Z li is the track length of the search. Equation 20

is known as the random search formula.

The second development of the random search formula is based

on Equation 5 and a detection rate for a random search given by:

T(t) = W-v(t)/A. With this detection rate and Equation 5, the

random search formula is given by:

(20a) P(T S t) = 1 - exp (-[W-l(t)]/A)

where 1(t) is the track length for a random search that starts

at time 0 and ends at time t and

t

Replacing P(T ! t) by p and l(t) by 1 gives Equation 20.

In the form of Equation 20a, the random search formula indicates

explicitly the relation between the probability of detection and

the duration of a random search. Note that Equation 20a implies

that the sweep width is independent of speed over the range of

speeds in the encounter.

As in example application, consider the periodic signal

model of Section IX with 6t = 0, r < (w.r)/2 and v(t) - v.

For this case, p = 1 - exp[-(T-r'/A)-(t!y)].

Reference 14 contains an example of an appl-.ation of the

method used in the second development of the random search

formula to a random search where the search region expands with

time.
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XI. Ladder and Barrier Search Models

In some barrier searches, the barrier search track is a

ladder search track relative to a reference system that moves

with the target. This fact is used in the barrier search model

development that follows the two ladder search model developments

below. The first ladder search model is referred to as an ideal

ladder search model because of the idealizations that are

involved in its description of a ladder search. The second

ladder search mode]. is r ferred to as a degraded ladder search.

It can be considered to describe a ladder search track in which

navigational errors result in omissions and overlaps in covurage.

An Ideal. Ladder Search Model: The model is based on the

following conditions: 1. A ladder search region is a rectangle

that cont~a~n a fixed _ tarqe 2.- Durina a search of the reqion,

the searcher's detection system moves on a set of m parallel

track segments of length b separated by a distance s. 3. As

the detection system moves along a track segment, it searches a

rectangular strip of length b and width s within the search

region. 4. The m rectangular strips that correspond to the m

track segments completely cover the ladder search region with no

overlap. 5. If a target is within the rectangular strip

corresponding to a track segment, then there will be a complete

straight line encounter between the target and the detection

system when the detection system moves along the track segment

and the lateral rance u the encounter will be uniformly

distributed across the width of the strip. If the target is not
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in the rectangular strip, then there will not be an encounter and

the probability that the target will be detected while the

detection system is on the track segmn tt is zero.

I - -

b

-4- S .-..

Figure 6. A schematic representation of a ladder search geometry

for a case in which the ladder search track segments are

superimposed on and bisect their corresponding rectangular

strips.

Since targets ottside of the rectangular strip that

corresponds to a track segment cannot be detected while a

detection system is on the track segment because of Condition 5,

in the model, the sweep width W of a searcher's detection

system must satisfy the relation W : s . In particular, W = s

only holds when the detection system detects a target that is in

a rectangular strip with probability one for aiy target lateral

range. This kind of detection system is sometimes referred to as

a cookie cutter detection system. However, this terminology can
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be misleading since it suggests the detection system detects

equally well for all azimuths. But this is not a requirement on

the system in order that W = s.

The ideal ladder scarch model implies that if the concitions

of the model are satisfied, then the probability p that a

target will be detected by a an ideal ladder search is given 'iy:

(21) p = W/s

where W/s :5 1. Tht quantity W/s is called the coverage

factor in this case.

A Degraded Ladder Search Model: The above model implies

perfect navigation i.n addition to other idealizations. A vodel

of a ladder search is given in Reference 6 that could be used

for cases in which this is a poor assumption. The model which is

refer-ed to here as a degraded ladder search model can be -

considered to describe navigational inaccuracies in terms of

omissions and overlaps of the rectangular strips. It can be

developed as follows: Consider a random search in the ladder

search region whose track length is equal to the search track

length required to complete an ideal ladder search, that is, a

track length 1 = m-b. The degraded ladder search model

describes the result of omissions and overlaps in a ladder search

to be such that the probability of detection for this random

search is equal to the probability of detection for the degraded

ladder search. Conseqaently, since the area of the ladder search

region is m's'-b, for the degraded ladder search model:

(22) p 1 - expe.W/s).
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Here, the requirement that the coverage facto Wis S 1 for

Equation 21 can be relaxed. However, it should still be

considered as an approximate condition.

The condition that the target be fixed within the

rectangular search region is critical to both Equation 21 and

Equation 22. However, these results are also applicable to a

search for a moving target under the conditions that are

described next.

A Barrier Search Model: A target moves with a constant

course and a constant speed u. Both the target's course and the

target's speed are known by a searcher. The searcher establishes

a barrier of width b that is perpendicular to the target's

tVarck and moves on the barrier with a speed v > u. The barrier

is designed so that in a reference system relative to the target

the barrier search is a ladder search that satisfies the

conditions for a ladder search that are given above. There are

two cases to consider: 1. The barrier is established in front of

the target. 2. The barrier is established behind the target.

From the search geometry for a bar-ier established in front

o. the target, it can be seen from Figure 7 below that

e - sin-l(u/v) and d = v.Y where i = s/(v + u) is the time to

move from one search leg to the next. The angle 0 and the

perpendicular distance d that depend an u, v and s, and the

wilth of the barrier b are the quantities that are required in

order to establish the barrier operationally.
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i Target

g d

1' Searcher

b

Figure 7. A barrier search track shown for a barrle- established

in front of the target. The track is shown in a reference system

fixed relative to the earth.

For a barrier that is established in front of a target, one

of three barrier types will result. A barrier's type is

determined by the relation of the distance d to the distance

g = ut where the time t = b/(v2 - uW)½ is the time to complete

a search leg (cross the barrier). The barrier type is determined

as follows: 1. For g < d, the barrier is an advancing barrier.

2. For g : d, the barrier is a stationary barrier.

3 For q > d, ý-he ba.rier is a retreating barrier.

For a barrier established bethind the target, there is only

one barrier type and it is called an overtaking barrier. For an

overtaking barrier, 9 = si.n-(u/v) as for a barrier established

in front of the target. But, for an overtaking barrier,

7 = s/(v - u) and d = v.:i/(v - u).
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Given the target crosses the barrier, the probability of

detection for an idea] barrier search is given by Equation 21

and the probability for a degraded barrier search is given by

Equation 22 where the terminology refers to the nature of the

ladder search in the reference system moving with the target.

A discussion of an application of these two equations to a search

for a magnetic anomaly target is given in Reference 15.
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XI. A Target State Estimation Procedure

A target state estimation procedure based on bearing

observations is developed in this section that generates point

estimates of a target's position and velocity vector coordinates

in a rectangular coordinate system. The procedure is based on a

model in which bearing errors are unknown and are not determined

by random variables with known distributions. Because of this,

confidence regions for the estimates are not generated by the

procedure. However, for a moving target, it illustrates general

characteristics of bearings only target motion analysis (TlA).

The model is defined as follows: 1. The target moves in a plane

with a constant but unknown course and speed. 2. Observations of

the target are made from known positions at known times. 3. The

observations provide only target bearings with unknown er&.

The model geometry is shown in Figure 8.

North y

di =ri*sin (fi. - 0i)

[xt(i),yt(i)] estimate

ri range estimate
observed 9i
bearing i bearing estimate

(xo(i),Yo(i)] observer

x East

Figure 8. The geometry of the target motion analysis model.
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The procedure criterion is: For observations from n positions,

choose target position estimates and target velocity component

estimates ux and uy that make the sum of the squares of the

algebrai- distance between the estimated positions and their

corresponding observed bearing lines a minimum. From Figure 8,

it can be seen that tht• algebraic distance can be written as

di = [xt(i) - xo(i)].cas 91 - [yt(i) - yo(i)].sin 01. Because of

the requirement that the target move with constant course and

speed during the encountex, the number of independent estimates

is reduced from 2n to 4, u. , uy and any two pcsition

estimates xt(j), yt(j). In the following development, j - 1

and with i = 2,3, -.. ,n the remaining estimates are given by:

xt(i) = xt(l) + u,"(ti - t 1 ) and yt(i) - yt(l) + uy.(ti - tl).

To determine "best" estimates of the target state parameters,

take the partial derivative of the sum S = E (di)' with respect

to each of them. Then set the four partial derivatives equal to

zero. This creates four linear equations in xt( 1 ), yt(l), ux

and Uy whose solution &re the desired estimates xt(l), yt(l),

ux and uy. In matrix notation, the equations can be

represented by AX = B where the elements of X are:

X11 = xt(l), x 2 1 = Yt( 1 ), x 3 1 = u. and x 4 1 - Uy, A necessary

condition for a unique solution for X is that n a 4.

Otherwise, the determinant of A will be equal to zero. The

procedure can also be used if a target's course and speed are

constant and known and, in particular, if the target is

stationary so that ux and uy both equal zero. Ia this case,
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since the number of unknowns is two, the number of linear

equations is aiso two and a necessary condition for a unique

solution is n Ž 2.

Now, suppose the observations are at pasitions and times

that correspond to the positions and times of an observer moving

on some constant course at some constant speed (including zero

speed). In this case, the observation position coordinates are

related by the following equations: xo(i) = xo(l) + vx(ti - tI)

and yo(i) = yo(1) + vy(ti - tl) where vx and vy are the

required velocity components of the observer. Using these

equations of motion, the matrix equation AX - B can be

transformed to the matrix equation AX'= 0 where the elem-ants

of the matrix X are related to the elements of the matrix X'

by the elult = N - Iof, X-) YI -IA. ,I -

X31 = Ux - v. and X4 1 = Uy -vy

Since the linear equations represented by AX' 0 are

homogenous, they do not have unique solutions and consequently

neither do the equations repr7esented by AX = B. However, if

there is at least one observation whose time and position is not

determined by the above equations of motion, then the

transformation from X to X' cannot be made, and in general a

unique solution for X can be found. If the observations are

made from a platform that is moving with a constant course and

speed, this condition can be achieved by either changing the

course, the speed or both prior to completing the observations.

Estimation models that describe bearing error as a random
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variable provide a basis for determining confidence regions for

point estimates. A model is developed in Reference 16 that does

this for either target bearing observations made from two or more

points simultaneously or for a target that Is stationary relative

to the observation points.
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X1I1. Position Distributions T"hat Change with Notion

Target motion models provide a basis for C.ete-rmining

position distributions that change with target motion. In this

section, two classes cf txrciet motion models are considered. Iii

the first class, a target moves in a plarie with a constant c-aurse

and spe~ed and the course and speed are independent. o~f the

target's position. In the second c lass, a targeý moves In a

plane but ilts course or speed changes during the~ motion. Three

members of the -first class are develioped first. This is followed

by a brief discussion of some m~odels of the seconid ilas6-

Notion Models of the First Class: For the first class of

motion models, the joint density function of the distribution

that determines a target's coordinates X(t) and Y(t) at some

time. t > U can) be deLe~minkJ1. b~y;

(23) ~ ~ ~ ~ ~ ~ -fxt,()xyf)= ,. X(O),y(O)(q,s:0) fVW(v,w) dvdw

where V =UX, W = UYand U.~ and Uv are the random

variables that determine the target's velocity components u.

and u y and v =u., 4 =Uy, q =-x- v-t and s =y - wt.

Equation 23 can be developed as follows: To first order',

fX(t),y(t)(x,y;t) Sx~uy is the probability that a target's

coordinates are in an ,Alement of area 8c~y and for given values

of v', w and t, target positions in an element of area Sq~

will be translated tc an element of area Sx~y that is identical

in form and size to Sq.6rs. Airid so, to first order,

fX((j),y(O)(qes;0) Sx, fV,W(uvv) i~v~w is the. probability that

the target's coordinates at time 0 are in an element of are-i
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&q6s that is located such that the target's coordinates will be

in the element of area &x6y at time t since x = q + vot and

y = s + w-t. And, to first order, the sum of such probabilities

for all pairs of values of v and w is alsc the probkbility

that the target's coordinates at time t are in the element of

area 8xSy. In the limit after equating the two expressionn for

this probability and cancelling the common factor Ax.8y,

Equation 23 results.

The First Motion Model: In the first model, X(O) and

Y(O) are both independent normal random variables with means pX

ind py and equal standard deviations a. However, UK and Uy

are not normal and they are not independent random variables. In

this model, Ux = u-sin 0 and Uy - u-cos # where # is the

random variable that determines the target's course and u is

the targets speed which is known. So, only a value for the

random vatiable 4 is required to determine the target's

velocity. In the model, # has a uniform distribution over the

interval 0 to 2w and it is convenient to chose the

rectangular coordinate system so that the means IX and •y are

each equal to 0. Then, with the circular normal distribution

determining the ra-idom position coordinates and with the

distribution that is described above determining the random

velocity components , in the coordinates u and 0, the integral

of Equation 23 is a single integral over 0 and the integrand

of the integral is (i/2wa') exp[-(q' + s')/2aa] (1/2w) where
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now q = x - u-t*sin 0 and s = y - u-t-cos •. Integration

gives fx(t),y(t)(x,y;t) as:

(24) (1/2wo') exp{-[x' + y, + (u-t)z]/2a') IO0(x* + y1)i.u-t/a2]

where t Ž 0 and I0 indicates the hyperbolic Bessel function of

zeroth order. In Reference 6, fx(t),y(t)(x,y;t) is plotted for

several values of t in terms of r = (x' + yl)i, the target's

range from the origin. The plots show a characteristic of the

distribution that can be indicated as follows: First, replace

(x* + yR)i by r in fX(t),y(t)(x,y;t). Next, multiply and

then divide fx(t),y(t)(r;t) by exp(-r'u't/a')- This gives:

(25) 1/(2ac')exp(-[I/(2a')](r - u't) )10 (r.u.t/o')exp(-r.uot/o")

where t > 0. As noted in Reference 17, 1 0 (z)-exp(-z) Js a

slowly decreasing function that asymptotically approaches
1

R 7. increases. Th* of Mawi

plot of fx(t),y(t)(r;t) against r for values of t greater

than 4.0/u has the appearance of a normal density function.

A target's random rectangular coordinates X(t) and Y(t)

and its random bearing 8(t) and range R(t) from the origin

are related by: X(t) - R(t).sin 8(t) and Y(t) = R(t).cos e(t).

Using these relatiors, fx(t),y(t)(x,y;t) can be transformed to

the joint density function fR(t),e(t)(r,a;t) of the random

variables R(t) and O(t). To do this, replace x* + y' by r'

in Expression 24. Then multiply the resulting expression by r,

the Jacobian of the transformation. This gives the expressio-:

(26) (I/2w)(r/2wa') exp(-[(' + (u-t)2]/2a') I 0 (r.u-t/a')
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where 0 5 r and 0 < a : 2w. And, this is the joint density

function fR(t),O(t)(ra;t). By inspection, the marginal density

function of fo(t)(a;t) of 0(t) is 1/2w over the interval 0

to 2% and the marginal density function fR(t)(r;t) of R(t)

is Expression 26 multiplied by 2w.

The Second Motion Model: In the second model, X(O) and

Y(O) are independent normal random variables with means gx and

Ly and standard deviations c. and ay that determine a

target's random position coordinates at time 0. And Ux and

Uy are independent normal random variables with means fix and

fUy and standard deviation ou that determine a target's random

velocity components. Because of these conditions, the target

coordinates are X(t) = X(O) + Ux .t and Y(t) - Y(O) + Uy.t at

time L. This implies that X(t) % A ,, a

normal random variables with ieans p. + fix.t and wy + fiy4t

and with standard deviations Oa + oaýt' and ao + ovat'. T)&e

model describes a bivariate normal position distribution whose

center moves with a constant velocity determined by ux and fly

and which becomes more and more circular as its standard

deviations increase with the passage of time. Although the

targets joint density can be found Yy using Equation 23, this

procedure is more direct. For another discussion of the first

and second models, see Reterence 7.

The Third Motion Model: In the third model, the target is

at the origin oi a rectangular coordinate system at time zero.

After that, itt position is uniformly distributed on a circular
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disk of ra, jus Um.t centerc:d at the origin. This implies that

the joint density function of the position distribution is:
(27) fx(t),Y(t) (x,y;t) = /(W-uý.tl)•

for t > 0 where x' + yl u;.t' and that the joint density

function of the distribution of the random variables 0(t) and

R(t) that determine a target's bearing from the origin is:

(28) fR(t),e(t) (ra;t) = r/(w'u;'t')

for t > 0 where 0 < r : Umt and 0 : a < 2.w.

Since the values of r and a are independent and the Joint

density function is equal to the product of 1/(2.w) and

2.r/(u*.t'), the random variables R(t) and 9(t) are

independent and fR(t)(u) = 2.r/(u;.t') where 0 < r S Umot and

faI * (a) = 1/(2.w) where 0 5 a < 2 -. These two marginal.

distributions can be achieved by choosing at time 0 a course _

from the uniform distribution with density: f#(O) = 1/(2-w)

where 0 5 0 < 2.w and a speed U from the triangular

distribution with density: fu(u) = 2.u/u; where 0 5 u S um.

These choices defin the third motion model.

Notion Models of the Second Class: For the second class of

motion models, a target's course or speed or both can change. In

general, a monte carlo simulation method is required in order to

determine a position distribution that is based on such a model.

As an example of cases in which the distribution can be described

analytically, see Reference 18 and Reference 19. As an example

of a case in which it ca:i not, suppose a ta :get's initial

position is described in terms of - number assigned to a
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subregion in the xy-plane where the number assicned represents

the probability that the subregion contains the target at an

initial time. In addition, suppose for each subregion a course

and speed distriLution is determined by assigning numbers to

course and speed pairs where a number represents the probability

the target will have the course and speed at the initial time

given it is in tne subregion at that time. Next suppose for each

course and speed pair there is a time distribution that

determines the duration of the course and spe ' pair and that the

time distribution is determined by a number assigned to each

discrete time point where the number represents the probability

that the target's course and speed pair will be determined by a

new couyrse nd -r dlistribution. By extendinq this kind of

procedure and then implementing it in a monte carlo simulation,

one can generate complex position distributions that describe a

target's position at discrete time points.
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XIV. Position Distributions That Change with Search

For the models that are considered here, a target is

within a region that has been divided .nto subregions or cells.

And, for each cell, a number has been assigned to the cell that
4,

is interpreted as the probability that the target is within the

cell. The set of these probabilities constitute a position

distribution. Suppose information becomes available that a

search has been conducted for the target and that the target has

not been detected. Or suppose the information is that the target

has been detected. In the first case, negative information is

available that can be used to modify the position distribution.

In the second case, positive information is available that can be

used to modify the position distribution.

Position Distributions and Negative Information: For a

region that contains a target and consists of n subregions, let

the event Si = (the target is in the ith subregion). And let

the event C = (no contact). Then, given no contact in a search

of the region, the targets's position distribution can be

modified as follows:

(29) P(SiIC) P(CI Si)•P(Si)/P(C)

where i = 1,2, ,n and P(C) = z P(CiSj)hP(Sj) with the sum

index j 1,2, ..- ,n. Note that Equation 29 can be obtained

by using Bayes theorem. To illustrate how Equation 26 might be

used, suppose that a search in a subregion is considered to be a

random search and that the sweep width of detection system

against the target depends on subregion being searched. For this
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case, let Ai be the area of the ith subregion and let Wi be

the sweep width in that subregicn. Then, given no contact in a

search of a subregion, P(CISi) = exp(-(Wi-li)/Ai] where ii is

the track length of the searcher in the ith subregion. Given

values for P(Si), Wi/Ai and li for i - 1,2, **- ,n, a

position distribution can be determined that has been modified by

the negative information.

Position Distributions and Positive Info-uation: In the

case of positive information, the evei.t C = (a contact) occurs.

Then, given a contact in a search of the region, the target's

position distribution can be modified as follows:

(30) P(SiiC) = P(CISi).P(Si)/P(C)

where P(C) = Z P(CjSi).P(Sj) and the sum index j = 1,2, .. ,n.

To illustrate a way Equation 30 might be used, suppose that a

contact is a line of bearing detection or an omnidirectional

sensor detection and that the cells are range cells. Then, with

ri a range identifying the ith cell and R a random variable,

P(Si!C) becomes P(R = rijC), P(CISi) becomes P(CIR - ri) and

P(Si) becomes P(R = ri). In a continuous aualog of this,

fR(rlC) ieplaces P(SilC), P(CIR = r) replaces P(C1Si) and

fR(r) replaces P(Si).

Position Distributions and Uncertain Information: The event

C is the union of the two events: Tc ( (a true contact) and

Fc = (a false contact.. And the event C is the un on of two

events: T-c = (a true no ccntact) and F6 = (a false no contact)

The correspondence between C, C, Si, Si, Tc, Fc, Tc and
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F-c and the events of the Venn diagram in Figure I are as

follows: C corresponds to Dl, C corresponds to Do, Si

corresponds to H1 , Si corresponds to Ho, Tc corresponds to

(D1 n Hl), Fc corresponds to (D1 r, H0 ), T-c corresponds tc

(Do n H0 ) and FU corresponds t, (Do n HI).

Using the above relations, after a search of a region that

has resulted in a contact, the target's position distribation can

be defined by:

(31) P(SiIC) = P(SiITc).P(TcIC) + P(SijFc).P(FcIC)

where i= 1,2, .-- ,n since Tc = Tc n C, Fc = Fc n C and

P(SiIC) [P(Si n Tc) + P(Si n Fc)]/P(C). The probability

p = P(TcIC) has been c. lied the credibility of the contact. In

terms of p Equation 31 becomes:

(32) %,( ViI -, % = p(IiirC)p + n F(-

Again using the above relations and p = P(T i), after a

search of a region that has resulted in no contact, the target's

position distribution can be defined by:

(33) P(Siji) = P(Silre)-p + P(SiIF6).(I - p)

where i = 1,2, -- ,n.

The values of P(TclSj) and of P(FaISj) = I - P(TclSj)

are determined by the characteristics of the search in the jth

subregion for j = 1,2, ... ,n. With values for these two

probabilities, P(SiiTc) = P(TciSi).P(Si)/[E P(TcISj).P(Sj)] and

P(SiIFd) = P(FUISi)-P(Si)/[Z P(F-iSj).P(Sj)].

In one positive information model, p is determined

subjectively based on the detection system and the nature at the
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search and P(StlFc) = P(Si). This choice for P(SilFc) could

be based on the argument: Given the detection system and the

nature of the search, for a search that ends in a false contact,

the target was not yet detectable. Consequently, a search that

ends in a false contact supplies no information about a target's

location. This argument implies that there have been no missed

df tections during the search.

In a negative information model, in keeping with the above

choice for P(SilFc), one might choose P(SiIT~C) = P(Si). This

choice for P(Silxcj could be based on an argument that is a

parallel to the one for the choice above for P(SilFc): Given

the detection system and the nature of the search, for a search

that ends in a true no contact, the target was not yet

detectable. Consequently, a search that ends in a true no

contact supplies no information about the target's location. In

keeping with the above comment, this argument implies that if

false alarms occurred durinq the search, then they were resolved.

If p = 1, then C = T. (a detection) and, using the above

expression for P(SilTc), Equation 32 becomes identical to

Equation 30. Note that I - p corresponds to P(HoIDI) and not

to P(DIIH0 ) which is pf.

If p = 0, then C Fd (a missed detection) and, using the

above expression for P(SiIF;), Equation 33 becomes identical

to Equation 29.
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XV. Search Models and Search Theory

Search theory provides a basis for determining optimal

search plans for a target whose motion and location are

determined within some bounds. Here, an optimal search plan is

one for which the probability of finding a target within a given

length of time is a maximum, the expected time to find a target

is a minimum given the target is found or a search plan for which

some other optimal search criterion is satisfied.

Search theory results are based on models of the search

process. To the degree that a search model describes a search

process, an optima]. search plan for a target that is based o.t the

search model should provide guidance for the development of an

operationally feasible search plan. However, because of the

1imitations of analytical search models, a.optima_ search nian

that is based on an analytical search model may give only initial

guidance in this regard. The optimal search plans that are

described below illuatrate this. The search plans are based on

the random search model. Because of this, the requirement on the

location of search track segments is not realizable and the time

to resolve false alarms is ignored.

Optimal search plans based on search models implemented

through a monte carlo simulation are not considered here.

However, with sufficient information, such plans have the

potential of being both implementable and more optimal in a real

sense than an optimal search plan based on an analytical search

model.
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Three Optimal Search Plans: T;e tnree optimal search plans

differ in thair criterion for an optimal search plan. However,

each one is based on the following search model: A target is

fixed at some point in a region that consists of n subregions.

A search in a subreg on is a random search in the sense of the

definition in Section X and a searchers sweep width there is a

constant. In addition, a search of a subregion will not detect a

target which is in another subregion. To determine a plan, let

Si = (the target is in subregion i) for i - 1,2, ... ,n and

let pi = P(Si) be the prior probability that the target is in

the ith subregion. Let Wi be the sweep width in the ith

subregion. Let 61 = Ai/Wi where A1  is the area of the ith

subregion and 6i is the expected trac]° length to find the

target by a search of the it'b subregion given the target is in

the ith subregion, a characteristic length. The probability P

that the target will be detected by a ranidom search is given by:

(34) P = Z [1 - exp(-lj/si)].pi

where the sum index i = 1,2, - ,n and li is the track

length of the search in the ith subregion.

The first criterion: Choose li aat P is a maximum

subject to the two constraints: 1. 1 - E li and 2. li k 0

where the index i = 1.2, - ,n. Determining this choice is a

nonlinear optimization problem whose so]ution is given in

Reference 20. It is:

*/&i= ln(pi/Si) - L(k) i 1,2, k
(35)

i = 0 i = k+l,'+2, "" ,n
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where L(k) = (1/E8j)*E[Sj.ln(pj/&j)] - I/Efj and the sum index

.],2, o. ,k, where the subregions are relabeled so that the

following order relation holds: Pl/61 > P2/12 > ... > Pn/ 8 n and

where k is chosen so that for k+l the solution for Ik+1

using L(k+l) is either negative or zero.

The second criterion: Choose li so that P is a maximum

subject to the two constraints: 1. c - Z ci and 2. c4 : 0

where the index i = 1,2, --- ,n, ci = ki-li is the cost of the

search in the ith subregion and ki is the cost per unit track

length in that subregion. For this criterion, the solution to

the corresponding nonlinear optimization problem can be obtained

from Equation 35 by replacing &i by ei - ki'fi and labeling

the subregions so that Pl/Ei > P2/ci > "'" > Pn/ei. The basis

for "t--his Can by replai- -I/ii by !itbýuvaa"

cl/ci in the exponential term in Equation 32.

The third criterion: Choose Ii so that the expected

utility of the search is a maximum subject to the two

constraints: 1. 1 = Z li and 2. ii a 0 where the index

i = 1.2, --. ,n. For this criterion, the solution to the

corresponding nonlinear optimization problem can be obtained from

Equation 31 by replacing Pi by qi where qi - uiPi and ui

is the utility of detecting the target given it is in the ith

subregion. And, in addition, laLeling the subregions so that

qI/S1 > q2/62 > ... > qn/Sn. The basis for this can be seen by

multiplying the summation term in Equation 34 by ui so that
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the resulting equation gives the expected utility of the search

given the utility of not detecting the target is zero.

Equation 35 can be used to determine an order of search fr ir

the subregions which will effectively minimize t~he expected track

length required to detect a target gjiven it is detected. To do

this, divide the available track length 1 into rnits small

enough so that with a single unit only the 1st subregion would be

searched. Then allocate one unit to the search of the ist

subregion. If the search is unsuccessful, determine the optimum

allocation for two units. Then search with a second unit so that

the first search with the first unit plus the second search with

the second unit satisfy the optimum allocation for two units. If

the~ Search I..a J. U CC C-fl 4 -~v II 4---- ---- ----- ----

the target is found or all the track length is expended. That

this allocation order will effectively minimize the expected

track length required to detect a target given it is detected can

be argued as follows: Let L be the track length at detection,

let iu be a unit of track length and let n be the number of

units. Th-n the value of the probability P(L 5 i|lu) that the

target: will be detected on or before the ith step of the search

for the given allocation order will be greater than or equal to

its value for any other allocation order with the same allocation

step size. Since the value of P(L 5 1) will be equal to its

value ior any other allocation order of the optimum allocation

and since P(L S i.11 11L 5 1) = P(L 5 i-lu)/P(L 5 1), the value of

the distribution function FL(IluIL S 1) - P(L 5 i.luIL • 1)
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will be greater than or equal to its vilue for any other

allocation order. This implies that the expected track length

given detection E(LIL ! 1) = E [1 - FL(IUIL ! 1)] where the

sum index i = 1,2, --- ,n is effectively a mi~limu• for the

given allocation order. A search based on the optimum allocation

given by Equation 35 and the given allocation order is

equivalent to the following search: After an allocation of track

length lu and ar unsuccessful search, new values for P(Si) are

calculated using Equation 29 and then Equation 35 is used with

these new values to determine the next optimum allocation. A

discussion of this procedure is given in Reference 6. And ar

example of its application is given iP Reference 21.

Fauation 35 also defines an optimal search pl.n for a

detecticn syttem that searches beams and can kie described by

Equation 33 by replacing li by ti where ti is tae time the

it1 bez• is searched and by replacing &i by Ti where Ti, a

characteristic time, is the expected time to detect the target by

a search of the ith beam given the target is in the ith beam.

For a more externsive discussion of search theory and its

application to military operations research, see Reference 22.
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