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I. BACKGROUND

This report continues a series of studies aimed at predicting the probability

of a man suffering from decompression sickness, P(DCS), following a hyperbaric

exposure. The studies are based on the non-traditional assertion that DCS is

not perfectly predetermined, but rather that each case is a random event

having a calculable probability that applies to all men undergoing the same

exposure (1). In the first report of the series (2; referred to as Report I

throughout the text), a family of empirical mathematical models was developed

and statistically compared to the known outcome of over 1700 well described

air dives from 3 countries over a period of 20 years. Several of these models

showed a powerful ability to match the known frequency of DCS in dives that

ranged from 40-625 feet of seawater (fsw) in depth and 0.3-360 min in

duration. The second report (3; referred to as Report II throughout the text)

then took the most successful model and calculated time-optimized air

decompression schedules having target incidences of 1% and 5% DCS. The third

report (4; referred to as Report III throughout the text) compared the

expected P(DCS) for current U.S. Navy, Royal Navy, and Canadian Forces

decompression tables. In the fourth report (5; referred to as Report IV

throughout the text) another 279 dives were examined in which the divers began

in a saturated condition at depth (over 40 h exposure) before beginning

decompression on air or other N02-2 gas mixtures. Models were extended to

cover both those long dives as well as the previously studied dives, and

several sets of optimized saturation decompression tables calculated using one

of the models.

The model evaluation process in Reports I and IV (2,5) was lengthy and

computer intensive. Most details of those reports will not be repeated here;

the reader will need to consult those references if additional details are
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needed. In a more recent development, Vann applied a model to the problem

whose computationally simpler form was appealing (6). Vann reported

substantial success using Haldane's approach (7) in a probabilistic equation,

although he reported difficulty in simultaneously fitting different types of

exposures. After consultation with Vann, we realized that his data were not

identical to those used in Reports I and IV (2,5), so that direct comparison

of the success in fitting data among the different models with those reports

was impossible. Furthermore, he used a parameter estimation procedure - a

decreasing step size grid search - which has unknown convergence properties

and fails to provide many of the statistical measures we have found important

in most estimation problems.

This report explores the ability of the Haldane-Vann (H-V) approach to

fit the identical data previously examined in Reports I-IV with integral risk

models. In that exploration, several features of traditional decompression

formulae (e.g., how many multiple parallel compartments are necessary?) were

examined for statistical support from the available data. Overall, it appears

that both approaches are fruitful for relatively small and homogeneous data,

but that the H-V approach is rather poor at describing larger more extensive

sets of dives.

II. DATA SOURCES

The data in Table i have been described in Reports I and IV (2,5).

Individual data sets were selected to be reasonably homogeneous collections of

depth-time combinations reported as a single study. Within a set, we expect

only unimportant differences in subject population, diving procedures, and DCS

diagnostic criteria. Set L is an exception to that rule, as it required

assembly from many different sources. It is part of the data introduced in
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Report IV (5) as saturation dives, and only those breathing air throughout

were selected for use here. Both sets D and L have some dives with the

outcome described originally as a set of symptoms apparently related to the

dive but not treated as DCS. These marginal cases are assigned an outcome of

0.5 as in previous analyses (1,8). Data summary.is presented below.

TABLE I

DECOMPRESSION DATA SETS

Data Set DCS Dives %DCS Type Exposure Reference

A 27 568 4.8 U.S. Standard Air Des Grange, 1956 (9)

Dive Trials, 1957

B 21 46 45.7 U.S. Exceptional Air Workman, 1957 (10)

Dive Trials, 1957

(all 140 fsw for

90-360 min)

C 4 299 1.3 U.K. Submarine Donald, 1970 (11)

escape trials

D 24 800 3.0 DCIEM Chamber Dives, Weathersby, 1985a and

1967-8 Tikusis et al., 1988

(2,12)

L 24.5 [22 20.1 Air Saturation Dives Hays ec al., 1986 (5)
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Data was encoded to list all pressure-time node points and presume a

linear ramp of pressure between nodes. We note that Vann used some of the

data from Sets A and B, but assumed instantaneous ascent between depths (6).

III. MATHEMATICAL MODELS

All candidate models must express P(DCS) as a function of the detailed

time-pressure history of each dive profile. Reports I-IV (2-5) used a risk

model:

P(DCS) = 1.0 - exp (-fr dt) I]

In Eqn. [1] r is one of a family of instantaneous "risks" dependent on a

calculated tissue nitrogen partial pressure and the current ambient pressure.

A short summary of risk models is found in Appendix A of this report. The

integratiot of Eqn. [] was performed over the duration of the decompression

and 12 hours following arrival back at I ATA (24 hours after saturation

dives). Although performed analytically, the integration involved significant

computation for the complex dive profiles.

Gas kinetic calculations are performed in all decompression methods. In

the approach of Haldane, theorists have considered a handful of "tissue

compartments" having exponential washout kinetics or solute residence times

(referring to the parallel exponential calculations and identified by the

exponential half-times, but never identified with any anatomic tissue in a

real organism). The calculated tissue nitrogen partial pressure in each

tissue immediately before decompression is divided by the ambient pressure

immediately after decompression to obtain a "supersaturation ratio." By

Haldane's original method, this ratio was declared to be a critical 1.60 at
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the boundary between safe (lower ratio) and unsafe (higher ratio)
1

decompression steps. In the 80 years since Haldane, subsequent workers have

developed more complex rules. Instead of a single ratio rule, newer schemes

have up to many dozens of critical ratios (CR), with different rules for

different tissues and different depths. No statistical analysis was ever

performed to ask how many tissues and how many CR are justified by data.

Vann (6) has begun such an analysis by first defining a decompression

dose, D, as the maximum "excess" supersaturation ratio at any time in any

tissue, DR:

D - max{DRi(t) : 1 < i < NT, t > 0} [2]

DRi(t) - (PTi(t)/PA(t)) - CRi [3]

where NT is the number of different "tissues" or time constants, and where

PTi(t)/PA(t) is referred to as supersaturation ratio.

PTi(t) tissue pressure at time t in tissue i calculated under the

assumption of monoexponential tissue residence time

distribution function (rtf), as in Report I, p. 42 (2)

PA(t) ambient pressure

CRi - critical ratio for tissue i; CRi>1.0

For each tissue, the maximum DR at each ramp is calculated, then maximum DR

over any time in the dive (over all ramps) is decided. The dose, D, is

therefore defined as the single maximum of DR over all tissues for the entire

dive. Vann then used the following Hill equation for decompression dose

1 Haldane expressed the ratio of 2.0 as air pressure, of which only about 80%
is inert gas (7).
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response instead of the risk model given in Eqn. (1]:

P(DCS) = Dn/(Dn + D50) = 1/(i+ (D50/D)n)] [4]

In the Hill equation, n and D50 are positive empirica. parameters with no

physiological interpretation. Parameter D50 is the maximum excess

supersaturation that will cause a 50% incidence of DCS. The power parameter n

controls the sharpness of the dose-response curve near D50 (higher values of n

make the curve steeper). Other estimated parameters are the time constant (or

half-time) and the CR for each tissue.

In addition to the specific models of Vann, we also examined the possible

dependence of CR on ambient pressure. For that purpose, a more general

definition of the critical ratio was explored:

CRi(t) -max{1.0, Ci-SCRi • PA(t)} [51

Here both critical ratio intercept Ci and the critical ratio slope SCRi are

positive parameters. When SC'Ji is fixed at 0, CRi(t) is constant and

equivalent to CRi in Eqn. [3]. For positive values of SCRi, CRi will be

smaller at deeper depths than at shallower depths. Also, whenever the dose

defined above is negative, it is set at zero to avoid negative risks of DCS.

Additional mathematical datails of the models are provided under ANALYTICAL

PROCEDURE and in APPENDIX B.

The H-V approach was incorporated into ten specific models in addition to

the null model. The "Null model," which ignores all effects of depth and time

and uses a constant P(DCS) for each dive. Its usefulness is as a lower bound

on the likelihood function for comparison to more interesting models. The
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likelihood function or its commonly used natural logarithm ("log likelihood"

or LL) is our single most reliable measure of how well a model fits the data

(1,2,13).

The models, in summary, are as follows:

MODEL 0 (NULL MODEL), P(DCS) = Total DCS / Total Dives - constant irrespective

of different compression and decompression procedures among the dives.

The H-V models are categorized according to the number of tissues (NT)

each with its own time constant, whether the POWER n in Eqn [41 is estimated,

and whether the critical ratio CR is constant or depth-dependent, Eqn [5].

Each model must also estimate the 50% dose, D50, and 1 or more time constants.

MODEL I, NT-I, POWER-i, constant CR

3 parameters: D50, time constant, constant critical ratio

MODEL 2, NT-I, constant CR

4 parameters: POWER, D50, time constant, constant critical ratio

MODEL 3, NT-2, POWER-i, constant CR

5 parameters: D50, 2 time constants, 2 constant critical ratios

MODEL 4, NT-2, constant CR

6 parameters: POWER, D50, 2 time constants, 2 constant critical

ratios

MODEL 5, NT-3, POWER-i, constant CR

7 parameters: D50, 3 time constants, 3 constant critical ratios

MODEL 6, NT-3, constant CR

8 parameters: POWER, D50, 3 time constants, 3 constant critical

ratios

MODEL Q1, NT-I, POWER-I, depth-dependent critical ratio,

4 parameters: D50, time constant, critical ratio, ratio slope

7



MODEL Q2, NT-i, depth-dependent critical ratios

5 parameters: POWER, D50, time constant, critical ratio, ratio slope

MODEL Q3, NT-2, POWER-i, depth-dependent critical ratio

7 parameters: D50, 2 time constants, 2 critical ratios, 2 ratio

slopes

MODEL Q4, NT-2, depth dependent critical ratio

8 parameters: POWER, D50, 2 time constants, 2 critical ratios,

2 ratio slopes

IV. ANALYTICAL PROCEDURE

Fitting of models to data used the modified Marquardt (14) non-linear

estimation algorithm as done previously (15). For each dive profile, the

depth-time history was followed to obtain a current estimate of P(DCS) or P(no

DCS), which is - 1.0 - P(DCS), depending on whether the dive resulted in DCS

or not. The natural log of each P was summed over all dives to obtain the log

likelihood value (LL in RESULTS tables). Parameters of the model were

adjusted by the Marquardt algorithm (14) to increase LL until it achieved an

apparent maximum. In general, we used several different sets of starting

parameters to ensure an actual maximum. When it had been achieved,

approximate uncertainties in the parameters and correlations among them were

calculatod by standard methods using the inverted matrix of partial

derivatives of LL with respect to all parameters (13).

The best model for each data set can be decided by the Likelihood Ratio

(LR) test. Two similar models, one more general than the other, can be

compared for goodness-of-fit using the LR test (1,13). Specifically, the test

asks whether the improvement in LL achieved by additional parameters was

greater than might be expected by chance (Conceptually, the process is similar

8



to asking whether the fit of a straight line is significantly improved by

fitting a quadratic curve or whether the apparently better fit with the

additional parameter is due to chance alone). For an improved fit at p<.05,

about 1.94 greater LL is required per additional parameter. Present

statistical theory does not allow rigorous comparisons among the LL of models

that cannot be expressed in simpler forms of one another. Therefore, values

of LL for dissimilar models (e.g., H-V models to earlier risk model) were

compared only informally.

Although we expected the present models to be computationally simpler

than those of Reports I-IV (2-5), there were non-trivial analytical problems.

The first follows from the definition of dose as a maximum DR over time and

tissues in Eqn. [2]. We proved that for a constant critical ratio the maximum

DR during any given pressure ramp would occur at the starting or end node of

that ramp. For the variable depth CR in Eqn. [51, other possibilities must be

considered (Appendix B).

Another class of problems arose from the discontinuous nature of the

models. Discontinuities occur because of the choice of a maximum and because

of the rejection of negative DR's (see equation [3)). The discontinuities

produce regions of parameter space where the local gradients of LL with

respect to the parameters are zero. Since our algorithm, like most nonlinear

searches, uses local gradient information, there are parameter values that

will not allow the maximum likelihood to be found. It was necessary to use

artificially continuous formulations, and numerous starting parameter values

(including some values obtained from grid searches) to convince ourselves that

a global maximum likelihood was actually achieved.

The operation of these models are illustrated in Figs. I (a dive with

continuous decompression) and 2 (a dive with staged decompression). In

9
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Figure 1

Supersaturacion Ratio in 250/24 Trial

Time course of ambient pressure, calculated tissue pressure and

supersaturation ratio. This was a 250 ft (8.85 ATA), 24-minute dive. The 8

same dives produced I confirmed and 1 marginal case of DCS. Model 2 of Data

Set D has N-1.7, D50-1.3, T-295, CR-i. Scale of ratio is twice the ATA, on

the right margin.
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Figure 2

Supersaturation Ratio in 287/30 Trial

Time course of ambient pressure, calculated tissue pressure, and

supersaturation ratio. This was a 287 ft (4 same dives produced 1 case of

DCS) (9.7 ATA), 30-minute dive. Model I of Data Set A has N-I, D50-1.67,

T-172, CR-1.3. Scale of ratio is twice the ATA on the right margin.
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Fig. 1, the graph shows the depth-time profile for a dive to 250 fsw (8.58

ATA) for 24 minutes followed by a 286-min decompression procedure from Data

Set D (On this dive 8 men produced I confirmed and I marginal case of DCS).

The dotted line is the calculated tissue nitrogen pressure, using a time

constant of 295 min from Model 2 for Set D (see Table 7). Values of the

supersaturation ratio plotted as a dashed-dot line rises above 1.0 at about 80

min and has a maximum (1.202) near 310 min. The critical ratio CR is 1.000,

thus leaving a maximum excess supersaturation of 0.202 as the decompression

dose. With Eqn. [4], D50-1.3, and N-i.7, we calculate a P(DCS) of 4.1%. The

staged decompression and tissue pressure from Model 1 for a dive from Data Set

A are shown in Fig. 2. It has a jagged ratio that is in excess of the

critical ratio (CR-1.3) only in a few instances. Similar calculations are

repeated for every dive in the data set.

V. RESULTS and DISCUSSION

Details of parameter results are shown here for each data set and for

combinations of them. In the Tables are presented final H-V parameters, with

approximately 1 SE error limits, and maximum LL. Also included in each table

is the best LL of risk models from Report I (models 1-6 in Report I (2) are

now referred to as RI to R6, also see APPENDIX A). The full results are not

repeated here; the reader is referred to those reports for performance details

of each risk model with each data set.

I. DATA SET A: STANDARD AIR DIVES (1956)

Maximum likelihood estimates are in Table 2. For these data, the

simplest H-V model (Model 1) is a clear improvement over the null model

(Model 0). The search for a POWER significantly different from 1.0 in the

Hill dose-response function (Eqn. [4]) failed to improve the fit to data, as

12



TABLE 2

(DATA SET A, N - 568, BENDS - 27)

MODEL

(FIXED PARAMETERS) PARAMETERS (I SE) LOG LIKELIHOOD

0. CONSTANT P P = 0.048 -108.598

1. NT - 1, D50 - 1.67 (0.87) *(0.78,3.4) -90.312
POWER = 1, T - 172 (84) (113,530)

CR = 1.3 (0.22) (1.0,1.48)

2. NT - 1, POWER = 0.57 (1.36) -90.099
D50 - 7.7 (69)
T = 156 (107)

CR = 1.36 (0.24)

3. NT - 2, D50 - 0.78 (0.43) -88.560
POWER - I TI - 93 (12)

CRI - 1.57 (0.05)
T2 - 314 (603)
CR2 - 1.25 (0.67)

4. NT - 2, POWER = 0.84 (1.6) -88.426
D50 - 1.1 (4.3)
TI = 93 (14)
CR1 = 1.58 (0.11)
T2 - 317 (815)
CR2 - 1.26 (0.85)

Qi. NT - 1 D50 - 0.89 (0.47) -88.817
POWER - 1 T - 97 (17)
Variable CR C1 - 1.93 (0.12)

SCRI - 0.38 (0.14)

RI. 1-tissue, T - 340 (100) -91.450
no thresh A 3.IE-3 (1.1E-3)

R2. 1-tissue, T - 122 (50) -90.891
thresh A = 16E-2 (2.4E-2)

PTHR - 11.9 (7.1)(fsw)

T, TI, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error on estimated parameters are in parentheses.

* When two sets of parentheses follow a parameter, the second set is found by
examining the likelihood surface away from maximum LL by 1.94 units.
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seen in Model 2. Allowing two parallel tissues and separate critical ratios

(Model 3) does not produce a significant improvement over I tissue by

likelihood ratio test. Note that the two time constants in Model 3 are

shorter (93 min) and longer (314 min) than the single one in Models 1 (172

min) and 2 (156 min). As in the previous work with risk models, increasing

the number of time constants creates a new set of values, which is wider than

the range previously found. Allowing POWER different from 1.0 with two

tissues in Model 4 does not significantly improve the fit. Model Qi is also

not significantly better than the constant CR (Model 1). The depth dependence

of the CR is shown in Fig. 3. The maximum CR at 1 ATA is 1.55 and CR drops to

1.0 at 2.45 ATA (48 fsw). Comparison with previous Models R1 and R2 shows an

equivalent likelihood that suggest both types of models are adequate for these

data. All successful models achieved a LL of about -90.

Some comments are appropriate about confidence limits in the parameter

estimates. Table 2 entries have approximately 1 standard error of the

estimates, calculated by the statistical procedure appropriate for "well

behaved problems" (13). For example, Model 1 estimates a CR of 1.30 ± 0.22.

For well behaved problems, we could expect an estimated CR to be within these

limits about two-thirds of the time. We would also expect that a band around

the best estimate of 2(SE) to contain the estimate about 95% of the time. The

conceptual and numerical difficulties encountered with H-V models (reasons

described under ANALYTICAL PROCEDURES) make such an interpretation less useful

than in other models, for example, 1.30-2(0.22)-0.86 as an estimated lower 95%

confidence limit. However, external reasons (like the need to predict no DCS

if there is no decompression) require a CR greater than 1. A better way to

construct a 95% confidence limit is to fix the parameter in question at values

that are progressively distant from its best estimate and calculate LL while

14
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Figure 3

Depth Dependent Critical Ratio for Data Set A

Model Q1 of Data Set A has N-I, D50=0.89, T=97. Cla1.93, SCRI=-0.38. Critical

ratio - 1.93 - 0.38 (ambient pressure).
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Likelihood of Model I for Data Set A

Figure 4A. Maximum LL at CR - 1.3 indicated by star

Figure 4B. Maximum LL at Time Constant = 172 indicated by star
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questions such an increase in likelihood has important consequences. Vann did

not report parameter values, so we cannot compare other aspects of model

behavior.

In summary, the simplest H-V model was adequate for these data, as was

the simplest risk model examined in Report I. Of at least historical interest

is the fact that the test dives comprising Data Set A were calculated by a

Haldane approach with 6 fixed time constants over a range of 5-120 min (9,16).

With the time constants was a matrix of about 54 critical ratios whose value

changed slightly during the testing phase itself. By the statistical

evaluation reported here, models with 2-4 parameters can describe the data as

well.

2. DATA SET B: EXCEPTIONAL EXPOSURE AIR DIVES (1956)

This small data set is unusually rich in DCS cases after long (2-6 h)

dives. Estimation results are in Table 3. The simplest H-V model (Model 1)

was a significant improvement over the null model (Model 0). The estimated

time constant (347 min) is longer than for Data Set A (172 min), which is not

surprising for long dives. Most of the potential models were not explored

aggressively since the small data set would not support many parameters.

The three-parameter risk model (Model R2) tabulated is seen to have a similar

likelihood.

It should be noted that the data were obtained in an acceptance trial

where the original expectation was a low incidence of DCS. When many cases

occurred, the decompression times were incrementally lengthened (by ad-hoc

adjustment of critical ratios), and re-tested. As soon as a seemingly lower

incidence was achieved with small groups of divers (usually 6), the trial was

terminated. Thus, the function of DCS incidence against decompression time

(and related measures such as DR in the present model) will be artificially

18



TABLE 3

(DATA SET B, N = 46, BENDS = 21)

MODEL

(FIXED PARAMETERS) PARAMETERS (i SE) LOG LIKELIHOOD

0. CONSTANT P P = 0.4565 -31.710

1. NT = 1, D50 = 0.065 (0.037) -22.428
POWER - I, T = 347 (17)

CR - 1.50 (0.02)

2. NT = 1, POWER = 11 (109) -21.166
D50 = 0.60 (5.84)
T = 392 (54)
CR = 1.00000 (5.8)

3. NT = 2, POWER 1 same as 1

4. NT - 2, same as 2

RI. 1-tissue, T = 739 (469) -27.076
no thresh A = 3.3E-3 (0.7E-3)

R2. 1-tissue, T = 329 (38) -21.680
thresh A - .113 (.091)

PTHR - 15.2 (1.5)(fsw)

T, Ti, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.
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steep. The attempt to find POWER different from 1 (Model 2) produced the

large and imprecise value 11 ± 109. The very large uncertainty in the POWER

reflects the binomial uncertainty from the small overall size of the data. In

model R2, the steep dose response surface was achieved by estimating an

absolutely safe supersaturation threshold of 15 fsw. The nagnitude of the

POWER parameter indicates a very steep dose-response curve in the range of

dives near 50% DCS, which is the range of risk seen in the raw data (overall

46% DCS). Indeed, we consistently find that none of the large data sets

require a POWER nearly as large as 11 (see below). Successful fits to these

data all require a LL of about -22.

3. DATA SET AB

We explored the combined Data Set AB (Set A plus Set B). Results are

presented in Table 4. From earlier results, we expect good fits to the

combined data to achieve a LL of about -90 (from Set A) plus -22 (from Set B)

or a total of -112 LL units. All H-V models were significantly better than

the null model, but none quite achieved the goal of about -112 LL units. The

two-parameter risk model could not achieve the goal either. For the simplest

model (Model 1), a very long time constant (503 min) was required to fit the

data. This time constant is longer than those required by Data Sets A or B

separately, and it required the lowest possible CR to accomplish it. The

error limit on CR in Table 4 is asymmetric; the 1 SE upper bound is 1.00 ±

0.11, but the lower limit remains at 1.00 to avoid a finite risk of DCS

without any tissue supersaturation (This asymmetric bound provided one of the

difficult estimation problems encountered in the analysis). A model of two

tissues with the power fixed at 1.0 (Model 3) did not produce a significantly

improved fit over 1 tissue. However, with a power estimated at 6.1 t 9.1

(Model 4, 6 parameters), a significantly improved maximum likelihood was
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TABLE 4

(DATA SET AB, N = 614, BENDS 48)

MODEL

(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD

0. CONSTANT p P = 0.0782 -168.145

1. NT - 1, D50 = 0.99 (0.26) -121.271
POWER = 1, T = 503 (263)

CR 1.0000 (0.11)

2. NT = 1, POWER = 2.1 (1.5) -119.565

D50 = 0.66 (0.12)
T = 367 (129)
CR 1.0000 (0.12)

3. NT = 2, POWER = i same as I

4. NT - 2, POWER = 6.09 (9.07) -114.858

D50 - 0.61 (0.62)
T1 i 388 (61)
CRI = 1.0001 (0.63)
T2 - 139 (14)
CR2 - 1.13 (0.66)

QI. NT - 1, POWER 1 I same as 1

Q2. NT - 1 same as 2

Q3. NT - 2, POWER i1 same as 3

Q4. NT - 2 same as 4

RI. 1-tissue, T = 362.3 (44) -119.210
no thresh A - 3.57E-3 (.63E-3)

R2. 1-tissue, T - 318 (156) -119.202
thresh A - 4.35E-3 (3.6E-3)

PTHR - 1.23 (4.95)(fsw)

T, Ti, etc. are in units of minutes, the other parameters are dimensionless.

Approximate I SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit - -112.
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4. DATA SET C: SUBMARINE ESCAPE TRIALS

Data Set C is different from the other data examined because it has very

short deep dives (but with only 4 cases of DCS). Fitting results are

tabulated in Table 5. Again the simplest H-V model (Model I) was a better

description of the data than a null model. Allowance of a variable POWER

(Model 2) did not improve the fit significantly. No other H-V models were

used because the small data set would not provide enough information for the

additional parameters. Model R1 had a similar likelihood. R2 is not a

significant improvement over Ri, but is included to show the unbelievable

parameters (here a 79-fsw supersaturation as an estimated threshold) that can

arise in using threshold parameters and small data sets. In all cases, the

time constants were short, as expected for these short dives. About -18 LL

units are associated with the better models.

5. DATA SET ABC

The 3 data sets examined so far include a wide range of diving

conditions. How well do the H-V models describe the entire range? The

results of fitting to combined data of sets A, B, and C are in Table 6. The

simplest H-V model is actually worse than no model at all (compare LL of Model

I with Model 0). The two-parallel tissue model, Model 3, had a substantially

improved ability to fit the data. Model 4 with the low estimated POWER of

0.49 ± 0.23 is the most successful H-V model. This model required a very

short time constant (0.93 min or 56 sec) with a high (4.57) critical ratio,

along with a long (501 min) time constant, allowing virtually no

supersaturation (CR = 1.01). None of the more complex H-V models were a

better fit to the data. As with the H-V Models, the very simplest risk models

did not fit the combined data (see Report I for details). Other risk models

were considerably more successful than H-V in fitting the data, as seen by a
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TABLE 5

(DATA SET C, N = 299, BENDS = 4)

MODEL

(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD

0. CONSTANT P P - 0.013 -21.230

1. NT - 1, D50 = 32 (77) -17.865
POWER = 1, T = 1.1 (1.2)

CR = 3.8 (2.8)

2. NT = 1, POWER = 0.14 (2.8) -16.927

D50 = 0.5E9 (0.2E12)
T = 0.9 (1.6)
CR = 4.5 (4.5)

3. NT - 2, POWER = 1 same as i

4. NT - 2 same as 2

RI. 1-tissue, T = 12.2 (20.4) -19.225

no thresh A = 4.8E-3 (5.9E-3)

R2. 1-tissue, T = 1.04 (0.94) -18.093
thresh A = 7.OE-2 (27.OE-2)

PTHR = 79 (82)(fsw)

T, TI, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.
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TABLE 6

(DATA SET ABC, N - 913, BENDS 52)

MODEL
(FIXED PARAMETERS) PARAMETERS (I SE) LOG LIKELIHOOD

0. CONSTANT P P = 0.056 -199.496

1. NT - 1, D50 - 9.28 (1.64) -211.552

POWER - I T - 31.7 (6.7)

CR - 1.00001 (0.06)

2. NT = 1, POWER - 0.13 (0.30) -199.782

D50 - O.IE9 (0.6EIO)
T 35 (72)

CR = 1.00004 (0.47)

3. NT - 2, D50 - 2.15 (0.52) -156.720

POWER - I TI - 400 (10)
CR1 = 1.0000 (0.05)
T2 - 0.94 (0.24)
CR2 = 4.55 (0.29)

4. NT - 2, POWER - 0.49 (0.23) -154.385

D50 - 10 (17)
Ti - 501 (10)
CR1 - 1.01 (0.03)

T2 = 0.93 (0.23)
CR2 - 4.57 (0.58)

5. NT - 3, POWER 1 1, same as 3

6. NT - 3, same as 4

Q3. NT - 2, POWER - 1, same as 3

Q4. NT - 2 same as 4

R3. 2-tissue, TA - 0.66 (1.6) -139.529

no thresh AA - 6.7E-3 (19E-3)
TB - 365 (50)
AB - 3.6E-3 (6.3E-3)

R5. I tissue with T1 - 1.5 (2.3) -139.289

2-exp rtf T2 - 265 (30)
no thresh WI - 0.99 (0.08)

A - 1.18E-2 (0.57E-2)

T, TI, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit - -130.
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much better likelihood. They also had terms for both slow and fast events:

Model R3 has parallel time constants of 0.66 and 365 min, while Model R5 has a

single tissue residence time function (2) composed of a 1.5 min and a 265 min

process.

To more quantitatively assess whether the H-V model can fit the combined

data, we can examine the expected LL for excellent fits to the individual

sets: -90-22-18 = -130. The best H-V fit misses this target by about 25 LL

units while R3 and R5 miss by about 10 units. The difference in model

performance is quite substantial.

Additional insight into the failure of the H-V models to describe

combined data is seen in Fig. 5. This graph has P(DCS) from both H-V and risk

models against dive number. The dives of set A are the first 568 dives, then

the 46 of set B, and the final 299 are from set C. The best H-V model (Model

4) and a successful risk model (R5) are both shown. Predictions are

comparable for Data Set A, but diverge for Data Sets B and C. For the

hazardous set B dives (near observation 600), Model R5 predicts an average

P(DCS) of 44.4% while H-V Model 4 underestimates the risk (average of 18.9%).

Later in the short and deep, but rather safe, set C dives, Model 4

overestiiates the risk. Some of the discrepancy seems to be caused by the

dose-response function, specifically the POWER parameter estimated for

combined data. The long time constant and its CR are similar for ABC as for

set B alone and for AB, but the POWER ia much lower for ABC because of the

attempt to fit dives from set C. It appears that no single dose-response

function in the H-V models can fit both the long, severe dives and the short,

safe dives. However, the H-V model and risk model agree quite well using

parameters estimated only from Data Set B (line 3 and 4 in Fig. 6). This

shows that the H-V model can fit Set B alone satisfactorily, but seriously
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Comparison of Risk Model and H-V Model for Data Set ABC

Data (Dive Number) bend% average P(DCS) by R5 average P(DCS) by H-V4

A ( 1--568) 4.8% 5.2Z 4.9%

B (569-614) 45.6% 44.4% 18.9%

C (615-913) 1.3% 0.9% 5.2%

*bar below 0 indicates incidence of bends
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P(DCS) Comparison from Different Models for Data Set B
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underestimates P(DCS) for Data Set B while fitting ABC. The risk model, by

contrast, was able to match the higher average P(DCS) of Data Set B even while

fitting the combined Data Set ABC.

6. DATA SET D: CANADIAN CHAMBER DIVES

The next data set has a mixture of depths and times (without the worry

caused by combining data from different laboratories) that were recorded at

various times by several investigators with diverse standards for DCS. The

dives also had slow continuous decompression rates (e.g., Fig. 1A) that could

test depth-dependent features of any model. The model results are in Table 7.

The two single-tissue models (Models I and 2) are marginally significant

improvements over the null model. The two-tissue models (Models 3 and 4) are

real improvements. In both cases, the time constants required are about 17

and 360 min. As seen with previous data, the slower time constant has a lower

CR. The risk model previously described for these data (Model R4) has a

similar likelihood and parallel time constants of about 6 min and 250 min.

In another study, these same data were also well described by a model

using non-monoexponential kinetics that are used to calculate decompression

cables in Canada (12). The best fits by various models achieve a LL of about

-95.

Unlike most of the other data, this set justifies a depth-dependent CR.

Both Models Q3 and Q4 have a significantly better likelihood than their

depth-independent versions, Models 3 and 4. The behaviors of the CRs are

shown in Fig. 7. The longer (328 min) tissue has only a weak depth-

dependence: the CR is 1.12 at the surface (1 ATA) and returns to 1.00 by 5.6

fsw (1.17 ATA). The shorter tissue (13.2 min) varies more: CR is 2.01 at the

surface and does not reach 1.00 until 145 fsw (5.39 ATA). The depth-dependent

functionality is possible because the data have many dives with a continuous,
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TABLE 7 (Cont'd)

(DATA SET D, N - 800, BENDS -24)

MODEL
(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD

R4. 2-tissue, TA - 6.64 (5.4) -97.246
AA - 5.6E-3 (6E-3)
TB - 253 (107)
AB - 7.83E-2 (11E-2)
PTHR - 5.9 (5.1)(fsw)

T, TI, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.
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Depth Dependenit Critical Ratio for Data Set D

Model Q3: N-1, D50-2.1, TI-328 (slow tissue), C1=1.8, SCR1O0.7,

T2'm13 (fast tissue), C2-2.2, SCR2-O.22.
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rather than a staged, decompression. An example of that smooth decompression

is in Fig. 1, where the calculated supersaturation (ratio) is seen to change

gradually (compared to the jagged ratio in Fig. 2).

7. DATA SET ABCD

Performance of the models on combined data from sets A, B, C, and D is in

Table 8. Single-tissue models were not even attempted for this diverse

collection of dives. The two-tissue models (Model 3 and 4) were significant

improvements over the null model. Surprisingly, no three-tissue model was

able to improve the likelihood over the two-tissue models. Whenever they were

tried, two of the three time constants always converged to identical values as

one of the time constants of the two-tissue models. Note that the five-

parameter risk model is much better (a log likelihood improvement of over 20

units). The target LL for excellent fits based on individual LL is

-90-22-18-95 - -225. Risk models miss that mark by about 25 units while the

H-V miss by about 45 LL units.

As in Fig. 5, the failure of the H-V models to combine data is seen in

Fig. 8. The best H-V (Model 4) and a successful risk model (R4) are both

shown. R4 is much better than the H-V model in all 4 regions corresponding to

the original data sets.

8. DATA SET ABD

As in Report I (2), we examined whether the failure to describe combined

data is mostly due to inclusion of the very short exposures of Data Set C.

Performance of models on combined data of sets A, B, and D (C excluded) is in

Table 9. Model 2 with LL - 224.9 is the best H-V model. Risk model R4 had a

better fit by 3 LL units. The exclusion of Data Set C makes the H-V models

more comparable with risk models, which were still able to handle the shorter

data of Set C. Therefore, short Data Set C caused much more problems for the
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TABLE 8

(DATA SET ABCD, N - 1713, BENDS = 76)

MODEL

(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD

0. CONSTANT P P - 0.04437 -311.049

1. NT - 1, POWER- 1, NA

2. NT - 1, NA

3. NT - 2, D50 - 2.98 (0.43) -264.230
POWER - I TI = 0.92 (0.11)

CRI - 4.52 (0.06)
T2 - 358 (82)
CR2 - 1.00000 (0.04)

4. NT = 2, POWER = 1.17 (0.29) -263.743
D50 - 2.18 (0.93)
Ti = 0.92 (0.10)
CRI - 4.52 (0.06)
T2 - 347 (77)
CR2 = 1.00000 (0.05)

5. N T 3, POWER I same as 3

6. NT = 3 same as 4

Q3. NT - 2, POWER -i same as 3

Q4. NT - 2 same as 4

R3. 2-tissue, TA - 2.43 (1.7) -247.085
no thresh AA = 3.19E-3 (1.9E-3)

TB - 283 (44)
AB - 2.73E-3 (0.45E-3)

R4. 2-tissue, TA - 6.17 (1.9) -242.250
thresh AA - 3.16E-3 (1.2E-3)

TB - 260 (39)
AB - 7.63E-3 (3.OE-3)
PTHR - 5.03 (1.7)(fsw)

T, Ti, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit - -225.
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Comparison of risk model and H-V Model for Data Dec ABCD

Data (Dive Number) bend% average P(DCS) by R4 average P(DCS) by H-V4

A ( 1-568) 4.8% 5.6% 3.9%

B (569--614) 45.6% 43.4% 16.3%/.

C (615-913) L.3% ..8% 4.6%

D (914--1713) 3.0% 2.8%"'0

*bar below 0 indicates incidence of bends
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TABLE 9

(DATA SET ABD, N - 1414, BENDS - 72)

MODEL

(FIXED PARAMETERS) PARAMETERS (I SE) LOG LIKELIHOOD

0. CONSTANT P P - 0.051 -284.516

1. NT - 1, D50 - 2.42 (0.35) -237.498
POWER - i, T 370 (90)

CR - 1.0000 (0.047)

2. NT - 1, POWER - 2.45 (0.55) -224.901
D50 - 0.69 (0.08)
T 309 (29)
CR = 1.00000 (0.04)

3. NT = 2, D50 - 2.45 (0.42) -237.345
POWER - 1 Ti - 466 (755)

CRI - 1.00000 (0.29)
T2 - 368 (119)
CR2 - 1.00000 (0.06)

4. NT - 2, POWER - 2.48 (0.52) -224.073
D50 - 0.68 (0.08)
TI - 318 (35)
CR1 - 1.00000 (0.04)
T2 - 135 (66)
CR2 - 1.29 (0.19)

Qi. NT -i, POWER i, same as 1

Q2. NT -i same as 2

R4. 2-tissue, TA - 17.6 (22) -221.415
thresh AA - 1.13E-3 (1.05E-3)

TB - 258 (41)

AB - 8.10E-3 (3.5E-3)
PTHR - 5.3 (1.9)(fsw)

T, Ti, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit - -207.
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H-V models than for the risk models. All successful models in Table 9 still

fall short of the combined single set good LL of -90-22-95 = -207.

9. DATA SET L: SATURATION DIVES

The final data set examined was used only in Report IV (5). It consists

of 122 exposures on 14 different air saturation exposures where the divers

were at constant increased pressure for at least 40 hours before

decompression. In Report IV (5), a larger data set was examined that had

N 2-O2 mixtures other than air, but they are excluded here to keep all data for

air exposures only. Model performance is in Table 10. Only a sirgle long

(over 700 min) time constant is required, and the likelihood of Model I is not

actually significantly better than the null model (Model 0) by formal

likelihood ratio tests. The POWER in Model 2 is not higher than I by a

significant amount. The risk model listed performs comparably, but is not a

significant improvement over the null model. By itself, the data set is too

small to support any useful modeling with any of the methods tried. For the

rough expected LL of combined sets, we will carry an LL of about -58 for set L.

10. DATA SET ABCDL

The final sct of fits is for all of the data combined: 1,835 different

dives. Table 11 shows that both two- and three-tissue H-V models were a great

improvement over the null model. The significant improvement by the

three-tissue model requires a time constant of over 1000 min. For both of the

longer time constants, no supersataration is perfectly safe (CR essentially

1.0). The POWER is not much different from 1. The risk models again do much

better than H-V models.

The best H-V model (Model 5) and a successful risk model (R8) are both

shown in Fig. 9. R8 is also much better than the H-V model in the combination

of all 5 data sets by the likelihood criteria since it misses the target LL by
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TABLE 11

(DATA SET ABCDL, N - 1835, BENDS -100.5)

MODEL
(FIXED PARAMETERS) PARAMETERS (1 SE) LOG LIKELIHOOD

0. CONSTANT P P - 0.054768 -389.613

1. NT-i1, POWER I NA

2. NT-i1 NA

3. NT - 2, D50 - 2.25 (0.27) -338.430

POWER - I TI = 0.93 (0.09)
CR1- 4.54 (0.04)
T2 - 379 (22)
CR.2 - 1.00000 (0.009)

4. NT -2, same as 3

5. NT - 3, D50 - 2.64 (0.37) -325.920
POWER - I TI = 0.92 (0.10)

CR1 - 4.53 (0.05)

T2 - 363 (98)
CR2 - 1.00000 (0.05)
T3 - 1001 (619)
CR3 - 1.00000 (0.21)

6. NT -3 POWER - 1.19 (0.26) -324.703
D50 - 1.88 (0.65)
TI - 0.92 (0.09)
CR1 - 4.52 (0.06)
T2 - 355 (91)
CR2 - 1.00001 (0.05)
T3 - 1038 (350)
CR3 - 1.00000 (0.0003)

Q3. NT -2, POWER 1 same as 3

Q4. NT -2 same as 3

R3. 2-tissue, TA - 3.25 (1.77) -308.575
no thresh AA - 2.91E-3 (1.54E-3)

TB - 421 (22.1)
AB - 2.91E-3 (.353E-3)

R8. 3-tissue, TA - 5.92 (1.96) -302.779
thresh AA - 3.1E-3 (1.26E-3)

TB - 260 (39.4)
A- 6.34E-3 (2.62E-3)

TC - 808 (176)
AC - 1.51E-3 (.944E-3)
PTHR - 4.67 (1.65) (fsw)
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TABLE 11 (Cont'd)

(DATA SET ABCDL, N - 1835, BENDS - 100.5)

MODEL
(FIXED PARAMETERS) PARAMETERS (I SE) LOG LIKELIHOOD

R9. 2-tissue each TIA = 1.77 (2.51) -303.658
with 2-exp rtf T2A = 283 (40.9)
no thresh WIA - 0.988 (.000223)

AA = 8.29E-3 (2.9E-3)
TLB = 82.6 (123)
T2B - 891 (285)
WIB = 0.886 (0.011)
AB = 2.04E-3 (2.52E-3)

RIO. 2-tissue each same as R9
with 2-exp rtf
thresh

T, TI, etc. are in units of minutes, the other parameters are dimensionless.

Approximate 1 SE error limits on estimated parameters are in parentheses.

Expected LL for excellent fit - -283.
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Figure 9

Comparison of Risk Model and R-V Model for Data Set ABCDL

Data (Dive Number) bend% average P(DCS) by R8 average P(DCS) by H-V5

A ( 1--568) 4.8% 5.3% 4.2%

B (569-614) 45.6% 46.4% 18.3%

C (615-913) 1.3% .8% 5.0%

D (914-1713) 3.0% 2.9% 4.4%

L (1714--1835) 20.1% 19.1% 14.2%

*bar below 0 indicaces incidence of bends
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about 20 units instead of over 40 units. Failure to fit component data is

apparent in a similar manner to that seen in previous combined data (Figs. 5

and 8). This reinforces our conclusion that H-V decompression response

function is not suitable for different data.

VI. CONCLUSION

In general, Haldane-Vann models with a single tissue are adequate for

small data sets of roughly similar dives. When combined with dissimilar

dives, the fits degrade as first noted by Vann (6). Specifically, the gas

exchange kinetics apparently can adequately describe the different dives, but

a single dose-response function causes problems. Even the allowance of a

separate critical ratio for each time constant does not suffice. Perhaps the

use of separate D50 and POWER parameters for each tissue would produce more

reasonable descriptions of the combined data, but the need for 4 or 5

parameters per tissue would be difficult to justify statistically. The risk

model aspect of integrating a supersaturation over its elapsed time appears to

capture essential aspects of decompression outcome substantially better than

the choice of a maximum "stress" as used in the H-V approach.
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APPENDIX A: RISK MODEL SUMMARY

The risk models are described in more detail in Reports I and IV (2,5),

but are sumarized below. All definitions of r are substituted into Eqn. [1]

to calculate a P(DCS) for each dive.

Model Ri: rl - A ( Ptis - Pamb) / Pamb [2]

Ptis by monexponential; time constant - T

2 parameters: A, T

Ptis, a tissue inert gas partial pressure calculated by treating the tissue as

a single, well-mixed compartment, is compared to Pamb, the current ambient

pressure. As is comon in decompression calculations, the metabolic gases 02

and CO2 and water vapor are totally ignored. Whenever Ptis is less than Pamb,

RI is set to zero. The risk R1 is proportional to the supersaturation with a

proportionality parameter A in units of min- 1 (T in min). The appearance of

Pamb in the denominator follows from previous work with deep saturation-

excursion data (1) in which it was shown that a significant decrease in DCS

occurred if an equal supersaturation was created at deeper depths. The next

model adds a threshold parameter, PTHR, that allows the possibility that a

supersaturation can be sustained indefinitely without risk of DCS:

Model R2: r2 - A ( Ptis - Pamb - PTHR) /Pamb [3]

Ptis by monexponential; time constant - T

3 parameters: A, T, PTHR

PTHR is a constant parameter independent of depth. Again, only positive

values of the numerator will be allowed in the integration of Eqn. 1. Model

RI can be generalized to include a "second tissue" that has its own time
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constant and proportionality parameter. The statistical sense of this model

is that no DCS is the joint probability of no DCS in both tissue. No anatomic

identification of the second (or indeed the first) tissue is attempted. This

model is expressed by:

Model R3: r3 - r3A + r3B, where [4]

r3A - AA (PtisA - Pamb) / Pamb

PtisA by monoexponential; time constant - TA

r3B - AB (PtisB - Pamb) / Pamb

PtisB by monoexponential; time constant = TB

4 parameters: AA, TA, AB, TB

This "two tissue" model can also have an added threshold parameter:

Model R4: r4 - r4A + r4B, where [5]

r4A - AA (PtisA - Pamb - PTHR) / Pamb

PtisA by monoexponential; time constant - TA

r4B - AB (PtisB - Pamb - PTHR) / Pamb

PtisB by monoexponential; time constant - TB

5 parameters: AA, TA, AB, TB, PTHR

An alternative to the "two-tissue" model is one in which more complex gas

exchange kinetics are utilized. The gas residence time function (rtf) (18,19)

is an empirical multi-exponential description of gas exchange in a single

tissue that has three kinetic parameters, one of which being a weighting

constant, rather than the one kinetic parameter of a single exponential. This

model is described by:
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Model R5: r5 - A (Ptis - Pamb) / Pamb (6]

Ptis by 2 exponentials; time constants - TI and T2

Fraction of rtf by T1 is WI;

Fraction of rtf by T2 is I - Wi;

4 parameters: A, Ti, T2, WI

This model performed well on the more than 1,700 air decompression dives in

the Report I (2), and was used in the calculation of the new air decompression

tables in Report II (3).

To parallel the previous developments, a threshold parameter can also be

defined for the two exponential exchange model:

Model R6: r6 - A (Ptis - Pamb - PTHR) / Pamb (7]

Ptis by 2 exponentials; time constants - T1 and T2

Fraction of rtf by TI is Wi;

Fraction of rtf by T2 is I - Wi;

5 parameters: A, Ti, T2, WI, PTHR

A new model was needed to describe the combination of the short air

decompression and saturation data. Models R7-RIO were developed for this

purpose. Four new models were developed in a fashion similar to the

development of the first 6 models. Model 3 was extended to include "three

tissues" rather than the "two tissues" as previously described. No DCS is the

the joint probability of no DCS in all three tissues. The new model is

expressed by:
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Model R9: r9 - r9A + r9B, where [10]

r9A - AA (PtisA - Pamb) / Pamb

PtisA by 2 exponentials; time constants =TiA and T2A

Fraction of rtf by TiA is WlA;

Fraction of rtf by T2A is 1 - WiA;

r9B - AB (Ptis - Pamb) / Pamb

PtisB by 2 exponentials; time constants TlB and T2B

Fraction of rtf by TlB is WIB;

Fraction of rtf by T2B is 1 -WiB;

8 parameters: AA TlA, T2A, WiA, AB, TlB, T2B, WIB

Adding a threshold parameter yields:

Model R1O: rIO - rlOA + nlOB, where [ill

riQA - AB (PtisA - Pamb - PTHR) / Pamb

PtisA by 2 exponentials; time constants -TiA and T2A

Fraction of rtf by TiA is WIA;

Fraction of rtf by T2A is 1 - WlA;

rlOB - AB (PtisB - Pamb - PTHR) / Pab

PtisB by 2 exponentials; time constants - TiE and T2B

Fraction of rtf by TIE is WLA + WIB;

Fraction of rtf by T2B is 1 - WlB;

9 parameters: AA, TlA, T2A, WlA, AB, TiE, T2B, WlB, PTHR
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APPENDIX B: MATHEMATICAL ASPECTS OF HALDANE-VANN MODELS

In a dive for which the plot of depth vs. time consists of a series of

line segments (ramp) connected at "nodes", when does the maximum ratio of

inert gas pressure in the tissue to ambient pressure occur in a ramp? The

following Leumma will show that, under certain assumptions, for a curve f(t)

an~d a line segment g(t), the maximum of the ratio f(t)/g(t) occurs at one of

the nodes of the ramp. This lemma will be used in the algorithm for finding

the maximum ratio in certain kinds of situations, which will be presented

thereafter.

Lemma

For ti < t < t2, f(t) >0, g(t) > 0, g(t) is a line.

fc(t) - chord of f - line segment from (tl,f(tl)) to (t2,f(t2))

If f(t) < fc(t), then

max{ f(t)/g(t): ti < t < t2 I max{ f(tl)/g(tl), f(t2)/g(t2) I

proof:

Let fl - f(tf), f2 - f(t2),

gi - g(tl), g2 - g(t2),

ml - fi/gi, m2 - f2/g2.

Thus g(t) -gi + (t -t1) (g2-gl)/ (t2-tl),

fc(t) -fl + (t -t1) (f2-fl)/ (t2-tl).

Suppose ml > m2, mlg2 > m2g2 = f2,

then ml * g(t) - migi + (t - t1) (mlg2-m~gl)/ (t2-tl)

>migi + (t - t1) (m2g2-tnlgl)/ (t2-tl)

-fl + (t - ti) (f2-fI)/ (t2-tl)

fc(t) > f(t) (by assumption).

therefore f(t) _ ml - g(t), f(t)/ g(t) < ml.
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Similarily, if ml < m2 then f(t)/ g(t) < m2.

So max{ f(t)/g(t):tl < t < t2 I-max{ f(tl)/g(tl), f(t2)/g(t2)}

(end of proof)

Nov to apply the lemma:

Let f(t) - PT(t) - Pressure of inert gas in tissue at time t,

g(t) - PN(t) - External pressure of inert gas at time t,

PA(t) -g(t)/0.79 - Total ambient pressure

(hydrostatic pressure) at time t,

CRWr - critical ratio - r - sc * (PA(t)), r > 1, sc > 0.

From Report I, between two nodes, 0 < t < t2,

f(t) - d - a b + b t + c exp(-t/a) > 0, a >0

for monoexponential gas exchange kinetics.

g(t) - d + b t > 0,

then f(t)/g(t) - I + [-a b +c exp(-t/a)]/&(t).

Define DR(t) -(PT(t) / PA(t)] - CR(t)

DR(t) - 0.79 f(t)/g(t) - r + sc g(t) /0.79

- -r + 0.79{1 + [-a b +c exp(-t/a)]/g(t) + sc g(t)/(0.79 2}

Let s - sc/(0.79 2) ( so s > 0) and

RWt [ -a b +c exp(-t/a)]Ig(t) + s g(t)

then DR(t) - -r + 0.79 [1 + R(t) }.

IF f(t)/g(t) < 1 [ -a b +c exp(-t/a)] < 0), the risk consequently is zero,

making calculation of the ratio unnecessary.

For b>0 and c<0, f(t)/g(t) < 1 for all t in [0,t2]

For b>0 and c>0, f(t)/g(t) < 1 if t > a in(c/(a b).

For b<0 and c<0, f(t)/g(t) . if t < a ln(c/(a W).

Now the goal is to find
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max (R(t), where t in (O,t2] and f(t)/g(t) > 1)

(I) If b - 0, (no depth change)

finding max R(t) is equivalent to finding max {c exp(-t/a)}.

Since this function is monotone, max R(t) is at one of the

end points.

(II) If s - 0, (constant critical ratio)

finding max R(t) is equivalent to finding max f(t)/g(t).

(I.1) If s - 0, c >= 0, max f(t)/g(t) is at one of the end points.

proof:

If c - 0, then f(t) - fc(t).

If c > 0, then f''(t) - c exp(-t/a)/(a ) > 0. Therefore, f is

concave upward and f(t) <- fc(t) (Stein: Calculus and Analytical

Geometry, p. 188).

By Lemma, max f(t)/g(t) is at one of the end points.

(11.2) If s 0, c < 0, b < 0, max f(t)/g(t) - f(t2)/g(t2).

proof:

f(t)/g(t) = 1 + [-a b + c exp(-t/a)] / (d+bt)

Since [-a b + c exp(-t/a)] increases with t and ( d+bt ) decreases

with t, then f(t)/g(t) must increase with t and be a maximum at t2.

(II) s > 0: (variable critical ratio)

(III.1) If s > 0, c > 0, max R(t) is at one of the end points.

proof:

[numerator of R(t)]'' - 2b2s + c exp(-t/a) / (a2 ) > 0;

therefore, (numerator of R(t)I is concave upward and is <

its chord(Stein: Calculus and Analytical Geometry, p. 188).

By Lemma, max R(t) is.at an end point.

(111.2) If s > 0, c < 0, b < 0 , we can't tell the behavior of R(t),
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need to solve R'(t)=O in order to find max R(t).

R '(t)-[sb g(t) 2- c(g(t)/a + b) exp(-t/a)I/ (g(t) 2

Let Q(t)- [numerator of R'(t)].

Now solve for Q(t) = 0. Where is Q(t) increasing?

Q(t) increasing (i.e., Q'(t) = g(t) f2sb 2 + exp(-.t/a) / (a 2 ) > 0)

if and only if t > a ln(-c/2a 2b2 S).

Let tag = a ln(-c/2a 12 b2S).

Case 1: t >tag (if tag < t < t2).

Q(t) increases with t.

Since g(t) >0 and decreasing, g(t) 2also decreases with t.

So R'(t) increases with t, R(t) is concave upward.

max({R(t),tag< t <t2}I= maxR(tag), R(t2) I

Case 2: t <tag (if 0< t <tag t2or 0< t <t2 <tag).

Let top -min{tag,t2}.

Q(t) strictly decreases with t, where 0 < t < top

If Q(0) < 0, then Q(t) < 0, R'(t) < 0 and R(t) decreasing,

max{ R(t), 0'ct<top } R(0).

If Q(top)_ 0, then Q(t) > 0, R'(t) >0 and R(t) increasing,

max{ R(t), 0<tctop I -R(top).

If Q(0)> 0 and Q(top)< 0 then there is only one root for

Q(t) -0 in [0,top], say Q(tr) - 0.

For 0 < t < tr, Q(t) >0, R'(t)>0, max R(t) R(tr).

For tr< t < top, Q(t) <0, R'(t)<O, max R(t) R(tr).
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APPENDIX C: GRAPHICAL REPRESENTATION OF GOODNESS-OF-FIT

When data consist of two variables such as temperature taken at different

times, it is easy to plot the time/temperature pairs and the model function

simultaneously and look for points far from the model curve. In the case

presented in this report that easy plot is unavailable. Instead of a single

independent variable like time, diving data consist of many pressure/time

points for each observation, and therefore do not form a useful abscissa for

plotting. The ordinate variable is not much easier. The predicted ordinate

would be P(DCS), but the raw data are a 0 or a I at each point. (If we had

enough, for example, 50-100 replicate dives at each dive profile, an average

bend % would be valuable. But this is not the case in our data).

Figure C-I is similar to plots used in Report I (2) where the dives are

broken into categories depending on the model's estimate of DCS risk in the

dive. Fits of model to Data Set A are used in the plot. Here four categories

are used: safer than 2% P(DCS), 2-5%, 5-10%, and over 10% P(DCS). For example

132 exposures were predicted to fall in the range of 5-10% DCS; the average

prediction was 7.6%, and about 95% of the predictions were in the range of

6.73-8.75%. On the actual dives, some 11 cases of DCS were observed, for a

raw incidence of 8.3%. Reference to binomial distribution with N-132 and p=

8.3% gives 95% confidence limits of 4.2-14.4% on the raw outcome (13,17). In

Fig. C-I are plotted the average predicted and observed incidence of DCS for

the 4 categories of risk (shown as stars). "Perfect" fitting would presumably

give us points on the dotted line of observed - predicted. However,

uncertainty in both predictions and observations allow non-significant

deviations from the line of identity. In Fig. C-i, the rectangles show the

extent of 95% of both predictions (rectangle width) and observations

(rectangle height) for each of the four categories.
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The dotted line clearly passes through each rectangle. Note that the

large size of rectangle makes "agreement" between observation and prediction

rather easy. By Pearson's goodness-of-fit test (13) the conclusion from Fig.

C-i is that P(DCS) agrees well with prediction for all categories.

Another way to visualize success in predicting individual dives is shown

in Fig. C-2. All dives were ranked from safest to most hazardous by predicted

P(DCS). A point on the solid line corresponding to a certain value of P(DCS)

is the sum of P(DCS) for all dives of that value or safer (For example all 342

dives of P(DCS) of 6.5% or safer totalled 3.7 cases predicted). A horizontal

line means that no dives were conducted with P(DCS) in that range. At each

prediction where a case of DCS was observed to occur, a triangle records the

cumulative number of cases. A "perfect" fit will have the line increase near

where the triangles appear. However, both data triangles and the prediction

line do not plot independent features: both have accumulated aspects of all

points to the left. Even the null model will result in agreement: it will

appear as a single vertical line at the average p(DCS) and all triangles will

fall on the line. For other poorly fitting models, agreement at the final

point where overall average incidence equals overall average outcome also

frequently occurs. Agreement at intermediate points will tend to be achieved

by the triangles crossing back and forth across the line as if predictions

"compensate" for earlier disagreements. Thus the plot has minimal value for

diagnosing problems in the fit.

Both graphical approaches have such little power to provide useful

goodness-of-fit information that we will not use this presentation for other

data.
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Figure C-2

Observed vs. Estimnated DCS for Data Set A

Data Set A, Model 1.
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