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I. BACKGROUND

This report continues a series of studies aimed at predicting the probability
of a2 man suffering from decompression sickness, P(DCS), following a hyperbaric
exposure. The studies are based on the non-traditional assertion that DCS is
not perfectly predetermined, but rather that each case is a random event
having a calculable probability that applies to all men undergoing the same
exposure (l1). In the first report of the series (2; referred to as Report I
throughout the text), a family of empirical mathematical models was developed
and statistically compared to the known outcome of over 1700 well described
air dives from 3 countries over a periocd of 20 years. Several of these models
showed a powerful ability to match the known frequency of DCS in dives that
ranged from 40-625 feet of seawater (fsw) in depth and 0.3-360 min in
duration. The second report (3; referred to as Report II throughout the text)
then took the most successful model and calculated time-optimized air
decompression schedules having target incidences of 1% and 5% DCS. The third
report (4; referred to as Report III throughout the text) compared the
expected P(DCS) for current U.S. Navy, Royal Navy, and Canadian Forces
decompression tables. In the fourth report (5; referred to as Report IV
throughout the text) another 279 dives were examined in which the divers began
in a saturated condition at depth (over 40 h exposure) before beginning
decompression on air or other NZ-O2 gas mixtures. Models were extended to
cover both those long dives as well as the previously studied dives, and
several secs of optimized saturation decompression tables calculated using one
of the models.

The model evaluation process in Reports I and IV (2,5) was lengthy and
computer intensive. Most details of those reports will not be repeated here;

the reader will need to consult those references if additional details are




needed. In a more recent development, Vann applied a model to the problem
whose computationally simpler form was appealing (6). Vann reported
substantial success using Haldane's approach (7) in a probabilistic equationm,
although he reported difficulty in simultaneously fitting different cypes of
exposures. After consultation with Vann, we realized that his data were not
identical to those used in Reports I and IV (2,5), so that direct comparisom
of the success in fitting data among the different models with those reports
was impossible. Furthermore, he used a parameter estimation procedure - a
decreasing step size grid search - which has unknown convergence properties
and fails to provide many of the statistical measures we have found important
in most estimation problems.

This reﬁort explores the ability of the Haldane-Vann (H-V) approach to
fic the identical data previously examined in Reports I-IV with {ntegral risk
models. In that exploration, several features of traditional decompression
formulae (e.g., how many multiple parallel compartments are necessary?) were
examined for statistical support from the available data. Overall, it appears
that both approaches are fruitful for relatively smgll and homogeneous daca,
but that the H=-V approach is rather poor at describing larger more extensive

sets of dives.

II. DATA SOURCES
The data in Table 1 have been described in Reports I and IV (2,5).
Individual data sets were selected to be reasonably homogeneous collections of
depth-time combinations reported as a single study. Within a set, we expect
only unimportant differences in subject population, diving procedures, and DCS
diagnostic criteria. Set L is an exception to that rule, as it required

assembly from many different sources. It is part of the data introduced in




Report IV (5) as saturation dives, and only those breathing air throughout
.were selected for use here. Both sets D and L have some dives with the
outcome described originally as a set of symptoms apparently related to the
dive but not treated as DCS. These marginal cases are assigned an outcome of

0.5 as in previous analyses (1,8). Data summary is presented below.

TABLE 1

DECOMPRESSION DATA SETS

Data Set DCS Dives ZDCS Type Exposure Reference

A 27 568 4.8 U.S. Standard Air Des Grange, 1956 (9)

Dive.Trials, 1957

B 21 46 45.7 U.S. Exceptional Air Workman, 1957 (10)
Dive Trials, 1957
(all 140 fsw for

90-360 min)

C 4 299 1.3 U.K. Submarine Donald, 1970 (1l1l)

escape trials

D 24 800 3.0 DCIEM Chamber Dives, Weathersby, 1985a and
1967-8 Tikusis et al., 1988
(2,12)
L 24,5 122 20.1 Air Saturation Dives Hays et al., 1986 (5)




Data was encoded to list all pressure-time node points and presume a
linear ramp of pressure between nodes. We note that Vann used some of the

data from Sets A and B, but assumed instantaneous ascent between depths (6).

III. MATHEMATICAL MODELS
All candidate models must express P(DCS) as a function of the detailed
time-pressure history of each dive profile. Reports I-IV (2-5) used a risk

model:
P(DCS) = 1.0 - exp (—fr dr) (1]

In Eqn. [1] r is one of a family of instantaneous "risks" dependent on a
calculated tissue nitrogen partial pressure and the current ambient pressure.
A short summary of risk models is found in Appendix A of this report. The
integratior of Eqn. [1] was performed over the duratiom of the decompression
and 12 hours following arrival back at 1 ATA (24 hours after saturation
dives). Although performed analytically, the integration involved significant
computation for the complex dive profiles.

Gas kinetic calculations are performed in all decompression methods. In
the approach of Haldane, theorists have considered a handful of "tissue
compartments’ having exponential washout kinetics or solute residence times
(referring to the parallel exponential calculations and identified by the
exponential half-times, but never identified with any anatomic tissue in a
real organism). The calculated tissue nitrogen partial pressure in each
tissue immediately before decompression is divided by the ambient pressure
immediately after decompression to obtain a "supersaturation ratio.” By

Haldane's original method, this ratio was declared to be a critical 1.60 at




the boundary between safe (lower ratio) and unsafe (higher ratio)
" decompression steps.1 In the 80 years since Haldane, subsequent workers have
developed more complex rules. Instead of a single ratio rule, newer schemes
have up to many dozens of critical ratios (CR), with different rules for
different tissues and different depths. No statistical analysis was ever
performed to ask how many tissues and how many CR are justified by data.

Vann (6) has begun such an analysis by first defining a decompression
dose, D, as the maximum "excess" supersaturation ratio at any time in any

tissue, DR:

D = max{DRi(t) : 1 < { < NT, t > 0} (2]

DRi(t) = (PTi(t)/PA(t)) - CRi [3]

where NT is the number of different "tissues" or time constants, and where
PTi(t)/PA(t) is referred to as supersaturation ratio.
PTi(t) = tissue pressure at time t in tissue i calculated under the
assumption of monoexponential tissue residence time
Aistribution function (rtf), as in Report 1, p. 42 (2)
PA(t) = ambient pressure
CRi = critical ratio for tissue i; CRi>1.0
For each tissue, the maximum DR at each ramp is calculated, then maximum DR
over any time in the dive (over all ramps) is decided. The dose, D, is
therefore defined as the single maximum of DR over all tissues for the entire

dive. Vann then used the following Hill equation for decompression dose

1Haldane expressed the ratio of 2.0 as air pressure, of which only about 80%
is inert gas (7).




response instead of the risk model given in Equn. ([1]:

P(DCS) = D"/ (D" + D50™) = 1/[1+ (D50/D)%)] [4]

In the Hill equation, n and D50 are positive empirica. parameters with no
physiological interpretation. Parameter D50 is the maximum excess
supersaturation that will cause a 502 incidence of DCS. The power parameter n
controls the sharpness of the dose-response curve near D50 (higher values of n
make the curve steeper). Other estimated parameters are the time constant (or
half-time) and the CR for each tissue.

In addition to the specific models of Vann, we also examined the possible
dependence of CR on ambient pressure. For that purpose, a more general

definition of the critical ratio was explored:

CRi(t) = max{1.0, Ci-SCRi -+ PA(t)} [5]

Here both critical ratio intercept Ci and the critical ratio slope SCRi are
positive parameters. When SChi is fixed at 0, CRi(t) is constant and
equivalent to CRi in Eqn. [3]. For positive values of SCRi, CRi will be
smaller at deeper depths tham at shallower depths. Also, whenever the dose
defined above is negative, it is set at zero to avoid negative risks of DCS.
Additional mathematical datails of the models are provided under ANALYTICAL
PROCEDURE and in APPENDIX B,

The H-V approach was incorporated into ten specific models in addition to
the null model. The "Null model," which ignores all effects of depth and time
and uses a constant P(DCS) for each dive. 1Its usefulness is as a lower bound

on the likelihood function for compariscn to more interesting models. The




likelihood function or its commonly used natural logarithm ('log likelihood"

or iL) is our single most reliable measure of how well a model fits the data

(1,2,13).

The models, in summary, are as follows:

MODEL O (NULL MODEL), P(DCS) = Total DCS / Total Dives = constant irrespective
of different compression and decompression procedures among the dives.

The H-V models are categorized according to the number of tissues (NT)
each with its own time counstant, whether the POWER n in Eqn [4] is estimated,
and whether the critical ratio CR is constant or depth-dependent, Eqn [5].
Each model must also estimate the 50% dose, D50, and 1 or more time constants.

MODEL 1, NT=1, POWER=l, coustant CR

3 parameters: D50, time constant, constant critical ratio

MODEL 2, NT=l, constant CR

4 parameters: POWER, D50, time constant, constant critical ratio

MODEL 3, NT=2, POWER=1, comstant CR

5 parameters: D50, 2 time constants, 2 constant critical ratios

MODEL 4, NT=2, comnstant CR

6 parameters: POWER, D50, 2 time constants, 2 constant critical
ratios

MODEL 5, NT=3, POWER=l, constant CR

7 parameters: D50, 3 time constants, 3 constant critical ratios

MODEL 6, NT=3, constant CR

8 parameters: POWER, D50, 3 time constants, 3 constant critical
ratios

MODEL Ql, NT=1, POWER=1l, depth~dependent critical ratio,

4 parameters: D50, time constant, critical ratio, ratio slope




MODEL Q2, NT=1, depth-dependent critical ratios

5 parameters: POWER, D50, time constant, critical ratio, ratio slope

MODEL Q3, NT=2, POWER=1, depth-dependent critical ratio

7 parameters: D50, 2 time constants, 2 critical ratios, 2 ratio
slopes

MODEL Q4, NT=2, depth dependent critical ratio

8 parameters: POWER, D50, 2 time coustants, 2 critical ratios,

2 ratio slopes

IV. ANALYTICAL PROCEDURE

Fitting of models to data used the modified Marquardt (14) non-linear
estimation algorithm as done previously (15). For each dive profile, the
depth-time history was followed to obtain a current estimate of P(DCS) or P(no
DCS), which is = 1.0 - P(DCS), depending on whether the dive resulted in DCS
or not. The natural log of each P was summed over all dives to obtain the log
likelihood value (LL in RESULTS tables). Parameters of the model were
adjusted by the Marquardt algorithm (14) to increase LL until it achieved an
apparent maximum. In general, we used several different sets of starting
parameters to ensure an actual meximum. When it had been achieved,
approximate uncertainties in the parameters and correlations among them were
calculated by standard methods using the inverted matrix of partial
derivatives of LL with respect to all parameters (l3).

The best model for each data set can be decided by the Likelihood Ratio
(LR) test. Two similar models, one more general than the other, can be
compared for goodness-of-fit using the LR test (1,13). Specifically, the test
asks whether the improvement in LL achieved by additional parameters was

greater than might be expected by chance (Conceptually, the process is similar




to asking whether the fit of a straight line is significantly improved by

. fitting a quadratic curve or whether the apparently better fit with the
additional parameter is due to chance alone). For an improved fit at p<.05,
about 1.94 greater LL is required per additional parameter. Present
statistical theory does not allow rigorous caomparisons among the LL of models
that cannot be expressed in simpler forms of onme another. Therefore, values
of LL for dissimilar models (e.g., H-V models to earlier risk model) were
compared only informally.

Although we expected the present models to be computationally simpler
than those of Reports I-IV (2-5), there were non-~trivial analytical problems.
The first follows from the definition of dose as a maximum DR over time and
tissues in Eqn. [2]. We proved that for ; constant éritical ratio the maximum
DR during any given pressure ramp would occur at the starting or end node of
that ramp. For the variable depth CR in Eqn. [5], other possibilities must be
considered (Appendix B).

Another class of problems arose from the discontinuous nature of the
models. Discontinuities occur because of the choice of a maximum and because
of the rejection of negative DR's (see equation [3]). The discontinuities
produce regions of parameter space where the local gradients of LL with
respect to the parameters are zero. Since our algorithm, like most nonlinear
searches, uses local gradient information, there are parameter values that
will not allow the maximum likelihood to be found. It was necessary to use
artificially continuous formulations, and numerous starting parameter values
(including some values obtained from grid searches) to convince ourselves that
a global maximum likelihood was actually achieved.

The operation of these models are illustrated in Figs. 1 (a dive with

continuous decompression) and 2 (a dive with staged decompression). In




« ——— AMBIENT PRESSURE
. - =-~==- TISSUE N, TENSION
N —-— RATIO -2
< o
Z 3 =
- <«
w [0
x MAX RATIO
> e >
7, | T b S /
8 2 J |
x
a
1 .ai' Y \“;
!x ’/
' /
\-’ "
Q
T T T —T T T T
0 50 100 150 200 250 300
TIME (MIN)
Figure 1
Supersaturation Ratio inm 250/24 Trial
Time course of ambient pressure, calculated tissue pressure and
supersaturation ratio. This was a 250 ft (8.85 ATA), 24-minute dive. The 8

same dives produced ! confirmed and 1 marginal case of DCS.

Set D has N=1.7, D50=1.3, T=295, CR=l.

the right margin.

Model 2 of Data

Scale of ratio is twice che ATA, on

10




10

l[ \, —— AMBIENT PRESSURE
‘rT ----- TISSUE Ny TENSION
4 4 ~-— RATIO -2
3 MAX RATIO o
-2 =
~ <«
[¥T] x
[+
=
n
o 2 |
m - p
a.
|
e
i !
M .ol
\ -7
0 .
T T T T T T T T
0 25 50 75 180 125 150 175 200
TIME (MIN)
Figure 2

Supersaturation Ratio in 287/30 Trial

Time course of ambient pressure, calculated tissue pressure, and

supersaturation ratio.

DCS) (9.7 ATA), 30-minute dive.

T=172, CR=1.3.

This was a 287 ft (4 same dives produced 1l case of
Model 1 of Data Set A has N=l1, D50=1.67,

Scale of ratio is twice the ATA ou the right margin.

11




Fig. 1, the graph shows the depth-time profile for a dive to 250 fsw (8.58
ATA) for 24 minutes followed by a 286-min decompression procedure from Data’
Set D (On this dive 8 men produced 1 confirmed and 1 marginal case of DCS).
The dotted line is the calculated tissue nitrogen pressure, using a time
constant of 295 min from Model 2 for Set D (see Table 7). Values of the
supersaturation ratio plotted as a dashed-dot line rises above 1.0 at about 80
min and has a maximum (1.202) near 310 min. The critical ratio CR is 1.000,
thus leaving a maximum excess supersaturation of 0.202 as the decompression
dose. With Eqn. [4], D50=1.3, and N=1,7, we calculate a P(DCS) of 4.1%. The
.staged decompression and tissue pressure from Model 1 for a dive from Data Set
A are shown in Fig. 2. It has ; jagged ratio that is in excess of the
critical ratio (CR=1.3) ouly in a few instances. Similar calculations are

repeated for every dive in the data set,

V. RESULTS and DISCUSSION

Details of parameter results are shown.here for each data set and for
combinations of them. In the Tables are presented final H-V parameters, with
approximately 1 SE error limits, and maximum LL. Also included in each table
is the best LL of risk models from Report I (models 1-6 in Report I (2) are
now referred to as Rl to R6, also see APPENDIX A). The full results are not
repeated here; the reader is referred to those reports for éerformance details
of each risk model with each data set.
1. DATA SET A: STANDARD AIR DIVES (1956)

Maximum likelihood estimates are in Table 2. For these data, the
simplest H-V model (Model l) is a clear improvement over the null model
(Model 0). The search for a POWER significantly different from 1.0 in the

Hill dose-response function (Eqn. [4]) failed to improve the fit to data, as
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TABLE 2

(DATA SET A, N = 568, BENDS = 27)

MODEL
(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD
0. CONSTANT P P = 0.048 -108.598
1. NT =1, D50 = 1.67 (0.87) *(0,78,3.4) -90.312
POWER = 1, T = 172 (84) (113,530)
CR = 1.3 0.22) (1.0,1.48)
2. NT =1, POWER = 0.57 (1.36) -90.099
D50 = 7.7 (69)
T = 156 (107)
CR = 1.36 (0.24)
3. NT = 2, DSO = 0.78 (0.43) -88.560
POWER = 1 Tl = 93 (12)
: CRl = 1.57 (0.05)
T2 = 314 (603)
CR2 = 1,25 (0.67)
4, NT = 2, POWER = 0,84 (1.6) -88.426
D50 = 1.1 (4.3)
Tl = 93 (14)
CRl = 1.58 (0.11)
T2 = 317 (815)
CR2 = 1,26 (0.85)
Ql. NT = ] D50 = 0.89 (0.47) -88.817
POWER = 1 T = 97 (17)
Variable CR Cl =1.93 (0.12)
SCR1 = (.38 (0.14)
Rl. l-tissue, T = 340 (100) -91.450
no thresh A= 3,1E-3 (1.1E=3)
R2. l-tissue, T = 122 (50) -90.891
thresh A = 16E-2 (2.4E-2)

PTHR = 11.9 (7.1)(fsw)

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.
Approximate 1 SE error on estimated parameters are in parentheses.

* When two sets of parentheses follow a parameter, the second set is found by
examining the likelihood surface away from maximum LL by 1.94 uunits,
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seen in Model 2. Allowing two parallel tissues and separate critical ratios
(Model 3) does not produce a significant improvement over 1 tissue by
likelihood ratio test. Note that the two time coustants in Model 3 are
shorter (93 min) and longer (314 min) than the single one in Models 1 (172
min) and 2 (156 min). As in the previous work with risk models, increasing
the number of time constants creates a new set of values, which is wider than
the range previously found. Allowing POWER different from 1.0 with two
tissues in Model 4 does not significantly improve the fit. Model Ql is also
not significancly better than the constant CR (Model 1). The depth dependence
of the CR is shown in Fig. 3. The maximum CR at 1 ATA is 1.55 and CR drops to
1.0 at 2.45 ATA (48 fsw). Comparison with previous Models Rl and R2 shows an
equivalent likelihood that suggest both types of models are adequate for these
data. All successful models achieved a LL of about =-90.

Some comments are appropriate about confidence limits in the parameter
estimates. Table 2 entries have approximately 1 standard error of the
estimates, calculated by the statistical procedure appropriate for "well
behaved problems" (13). For example, Model 1l estimates a CR of 1.30 t 0.22.
For well behaved problems, we could expect an estimated CR to be within these
limits about two-thirds of the time. We would also expect that a band around
the best estimate of 2(SE) to contain the estimate about 95%Z of the time. The
conceptual and numerical difficulties encountered with H-V models (reasons
described under ANALYTICAL PROCEDURES) make such an interpretation less useful
than in other models, for example, 1.30-2(0.22)=0,.86 as an estimated lower 95%
confidence limit. However, external reasons (like the need to predict no DCS
if there is no decompression) require a CR greater than l. A better way to
construct a 952 confidence limit is to fix the parameter in question at values

that are progressively distant from its best estimate and calculate LL while
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Depth Dependent Critical Ratio for Data Set A

Model Ql of Data Set A has N=1, D50=0.89, T=97. Cl=1.93, SCR1=0.38. Critical

ratio = 1,93 - 0.38 (ambient pressure).

15




Figure 4A.

Figure 4B.
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questions such an increase in likelihood has important consequences. Vann did
not report parameter values, so we cannot compare other aspects of model
behavior.

In summary, the simplest H-V model was adequate for these data, as was
the simplest risk model examined in Report I. Of at least historical interest
is the fact that the test dives comprising Data Set A were calculated by a
Haldane approach with 6 fixed time constants over a range of 5-120 min (9,16).
With the time constants was a matrix of about 54 critical ratios whose value
changed slightly during the testing phase itself. By the statistical
evaluation reported here, models with 2-4 parameters can describe the data as
well,

2. DATA SET B: EXCEPTIONAL EXPOSURE AIR DIVES (1956)

This small data set is unusually rich in DCS cases after long (2-6 h)
dives. Estimation results are in Table 3. The simplest H-V model (Model 1)
was a significant improvement over the null model (Model 0). The estimated
time constant (347 min) is longer than for Data Set A (172 min), which is not
surprising for long dives. Most of the potential models were not explored
aggressively since the small data set would not support many parameters.

The three-parameter risk model (Model R2) tabulated is seen to have a similar
likelihood.

It should be noted that the data were obtained in an acceptance trial
where the original expectation was a low incidence of DCS. When many cases
occurred, the decompression times were incrementally lengthened (by ad-hoc
adjustment of critical ratios), and re-tested. As soon as a seemingly lower
incidence was achieved with small groups of divers (usually 6), the trial was
terminated. Thus, the function of DCS incidence against decompression time

(and related measures such as DR in the present model) will be artificially
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MODEL

(FIXED PARAMETERS)

0.

1.

R1.

RZ.

CONSTANT P
NT = 1,
POWER = 1,

NT = 1,

NT = 2, POWER = 1
NT = 2,

l-tissue,
no thresh

l-cissue,
thresh

TABLE 3

(DATA SET B, N = 46, BENDS =

21)

PARAMETERS (1 SE)

P = 0.4565

D50 = 0.065
T = 347
CR = 1.50

POWER = 11
D50 = 0.60

T = 392

CR = 1.00000

739

T

T = 329
A= .113
PTHR = 15.2

(0.037)
(17)
(0.02)

(109)
(5.84)
(54)
(5.8)

(469)
(0.7E-3)

(38)
(.091)
(1.5)(fsw)

LOG

LIKELIHOOD

-31.710

~22.428

-21.166

same as 1
same as 2

-27.076

-21.680

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.

Approximate ! SE error limits on estimated parameters are in parentheses.
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steep. The attempt to find POWER different from 1 (Model 2) produced the
large and imprecise value 11 * 109. The very large uncertainty in the POWER
reflects the binomial uncertainty from the small overall size of the data. In
model R2, the steep dose response surface was achieved by estimating an
absolutely safe supersaturation threshold of 15 fsw. The wmagnitude of the
POWER parameter indicates a very steep dose-response curve in the range of
dives near 50% DCS, which is the range of risk seen in the raw data (overall
46% DCS). Indeed, we consistently find that none of the large data sets
require a POWER nearly as large as 1l (see below). Successful fits to these
data all require a LL of about -22.
3. DATA SET AB

We explored the combined Data Set AB (Set A plus Set B). Results are
presented in Table 4. From earlier results, we expect good fits to the
combined data to achieve a LL of about -90 (from Set A) plus -22 (from Set B)
or a total of =112 LL units. All H-V models were significantly better than
the null model, but none quite achieved the goal of about -112 LL units. The
two-parameter risk model could not achieve the goal either. For the simplest
model (Model 1), a very long time constant (503 min) was required to fit the
data. This time constant is longer than those required by Data Sets A or B
separately, and it required the lowes: possible CR to accomplish it. The
error limit on CR in Table 4 is asymmetric; the 1 SE upper bound is 1.00 ¢
0.11, but the lower limit remains at 1.00 to avoid a finite risk of DCS
without any tissue supersaturation (This asymmetric bound provided one of the
difficult estimation problems encountered in the analysis). A model of two
tissues with the power fixed at 1.0 (Model 3) did not produce a significantly
improved fit over 1 tissue. However, with a power estimated at 6.1 * 9.1

(Model 4, 6 parameters), a significantly improved maximum likelihood was
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TABLE 4

(DATA SET AB, N = 614, BENDS = 48)

MODEL
(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD
0. CONSTANT p P = 0.0782 -168.145
1. NT =1, D50 = 0.99 (0.26) -121.271
POWER = 1, T = 503 (263)
CR = 1.0000 (0.11)
2. NT =1, POWER = 2.1 (1.5) -119.565
D50 = 0.66 (0.12)
T = 367 (129)
CR = 1.0000 (0.12)
3. NT = 2, POWER = 1 same as 1
4, NT = 2, POWER = 6.09 (9.07) -114.858
D50 = 0.61 (0.62)
Tl = 388 (61)
CRl = 1.0001 (0.63)
T2 = 139 (14)
CR2 = 1,13 (0.66)
Ql. NT = 1, POWER = 1] same as 1
Q2. NT = 1 same as 2
Q3. NT = 2, POWER = 1 same as 3
Q4. NT = 2 same as 4
Rl. l-tissue, T = 362.3 (44) -119.210
no thresh A = 3.57E-3 (.63E-3)
R2, l-tissue, T = 318 (156) -119.202
thresh A = 4,35E-3 (3.6E-3)

PTHR = 1.23 (4.95) (fsw)

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.
Approximate ! SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit = -112,
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4. DATA SET C: SUBMARINE ESCAPE TRIALS

' Data Set C is different from the other data examined because it has very
short deep dives (but with only 4 cases of DCS). Fitting results are
tabulated in Table 5. Again the simplest H-V model (Model 1) was a becter
description of the data than a null model. Allowance of a variable POWER
(Model 2) did not improve the fit significantly. No other H-V models were
used because the small data set would not provide enough information for the
additional parameters. Model Rl had a similar likelihood. R2 is not a
significant improvement over Rl, but is included to show the unbelievable
parameters (here a 79-fsw supersaturation as an estimated threshold) that can
arise in using threshold parameters and small data sets. In all cases, the
time constants were short, as expected for these short dives. About =18 LL
units are associated with the better models.
5. DATA SET ABC

The 3 data sets examined so far include a wide range of diving

conditions. How well do the H-V models describe the entire range? The
results of fitting to combined data of sets A, B, and C are in Table 6. The
simplest H-V model is actually worse than no model at all (compare LL of Model
1 with Model 0). The two-parallel tissue model, Model 3, had a substantially
improved ability to fit the data. Model 4 with the low estimated POWER of
0.49 £ 0.23 is the most successful H-V model. This model required a very
short time constant (0.93 min or 56 sec) with a high (4.57) critical ratio,
along with a long (501 min) time constant, allowing virtually no
supersaturation (CR = 1.01). None of the more complex H-V models were a
better fit to the data. As with the H-V Models, the very simplest risk models
did not fit the combined data (see Report I for details). Other risk models

were considerably more successful than H-V in fitting the data, as seen by a
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(FIXED PARAMETERS)

MODEL

0.

1.

Rl.

R2.

CONSTANT P

NT =1,
POWER = 1,

NT = 1,

NT = 2, POWER = 1

NT = 2

l1-tissue,
no thresh

l-tissue,
thresh

TABLE 5

(DATA SET C, N = 299, BENDS = 4)

PARAMETERS (1 SE)

P = 0,013

D50 = 32
T=1.1
CR = 3.8

T
A

12.2
4,8E-3

T=1.04
A = 7,0E-2
PTHR = 79

(77)
(1.2)
(2.8)

(2.8)
(0.2E12)
(1.6)
(4.5)

(20.4)
(5.9E-3)

(0.94)
(27.0E-2)
(82) (fsw)

LOG LIKELIHOOD

-21.230

~17.865

-16.927

same as 1

same as 2

-19.225

-18.093

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.
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(FIXED PARAMETERS)

MODEL

0.

1.

RS.

CONSTANT P

NT = 1,

POWER = 1

NT = 1,

NT = 2,
POWER = 1

NT = 2,

NT = 3, POWER = 1,

NT = 3,

NT

NT = 2

2-tissue,
no thresh

1 tissue with
2-exp rtf
no thresh

2, POWER = 1,

TABLE 6

(DATA SET ABC, N = 913, BENDS = 52)

PARAMETERS (1 SE)

P = 0.056

D50 = 9.28
T = 31.7
CR = 1.00001

POWER = 0.13
D50 = 0.1E9

T =35

CR = 1.00004

D50 = 2,15
Tl = 400

CR1 = 1,0000
T2 = 0.94
CR2 = 4.55

POWER = 0.49
D50 = 10

Tl = 501

CRl = 1,01
T2 = 0.93
CR2 = 4,57

TA
AA
B
AB

0.66
6.7E-3
365
3.6E-3

Tl

1.5

T2 = 265

Wl = 0.99
A= 1.18E-2

(1.64)
6.7)
(0.06)

(0.30)
(0.6E10)
(72)
(0.47)

(0.52)
(10)

(0.05)
(0.24)
(0.29)

(0.23)
(17)
(10)
(0.03)
(0.23)
(0.58)

(1.6)
(19E-3)
(50)
(6.3E-3)

(2.3)
(30)
(0.08)
(0.57E-2)

LOG LIKELIHOOD

-199.496

-211.552

~199.782

-156.720

-154.385

same as 3
same as 4
same as 3
same as &

-139.529

-139.289

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit = -130.
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much better likelihood. They also had terms for both slow and fast events:
Model R3 has parallel time constants of 0.66 and 365 min, while Model RS has a
single tissue residence time function (2) composed of a 1.5 min and a 265 min
process.

To more quantitatively assess whether the H-V model can fit the combined
data, we can examine the expected LL for excellent fits to the individual
sets: =90-22-18 = -130. The best H-V fit misses this target by about 25 LL
units while R3 and R5 miss by about 10 units. The difference in model
performance is quite substantial.

Additional insight into the failure of the H-V models to describe
combined data is seen in Fig. 5. This graph has P(DCS) from both H;V and risk
models against dive number. The dives of set A are the first 568 dives, then
the 46 of set B, and the final 299 are from set C. The best H-V model (Model
4) and a successful risk model (R5) are both shown. Predictions are
comparable for Data Set A, but diverge for Data Sets B and C. For the
hazardous set B dives (near observation 600), Model R5 predicts an average
P(DCS) of 44.4% while H-V Model 4 underestimates the risk (average of 18.9%).
Later in the short and deep, but rather safe, set C dives, Model 4
overestimates the risk. Some of the discrepancy seems to be caused by the
dose~response function, specifically the POWER parameter estimated for
combined data. The long time constant and its CR are similar for ABC as for
set B alone and for AB, but the POWER i3 much lower for ABC because of the
attempt to fit dives from set C. It appears that no single dose~-response
function in the H-V models can fit both the long, severe dives and the short,
safe dives. However, the H-V model and risk model agree quite well using
parameters estimated only from Data Set B (line 3 and 4 in Fig. 6). This

shows that the H-V model can fit Set B alone satisfactorily, but seriously
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Comparison of Risk Model and H~V Model for Data Set ABC
Data (Dive Number) bend% average P(DCS) by RS average P(DCS) by H-V4
A ( 1--568) 4,82 5.22 4,92
B (569--614) 45.6% 44,47 18.9%
C (615--913) 1.3% 0.9% 5.2%

*bar below O indicates incidence of bends
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P(DCS) Comparison from Different Models for Data Set B
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underestimates P(DCS) for Data Set B while fitting ABC. The risk model, by
. conérast, was able to match the higher average P(DCS) of Data Set B even while
fitting the combined Data Set ABC.
6. DATA SET D: CANADIAN CHAMBER DIVES

The next data set has a mixture of depths and times (without the worry
caused by combining data from different laboratories) that were recorded at
various times by several investigators with diverse standards for DCS. The
dives also had slow continuous decompression rates (e.g., Fig. l1A) that could
test depth~dependent features of any model. The model results are in Table 7.
The two single~-tissue models (Mode;s 1l and 2) are marginally significant
improvements over the null model. The two~tissue models (Models 3 and 4) are
real improvements. In both cases, the time constants required are about 17
and 360 min. As seen with previous data, the slower time constant has a lower
CR. The risk model previously described for these data (Model R4) has a
similar likelihood and parallel time constants of about 6 min and 250 min.

In another study, these same data were also well described by a model
using noo-monoexponential kinetics that are used to calculate decompression
tables in Canada (12). The best fits by various models achieve a LL of about
-95.

. Unlike most of the other data, this set justifies a depth-dependent CR.
Both Models Q3 and Q4 have a significantly better likelihood than their
depth~independent versions, Models 3 and 4. The behaviors of the CRs are
shown in Fig. 7. The longer (328 min) tissue has only a weak depth-
dependence: the CR is 1.12 at the surface (1 ATA) and returns to 1.00 by 5.6
fsw (1.17 ATA). The shorter tissue (13.2 min) varies more: CR is 2.0l at the
surface and does not reach 1.00 until 145 fsw (5.39 ATA). The depth-depeundent

functionality is possible because the data have many dives with a continuous,
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TABLE 7 (Cont'd)

(DATA SET D, N = 800, BENDS = 24)

MODEL :
(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD
R4. 2-tissue, TA = 6.64 (5.4) -97.246
AA = 5.6E-3 (6E-3)
TB = 253 (107)

AB = 7.83E~2 (1l1lE-=2)
PTHR = 5.9 (5.1) (fsw)

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.
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Depth Dependent Critical Ratio for Data Set D

Model Q3: N=1, D50=2.1, T1=328 (slow tissue), Cl=1.8, SCR1l=0.7,

T2=13 (fast tissue), C2=2.2, SCR2-0.22.
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rather than a staged, decompression, An example of that smooth decompression
is ;n Fig. 1, where the calculated supersaturation (ratio) is seen to change
gradually (compared to the jagged ratio in Fig. 2).
7. DATA SET ABCD

Performance of the models on combined data from sets A, B, C, and D is in
Table 8. Single-tissue models were not even attempted for this diverse
collection of dives. The two-tissue models (Model 3 and 4) were significant
improvements over the null model. Surprisingly, no three-tissue model was
able to improve the likelihood over the two-tissue models. Whenever they were
tried, two of the three time constants always converged to identical values as
one of the time constants of the two-tissue models. Note that the five-
parameter risk model is much better (a log likelihood improvement of over 20
units). The target LL for excellent fits based on individual LL is
-90-22-18~95 = -225. Risk models miss that mark by about 25 units while the
H-V miss by about 45 LL units.

As in Fig., 5, the failure of the H-V models to combine data is seen in
Fig. 8. The best H-V (Model 4) and a successful risk model (R4) are both
shown. R4 is much better than the H-V model in all 4 regions corresponding to
the original data sets.
8. DATA SET ABD

As in Report I (2), we examined whether the failure to describe combined
data is mostly due to inclusion of the very short exposures of Data Set C.
Performance of models on combined data of sets A, B, and D (C excluded) is in
Table 9. Model 2 with LL = 224.9 is the best H-V model. Risk model R4 had a
better fit by 3 LL units. The exclusion of Data Set C makes the H-V models
more comparable with risk models, which were still able to handle the shorter

data of Set C, Therefore, short Data Set C caused much more problems for the
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TABLE 8

(DATA SET ABCD, N = 1713, BENDS =

MODEL
(FIXED PARAMETERS) PARAMETERS (1 SE)
0. CONSTANT P P = 0.04437

1. NT =1, POWER = 1,

2. NT =1,
3. NT = 2, D50 = 2.98
POWER = 1 Tl = 0.92
CRl = 4,52
T2 = 358
CR2 = 1.00000
4, NT = 2, POWER = 1.17
D50 = 2,18
Tl = 0.92
CRl = 4,52
T2 = 347
CR2 = 1,00000
5 NT = 3, POWER = 1
6. NT = 3
Q3. NT = 2, POWER = 1
Q4. NT = 2
R3. 2-tissue, TA = 2,43
no thresh AA = 3,19E-3
TB = 283
AB = 2,73E-3
R4. 2-tissue, TA = 6.17
thresh AA = 3,.16E-3
TB = 260
PTHR = 5.03

(0.43)
(0.11)
(0.06)
(82)

(0.04)

(0.29)
(0.93)
(0.10)
(0.06)
(77)

(0.05)

(1.7)
(1.9E-3)
(44)
(0.45E-3)

(1.9)
(1.2E=-3)
(39)
(3.0E-3)
(1.7)(fsw)

LOG _LIKELIHOOD

-311.049
NA
NA

-264.230

-263.743

same as 3
same as &
same as 3
same as 4

-247.085

-242.250

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit = =225,
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Comparison of risk model and H-V Model for Data Det ABCD

Data (Dive Number) bendZ average P(DCS) by R4 average P(DCS) by H-V4
A ( 1-=568) 4.8% 5.6% 3.92
B (569--614) 45.62 43.42 16.3%
C (615--913) 1.3% .82 4.6%
D (914--1713) 3.0% 2.8% 4.0%

*bar below 0 indicates incidence of bends
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TABLE 9

(DATA SET ABD, N = 1414, BENDS = 72)

MODEL

(FIXED PARAMETERS)

0.

1.

qQl.
Q2.

Ra.

CONSTANT P

NT-I’
POWER = 1,

NT =1,

NT = 2,
POWER = 1

NT = 2,

NT = 1, POWER = 1,
NT = 1

2-tissue,
thresh

PARAMETERS (1 SE)

P = 0.051

D50 = 2,42
T = 370
CR = 1.0000

POWER = 2,45
D50 = 0.69

T = 309

CR = 1.00000

D50 = 2.45

Tl = 466

CRl = 1.00000
T2 = 368

CR2 = 1.00000

POWER = 2.48

D50 = 0.68

Tl = 318

CrRl = 1.00000
T2 = 135

CrR2 = 1.29

TA = 17.6

AA = 1,.13E-3
TB = 258

AB = 8.10E-3
PTHR = 5.3

(0.35)
(90)
(0.047)

(0.55)
(0.08)
(29)

(0.04)

(0.42)
(755)
(0.29)
(119)
(0.06)

(0.52)
(0.08)
(35)
(0.04)
(66)
(0.19)

(22)
(1.05E-3)
(41)
(3.5E-3)
(1.9) (fsw)

LOG LIKELIHOOD

-284.516

-237.498

-224.901

-237.345

-224.073

same as |
same as 2

-221.415

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit = =207,
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H-V models than for the risk models. All successful models in Table 9 still
fall short of the combined single set good LL of =90-22-95 = -207.
9. DATA SET L: SATURATION DIVES

The final data set examined was used only in Report IV (5). It consists
of 122 exposures on 14 different air saturation exposures where the divers
were at constant increased pressure for at least 40 hours before
decompression. In Report IV (5), a larger data set was examined that had
N2-02 mixtures other than air, but they are excluded here to keep all data for
air exposures only. Model performance is in Table 10. Only a sirgle long
(over 700 min) time constant is required, and the likelihood of Model 1 is not
actually significantly better than the null model (Model 0) by formal
likelihood ratio tests. The POWER in Model 2 is not higher than 1l by a
significant amount. The risk model listed performs comparably, but is not a
significant improvement over the null model. By itself, the data set is too
small to support any useful modeling with any of the methods tried. For the
rough expected LL of combined sets, we will carry an LL of about -58 for set L.
10. DATA SET ABCDL

The final sct of fits is for all of the data combined: 1,835 different
dives. Table 11 shows that both two- and three~tissue H-~V models were a great
improvement over the null model. The significant improvement by the
three~tissue model requires a time constant of over 1000 min. For both of the
longer time constants, no supersataration is perfectly safe (CR essentially
1.0). The POWER is not much different from .. The risk models again do much
better than H-V models.

The best H-V model (Model 5) and a successful risk model (R8) are both
shown in Fig. 9. R8 is also much better than the H-V mcdel in the combination

of all 5 data sets by the likelihood criteria since it misses the target LL by
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(FIXED PARAMETERS)

MODEL

Q3.
Ql‘.

CONSTANT P

NT = 1, POWER = 1

NT = 1

NT = 2,
POWER = 1

NT = 2,

NT = 3,
POWER = 1

NT = 3

NT = 2, POWER = 1

NT = 2

2-tissue,
no thresh

3-tissue,
thresh

TABLE 11

(DATA SET ABCDL, N = 1835, BENDS = 100.5)

PARAMETERS (1 SE)

P = 0.054768

D50 = 2.25

T1 = 0.93
CRl= 4,54

T2 = 379

CR2 = 1.,00000

D50 = 2.64

Tl = 0.92

CRl = 4.53

T2 = 363

CR2 = 1.00000
T3 = 1001

CR3 = 1.00000

POWER = 1.19

D50 = 1.88

Tl = 0.92

CRl = 4,52

T2 = 355

CR2 = 1.00001
T3 = 1038

CR3 = 1,00000

= 3,25

= 2.91E-3
TB = 421

= 2.91E-3

= 5.92
AA = 3,1E-3
= 260
= 6.34E-3
TC = 808
AC = 1.51E-3
PTHR = 4.67

39

(0.27)
(0.09)
(0.04)
(22)
(0.009)

(0.37)
(0.10)
(0.05)
(98)
(0.05)
(619)
(0.21)

(0.26)
(0.65)
(0.09)
(0.06)
(91)
(0.05)
(350)
(0.0003)

(1.77)
(1.54E=3)
(22.1)
(.353E=-3)

(1.96)
(1.26E=3)
(39.4)
(2.62E-3)
(176)
(.944E=3)
(1.65) (£sw)

LOG LIKELIHOOD

-389.613
NA
NA

-338.430

same as 3

-325.920

-324,703

same as 3
same as 3

-308.575

-302.779




MODEL
(FIXED PARAMETERS)

R9. 2-tissue each
with 2-exp rtf
no thresh

R10. 2-tissue each
with 2-exp rtf
thresh

TABLE 11 (Cont'd)

(DATA SET ABCDL, N = 1835, BENDS = 100.5)

PARAMETERS (1 SE)

TlA = 1.77 (2.51)
T2A = 283 (40.9)
WlA = 0.988 (.000223)
AA = 8.29E-3 (2.9E-3)
T1B = 82.6 (123)

T2B = 891 (285)

W1B = 0.886 (0.011)
AB = 2.04E-3 (2.52E=3)

LOG LIKELIHOOD

-303.658

same as R9

T, Tl, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit = =283,
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Figure 9

Comparison of Risk Model and H-V Model for Data Set ABCDL

Data (Dive Number) bendZ average P(DCS) by R8 average P(DCS) by H-V5
A ( 1--568) 4.8% 5.3% 4.22
B (569--614) 45.62 46,42 18.3%
C (615-~913) 1.3% .8% 5.0%
D (914--1713) 3.0% 2.9% 4.42
L (1714~--1835) 20.1% 19.1% 14.2%

*bar below 0 indicates incidence of bends
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about 20 units instead of over 40 units. Failure to fit component data is
apparent in a similar manner to that seen in previous combined data (Figs. 5
and 8). This reinforces our conclusion that H-V decompression response
function is not suitable for different data.
VI. CONCLUSION

In general, Haldane-Vann models with a single tissue are adequate for
small data sets of roughly similar dive;. When combined with dissimilar
dives, the fits degrade as first noted by Vann (6). Specifically, the gas
exchange kinetics apparently can adequately describe the different dives, but
a single dose-respouse function causes problems. Even the allowance of a
separate critical ratio for each time constant does not suffice. Perhaps the
use of separate D50 and POWER parameters for each tissue would produce more
reasonable descfiptions of the combined data, but the need for 4 or 5
parameters per tissue would be difficult to justify statistically. The risk
model aspect of integrating a supersaturation over its elapsed time appears to
capture essential aspects of decompression outcome substantially better than

the choice of a maximum "stress" as used in the H-V approach.
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APPENDIX A: RISK MODEL SUMMARY
" The risk models are described in more detail in Reports I and IV (2,5),
but are summarized below. All definitions of r are substituted into Eqn. {1]

to calculate a P(DCS) for each dive.

Model Rl: rl = A ( Ptis - Pamb) / Pamb [2)
Ptis by monmexponential; time constant = T

2 parameters: A, T

Ptis, a tissue inert gas partial pressure calculated by treating the tissue as
a siﬁgle. well-mixed compartment, is compared to Pamb, the current ambient
pressure. As is common in decompression calculations, the metabolic gases 02
and CO2 and water vapor are totally ignored. Whenever Ptis is less than Pamb,
Rl is set to zero. The risk Rl is proportional to the supersaturation with a
proportionality parameter A in units of m:l.n-1 (T in min). The appearance of
Pamb in the denominator follows from previous work with deep saturation-
excursion data (1) in which it was shown that a significant decrease in DCS
occurred if an equal supersaturation was created at deeper depths. The unext

model adds a threshold parameter, PTHR, that allows the possibility that a

supersaturation can be sustained indefinitely without risk of DCS:

Model R2: r2 = A ( Ptis - Pamb - PTHR) / Pamb (3]
Ptis by monexponential; time constant = T
3 parameters: A, T, PTHR
PTHR is a constant parameter independent of depth. Again, only positive
values of the numerator will be allowed in the integrationm of Eqn. 1. Model

Rl can be generalized to include a "second tissue'" that has its own time
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constant and proportionality parameter. The statistical semnse of this model
is that no DCS is the joint probability of no DCS in both tissue. No anatomic
identification of the second (or indeed the first) tissue is attempted. This

model is expressed by:

Model R3: r3 = r3A + r3B, where [4]
r3A = AA (PtisA - Pamb) / Pamb
PtisA by monoexponential; time constant = TA
r3B = AB (PtisB - Pamb) / Pamb
PtisB by monoexponential; time constant = TB

4 parameters: AA, TA, AB, TB
This "two tissue" model can also have an added threshold parameter:

Model R4: t4h = r4A + r4B, where (5]
r4A = AA (PtisA - Pamb - PTHR) / Pamb
PtisA by monoexponential; time constant = TA
r4B = AB (PtisB - Pamb - PTHR) / Pamb
PtisB by monoexponential; time constant = TB

5 parameters: AA, TA, AB, TB, PTHR

An alternative to the "two-tissue'" model is one in which more complex gas
exchange kinetics are utilized. The gas residence time function (rtf) (18,19)
is an empirical multi-exponential description of gas exchange in a single
tissue that has three kinetic parameters, one of which being a weighting
constant, rather than the one kinetic parameter of a single exponential. This

model is described by:
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Model RS: r5 = A (Ptis - Pamb) / Pamb (6]
Ptis by 2 exponentials; time constants = Tl and T2
Fraction of rtf by Tl is Wl;

Fraction of rtf by T2 is 1 - Wl;

4 parameters: A, Tl, T2, Wl

This model performed well on the more than 1,700 air decompression dives in
the Report I (2), and was used in the calculation of the new air decompression
tables in Report II (3).

To parallel the previous developments, a threshold parameter can also be

defined for the two expouential exchange model:

Model R6: r6 = A (Ptis - Pamb - PTHR) / Pamb (7]
Ptis by 2 exponentials; time constants = Tl and T2
Fraction of rtf by Tl is Wl;

Fraction of rtf by T2 is 1 =~ Wl;

5 parameters: A, T1l, T2, W1, PTHR

A new model was needed to describe the combination of the short air
decompression and saturation data. Models R7-Rl10 were developed for this
purpose. Four new models were developed in a fashion similar to the
development of the first 6 models. Model 3 was extended to include "three
tissues” rather than the "two tissues" as previously described. No DCS is the
the joint probability of no DCS in all three tissues. The new model is

expressed by:
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Model R9: r9 = r9A + r9B, where [10]

r9A = AA (PtisA - Pamb) / Pamb

PtisA by 2 exponentials; time éonstants = T1A and IZA
Fraction of rtf by TlA is WlA;

Fraction of rtf by T2A is 1 - WlA;

r9B = AB (Ptis - Pamb) / Pamb

PtisB by 2 exponentials; time constants = T1B and T2B
Fraction of rtf by TIB is WIB;

Fraction of rtf by T2B is 1 - W1B;

8 parameters: AA, T1A, T2A, W1A, AB, TlB, T2B, W1B

Adding a threshold parameter yields:

Model R10: vl0 = rl0A + rl10B, where [11]

rl0A = AB (PtisA -~ Pamb - PTHR) / Pamb

PtisA by 2 exponentials; time constants = TlA and T2A
Fraction of rtf by TIA is WIlA;

Fraction of rtf by T2A is 1 - W1A;

rlOB = AB (PtisB ~ Pamb - PTHR) / Pamb

PtisB by 2 exponentials; time constants = T1B and T2B
Fraction of rtf by TIB is Wl1A + W1B;

Fraction of rtf by T2B is 1 -~ W1B;

9 parameters: AA, TlA, T2A, WA, AB, T1B, T2B, WIB, PTHR
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APPENDIX B: MATHEMATICAL ASPECTS OF HALDANE-VANN MODELS

In a dive for which the plot of depth vs. time consists of a series of
line segments (ramp) connected at “nodes", when does the maximum ratio of
inert gas pressure in the tissue to ambient pressure occur in a ramp? The
following Lemma will show that, under certain assumptions, for a curve £(t)
and a line segment g(t), the maximum of the ratio f(t)/g(t) occurs at ome of
the nodes of the ramp. This lemma will be used in the algorithm for finding
the maximum ratio in certain kinds of situations, which will be presented

thereafter.

Lemma

For tl <t < t2, f(t) >0, g(t) > 0, g(t) is a lime.

fc(t) = chord of £ = line segment from (tl,f(tl)) to (t2,£(t2))
If £(t) < fc(t), then

max{ f(c)/g(t): tl <t <2 } = max{ £(cl)/g(cl), £(t2)/g(t2) }.

proof:

Let f1 = f(tl), f2 f(c2),

gl = g(cl), g2 = g(r2),

ml = fl/gl, m2 = £2/g2.
Thus g(t) = gl + (& - tl) (g2-gl)/ (t2-tl),
fc(t) = £1 + (t - tl) (£2-f1)/ (r2-tl).
Suppose ml > m2, mlg2 > m2g2 = f2,
then ml + g(t) = migl + (¢t - tl1) (mlg2-mlgl)/ (t2-tl)
2> mlgl + (t - tl) (m2g2-mlgl)/ (t2-tl)
= fl + (t - tl) (£2-f1)/ (t2-cl)
= fc(t) > f(t) (by assumption).

therefore f(t) < ml - g(e), £(t)/ g(t) < wml.
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Similarily, if ml < m2 then £(t)/ g(t) < m2.
So max{ £(t)/g(t):tl < t < ¢2 } = max{ £(cl)/g(tl), £(c2)/g(t2) }

(end of proof)

Now to apply the lemma:
Let £(t) = PT(t) = Pressure of inert gas in tissue at time t,
g(t) = PN(t) = External pressure of inert gas at time t,
PA(t) = g(t)/0.79 = Total ambient pressure
(hydrostatic pressure) at time t,
CR(t) = critical ratio = r - sc - (PA(t)), r > 1, sc > 0.
From Report I, between two nodes, 0 < t < t2,
f(c) =d-ab+bt+c exp(~t/a) >0, a >0
for monoexponential gas exchange kinetics.
g(t) =d+bt>0,
then £(t)/g(t) = 1 + [~a b +c exp(-t/a)]/g(r).
Define DR(t) = [PT(t) / PA(t)] - CR(t)
DR(t) = 0.79 £(t)/g(t) - r + sc g(t) /0.79
= -r + 0.79(1 + [-a b +c exp(-t/a)]/g(t) + sc g(t)/(0.792)}
Let s = sc/(0.792) (sos >0) and
R(t) = [~a b +c exp(-t/a)]/g(t) + s g(t)
then DR(t) = ~r + 0.79 {1 + R(¢) }.
IF £(t)/g(t) <1 ( [ -a b +c exp(~-t/a)] < 0), the risk consequently is zero,
making calculation of the ratio unnecessary.

For b>0 and c<0, f(t)/g(t)

A

1 for all t in [0,t2]

For b>0 and ¢>0, £(t)/g(t)

iA

1 if t > a 1n(c/(a b)).

For b<0 and c<0, f£(t)/g(t)

A

1 1f t < a 1n(c/(a b)).

Now the goal is to find
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max {R(t), where t in [0,t2] and £(t)/g(t) > 1}
(I) If b = 0, (no depth change)

finding max R(t) is equivalent to finding max {c exp(-t/a)!}.

Since this function is monotone, max R(t) is at one of the

end points.

(iI) If s = 0, (constant critical ratio)
finding max R(t) is equivalent to finding max f(t)/g(t).
(I1.1) 1f s = 0, ¢ >= 0, max £(t)/g(t) is a* one of the end points.
proof:

If ¢ = 0, then f(t) = fc(t).

If ¢ > 0, then f''(t) = ¢ exp(-t/a)/(az) > 0, Therefore, f is
concave upward and £(t) <= fc(t) (Stein: Calculus and Analytical
Geometry, p. 188).

By Lemma, max f(t)/g(t) is at one of the end points.

(I1.2) If s = 0, ¢ <0, b < 0, max £(t)/g(t) = £(t2)/g(c2).

proof:

£(t)/g(c) =1 + [-a b + c exp(-t/a)] / (d+bt)

Since [-a b + ¢ exp(~t/a)] increases with t and ( d+bt ) decreases

with t, then £(t)/g(t) must increase with t and be a maximum at t2.

(I11) s > 0: (variable critical ratio)
(I11.1) 1If s > 0, ¢ > 0, max R(t) is at one of the end points.

proof:

[numerator of R(t)]'' = 2bzs + ¢ exp(-t/a) / (az) > 03

therefore, [numerator of R(t)] is concave upward and is <

its chord(Stein: Calculus and Analytical Geometry, p. 188).

By Lemma, max R(t) is.at an end point.

(I11.2) If s > 0, ¢ <0, b <0, we can't tell the behavior of R(t),
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need to solve R'(t)=0 in order to find max R(t).

R'(t)=[sb g(t)? + a b2 - c(g(t)/a + b) exp(-t/a)]/ (g(t)?)

Let Q(t)= [numerator of R'(t)].

Now solve for Q(t) = 0. Where is Q(t) increasing?

Q(t) increasing (i.e., Q'(t) = g(t) [ZSb2 + c exp(-t/a) / (az)] > 0)

if and only if t > a ln(-c/Zazbzs).

Let tag = a ln(-c/2a2b25).

Case 1: t > tag (if tag < t < t2).

Q(t) increases with t.

Since g(t) > 0 and decreasing, g(t)2 also decreases with t.

So R'(t) increases with t, R(t) is concave upward.

max{ R(t), tag < t < t2 } = max { R(tag), R(t2) }

Case 2: t < tag (if 0 <t < tag < t2 or 0 <t < t2 < tag).

Let top = min{tag,t2}.

Q(t) strictly decreases with t, where 0 < ¢ < top

If Q(0) < 0, then Q(t) <0, R'(t) < 0 and R(t) decreasing,
max{ R(t), O<t<top } = R(0).

1f Q(top)> 0, then Q(t) > 0, R'(t) >0 and R(t) increasing,
max{ R(t), O<t<top } = R(top).

If Q(0)> 0 and Q(top)< O then there is only one root for

Q(t) = 0 in [O,top]), say Q(tr) = 0.
For 0 < t < tr, Q(t) >0, R'(£)>0, max R(t) = R(tr).

For tr< t < top, Q(t) <0, R'(t)<0, max R(t) = R(er).
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APPENDIX C: GRAPHICAL REPRESENTATION OF GOODNESS-OF-FIT

When data consist of two variables such as temperature taken at differert
times, it is easy to plot the time/temperature pairs and the model function
simultaneousl& and look for points far from the model curve. In the case
presented in this report that easy plot is unavailable. Instead of a single
independent variable like time, diving data consist of many pressure/time
points for each observation, and therefore do not form a useful abscissa for
plotting. The ordinate variable is not much easier. The predicted ordinate
would be P(DCS), but the raw data are a 0 or a 1 at each point. (If we had
enough, for example, 50-100 replicate dives at each dive profile, an average
bend Z would be valuable. But this is not the case in our data).

Figure C-1 is similar to plots used in Report I (2) where the dives are
broken into categories depending on the model's estimate of DCS risk in the
dive. Fits of model to Data Set A are used in the plot. Here four categories
are used: safer tham 2% P(DCS), 2-5%, 5-10%, and over 10% P(DCS). For example
132 exposures were predicted to fall in the range of 5-10% DCS; the average
prediction was 7.6%, and about 957 of the predictions were in the range of
6.73-8.75%4. On the actual dives, some 11 cases of DCS were observed, for a
raw incidence of 8.3%. Reference to binomial distribution with N=132 and p=
8.3% gives 95% confidence limits of 4.2-14.4% on the raw outcome (13,17). 1In
Fig. C-l are plotted the average predicted and observed incidence of DCS for
the 4 categories of risk (shown as stars). '"Perfect" fitting would presumably
give us points on the dotted line of observed = predicted. However,
uncertainty in both predictions and observations allow non-significant
deviations from the line of identity. In Fig. C-1, the rectangles show the
extent of 95% of both predictions (rectangle width) and observations

(rectangle height) for each of the four categories.
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The dotted line clearly passes through each rectangle. Note that the

‘ largé size of rectangle makes "agreement" between observation and prediction
rather easy. By Pearson's goodness-of-fit test (13) the conclusion from Fig.
C-1 is that P(DCS) agrees well with prediction for all categories.

Another way to visualize success in predicting individual dives is shown
in Fig. C-2, All dives were ranked from safest to most hazardous by predicted
P(DCS). A point on the solid line corresponding to a certain value of P(DCS)
is the sum of P(DCS) for all dives of that value or safer (For example all 342
dives of P(DCS) of 6.5%Z or safer totalled 3.7 cases predicted). A horizontal
line means that no dives were conducted with P(DCS) in that range. At each
prediction where a case of DCS was observed to occur, a triangle records the
cumulative number of cases. A "perfect" fit will have the line increase near
where the triangles appear. However, both data triangles and the prediction
line do not plot independent features: both have accumulated aspects of all
points to the left. Even the null model will result in agreement: it will
appear as a single vertical line at the average p(DCS) and all triangles will
fall on the line. For other poorly fitting models, agreement at the final
point where overall average incidence equals overall average outcome also
frequently occurs. Agreement at intermediate points will tend to be achieved
by the triangles crossing back and forth across the line as if predictions
"compensate" for earlier disagreements. Thus the plot has minimal value for
diagnosing problems in the fit.

Both graphical approaches have such little power to provide useful
goodness-of-fit information that we will not use this presentation for other

data.
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Figure C-1

Observed vs. Estimated Incidence for Data Set A

Data Set A, Model l. Estimated P(DCS) are divided into 4 categories: 0-22,

2-5%, 5-10%, and 10-100%.
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Observed vs. Estimated DCS for Data Set A

Data Set A, Model 1.
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