
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE Form Approved 
0MB No. 0704-0188 

la. REPORT SECURITY CLASSIFICATION 

UNCLASSIFIED 
lb, RESTRICTIVE MARKINGS 

2a. SECURITY CLASSIFICATION AUTHORITY 

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE 

3 . DISTRIBUTION/AVAILABILITY OF REPORT 

Approved for public release; distribution unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 

NRL Report 9202 
5. MONITORING ORGANIZATION REPORT NUMBER(S) 

6a. NAME OF PERFORMING ORGANIZATION 

Naval Research Laboratory 
6b. OFFICE SYMBOL 

(If applicable) 

5340. IS 

7a. NAME OF MONITORING ORGANIZATION 

6c. ADDRESS (City, State, and ZIP Code) 

Washington, DC  20375-5000 

7b.  ADDRESS (Oty, State, and ZIP Code) 

Ba. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

Office of Naval Research 

8b. OFFICE SYMBOL 
(If applicable) 

9   PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

8c. ADDRESS (City, State, and ZIP Code) 

Arlington, VA  22217-5000 

10   SOURCE OF FUNDING NUMBERS 

PROGRAM 
ELEMENT NO 

61153N 

PROJECT 
NO. 

021-05-43 

TASK 
NO. 

WORK UNIT 
ACCESSION NO. 

DN480-006 
11. TITLE (Include Security Classification) 

Results on the Detection of Signals in Spherically Invariant Random Noise 

12. PERSONAL AUTHOR{S) 
Sangston, K. J. and Gerlach, Karl 

13a. TYPE OF REPORT 
Interim 

13b   TIME COVERED 

FROM TO 
14. DATE OF REPORT (Year, Month, Day) 

1989 November 17 
15   PAGE COUNT 

16 
16. SUPPLEMENTARY NOTATION 

COSATI CODES 

FIELD GROUP SUB-GROUP 

18. SUBJECT TERMS [Continue on reverse if necessary and identify by block number) 
Detection theory Radar 
Non-Gaussian Radar signal processing 
Spherically invariant random process 

19  ABSTRACT {Continue on reverse if necessary and identify by block number) 

A relationship between well-known estimator-correlator results from detection theory and the detection of signals 
in spherically invariant random noise is described. This relationship gives a general result concerning the structure of 
the likelihood ratio for this detection problem. Furthermore, an alternate formulation of both the likelihood ratio and the 
optimal estimator that arises in the estimator-correlator structure is given. This alternate formulation is important 
because it yields a closed-form solution for this optimal estimator without requiring explicit knowledge of a prior distri- 
bution for the unknown quantity being estimated. Since interest in modeling actual noise processes as spherically invari- 
ant random processes has recently appeared, the results here should help not only to give insight into the optimal detec- 
tion structure in such noise but also to give guidance in formulating suboptimal detectors for problems of practical 
interest. 

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 

I^UNCLASSIFIED/UNLIMITED      D  SAME AS RPT n DTIC USERS 

21. ABSTRACT SECURITY CLASSIFICATION 
UNCLASSIFIED 

22a. NAME OF RESPONSIBLE  INDIVIDUAL 
K. J. Sangston 

22b TELEPHONE (Include Area Code) 
(202) 767-3472 

22c. OFFICE SYMBOL 
5340.IS 

DD Form 1473, JUN 86 Previous editions are obsolete. 

i 

SECURITY CLASSIFICATION OF THIS PAGE 



tREY. CALlfORWA 93940 

Naval Research Laboratory* 
Washington, DC 20375-5000 

(NRLReport 9202 , 

^Resultsjonjhe Detection of Signals in 
Spherically Invariant Random Noise 

U -(      KEVIN J. SANGSTON AND KARL GERLACH 

Target Characteristics Branch 
Radar Division 

November 1^1989 

Approved for public release; distribution unlimited. 



CONTENTS 

INTRODUCTION   1 

STRUCTURE OF THE OPTIMAL DETECTOR   1 

A GEOMETRIC/FUNCTIONAL INTERPRETATION OF THE OPTIMAL 
DETECTION STRUCTURE    4 

SUBOPTIMAL DETECTION STRUCTURES    7 

ALTERNATE FORMULATION OF LIKELIHOOD RATIO AND 
OPTIMAL ESTIMATOR    9 

CONCLUSIONS  ■ 11 

ACKNOWLEDGMENTS   12 

REFERENCES   12 

111 



RESULTS ON THE DETECTION OF SIGNALS IN 
SPHERICALLY INVARIANT RANDOM NOISE 

INTRODUCTION 

Vershik [1] introduced the class of spherically invariant random processes (SIRP) as part of a study of 
properties exhibited by Gaussian random processes. Since that introduction, papers exploring various 
aspects of this class of processes have appeared. These studies have examined questions regarding 
representations of such processes [2-5] as well as estimation and detection in such processes [6-8]. 
Recently, this work has been applied to the problem of modeling certain types radar clutter processes [9,10]. 

In this study, we reexamine the structure of the optimal processor, i.e., the likelihood ratio, for 
detecting a known signal in additive noise modeled as a SIRP. The structure of this optimal detector is that of 
the estunator-correlator, a result that follows by direct application of a result attributable to Schwartz [11]. 
However, for the sake of clarity, a simple derivation of this result is presented. In addition, we discuss how 
the estimator-correlator structure leads to suboptimal structures that have been obtained by previous 
investigators. We also briefly point out that the locally optimum detector for this problem consists of the 
same optimal estimator used in a different manner than in the optimal detector. Finally, we derive an 
alternate formulation of the likelihood ratio and the optimal estimator that appears in the 
estimator-correlator structure. This alternate formulation is important because it allows the optimal estimate 
to be computed without knowledge of a prior density for the random parameter. Instead, knowledge of a 
certain marginal probability density function (pdf) is required. In practice, this pdf is more likely to be 
available to the investigator than is the prior density. 

STRUCTURE OF THE OPTIMAL DETECTOR 

In this section, the optimal detection structure for detecting an additive signal in a spherically invariant 
random process is derived and shown to be a general structure applicable to the whole class of processes. 
The resulting structure is a function of an optimal estimator of a random quantity. This structure reveals an 
intimate relationship between optimal detection and optimal estimation for this class of processes. 

Consider the following hypothesis test: 

Ho- X = y 

Hi'. X = y + s 

where 

y is an w-dimensional complex noise vector 

s is an m-dimensional complex noise complex vector 

= 13s, j3 = yeJ'^ = complex number. 

Manuscript approved January 13, 1989. 



SANGSTON AND GERLACH 

From this point only complex processes are examined. However the corresponding results for real 
processes are easily obtainable from our approach. 

If X is a sample from a SIRP, then jr has the following pdf under hypothesis / (i  = 0,1): 

f''-''>'Q^\\l-?''^^{:^f^^»'- (1) 

where 

qt = {x - sf <if ^ {x - s),  i = \ 

= x'^-^x,   i = 0 

$ is the normalized correlation matrix 

T is the variance of underlying Gaussian process 

Mr) = pdf of r 

11 is the matrix determinant 

t is the complex conjugate transpose. 

Clearly Eq. (1) represents the pdf of a conditional Gaussian process with random variance r, averaged over 
the variation in T . Close examination of the conditional Gaussian pdf shows that it is a multivariate member 
of the exponential family, i.e., the pdf is of the form 

fi(x\T) = c(T)h{x)exp 
I 

2 Vj(r)Tj(x) 
; = i            1 

(2) 

where in our case 

C(T) = 
1 

(27rr  1 $ /" 

,    h(x) = 1 

1 = 1 

V I(T) = 

Ti{x) is a sufficient statistic for — = - — 
T 2 

Our first result follows by direct application of a general result given by Schwartz [11]. However, we now 
give a brief derivation. 
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If we reparameterize our conditional Gaussian pdf by setting a = 1/T , we obtain 

where we have substituted z, = qt/l. If we now differentiate Eq. (3) by z,, we obtain 

^ = -"(W^jo  "^  ^^P^""^-^^"^")'^"- (4) 

Since the minimum mean-square estimate of a is given by the conditional mean estimate (CME) [12], 

^'■f"l^] = (W4M IO" ^" ^^P^- "^^•^«(")^"' 
and we immediately obtain 

fjlaljc] = - 
fi(x) dzi 

dlnfi 

dZi 

-f 

(5) 

(6a) 

(6b) 

At this point we note that we may use a dummy variable z in place of z, in our formulation, i.e., we now use 
z = qi/l instead of z, = qt/l. From Eq. 6(b) we then obtain 

]^2   Ei[oc\z]dz = -\nf^^J, 

where 

Ei[ci\z\ = - 
dlnfi 

dzi 

(7a) 

(7a) 

Since under either hypothesis we have^(j:) = giq-), i.e., the subscript / indicates that we have a function of 
qt , and since we are using z = qUl, it is easy to show that the form of Eia\z] is the same under both 
hypotheses. We denote this form E[a\z^ and differentiate between the two hypotheses by evaluating this 
form at the different points, z = qi/2,i = 0,1. Therefore, since -W^^.^^ is the same under both 
hypotheses, we obtain finally 

The structure of the likelihood ratio is therefore given by 

(8) 

j^2   E[a\z]dz - W   E[a\z]dz (9) 

Equation (9) shows explicitly the relationship between optimal estimation and optimal detection for this class 
of processes. 
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A GEOMETRIC/FUNCTIONAL INTERPRETATION OF THE 
OPTIMAL DETECTION STRUCTURE 

In this section, we interpret the optimal detection structure as the area under a curve in a certain 
coordinate system. This interpretation then leads to the conclusion that the optimal detection structure is 
equivalent to a comparison of the matched filter with a variable threshold, which is a function of qo, the 
quadratic form in J:, and the detection threshold Tthat yields the desired probability of false alarm. 

From Eq. (8), we may write the optimal detection structure as 

^1 [•90/2 > 
E[a\z]dz   . 

J91/2 < 
^0 

(10) 

Note that since $ is in general a positive definite matrix, the limits of integration are always positive. 
Let us assume temporarily that qo > qi and T > 0. Also, since a is a nonnegative random vari- 
able, the integrand ^[alz], which is a function of z, is also nonnegative for positive z. Thus, the 
structure in Eq. (10) compares the area under a curve in the E[a \z] - z coordinate system to a 
threshold T.   Figure 1 shows this comparison. 

AREA COMPARED TO T 

q/2 
1 

q/2 
0 

Fig. 1 — Geometric interpretation of optimal detector 

Now, since E[a\z] is nonnegative for positive z and the limits qi/2 and qo/2 are always positive, this 
area is < 7 if and only ifqi/2 > qo/2 - K, i.e., qi/2 is closer than ^ units to qo/2. Note, however, that 

unless £'[a|z] is a constant for positive z the numberofunits^isactuallyafunctionofthe location of 9o/2 on 
the z axis. Thus, the comparison indicated in Eq. (10) is equivalent to the comparison 

qo 
2 2 

Hi 
> 
< 
Ho 

fiqo,T), (11) 

where f{qo, T) is a variable threshold that is a function of both qo and T.   After substitution for the 
quadratic forms, Eq. (11) becomes 
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Rt{s'^-h)   J  Mo, 1)+- s'^-'s, ^j2) 

which is a matched filter compared to a variable threshold. Theoretically this function y(^o> T) may be 
obtained by finding the function y(^o) that satisfies 

(•91 /2 

Uan-Ma) (13) 

At this point, however, we abandon the geometric interpretation of this detection structure and simply 
examine the structure given by Eq. (10) from a functional point of view. Define a function F{q) as 

F{q) = j2   E{a\z\dz. (14) 

Since, as we have previously observed, E[a\x\ is nonnegative for positives and q is positive, the function 
F{q) that we have defined is a monotonically increasing function of ^. In this new notation, we rewrite the 
log-likelihood test given in Eq. (10) as 

H, 

< 

or equivalently. 

1 

F(qo)-F(qi)   J   T, (15a) 

Hi 

Fiqo)-T   J   F{q,). (I5b) 
Ho 

Nov , since F(q) is monotonically increasing, we obtain 

Hi 

r\F{qo)-T)   >   qi. (16) 

Ho 
Finally, since 

qi =^i'-^x-2RQis'^-h) + s'^-^s (17) 

= qo-2Reis'^-^x) + s'^-^s, 

we obtain after substitution in Eq. (16) 

Hi 

Rt(s'^-'x)   J    ^-^r\Fiqo)-T)+~s'^-^s. (ig)^ 

Ho 
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Comparison of this result with the result in Eq. (12) reveals that 

Aqo,r)=f-^I^\F(qo)-T). ^^^^ 

This equation may or may not be solvable for a specific problem. However, the main advantage to this 
interpretation is the insight,it gives into the operation of the optimal detector. Note that in this functional 
interpretation, we made no assumptions about either the ordering of qo and qi or the sign of T. 

Observe that if, in Eq. (10), T = 0, which corresponds to a unity threshold for the likelihood ratio, then 
the log-likelihood ratio reduces to 

m 
> 

90   <   qu (20) 

Ho 

which in turn is equivalent to the matched filter and is independent of the prior pdf/a(a). This result, which 
follows trivially from Eq. (10), was first given by Yao [3]. 

To further examine the consequences of the estimator-correlator structure, we now assume that 
r > 0, which is not overly restrictive in many situations. Immediately we may observe that ^o is 
always chosen when qo < qi.  Let the functions g{q) and h(y) be defined as 

'^'^ = (2^   lo" "^ ^"P   (-f 4 ^«('^)^« (21) 
and 

h(y) = - Iny. (22) 

With these definitions, we may write 

F{q) = h(gm + C, (23) 

where F(q) is the function defined in Eq. (14) and C is the constant /i(g(0)) 

Straightforward application of the chain rule from calculus shows 

dg 2 J2 

d'Fjq)  

d^ g\q) 
(24) 

Furthermore, since g{q) is positive, we may show that this second derivative is <0 by showing that 
the numerator is <0. The numerator may be shown to be <0 by using the definition of the function 
g{q) given by Eq. (21), performing the indicated differentiations, and applying the Schwartz inequal- 
ity.  Thus we have the condition 

^^^M < 0. (25) 
dq^ 
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At this point we assume qo < qi and we let J{q) = dF{q)/dq. From the result indicated in Eq. (25), it 
follows ihaijiq) is a monotonically decreasing function of q and that 

(90 - q\)Kqo) ^ Aq)dq. (26) 

Hence, if (^o - ^O/^o) > T, the optimal test always chooses H^ . On the other hand, from Eq. (25) it also 
follows that 

Mo 
i.qQ-q\)Aqi) > Aq)dq. (27) 

Jq\ 

Hence, if (^o - q\)A(l\) < T, the optimal test always chooses HQ . From these considerations we are led to 
the following observation. Whenever the detection threshold is such that 7 > 0, then the optimal detection 
procedure may be implemented in a sequential manner as follows: 

1. If qo ^ q\, choose HQ. 

2. If E(j[a\x](qo — q^) > T, choose//j. 

3. If Ei\a\x]{qQ — q^) < T, choose//Q- 

4. Otherwise, evaluate the log-likelihood ratio and decide accordingly. 

From an implementation viewpoint, these considerations may reduct the computational load in making 
a decision, since the full log-likelihood ratio is not necessarily evaluated each time a decision is reached. 

SUBOPTIMAL DETECTION STRUCTURES 

A well-known consequence of the estimator-correlator structure is its implication for suboptimal 
detection. If the optimal estimator ^[alz] is unavailable or difficult to work with, a suboptimal detector can 
be formulated through the substitution of a suboptimal estimator in Eq. (9). For example, one could use a 
parametric representation of a prior density with a sufficient number of parameters to allow a large number 
of densities to be fit by this representation. The problem is then reduced to a problem in estimating the 
parameters of this prior density function, a task that could be implemented adaptively. 

An alternate approach to suboptimal detection would be to use a maximum likelihood estimator (MLE) 
in place of the CME in the estimator-correlator structure. From the standard approach to finding MLEs 
[37], the MLE for o: may be shown to be 

_ m 
«MLE  

Z ,=f  '■ = 01- (28) 

Use of this estimator, instead of the CME, in Eq. (9) leads to 

^MLEix) 
(x-sy^-\x-s) 

(29) 
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If we expand the quadratic form in the denominator and divide both the numerator and the denominator by 
the numerator, we obtain 

AMLEC-*^) 
1 

(30) 

For purposes of detection, use of this structure is equivalent to use of the following structure: 

2 Re(5'^~'x) - s'^-^s 

x'^-^x ■ 
(31) 

Except that our result is for complex processes, our result is the same result obtained in Ref. 7 by an 
asymptotic argument. Therefore, the detector that is shown in Ref. 7 to be asymptotically optimal is shown 
here to be given by a suboptimal implementation of the estimator-correlator with an MLE substituted for 
the CME. This result is intuitively satisfying since in our problem we expect the MLE to be an estimator that 
is asymptotically equivalent to the CME. 

A problem that is closely related to ours is the detection of signals of unknown amplitude and phase in 
Gaussian noise of unknown (but nonrandom) variance. Korado [14] examined this problem and presented 
the following structure as optimal for this problem: 

\s   9    x\ 

^x"^-'x 
(32) 

If we take Eq. (29) as a starting point, it is easy to show that the MLE of jS (the unknown signal amplitude and 
phase) is given by 

/^MLE 

Substitution of this result into Eq. (29) leads to 

5'  j>      X 

s ^    s 
(33) 

1 

1-- S <P   'x (34) 

For purposes of detection, this structure is equivalent to Korado's resuh. 

Finally a rather simplistic estimator is to estimate a by a constant OQ. Use of this estimator in the 
estimator-correlator leads to the following test: 

Ac(x) = exp\ ~[x'^-^x-{x-sy^-\x-s)] I, (35) 

which easily is seen to lead to the classical matched filter. Clearly if the pdf of a is 8(a - OQ)  (i.e., the 

variance is a known constant), then the estimator is correct and we obtain the expected result. 
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At this point we briefly examine the structure of another suboptimal detector, namely the locally 
optimal detector [15]. This detector is given in general by 

d 
ay 

(36) 
7=0 

where 7 is the signal amplitude.   By straightforward calculation, one may show that for our problem 
this structure is given by 

AfoW = £o[a k] Re (e^*S'$-'x), (37) 

i.e., the locally optimum test is equal to the normalized matched filter multiplied by the CME of a. 

Examination of the suboptimal tests given above shows them all to be essentially matched filters that are 
modified in some way to account for the unknown or statistical behavior of a . This observation coupled with 
our result that the optimal detector is the normalized matched filter compared to an adaptive threshold (i.e., 
Eq. (18)) leads us to conjecture that good suboptimal tests may be obtained by implementing the form 

Ho 

where fsoiqo) is a good suboptimal function of ^0 • However, we do not explore this issue any further here. 

The results obtained in this study also emphasize a point about the detection structures for these types of 
processes (SIRPs). Even though sample vectors from these processes may be thought of as samples from a 
Gaussian process with an unknown and varying variance [9], the detection processing should involve 
estimation of the quantity a, not of the quantity T (i. e., the estimate should not be of the variance directly). 
Since the Gaussian distribution is generally parameterized by its variance, the intuitive notion is to estimate 
the u iknown variance; the results here show that this intuitive notion does not lead to an optimal detection 
structure. In effect, the parameter a is a more natural parameter than the variance (a conclusion that follows 
immediately if we consider the Gaussian distribution in the context of the exponential family with the 
so-called natural parameterization). 

ALTERNATE FORMULATION OF LIKELIHOOD RATIO AND OPTIMAL ESTIMATOR 

At this point we also present an alternate formulation of the likelihood ratio. From this formulation, we 
may see immediately a formulation of £'[a|z] that does not require explicit knowledge of the prior pdf /„(a). 
Often, a prior pdf, being a pdf of a parameter rather than a pdf of directly observable data, is difficult to 
obtain. Fortunately, in the class of SIRPs, an alternate pdf, namely the marginal amplitude pdf of the 
complex process, may be used to solve the problem without knowledge of the prior pdf In effect, the 
marginal amplitude pdf provides information that is equivalent to that of the prior pdf for this class of 
processes. This equivalence is fortunate, since in practice the marginal amplitude pdf, being a pdf of directly 
observable data, is usually easier to obtain than the prior pdf. 
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Since we are examining a complex SIRP, we have also under hypothesis HQ the following relationship: 

where 

h{\xj\) = JJ a|^,.| exp \-a^ [ Uoi)da, j=\  .. 

I Xj I is the amplitude of the ;th component of x 
h{\xj\) = pdf of \xj\, j = 1 

m (39) 

m. 

The interpretation of Eq. (39) is that since x (under HQ) represents a vector from a complex zero- 
mean Gaussian random process with random variance, the marginal pdf of the amplitude of each of 
the components of this vector is identical and Rayleigh with the same randomization of the Rayleigh 
parameter T (= 1/a). 

From Eq. (39) we may let p = and rearrange terms to obtain 

8(p) =  ^^1^^   = ("   exp {-pci}oiUa)da. 
I2p 

Differentiating with respect to p, we obtain in a straightforward fashion 

(40) 

(- l)""'  7^ S(P) =  JJ   c/"fa{a) exp [-pa}da. 

Comparing this result with Eq. (3), we obtain finally 

m-1     Jtti-1 

fi(x) 
(-!)"■-'   (T" 

(27r)'"|$| dp'"-^ p=zr 

(41) 

(42) 

Thus we see that knowledge oi h{\xj\) is sufficient to represent the likelihood ratio. Often, knowledge of 
h(\xj\) and * is what an investigator may reasonably assume; for instance see Ref. 9. 

To show how this result relates to the estimator-correlator structure, we examine the CME for a: 

Ei[a\x] = 
1 

(2irrmi(x) 

JOO 

0 
c/"+^ exp l-^yr P(ci)da. (43) 

Note that Eq. (43) is essentially Eq. 3 in which we have substituted m + 1 for m. Therefore, following the 
same derivation that leads to Eq. (42) yields 

f'jlaljt] = (-1)" 
fiix){2itr\^\ dp' 

h(^2p) 

2p p=-. 
(44) 

10 
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Substitution of the result in Eq. (42) into Eq. (44) yields 

Ei[a\x] 

d"" 

dp'" _ -Jlp \ 

^ 

dp'"-^ 
H-Jlp) 

[   V2P   _ 

(45a) 

for the optimal estimate of a or 

E[a\p]-- 
dp' 

im — \ 

dp m-\ 

hj^lp) 

2p 

(45b) 

for the form of the optimal estimator that we use in the estimator-correlator. Note that the estimate f'jialA:] is 
obtained from the estimator E[a\p] by evaluating the estimator at the data point p = qi/l. 

A simple check shows that the substitution of this representation ofE[a\p\ (i.e., £'[Q:|Z]) into Eq. (9) 
leads to a consistent result. As we stated above, this result is important because in practice knowledge of 
h{\xj\) is generally available whereas knowledge of/„(o;) is generally not available. However, one question 
that remains open is what are necessary and sufficient conditions onh{\xj\) such that it has the representation 
given in Eq. (39). Such knowledge is required because not all pdfs h{\xj\) have such a representation. Thus 
to use these results presently, the investigator must verify in some way that the h(\xj\) of interest is 
compatible with such a representation. 

CONCLUSIONS 

In this report we reexamine the problem of signal detection in the class of spherically invariant random 
processes and show that this problem falls within the framework of the estimator-correlator structure. This 
structure reveals the optimal detector to be a function of the optimal estimator of a random quantity 
associated with the spherically invariant random process. We show how this structure leads to the 
interpretation that the optimal detector is an adaptive matched filter. We then demonstrate how some 
previously obtained results are easily derived as suboptimal implementations of the estimator-correlator. 
Finally, we also show how the required optimal estimator may be obtained without explicit knowledge of a 
prior pdf provided a different pdf, namely the marginal amplitude pdf of the complex process, which is 
generally easier to obtain than the prior pdf, is known. 

The suboptimal detectors examined here may be classified in two ways. In one approach, the optimal 
detector structure is retained from the estimator-correlator, but a suboptimal estimator is used in place of 
the optimal estimator. In the other approach, the optimal estimator is retained from the estimator- 
correlator, but the function of this estimator that forms the detector is different from that of the optimal 
structure. Interestingly, each of these suboptimal approaches results in a detector structure that is in essence 

11 
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a variation on the classical matched filter. Since this class of random processes is a generalization of the 
Gaussian random process, this result is intuitively reasonable. 

Finally, since this class of processes is of interest as a model for some types of practical noise processes, 
the results presented here should lead to optimal and suboptimal detection schemes for practical problems. 
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