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- Two distinct but related basic research efforts are
being investigated under the joint sponsorship of the U.S. Air
Force Office of Scientific Research (AFOSR) and the U.S. Naval
Sea Systems Command (NAVSEA). The first effort is to experimen-
tally characterize the flowfields at the entrance of supersonic
combustors in hypersonic dual-combustion ramjet engines and the
second is to develop the component and engine cycle analysis
required to predict the internal flowfields and performance of
these engines. Both are basic to the successful development of
advanced, hypersonic airbreathing engines. Air Force funding
for these efforts is $75K in GFY 1983.

Progress to date includes the development of a simpli-
fied axisymmetric mixing and combustion analysis and a concomi-
tant wall boundary layer analysis which describe the major flow
phenomena within the main supersonic combustor of a dual combus-
tion ramjet engine. The experimental hardware for the combustor/
inlet interaction tests is also complete and initial testing has
begun. Currently, refinements to the combustion and wall boundary
layer analysis with particular emphasis on the base flow/mixing
region, arzc being pursued and testing with the combustor/inlet
interaction hardware continue. (x~ =—

INTRODUCTION

Requirements for future offensive and defensive weapon
systems necessitate the development of long range, very high speed
missiles to effectively counter the continually improving capa-
bilities of similar systems by potential hostile nations. Of
the candidate propulsion cycles available to power these missiles,
only rockets and advanced ramjets employing supersecnic combustion
as their primary mode of combustion are capable of providing the
hypersonic speeds required. However, rockets must fly exo-atmos-
pheric trajectories to achieve the needed ranges and, since they
are coasting, their ability to make corrections and to intercept
maneuvering targets is limited. On the other hand, advanced
hypersonic ramjets, which remain within the atmosphere, are capable
of sustained powered flight, course changes, and interception of
maneuvering targets. The need for advanced hypersonic ramjets
is, therefore, apparent. However, in order to develop these en-
gines under exploratory and advanced development programs requires
a basic understanding of the engine and individual component flow-
fields and thermochemistry, viz., in the inlet, air duct, fuel
injectors/combustor(s) and exit nozzle. This basic understanding
comes from analytical models of the engine and its components
and concomitant experiments.
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RELEVANCE

This effort is jointly funded by AFOSR and NAVSEA,
Its intent 1s to develop an understanding of the basic fluid
dynamics, thermochemistry, heat transfer, etc. mechanisms which
are indigenous to hypersonic air breathing ramjet engines. The
results obtained will be applicable to the future hypersonic
engine requirements of not only the U.S. Air Force and Navy but
other government agencies as well. Currently the results of
this research are being applied in the hypersonic engine develop-
ment programs being pursued by NAVSEA and NASA.

APPROACH

The approach taken here is twofold. The first is ex-
perimental in nature and limited to one area of an advanced,
dual~mode hypersonic ramjet (Ref. 1) such as that shown schemati-
cally in Fig. 1, i.e., the combustion induced, shock-separated
region at and upstream of the entrance of the supersonic combus-
tor. Specifically, this effort will experimentally characterize
the flowfield in this region over a wide range of test conditions
and provide the details needed to better understand the complex
shock/boundary layer interactions which occur. These data will
then be used to develop a semi-~empirical model of the interaction
region., The second approach is an analytical effort in which
models of the dual-combustion process and overall engine cycle
will be developed and compared with the available experimental
data. The former will enhance the understanding of the details
of the combustion process, such as flow profiles, wall skin fric-
tion, wall heat transfer and chemical kinetics, while the latter
will provide fundamental global predictive techniques for the
overall engine and parametric variations thereof.

BACKGROUND

Combustor-Inlet Interaction (CII) Tests and Modeling:
In the development of scramjet engines, experimental data in
both connected~pipe(Ref. 2) and free-jet tests (Ref. 3) have shown,
that provisions must be made to isolate the combustion-induced
pressure disturbances situated at the entrance of the combustor
from interacting with the compression field of the air inlet.
The flow in this region can be characterized as a non-uniform,
shock-separated flow and pure analytical-techniques are not
available to predict this flow structure with any degree of cer-

N

tainty. Consequently, a semi-empirical approach combining experi-
mental data with a correlative analysis is needed in order to
predict the required length of isolator (Ref. 4). * Codes
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An experimental technique shown in Figure 2 and des-
cribed in Refs. 5-7 has been used to determine a correlating
parameter for the design of conventional scramjet engines (e.g.,
the SCRAM engine configurations). A shock structure was es-
tablished in a cylindrical duct in unheated supersonic flow by
use of a throttling valve. Measurements were made to obtain
the pressure distribution and shock structure and a correlating
parameter was obtained that adequately described the axial
pressure distribution as a function of shock strength for all
shock pressure rises lower than that corresponding to a normal
shock.,

The geometry, flow conditions and method of fuel in-
jection in dual-combustion ramjet (DCR) engines are, however,
so significantly different from conventional scramjet engines
that it is necessary to develop a new experimental bacse to de-
termine a new or revised correlating parameter. The current
tests are being made in the coaxial setup, consisting of a super-
sonic annulus surrounding a sonic core, which is shown schemati-
cally in Fig. 3. Tests will be made at three Mach numbers (1.75,
2.5 and 3.0) in the supersonic annulus and for shock strengths
from weak oblique to normal. The pressure and momentum ratios
of the jets could also be important governing parameters and
could affect the flow at the exit of the gas generator, so these
ratios are also varied. Once a correlating parameter is derived,
its validity will be tested by comparison with pressure distri-
bution results from direct-connect tests of full-scale dual com-
bustors (see, e.g., Ref. 8).

Component and Engine Cycle Modeling: Although indivi-
dual component and overall engine cycle analyses have been deve-
loped to the point of being useful models for conventional scram-
jet engines (see, e.g., Refs. 9-12), modifications and/or exten-
sions to these analyses as well as new analyses are needed to
model the more complex DCR tandem combustor configuration and
overall engine cycle. Currently, models of the dual-combustion
(subsonic/supersonic) combustor used in the DCR engine continue
to be developed and refined and, ultimately, will be married with
an overall engine cycle analysis such as that outlined in Ref. 1.
The combustor analyses include integral models as well as multi-
dimensional mixing and combustion models and combinations thereof.
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Each cechnique has its particular application. The
integral analysis is intended to provide fundamental global pre-
dictions of overall engine and individual component performance
which will enhance the overall understanding of each and permit
parametric studies to be made. The multidimensional analysis,
which is more complicated and expensive to use, will provide
details of the flow not provided by the integral analyses such
as flow profiles and combustion kinetics.

PROGRESS

Combustor/Inlet Interaction Tests and Modeling:
Design, fabrication and installation of the experimental hardware
and instrumentation needed for the combustor inlet Mach number,

MCi = 2,5 tests is complete. Figure 4 is a photograph of the
experimental hardware and instrumentation installed in the iLest
cell. Testing has been initiated , some results of which

are shown in Fig. 5. Here supersonic annulus wall static
pressure distributions for several degrees of supersonic nozzle
overexpansion are shown which illustrate the variations in shock
strength and axial distance over which they occur. For the cases
shown, the air flow split between the supersonic annulus and gas
generator simulator is 1l:1.

Additional tests with this configuration are currently
being made to define the supersonic annulus flow field (or
initial conditions) using instrumentation to measure in-stream
profiles and wall skin friction forces. A description of the
annulus boundary layer depends upon accurate pitot pressure
measurements. Efforts to measure the pitot pressure in the annu-
lus at various radial locations have been complicated by high
amplitude oscillations in the measured pressure. The fluctua-

tions are as high as 20%Z of the average measured value. These
oscillations are not present in the wall static pressure measure-
ments. In order to determine the cause of the apparent unsteadi-

ness, the following actions have been taken:

(1) all parts of the test rig have been all rigidly attached
to the floor;

(2) the downstream ends of the gas generator innerbody and
annulus outer wall have been attached by struts to ensure that
they vibrate in phase;

(3) the flow blockage has been reduced from 10% to less than
1%;
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(4) the pitot probe lengths have been varied;

(5) the pitot probe support struts leading wedge angle has been
made as small as possible;

(6) the upstream Reynolds number has been varied;

(7) the digital sampling rate has been increased from 0.4 to
1000 samples/sec;

(8) pressure traces have been obtained on an analog device that
is completely independent of the digital data acquisition
system;

(9) the effects of pneumatic filtering have been evaluated;

(10) all aspects of the instrumentation have been vigorously
examined for origins of extraneous noise;

(11) a small flush-mounted, high response kulite transducer,
which can be inserted in the tip of the pitot probe, has
been ordered;

(12) statistical analysis of the unsteady data has been pursued;
and

(13) the possibility of moisture condensation shock waves
introducing the flowfield unsteadiness has been evaluated.

The resolution of the causes of the apparent flowfield
unsteadiness, believed at this point to be an accoustic coupling
between the pitot probe tip and the pressure transducer, and its
effect on the attendant boundary layer description should be re-
solved by the beginning of June.

Component and Engine Cycle Modeling: An initial model
simulating the coaxial mixing and combustion process in the
supersonic combustor using a two flame sheet model (H,, CO) has
been developed along with a preliminary analysis for predicting
the skin friction and heat transfer losses along the combustor
walls. Here, the results of the integral analysis (Ref. 1) are
a required input parameter. A number of simplifying assumptions
have been made, however, in order to begin the analysis with a
reasonably well understood set of parameters. As the analysis
progresses, more realistic and, therefore, more complex models
will be incorporated.
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The analysis of the coaxial mixing and combustion
region is used to insure an adequate length of combustor for
complete burning and to predict the level of non-uniformity of
the combustor exit flow entering the nozzle, The primary goals
of the wall boundary layer calculations are predictions of the
local heat transfer and skin friction. The heat transfer must
be known to design engine coolirg systems and structure, and
the skin friction in the combustor must be known to calculate
overall system performance. The present wall boundary layer
analysis includes the important effects of entrainment of com-
bustion products from the coaxial flame into the boundary layer,.

Figure 6 is a schematic illustration of the model
used to analyze the combustor. The shape and length of the
flames are predicted at two operating conditions as shown in
Fig. 7.The H, flame is about 1 meter long. The edge conditions for
the boundary layer calculations were obtained from the coaxial
jet mixing and burning code. Figure 8 shows the streamwise varia-
tion of the skin friction coefficient and wall heat flux. Here,
predicted values of wall skin friction and heat transfer show
that both increase with increasing combustor heat release, some-
thing heretofore not predicted but observed in past experiments
on supersonic combustion ramjet engine combustors (Ref. 13).
The sensitivity of the local heat transfer to the local character
of the pressure distribution is also illustrated by the steep
rise in the air duct ahead of the combustor where a strong
shock structure is located. Further details of this effort are
given in Refs. 14 and 15.

One of the important complicating features of the flow in the
combustor is the recirculation region in the base of the thick
"1lip" of the gas generator exhaust (Fig. 1). The flow in this
region interacts with the hot exhaust jet and the inlet air to
determine the pressure and the other flow variables at the
beginning of the mixing and burning in the main combustor. The
accurate prediction of the subsequent flow in the combustor 1is
clearly dependent upon the determination of good "initial condi-
tions" as a result of an analysis of this base flow.

The present mixing and burning code uses initial conditiocns

generated by a highly simplified treatment of the base flow. We
have been working on developing a more adequate analysis. This
flow i1s actually a rather complex member of the family of base
flows that has the flow behind a projectile or behind a step as
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simpler members. However, the analysis of even those cases has
been the subject of study for some years. The more ambitious,
modern treatments involve large, expensive numerical calculations.
An approach of that type is not suitable for the present pur-
poses, since we need an analysis that can comprise but a part of

a bigger analysis. Work at APL in the last several years (Refs.
(16) - and (19) has shown the utility of soundly-based approximate
methods for many purposes. However, those analyses treat only
crudely some of the features of the flow that are important in

the current context. Thus, it has been our intent to develop new
methods that lie somewhere between those in Refs (16) - (19) and
the very elaborate, numerical methods.

The flowfield for a simple, planer base is shown schematically

in Fig. 9. We have developed treatments for separate parts

of the complete flow. The flow in the upstream boundary layer
and some of the inviscid flow above the boundary layer is taken
inviscidly through the corner expansion and the lip shock. None
but the most complicated existing analyses treat the lip shock

at all. The subsequent downstream flow outside of the viscous
base region is also treated as inviscid. The viscous treatment
of the flow in the base begins at the viscous throat and proceeds
upstream. The flow from the viscous throat to the rear stagnation
point is analyzed using generalized versions of the methods in
Refs. (16) - (19). The flow in the region above the dividing
streamline through the rear stagnation point and upstream from
the rear stagnation to the downstream end of the constant pressure
region is now treated using integrated equations of motion but
with the pressure gradient taken as predicted for a centered wave
pattern. The flow in the shear layer in the constant pressure
region is taken as described by existing analyzed for that simple
situation. A unique, composite solution for the whole

is selected by requiring continuity of the mass flow in the shear
lcyer from the downstream and upstream proceeding portions of the
analysis.

Some comparisons of predictions and experiments are
given in Fig. 10-12, Figs. 10 and 12 show centerline pressure
distributions at two upstream Mach Numbers in the range of in-
terest. Clearly, the base pressure and the major features of
the flow are well predicted. Fig. 11 shows that the important
effects of the size of the upstream boundary layer are adequately
accounted for.

Inclusion of this revised treatment of the base flow
region into the coaxial mi¥ing and combustion analysis is
currently underway.
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PLANS

Plans are given below for GFY 84 as well as the
remainder of GFY 83.

GFY 83

o Complete first CII tests series with Mci = 2.5.

O Initiate semi-empirical modeling of CII region.

o Complete revised coaxial mixing, combustion and
boundary layer analysis using refined base
flow region.

o Continue verification of uni~dimensional com-
bustor and engine models.

GFY 84

o Complete CII tests with Mci = 1.75

© Complete CII tests with Mci = 3.0.

o Continue CII modeling (completion expected in
GFY 85.

o Continue combustor and engine modeling refinements
using available experimental data to verify their
accuracy cord applicability.

REPORTS/PUBLICATIONS

Progress in each of the above areas is being regorted
in the JHU/APL Quarterly Progress Reports and by papers at
national and international meetings of the AIAA, ISABE, combus-
tion Institute, and JANNAF and their publications. Progress is

also being reported during the annual AFOSR contractors meeting
and in Annual Interim Reports.

The following reports and articles have been published
since the inception of this program in late GFY 1979:
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J. A. Schetz, S. Favin and F. S. Billig, "Flowfield
Analysis of the HWADM Combustor (U)", (Confidential),
APL/JHU Quarterly Progress Report RQR/79-3, #11,
October 1979.
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(Unclassified) APL/JHU Quarterly Progress Report RQR/79-4%
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Fig. 1 Schematic of dual combustion ramjet engine.
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Fig. 2 Schematic of combustor/iniet interaction test apparatus for scramjet.
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Dimensions are 1n inches.
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Fig. 3  Schematic of combustor/inlet interaction hardware for DCR engine.
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Fig. 4 Combustor/inlet interaction test setup.
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Fig. 10 Prediction and experiment for pressure distribution behind a base at M, = 2.03.
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Fig. 12  Predictions and experiments for pressure distribution behind a base at My = 2.30.




