
NAVAL POSTGRADUATE SCHOOL
Monterey, California

; AD-A214 936

DTI CS JI.JECTE

DEC 0 41989

D' TIHESIS
THE MOVING PLATFORM SIMULATOR II:

A NETWORKED REAL-TIME VISUAL SIMULATOR
WITH DISTRIBUTED PROCESSING AND

LINE-OF-SIGHT DISPLAYS

by

Randolph P. Strong and Michael C. Winn

June 1989

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited

.Or~r.,, ,l oralns co1or'-

tI. 3- M0

Unclassified
Security Classification of this pagle

REPORT DOCUMENTATION PAGE
la Report Security Classification lb Restrctive Markings

UNCLASSIFIED
2a Security Classification Authority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
(If Applicable)

Naval Postgraduate School 52 Naval Postgraduate School
6c Address (city, state, and ZIP code) ?b Address (city, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
Sa Name of FundingrSpmsoring OrganizAtion 8b Office Symbol 9 Procurement Instrument Identification Number

I (f Applicable)

8c Address (city, state, and ZIP code) 10 Source of FundinR Numbers
Pmoi Elma Number Project No Iak No ws Umit Aammon No

11 Title (Include Security Classification)

THE MOVING PLATFORM SIMULATOR II: A NETWORKED REAL-TIME VISUAL SIMULATOR
WITH DISTRIBUTED PROCESSING AND LINE-OF-SIGHT DISPLAYS
12 Persona] Author(s)

Randolph P. Strong and Michael C. Winn
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count

Master's Thesis From To June 1989 169
16 Supplementary Notation

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

17 Casati Codes . - 18 Subject Tserms (continue on reverse if necessary and identify by block number)
Field Group Subgroup - Moving Platform Simulators, Visual Simulators, Real-Time Graphics,

Distributed Processing, Line-of-Sight 4 -<jv_ .

" A Abstract (continue on reverse if necessary and identify by block number
Previous research has produced a real-time Moving Platform Simulator using Defense Mapping Agency digital

terrain elevation data and a Silicon Graphics, Inc. Iris 4D/7OGT graphics workstation. This study is a
continuation of that effort with the multiple goals of investigating the effects on simulator performance of using
higher resolution terrain and different terrain drawing algorithms. Also investigated was the integration of real-
time, actual platform intervisibility determinations into the simulator. Included in this effort was a study of
modeling time and a real world coordinate system. Additional work was performed on using a distributed
computing architecture to maximize performance.

20 Distribution/Avail ability of Abstract 21 Abstract Security Classificaion
F-J unclasiliedtunlimited E-] same asmx r Di E DTIC users UNCLASSIFIED

S22a Name of Responsible Individua 22b Telephone (include Area code) 22c Office Symbol

Prof. Michael J. Zvda (408) 646-2305 Code 52Zk
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted secunrt classification of this page

4 All other editions are obsolete Unclassified

ti

Approved for public release; distribution is unlimited.

The Moving Platform Simulator II:
A Networked Real-Time Visual Simulator with

Distributed Processing and Line-of-Sight Displays

by

Randolph P. Strong
Captain, United States Army

B.S., United States Military Academy, 1978
and

Michael C. Winn
Captain, United States Marine Corps

B.S.E.E., University of Oklahoma, 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOLJune 1989

Authors:
R4dolph P. Strung t

Michael Winn

Approved by: Professori , "ichael J. d KAdvisor

Lie terant C 6tm and Jo rt, i'aclhgk, U SN , Second ReaderLieute it m ado ?h .

Professor Robert B. McGhee, Chairman
Department of Computer Science

Dean of Information and Policy-S4i nce

ABSTRACT

Previous research has produced a real-time Moving Platform Simulator using
Defense Mapping Agency digital terrain elevation data and a Silicon Graphics, Inc.

IRIS 4D/OGT graphics workstation. This study is a continuation of that effort with

the multiple goals of investigating the effects on simulator performance of using higher
resolution terrain and different terrain drawing algorithms. Also investigated was the
integration of real-time, actual platform data, electronically gathered by position-location

reporting instruments and platform intervisibility determinations into the simulator.

Included in this effort was a study of modeling time and a real world coordinate
system. Additional work was performed on using a distributed computing architecture

to maximize simulator performance.

AcceIon Fo,

U. L IU, -;tr.... JL

.

"" DI - <,- ,:" d

v 1

ioil

TABLE OF CONTENTS

INTRODUCTION.. 1

A. BACKGROUND......................................1I

B. CDEC REQUIREMENTS...............................1I

C. SIMULATOR DEVELOPMENT HISTORY................... 2

1. FOGM MISSILE SIMULATOR........................ 3

2. VEil VEHICLE SIMULATOR........................ 4

3. FOGM/VEH NETWORKING SIMULATOR............... 4

4. VEH II VEHICLE SIMULATOR....................... 4

5. THE MOVING PLATFORM SIMULATOR (MPS)........... 5

,FOGM, VEil, YEN 11, AND MPS PERFORMANCE

HISTORY 6

I.MOVING PLATFORM SIMULATOR H DESCRIPTION.............. 9

A. SYSTEM OVERVIEW................................. 9

B. SIMULATOR UPGRADES NEEDED....................... 9

C. DISPLAY OF REAL-TIME PLATFORMS................... 10

D. LINE-OF-SIGHT CALCULATION AND DISPLAY..............11

Ill. DIGITAL TERRAIN DATADASE............................ 12

A. BACKGROUND..................................... 12

B. LOCATION AND SIZE OF DATABASE.................... 12

C. COORDINATE SYSTEM............................... 13

D. STRUCTUJRE OF DATABASE........................... 15

1. Coverage....................................... 15

2. Data File Format................................. 16

3. Data Point Structure............................... 16

E. ACCESSING THE DATABASE........................... 18

jv

1. Background 18

2. Database Reads.................................. 18

3. Database Access Algorithm 19

a. Initial Database Read........................... 19

b. Subsequent Database Reads....................... 21

4. Minimum and Maximum Elevations.................... 21

F. RESOLUTION DECISIONS............................. 23

IV. THE MODELING OF TIME................................ 24

A. BACKGROUND..................................... 24

B. CAPABILITIES...................................... 24

C. LIMITATIONS...................................... 26

V. GRAPHICS DISPLAY OVERVIEW........................... 27

A. GRAPHI1CS TECHNIQUES.............................. 27

1. Double Buffering................................. 27

2. Z-buffering...................................... 27

V3. ROB Color..................................... 28

4. Perspective World Views............................ 29

a. Two-Dimensional Drawing....................... 29

b. Three -Dimensional Drawing...................... 29

B. TWO-DIMENSIONAL TERRAIN DISPLAYS................. 30

C. OVERLAYS.. 31

1. Thirty-five Kilometer Map........................... 32

2. Ten Kilometer Map................................ 32

D. THREE-DIMENSIONAL TERRAIN DISPLAYS................ 33

1. Background..................................... 33

2. MPS Terrain Data Structure.......................... 33

3. New Terrain Data Structure.......................... 34

4. Mesh Drawing Primitive............................. 36

5. Distance Attenuation............................... 37

6. Terrain Normals 40

a. Background................................. 40

b. MPS 11 Terrain Normals......................... 41

C. MPS 11 Vertex Normal Data Structure................ 42

7. The MPS Three-dimensional Terrain Display Algorithm....... 42

8. MPS 11 T hree-Dimensional Terrain Display Algorithm........ 45

E. PLATFORM MODELING.............................. 45

1.Platform Position................................. 45

2. Platform Orientation............................... 47

3. Viewing Perspective............................... 50

a. Background................................. 50

b. Coordinate System Transformations................. 51

VI. NETWORKING CAPABILITIES OF MPS H 56

A. BACKGROUND..................................... 56

B. ARCHITEC-rJRE.................................... 57

1. Protocols....................................... 58

2. Data Structures.................................. 59

a. MPS Messages............................... 60

b. New Messages............................... 61

VUI. DISPLAY OF REAL-TIME PLATFORMS...................... 65

A. SYSTEM ARCHITECTURE............................. 65

1. Overview....................................... 65

2. Purpose of Modules............................... 66

3. Interprocess Communication.......................... 68

a. Between NETWORKSIMULATOR AND PROCESSVDB

Modules.................................... 69

(1) Protocols................................. 69

(2) Data Structures............................ 71

b. Between PROCESSVDB and MPS II Modules......... 76

Vi

(1) Protocols 76

(2) Data Structures 76

B. THE PROCESS_VDB MODULE 79

1. Retrieving The VIDS Data Block 80

2. The VIDS Data Block Time Stamp 80

3. The VIDS Data Block Length 81

4. The VIDS Messages 82

a. The Start-Time Message 82

b. The Player Position Message 83

(1) Determination To Send Update Message 86

(2) Actions Taken When Update Must Be Sent 87

(3) Actions Taken When Update is Not Sent 89

C. THE NETWORKSIMULATOR MODULE 89

1. Reading the VIDS Data Block 90

2. W aiting for Elapsed Time 90

3. Releasing the VIDS Data Block 91

D. The Moving Platform Simulator II Interface 91

VIII. INTERVISIBILITY CALCULATIONS AND DISPLAY 92

A. SYSTEM ARCHITECTURE 92

1. O verview . 92

2. Interprocess Communication 93

a. Protocols . 94

b. D ata Structures 95

B. DETERMINATION OF INTERVISIBILITY BETWEEN

PLATFORM S 100

1. Optim ization Rules 100

2. Determining the Elevation of a Point 103

a. Elevation Database 103

b. Elevation Calculation 104

(1) Defining The Plane 104

vii

(2) Finding the Equation of the Plane.............. 105

(3) Solving the Equation for the Unknown Elevation. . .105

3. Target and LOS Points............................ 107

C. PLATFORM INTERVISIBILITY DISPLAY................. 110

1. PROCESSLOS....................... 1III

a. Display Layout..............................1II1

b. Display Options.............................. 112

2. MPSII.. 114

IX. SYSTEM EVALUATION OF MPS II........................ 116

A. MOVING PLATFORM SIMULATION PERFORMANCE......... 116

B. SYSTEM LIMITATIONS.............................. 121

X. CONCLUSIONS AN]) FUTURE WORK....................... 125

A. CONCLUSIONS.................................... 125

B. FUTURE WORK.................................... 126

APPENDIX A. USER INTERFACE............................. 128

A. MPS II USER INTERFACE............................ 128

1. STARTING THE SIMULATOR (COMMAND LINE

OPTIONS)..................................... 128

2. COMMAND LINE OPTIO1NS........................ 129

3. POP-UP MENU SYSTEM.......................... 130

a. Select Area Menus........................... 131

b. Main Menus................................ 134

c. Operating Menus............................. 137

(1) Driving................ 137

(2) Flying................................. 140

3. DIALS.. 141

a. Driving Dial Configuration...................... 141

b. Flying Dial Configuration....................... 142

Vili

4. MATOUSE 142

5. KEYBOARD................................... 145

B. NETWORKSIMULATOR USER INTERFACE............... 145

C. PROCESSVDB USER INTERFACE...................... 145

D. PROCESSLOS USER INTERFACE...................... 146

1. Starting The PROCESSLOS Module.................. 146

2. Pop-up Menu System............................. 147

a. Main Menu................................. 147

LIST OF REFERENCES...................................... 153

INITIAL DISTRIBUTION LIST................................. 155

ix

LIST OF TABLES

TABLE 1-1 ONE VEHICLE ON TERRAIN (FRAMES/SECOND) 7

TABLE 1-2 NINE VEHICLES IN VIEW (FRAMES/SECOND) 7

TABLE 1-3 NINE VEHICLES, NONE IN VIEW (FRAMES/SECOND) ... 7

TABLE 1-4 MPS PERFORMANCE MEASUREMENTS on an IRIS

4D /70G T 8

TABLE 3-1 VEGETATION CODES 18

TABLE 6-1 UPDATE MESSAGE BODY DEFINITION 63

TABLE 7-1 SIZE OF DATA STRUCTURES 67

TABLE 7-2 PREDEFINED VIDS MESSAGES 75

TABLE 7-3 MESSAGE BODY DEFINITIONS 78

TABLE 8-1 MESSAGE BODY DEFINITIONS 98

TABLE 9-1 MPS II PERFORMANCE MEASUREMENTS on an IRIS

4D /70G T . 118

TABLE 9-2 MPS II PERFORMANCE DRAWING HIGH RESOLUTION

T ERR A IN . 119

TABLE 9-3 MPS II PERFORMANCE DRAWING HIGH RESOLUTION

TERRAIN in the NETWORK MODE 122

LIST OF FIGURES

Figure 3-1 Coordinate Systems 14

Figure 3-2 UTM Coordinate System 15

Figure 3-3 Structure of Elevation Database 17

Figure 3-4 Initial Database Read 20

Figure 3-5 Ten Square Kilometer Database Read 22

Figure 5-1 MPS Terrain Construction 35

Figure 5-2 One Point is Vertex For Six Triangles 36

Figure 5-3 MPS II Terrain Data Structure 36

Figure 5-4 Drawing With the Mesh Primitive 38

Figure 5-5 Distance Attenuation Scheme 39

Figure 5-6 Vertex Normal Computation by Cross Product 43

Figure 5-7 Determining Field of View 44

Figure 5-8 Determining Viewing Direction 46

Figure 5-9 Mesh Drawing Routine 47

Figure 5-10 Updating Platform's Position 48

Figure 5-11 Eye Position of M PS 52

Figure 5-12 Corrected Eye Position of MPS II 53

Figure 5-13 Transforming Platform Coordinates to World Coordinates 54

E Figure 5-14 Correct Look-at Point From Driven Platform 55

Figure 6-1 Interprocess Communication Links 58

xi

Figure 6-2 Example Update Message 63

Figure 7-1 Interprocess Communication Links 70

Figure 7-2 VIDS Data Block 73

Figure 7-3 VIDS Data Block Header Structure /4

Figure 7-4 VIDS Messages Structure 74

Figure 7-5 Example Messages 77

Figure 7-6 Algorithm to Locate Start of VIDS Data Block 81

Figure 7-7 Start Time Message Structure 83

Figur.; 7-8 Player Position Message Structure 85

Figure 8-1 Interprocess Co'nmunications I inks 94

Figure 8-2 Example Messages 97

Figure 8-3 Intervisibility Algorithm 101

Figure 8-4 Normalization Algorithm.. 104

Figure 8-5 Selection of Database Points Used to Calculate the Elevation of

a Position Not Represented in the Database 106

Figure 8-6 Algorithm to Calculate Elevation of Point ir Upper Left

T riangle . 107

Figure 8-7 Algorithm to Calculate Elevation of Point in Lower Right

T riangt . 108

Figure 8-8 Side View of Target and LOS Points 109

Figure 8-9 Overhead View of Target and LOS Points 110

Figure 8-10 Window Layout 111

xii

Figure 8-11 PROCESSLOS Display of 10 x 10 Km Map With Line-Of-Sight

Trace 113

Figure 8-12 PROCESSLOS Display of 10 x 10 Km Map Without

Line-Of-Sight Trace 115

Figure 9-1 Performance Measurement Comparisons 120

Figure 9-2 Terrain Display Using 100 Meter Resolution 123

Figure 9-3 Terrain Display Using 12.5 Meter Resolution 123

Figure A-I Dial Box With Dials Labeled For Driving 143

Figure A-2 Dial Box With Dials Labeled For Flying 144

xiii

I. INTRODUCTION

A. BACKGROUND

Previous research at the Naval Postgraduate School has developed a real-time

Moving Platform Simulator (MPS) with vehicles boh driving and flying over three-

dimensional, digitally-derived terrain [Ref. 1]. That simulator was developed on a

Silicon Graphics, Inc. IRIS 4D/'70GT high-performance graphics workstation. This

study continues that work with the goal of implementing a simulator that displays

actual vehicles in real time as they maneuver in a war gaming situation. One major

goal is to display realistic three-dimensional terrain and neighboring vehicles as they

would actually be seen from a driven vehicle. In addition, real-time tactical

intervisibiity statistics are computed and displayed. Such a visual simulator is needed

by the United States Army Combat Developments Experimentation Center (CDEC),

Fort Ord, California, for use in evaluating new weapons systems for use by the United

States armed forces. This work is also the continuation of ongoing research into

meaningful performance measurements of real-time graphics workstations [Ref. I].

B. CDEC REQUIREMENTS

CDEC conducts its major experiments at Fort Hunter-Liggett (FHL), California.

With over 1200 square kilometers of navigable terrain, FHL provides an ideal location

to conduct experiments with moving vehicles. Employing a sophisticated array of
i
instrumentation equipment, CDEC is able to track and record the movements of the

vehicles across the terrain. The data include vehicle position information at an instance

in time sent by transmitters located on the vehicles and received by equipment at the

FHL cantonment area. It is this data that we are interested in graphically displaying.

CDEC is presently using an earlier version of the simulator and has requested support

in upgrading for present and future needs.

To be useful, the simulator should be able to generate realistic high-resolution

terrain in real time, with no artificial boundaries placed on the movement of vehicles

about the terrain. Provided with the vehicle location data, the simulator should process

and display these vehicles in their proper locations in real time. The capability of

recording these scenarios for playback is also desired. This would give the simulator

the capability of replaying an exercise so that evaluators could better judge the

performance of a weapon system or its operator. The ability to add fictional vehicles

for "what if"' situations was also desired. CDEC also requested that selected

intervisibiity (line-of-sight) computations between designated positions be displayed in

a two-dimensional graphical display at the completion of any segment of an exercise.

C. SIMULATOR DEVELOPMENT HISTORY

MPS II has evolved from a number of previous students' endeavors at the Naval

Postgraduate School. In order to better understand the Moving Platform Simulator II

(MPS II) and the modifications made to the Moving Platform Simulator (MPS), we

need to discuss the systems from which it evolved.

2

1. FOGM MISSILE SIMULATOR

The Fiber-Optically Guided Missile (FOGM) simulator [Ref. 2] was

developed on a Silicon Graphics, Inc. IRIS 3120 graphics workstation. The FOGM

simulator presented the user with a three-dimensional image simulating the view from

the nose camera of a FOGM missile. The missile flew over a fixed ten square

kilometer area of Fort Hunter-Liggett, California, and was able to target, track, and

destroy ground vehicles. The terrain elevation data used to depict the terrain was an

extract of a specially generated database provided by CDEC. That database is discussed

in detail in Chapter mTI.

For this early simulation, the most arduous task was providing for real-time,

hidden-surface elimination. The IRIS 3120 has no special-purpose hardware to support

real-time, double-buffered, hidden-surface elimination. The authors instead used a

scanline Painter's algorithm [Ref. 3]. The Painter's algorithm sorts all polygons to be

drawn, ensuring the polygons farthest away from the viewer's eye are drawn first.

This guarantees that objects closer to the viewer are not obscured by objects further

away. Care was also taken to ensure that vehicles were drawn on top of the terrain,

oriented correctly, and in the proper grid location. Vehicles had to be drawn after the

terrain on which they appeared was drawn, and special consideration had to be given

for vehicles near the boundary of two grid squares. Vehicles were given initial speeds

and headings, but the operator had no control beyond this.

g3

2. VEH VEHICLE SIMULATOR

The VEH vehicle simulator [Ref. 3] was also developed on the Silicon

Graphics, Inc. IRIS 3120 graphics workstation. It uses similar algorithms as the

FOGM simulator for terrain and vehicle display, but only the terrain in the field of

view is displayed. The VEH simulator also offered the operator control to maneuver

a vehicle as it traversed the terrain.

3. FOGM/VEH NETWORKING SIMULATOR

The FOGM and VEH simulators were combined via the Ethernet local area

network to form the FOGM/VEH NET simulator. This combination allowed a vehicle

being driven on one simulator (VEH) to be displayed on another workstation (FOGM).

Similarly, the FOGM missile could be flown on one workstation and displayed on

another.

4. VEH 11 VEHICLE SIMULATOR

The VEH simulator was modified and enhanced to form the vehicle

simulator, VEH 11. Improvements to the VEH include the following:

* Conversion for operation under the MEX window management system on the
IRIS 4D/70G [Ref. 4] graphics workstation.

* Pop-up menu user interface for user-controlled selection.
* Additional vehicles could be added after operation had begun.
* Pre-saved vehicle convoy files could be selected from pop-up menus.
* Current convoys could be saved to a file for future use.
* Multiple processes could be present using the window management system.

VEH II was later modified to operate on the Silicon Graphics 4D/70GT high-

performance graphics workstation under the 4Sight [Ref. 5] window management

system. The functionality of the simulator did not change substantially.

4

5. THE MOVING PLATFORM SIMULATOR (MPS)

The Moving Platform Simulator (MPS) [Ref. 1] is a combination of the

FOGM and VEH Hl simulators. MPS was specifically designed to take advantage of

the specialized graphics hardware of the Silicon Graphics IRIS 4D/70GT high-

performance graphics workstation. The idea was to test manufacturers' claims of

graphics performance in an actual applications environment. Some of MPS's enhanced

capabilities include the following:

* Complete integration under the 4Sight [Ref.5] window management system.
• Selectable ten square kilometer operations area from a 35 square kilometer

database.
* Multiple terrain elevation color schemes.
* Realistic lighting model for shading of terrain and vehicles that includes user-

selected month and hour.
* An improved terrain-drawing algorithm that uses distance attenuation for

improved performance.
• Hidden surface removal using Z-buffering.
* Vehicle collision detection.
* FOGM's ability to track and destroy land vehicles.
* Broadcast networking over the Ethernet local area network for simultaneous

multi-workstation simulations.

Since MPS 11 is a modification of MPS, it is important to understand the

capabilities and limitations of MPS in greater detail to better understand the

modification and improvements made during the development of MPS II. Therefore,

subsequent chapters go into more detail about the functionality of MPS as the

modifications which constitute MPS 1 are discussed.

5

6. FOGM, VEH, VEH H, AND MPS PERFORMANCE HISTORY

When comparing performance statistics among graphics simulators, a

common unit of measurement is the number of frames per second drawn, i.e., the

number of times per second an entire scene can be redrawn and displayed. The

FOGM and VEIl simulators operated on the relatively slow central processing unit

(CPU) of the IRIS 3120, and achieved only six to eight frames per second. After

being ported to the IRIS 4D/70G, the simulators achieved almost twice the speed as

before. Tnis speed increase can be attributed to the faster ten million instruction per

second (MIPS) CPU.

Although the IRIS 4D/70GT also operates with a 10 MIPS CPU, it contains

improved special purpose graphics hardware. The VEH II obtained over twice as many

frames per second as its predecessor. See Table 1-1, Table 1-2 and Table 1-3 for

actual test results comparing the different processors and simulators.

The Moving Platform Simulator is a much more sophisticated simulator, and

cannot be compared directly with either the VEH or VEH Hl simulators. Many new

options were added to take advantage of new and improved hardware, but some of

these improvements degraded its performance. Most noticeable is the ability to draw

terrain to the edge of a ten kilometer sector. Earlier simulators displayed only 2000

meters of terrain in front of the driven vehicle. Even though a distance attenuation

scheme is used, this additional display load decreases the system's performance. Since

MPS is the first of a new class of simulators, a benchmark needed to be established

to judge its performance [Ref. 1]. Quantities of polygons per frame and frames per

6

second measurements were used. See Table 1-4 for the results of performance testing

of MPS. These figures are used as a benchmark to judge the performance of MPS II.

TABLE 1-1 ONE VEHICLE ON TERRAIN (FRAMES/SECOND)

SIMULATOR/MACHINE 15 DEGREE VIEW 55 DEGREE VIEW

VEH/3120 8.0 6.0
VEH ll-4D/70G 14.0 7.0
VEH ll-4D/70GT 30.0 16.0

TABLE 1-2 NINE VEHICLES IN VIEW (FRAMES/SECOND)

SIMULATOR/MACHINE 15 DEGREE VIEW 55 DEGREE VIEW

VEH/3120 4.0 3.5
VEH ll-4D/70G 5.0 3.0
VEH II-4D/70GT 10.0 6.0

TABLE 1-3 NINE VEHICLES, NONE IN VIEW (FRAMES/SECOND)

SIMULATOR/MACHINE 15 DEGREE VIEW 55 DEGREE VIEW

VEH/3120 6.0 5.0
VEH II-4D/70G 12.0 7.0
VEH II-4D/70GT 25.0 16.0

7

TABLE 1-4 MPS PERFORMANCE MEASUREMENTS

on an IRIS 4D/70GT

DISPLAYING DETAILED TERRAIN

ZOOM POLYGONS FRAMES
ANGLE PER PER

PLATFORM (DEGREES) FRAME SECOND

ONE VEHICLE 55 763 8
ONE VEHICLE 15 403 14
NINE VEHICLES 55 1086 6
NINE VEHICLES 15 722 8
MISSILE 1500im 90 19801 < 1
MISSILE 1500m 10 3387 2

DISPLAYING ATTENUATED TERRAIN

ZOOM POLYGONS FRAMES
ANGLE PER PER

PLATFORM (DEGREES) FRAME SECOND

ONE VEHICLE 55 607 9
ONE VEHICLE 15 393 15
NINE VEHICLES 55 940 7
NINE VEHICLES 15 680 9
MISSILE 1500m 90 4152 2
MISSILE 150(hn 10 816 7

8

H. MOVING PLATFORM SIMULATOR H DESCRIPTION

A. SYSTEM OVERVIEW

The Moving Platform Simulator II is an enhancement of MPS's capabilities to

better suit the specific needs of CDEC, while at the same time pursuing the ongoing

research into the graphics capabilities of high-performance graphics workstations. For

this reason, MPS II is in many ways similar to its predecessor. Enhancements made

were either necessary to achieve the desired functionality c: to explure a specific topic

of interest. With a project of this magnitude, there are always many improvements that

can be made, but because of limited time, only those changes deemed as important

steps toward reaching the goals of the project were implemented.

B. SIMULATOR UPGRADES NEEDED

The initial enhancement nee led was the capability of displaying user-selected,

multiple-resolution terrain in both two and three dimensions. The program's

dependencies upon the resolution of the digital terrain database had to be removed and

the drawing algorithm revised to allow the real-time display of higher-resolution terrain.

The drawing routines also had to be modified so that the terrain display looked more

realistic and true to life.

Secondly, the location of vehicles being displayed had to be converted to the

Universal Transverse Mercator (UTM) projection system, the standard grid coordinate

system used by the United States militarv land forces. This coordinate system upgrade

was needed to eliminate the artificial boundaries placed on the movement of vehicles

by the MPS system.

The next important revision needed was the implementation of a real-time

simulator clock. The reason this was important is that MPS II is required to operate

in a real-time mode receiving platform update information about the actual vehicles.

The simulator cannot be allowed to stop the simulator time clock while it carries out

functions such as reading from disk, executing pop-up menus, or displaying terrain.

C. DISPLAY OF REAL-TIME PLATFORMS

To move the raw data from the instrumentation equipment to processors, and to

move the data from processor to processor, CDEC uses an Ethernet local area network

(LAN) and TCP/IP network protocols at FHL. During a live exercise, this network

provides an ideal conduit for passing and obtaining information needed to display the

vehicles in real time. During non-exercise simulations, the data in the network must

be artificially generated and inserted into the network. It is at this point in this area

that our work begins. To operate the simulator during non-exercise conditions, we

must first load the network with data identical to the data available during an exercise.

This raw data must then be retrieved from the network, processed, and convened into

a format that can be handled by the Moving Platform Simulator. Since CDEC also

desires the capability of displaying line-of-sight (LOS) information, the raw data must

also be converted to a format that can be handled by a process that performs the LOS

task.

10

D. LINE-OF-SIGHT CALCULATION AND DISPLAY

In addition to using the Moving Platfonn Simulator as described above, to

successfully perform an experiment in the nea future, CDEC needs the capability to

display LOS information displayed on a two-dimensional map of FHL. Given the

position of an observer, the program needs to graphically display the location of the

observer and the path of vehicles moving over the terrain. The path of the vehicles

should be color coded to indicate when the observer can and cannot visually see the

vehicle. The LOS display needs to be an integral part of the Moving Platform

Simulator, but not place a burden on the performance of the simulator during its

operation. Since the calculation of LOS information is mathematically intensive and

requires considerable CPU time, the only way to perform the calculations without

degrading the performance of the simulator is to do the calculations on another

processor and send only sinple drawing instructions to the Moving Platforn Sinulator.

1I

III. DIGITAL TERRAIN DATABASE

A. BACKGROUND

The digitally-derived terrain database used by MPS II was provided to the Naval

Postgraduate School by CDEC. It is a special Defense Mapping Agency (DMA) digital

terrain elevation database (DTED) file. It was produced in 1980 for the area which

includes Fort Hunter-Liggett (FHL), California. A standard Level 1 DTED file [Ref. 6]

contains data points spaced approximately every 100 meters. This specially-generated

database contains data points spaced at 12.5 meter intervals. Thus, the resolution of

this database is eight times that of a standard Level 1 DTED data file.

B. LOCATION AND SIZE OF DATABASE

The database is presently stored locally on the disk drives of two IRIS

4D/7OGT's located in the Naval Postgraduate School's Graphics and Video Laboratory.

The file must be accessed each time the simulator is started. The current file can be

found under the path name: -cdec/DTED/terrain.dat. This path name is referenced

in the header file titled "files.h", and should the database ever be moved to a different

directory, this header file must be updated to reflect the change.

As can be quickly calculated using Equation 3-1, a coverage of 36 x 35

kilometers with a 12.5 meter data point interval yields a database size of 16,128,000

bytes.

12

dBase-Size = ptsperkm * num sqrkm * bytesjpersample

where: ptsperkm2 = (8 * 10)2 = 6400;
num-sqr-km - 35 * 36 = 1260;
bytes_.persample = 2;

Equation 3-1

C. COORDINATE SYSTEM

The graphics soft.vare library provided by Silicon Graphics, Inc. for use on the

IRIS 4D/70GT uses a right-handed coordinate system (see Figure 3-1). The Z-axis

measures distance perpendicular to the plane of the display screen, with the negative

Z-axis going into the screen.

Another coordinate system used in military maps is called the Universal

Transverse Mercator (UTM) projection (see Figure 3-2). In the UTM system, points

are represented as a distance in meters North (northi.-g) and East (easting) from a Grid

Zone origin. The Grid Zone is labeled by a Grid Zone Designator.

One of the most important modifications needed to allow the display of actual

vehicles on the terrain in real time was the integration of the UTM grid coordinate

system into MPS H. These changes involved allowing vehicles to move anywhere

within the area of operation and not be limited to the ten square kilometer display area.

Originally in MPS, vehicles were not allowed to leave a ten kilometer area; if the user

changed areas, the vehicle appeared in the same relative location in the new area.

To make these changes, new fields had to be added to the vehicle data structure.

Also, a set of conversion routines had to be written to convert between UTM

coordinates and the world and screen coordinates used in the drawing routines. Care

had to be used to only update and draw vehicles in the ten kilometer area since

13

elevation data for areas outside this area is not in memory. These topics are discussed

fully in Chapter V.

Work has just been completed on the FOST system (a variant of MPS) to read

any Level 1 DTED file, and convert its system of longitudes and latitudes to UTM

coordinates [Ref. 7]. MPS II cannot yet read arbitrary DTED level 1 files, but will

a later date.

V

z
Graphics Coordinate System

Figure 3-1 Coordinate Systems

14

NORTH
(Y)

EAST (X)
(xgrid, ygrid)

Figure 3-2 UTM Coordinate System

D. STRUCTURE OF DATABASE

1. Coverage

As mentioned above, the database file encompasses an area of 36 kilometers

by 35 kilometers, which includes the area of FHL and some of the surrounding areas.

It is bounded by latitude 36 degrees 5 minutes to the north, and by latitude 35 degrees

50 minutes on the south. To the west, its boundary is longitude 121 degrees 20

minutes 30 seconds, and the east boundary is 121 degrees, 4 minutes, 30 seconds.

These boundaries convert to Universal Transverse Mercator (UTM) coordinates as

follows:

Eastings from IOSFQ41000 to IOSFQ77000

Northings from IOSFQ60000 to 10SFQ95000

15

2. Data File Format

The file is stored sequentially and unformatted as a stream of 16 bit integers,

each two bytes representing a single elevation point. The order in which the data

points are stored is illustrated in Figure 3-3. The database begins with the extreme

southwest comer corresponding to UTM grid coordinate 10SFQ6000095000. The data

points of each one kilometer grid square are grouped and stored sequentially in

columns, starting with the lower left hand point and proceeding up the column one

kilometer (80 data points), then proceeding to the next column from bottom to top,

repeating this pattern for 80 columns (one kilometer of columns). These grid squares

are arranged in a similar fashion, in columns starting with the southwestern most square

and proceeding from south to north, and from west to east.

3. Data Point Structure

As mentioned above, each data point is represented by a 16 bit integer.

Within this integer are stored both an elevation code and a vegetation code. The 13

least significant bits represent elevation in feet, not including the height of vegetation.

Employing thirteen bits, elevations ranging from zero to 8191 feet can be represented.

The three most significant bits represent one of eight vegetation codes. These

vegetation codes are only available for the area within Fort Hunter-Liggett proper, and

for this reason, are not used in MPS II. The vegetation codes are listed in Table 3-1.

16

*00 00

1 KM 000

IKM-
jI

Figure 3-3 Structure of Elevation Database

17

TABLE 3-1 VEGETATION CODES

VEGETATION CODE DESCRIPTION
binary decimal

000 0 <1 Meter
001 1 1-4 Meters
010 2 4- 8 Meters
011 3 8 - 12 Meters
100 4 12 - 20 Meters
101 5 >20 Meters
110 6 No Data Available
111 7 Not Used at This Time

E. ACCESSING THE DATABASE

1. Background

Because the original MPS was not concerned with displaying high-resolution

terrain, its authors extracted every eighth point (100 meter resolution) of the original

terrain database for use with MPS. This database subset was restructured into two-

dimensional array format which made accessing the data much faster and simpler.

Since a major goal of MPS I1 is to demonstrate the capability of displaying high-

resolution terrain, the terrain data file in its original form was used.

2. Database Reads

The database is accessed on three distinct occasions by the simulator and

LOS module. Both the simulator and the LOS module read the entire 16 Megabyte

file at start-up. Because of the size of the database and its structure, there is

approximately a 30 second delay while reading the file.

18

The LOS module restructures the data into a two-dimensional array in

internal memory and, therefore, always has the entire database in memory throughout

the simulation. Because of limitations on the amount of internal memory and the size

of other data structures used in MPS I, the entire 16 Megabyte database is not held

in internal memory during operation of the simulator. During the initial read of the

database, every eighth point (100 meter resolution) is saved in a two-dimensional array

and the rest is discarded. Greater resolution is not needed for the initial two-

dimensional display (see Chapter V). After a ten square kilometer area of operation

has been selected, there is another disk access. During this read, the simulator

restructures the data into a two-dimensional array and saves the full 12.5 meter

resolution data.

3. Database Access Algorithm

a. Initial Database Read

After the simulator initialization routines, the initial read of the database

occurs. A wait bar is displayed during this read. The code which accomplishes this

task is located in routine display bigmap.c, and the algorithm used to execute this

read is presented in Figure 3-4.

Notice the routine involves four imbedded "for" loops. The database

is 36 kilometers wide, but WPS IH only uses the first 35 kilometers. Taking advantage

of the structure of the data base, MPS II completes 35 block reads of the data file.

A block of data one kilometer wide and 35 kilometers high is read into memory. The

outer loop accomplishes this task, saving the data in the linear array in elei. The three

19

display big_,mapo

short data[ZBIGDATA PTSJ[XBIG DATA PTSJ;
short in -elev[BYTES PEIR COLI;
int fd,count;
short gridcol,gridrow,col,row;

H= open(TERRAIN DATAFILERD); /* Open data ile to read.*/
lseek(fd,O,O); /* Move file pointer to beginning of ile. 0/

for (gridcol = 0; gridcol < TIIRTYFIVE SQUARES; gridcol++)
{ * Loop once for each column for 35 col~umns. *

count = 0;
read(fd, &in-elev[0], BYTES PER COL); /* Read entire column,

1 x 35 km.*/
for (gridrow= 0; gridrow < TIRTYFIVE SQUARES; gridrow++)
{/* Loop once for each of 35 grid squares in the column.*/

/* Restructure the column of squares in 2-D array.*/
for (col = gridcol * PTS PER K;

col < (gridcol * PTSPERK) + PTSPERK; col++)

for (row = gridrow *PTS PERK;
row < (gridrow *PTSPERK) + PTS PER K; row++)

datalcollirowi = in elevicounti:
count+=PTSPERHUNDRED; /* Increment count by 8.*/

count += PTS BETWEENCOL; /* Increment counter to first
point in next column.*/

Figure 3-4 Initial Database Read

inside loops restructure this array into a two-dimensional array data. Of note is that

in-elei' is indexed by the counter variable count, which is incremented by a value of

eight. This has the effect of skipping to every eighth point in the array which reduces

20

the resolution of the database to 100 meters. In_elev is then overwritten by the next

block read.

b. Subsequent Database Reads

After a ten kilometer area of operation has been selected, the database

is again accessed. The algorithm used to read, restructure, and store the high-resolution

elevation data is shown in Figure 3-5. This routine is found in file "readdata.c", and

is similar to the above read operation with two major exceptions. First, an offset to

the first data point of each column must be calculated, and second, fuil resolution data

is saved in an array named dted. This array is used by subsequent display routines.

4. Minimum and Maximum Elevations

In the original MPS, the mininum and maximum elevations were constant

and absolute. The range of elevation formed from them was divided into eight

intervals, and a color was assigned to each elevation interval. This method is simple,

yet has the disadvantage that in an area of operation which is flat, there are very few

colors displayed; thus, it is harder to discern the elevation changes. To improve on

this situation, MPS II does two things differently. First, as the data is being read,

minimum and maximum elevations are saved. These minimum and maximum values

obviously are different depending upon the area of operation chosen by the user.

Secondly. this range of elevations is divided into 16 groups (instead of eight), each of

which is assigned a color. This gives a greater contrast of colors across the range of

21

#define MAXX POINTS 801
#define TENSQUARES 10
#define SIZECOL 128000

read -datao

short dted[801J[8011;
short xgrid, ygrid, resolution, minelev, maxelev;
mnt offset, count, fd;
short row,col,gridcol,gridrowjinitxinitz;
short in-elev[SIZE-COL];

/* Open the file with the 12.5 meter data points in it ~
fd = open(TERRAIN DATAFILE,RD);
initx = (xgrid - LOWER LEFT X)/10;/* Calculate the lower left *
initz = (ygrid - LOWERLEFT Y)/10;/*starting point in the file. *

offset = 24 ((initx*PTSPERGRID*GRIDSPERCOL) +
(initz*PTS PER GRID));

Iseek(fd, offset ,0);

for (gridcol=0; gridcok<TEN SQUARES; gridcol++)

count = 0;
read(fd, &in elev [01, SIZE COL);

for (gridrow= 0; gridrow < TEN-SQUARES; gridrow++)
for (col=gridcol*PTSON -SIDE;

cok<(gridcol*PTSONSIDE)+PTS ON SIDE; col++)
for (row=gridrow*PTSONSIDE;

row<(grid row*PTS ON SEDE)+PTSON SIDE; row++)

dtedtcolllrowl = (in-elevicountl & Oxlfff)
FEETTOMETERS);

count++-;

lseek(fd,(25*PTSPERGRID*BYTES PER POINT),1);
close(fd).

Figure 3-5 Ten Square Kilometer Database Read

2 2

elevations and a more accurate display of the elevation changes. The different color

schemes available remain the same as in the original MPS [Ref. 1].

F. RESOLUTION DECISIONS

One of the key issues being investigated during this project was the question of

what terrain resolution present-day technology computers could display in real time and

still give some semblance of smooth motion. To best investigate this question, it was

desirable that the user be able to select the resolution of the terrain on the fly and be

able to do performance measurements. It was also desired to make the code

independent of the resolution of the database.

Since the resolution of the CDEC database was 12.5 meters, and since standard

Level I DTED files are 100 meter resolution, it was decided to make the options of

resolutions for MPS 11 be multiples of 12.5 up to 100, (i.e., 12.5, 25, 50, 75, 100).

This decision makes the code relativeiy dependent upon a 12.5 meter database, but it

was decided for testing purposes this was satisfactory. Future versions should handle

this question differently (see Chapter XI).

23

IV. THE MODELING OF TIME

A. BACKGROUND

The original MPS does not attempt to model time. First, platforms can move

only in the three-dimensional mode. Second, all platforms are halted during pop-up

menus. When two or more copies of MPS are running in the networking mode, if

any one simulator enters a pop-up menu, a message is sent to all simulators on the

network. This message temporarily halts all platforms for that simulator. A

s:.bsequent message is sent to restart the platforms once the simulator is out of the

pop-up menu.

B. CAPABILITIES

The mission of MPS II is to display real-time platforms and, therefore, time

needed to be modeled so that platform positions could continuously move. To

accomplish this, a very simple model of time was chosen. There is no attempt to

keep track of actual time since this would have required a set of synchronizing

routines. Instead, MPS II works entirely with elapsed time, using the CPU system

clock as a reference.

The MPS II module is implemented with three main operating states:

0 35 kilometer two-dimensional display
& 10 kilometer two-dimensional display
a 10 kilometer three-dimension display

24

The 35 kilometer and 10 kilometer two-dimensional states were modified to execute

in a loop to allow continuous movement with the passing of time. The three-

dimensional state was already designed as a drawing loop. Every platform's position

is updated, and the network is checked for incoming platform messages once during

each loop. This timing model allows MPS 11 to display moving vehicles in both the

two and three-dimensional modes. These displays are discussed further in Chapter V.

When implementing this model, it was found that care had to be taken updating

the positions of non-local platforms (network and real-time platforms). During each

loop iteration, incoming messages are received and processed. These messages update

the position of some non-local platforms. After all the incoming messages are

processed, the function update_veh_posO is called to advance the position of all (both

local and non-local) platforms relative to their last known position by adding their

movement during the elapsed time. However, a problem occurs with those non-local

platforms that were just updated via the network. They would have been updated a

second time by the function update_veh_posO. This second update would incorrectly

position the platform. Since the reported position of these newly updated non-local

platforms is their actual position in time,. there is no need to advance their movement

based on the elapsed time. The platform would have been correctly positioned by the

network, however, incorrectly positioned by the function updatevehpos(). The

resulting display showed the platform's position jumping every time an update packet

was received.

The solution to the problem was to add an UPDATED flag field to each

platform's data record. This flag was set to TRUE anytime an update packet was

25

received and the flag was reset FALSE during the following update routine. On the

ensuing iteration of the loop, the platform is again updated as normal. In other words,

any platform whose UPDATED flag is TRUE, is not updated. The flag stays TRUE

for only one iteration of the drawing loop at a time.

This model of time allows MPS II to display moving icons, representing

platforms, over the two-dimensional maps. To accomplish this, the program had to

be modified so that pop-up menus do not automatically appear. Instead, the user is

prompted to press the right mouse button for a menu. The workstation interface

software is designed such that when a pop-up menu is called, the calling process halts

until a selection has been made. As a result, all display movement stops during pop-

up menus. After the menu selection has been made and the selection handled, the

elapsed time is used to update the position of all the platforms. Care must be taken

by the user not to stay in pop-up menus for long periods without making a selection.

In such a case, the network input buffer overflows causing incoming messages to be

lost. This situation causes no problem during normal operation of the simulator as

vehicle positions not updated from the net are updated via "dead-reckoning".

C. LIMITATIONS

This type of model does have limitations. There is no time-of-day capability to

allow for time-oriented events. Additionally, the time is not synchronized across the

network. Each simulator keeps time independent of the other simulators. A single

system-wide clock is a logical step in modeling time, but was out of the scope of this

work.

26

V. GRAPHICS DISPLAY OVERVIEW

A. GRAPHICS TECHNIQUES

The Moving Platform Simulator uses many graphics techniques throughout the

simulator and the LOS module. These graphics techniques are designed to take

advantage of the special-purpose hardware possessed by the IRIS 4D/70GT, and to help

give MPS II the speed needed to perform the desired drawing routines.

1. Double Buffering

Double buffering is a technique which, as the name implies, uses two

memory buffers for the display screen. Only one buffer contains the picture currently

being displayed (the front buffer), while drawing takes place in the other buffer (the

back buffer). When the frame is completed in the- back buffer, a call to the function

s-wapbuffers() displays the new frame. The next frame is then drawn in the back

buffer. Using this technique, the viewer sees only completed frames. Without this

technique, the appearance of smooth motion is impossible.

2. Z-buffering

Z-buffering [Ref. 8] is a general hidden-surface elimination technique. As

mentioned above, the earlier simulators developed at the Naval Postgraduate School

used the scarline Painter's algorithn. The original MPS was the first to take

advantage of the IRIS 4D/70GT's special-purpose hardware which accomplishes Z-

buffering with no time penalty. Earlier versions of the hardware could not use double

buffering and Z-buffering simultaneously.

The concept of Z-buffering is quite simple, and the special-purpose hardware

makes it easy, fast, and efficient to execute. As shown in Figure 3-2, the coordinate

system is structured such that the Z-axis is perpendicular to the screen. The system

allocates 24 bits of memory to the Z-buffer for every screen pixel. Before drawing a

particular frame, the Z-buffer is initialized with the largest value possible, (7fffff1 ,, for

24 bits). As the polygons comprising the picture are displayed, the system keeps track

of the z-coordinate of the polygon for each pixel. If this value is less than the current

Z-buffer value for that particular pixel, the z-coordinate is stored in the Z-buffer, and

the correct color value is stored for that pixel in the display buffer. Otherwise, the

color value for that polygon is not placed in the display buffer. Therefore, only the

polygons with the closest z-value at each pixel are drawn, and hidden-surface

elimination is accomplished.

3. RGB Color

The IRIS 4D/70GT has two color modes. The first, called the Color Map

mode, is primarily included for compatibility with earlier software. Using this method,

the red, green, and blue color values for a particular desired color are saved in a color

lookup table (map), and selected via a particular index assigned to it. This was the

method used by both the FOGM and VEH simulators.

The second color mode available is called the RGB mode, and is invoked

with the call RGBniodeo. Thereafter, a particular color is set with a call to

RGBcolor(r, g. b) where the parameters r, g, and b are the amount of red, green, and

28

blue component desired in the color1. The original MPS had to use this color method

because the Color Map Mode does not work with the real-time lighting and shading

as implemented by MPS [Ref. l,p. 191. The lighting and shading model used by MPS

II is discussed later in this chapter.

4. Perspective World Views

a. Two-Dimensional Drawing

When drawing on the IRIS 4D/70GT, a world coordinate system for

each window is defined. For two-dimensional drawing, the coordinates are set using

the function called ortho20. The values chosen for these coordinates are chosen for

the convenience of the programmer. In many cases, the coordinate systems used by

MPS H are those used by MPS; however, if significant changes had to be made in a

drawing routine, the coordinates were changed to better suit the drawing scheme. For

example, when drawing the two-dimensional maps, the UTM boundaries of the area

drawn were used; therefore, no conversion from UTM to world coordinates was needed.

This also simplifies the drawing routines.

b. Three-Dimensional Drawing

To give the three-dimensional drawings a realistic appearance, the

functions perspectiveO and lookat() are used. These functions control features such as:

" Field of view angle
" Ratio of x to y of a window
" Near clipping plane

'These color values range from 0 to 255. RGBcolor(0,0,0) is black and
RGBcolor(255,255.255) is white.

29

* Far clipping plane (look distance)
* Position of the viewer's eye
* Point the viewer looks at
* Viewing twist angle about the line-of-sight

The use of these functions is covered in detail later in this chapter when the platform

modeling is discussed.

B. TWO-DIMENSIONAL TERRAIN DISPLAYS

After the introduction billboard and the welcome screen2 , a two-dimensional 35

square kilometer map is displayed. This is one of two different two-dimensional map

displays. The other is a ten square kilometer map, which is displayed after an area of

operation has been selected. The drawing of these two-dimensional maps is quite

simple. Starting with the lower left-hand comer of the map and working upward and

to the right, a column of points is drawn. The elevation of individual points is used

to set the appropriate drawing color, which depends upon the current color scheme

selected. The width of the line drawn is such that subsequent lines overlap where the

line is too wide. The number of lines drawn is dependent upon the current resolution

chosen. The resulting display is a two-dimensional contour map of the terrain. A

color scheme key is displayed on the right side of the map.

2Displayed during the initial reading of the terrain database, which takes approximately
30 seconds to complete. A moving wait bar is displayed during this time. See Chapter IIl
for discussion of database access.

30

C. OVERLAYS

The overlay display is an enhancement added to MPS II. If any platforms are

present on or above the terrain, their location is displayed with an overlay on both the

ten and 35 kilometer two-dimensional maps. The original MS had no overlay for the

35 kilometer map, and the ten kilometer display of platform positions was not drawn

in the overlay mode. It was important to convert MPS H to draw these in the overlay

mode because the two-dimensional maps take on the order of ten to 30 seconds to

draw. Obviously, it is not possible to redraw the map each time through the loop.

Consequently, after the map is drawn once, the function called

drawniode(OVERDRAW) is made to begin drawing ii the overlay mode. The IRIS

4D/7OGT has a two bit overlay buffer. When in overdraw mode, the overlay buffer

is drawn into instead of the back display buffer. Overlay drawings are usually simple

and fast, but, because there is only one overlay buffer, we cannot use double buffering

for drawing in the overlay planes. Since the overlay is repeatedly drawn, erased, and

redrawn, the overlays do experience some flicker. This flicker is not all bad since it

helps bring attention to the motion of the relatively small icons.

Another limitation with the overlay mode is the limit of four colors. MPS II

uses the convention of red icons for ground platforms, black icons for air platforms,

and blue for direction arrows and observation posts. Clear is the last color, and it is

used to erase the overlay plane.

31

1. Thirty-five Kilometer Map

Adding the overlays to the 35 kilometer map was important for several

reasons. The first is because platforms are no longer limited to a ten kilometer area

and can drive out of the area of operation. The overlay is important to be able to pick

the proper ten kilometer area the platform moved into. Second, since the simulator

is used to display real-time platforms, the overlay is important to be able to initially

select a ten kilometer area of operation where vehicles are located. Third, since the

platforms are moving in real time, the overlay helps the operator get the big picture

of where all platforms are located and where they are going. Platforms are displayed

as small squares (which appear as dots) in the colors mentioned above.

2. Ten Kilometer Map

The original MPS displayed platform icons on the two-dimensional ten

kilometer map. This map was not drawn in the overlay mode. This allowed MPS to

use more colors since the number of colors is not limited in the NORMALDRAW

mode.

In MPS 11, the platforms are displayed as icons that are shaped like the type

of platform each represents. In addition, an arrow pointing in the platform's current

direction of movement is displayed.

32

D. THREE-DIMENSIONAL TERRAIN DISPLAYS

1. Background

The original MPS contained a new algorithm for displaying the three-

dimensional terrain. Only the terrain in the field of view is drawn, and the terrain is

drawn from the viewer's eyr all the way to the limit of the ten kilometer area ot

operation. A distance attenuation algorithm was implemented which takes advantage

of the fact that one can see less detail at greater distances. This resulted in significant

performance increases [Ref. l:pp. 36-49].

The basic strategy of the drawing algorithm used by MPS was to use a data

structure designed for speed, and to precompute as many static values as possible.

Then MPS takes advantage of the CPU's computational power, and computes "where

to draw" each time through the drawing loop to reduce the amount of terrain drawn

to the greatest extent possible. This method turns out to be effective. During the

development of MPS II, tests were done to see whether greatly simplifying the "where

to draw" computations at the expense of drawing more terrain would result in an

increase in speed. In fact, the opposite occurred, and the result was a slower drawing

algoritlun.

2. MPS Terrain Data Structure

As mentioned above, the terrain data structure was designed for speed. The

terrain is drawn as a series of squares formed by drawing two triangles. MPS stored

the terrain as triangles, storing the x, y, and z coordinates of every vertex of every

33

triangle. This was done to expedite the drawing routine. See Figure 5-1 to see the

construction of these triangles.

This data structure worked very well for MPS, but sacrificed memory space

for increase in drawing speed. Since the IRIS 4D/'70GT at the Naval Postgraduate

School has eight megabytes of RAM, this was never a problem. But, since MPS II

is designed to display high-resolution terrain, this became a very big problem.

Examining the terrain data structure more closely, it can be seen that by storing each

vertex of each triangle making up the terrain, the vast majority of terrain data points

are stored six times. This is because each interior3 data point is the vertex of six

different triangles (see Figure 5-2). This was not affordable with higher resolutions.

3. New Terrain Data Structure

The goal for WPS 11 was to simplify the terrain data structure, but not

sacrifice speed. Although the IRIS 4D/"70GT has a virtual memory management

system, if the terrain data structure could not fit in the internal RAM, and disk

swapping occurred during the display loop, no significant speed would ever be

accomplished. The first obvious modification to the data structure was to only store

each terrain data point once. This decreases the size of the data structure by a factor

of six. See Fig;'re 5-3 for detail on the new data structure.

3An interior data point is a point not on the outside edge of the database. Points on the
edge are stored three times each except the comers which are stored either twice or once,
depending on the comer.

34

Far Group

Grid Square #2 Mid Group,

Grid Square # 1

Z 0U 0 U0 0 0 Near Group

grid square
coordinate system Offset Position

Figure 5-1 MPS Terrain Construction

35

11

2 6

3
\5\

4

VERTEX

Figure 5-2 Orc Poin! is Vertex For Six Triangles

gridcoord2[Z][X][GRIDCOORDS]

where: Z is the vertical index into the array
X is the horizontal index into the array
GRIDCOORDS are the x, y, and z coordinates of

the data point

Figure 5-3 MPS 1 Terrain Data Structure

4. Mesh Drawing Primitive

Although considerable time was spent trying to increase drawing speed by

simplifying the calculations of the drawing boundaries, this effort proved fruitless.

Instead. improved methods of drawing were examined. Included with the other system

36

drawing primitives for drawing points, lines, and polygons is a primitive routine for

drawing a mesh [Ref. 9]. A mesh is defined as a series of triangles with common

vertices. To use the mesh primitive, a series of vertices is sent to the drawing

primitive. After three vertices are sent, the mesh function draws a triangle. As it

receives each successive vertex, the last three vertices are connected to form a triangle.

By using the same algorithm used by MPS for calculating what terrain to draw, and

then implementing routines using the mesh primitive, an increase of three to five

frames per second was realized. This routine also made effective use of the smaller

and simpler data structure explained above. See Figure 5-4 for details of how the

mesh primitive is used.

5. Distance Attenuation

The distance attenuation algorithm used by MPS is also used by MPS HI

[Ref. L:pp.111-124]. Simply put, terrain at greater distances is drawn at lower

resolutions; therefore, fewer polygons are drawn and the display loop is faster. To

accomplish this, the viewing sector is divided into three regions, near, mid, "-nd far (see

Figure 5-5). In the near region, the terrain is displayed at full resolution. In the mid

region, four adjacent squares are combined to form one square. In the far region, four

of the mid region squares are combined into one (i.e., 16 near region squares). The

size of these regions is dependent upon the zoom angle. The smaller the zoom angle

(higher magnification), the further full resolution terrain is drawn.

At the boundaries of these groups, small gaps can be formed where the

polygons no longer meet edge to edge. As was done in MPS, these gaps are filled in

by drawing a triangle formed by the three vertices forming the gap, using the normal

37

3 3 4

1 2 1 2
After 3 Points After 4 Points

7 8
5

5 6
3 4

3 4
1 2

After 5 Points

1' 2

After 8 Points

Figure 5-4 Drawing With the Mesh Primitive

vector and material definition of an adjacent polygon. The option for displaying the

holes in a different color was not implemented in MPS II.

38

Offset
Position

,jI

grid square
coordinate system Near Group Mid Group Far Group

E = Displayed terrain

Figure 5-5 Distance Attenuation Scheme

39

6. Terrain Normals

a. Background

The authors of MPS implemented a real-time lighting and Gouraud

shading model using the specialized graphics hardware on the IRIS 4D/70GT. They

implemented a simple model of the sun moving across the sky d-ring the different

times of day and months of the year. This provided for realistically lighted platf.,,ms

and terrain. [Ref. l:pp. 28-36]

The displayed color of each polygon of the terrain and platforms is a

function of its defin-d material characteristics and the angle between the direction of

the light source and the normal vector of that polygon. The material definition of the

terrain in MPS I is the same as that of MPS with the exception of how the RGB

components of that color are assigned'. MPS assigns one of eight major color values

to each range of possible elevations. It then assigns one of these colors to even-

numbered grid squares, and one of eight minor colors to the odd-numbered squares.

This results in a checkerboard effect on the terrain. Since there are no cultural terrain

features available as visual reference points, the checkerboarding is useful when a

platform is traversing flat terrain to give the operator a sense of motion. Unfortunately,

this effect also detracts from the realism of the terrain.

Normals for all the triangles making up the terrain are precomputed,

and then used by the special purpose hardware to determine the final display color of

the polygon. The RGB component values of any one square (two triangles) are

'The material definitions of the platforms in MPS Hl are exactly the same as in MPS.

40

determined by the elevation of that square's lower left-hand elevation data point. The

actual color of the twc triangles of the square might be different depending upon the

normals of that triangle. But the color of any one triangle is always constant

throughout the triangle.

b. MPS H Terrain Normals

Research into the display of more realistic terrain lead to the study of

different methods of calculating the normal vectors used by the graphics hardware in

computing realistically lighted and shaded terrain. The first key was to use vertex

normals instead of polygon normals. A vertex romal is a vector pointing

perpendicular to the plane of the point. But, what does it mean to take the normal of

a point? Each data point is a vertex for up to six different triangles. First, the

normals for all of these triangles are computed and then normalized to unit vector

length. Then these vectors are averaged to form the true vertex normal of the data

point. This normal takes into account the normals from all surrounding polygons.

As can be seen, this operation can be computationally intensive, and

although these values are all computed prior to the three-dimensional display loop,

ways of simplifying the computations were examined. Initially, for the sake of

simplicity, the normal of just one triangle was computed and used as the vertex normal.

Then, other approximations of true vertex normals were implemented, as well as a

routine to calculate true vertex normals. These methods were compared for both their

speed of computation and for the realism they added to the display. The gross

approximation of the vertex normals provided a significantly better picture than polygon

normals. Also, there was little difference between the terrain display using the

41

different approximations of vertex normals and that of the terrain drawn with true

vertex normals. With low resolution terrain data, the time differences between the

methods was not significant, but became so as resolution was increased.

See Figure 5-6 for further details on the calculation of normals.

c. MPS I Verter Normal Data Structure

In addition to providing for more realistic-looking terrain, the use of

vertex normals also simplified the data structure used to store the normals. Instead of

the complex system used by MPS, a simple two-dimensional array was used to store

the normals. This also made indexing the normals a matter of using the same index

as used for the data point itself.

7. The MPS Three-dimensional Terrain Display Algorithm

MPS II implements much of the original MPS draving algorithm. This

section explains the portions of that algorithm that are unchanged in MPS II.

The first step is to determine the area within the field of view (see

Figure 5-7). This field of view is expanded to ensure enough terrain is drawn by

offsetting the viewer's position. The offset distance is a function of the field of view;

the smaller the field of view, the larger the offset.

The next step is to determine the drawing direction. The distance

attenuation algorithm is affected by the viewing direction. For this reason, the terrain

is drawn in one of four different directions, depending upon the viewing direction (see

42

a
vertex.-

afb x ac

d c
vertex-

a
Sb x -COd

Figure 5-6 Vertex Normal Computation by Cross Product

43

- (x, - - - rx)z

Driven
- - -- - -Position

VI- _ Offset
Position

(x,z)

grid square
coordinate system

100 x 100 meter- grid square

Figure 5-7 Determining Field of View

44

Figure 5-8). Next, the limits of the drawing groups are computed. The final step is

to bind the individual vertices with the proper material definition (color).

8. MPS 1I Three-Dimensional Terrain Display Algorithm

Using the mesh primitive and vertex normals, plus the "where to draw"

routines from the original MPS, the display algorithm used by MPS l becomes quite

simple. Figure 5-9 provides an overview of the steps required to display the three-

dimensional terrain. Simply stated, the "where to draw" routines return the row

numbers and the squares within those rows. A pair of vertices is passed to the mesh

routine at a time, even though the mesh primitive groups three vertices. The key is

that it uses the last three vertices it has received. After the first two vertices are

passed to the mesh, no triangles are drawn. But, on during the next iteration of the

loop, two more vertices are passed to the mesh, and a triangle is drawn after each

vertex. Each vertex is bound to a material color, and the vertex normal is passed

along with the coordinates of the vertex itself. The code that accomplishes the three-

dimensional drawing is in file drawterrain.c.

E. PLATFORM MODELING

The model used to display platforms in MPS II is similar to that in the original

MPS. Each time through the draw loop (either two or three-dimensional) the position

of each platform must be updated from its position during the previous frame.

1. Platform Position

A platform's new position is calculated by multiplying the platform'c bp"d

by the elapsed time since the last frame to get a distance traveled. The platfcrm's

45

z

grid square
coordinate system

W = Look direction North. Draw min to max z.

= Look direction South. Draw max to min z.

= Look direction East. Draw min to max x.

= Look direction West. Draw max to min x.

Figure 5-8 Determining Viewing Direction

46

for (j = FIRST-ROW; j < LASTROW; j++)

Begin Mesh
for (i = BEGINNINGOFROW; i < ENDOFROW; i++)

Bind Material
Send Vertex Normal Point I
Send Vertex Coordinates Point 1

Bind Material
Send Vertex Normal Point 2
Send Vertex Coordinates Point 2

End Mesh

Figure 5-9 Mesh Drawing Routine

position is then updated by moving the platform in the direction of travel the calculated

distance traveled. See Figure 5-10 for the formulas used in this calculation.

2. Platform Orientation

For land vehicles, the orientation of the vehicle is a function of the terrain

it is traversing. With the vehicle axis established as shown in Figure 3-1, the

following conventions are established for vehicle rotation:

* azimuth - Rotation about the Y-axis in right-hand sense from positive X-axis.
Counterclockwise as you look down the positive Y-axis toward the origin.
Also called the platform's course.

* pitch - Rotation about Z-axis in right-hand sense from positive X-axis.
Counterclockwise as you look down the positive Z-axis.

* roll - Rotation about X-axis opposite to right-hand sense from positive Z-axis.
Clock-wise as you look down the positive X-axis toward the origin.

* heading - Compass courses. Clockwise angle in degrees between north and
the platform's X-axis. Not used except for the user during display.

47

new position-
(new-x, new...y)-- -

d _

old position - - -- -- -

(old-x, old-y)

Distance Traveled =velocity x elapsed time

new-x =old-x + (d x cos (8))

newy =olc~y + (d x sin (8))

Figure 5-10 Updating Platform's Position

48

The data structure used for the platforms includes fields for both pitch and

roll. These values are calculated as follows. First, the elevation of the terrain of the

platform's UTM coordinates is computed. Next, the elevation of the terrain 20 meters

directly in front of the vehicle is computed. The slope of the terrain in the direction

of travel is then computed using these two elevations. This value is used for the pitch

of the platform. The value for the platform's roll is computed in a similar fashion

using a point 20 meters to the side of the vehicle. No pitch and roll values are

computed for airborne vehicles (FOGM missiles) in MPS I.

The original MPS used an offset of 1.5 meters from each platform to

compute the pitch and roll. Because the terrain is represented as a series of planes,

the intersections of two polygons can be very abrupt, and the smooth tops of hills are

lost. For this reason, as the vehicle crosses the boundaries of polygons at the top of

a hill, pitch and roll values change from positive to negative immediately. This results

in jerky motion. By extending the offset used to calculate the pitch and roll, this

effect was dampened as the effect of the next polygon is taken into account earlier so

the pitch and roll begins to change from positive to negative before the edge of the

polygon is actually reached by the platform. The result is a much smoother motion,

but over very rough terrain, the tops of hills are clipped by the platform's position

changing early. This is only noticeable looking at the platform from another platform.

With both the location and orientation of each platform established, the

vehicle can be properly displayed. MPS used a structure of a linked list of platforms

located in each grid square to better keep track of which vehicles to draw. MPS II

49

simplifies rratters and simply draws all platforms located in the ten square kilometer

area of operation. This method is much simpler and is just as fast as the old method.

During the update computations described above, the elevation of the terrain

at a particular point is computed by a routine in file gnd_level.c. This routine does

a linear interpolation from the elevation data points to the location in between them.

For this reason, care must be taken not to attempt to calculate the elevation, pitch, or

roll of platforms outside the ten kilometer area of operation, because no terrain

elevation data is in the system memory. To ensure this does not happen during the

update procedure, the UTM coordinates of the platform are first updated. Then a

check is done to see if the platform is in the ten kilometer area. If it is not, a flag

is set in the platform's data record, and the elevation, pitch, and roll are not calculated.

3. Viewing Perspective

a. Background

The viewing perspective in the original MPS used a simple model that

does not give a realistic-looking view with respect to the motion of the platform for

ground vehicles. The three-dimensional view that is seen is determined by the call to

the two functions perspective() and lookatO. How the parameters to these functions

are computed is the key. In the original MPS, the viewer's lookat position stayed

relatively constant, regardless of the orientation of the vehicle. This was fine for

vehicles traversing relatively flat terrain, but when traversing steep terrain, it gave a

totally unrealistic view. For example, when traveling up a steep incline, the vehicle

would have the correct pitch, but the lookat point would be such that all that could be

50

seen was the hood of the vehicle. In other words, the lookat point did not change with

respect to the orientation of the vehicle as is the case in real life'. Another problem

was that the viewer's eye position was always a fixed distance, vertically above the

point on the terrain where the vehicle was located. We can see by Figure 5-11 that

this should not be the case, and that using this method, the eye position could actually

end up outside the vehicle.

b. Coordinate System Transformations

The solution to these problems was two-fold. First, the eye position

had to be kept in a fixed location with respect to the jeep (see Figure 5-12). Secondly,

the lookat position must be adjusted with -pect to the gradient of the terrain on

which the vehicle was positioned.

Since the eye position is fixed with respect to the platfon, the eye

position is known, but this position is in terms of the platform's or body coordinate

system which is translated and rotated. The eye position must be transformed to the

system's world coordinate system. These transformations could be manually computed

[Ref. 10], but fortunately, the system hardware is custom designed to do just this type

of transformation (although it is not normally used to transform the eye position).

The function transform body_toworldO in the file math utilities.c performs these

transformations. See the actual code in Figure 5-13.

'The viewpoint of a passenger in a moving platform obviously does not stay fixed with
respect to the orientation of the platform. But in general, as a platform pitches and rolls, so
does the passenger and his corresponding view. So this is a relatively good model when
combined with the other viewing controls available, i.e., view direction and view tilt.

51

I Eye Position

o 0

Eye Position

Figure 5-11 Eye Position of MPS

52

EePosition

0 0

Eye Position

Figure 5-12 Corrected Eye Position of MPS II

53

FUNCTION: transform -bodyjto_world
PURPOSE :Transforms coordinate in body axis to world coordinates.
Uses Iris matrix multiply microcode to avoid sins and cosines.

transform-bodytoworld(float azimuth, float elevation, float roll,
float dx, float dy, float dz,
float *eye x, float *eye-y, float *eye z)

Matrix offset mx;

pushmatrixo;

loadmatrix(unit); /* Load unit matrix *

/* Assumes platform's nose points along positive X axis ~
/* P(world) = P'(body) * ROT(azimuth) * ROT(elevation) *ROT(roll) *
/* Do rotations in reverse gimbal order */
rotate((Angle)(azimuth*RTOD*10.0), 'Y' ~:/* azimuth *
rotate((Angle)(elevation * RTOD * 10.0),'Z');/* roll *
rotate((Angle)(-roll * RTOD * 10.0), 'X) /* elev ~

getmatrix(offset-nmx); /"' Get accumulated rotation matrix ~

1* Pre-multiply rotation matrix by offset vector to get world coordinates. *
*eye-x = dx*offset~mx[0][0I + dy*offset..mxl[OI + dz*offsetmx[2[OI;
*eye-y = dx*offset -mx[0I[I] + dy*offset-mx[l1 [1 + dz*offset-mx[2][11;
*eye-z = dx*offset_.mx[01[2] + dy*offset..mxl] + dz*offset-mx[2[21;

popmatrixo;

/* end transform-bodyjto world *

Figure 5-13 Transforming Platform Coordinates to World Coordinates

Adjusting the Icokat position to give .- ire realistic view is a similar

problem. The lookat point is simply a target at a constant distance along the X-axis

54

of the viewer. By performing the same homogeneous transformation on this point,

which is in body coordinates, the lookat point coordinates, in system world coordinates,

is returned. This corrects simplifications in MPS that neglect the viewer's pitch and

roll in determining the point of view (see Figure 5-14).

Point

E e Position N

Look Distance-

Figure 5-14 Correct Look-at Point From Driven Platform

55

VI. NETWORKING CAPABILITIES OF MPS H

A. BACKGROUND

The networking code of the original MPS has been overhauled in MPS I. MPS

used blocking network I/0 and shared memory to handle some of its networking tasks.

This means that when MPS checked the network interface for incoming messages, and

no messages were received, MPS waited (blocked) until a message was received. To

keep this blocking mode from slowing down the simulator, MPS spawned a separate

process (network receive) to listen to the network and pass the incoming information

to MPS. The two processes (MPS and network-receive) communicated by using an

area in the system's memory called shared memory. The networkreceive process

would write incoming information into the shared memory, and MPS would read the

shared memory.

Users of MPS had to be very careful when operating in the networking mode.

Since use of the shared memory was not coordinated between the two modules, an

incoming message placed in the shared memory space could be overwritten by a

subsequent incoming message before the first message was read by NIPS. This was

especially true if many platforms were employed in the simulation, and their velocities

often changed, generating network message traffic. Additionally, all simulators on the

network needed to be in the three -dimensionil mode before the next simulator was

started, and the subsequent suinulators were limited to using the same 10 kilometer area

of operation the first simulator was using. Finally, any tine one simulator went into

56

a pop-up menu, that simulator's platforms were stopped on all other simulators on the

network.

To simplify the networking procedure, MPS II uses non-blocking network I/0.

By using non-blocking I/O, a spawned process is not needed, and neither is the use

of shared memory. When checking the network interface, a process using non-blocking

I/O continues processing even when no messages have been received from the network.

As a side benefit of this change, the program execution is much easier to understand

and to debug.

None of the restrictions mentioned above for MPS apply to MPS H. Simulators

can be in any mode of operation when a new simulator enters the network

environment. The implementation of UTM coordinates allows different simulators to

be in any 10 kilometer area of operation; all platforms are displayed in their proper

location. The real-time model eliminates the need to inform other systems when pop-

up menus are entered.

B. ARCHITECTURE

Many of the networking concepts from MPS are still implemented in MPS II,

but most were modified to be more efficient or to make the code easier to understand.

Like MPS, MPS II establishes a connectionless link among simulators using the User

Datagram Protocol/Internet Protocol (UDP/IP) protocols, and uses a predefined set of

messages to communicate with other running MPS H simulators. Figure 6-1 shows the

connections to the LAN and the interprocess communication links among three MPS

H simulators.

57

MPS II

..... UD /PItrrcs o mncto if

LA Concto

Fiur 6- Iepo sCo mncto ik

1. Prtcl

Th UD/Ppooospoiea neiblInetols eieysrie

To trnmtamsae hIrtcl iie h aait akt. n ro-re

oree deir I hs akt sntgaate Rf1) lhuhteurlal

asec o th prtclinodeialtecneto sdeiey vicei edd

Usn a Incinespooo lostebodatn fmsae oa npcfe

* 58

number of destinations [Ref. 15:p. 41]. In this case, the multiple destinations could be

more than one graphics workstation running the simulator, or another machine that

further processes the data. The module that determines the intervisibility between two

platforms is such a piocess (see Chapter Vi-l).

To establish the UDP/IP communication link among processes, a process

opens a SOCKDGRAM socket, sets the socket to the broadcast, non-blocking options,

and then binds a port number to the socket. To transmit to, or receive from the

network, the sendto and recvfrom system functions are used. When an event occurs

that must be reported to other simulators, the appropriate message is immediately

created and sent. This task is done by the function network(). MPS II only checks

the network once each time through the drawing loop for incoming messages. The

function check jorpacketso accomplishes this task. If incoming messages have been

received, the function handles them appropriately. If no messages have been received

from the network, MPS II continues the simulation.

2. Data Structures

MPS II uses a predefined set of messages to communicate among the

simulators. At a minimum, the message string consists of a 50 character header

identifying the message, however, many of the messages include a message body with

additional data. If the message contains additional data, the data follows the header

in specified format. Although a 50 character header is used, only the first character

is needed to uniquely identify the type of the message. The rest of the characters are

used to identify the message in English language. Albeit including the English

language identification of the message expends network resources, the advantages of

59

having the human readable text in the message for monitoring and debugging purposes,

and the fact that the connection uses less than one percent of the network throughput6,

outweigh the disadvantage. MPS II uses many of the messages used by MPS.

However, the format of one of these messages has been altered to meet new

requirements and some new messages have been added.

a. MPS Messages

MPS UI uses the following messages also provided for in MPS:

* Initialization message
* Answer message
* All message

N*I,,S End message
* Lockon message
* Lockoff message
* Destroy message
* Crash message

An initialization message is used to inform all running MPS H

simulators that another MPS II simulator has just been started, and is going through

an initialization routine. As part of this initialization routine, the starting simulator

broadcasts the message to all the running MPS II simulators. When a running

simulator receives tiis message, it responds by sending a message back to the starting

simulator. This initialization routine provides the mechanism to insure all platforms,

in all running MPS II simulators, are uniquely numbered. The initialization message

consists of only a header identifying the message.

6This usage figure was computed by the Computer Science Department's network analyzer
during a performance test of the PROCESS_VDB module (see Chapter VII). The module was
sending approximately the average amount of data transmitted during an actual exercise at
FHL.

60

An answer message is the message a running simulator responds with

when it receives an initialization message. In addition to the message header, the

message contains the local simulator's base identification number. This number, unique

to each running simulator, is a multiple of 10,000, and is used by the simulator to

uniquely number its platforms. The starting simulator adds 10,000 to the maximum

base identification number of all the running simulators to determine its unique base

identification number. Unfortunately, this scheme does not guarantee the unique

numbering of the platforms. Since the messages are sent using the UDP/IP protocols,

their delivery is not guaranteed. Also, if any of the running simulators do not

immediately respond to the initialization message, the starting simulator may complete

its initialization routine before it received the running simulator answer message. After

completing the initialization routine and assigning the simulator's base identification

number, there is no mechanism to change this number if an additional answer message

is received. In an effort to ensure this failure does not occur, the starting simulator

sends out five initialization messages, waiting one second and checking for answers

after sending each one.

For details on the All message, MPS End message, Lockon message,

Lockoff message, Destroy message, and Crash message, see [Ref. 1].

b. New Messages

MPS II also uses some messages not provided for in MPS. Although

the majority of these messages are used to control the NETWORKSIMULATOR and

PROCESS_VDB modules (see Chapter VII) and to communicate intervisibility data

(see Chapter VII), one, the update message, originated in MPS but was modified to

61

meet the needs of MPS II. The messages not common to NIPS but used in MPS II

are:

* Update message
* PROCESSVDB kill message
* PROCESSVDB end message
* PROCESSLOS kill message
* PROCESSLOS end message
* Observer LOS message
* Target platform intervisibility message

An update message is sent by the MPS HI module to inform all other

processes about a platform's position and velocity at an instance in time. Although

normally sent when the platform's velocity changes, it can also be sent when a

specified period of time has elapsed during which the platform's velocity has not

changed. Since MPS II moves the position of a vehicle among updates using a dead

reckoning scheme where the vehicle movement is calculated by interpolating from the

last known position and velocity, periodic updates assist in maintaining an accurate

display. An update message contains the following nine fields:

* Platform's unique identification number
* Type of platform (jeep, truck, tank, etc.,)
* X position of the platforn
* Y position of the platform
* Velocity of the platform
* Altitude of the platform
* Direction the platform is traveling
* Time the platform information was recorded
* Incremental count of messages sent for the platform

An example of an update message is given in Figure 6-2, and a description of the

message data fields is provided Ln Table 6-1. When check jor_packets() receives an

update message, it parses the message to extract its information. It then checks to

62

"@@ PROCESS VIDS DATA BLOCK MODULE update message @10000
4 48766.00000 69577.00000 14.705441

......... 0.00000 54.688786 88000.00000 23"

Update Message

Figure 6-2 Example Update Message

TABLE 6-1 UPDATE MESSAGE BODY DEFINITION

MESSAGE FIELDS DATA FIELD
TYPE CONTENTS TYPE WIDTH

Update Id Number itt 20
Message Platform Type int 20

X P'osition float 20
Y Position float ."
Velocity float 20
Altitude float 20
Direction float 20
Tine float 20
Message Count long 20

see if the platform contained in the message is a new platform. If so, the new

platform is added to the list of platforms being displayed by the simulator. If the

platform is already on the platform list, the platform's information is updated with the

message's data. Between receiving messages on platforms, MPS II continues to update

the platform's position and orientation using the last information received, i.e., course

and speed. Although not needed for display purposes, the incremental count is used

to check for lost messages.

63

Th, PROCESSVDB kill message and the PROCESS_VDB end

message are used to control the NETWORKSIMULATOR and PROCESS_VDB

modules (see Chapter VII for further discussion). The Process-LOS kill message,

ProcessLOS end message, observer LOS message, and target platform

intervisibility message are used to control the PROCESSLOS module and

communicate intervisibiiity data from the PROCESSLOS module to MPS II (see

Chapter VIII for further discussion).

64

VII. DISPLAY OF REAL-TIME PLATFORMS

A. SYSTEM ARCHITECTURE

1. Overview

A primary objective of USACDEC was to be able to display, using computer

graphics, actual test exercise platforms in real time. MPS IH meets the requirements

of this objective. However, to provide this capability, the network interface of the

original MPS was modified and two totally separate program modules were developed.

These modules are the PROCESSVDB and the NETWORKSIMULATOR modules.

The primary reason the original NIPS was modified and the separate modules were

developed was to assist MPS II in graphically displaying the platforms in real time.

Real time displays are required to create the illusion of motion by the rapid generation

and display of still pictures similar to that of motion picture technology. Even with

today's advancements in hardware support for graphic displays, this process can be

slow, especially when the workstation's processor must also process the data before it

can be displayed. By distributing the processing of data among other separate

computers and minimizing the amount of processing MPS II must complete before it

can display a single still picture, or frame, the display rate is increased. The standard

display rate for theatrical motion pictures is 24 frames per second, and at a rate of less

than 16 frames per second, the illusion of motion is no longer smooth and appears to

flicker and jerk [Ref. l l:p. 3]. In view of the fact that the original MPS displayed,

65

in the most optimized state, at most 15 frames per second, but sometimes less than one

frame per second [Ref. l:p. 63], a decision was made to remove as much of the non-

display processing as possible from the graphics workstation. A second factor that lead

to the distributed architecture was insufficient main memory. Depending on the

machine, the Silicon Graphics, Inc. IRIS workstations used in this effort contain

between eight and sixteen megabytes of main memory [Ref. 12:p. 10]. However, the

sum of just the largest data structures used in the MPS HI, PROCESSVDB, and

NETWORKSIMULATOR modules is over 20 megabytes. Although some of the data

could be shared by two or all three modules providing an economy if the modules

were combined, much of the data is unique to each module. Consolidating the two

modules would increase the number of bytes a single processor would have to swap

in and out of memory during each display cycle and, again, slow down the display

rate. A solution to this problem would be to use a workstation with multiple

processors and increased memory. A step in this direction would be to use the Silicon

Graphics, Inc., IRIS 4D/24OGTX workstation. The 240GTX contains four CPUs, each

operating at 25 MHz [Ref. 13]. Table 7-1 lists the largest data structures used in the

three modules, their size in bytes, and the modules they are used by. Finally, as a

separate module, the PROCESS_VDB module can independently serve more than one

MPS 11.

2. Purpose of Modules

Although MPS II can function as a lone module or networked with other

MPS II modules, it is limited in this mode to displaying internally generated mock

66

vehicles. Two new modules are needed, in addition to MPS II, to display actual test

exercise platforms in real-time. The two new modules work together as a team.

TABLE 7-1 SIZE OF DATA STRUCTURES

STRUCTURE SIZE MODULES USED BY

pnterrain 7,699,212 bytes MPS H1
gridcoord 7,699,212 bytes MPS 11
gridcolor 2,566,404 bytes MPS II
dted 1,283,202 bytes MPS 1[
vidsdata 1,048,576 bytes MPS H, PROCESSVDB,

NETWORKSIMULATOR
inelev 448,000 bytes MPS II
player -data 1,520 bytes PROCESSVDB
vdb 1,624 bytes NETWORK_SILT.ATOR,

PROCESSVDB

The first of the new program modules is a module capable of accessing

instrumentation data available through the FHL Local Area Network (LAN), often

referred to as the FHL real-time network, during a test exercise. FHL has a

sophisticated array of instruments to record the action during a test exercise. This data

is collected by sensors located throughout the test area, relayed back to the cantonment

area, and stored and maintained on the computers connected to the LAN. The module

reads platform position-location, elapsed exercise time, platform type, and other needed

data from the FHL LAN, processes and converts it into a format that MPS II is

designed to receive and then transmits the data through the same LAN to MPS II. The

instrumentation data is bundled into a complex data structure called the Visual

Information Display System (VIDS) Data Block by IUSACDEC. For this rcason, this

67

module is called the PROCESSVDB module. Except for two additional interprocess

communication messages used to control the PROCESSVDB module, when running,

the module appears to networked MPS II modules as just another networked MPS HI

module (see Chapter VI for a discussion of networked MPS II modules). This

similarity of design allows a networked MPS II module to handle the platform data it

receives from the PROCESS_VDB module identically to that received from another

networked MPS I module. In fact, the running MPS II module does not even know

the data came from a non-MPS I[source.

The second module allows the LAN that serves the Computer Science

Department at the Naval Postgraduate School to simulate the FHL L .N. This module

loads the departme1tal LAN to appear as the FHL LAN woul2 during an actual test

ex-rcise at FHL. This second module was developed as a toul to assist in the

development and testing of the PROCESS_VDB module and MPS Il's ability to display

the test exercise platforms in real time in the school environment. For obvious reasons,

this module is called the NETWORK_SIMULATOR module.

3. Interprocess Communication

Essential to the display of the actual test exercise platforms in real time

are the interprocess communication links between the NETWORKSIMULATOR,

PROCESSVDB and MPS 1H modules. Only with these links can the modules function

as a team. Two separate communication links are established between the modules.

These links, which are discussed later in more detail, are:

A connection oriented link between the NETWORKSIMULATOR and the
PROCESSVDB modules using the Transmission Control Protocolllnternet
Protocol (TCP/IP).

68

* A connectionless link between the PROCESSVDB and the MPS II modules
using the User Datagram Protocol/lInternet Protocol (UDP/IP).

Th-re is no direct communication link between the MPS II and the

NETWORK_SIMULATOR modues. Since the only instruction MPS II needs to give

the NETWORK_SIMULATOR module is to terminate, and since the PROCESSVDB

ridule should also terminate when the NETWORKSIMULATOR terminates, the

instruction is sent to the PROCESSVDB module which then relays it to the

NETWORKSIMULATOR module. Figure 7-1 shows the connections to the LAN and

the interprocess communication links between the three modules.

A primary goal of this work was to support USACDEC's operations at FHL,

so a conscious effort was made to insure that the software produced is easily ported

to FHL and integrated with the rest of their te.,' hardware and software. Central to

insuring the work could be easily integrated was the need to use the same network

protocols used at FHL Fortunately, both FHL and the Naval Posgraduate School

Corputer Science Department use an Ethemet LAN and the Defense Advanced

Research Projects Agency (DARPA) Tnternet pro.,co! suite.

a. Between NETWORKSIMULATOR AND PROCESSVDB Modules

(1) Protocols. The purpose of the NETWORK_SIMULATOR module

is to ,rovide i-cess, in the s.)ol environmct,, to data that is available through the

FHL LAN du.ing a test exercise at FHL. Hence, the module uses the same protocols

used at FHL. The data is maintained on a Digital Equipment Corporation VAX 11/780

computer it FHL. Access :o the data can only be made b,, opening a connection to

69

MPS II

A,

UDP/IP
LAN

TCP/IP

NETWORK PROCESS

SIMULATOR VDB

-, .- -. Interprocess Communication Link

- LAN Connection

Figure 7-1 Interprocess Communication Links

a process running on the computer using the connection oriented, reliable stream

transport service provided by the Internet Transmission Control ProtocollInternet

Protocol (TCP/IP) protocols. This protocol establishes a virtual circuit between the

endpoints and guarantees the error free, ordered delivery of the data. The data is

fragmented into s- I packets for transmission and reassembled at the destination

70

[Ref. 14 :p. 481]. The TCP/IP protocols use a client-server model of interaction to

establish this connection.

In this model, the server opens a SOCKSTREAM socket in the

Intemet domain and then waits, listening for a request to ,, ;h a connection from

the client. The client also opens a SOCKSTREAM socket in the Internet domain,

but then attempts to connect to the server. When the server receives the request, and

it is a proper request, it is accepted and the connection is established. In this case,

the NETWORKSIMULATOR module functions as the server, and the PROCESSVDB

module functions as the client. The connection is full duplex allowing concurrent

transfer in both directons. To insure the desired connection is made between the two

correct processes, TCP incorporates abstract objects called ports. A port uniquely

identifies a process on a computer [Ref. 15:p. 137]. Although the prescribed port

number at FHL is port number 1025, the NETWORKSIMULATOR and the

PROCESS_VDB use port number 1267. Port 1025 is already assigned to other use at

the Naval Postgraduate School, necessitating the difference. These ports are considered

unofficially assigned and, unfortunately, UNIX does not provide a mechanism to keep

track of unofficially assigned port numbers. However, officially assigned port numbers

are maintained in the UNIX system file "/etc/services" and can be obtained using the

getservbyname system call [Ref. 15:p. 283].

(2) Data Structures. As mentioned above, the instrumentation data

is bundled into a complex data structure called a VIDS data block. During an exercise,

these blocks are released into the network at a rate that depends on the test exercise

scenario. The maxinum release rate is one block etvery 50 milliseconds. Deperl'ting

71

on the type of information contained in the block and the number of platforms active

in the exercise, the size of the block also varies. The maximum size of the block is

812 bytes. The block consists of three parts: a block header, a series of predefined

VIDS messages and a block check word. Figure 7-2 shows the structure of one VIDS

data block. Each VIDS data block is separated by at least one word of filler.

The header of the VIDS data block has a fixed structure that

encompasses the first 24 bytes of each VIDS data block. The header consists of the

following eight fields:

* SYNCHRONIZATION WORD: The eight characters "VIDSOOOO" that denote
the start of a VIDS data block. It is used to identify the start of a VIDS data
block.

" INTERNAL SEQUENCE NUMBER: A four byte sequence number field that
is no longer used.

" FILLER: A two byte field that is available for future use
" NEGATIVE WORD COUNT: The negative (two's complement) of the total

number of words remaining in the VIDS data block, including the block check
word.

" BLOCK SEQUENCE NUMBER: A two byte incremental count identifying
the VIDS data block.

" ACKNOWLEDGEMENT REQUEST BITS: A two byte field indicating, if
the first byte is non-zero, that the error-free receipt of the VIDS data block
must be acknowledged via the data link. The second byte is not used.

• ELAPSED TIME - MOST SIGNIFICANT BYTES: A two byte field holding
the most significant bytes of a four byte word. The word contains the elapsed
exercise time in milliseconds. This time should be incremental and
representative of the data contained within the block.

• ELAPSED TIME - LEAST SIGNIFICANT BYTES: The least significant
two bytes of the elapsed exercise time.

Figure 7-3 provides the type definition of the data structure implementing the VIDS

data block header.

Following the header is the series of predefined VIDS messages.

The types and order of the messages vary between VIDS data blocks; however, the

72

SYNC WORD = "VIDS0000"

INTERNAL SEQUENCE NUMBER

FILLER

NEGATIVE WORD COUNT

BLOCK SEQUENCE NUMBER

ACK REQUEST BITS

ELASPED TIME - MSW

ELASPED TIME - LSW

MESSAGE 1

MESSAGE 2

MESSAGE 3

MESSAGE N

BLOCK CHECK WORD

Figure 7-2 VIDS Data Block

messages must all come from the predefined set. The sum of all the messages cannot

exceed 788 bytes, and a message may not be split between two VIDS data blocks.

Figure 7-4 provides the type definition of the data structure implementing the VIDS

messages, and a summary of the predefined messages is given in Table 7-2. For this

application, the two most important messages are the type 1, player position message,

73

typedef struct I
char sync-word[8]; /* ASCII header "VIDSOOOO". *
unsigned int inter seqno; /* Internal sequence number.
unsigned short filler; /* Filler, (future use). */
short count; /* Negative number of 2 byte

words remaining in block. */
unsigned short blockseq; /* Block sequence number.
unsigned short ackjreq; /* Acknowledgement field.
unsigned short mswtime; /* Elapsed time most */

/* significant word.
unsigned short lswtime; /* Elapsed time least */

/* significant word. */
vids blockheader;

Figure 7-3 VIDS Data Block Header Structure

typedef struct (
unsigned short msg[394]; /* VIDS Messages Structure */

Figure 7-4 VIDS Messages Structure

and the type 11, start-time message. They are described in greater detail later in this

chapter.

The last component of the VIDS data -)lock is the block check

word. This two byte field is used to detect errors in transmission. The value of the

field is the 16 bit frame check sequence generated by a cyclic redundancy check of the

entire VIDS data block.

74

TABLE 7-2 PREDEFINED VIDS MESSAGES

TYPE MESSAGE NAME FUNCTION

1 Player Position Message Specify player symbol
and X, Y position

2 Player Annotate Message Define annotation for
specified player

3 Detail Data Update Update player's detail
data base

4 Graphic Element Message Define graphic element
for maintaining specified
menu overlay list

5 Communication Message Operator transmission of
text data

6 Header Definition Define contents of the

display headers

7 None Not defined

8 Symbol Definition Initialize player symbols
and other programmable
fonts

9 Detail Template Define the formats of
Definition the detail data display

10 Menu Overlay Name and allocation storage
Identification for meni overlay lists

11 Start Time Message Specify missic.. start time;
signal to prepare for real-
time operation

12 Co!or Index Message Initialize the display's
color tables

75

b. Between PROCESSVDB and MPS II Modules

(1) Protocols. Like the interprocess communication link between the

NETWORKSIMULATOR and the PROCESSVDB modules, the communication link

between the PROCESS_VDB and MPS H modules uses the Internet protocols to

establish the link. However, in this case the link uses the Internet Uscr Datagram

Protocol/Internet Protocol (UDP/IP) protocols. These are the same protocols as those

used between networked MPS 11 modules. Since the PROCESSVDB module functions

as a source of platform data analogous to a networked MPS II module, it is essential

that the protocols employed to cormnunicate the data between the PROCESS_VDB and

MPS I modules are the same.

(2) Data Structures. Like the interprocess communication link

between networked MPS II modules, communication between the PROCESS_VDB

and MPS II modules use a predefined set of string messages to communicate data

between modules. An example of each type of message is given in Figure 7-5. For

those messages that contain additional data, a description of the message body is

provided in Table 7-3. The predefined messages the PROCESS_VDB module can

send to the MPS I[module are:

76

"* PROCESS VIDS DATA BLOCK MODULE initial msg *

PROCESS_VDB Initialization Message

"## PROCESS VIDS DATA BLOCK MODULE answer message #10000"

PROCESSVDB Answer Message

"@@ PROCESS VIDS DATA BLOCK MODULE update message @10000
.....4 48766.00000 69577.00000 14.705441
......... 0.00000 54.688786 88000.00000 23"

Update Message

PROCESS VIDS DATA BLOCK MODULE end message =-=10000"

PROCESSVDB End Message

"@@ MOVING PLATFORM..,, SIMULATOR II initial message *"

MPS H Initialization Message

4# MOVING PLATFORM SIMULATOR H answer message ###10000"

MPS H Answer Message

"<< MOVING PLATFORM SIMULATOR II pvdb kill msg <<<<10000"

PROCESS_VDB Kill Message

Figure 7-5 Example Messages

77

TABLE 7-3 MESSAGE BODY DEFINITIONS

MESSAGE FIELDS DATA FIELD
TYPE CONTENTS TYPE WIDTH

Answer Base Id Number int 20
Message

Update Id Number int 20
Message Platform Type hat 20

* Position float 20
Y Position float 20
Velocity float 20
Altitude float 20
Direction float 20
Time float 20
Message Count long 20

PROCESSVDB Base Id Number int 20
End Message

PROCESSVDB Base Id Number hat 20
Kill Message

• Initialization message.
* Answer message.
* Update message.
* PROCESSVDB end message.

The predefined messages MPS H can send to the PROCESS_VDB module are:

* Initialization Message.
• Answer Message.
* PROCESSVDB Kill Message.

For a discussion of the initialization message, answer message and update message

see Chapter VI. The PROCESSVDB kill message functions to instruct the

78

PROCESSVDB module to terminate. After receiving a kill message and before

terminating, the PROCESS_VDB module sends a PROCESSVDB end message.

The end message functions as a signal to all other running processes that the

PROCESSVDB process is terminating. The MPS IH module uses this information to

display the status of the PROCESS_VDB module.

B. THE PROCESSVDB MODULE

Immediately upon start-up, the PROCESS_VDB module performs an initialization

routine to estb!ish, the network connections discussed earlier in this chapter. Once

the connections are established, the module proceeds to retrieve the first VIDS data

block. From this point on, the module continuously performs a sequence of tasks in

a loop. This sequence is repeated for each VIDS data block the process receives until

either the module is instructed to terminate operations, or when the source of the VIDS

data blocks closes the connection that provides the VIDS data blocks. Two reasons

the source can close the connection is either the end of the test exercise has occurred

or the NETWORKSIMULATOR has exhausted its prerecorded data. The ordered

sequence of tasks the PROCESS_VDB module must accomplish for each VIDS data

block is:

" Retrieve VI S data block.
* Extract the time stamp from the header of the VIDS data block.
* Extract the length of the data block from the header.
* Search the VIDS message blocks looking for start-time messages and player

position messages. When either is found, process the message data.
" Check for messages from MPS 11.

79

1. Retrieving The VIDS Data Block

With the network connections already established, to read the VIDS data

block throi .h the network, a series of calls to the system function read is made. The

read function is set to block when there is no data to read. Since between every

VIDS data block there is at least tw- bytes of junk filler data, a search algorithm

must first be used to read through the filler and locate the start of the VIDS data

block. This algorithm accomplishes the task by reading two bytes at a time through

the LAN until the characters "V" and "I" are read signaling the start of the VIDS data

block (see Figure 7-6). After locating the start of the VIDS data block, 14 more bytes

are read. This second read reads the VIDS data block up to the field containing the

negative count of remaining bytes in the block. Finally, with this figure, the rest of

the block can be read with one more read statement.

2. The VIDS Data Block Time Stamp

The header of each VIDS data block contains two fields that hold the

elapsed time from the start of the exercise until the release of the VIDS data block.

To determine the elapsed time, the two fields must be combined. This is a simple

process that can be done many ways. The method chosen here is to shift the most

significant two bytes to the left by 16, and then add the result to the least significant

word. If the VIDS data block contains any player position messages, the elapsed time

is used to calculate the platform's velocity.

80

gotheader = FALSE;
ateof = FALSE;

/* Loop until the end of the data or a VIDS data block is found. */
while (!gotheader)

/* Read next two bytes, if there is only one its the end of the file. */
if ((byte cnt = read(network_socket, &vdb, 2)) < 2)

ateof = TRUE;
printf("End of file.\4i");

/* Test for start of a VIDS data block. It starts with a "VI". */
if ,(vdb.sync word[O] = 'V') && (vdb.sync word[l] =- 'I')

&& (!ateof))
gotheader = TRUE;

/* End of while loop that looks for start of a VIDS data block. */

Figure 7-6 Algorithm to Locate Start of VIDS Data Block

3. The VIDS Data Block Length

The header also contains the length of the VIDS data block. Since the

length of a VIDS data block varies with the number and type of VIDS messages the

data block contains, the length is needed to determine where the VIDS data block ends.

The length is stored as the negative count of two byte words remaining in the VIDS

data block. The length data is used twice. First, when initially reading the data

through the LAN and, second, when processing the VIDS messages. When reading the

data through the network, the procedLre is to first read the data up to the length field

and then using the count of the remaining number of bytes, read the rest of the block.

To get the total number of bytes that comprise all the VIDS messages, multiply the

81

count by minus two and subtract 14. The 14 accounts for the bytes in the

acknowledgement and time fields which are between the count field and the start of

the VIDS messages and the block check word, which is after the VIDS messages.

4. The VIDS Messages

The only VIDS messages we are concerned about are the start-time messages

and player position messages. These are, as are the types of all VIDS messages, easy

to discern. The first two fields in every VIDS message block have a fixed structure

and provide the information needed to parse the VIDS data block, and separate the

messages of interest from those that are not. The first is the length of that message,

and the second field is the type of the message. A start time message is a type 11

message, and a player position message is a type 1 message. However, extracting the

information in the correct form from the data structure is not simple. The data type

for the count and the type field in their respective data structures is an unsigned char.

But, in the VIDS messages they are stored together as an unsigned short.

Remembering that an unsigned short is two bytes and an unsigned char is one byte,

the count can be obtained by shifting the value in the short data structure to the right

8 bits. The message type can be obtained by masking out the upper byte.

a. The Start-Time Message

The start-time message specifie.z the time the exercise started and serves

as a signal that real-time operations have started. The seven fields that constitute the

message format are:

LENGTH OF MESSAGE: The number of two bye words in the message.
(AIl start time messages are 12 bytes long)

82

- iit IM"i Tum IL. (U)iw MI4 MUMOTE SO
NUTWtE CA R P STE h IT A. JU 99

ICASIFIED F/9 V6 IL

,MonsonhEE~h

* TYPE OF MESSAGE: Field identifying the type of message. (A start time
message is a type 11 message)

* DAY OF EXERCISE: Day of the year the exercise started expressed as a
number between 0 and 366, inclusive.

" HOUR EXERCISE STARTED: Hour of the day the exercise started expressed
using a 24 hour clock.

* MINUTE EXERCISE STARTED: Minute of the day the exercise started
expressed as a number between 0 and 59, inclusive.

* SECOND EXERCISE STARTED: Second of the day the exercise started
expressed as a number between 0 and 59, inclusive.

• MILLISECOND EXERCISE STARTED: Millisecond of the day the exercise
started expressed as a number between 0 and 999, inclusive.

Figure 7-7 provides the type definition of the data structure implementing the start-

time message.

typedef struct
unsigned char count; /* Number of 16 bits in msg.
unsigned char type; /* The type field for this message. */
unsigned char day; /* Day of the year of exercise. */
unsigned short hour; /* Hour the exercise started.
unsigned short min; /* Minute the exercise started.
unsigned sec; /* Second the exercise started.
unsigned short mil; /* Millisecond exercise started.

startjtime message;

Figure 7-7 Start Time Message Structure

b. The Player Position Message

The player position message contains eight fields and is ten bytes long.

The fields are:

83

" LENGTH OF MESSAGE: The number of two byte words in the message.
(All player position messages are 10 bytes long)

" TYPE OF MESSAGE: Field identifying the type of message. (A player
position message is a type I message)

" PLATFORM IDENTIFICATION NUMBER: The identification number of
the platform this message is providing information about.

" FILLER: Unused.
* PLATFORM SYMBOL: Used in FHL visual information display system to

set the desired ASCII character to display the platform.
" PLATFORM COLOR AND FONT: Used in FHL visual information display

system to set the color and font of the character used to display the platform.
" X POSITION: The X position of the platform in UTM grid coordinates with

an offset.
" Y POSITION: The Y position of the platform in UTM grid coordinates with

an offset.

Interest is in the third, seventh, and eighth fields in the player position message. The

third field provides the platform's identification number. The number uniquely

identifies the platform, and is assigned to the platform prior to the exercise. The

seventh and eighth fields give the position of a platform at the time recorded in the

header block. This position is inL UTM grid coordinates with an offset of -40,000 in

the X and Y directions. The offset is required because the fields in the player position

message data structure used to record the X and Y position are, for historical reasons,

unsigned short integers. The problem that necessitates the offset rises because most

implementations of the C programming language provide only two bytes for short

integers. This makes the maximum limit for either the X or Y position 65,536. Since

the accuracy of the position data is to the nearest meter, and since it takes five digits

to specify the x or y position to the nearest meter, any UTM grid coordinate greater

than 65,536 could not be recorded. The coordinates of the majority of the FHL

exercise area exceed this limit. Another limitation of the player position message

structure is it does not provide a field for altitude. This is a serious limitation as

84

another goal of CDEC is to graphically display intervisibility data. If the player is an

aircraft or other flying object, there is no way to determine whether or not it is visible

because it is flying high enough to not be blocked from view by the terrain. Figure 7-8

provides the type definition of the data structure implementing the player position

message.

typedef struct
unsigned char count; /* Number of 16 bit words in msg. */
unsigned char type; /* The type field for this message. */
unsigned char id; /* The player's id number. */
unsigned char filler; /* Unused.
unsigned char symbol; /* Desired ASCII char for symbol. */
unsigned cnar coior_font; /* The upper nibble is the color */

/* index of the symbol, the last
/* two bits are the font size.

unsigned short xposn; /* The x position of the platform. */
unsigned short y-posn; /* The y position of the platform. */

player.positionmessage;

Figure 7-8 Player Position Message Structure

Once the PROCESSVDB module has identified the message as a

player position message, it must determine if an update message needs to be sent to

MPS II. The process of determining if an update message must be sent is complex.

However, by identifying as early as possible if an update message should or should

not be sent, unnecessary processing is avoided.

85

(1) Determination To Send Update Message. A set of rules is used

to determine if an update message should be sent. First, there are two times when an

update message should never be sent. They are:

* Don't send an update message if this is the first player position message
received for this platform.

" Don't send an update message if the platform was not selected as a platform
to display.

An update message should never be sent for the first message because the velocity of

the platform, as reported in the message, must be calculated by dividing the movement

of the platform by the elapsed tine during which it moved. However, the movement

is calculated by finding the difference between the platform's last reported position and

its current position, and in the case of the first player position message, there is no

recorded last position. Also, an update message should not be sent if the platform was

not selected as a platform to display. The procedure to select the platforms to display

is provided in the user interface chapter (see Chapter IX).

In those cases where the first set of rules does not prevent the

sending of an update message, a second set of rules is applied. These rules are based

upon a series of thresholds that are defined in the file "processvdb.h." The use of

the thresholds was designed to guarantee the periodic sending of update messages to

insure the display of the platforms is kept accurate, yet prevent the sending of

unnecessary messages that slow down MPS 11's display rate. The second set of rules

is:

" Send an update message if the change in velocity exceeds a defined velocity
threshold.

" Send an update message if the elapsed time since the last update exceeds an
elapsed time threshold.

86

I

* Send an update message if an update has not been sent for a defined number
of player position messages for this vehicle.

By setting the velocity threshold to a number greater than zero, minor velocity changes

caused by the imprecision in the position reporting instrumentation will be filtered.

The position data are reported as accurate to the nearest meter. However, this means

that data can be rounded off as much as half a meter. Assuming the platform's

position is reported every second, which is a realistic figure, the imprecision will cause

the platform's speed to vary by as much as 1.8 kilometers per hour. In the situation

where the velocity actually did change, the thresholds that specify the maximum

elapsed time between update messages, or the maximum of updates that will be

prevented from being sent, will insure an update is eventually sent.

(2) Actions Taken When Update Must Be Sent. If the determination

was made that an update message must be sent, a sequence of tasks must be followed.

The in order sequence is:

* Calculate the vector velocity.
* Send the update message.
* Save the current platform X and Y position and the VIDS data block tine.
• Reset the count of messages not sent to zero.

To minimize the calculations needed to compare the platform

velocity against the velocity threshold, the X and Y components of the vector velocity

are used. Only if the thresholds are exceeded, and an update message must be sent,

is the vector velocity calculated. Calculating the vector velocity requires finding the

magnitude and direction of the sum of the components. This is expensive in terms of

CPU time.

87

With the communication links discussed earlier in this chapter

established upon start up of the module, all that is needed to send a message is to

compose the message and send it. To assemble the message, the system function

sprintfO is used. The sprintf function creates a character string containing the update

message data. This string is then concatenated to the end of a character string

containing the message header to complete the full message. To send the message

the system function sendto is used.

The next step is to save the platform's X and Y position and

velocity and the VIDS block time. The next time a player position message is

received for the platform, the X and Y position will be needed to determine the

platform's movement during the elapsed time. The velocity will be used to determine

if the velocity changes between receipt of the two player position messages. Finally,

the VIDS data block time will be needed to calculate the elapsed time between the

messages.

The last step taken after sending an update message is to reset

the count of messages not sent to zero. As discussed earlier, this counter is used to

insure messages are periodically sent to maintain the accuracy of the display. The

count is incremented every time a message is not sent for a platform. Whenever this

count exceeds a threshold, an update message will be sent regardless of the platform's

movement and velocity changes.

88

(3) Actions Taken When Update Is Not Sent. A different sequence of

tasks is followed for the case an update message is not sent. The shorter sequence is:

* Save the carrent platform X and Y position and VIDS data block time
* Increment the count of -essages not sent

Even though the current position of the platform was not sent,

its new position must be saved, along with the VIDS data block time. If the

information is not saved and a change in the velocity occurred between this and the

next player position message, the velocity change would be averaged over the elapsed

time since the last update resulted in the incorrect reporting of the new velocity.

Finally, the count of update messages not sent must be

incremented by one.

C. THE NETWORK SIMULATOR MODULE

Like the PROCESS_VDB module, the NETWORKSIMULATOR module

performs an initialization routine to establish its network connections. However, in this

case, there are two additional requirements of the initialization routine. The first

requirement is to open the file containing the prerecorded exercise data that is used to

load the department's LAN. Early in the development of the

NETWORKSIMULATOR module, a decision was made to use data read from a file

rather than artificially generating the data on the spot. Although this approach limits

the duration of the simulation to the amount of data available in the file and requires

maintaining large files containing the exercise data, it allows the replaying of actual

exercise data. During an average exercise, one VIDS data block is generated every

second resulting in a data file of approximately one megabyte for a 50 minute

89

simulation. The second additional requirement is to record the start time of the

simulator. The start time is used to time the release of the prerecorded exercise data

into the LAN. After performing the initialization routine, the network simulator

module performs the following sequence of tasks until instructed to terminate:

* Get VIDS data block from data file.
* Get time stamp of VIDS data block and wait until elapsed time passes.
* Release VIDS data block into LAN.

1. Reading the VIDS Data Block

The procedure the NETWORKSIMULATOR uses to read the VIDS data

blocks from the prerecorded data file is identical to the procedure the PROCESS_VDB

module uses to read the VIDS data block through the network. The reason for this

similarity is the read system function. The read function can be used to read from

either a file or through a network socket. In the case of the network function, the read

function can only be used when the socket is connected, which is the case for the

connection between the NETWORKSIMULATOR and the PROCESSVDB module

[Ref. 15].

2. Waiting for Elapsed Time

The procedure the NETWORK_SIMULATOR uses to extract the time stamp

and determine the elapsed time from the start of the test exercise until the VIDS block

is to be released is also identical to the procedure the PROCESS_VDB module uses.

Once the VIDS data block elapsed time is determined, the NETWORKSIMULATOR

gets the actual time and subtracts it from the start time recorded during the

initialization process to find the elapsed time since start of the simulation. If the

90

simulation elapsed time is greater than the elapsed time recorded in the VIDS data

block, the release of the VIDS data block is late. In this case, the VIDS data block

is immediately released, and an error message is printed. Otherwise, the process enters

a delay loop until the elapsed time since the start of the simulation equals the elapsed

time of the VIDS data block. At this point, the entire VIDS data block is released

into the LAN.

3. Releasing the VIDS Data Block

To release the VIDS data block into the network, the system write function

is used. Like the system read function, the write function can be used to write data

to either a file or a network socket if the socket is connected. In addition to releasing

the VIDS data block into the network, the junk filler bytes between the VIDS data

blocks must be released into the network to simulate this aspect of the communication

link. The junk filler bytes are released into the network as soon as they are identified

as filler bytes and not at the start of the next VIDS data block.

D. The Moving Platform Simulator l Interface

The MPS U treats the platform update messages it receives from the

PROCESSVDB module identically to update messages it receives from other running

MPS U processes. A discussion of MPS U's handling of update messages is provided

in Chapter V.

91

VIII. INTERVISIBILITY CALCULATIONS AND DISPLAY

A. SYSTEM ARCHITECTURE

1. Overview

Another objective of CDEC is to be able to graphically display intervisibility

data. Given the location of an observer platform, CDEC wanted a display to show

when the observer can visually see a specified target platform. Both the observer and

the target can be moving. This intervisibility display capability is needed to analyze

the performance and effectiveness of the FOGM in comparison with the Tube-launched,

Optically-tracked, Wire-guided (TOW) missile. The FOGM operator does not have to

visually see a target to engage it. However, with the TOW missile, the operator must

have an unobstructed line-of-sight to engage the target.

To provide this capability, another new module was developed to work with

MPS II. Like the modules that support MPS U's ability to graphically display actual

test exercise platforms (see Chapter VII), this module is designed as a separate module

to distribute the processing. Additionally, as a separate module, it can independently

serve more than one MPS U. and any platforms generated by the PROCESS_VDB

module. This new module is called the PROCESSLOS module because the process

checks the Line-Of-Sight (LOS) between the observer .nd the target platforms. This

is done by comparing the elevation of the ground against the elevation of an imaginary

line from the observer to the target. If, at a specified point, the elevation of the

92

ground is greater than the elevation of the imaginary line at that point, the observer's

view of the target is blocked.

The PROCESSLOS module receives the platform data from both the

PROCESSVDB and MPS 1I modules. Any one of the platforms can be selected as

the observer, and any combination of the remaining can be selected as targets.

Permitting the selection of multiple targets provides the capability to simultaneously

determine the intervisibility between an observer and many target platforms.

Additionally. the observer can be placed at a fixed location.

The PROCESSLOS module runs in one of two modes. In the first mode.

the process can graphically display the intervisibility determinations itself, and run

independently of MPS II by receiving all required platform data from the

PROCESSVDB module. In the second mode, the process runs without a graphic

display and may be run as a background process detached from the terminal. In both

modes the process sends MPS II formatted messages containing concise drawing

instructions, which allows MPS I to also display the intervisibiity data.

2. Interprocess Communication

Like the modules needed i-, display actual exercise platforms in real time,

the display of platform intervisibility depends on interprocess communication links.

In this case the links are to the PROCESS_VDB and MPS H modules. Figure 8-1

provides an overview of the connections to the LAN and the interprocess

communications links between the modules.

93

PROCESS
MPS II

LOS
, UDP/LP r

UDPIIP UDP/IP
LANs

NETWORK PROCESS

SIMULATOR VDB

-......... - Interprocess Communicaticn Link

L- LAN Connection

Figure 8-1 Interprocess Communications Links

a. Protocols

Since the PROCESSLOS module gets the platform data ;t uses to

determine the locations of the observer and target platforms from running

PROCESS_VDB and MPS 1I modules, the protocols it uses are identical to those used

between the PROCESS_VDB and MPS H modules (see Chapters VI and VII). The

connectionless broadcast nature of the link also allows the PROCESSLOS module to

94

receive the messages sent between PROCESS_VDB and MPS H modules and between

networked MIS II modules. This receipt of the messages by the PROCESSLOS

module is entirely transparent to the other modules.

b. Data Structures

In addition to using the same protocols, the PROCESSLOS module

also uses some of the same messages and formats used to communicate between the

PROCESS_VDB and MPS II modules and between networked MPS II modules (see

Chapters VI and VII). These messages are augmented by an additional set of

messages.

There are two messages the PROCESSLOS shares with the

PROCESS_VDB and MPS 11 modules. The two messages are:

0 Update Message
• PROCESS_VDB Kill Message

The PROCESSLOS module never sends an update message.

However, it listens for and receives all the update messages sent by the

PROCESS_VDB and MPS H modules. They are the module's sole source of platform

data. The PROCESSVDB kill message is also used by the PROCESSLOS module.

Like the MPS II module, the PROCESSLOS module is able to start and terminate the

PROCESS_VDB module. A detailed discussion of the structure of and use of both

messages is given in Chapter VII.

The additional messages are used to communicate intervisibility data

to MPS II. Consistent with the firmat of all the other interprocess messages, the

additional messages are also comprised of character strings and contain a 50 character

95

header followed by data fields. An example of each message is given in Figure 8-2.

A description of each message body is provided in Table 8-1. The additional messages

are:

" Observer LOS message
" Target platform intervisibility message
" Observer position message
" PROCESSLOS kill message
" PROCESSLOS end message

An observer LOS message is used to pass platform intervisibility data

to MPS II. A message is sent every time the intervisibility between the observer and

a target is determined. The message provides the observer and target platform's

position, if the observer can see the target, and if the observer's view is blocked, the

point of the obstruction. The message consists of the following eight fields:

" Target platform's unique identification number.
" X position of the observer platform.
" Y position of the observer platform.
* X position of the target platform.
" Y position of the target platform.
• X position of the obstruction if any, otherwise zero.
* Y position of the obstruction if any, otherwise zero.
* Number two if the observer can see the target, otherwise one.

If the observer's view is obstructed, the first point of obstruction along the observer's

line of sight to the target is reported. The numbers used to indicate the platform

intervisibility are derived from the system defined manifest constants for GREEN and

RED. In the system include file "gl.h", the manifest constant GREEN is defined to

be two, and RED is defined to be one. If the observer can see the target, the platform

intervisibility is reported as GREEN. If the observer's view, is blocked the

intervisibility is reported as RED.

96

"@@ PROCESS VIDS DATA BLOCK MODULE update message @10000
..... 4 48766.00000 69577.00000 14.705441
......... 0.00000 54.688786 88000.00000 23"

Update Message

"<< PROCESSLOS processvdb kill message <<<<<<<<<<10000"

PROCESS_VDB Kill Message

"++ PROCESSLOS observer line of sight message ++++"
10022 67858.5675 45555.3954 78654

.... 88957 69594 98595 1"

Observer LOS Message

"11 PROCESS_- LOS tgt platform intervisibility msg I1"
10014 68955 74899 66564 78895 1"

Target Platform Intervisibility Message

>> PROCESSLOS observer position message >>>>>>>>>"
1 67858.5675 45655.3954
35.43 54.3543 274.1253"

Observer Position Message

"/MOVING PLATFORM SIMULATOR II plos kill message/10000"

PROCESS LOS Kill Message

"]] PROCESS-LOS process end message]]]]]]]]]]]"

PROCESS-LOS End Message

Figure 8-2 Example Messages

97

TABLE 8-1 MESSAGE BODY DEFINITIONS

MESSAGE FIELDS DATA FIELD
TYPE CONTENTS TYPE WIDTH

Observer LOS Platform ID Num hat 10
Message Observer X position float 20

Observer Y position float 20
Target X position long 10
Target Y position long 10
Obstruction X position long 10
Obstruction Y position long 10
Intervisibility Determination int 10

Target Platform ID Num int 10
Platform Previous Target X position long 10
Intervisibility Previous Target Y position long 10
Message Current Target X position long 10

Current Target Y position long 10
Intervisibility Determination hat 10

Observer Platform Type int 10
Position Observer X position float 20
Message Observer Y position float 20

Observer Velocity float 20
Observer Altitude float 20
Observer Course float 20

PROCESSLOS Base Identification Number int 20
Kill Message

A target platform intervisibility message is also used to pass platform

intervisibility data to MPS II. In this case, the data is specific to the target platform.

98

Although the data is a duplication of data contained in the observer LOS messages and

can be acqui-ed from data contained in two consecutive messages, it is replicated to

consolidate the data in one message to reduce the anouint of processing and data

storage needed to initially display or, when chosen, redisplay the data. The message

contains the following six fields:

* Target platform's unique identification number.
" X position of the previous reported location of the target platform.
" Y position of the previous reported location of the target platform.
" X position of the target platform.
• Y position of the target platform.
* Number two if the platform is visible, otherwise one.

Again, the system defined constants for RED and GREEN are used to specify the

intervisibility in the last field of the message.

The observer position message is used to communicate the observer's

position between the PROCESS_VDB and MPS ii modules. Since both modules can

specify and display the position of the observer, the message is used by both modules.

The seven fields in the message are:

" Type of observer platform (jeep, tank, stationary position, etc.).
" X position of the observer platform.
" Y position of the observer platform.
" Velocity of the observer platfomi.
• Altitude of the observer platform.
• Course in compass degrees of the observer platform.

The velocity, altitude, and course of the observer platform are included on the message

to allow the dead reckoning scheme, employed by MPS I to move platforms between

update messages, move the observer.

99

The PROCESSLOS kill message serves to instruct the

PROCESSLOS module to terminate. After receiving a kill message and before

terminating, the module sends a PROCESSLOS end message. The end message

serves as a siaal the module is about to terminate. This information is used by MIPS

1I to display the status of the PROCESSLOS module.

B. DETERMINATION OF INTERVISIBILITY BETWEEN PLATFORMS

A sequence of tasks, referred to here as the intervisibility algorithm, is executed

to determine the intervisibility between the observer and the target platforms. The

sequence is repeated for each platform update message received through the LAN.

To optimize the algorithm, a set of rules is used to determine if the entire sequence

must be followed, or at what point in the algorithm are all the required steps for a

given update message completed and the process can proceed onto the next target

platform update message. Figure 8-3 details the sequence of tasks in the intervisibility

algorithm.

1. Optimization Rules

To maximize the number of platform update messages and intervisibility

determinations the PROCESSLOS module can handle in time, a set of rules is

employed to optimize the intervisibility algorithm. These rules are:

* Don't determine the intervisibility for the first platform update message
received for a platform.

* If the observer is in a platform, don't determine the intervisibility for that
platform.

" In addition to the points reported in the platform update messages, only
determine the intervisibility at points a specified distance apart along the target
platform's path.

100

Task Number Description of Task

1 Get a target platform update message.

2 Determine the number of points along the target platform's
path that will be checked. Determine the X and Y distance
between these points.

3 For each point on the target's path, referred to here as the
target point, do the following:

(1) Determine the number of points, along the line-of-sight
from the observer to the target point, that will be
checked for an obstruction. These points will be
referred to as the LOS points.

(2) Determine difference in elevation between the
observer's location and the target point. Calculate the
change in elevation between each LOS point.

(3) Step through each LOS point, one at a time, checking
to see if it blocks the observer's view. If an
obstruction is found, immediately stop and go to the
next step. Otherwise, check the next LOS point. If
all the LOS points have been checked, go to the next
step.

(4) If the PROCESSLOS module is running in the display
mode, display the results of this intervisibility check.

(5) Save the results of this intervisibility check to a file
for display at a later time.

(6) Notify MPS II of the results of this intervisibility check
by sending an observer LOS message and a target
platform intervisibility message.

Figure 8-3 Intervisibility Algorithm

101

" Similarly, for the line-of-sight path from the observer to the target platform,
only check for an obstruction at points a specified distance apart along this
imaginary line.

" As soon as an obstruction is found in the observer's line-of-sight, move onto
the next platform update message.

Because the intervisibility algorithm requires two positions for a platform,

the intervisibility is never determined for the first platform update message for a target

platform. Waiting for the receipt of two update messages for a target platform allows

the algorithm to determine the intervisibility for points between the reported points in

the update messages but still along the platform's path. This algorithm is described

in greater detail later in this chapter.

The intervisibility also does not have to be determined for the update

messages on a platform if the observer is in the platform. Obviously, if the observer

is in the platform, he can see the platform.

To limit the number of times the intervisibility algorithm is applied to a

target platforms's path, a target path segment length is specified. The intervisibility

algorithm is always applied to the locations reported in the update messages. However,

only if the distance between the reported points is greater than this length, are

intermediate points along the path tested. A detailed discussion of the scheme used

to determine the actual points to which the algorithm is applied is provided later in this

chapter.

Likewise, the line-of-sight path between the observer and the target platform

can be divided into segments. However, in this case the specified LOS segment length

is employed and the points are checked for an obstruction in the observer's view.

102

Again, a detailed discussion of the scheme used to determine the actual points used to

check for an obstruction is provided later in this chapter.

The last nle is to move onto the next update message as soon as an

obstruction is found. CDEC's requirement is only to know if the observer can or

cannot see the target. CDEC is not concerned with the actual location of the point of

obstruction.

2. Determining the Elevation of a Point

a. Elevation Database

To ascertain the observer, target platform, and LOS point elevations

needed to determine the intervisibility, the PROCESSLOS module uses the same

terrain database file as MPS II. A description of this file is provided in Chapter III.

Like MPS II, only the elevation data is used, and the vegetation data is ignored since

most of the codes indicate that the information is unknown [Ref. 1]. However, unlike

MPS II, the PROCESSLOS module reads and stores the entire database file. The

database is stored in the two dimension array elevation data[X][Y]. The first

dimension corresponds to a normalized value of the X component of the UTM grid

coordinate. The second dimension corresponds to a normalized value of the Y

component of the UTM grid coordinate. The components are normalized to account

for the resolution of the database and the offset from the origin of the FHL map.

The lower left UTM grid coordinate of the terrain database has an X component of

41000 and a Y component of 60000. Figure 8-4 provides the algorithm used to

normalize the values.

103

/* Algorithm to normalize the X and Y components of an UTM coordinate. */
x_normalized = (long)((x-position - 41000) / DATARESOLUTION);
y.normalized = (long)((yposition - 60000) / DATARESOLUTION);

Figure 8-4 Normalization Algorithm

b. Elevation Calculation

If the location of every observer, target platform, and LOS point

corresponded exactly to a point in the database, the determination of their elevations

would be easy. It would simply equal the value of the elevationdata array evaluated

for the point. However, this is not the case. As a result, an algorithm must be used

to calculate the elevation of positions located between the points in the database. The

age.rt-hmn chosen here is to define a plane that contains the point, find the equation of

the plane, and then solve for the elevation of the point.

(1) Defining The Plane. By assuming the point of unknown elevation

lies in the plane defined by three adjacent points that are represented in the database

and form a triangle around the point, its elevation can be calculated. This assumption

permits a "best effort" approximation of the unknown elevation by interpolating the

elevation from surrounding known points. The first step is to select three adjacent

points. Figure 8-5 illustrates this procedure. Depending upon the points selected, it

is possible to form two triangles around the point of unknown elevation. As long as

the equation and points corresponding to the chosen triangle are used, it does not

104

matter which triangle is used. Figure 8-5 also shows both triangles for an example

point. The triangle selected, for this application, is marked.

(2) Finding the Equation of the Plane. Next, using the elevation

values of these three adjacent points, along with the known distance between the

points, the equation of the plane that contains the points is derived. To derive the

equation of the plane, first the normal to the plane is calculated. Then, using one of

the known points in the plane, the actual equation of the plane is derived. An

advantage of this approach is that it can be highly optimized for this situation. Since

the X and Y distance between the points is equal for all points in the database, many

of the intemiediate values needed to calculate the equation of the plane and the

elevation of the desired point in the plane reduce to one or zero. Because of the

simplicity of the calculations in the algorithm, a decision was made to compute the

values of the equation dynamically when needed rather during an initialization routine

at start-up. This approach save considerable memory space.

(3) Solving the Equation for the Unknown Elevation. After deriving

the equation of the plane, all that is left to complete the algorithm is to evaluate the

equation by substituting in the known position of the point and solving for its unknown

elevation. Figure 8-6 shows the algorithm, after the equations have been reduced and

consolidated, used to calculate the elevation of an unknown point in an upper left

triangle. Figure 8-7 shows the algorithm for the lower right triangle.

105

zi 2
z+3~

z + 2

zz +

z

x+ +, , 3 x+

x
grid square

coordinate system

* Points in elevation-data[x][z] array

* Selected points

*Point of unknown elevation

7Triangle used in calculations

4..

Alternate triangle

Note: The distance between the points
depends on the resolution of the data in the array

Figure 8-5 Selection of Database Points Used to Calculate the Elevation of a
Position Not Represented in the Database

106

/* Normalize the coordinate of the point for which we need to find
/* the elevation.
tempx = (float)((x-position - 41000) / DATARESOLUTION);
tempy = (float)((yposition - 60000) / DATARESOLUTION);
x_normalized = (long)tempx;
y-normalized = (long)tempy;

/* Find the offset of the point. The offset is the percentage of */
/* the distance that the point, for which we need to find the */
/* elevation, is between the points in the database. The lower */
/* left comer of the triangle is the base point of the offset. *1
x_offset = (float)(tempx - x nonnalized);
y offset = (float)(temp-y - y-normalized);

/* Find the elevation of the three adjacent points that form the
/* triangle around the unknown point. */
elev-ptl = elevationdata[xnormalized][y_normalized 1;
elevpt2 = elevation-data[xnormalized + I I ynormalized + I];
elev-pt3 = elevationdata[xnormalized][y_normalized + I];

/* Finally, calculate the unknown elevation of the point. */
unknownelevation = ((elev.pt2 - elevpt3) * x_offset)

+ ((elevpt3 - eptl) * yoffset) + elev_ptl;

Figure 8-6 Algorithm to Calculate Elevation of Point in Upper Left Triangle

3. Target and LOS Points

If the path distance a target platform travels between update messages

exceeds a specified distance (the veh_seglength), the path is divided into segments and

the intervisibility between the observer and the target platform is determined at the end

107

/* Normalize the coordinate of the point. */
tempx = (float)((x-position - 41000) / DATARESOLUlTON);
tempy = (float)((y-position - 60000) / DATARESOLUTION);
x-normalized = (long)tempx;
y-normalized = (long)tempy;

/* Find the offset of the point. The offset is the percentage of */
/* the distance that the point, for which we ne-d to fina the */
/* elevation, is between the points in the database. The lower */
/* left comer of the triangle is the base pohlt of the offset. */
x_offset = (float)(temp-x - xnormalized);
y_offset - (float)(temp-y - y-normalized);

/* Find the elevation of the three adjacent points that form the */
/* triangle around the unknown point. */
elev-ptl = elevation-data[x_normalized][ynormalized];
elev-pt2 = elevation data[xnormalized + I][ynormalized 1;
elev-pt3 = elevation-data[xnormalized + 1][yncrmalized + 1 ;

/* Finally, calculate the unknown elevation of the point. */
unknownelevation = ((elevpt2 - elevptl) * xoffset)

+ ((elevpt3 - ept2) * yoffset) + elev_ptl;

II
Figure 8-7 Algorithm to Calculate Elevatibn of Point in

Lower Right Triangle

points of each segment. The end points are referred to as the target points. The

number of target points, for a particular path, equals the path length divided by the

value of veh-seg length. The distance between the target points equals the distance

the target platform traveled between the update messages divided by the number of

target points. Theoretically, by reducing this number to an infinitesimally small

number, the intervisibility between the observer and the target platform, as they move,

can be continuously determined. However, technically this is not possible. A

108

reasonable figure would be to use the distance between the points in the database.

This is the default value used by the PROCESSLOS module. In calculating the

distance between the target points, the x and y distances are used. As a result, the

distance between target points is expressed in terms of an x and a y distance. This

provides for the quick calculation of the location of each successive target point.

Similarly, the line-of-sight from the observer to the target platform is divided

into segments. However, in this case, the end points of the segments, referred to as

the LOS points, are the points checked for obstructions in the observer's view. The

distance used to calculate the number of LOSpoints is the los-seglength.

Both the veh-seglength and the los-seglength can be changed while the

PROCESSLOS module is running (see Chapter X). Figures 8-8 and 8-9 illustrate the

segments, target points, and LOS points.

A Observer Obstruction

Path of Target Platform
between updates

o Target points

A Observer position

, LOS point checked for obstruction

* LOS point that is not checked

Line-of-sight from observer to target platform

Figure 8-8 Overhead View of Target and LOS Points

109

Observer Line-of-sight from observer to target platform

Difference in elevation between LOS points

o TargetTpoint

A Observer position

" LOS point checked for obstruction Ground elevation
" LOS point that is not checked

Figure 8-9 Side View of Target and LOS Points

C. PLATFORM INTERVISIBILITY DISPLAY

Although both the MPS I and the PROCESSLOS modules are capable of

displaying the results of the platform intervisibility determinations, the MPS I1 module

has only a subset of options available on the PROCESSLOS module. However, with

both modules, the results are drawn on a two-dimensional map over the terrain the

platforms are traveling. Additionally, both modules store the results of the

intervisibility determinations for redisplay. The path the platforms traveled is drawn

in green when the target platform is visible by the observer; otherwise the path is

drawn in red. The observer's position is displayed using the standard military symbol

for an observer: a triangle with a small dot in the center. To allow the observer to

110

be repositioned without redrawing the entire map, the observer is drawn in the overlay

mode.

1. PROCESSLOS

a. Display Layout

The PROCESSLOS module uses four graphics windows to display

information. Figure 8-10 shows the relative positions of the windows. These windows

are:

• Map window
• Statistics window
" Map data window
" Elevation data window

2

3

4

1. Map Window 3. Map Data Window

2. Statistics Window 4. Elevation Data Window

Figure 8-10 Window Layout

1ll

The map window is used to display the selected map and platform

paths. To aid the actual display of the platform data, the ortho2() function is used

to set the world coordinate system of the map display window equal to the UTM grid

coordinate system of the map whenever platform data is drawn. As a result, the need

to convert the UTM coordinates of the platform to some different display coordinate

system is avoided.

The three remaining display windows are used to display supporting

information such as the UTM grid coordinates of the lower left comer of the map,

the elevation contour color scheme, the available and selected platforms, the position

and elevation of the observer, the lossegjlength aJ vehsegjlength, and the platform

number of the platform currently bcIng processed.

b. fisplay Options

The PROCESSLOS module has a comprehensive set of options to

tailor the graphical display of intervisibility determinations. The display capabilities

of the PROCESSLOS module include:

" Ability to select any combination of available target platforms for display and
to display their intervisibility determinations.

* Ability to clear the map of all platform data and, if desired, to select the
same or a different set of platforms and to display their intervisibility
determinations.

* Ability to position and to display the observer at any location on the map or
in any available platform.

* If selected, display the line-of-sight from the observer and the location of the
first obstruction if one exists for the selected platforms.

* Ability to adjust the length of the los seglength and the veh-segjength.
* Ability to select the 35 x 35 kilometer map or any 10 x 10 or 1 x 1 kilometer

map area from the 35 x 35 kilometer map area.
* Ability to adjust the terrain elevation color scheme.
• If selected, display the unique platform identification number of the target

platform adjacent to its path.

112

0 If selected, in addition to displaying the target points (the actual point where
the intervisibility determination was made), display the target platform's path
between the target points.

0 Ability to display the current status of the process.

Figure 8-11 PROCESS LOS Display of 10 x 10 Km Map With
iOne-Of-Sight Trace

Figure 8-11 shows the PROCESSLOS display with the selection of the 10 x 10

kilometer map option and the drawing of the line-of-sight option turned on.

Figure 8-12 also shows a 10 x 10 kilometer area, however, the drawing of the line-

of-sight trace is turned off.

113

2. MPS I

MPS f1 uses a sinilar window layout, however only the map window is

used. The other windows are used by other features of MPS II (see Chapter IV).

Although not as comprehensive as the PROCESSLOS module, MPS I has an ample

set of available options to display the intervisibility determinations.

* Ability to select any combination of available target platforms for display and
to display their intervisibility determinations.

• Ability to clear the map of all platform data and if desired. to select the same
or a different set of platforms and to display their intervisibility determinations.

" Ability to position and to display the observer at any location on the map or
in any available platform.

" If selected, display the line-of-sight from the observer and the location of the
first obstruction if one exists for the selected platforms.

* Ability to adjust the terrain elevation color scheme.

114

4 4

Line-Of-Sight Trace

115

IX. SYSTEM EVALUATION OF MPS H

A. MOVING PLATFORM SIMULATION PERFORMANCE

There is ongoing research at the Naval Postgraduate School into the evaluation

of high-performance graphics workstations. One of the objectives of this research was

to continue that wc'k. Silicon Graphics Inc. manufacturer's specifications state that the

IRIS 4D70GT is capable of producing 40,000 l0xl0 pixel, Z-buffered, lighted,

Gouraud-shaded quadrilaterals per second. This number is established using optimized

drawing code and does not reflect the performance that can be expected from a real-

world application program. However, MPS, the predecessor of MPS 11, does provide

a more realistic reference to measure the performance of a graphics workstation. MPS

is an application program of suitable complexity to provide a comparison between the

manufacturer's claim of performance specifications and a real-world applications

performance.

Using MPS's performance as a yardstick, MPS II was similarly evaluated. Two

measurements are used to judge the performance of MPS I: frames per second and

polygons per second. Frames per second is more important in the assessment of

graphic simulators because it determines the quality of the display. Without a suitable

frame rate, the user will not have the sense of smooth motion. However, the polygons

per second measurement enables comparison to the manufacturer's specifications. A

third measurement, polygons per frame, is used to judge the complexity of the

display.

116

By improving the performance of MPS while increasing the complexity of the

software, MPS HI pushes the hardware to a greater extent than MPS to better evaluate

what level of application program is suited for present day, off-the-shelf technology.

It also gives a clue as to what type of applications will be possible with faster, more

powerful hardware.

Both MPS and MPS HI have a variety of complex routines which test the graphics

workstations [Ref. l:p. 61]. Computations completed during each iteration of the

display loop include:

" Updating each platform's position and elevation
" Performing collision detection between platforms
" Performing platform coordinate transformation
* Calculating what terrain to draw
" Calculating and displaying indicator and performance information
" Computing timing variables
" Displaying Z-buffered, lighted, Gouraud-shaded, terrain
* Displaying platforms

By using the hardware to draw very large quantities of polygons, MPS II gives

a good indication of the capabilities of the special purpose graphics hardware of the

Silicon Graphics Inc. IRIS 4D/70GT in the environment of an applications program.

Additionally, MS II provides an excellent tool to test the performance of the

workstations on a wide variety of picture complexities by providing the choice of

drawing several different resolutions of terrain.

When performing the evaluation of MPS II, the benchmark test set forth in [Ref.

L:p. 62] was adhered to as closely as possible. Table 9-1 gives the results of that test.

If we compare these results to the results of similar evaluations of MPS (see Table

1-4), we see a slight improvement with the performance of MS HI. These

117

TABLE 9-1 MPS H PERFORMANCE MEASUREMENTS

on an IRIS 4D/70GT

DISPLAYING DETAILED TERRAIN

ZOOM POLYGONS FRAMES
ANGLE PER PER

PLATFORM (DEGREES) FRAME SECOND

ONE VEHICLE 55 764 10.80
ONE VEHICLE 15 404 13.75
NINE VEHICLES 55 1086 7.50
NINE VEHICLES 15 723 9.30
MISSILE 1500m 90 19802 1.02
MISSILE 1500m 10 3388 3.30

DISPLAYING ATTENUATED TERRAIN

ZOOM POLYGONS FRAMES
ANGLE PER PER

PLATFORM (DEGREES) FRAME SECOND

ONE VEHICLE 55 608 11.50
ONE VEHICLE 15 394 14.00
NINE VEHICLES 55 941 8.67
NINE VEHICLES 15 681 9.80
MISSILE 1500m 90 4152 3.90
MISSILE 1500m 10 816 9.80

improvements can be attributed to using the mesh drawing primitive. The performance

statistics indicate that, for a relatively small number of polygons (-300), the mesh

provides little or no improvement in performance. But, when drawing several thousand

polygons, an increase of several frames per second is realized.

Although the comparison between the performance of MPS and MPS II is

relevant, it is also important to evaluate the performance of MPS II while drawing

higher resolution terrain. Table 9-2 provides the results of those evaluations.

118

TABLE 9-2 MPS H PERFORMANCE DRAWING HIGH

RESOLUTION TERRAIN

DISPLAYING ATTENUATED TERRAIN

ZOOM POLYGONS FRAMES POLYGONS
ANGLE PER PER PER

RESOLUTION PLATFORMS (DEGREES) FRAME SECOND SECOND

100 ONE 55 608 11.5 6992
75 ONE 55 853 9.6 7630
50 ONE 55 2232 5.3 11830
25 ONE 55 8266 1.9 15705
12.5 ONE 55 30914 0.5 15475

DISPLAYING DETAILED TERRAIN

ZOOM POLYGONS FRAMES POLYGONS
ANGLE PER PER PER

RESOLUTION PLATFORMS (DEGREES) FRAME SECOND SECOND

100 ONE 55 763 10.0 7630
75 ONE 55 1310 7.5 9825
50 ONE 55 2834 4.3 12186
25 ONE 55 11700 1.4 16830
12.5 ONE 55 46544 0.4 17687

Figure 9-1 is a comparison graph showing the gap between manufacturer's

specification and the achieved performance of MPS and MPS II. The gap between

the two applications and the manufacturer's specification is easily understood. The

manufacturer's benchmark was designed to produce the maximum possible drawing

performance. In this case, the benchmark did little or no computations between frames,

whereas MPS and MPS 11 are computation intensive. Another important factor

affecting the display performance is the size of the polygons displayed. The smaller

119

Polygons

30,000

25,000

20,000

15,000

..*SGI

10,000-'

IPS II

5,000

2 4 6 8 10 12

Frames Per Second

Figure 9-1 Performance Measurement Comparisons

120

the polygons, the faster they are displayed. When displaying higher resolution terrain,

MPS II draws much smaller polygons; therefore, the polygons per second display -ate

is much higher. It should also be noted that as the frames per second rate decreases,

the polygons per second rate increases. This can be attributed to the fact that the

percentage of time spent doing computations other than drawing is less.

Table 9-3 gives the performance statistics of MPS 11 when operating in the

network mode, displaying real-time vehicles, and simultaneously saving intervisibility

information sent by the LOS module. The performance is not severely degraded even

when handling 30 platforms.

B. SYSTEM LIMITATIONS

The performance of MPS II is degraded to unacceptable levels for use as a

simulator when displaying terrain of resolution greater than 50 mecers. But as can be

seen in the photographs in Figure 9-2 and Figure 9-3, the quality of the 12.5 meter

resolution is significantly better than 100 meter resolution.

When displaying high resolution terrain, the system's performance falls

below one frame per second, and the system controls become unresponsive and

inadequate. The user receives visual feedback from the system so infrequently, he has

no feel for the sensitivity of the controls. This causes overreaction, which only

compounds the problem. Special control software must be written to compensate for

these conditions when displaying higher resolution terrain until faster graphics hardware

becomes available.

121

TABLE 9-3 MPS H PERFORMANCE DRAWING HIGH RESOLUTION
TERRAIN in the NETWORK MODE

DISPLAYING ATTENUATED TERRAIN IN THE NETWORK MODE

ZOOM POLYGONS FRAMES POLYGONS
ANGLE PER PER PER

RESOLUTION PLATFORMS (DEGREES) FRAME SECOND SECOND

100 11 55 608 8.9 5411
100 30 55 608 8.2 4985
75 11 55 758 82 6216
50 11 55 2310 4.3 9933
50 30 55 2104 4.3 9047
25 11 55 8294 1.6 13270
12.5 11 55 30738 0.5 15369

DISPLAYING DETAILED TERRAIN IN THE NETWORK MODE

ZOOM POLYGONS FRAMES POLYGONS
ANGLE PER PER PER

RESOLUTION PLATFORMS (DEGREES) FRAME SECOND SECOND

100 11 55 763 8.3 6332
100 30 55 763 7.3 5570
75 11 55 1271 6.5 8261
50 11 55 2814 4.0 11256
50 30 55 2697 3.7 9978
25 11 55 10905 1.4 15049
12.5 11 55 43214 0.4 16421

It should also be noted that the extremely large data structures used by

MPS II affect portions of the program not within the drawing loop, and the effect

that the amount of system memory has on its performance. Most noticeable is the

response of the pop-up menus. If MPS H is operated on a workstation possessing

122

Figure 9-2 Terrain Display Using 100 Meter Resolution

Figure 9-3 Terrain Display Using 12.5 Meter Resolution

123

eight megabytes of CPU memory, the user must wait approximately five seconds for

the menu to appear. To a novice user, this can be confusing. In contrast, when MPS

1H is run on a workstation with 16 megabytes of memory, the pop-up menu response

is almost instantaneous. By using a software evaluation tool called Graphic Operating

System View (gr-osview), it was discovered that before a menu could be displayed on

the eight-megabyte system, the menu definitions had to be swapped in from disk

(virtual memory). This virtual memory operation is much slower than normal memory

access, and is the cause of the delay.

The memory limitation is also a problem when trying to display 12.5 meter

resolution terrain on the eight megabyte system. When the terrain data structures are

being built, a thrashing problem arises. The processor spends so much of its time

swapping data in and out of virtual memory, little of the needed terrain computations

are ever accomplished. The results are that the preprocessing routines require a very

long time to build the terrain and vertex normals data structure (approximately 30

minutes). In contrast, the 16 megabyte system only takes approximately five minutes

to complete the same computations.

124

X. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This work presents enhancements to the Moving Platform Simulator. Designated

the Moving Platform Simulator I, this new version of the Moving Platform Simulator

was designed to fulfill some specific needs of USACDEC and, at the same time,

provide a vehicle with which to pursue research into the design, implementation, and

performance analysis of moving platform simulators. The successes that were achieved

through this research include:

* Improved drawing algorithms that provide more realistic looking terrain
* Display of higher resolution terrain
* Integration of real-time, actual platform data into the simulator to control the

position and movements of displayed platforms
* Presentation of a distributed computing architecture to maximize display

performance
* Intervisibility determinations and display
* Increased simulator performance

By providing a display of real-time platforms over more realistic terrain, MPS II

has made large strides towards meeting USACDEC's requirement for a comprehensive

moving platform simulator. Furthermore, with the platform intervisibility module of

MPS II, USACDEC now has a valuable tool to assist them in the evaluation of the

FOGM missile, as well as many other systems.

In addition to supporting the needs of CDEC, MPS II provides an excellent

vehicle with which to evaluate the performance of the Silicon Graphics IRIS 4D/70GT

and other workstations in an application program environment. The ability to

125

dynamically select for display multiple resolutions of terrain using multiple terrain

drawing algorithms allows the user to evaluate the performance of the workstation at

many different levels without leaving the program.

An evaluation of MPS II shows improved performance over its predecessor, MIPS.

The program provides adequate perfe,,,nance as a simulator when displaying up to 50

meter resolution. When displaying higher than 50 meter resolution, MIPS II presents

an excelent view of the terrain, bit the system performance is not sufficient enough

to use MPS II as a moving platform simulator.

B. FUTURE WORK

MIPS II evolved from the products of more than two years of student effort.

Because the final product was not envisioned from the beginning, it has been designed

by several totally separate teams. For this reason, and because the current size of the

project (over 30,000 lines of code) MIPS II has become difficult to manage.

A logical next step in the evolution of moving platform simulators here at the

Naval Postgraduate school is to study all present versions of MPS and its derivatives.

The goal of this study would be to produce a list of the best attributes and

functionality of each of the simulators and a list of the desired properties of the next

generation of the simulator. This list should then serve as the requirements document

and as a basis for a comprehensive design project, using software engineering

techniques, of the next generation of simulators. Each desired property or functionality

should be modularized to allow the simulator to be tailored to meet different

operational requirements. This would greatly aid in the production of future simulators

and greatly simplify future research.

126

Because of limited processing power, MPS II uses a system of distributed

processes. In fact, to operate the simulator with all options and capabilities available

a distributed computing architecture is used and four different processes, possibly on

four different machines, must be running. With the advent of the more powerful

graphics workstations, consolidating MPS II to run entirely on one workstation should

be investigated.

The next evolution of the terrain display should be to incorporate the display of

cultural features into the display. This data, which is included in the DMA DFAD

data file, includes vegetation and man made objects.

Finally, to improve the accuracy of the intervisibility determinations, the effects

of weather, vegetation, and man made obstructions should be included into the

calculations.

127

APPENDIX A USER INTERFACE

The user interface of any application program must be designed so that novice

and experienced users alike can effectively operate the program with little or no help

from user's manuals or other users. A thorough and efficient design of command line

options, pop-up menus, dials, and a mouse achieves this.

A. MPS H USER INTERFACE

The user interface of MPS 11 is, for the most part, identical to that of the original

MPS. Most changes are merely additions or deletions to pop-up menus. For this

reason, much of this chapter is a reproduction of the User Interface manual for MPS,

with the appropriate changes made to explain the new features available in MPS II

[Ref. l:pp. 74-881. There are also new sections covering the execution of the Network

Simulator and the Line-of-Sight (LOS) Module. For instructions on the user interface

of the Line-of-Sight Module, see Section B of this Appendix.

1. STARTING THE SIMULATOR (COMMAND LINE OPTIONS)

To initially start MPS II, while at the UNIX prompt and in the directory

containing the program, type the command mps [-ntslb]. The optional command line

options are described below.

128

2. COMMAND LINE OPTIONS

MPS H currently has five options available from the command line'.

* Network mode
0 Test mode
0 Silent mode
& Start Line-of-Sight (LOS) module remotely in the foreground
* Start Line-of-Sight (LOS) module remotely in the background

Selection of -n (network mode) activates the networking capabilities of the

program. If one or more MPS processes, the network simulator, and/or the LOS

module are operating on different machines, they will be able to share information

regarding the other platforms. When a platform changes course, speed, or altitude

(FOGM only), a broadcast packet is sent to all other processes and the appropriate

platform's information is updated. This mode must be selected to be able to start the

Network Simulator or to remotely run the LOS module.

Selection of the -t (test mode) option bypasses some of the cosmetic

portions of the program. Currently, the only part that is bypassed is the opening

billboard sequence.

Selection of the -s (silent mode) option turns off the bell that rings to

indicate acceptance of input from the user. This option is useful for demonstrations

when the ringing would interfere with a verbal explanation of the program.

'The code that processes the comrmand line arguments is contained in the file
decode argurnents.c.

129

If the -i (LOS foreground mode) option is used, the LOS module is

automatically started on a remote processor'. The LOS module will be run in the

foreground' on that machine so that line-of-sight information will be displayed on the

remote IRIS's screen, and user input will be accepted on the remote IRIS in this mode

(see Section B of this Appendix for further details). The -n (network mode) must also

be selected for the -1 option to work.

Selecting the -b (LOS background) option automatically starts the LOS

module in the background on a remote IRIS. Since the LOS module process is

running in the background on the remote IRIS, no display is seen on the remote

machine, and no user inputs are accepted from that processor. All controls to the LOS

module must be given remotely using the pop-up menus on MPS II described later in

this section. As with the -1 option, the -n option must be selected in conjunction with

this option.

3. POP-UP MENU SYSTEM

Pop-up menus are the primary source of user input into the program. There

are currently 27 different pop-up menus that are used in various parts of the

simulation. If a selection in a menu is not allowed or is meaningless when the menu

is displayed, the selection is displayed in lower case. Otherwise, the selection is

completely uppercase. Disallowed selections were not omitted so that the menus

The remote processor on which the Line-of-Sight module is executed on is defined in
the file files.h.

'A user must be logged onto the remote IRIS and the window manager must be running
before the remote foreground start is attempted.

130

appear in the same order and format every time. If disallowed selections were

eliminated, users would tend to be overwhelmed by the number of different menus.

In fact, of the 24 menus in the system, only 13 are really unique. Some of the menus

are only reachable as roll-offs of other menus.

After the MPS II billboard is displayed, the MPS HI introduction screen is

displayed. The initial database read is immediately begun, which is indicated by a

moving wait bar. Upon completion of reading the terrain database, the 35 kilometer

map is displayed, as well as a message to press the right mouse button for a pop-up

menu.

Since NPS II must display real-time vehicles, pop-up menus do not

automatically appear. Pop-up menus temporarily halt program execution while waiting

for user selection. Instead, moving icons of any real-time or simulator platforms are

displayed at this point in the execution of the program. When the right mouse button

is held down, the first pop-up menu appears ' . A detailed explanation of each menu

follows:

a. Select Area Menus

The pop-up menu display at the 35 kilometer map is titled

SELECTAREAMENU. This menu contains the following ten selections:

" CONTINUE
" SELECT AN AREA OF THE MAP
* GO TO MAIN MENU
• START NETWORK SIMULATOR

Users should avoid staying in pop-up menus for extended periods of time when running
MPS H in the network mode. Long delays can cause the input buffer to overflow, causing
the loss of some incoming information from the network.

131

* KILL NETWORK SIMULATOR
• CHOOSE DATA RESOLUTION
" EXIT THE PROGRAM
" ENTER 4SIGHT (RESIZE OPTIONS)
" COLOR SCHEME
" LOS MENU

By selecting CONTINUE, the user continues the simulation with no

changes. The second option allows the user to select a ten kilometer area of

operation.

Selecting GO TO MAIN MENU will take the user to the main menu,

which is the next logical place to go after selecting an area in which to operate.

When chosen, the START NETWORK SIMULATOR option

remotely starts the FHL Network Simulator, which presently runs on a VAX 11/785.

After approximately one minute, real-time vehicles will begin being displayed on the

35 kilometer map. The status window on the right-hand side of the screen displays

the current status of the Network Simulator. If the Network Simulator is already

running, no attempt should be made to start it. If the user attempts to start the

Network Simulator when not in the network mode, a warning will be displayed.

Selection KILL NETWORK SIMULATOR will send a message to

the Network Simulator instructing it to die. Vehicles presently being displayed as

network vehicles will continue to be displayed with their last course and velocity.

The next menu option is a roll-off menu selection. By highlighting the

option and then moving the mouse to the right, the RESOLUTIONMENU will

appear. The user then may select from a choice of possible terrain data resolutions

ranging from 12.5 to 100 meters.

132

To exit the program, the user must select EXIT THE PROGRAM and

a small menu will be displayed with the following selections:

6 RETURN TO WHERE YOU WERE
* REALLY QUIT

If the user desires to resize or move the simulation's windows, the

option ENTER 4SIGHT (RESIZE OPTIONS) will allow him to accomplish this.

After selecting this option, the windows will be cleared to white, and the user can

click on the menu bar and move or resize as desired.

The next option, COLOR SCHEME, is another roll of menu with the

following options:

* COLOR SCHEME - BROWN RAMP
* COLOR SCHEME - MULTIPLE COLORS
• COLOR SCHEME - GREY RAMP
* COLOR SCHEME - RED RAMP
* COLOR SCHEME - GREEN RAMP
* COLOR SCHEME - BLUE RAMP

The color scheme selections change the way the terrain is colored.

Each color scheme has 16 different colors that are based on the elevation at that

location.

The next selection, LOS MENU, is another roll-off menu with the

following options:

* CONTINUE
* POSITION OBSERVER
* SELECT VEH TO DRAW LOS
• DESELECT VEH TO DRAW LOS
* MAP MENU
* START LOS MODULE
* KILL LOS MODULE
* EXIT THE PROGRAM

133

This menu is for remote control of the LOS module. These options

are a subset of the options found when running the LOS module in the foreground on

another IRIS. See Section B of this Appendix for a detailed description of these

options.

b. Main Menus

There are four menus that make up the main menu set. These menus

are called MAINONE, MAINTWO, MAINTHREE, and MAINFOUR. Each of

these menus contains the same eight selections as follows:

* PLACE DEFAULT SET OF PLATFORMS
* ADD A PLATFORM
* DELETE A PLATFORM
• SELECT A PLATFORM TO OPERATE
• EXIT THE PROGRAM
• ENTER 4SIGHT (RESIZE OPTIONS)
• SAVE PLATFORMS TO A FILE
• RETURN TO 35 KM MAP
• CHOOSE DATA RESOLUTION

MAINONE is the first menu that is displayed after selecting an area

of the map. Since there are no platforms displayed at this point, the delete, select, and

save options are disallowed, After adding at least one platform, MAINTWO is

displayed, which allows all selections on the menu. MAINTHREE is displayed only

when the act of adding default sets of platforms would exceed an arbitrary limit on the

number of platforms allowed in the simulation at any one time. MAINFOUR is

displayed when the limit on the number of platforms displayed has been reached.

134

Selecting the first option (PLACE DEFAULT SET OF

PLATFORMS) will display another menu called DEFAULTMENU. This menu

contains 6 selections as follows:

* ENTER THE FILENAME FOR YOUR PLATFORMS
* CONVOY - 10 GROUND PLATFORMS
* CONVOY - 10 GROUND & I FOGM PLATFORM
* JEEPS - 20 IN A ROW
• DR. ZYDA'S CONVOY
* DR. ZYDA'S WILDMAN DEFAULTS

If the user selects the first option, a small window is displayed on the

screen which prompts the user for the filename. If valid information is found in the

file, the appropriate platforms are added to the simulation. The main menu is then

redisplayed.

Selection of any other option on the DEFAULTMENU results in the

addition of predesignated platforms in predesignated locations. These selections are

useful for demonstration purposes and for persons interested in getting some platforms

on the screen very quickly.

The information for the default sets of platforms is contained in data

files that are read when indicated by a menu selection. The complete path for these

files is contained in the header file files.h.

The next option on the main menu is ADD A PLATFORM. Selecting

this option displays the following menu:

* ADD A COVERED JEEP
* ADD AN OPEN JEEP
• ADD A TRUCK
* ADD A TANK
• ADD A FOGM MISSILE
* ADD AN OBSTACLE

135

If a moving platform is selected (jeep, tank, truck, or FOGM), menus

are displayed requesting an initial speed and direction for the platform. If an obstacle

is requested, then the speed and direction menus are bypassed. The FOGM missile

defaults to an initial altitude of 200 meters above the terrain at the point where it is

placed. After completing the selections, an icon is placed on the screen that resembles

the selected platform or obstacle. The user can then move the iL.3n with the mouse

and place the platform by clicking the right mouse button. After placing the icon on

the screen, the main menu is displayed once again.

Selecting the DELETE A PLATFORM option displays the following

menu:

• DELETE A SINGLE PLATFORM
" DELETE ALL PLATFORMS ON THE SCREEN

If the user wants to delete one platform, an X cursor is displayed and

the user can click on the desired platform. If the user wants to delete all the platforms

on the screen, the following menu is dispizyed:

• NO, DO NOT DELETE ALL THE PLATFORMS
• YES, DELETE ALL PLATFORMS

The appropriate selection from this menu either cancels the operation

or executes it. This menu prevents a user from deleting vehicles that he may not really

want to delete.

The next selection from the main menu is SELECT A PLATFORM

TO OPERATE. If the user selects this option, the following menu is displayed:

• ZOOM IN TO ANY LEGAL GRID SQUARE
• SELECT A PLATFORM TO OPERATE RIGHT NOW

136

The zoom option is usually necessary if platforms are close to each

other, and the individual icons overlap. By zooming into the lx1 kilometer grid

square, the user can more easily select the platform he desires.

If the platform the user wants to operate is clearly visible, then the

second selection allows the user to select a platform immediately.

If the user has placed platforms on the screen and wishes to save them

to a file, then the main menu selection SAVE PLATFORMS TO A FILE

accomplishes this. A window opens that prompts the user for the filename. If the

path is correct, the platforms are saved to the file.

The last selection from the main menu allows a user to return to the

SELECTAREA menu.

c. Operating Menus

(1) Driving. There is only one menu that makes up the driving menu

set. This menu is called OPERATEDRIVE. This menu contains the seven selections

as follows:

" DO NOTHING
" RETURN TO MAIN MENU
• CHANGE ALL PLATFORMS' SPEEDS
" EXIT THE PROGRAM
• ENTER 4SIGHT (RESIZE OPTIONS)
" ADVANCED OPTIONS
" CHOOSE DATA RESOLUTION

The first selection is provided in case the user pushes the right

mouse button and he does not desire to do anything. The second selection allows the

user to return to the main menu.

137

The third selection causes another menu to pop up that allows the user to select

a speed for all the platforms currently in the simulation. The allowable speeds are

from zero to 65 miles per hour. There is also a selection that will do nothing and

return directly to the simulation. Changing all the speeds is convenient when the user

wants to have a convoy of platforms proceed at identical speeds. Also, by selecting

zero miles per hour, all platforms are effectively frozen and their configuration can be

studied by viewing them from a FOGM missile or other platform.

The ADVANCED OPTIONS selection brings up the following

menu:

• TOGGLE SINGLE/DOUBLE BUFFER MODE
* TARGETING MODE TEST (ONCE)
• TERRAIN DRAWING OPTIONS

The first selection toggles the graphics hardware between single

buffer and double buffer modes. In double buffer mode, all drawing is done in a

separate area of memory from the display memory. When the function swapbuffersO

is called, the pointer to this area and the pointer to the display buffer are switched,

thereby swapping the new picture for the old picture. This is how smooth motion is

simulated. If a user is interested in what order the individual picture elements are

drawn on the screen, then by selecting single buffer mode, he can see the pictures

while they are being drawn.

TARGETING MODE test allows a user to see how the

simulation determines if a target is in the crosshairs of the FOGM missile during

targeting. After selecting the option, the next time targeting is attempted, the view will

be cleared to white, and all visible platforms will be drawn without lighting, shading,

138

or hidden surface removal. The resulting picture is displayed for three seconds, and

then normal operation commences. This option is reset each time it is used.

The TERRAIN DRAWING OPTIONS option is a roll-off menu.

When the user moves the cursor towards the right side of the words TERRAIN

DRAWING OPTIONS, the following menu is displayed:

* DETAILED TERRAIN
* DISTANCE ATTENUATION - NORMAL
* NORMAL CALCULATION METHODS

The default terrain drawing option is DISTANCE

ATTrENUATION - NORMAL. This drawing option establishes three zones in front

of the driven platform and reduces the number of polygons that are displayed in each

zone. The zone closest to the viewer is displayed with resolution selected. The next

zone uses one-half the selected resolution, and the last zone uses one-forth the selected

resolution. The selection for DETAILED TERRAIN draws full resolution polygons

throughout the three zones. Users notice a significant decrease in the frames per

second rate when this option is selected. If single buffer mode is also enabled during

detailed terrain drawing, the algorithm that is used to draw the terrain becomes more

obvious.

The NORMAL CALCULATION METHOD selection is a roll-

off menu with the following options:

* USE NORMAL APPROXIMATION METHOD
* USE VERTEX NORMAL METHOD

These options let the user select between the two methods of computing vertex normals

discussed in Chapter V. The first option uses the normal of the triangle to the

139

Northeast of the vertex as the normal of the vertex. The second option use the cross

product method described.

(2) Flying. There are three menus that make up the flying menu set.

These menus are called OPERATEFLYONE, OPERATEFLYTWO, and

OPERATEFLYTHREE. This menu contains the seven selections as follows:

" DO NOTHING
* DETACH/RESUME OPERATING
" RETURN TO MAIN MENU
" CHANGE ALL PLATFORMS' SPEEDS
" EXIT THE PROGRAM
* ENTER 4SIGHT (RESIZE OPTIONS)
" TOGGLE TARGET TRACKING
" ADVANCED OPTIONS

Many of these options are exact duplicates of the options on the

driving menus. However, the DETACH/RESUME OPERATING and TOGGLE

TARGET TRACKING options are different.

The DETACH/RESUME OPERATING option allows a user to detach the

cursor from the simulation while flying. During flying, the cursor is restricted to the

simulation window because the mouse controls where the nose camera of the FOGM

missile is pointed. Using this option, the user can point the camera where he wants to

look and then free the mouse. To return to the simulation, the user must select the

same option once again.

If the user has a ground platform in the crosshairs of the FOGM

missile and he wants to target it, he must make the TOGGLE TARGET TRACKING

selection from the menu. If a platform was in the crosshairs, then the missile will

140

lock on and track the platform. If the user wants to release the missile from tracking

mode, then another selection will turn off target tracking.

3. DIALS

The dial box that is supplied by SGI has eight dials numbered from zero to

seven. They are organized in two columns and four rows. The numbering scheme is

from left to right, bottom to top, so the lower left dial is zero, the lower right is one

and the upper right is seven.

The Moving Platform Simulator uses these dials in basically two

configurations: one for driving and one for flying.

a. Driving Dial Configuration

The dials for driving are configured as follows:

0 DIAL 0 - Course
0 DIAL 1 - Viewing Direction
• DIAL 2 - Speed
0 DIAL 3 - Tilt
0 DIAL 4 - Hour of the Day
• DIAL 5 - Month of the Year
0 DIAL 6 - Not Used
* DIAL 7 - Not Used

The course is the direction of travel of the platform, which is displayed

in degrees 1 . The viewing direction is the direction the driver's head is looking left to

right in relation to the course. When the course is changed, the viewing angle changes

accordingly. Speed is the speed of the platform in miles per hour. Tilt is where the

"Note that the course and speed of a real-time network platform cannot be changed. The
view direction and tilt are adjustable, but the operator has no control over the course or speed
of a remotely displayed vehicle.

141

driver is looking up and down. The hour of the day and month of the year determine

the location, color, and intensity of the sun. Figure A-i is a picture of the dial box

with the dials labeled for driving.

b. Flying Dial Configuration

The dials for flying are configured as follows:

* DIAL 0 - Course
• DIAL 1 - Altitude
• DIAL 2 - Speed
* DIAL 3 - Not Used
* DIAL 4 - Hour of the Day
* DIAL 5 - Month of the Year
" DIAL 6 - Not Used
" DIAL 7 - Not Used

Many of the dials are identical to the driving dial configuration except

for altitude which is self-explanatory. Figure A-2 is a picture of the dial box with

the dials labeled for flying.

4. MOUSE

The mouse has many uses throughout the simulation. Its use can be broken

down into basically four groups:

* Pop-up menu activation and selection
* Operating area selection
" Platform icon placement and selection
* FOGM missile nose camera control

The mouse is used throughout the simulation to activate pop-up menus and

to select options. One of these options is to select an area from the large database.

A l0xl0 kilometer red square is displayed on the 35x35 kilometer database, and the

142

HOUR MONTH

42

SPEED TILT

COURSE VIEWING DIR

Figure A-i Dial Box With Dials Labeled For Driving

143

6 7
4 5
HOUR MONTH

23

SPEED

COURSE ALTITUDE

Figure A-2 Dial Box With Dials Labeled For Flying

144

mouse is used to move the square to the desired location. Platforms are placed and

selected on the screen with the mouse.

The nose camera of the FOGM missile is controlled with the movement of

the mouse. This gives the user very fine control over targeting and viewing direction.

5. KEYBOARD

The keyboard is only used to accept filenames from the user. All other user

input is through the pop-up menus, dials, or mouse.

B. NETWORKSIMULATOR USER INTERFACE

The user interface of the NETWORKSIMULATOR module is limited to one

command line argument. This argument specifies the data file containing the VIDS

data blocks to be used by the module to load the LAN. The module has neither a

graphics display nor, except for error messages, output to the terminal screen or printer.

All output is to the LAN. To start the module, while at the UNIX prompt, type the

command NETWORK-SIMULATOR filename, where filename is the name of the

data file.

C. PROCESSVDB USER INTERFACE

Like the user interface of the NETWORK_SIMULATOR module, the interface

of the PROCESS_VDB module is limited to one command line argument. In this

case, the argument specifies the number of platforms for which the module will

broadcast update messages. The module also has neither a graphics display nor, except

for error messages, output to the terminal screen to printer. All output is to the LAN.

145

To start the module, while at the UNIX prompt, type the command PROCESSVDB

X, where X is the desired number of platforms. If X is not specified or is declared to

be zero, a default list of vehicles is used. In the file "process vdb.h", a mechanism

exists to select the default list. By defining the manifest constant

"HANDLEVEHICLEX", where X is the platforms player position message

identification number, the platform will be selected.

Since the PROCESS_VDB module functions as the client and the

NETWORKSIMULATOR module functions as the server in the client-server model

of interprocess communication used between the two modules, the

NETWORKSIMULATOR module must be running when the PROCESS_VDB module

is started.

D. PROCESSLOS USER INTERFACE

The user interface of the PROCESSLOS module consists of command line

options and pop-up menus activated by pressing the right mouse button.

1. Starting The PROCESSLOS Module

As discussed in Chapter VIII, the PROCESSLOS module runs in one of

two modes. Selecting the desired mode is done with a single command line argument.

If the module is started with the argument L, the module will run with displays.

Otherwise, the module will run without any graphical display. The L stands for "local

displays," vice using the remote display capabilities of the MPS 1 module to display

the intervisibiity data. To start the PROCESSLOS module, while at the UNIX

prompt, type the command PROCESSLOS [L].

146

2. Pop-up Menu System

Control of the PROCESSLOS module after it is started in the "local

display" mode is through pop-up menus. The module uses one main menu with three

roll-off menus. When the right mouse button is held down, the main menu appears.

The button may have to be held down for a few seconds before the menu appears

because the module will finish processing the update message it is currently working

on before handling the request for the menu. Additionally, the menu will continue to

reappear after each selection until the Continue selection is made. Since many times

the user will need to make multiple selections from the menu, this speeds up the

selection process. However, care must be taken not to remain in the menus for

extended periods of time. As long as the user is in the menu, the module is not

processing platform update messages, although the module is continuously receiviig

messages through the network. If the user stays in the menu too long, the network

buffers will overflow and messages will be lost. A detailed explanation of each menu

follows.

a. Main Menu

The primary menu that first appears whenever the right mouse button

is pressed is the Main Menu. This menu contains the following 13 selections:

" Continue
* Position Observer
• Place Observer in Vehicle
" Select Vehicles
" Deselect Vehicles
" Select a lkm x lkm Area
" Select a lOkm x lOkm Area
* Set LOS Segment Length

147

• Set VEH Segment Length
" Set Map Color Scheme
" Map Menu
* Start Simulator
• EXIT THE PROGRAM

By selecting Continue, the user leaves the menu and the module

proceeds to process platform update messages it receives.

The Place Observer in Vehicle selection allows the user to designate

one of the available platforms as the observer platform, and colocate the observer at

that platform's location. The observer's position will move with the platform's

position. Upon making the selection, a second menu appears. This menu, titled the

Place Observer in Veh Menu, lists all the available platforms and allows the user to

select the desired platform. After the selection is made, the main menu selection will

change to Remove Observer from Vehicle. Making this selection will detach the

position of the observer from that of the platform. The observer will remain at its

current location when the selection is made.

The Select Vehicles option allows the user to choose the platforms to

display. Upon selecting this option, a different menu listing the available platforms,

that are not already selected, appears. This menu, titled the Select Vehicle Menu, also

allows the user to choose all the platforms with one selection by choosing the Select

All Vehicles option. Even though a platform is not selected for display, the module

still determines its intervisibility with the observer. The information is stored for

display at a later time.

The Deselect Vehicles option allows the user to remove platforms

from the list of vehicles to display. Upon selecting this option. a different menu

148

listing the currently selected platforms appears. This menu, titled the Deselect Vehicle

Menu, has two other options:

* Deselect All Vehicles
* Remove All Vehicles

The first allows the user to deselect all the platforms with one selection. The second

option deselects all the platforms and clears the files containing the intervisibilitj data.

The Select a 1km x 1km Area option allows the user to focus on a

1km x !km map area. Upon making this selection, a box outlining a 1 km x lkm

area in the center of the map display appears. By moving the mouse, this box can be

moved to outline a different area. When the right mouse button is pressed again, the

map display will change to show the area outlined by the box. Once this option is

selected, the option disappears from the main menu and is replace by Return to 35km

x 35km Area.

The Select a 10km x 10km Area functions similarly to the Select a

1km x 1km Area. However, in this case, the box outlines a 10km x 10km area and

the map display changes to display this area. Additionally, once a 10km x 10km area

has been selected, when the user is displaying a lkm x lkm map area, the selection

Return to 10km x 10km Area appears. The option to select a 10km x 10km area

is not available when the user is in the lkm x 1kn area.

The Set LOS Segment Length option allows the user to adjust the

length of the los seglength (see Chapter VIII). The option is a roll-off menu to the

LOS Segment Length Menu. By highlighting the option and then moving the mouse

to the right, a second menu will appear. This second menu has the following options:

149

" Segment Length = 5 meters
" Segment Length = 10 meters
• Segment Length = 20 meters
" Segment Length = 50 meters
" Segment Length = 100 meters
" Segment Length = 150 meters
* Segment Length = 200 meters
* Segment Length = 300 meters

The length of the los seglength can be changed by selecting the desired length from

the menu.

The Set VEH Segment Length option is also a roll-off menu and

functions similarly to the Set LOS Segment Length option. However, in this case

th. veh_seglength is adjusted. The roll-off menu is titled the VEH Segment Length

Menu.

The next option, Set Map Color Scheme, is another roll-off menu

with the following options:

* COLOR SCHEME - BROWN RAMP
* COLOR SCHEME - MULTIPLE COLORS
* COLOR SCHEME - GREY RAMP
• COLOR SCHEME - RED RAMP
• COLOR SCHEME - GREEN RAMP
• COLOR SCHEME - BLUE RAMP

The color scheme selections change the way the terrain is colored. Each color scheme

has 16 different colors that are based on the elevation at that location.

The last roll-off menu is the Map Menu. This menu controls the

display of the intervisibility data. The menu rolls off to another menu also called the

Map Menu. The opticns available from this menu are listed bK For those options

150

that toggle from one option to another when selected, the initial default option is listed

first.

* Clear Map
" Redraw w/LOS Segments Only
* Redraw w/VEH Segments Only
0 Redraw w/VEH and LOS Segments
" Draw LOS Trace / DON'T Draw LOS Trace
• DON'T Draw VEH Trace / Draw VEH Trace
• DON'T Draw VEH / IDs Draw VEH IDs
" Draw VEH Path / Draw VEH Positions

The first four options clear the map of all intervisibility drawings. The Redraw

w/LOS Segments Only, Redraw w!VEH Segments Only, and Redraw wiVEH ard

LOS Segments options then will draw the line-of-sight path from the observer to the

selected target platforms, the path of the target platforms, or both, respectively. The

Draw LOS Trace selection toggles the drawing mode to display the display the line-

of-sight paths as they are determined. This option will toggle to DON'T Draw 'OS

Trace if it is selected. Similarly, the DON'T Draw VEH Trace option disables the

drawing of the platform path. This option will toggle to Draw VEH Trace if it is

selected. The DON'T Draw VEH IDs option disables the drawing of the platform

identification numbers adjacent to the platform's path. When selected, the option

changes to Draw VEH IDs. The final option on this roll-off menu is Draw VEH

Path. When selected, the drawing of the platform's path changes from drawing only

the actual point where the intervisibilitv was determined (the target point) to drawing

the entire path of the vehicle. The selection will toggle to Draw VEH Positions if

it is selected.

The second to the last option on the main memu is Start Simulator.

When chosen, the option remotely starts the NETWORK_SIMULATOR and

PROCESS_VDB modules. These processes are presently set to run on the VAX

11'785. After approximately one minute, real-time vehicles will begin to appear. The

current status of the processes is displayed in the statistics window.

The last option on the main menu is EXIT THE PROGRAM. When

selected, the module ill terminate.

152

LIST OF REFERENCES

1. Fichten, Mark A., and Jennings, David H., Meaningful Real-Time Graphics
Workstation Performance Measurements, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

2. Smith, Douglas B., and Streyle, Dale G., An Inexpensive Real-Time Interactive
Three-Dimensional Flight Simulation System, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June 1987.

3. Oliver, Michael R., and Stahl, David J., Interactive, Networked, Moving Platform
Simulators, M.S. Thesis, Naval Postgraduate School, Monterey, California,
December 1987.

4. Silicon Graphics Inc., IRIS User's Guide, MEX Window Manager, Mountain
View, California, 1987.

5. Silicon Graphics Inc., 4Sight User's Guide, v. 1, Mountain View, California,
1988.

6. Defense Mapping Agency, Product Specifications for Digital Landmass System
(DMLS) Data Base, 2d ed., April 1983.

7. Drummond, William T., Nizolak, Joseph P., A Graphics Workstation Field
Artillery Forward Observer Simulator Trainer, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June 1989.

8. Heam, Donald and Baker, M. Pauline, Computer Graphics, pp. 262-264, Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1986.

9. Silicon Graphics Inc., IRIS User's Guide, v. 1, Mountain View, California, 1988.

10. Shannon, Larry R., Teter, William A., The Autonomous Vehicle Simulator, M.S.
Thesis, Naval Postgraduate School, Monterey California, June 1989.

11. Hyzer, William G., Engineering and Scientific High-Speed Photography, The
MacMillian Company, New York, 1962.

12. Barrow, Theodore H., Distributed Computer Communications in Support of Real-
Time Visual Simulations, M.S. Thesis, Naval Postgraduate School, Monterey,
California, June 1988.

153

13. Silicon Graphics, Inc., Power Series A Family Overview, Mountain View,
California, September 1988.

14. Stallings, William, Data and Computer Communications, MacMillan Publishing
Company, New York, 1988.

15. Comer, Douglas E., Internetworking with TCP/IP: Principles, Protocols, and
Architecture, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

154

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Michael J. Zyda 2
Naval Postgraduate School
Code 52, Department of Computer Science
Monterey, CA 93943-5100

4. CPT Randolph P. Strong 2
1514 Camino Way
Woodland, CA 95695

5. Capt. Michael C. Winn 2
4218 N. Barr
Oklahoma City, OK 73122

6. Commandant of the Marine Corps
Code TE 06
Headquarters, United States Marine Corps
Washington, D.C. 20380-0001

7. Mr. Mike Tedeschi 5
United States Army Combat Developments Experimentation Center
Attention: ATEC-D
Fort Ord, CA 93941

155

