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Preface

This paper culminates a nearly five year effort in pursuit of a PhD degree on

a part time basis. The last two years were spent on this particular research. The

primary aim of this study was to propose a new high resolution spectroscopic

technique using a nonresonant field to effect a level crossing. The theoretical

description of the Townes-Merritt effect, quantum beats, and level crossings are

covered, as well as a brief look at some of the important experimental parameters.

An actual experiment is suggested as a logical follow-on effort. A secondary

objective was to gain a more detailed education in quantum electrodynamics (QED)

and nonlinear effects such as level crossings and quantum beats. Several useful

techniques in atomic physics are covered in this paper, which hopefully, the reader

may find useful.

There are several people to whom I owe many thanks in the completion of

this program. First, I wish to thank Dr. Richard J. Cook who has both inspired me

in this field of study and has ultimately made it possible for me to pursue and

complete this program. It has been an absolute pleasure to work with and learn

from him. I also owe deep appreciation to Dr. Ronald L. Bagley for his willingness

to support my desire to take on such a program and constant urging to complete it.

Finally, and most of all, I wish to thank my family, Kristen, Lara, and particularly

my wife Barbara, for their continued support and patience in this often trying task.

It is to them that I truly owe this opportunity to attain a lifelong goal.
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Abstract

A high resolution spectroscopic technique using a nonresonant RF field in a

level crossing experiment is proposed. Absorption sidebands, originally observed by

Townes and Merritt (1947), are analyzed using a quantum electrodynamic (QED)

approach. A model is developed using the Heisenberg operator formalism and the

adiabatic approximation to describe the atomic dynamics. Results agree with a

dressed states approach and the original experiment. Thc model is extended to a

three level atom to describe level crossings and quantum beats for linear and

quadratic Stark shifted atoms. Expressions are developed to define level crossing

conditions and estimate critical experimental parameters.
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THEORETICAL STUDY OF THE TOWNES--MERRITT EFFECT
IN LEVEL CROSSING EXPERIMENTS

I. Introduction

The aim of this study is to develop the theory to describe the effect of an

external nonresonant electromagnetic field on level crossing experiments. The

primary motivation rests in the possibility of using these effects to obtain greater

accuracy in high resolution spectroscopy. The basis for such a study began with the

observation, by Townes and Merritt in 1947, of sidebands in the absorption spectra

of the OCS J = 1->2 transition when the sample was placed in a nonresonant

oscillating electric field [1]. These sidebands, shown in Figure 1, occur at intervals

equal to twice the modulating field frequency. The original semiclassical analysis

uses time-dependent perturbation theory to describe the frequency dependence and

relative amplitudes of the sidebands [2) with good agreement to the experiment.

The proposed application of this "Townes-Merritt Effect" involves the

determination of energy differences between nearby atomic/molecular levels by

causing respective sidebands to overlap or cross.

-4 -3 -2 -I 0 2 3 4

51070 51075 51060

Frequency (MHz)

Figure 1. Absorption sidebands in a combined static and RF Field [20].
Theoretical pattern is below experimental result.
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Level crossings and a closely related phenomenon, quantum beats, can occur

when there exist two nearby energy levels which can each transition to a lower

state. Both result from interference between the fluorescence patterns of the two

independent transitions when they are coherently excited with a short pulse.

Quantum beats manifest themselves in an oscillation of the total fluorescence at a

frequency proportional to the energy difference of the excited states. Level crossings

result in a rotation of the overall fluorescence pattern which may b- detected by a

change in intensity or polarization in a given direction. These will be discussed in

more detail later; but it is worth mentioning that an adequate description of the

phenomenon requires a quantum electrodynamic (QED) model of the interaction

[3,4], which will become the basis of this study.

Level crossing experiments are an established method used to measure the

fine or hyperfine structure of atomic and molecular systems [5]. However in these

cases, static fields (electric or magnetic) are used to cause the level crossing.

Hereafter, atomic and molecular systems will be referred to as simply atomic.

Individual levels split as a result of the Stark or Zeeman effect and orientation

quantization of the atomic angular momentum. Then, depending on the field

strength, a level crossing may occur. The indication of a level crossing is a change

in the fluorescence pattern for the transition from the crossing levels to a lower

level. The original energy level spacing can be determined from the field strength at

which the crossing occurs. In the use of static fields, key problems present are:

strong field strengths are generally required, it is difficult to generate stauic i.elds

with uniform strength over the sample; and ftirther measurement of the field

strength can be a significant source of error [6].

Use of an external nonresonant oscillating field, for example in the radlio

frequency (RF) or microwave region, would appear to alleviate the problems

2
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Figure 2. Energy Level Diagram for a combined atom-RF field system.

associated with static fields. The primary difference in the case of an RF field is

that the level splitting is dependent on the external field frequency instead of field

intensity. Figure 2 shows a typical energy level diagram of an atom in an RF field

where the levels represent the combined atom-field system. Note the vertical scale

is relative to the energy of the n photon state. The atom with no field applied has

two closely spaced upper states, I ) and 12 ), each of which has an allowed

transition to the ground state 10 ). As the field is applied with increasing

frequency, the energy levels split and eventually cross. The notation used to

describe specific combined states indicates the original atomic state and the photon

number state n, for example I l,n). It is worth noting that for each atomic state

there are an infinite number of combined states due to the infinite number of

possible photon number states; however, population of these states depends on the

field intensity. Hence, the strength of givrn transitions and observed level crossings

woild depend on the fieid strength.

3
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Figure 3. Experimental Setup

The potential advantages of the RF field approach result from the energy

level dependence on field frequency. The level crossing points would depend

primarily on field frequency which can be more accurately measured than field

strength. This, in turn, would result in a more accurate determination of the

original energy level separation. The major impact of field strength would be in the

intensity of the transitions. Secondly, unlike the static case, the field uniformity is

not a critical concern thus eliminating the principal source of error.

The proposed technique would involve an experimental setup similar to the

schematic shown in Figure 3. An appropriate sample placed in a variable RF field

is illuminated by a pulsed resonant probe beam to coherently excite the transitions.

A detector placed off axis measures the fluorescence of the sample in order to

observe quantum beats or to indicate a level crossing. The frequencies at which

level crossings occur determine the original energy level spacing.

The main objective of this research is to develop the theory describing the

resonant fluorescence of an atomic or molecular sample as a function of the

frequency of an external nonresonant field. Of particular interest is a situation with

closely spaced excited states which, due to the Townes-Merritt effect, split and

4



eventually result in level crossing. The original spacing can then be determiaied by

the frequency at which the crossing occurs.

To lay the foundation, chapter II presents a ,eview of the Townes-Merritt

effect, quantum beats and the level crossing phenomenon. The original

Townes-Merritt analysis used a semiclassical approach, which is jiot compatible

with the descrintion of level crossings; however, the results are useful as a

comparison to a quantum electrodynamic (QED) model. The descriptions of

quantum beats and level crossings provide the initial mathematical framework

which will be used later in applying the Townes-Merritt effect.

Chapter III revisits the Townes-Merritt effect in the context of QED. The

Heisenberg operator formalism is used to describ ,' the atomic dynamics.

Additionally, the calculations use the adiabatic approximation to describe the atom

in the nonresonant RF field. The results are compared to a dressed states model to

confirm the approach. The overall purpose is to understand the mechanisms

involved in the Townes-Merritt sidebands in order to apply them to the cases of

quantum beats and level crossings.

The three level atom is .. ressed in chapter IV. Calculations for the

instantaneous energy states for an atom in an RF field are performed, following the

adiabatic approach, for both linear and quadratic Stark shifts. These then are used

in descriptions of the signals resulting from quantum beats and level crossings.

Expressions describing the effect of the RF field are developed, which form the basis

of using the level crossing ,ucthod as a spectroscopic technique.

A final step, in chapter V, is to investigate the prospects for an experimental

test of this method. Suitable atomic transitions, RF field strength and frequency,

and required detection capability will be investigated. The intent here is to take an

initial look at the feasibility of conducting this type of experiment.

5



II. Background

Townes-Merritt Effect

As a preliminary, a review of the original Townes-Merritt model is required

since it will provide a comparison with any QED approach. Consider an absorption

experiment in which the sample is placed ii a rapidly varying non'resonant field and

probed with a second resonant beam. The original calculations used semiclassical

time-dependent perturbation theory to describe transitions from this dynamic Stark

effect [2,71. The wave equation for an atom in the nonresonant field is

t = Ho - p-.ocosvtj 1b (2.1)

where Ho is the unperturbed atomic Hamiltonian; p is the dipole operator; CO is the

nonresonant field amplitude; and v is the field frequency.

Using the essential states approximation with two unperturbed states

represented by Ii ) and 12 ), the solution for a perturbed state can be written as

- t

101) =[a[l)+b12)ie 0 (2.2)

where, assuming the perturbation is small, a - 1 and b is small. The term f(t) is

approximately the energy of the unperturbed state El. For a second order Stark

effect, the wave function is found by substituting equation (2.2) into equation (2.1):

{ ~ j AEsn2t) 23

J A ) = [all ) + bl2 )]exp {-(EIt + -+ - 21A) (3)

where AE1 is the static Stark shift, 2

6



In the absorption experiment, transitions will occur between I iA) and

another st.Ate represented by 103). If the interaction is H'(t) = p.Ccos wt,

perturbation theory indicates that the first order transition probability [8] is

21 2

a111(t)2 -j f( ;!,3H' 16 )dt' I  (2.4)

The intensity is then dependent on the matrix element:

(03IH' [ )00 A31Cexp{ i(W13 t + --T + -W- in 2Mt - w} (2.5)

Significant transitions will occur only when the exponential term is "slowly

varying," that is when its argument is approximately zero. The exponential can be

00nsimplified using the relation e*izsin O= E Jn(z)e~in O [9] yielding

7F==-.

(¢3i~~i h) pl~xp~~13+-- - '- - lu  t/,= .,[--T J ?All2nvt (2.6)

Equation (2.6) describes transitions which will occur for

W = W13 + 2? + 2nv, n = 0,1,+2,. .. (2.7)

j2 /3
with relative intensity J {'--j" This is the case for an atom which exhibits a

quadratic Stark effect. The calculation describes absorption siaebands resulting

from the presence of a nonresonant electric field. The position of these sidebands is

primarily dependent on the field frequency. These predictions agree with

experimental results [7] within experimental error. For the case of a linear Stark

7



effect, transitions occur for w = w13 + nv, with relative intensity J,, [ where

A = [2.

Discovery of this effect has led to promising applications. Arimondo and

Glorieux [10] and Rackley and Butcher [11] performed absorption experiments using

a nonresonant RF field to tune an atomic transition into coincidence with a laser.

In effect they adjusted the RF frequency until the fixed laser frequency matched one

of the sidebands. In a second type of application, Skatrud and DeLucia [12]

reported on using an RF field to Stark tune a laser. Here the sidebands of an atomic

transition were used for the lasing transition and, hence, the laser was tuned by

changing the frequency of the RF field.

In each of these examples, application of the Townes-Merritt effect

demonstrated some significant advantages over a static or DC Stark shift. Because

of its frequency dependence, as per equation (2.7), the Townes-Merritt effect is not

limited in the shift magnitude due to breakdown voltage, thus allowing a wider

range. Since the DC Stark shift depends on the electric field amplitude, a uniform

field is important to reduce broadening. The Townes-Merritt effect does not rely

on field uniformity, as the intensity only determines relative intensities of the

sidebands. Finally, the measurement or control of field frequency is substantially

more accurate than that of field intensity. This allows greater experimental

accuracy. These advantages lead to the proposed application of the Townes-

Merritt effect, the use of level crossings to determine fine/hyperfine structure.

Level Crossings and Quantum Beats

Level crossings and quantum beats are related quantum phenomenon that

arise from interference between two atomic transitions which have the same final

energy state [13] as shown in Figure 4. Level crossings occur when the two initial

8



12)

I1)

jo)

Figure 4. Three-Level Atomic System. Transitions can occu- frnm
either excited state to the ground state

states I I) and 12 ) coincide, resulting in a change in the polarization and angular

dependence of the fluorescence pattern. Quantum beats can occur when the initial

states are slightly different in energy; the result is a modulation of the total radiated

power at a frequency equivalent to the energy difference. In both cases, the initial

states must be excited coherently to achieve the interference effect.

In level crossing experiments, one observes the resonant fluorescence of the

atom as a function of an external field. A change in the intensity or polarization at

a specific observation angle signifies the occurrence of a level crossing, see Figure 5

[141. The crossing, or degeneracy, is due to Stark or Zeeman shifts in the original

atomic energy states resulting from an external static field. [6,15] The Hanle effect

is a special case of a zero field level crossing. The primary application of the level

crossing technique is the determination of original energy separation based on the

field strength at which crossing occurs. The sensitivity of this method is

comparable to the natural line width of the excited states. Several experiments

have reported using this method [16,17,18] to measure various parameters,

establishing it as a high resolution spectroscopic technique. One of the drawbacks is

that the static field must be relatively strong and uniform.

9
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Figure 5. Level Crosing Experiment [6]. Fluorescence intensity as a

function of magnetic field and the atomic energy level diagram.

The quantum beat phenomenon occurs when there is a slight difference in the

energy of the initial excited states. When excited coherently, the transitions from

these states interfere resulting in a modulation of the radiated power at the "beat"

frequency. [191 Figure 6 shows a representative example of a beat signal in a

fluorescence experiment. [20] A principal use of the quantum beat effect is to

investigate very slight splittings in atomic levels [21,22] where other spectroscopic

techniques do not have sufficient resolution.

To understand the theory describing level crossings and quantum beats,

consider the simple three level model shown in Figure 4 in which two excited states

can decay to a common ground state. The hypothetical experiment involves

coherently exciting the two upper states and observing the resonant fluorescence.

10
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Figure 6. Quantum Beats in Zeeman states of Cd: 5 eP, [20]. Beats
result in a modulation of the exponential decay curve.

fluorescence. The Poynting vector describes the radiation from the atom; in QED

form this is

S = -) xB + - (-) EI ) )(2.8)

where the superscript plus and minus refer to the positive and negative frequency

parts of the E and 13 fields. [23] An ideal detector measures the expectation value of

this expression which reduces to

S =(E'-).E") ) (2.9)

This is consistent with the photo ionization process which takes place in the

detector, described by Glauber. [24]

11



From dipole radiation theory [25], the E field can be expressed as

r x r x (2.10)

where p is the dipole acceleration operatol. From Cook [3], an expression for

radiation intensity, in terms of the dipole operator, results from substitution of

equation (2.10) into equation (2.9):

S r i ) - xixi( P "Pi ) (2.11)
27rcr

4

using the summation notation for the vector components. equation (2.11) gives a

means of predicting the fluorescence radiation at any point by the expectation

value of the second time derivative of the dipole operators, (#j .pj ). This

forms the basis for both the level crossings and quantum beat descriptions. In level

crossings, the item of interest is the radiation intensity in a particular direction as a

function of the energy difference in the excited states. For quantum beats, the total

power radiated as a function of time is of concern.

First consider the case of quantum beats. The total power radiated is equal

to the integral of equation (2.11) over a sphere of radius r:

" = 4((2.12)303

Now to find an expression for the dipole moment, let the energy eigenstates of the

atom be defined by

12



HIn )-E.n) (2.13)

These states are orthogonal and complete. Then a convenient operator basis set is

Unm = I n) (ml, such that in the Heisenberg picture,

AM(t) = X/Snmnmei:,t (2.14)
0fi'm

where p.m = (n il m) are the dipole transition moments. This can be separated

into the separate negative and positive frequency componerts as

A(') p Xpnmonme iW0,Mt (2.15a)
n>m

P Xpntnme iwnmt */q tqe iWpq (2.15b)
m>n p>q

Taking the second derivative with respect to time and multiplying,

2() (2) * 2 * t i nm--pq)t
S• = 2 LWnmwpPnm.P/pqo'nmOpqe (2.16)

n>ni p>q

The last term in this equation shows the presence of the beat frequency, wnm-Wpq.

At this point it is worth noting that beats will not occur for all combinations

of transitions, as semiclassical theory would predict. Only those pairs which have a

common final state exhibit the beats. To see this, consider the a terms,

rnmq In)(ml [1p)(ql]t = In)(mlq)(pI = mqornp (2.17)

13



which shows that the final states, I m ) and I q ) must be the same.

,,,(uation (2.16) is then simplified by eliminating the sum over q:

" -).p(+) 2. 2 1 einptZ Wnm Wm/LniIpm np e t (2.18)

n, p>m

where Wnp - wnm - wpm is the beat frequency. In taking the expectation value of

this sum in the state I E) = amin) , we find
m

- * H (2.19)

which is the density matrix in the Heisenberg picture. Hence, the expression for the

total power becomes

4 * H Wm (2.2w0)npt

37 n w mmPnm'/Apm Ppn (2.20)

n, p>m

As an example, consider a three-level atomic system as shown in Figure 4.

With the ground state defined by m=0, there are tour combinations of n, p. The

radiated power is then given by

W= 4 I lo I2p, + 4iAoI e21p 2

4woo H H 1+ c [ "r1AOP2o ,21e + A2o'Plo P12ei t  (2.21)

This clearly demonstrates the presence of a beat frequency w2l , provided the upper

states are coherently excited, p, 1 0.

14



For level crossings, specific characteristics of the radiation field as a function

of the energy level separation are important. Generally, a change in the fluorescent

intensity at a given observation point indicates the level crossing. To develop an

expression for this, rewrite equation (2.11) as

2r2rii-xrxi Pi(rIbl "Xtj +)  (2.22)

Using the expression for the dipole product in equation (2.18)

S -= r , L-i I) 2 2 1
2rc-r4  n- Wpm *nm'Pm Pr (2.23)

n, p>m

Once again consider the three level atomic system shown in figure 4. As

before the summation yields four terms. Assuming Awo a w 0,

S - (r2bi i-Xix 4[,i " *S= 27crCU4 -0 11o0 Mo PI + /40 40 P2

+ 1440 P21(t) + 4010 P12(t)J (2.24)

This describes the fluorescence as a function of position. It depends on the dipole

moments and the density matrix.

To gain further insight, consider a relatively simple case of Zeeman splitting

in the 2p states of hydrogen, specifically the m = ±1 states. The dipole moments

for these states can be written [271

A1o = P0(x + iy)

P2 = Po(x - iy) (2.25)

15



If the spontaneous emission rate is A for both states, the density matrix

elements associated with the upper levels can be written as:

P = P2 oQ2 eAt (2.26a)

* = 1 2 Q2 eiAt-At (2.26b)
P12 = P21  2go.2

where Q is the time integral of the exciting pulse envelope divided by h and A is tile

frequency corresponding to the energy difference between the excited states [28].

Using these equations in equation (2.24),

S = w0g0 eAt [1 + cos20 + sin2 0 cos(20--At)] (2.27)

where 0 and 0 define the observation angle, in spherical coordinates.

A detector placed at a given angle will see an energy pulse whose total

energy is defined by integrating equation (2.27) over time:

=w [ + + Asin Acos2¢+Asin 2)] (2.2S)

For the direction 0= 1, 0 = 0 this becomes

W4°Q[ + A (2.29)

Figure 7 shows equation (2.29) as a function of the energy difference. There is a

16
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Figure 7. Fluorescent Intensity at Level Crossing. Crossing occurs at A = 0.

significant change in the observed fluorescence at A = 0. In addition, this has a

narrow width, on the order of the natural linewidth (FWHM=2A), making this

technique potentially useful for high resolution spectroscopy.

The mathematical descriptions of quantum beats and level crossings in this

section provide the necessary framework to address the effects of a nonresonant RF

field on the atomic fluorescence. Equation (2.20) for quantum beats and equation

(2.28) for level crossings describe signals as a function of the energy difference

between the excited states. Similar expressions will be developed for the atom in an

RF field, except that the energy difference will be a function of the field frequency

due to the Townes-Merritt effect. The next section examines the Townes-Merritt

effect using the Heisenberg operator formalism to describe the atomic dynamics.

17



III. QED Description of the Townes-Merritt Effect

To understand the impact of the Townes-Merritt effect on level crossings

and quantum beats requires a reformulation of the Townes-Merritt description in

terms of quantum electrodynamics (QED). It is convenient to use the Heisenberg

operator formalism in developing a model to describe the effect. Initially, a two

level atom in a resonant field is examined to gain insight in using the formalism.

Then the case of the atom in a nonresonant field is discussed. Here the adiabatic

approximation is introduced, which will be central in the description of level

crossings and quantum beats. Combining the nonresonant field with a near

resonant field, using the adiabatic approximation, results in a description of the

Townes-Merritt effect. Two cases will be considered: a linear Stark shift of a single

excited state and a quadratic Stark shift. A QED model is then developed, and the

results compared to the adiabatic approach. This validates the adiabatic approach

as a means to describe the atomic dynamics in a nonresonant field. As a final step.

the dressed states model is used to describe the Townes-Merritt effect. The results

further corroborate the adiabatic solution which will be used in level crossings and

quantum beats.

Heisenberg Operator Formalism.

In the Heisenberg operator formalism the set of operators defined by

O'ij - i) l(t l

forms a complete operator basis, where Ii ji ) = Ei i ). An, irbitrary operator A

can then be described by

18



A = Aijij (3.2)
1,j

where Aij- (i I A(0) J ). In the Heisenberg picture, then, the a operators obey the

equation of motion

"H 1 -H
vij= T [aij,H ]  (3.3)

with the initial condition o j(O) = [i) (j . Thus, the time evolution of any

operator can be determined by solving for "j(t), and the expectation value of the

operator, which represents a physical observable, can be found by taking the

expectation values of a ij-

The a operators exhibit useful mathematical properties. They are a closed

set under multiplication

ij Onm jn im (3.4)

which is useful in evaluating equations, such as commutation relations. The

commutation rule for these operators is

[jnj,b1ml = jn m - nmianj (3.5)

In addition, the Hamiltonian for an unperturbed atom can be represented by

11o = X .Wnn n (3.6)

19
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Figure 8. Two Level Atom

The time evolution of 4i4 is then given by

= iwjjij(0) (3.7)

where Wij = -1.

Consider now the two level atom with energy eigenstates shown in figure 8.

Define the a operator basis in the following way:

r i 1 21

G3 - 2 21 - 11 >( 11 (3.8)

These two operators contain all the information for the two level atom. The

unperturbed atomic Hamiltonian can be represented as Ho = hwoo3 . In the

electric dipole approximation, the interaction Hamiltonian for the atom in the

electric field is given by

III = - .U(t) (3.9)

20



The electric dipole approximation is valid when the E field spatial variation is

negligible over the extent of the atom [8], which is the case here as the RF and

optical wavelengths are large compared to the atomic diameter. The form of p and

E will define specific cases for the interaction. Initially consider the atomic levels to

have definite parity and treat the E field classically. The dipole moment is then

IL01C "]cO' U (3.10)

where c is the unit orientation vector. Let the electric field be classically prescribed

in the form E = d.cos wt , which is oriented in the same direction as the atomic

dipole. For a strong field this is reasonable as will be shown in the QED treatment.

The total Hamiltonian is then

H: = jhWoa 3 -PE(' + 0')cos Wt (3.11)

Using the Heisenberg equation of motion and the commutation relations for the 0

operators,

a -w - i Qcos t 0a (3.12a)

a3 = -i2lcos wt (a- a) (3.12b)

where Q = is the Rabi frequency.

If the field frequency is close to the transition frequency, w , w., a near

resonance condition exists. The first term on the right hand side of equation (3.12a)

is the dominant term, so an approximate trial solution can be written
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=S e- iw ot (3.13)

where S is slowly varying in time. Substitution into equations (3.12) yields

=-if(ei t+ )-iwt e i0t (3.14a)
3 = -fl(e + e-t(Se-ot -Se 0 ) (3.14b)

Since w % w., the terms with frequency of ~2t o can be ignored, as they are rapidly

oscillating. These do not contribute significantly to the solution since they average

to zero over a short time period, much less than the period of an observation. This

is commonly referred to as the rotating wave approximation. Thus,

S = -- e"- t
a  (3.15a)

o 3 = -i(,iAt- Ste - t) (3.15b)

where A =  - wo is the detuning.

Of particular interest is the on resonance case, when A = 0. Equations (3.15)

can then be reduced to

a = -g 203 (3.16)

A solution for the inversion operator, a3 , can easily be found, after taking the

expectation value of equation (3.16):

a3 (t) = o,3(0) sin(fPt + ¢) (3.17)
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This shows the Rabi oscillations at frequency 0. The Rabi frequency depends

directly on the field intensity, and a higher frequency indicates greater absorption.

In order to more precisely define the absorption rate, spontaneous emission

needs to be considered. From a phenomenological argument [291, spontaneous

emission can be included as additional terms in equations (3.12)

a = -iW.oa- iQcos 0 3 --,2-0' (3.18a)

o3 = -i2flcos t (a - at) - A(a 3 + 1) (3.18b)

Justification for these terms will be shown later in the QED section where the

electric field is quantized.

Following an approach similar to the previous case, let a = ,&-i t . The

equations of motion then become

S= iAS-i0a3 - Ea (3.19a)

a 3 = S-)- A(o 3 + 1) (3.19b)

For steady state conditions, S a -0, the solution for the expectation value of or3

is

A2 + 4A2

03 = - A2 + 4A 2 +-!!M (3.20)

The probability of being in the upper state is then

P2= + ar3) = A2 + 4A2 + Q2 (3.21)
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Figure 9. Absorption Cross-Section. The lineshape is Lorentzian, with a
weak field width (FWHM) of A.

This is a Lorentzian function of width (FWHM) 4rA2T+1. The term 2t 2

represents power broadening. For weak field conditions, A2 ) 2fP , the probability

of being in the upper state is directly proportional to f2 . The absorption

cross-fection aA is equal to the rate of spontaneous emission, AP 2 , divided by the

incident photon flux density " I is the light intensity which can be expressed as I
=W. Thus,

a wAP = r=hcA Ae 2 (3.22)

where ( 2 = . Figure 9 shows the absorption cross-section as a function of the

detuning A. The A coefficient can be expressed as A = 4 , so for a weak field

the peak is ao = 6 11--2

Adiabatic Approximation

The Townes-Merritt effect occurs when there are two electric fields present,

one nonresonant which will be referred to as the RF field and one resonant probe
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field with a frequency near the transition frequency, w z wo. The RF field frequency

v is much less than the transition frequency. The Hamiltonian is then

H=HO-p.Ev- l.E, (3.23)

To find a solution describing the atomic dynamics, first consider only the effect of

the RF field on the atom. Since it is far off resonance and is slowly varying as

compared to the transition frequency, the adiabatic approximation is useful [8,30.

Here the instantaneous energy eigenstates form a convenient basis set:

HA(t) I n(t) ) -- En(t) I n(t) ) (3.24)

where H A (t) = HO - p. E. The physical interpretation of this approach is that as

the RF field changes, the eigenstates evolve adiabatically with the field. The state

In(O) ) at time zero, with field strength zero, will evolve to a state I n(t) ) at time t

that is Stark shifted by the field E(t). Since the RF frequency is far off resonance, it

is reasonable to assume no transitions occur. Additionally, these eigenstates remain

orthonormal throughout. The total wave function is written as

a. I n) ) = Xan 0 n(t)) e (3.25)
n

This approach is valid so long as a, which represents transitions, is small.

As stated, the adiabatic approximation is useful for cases in which the

Hamiltonian changes slowly in time, in comparison to the atomic dynamics. This is

just the case for the atom in an RF field when the frequency v is much less than the
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transition frequency wij. In the adiabatic treatment, the energy eigenstates and

eigenvalues are smooth functions of time which change in a continuous manner with

the Hamiltonian satisfying the 'time independent' wave equation (3.24).
"H

Of particular interest is the Heisenberg equation of motion for i - i(t) ) (

j(t)1. In the adiabatic approach, the equation of motion will be approximated as

SH iwjt Hrij ;: i j (3.26)

The additional terms will be be small and rapidly oscillating, such that they do not

contribute to the evolution of the states from which physical transitions occur.

Conversion to the Heisenberg picture is defined by a unitary transformation

U(t) which satisfies

0(t) ) U(t)( ) (3.27)

where I b) is the solution to the Schrodinger wave equation. Substituting equation

(3.27) into the wave equation

NA= )) = H(t)U(t) 0(0)) (3.28)

From this, the time dependence of U can be seen:

U(t) = T H(t)U(t) (3.29)

An operator is defined in the Heisenberg picture by
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A H = U ? AS U (3.30)

Now Take the derivative and use equation (3.29) to get

AH='t s +I t s  + t IS

A H

A[A , H F (3.31)

where the last ternt is defined as = UASU , which arises if AS has an explicit

time dependence. This then is the equation of motion for any operator in the

Heisenberg picture.

"HH

For aij using equation (3.24), the equation of motion becomes

a.- +W (t)o'ij+-i- (3.32)

where w EE(t) An expression for the last term can be developed by

first finding

li il + i )( i (3.33)

Using the identity operator

8. = X 1k)(kli)(jI + I Ii)(ilm)(m1

k m

= I(k i) Okj + X(im) O'im (3.34)
k m
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Now an expression for the inner products is found by differentiating equation (3.24)

OOEIC-1-Ii ) + HIi ) = OTt-Ii ) + Eiji) (3.35)

Then multiply by ( k 1, where k~i

(kji) = - (3.36)hWi k

Fork=i, (ili) =0 since (ii )=1. Thus,

H0ri k kI "HIi -HH jitim (3.37))~; "k + j'H I "H 
---t a 7jX_______im

ki ik hkjm

If the RF field is written as E(t) = Ccos vt, then

a- = -p" =p-t Cvin v (3.38)

The equation of motion then becomes

itij(t)o'i 1-- - (3.39)
iw ^(toj +XIt "vs k + 7vsin v a . H10

k~i m~j

The first term on the right hand side is the dominant term, which is seen by

comparing magnitudes of the coefficients.

8i < jw ijj 
(3.40)
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where fki =Ai is the Rabi frequency, and is typically less than v. This is the

condition of validity for the adiabatic approximation [301. As a result, an

appro::. .r m e solut.", fo (t) can be written

O'jj(t) = Sij(t) e"i jt (3.41)

where Si is a slowly varying function and Oij is the unperturbed transition

frequency. Substituting this into equation (3.39)

Sij = :10ii(t) i]ij k W ini vt .kje:wkit

k#i

+ f Imv in t m e| jm (3.42)
m~j

Notice that all terms in the summations have frequencies of order Wki v i. Since

V ( wki, these terms are all rapidly oscillating and can be neglected. The result is

that the terms arising from can be ignored in the equation of motion, which

can then be approximated as o i aOij for the atom in an RF field. The

solution takes the form

• f wt) dt

a'ij(t) = a'U(0) eif wi(t0 ) dt' (3.43)

This result will be most useful in describing the atomic dynamics in a nonresonant

field. When a near resonant field is added, the Townes-Merritt effect results. For

level crossings and quantum beats spontaneous emission is considered. But in all

cases, evaluation of equation (3.43) for a specific set of energy states is central.

29



Townes-Merritt Effect

The adiabatic approximation defined a set of energy eigenstates for the atom

in an RF field. Application of a near resonant field will now cause transitions to

occur between the energy states. These transitions will occur not only at the

fundamental frequency, but also at frequencies shifted by integer multiples of the

RF frequency; this is the Townes-Merritt effect. The analysis here is very similar

to that of an atom in a resonant field, except in this case the energy states are the

instantaneous eigenstates from the adiabatic approach.

Consider the two level system depicted in figure 8. An exact solution exists

for the energy states when an RF field is applied [27]:

1 Cos 12 [sin (3.44)

where tan 20 = - -vcos vt. This assumes a quadratic Stark shift, the linear case

Wo

will be covered later. Note that since usually Q , ( w, , values of 0 will typically be

small, the new states will be approximately the sane as the original. The

instantaneous energy levels are

E !! [2. + 4 V (3.45)

where the plus and minus refer to the upper and lower states respectively. The

instantaneous frequency difference is then given by

w'(t) = 4= + (3.46)

In the Heisenberg operator formalism the a operators will be defined by these
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adiabatic states such that,

a ij(t) - i(t) X( j(t)l (3.47)

and their time evolution will in turn define the atomic dynamics.

The Hamiltonian of equation (3.23) can be rewritten as H = HA + HW

where the interaction with the resonant field is given by HW = -IX" cos wt. The

Heisenberg equation of motion for the a operators is then

01i = T, [oij,HA + HJ = iwij(t)ij + [,ij,HJ (3.48)

where the H superscripts for the Heisenberg picture have been dropped. Now

consider the case of the two level atom with a operator defined by equations (3.8):

a = -iw'(t) a- iQcos wt O73 (3.49a)

or3 = -20 ,cos ,t (a - of) (3.49b)

These equations are very similar to the case of only the resonant interaction except

for the time dependence of w'. The solution follows much the same approach.

Assume
t

i ow'(tl) dt'

a(t) = S(t) e o (3.50)

This is reasonable since, in equation (3.49a), -iw'(t)u is the major contributing

term. Substituting the assumed solution into the equation of motion and discarding
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the rapidly oscillating terms (rotating wave approximation), one obtains

t

, _ r e-if A(t') dt'41a (3.5 1a)

• [. fi A(t') dC t -if= t~ -A* fo(t') t]
0'3 = _in~e 0 e 0(3.5 1b)

where A(t) w - [0 + 4pIcos2vt] . First consider the exponential terms,

t t

if A(t') dt' f w + 4Qc2CL4II' 2dtI 3.2e 0=e 0(3.52)

Since D., ( wo,

20 + 4 2cos'itJ' o + cosILt +.-. (3.53)
wo

Ignoring higher order terms leads to

At 2f?2 2p 1)2 12Jf w 0 0 0  w sin 2vt3.4t(WO + ___ os s )dt' -- w ot + -- t + nvsi M(354

An exponential term with a sine argument can be expanded as a Bessel function

series:

- -v- n  e -i2n t (3.55)
e = Jo ( )

The exponential then becomes

32



if A(t') dt' n2 i(w - wo- -- 2nv)t
e 0 O J"(noV Wo (3.56)

n

Now consider an on resonance case where

W; w. wo + v + 2mv (3.57)

WO

Then,

if tA(t ' ) dt'
e=0 jn e!(mn)t (3.58)

Similarly,

-if tA(t') dtf= f12 - - 2 (m - n l ut

e - ~Ja(T-j) e2 (n l (3.59)
I WO

The equations of motion become

n2
Ii=_ DJi( ) e i2(m-n)t4 (3.60a)

•~~ ~~~ -~ jtf -i2(m-n)ut__t " j )f2 -ei2(m-n)ut]
U3  n 1.. L J (j2 L)e (3.60b)

n

For the case of interest the RF frequency is much greater than the Rabi

frequency, v > fl , so that power broadening does not cause individual sidebands to

overlap. For a similar reason, the RF field frequency must be greater than the

natural linewidth, v > A. Since the operators evolve at the frequency fQ. , the only

cnntributing factors in the expansion series is for m = n ; the others rapidly average

to zero. This is the equivalent of the rotating wave approximation. Thus, the

equations of motion becoir.e
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= _ (3.61a)

a3 = 0 -iflJm [,n2 - _t] (3.6 1b)

These are similar to the previous case without the RF field, equations (3.16), except

for the Bessel function coefficients. With a zero RF field strength, they revert to

the earlier form. The solution for the inversion operator a3 is

03 = a3(0) sin[Jm( p) f'Rt + 0] (3.62)

Again, this shows Rabi oscillations at frequency JmRlO reflecting the relative

absorption strength of the sidebands. The result agrees with the original

Townes-Merritt calculation for a quadratic Stark shift. The absorption occurs at

frequencies w. - w. + W + 2mv, with relative intensity M ,

0 TO '

To include the effects of spontaneous emission, consider a more general case

of the equations of motion where the incident radiation is slightly off resonance:

tI
S =AZffe 0 r (3.63a)

tt

V. fA(t') dt' t. -if A(t') dt' Au 3 l 36bo" -. Se fo -S e 0 - A(a3l (3.63b)

where again A(t) - wJ + 4Q~cos2vt]. Now let w = wo + z- + 2mv + Aw,
w~o

where Aw is small, describing the condition where w is slightly detuned from the m

sideband. The exponential terms can be expanded similar to the Following the
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development of equation (3.59), which results in

t

±if tA(t') dt' ~e 2m~)t(.4
e e J (.4

n

Elimination of all terms in the expansion except for m = n, results in

motion for the expectation values are then

V) --6rWJm( , v)a 3 --- (3.66a)

a3 - -Jm( 2 ) a3+ 1)-A(u 3+1) (3.66b)

0

The steady state solution for the inversion operator is

A2 + 4Aw 2

2.2

= = A&U _ 4Sw2 + 2iW±!LJ (3.67a)

_in ~J 2 ( 2 -)

difference is the Bessel function term m ,2o ) which serves to determine the
relative strengths of the sidebands. For is, = 0, Jm(0) =0m and the equation

reverts to the non-RF case.
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Figure 10. Absorption cross-eection for an atom in a nonresonant
field of frequency v.

The absorption spectrum consists of a series of peaks separated by 2i'. Near

each peak the probability of being in the upper state is given by

P_= 1+3 = A2 + 4Aw2 + 2f J~,(368

where aw is the local detuning. From equation (3.22), the absorption cross-section

is

8 wwoAp 2J~ l(.9=hc[A2 + 4AW + 212(3.9

Each peak is a Lorentzian function centered at w = w0 + + 2mv, having a

linewidth (FWHM) f22 TJ. For a weak field, fl2 ( A2, the individual

absorption peaks are acJos, where o is the peak absorption in the non RF case.

The spectrum is shown in figure 10, which shows the expected absorption sidebands.

This agrees with the original Townes-Merrittt analysis g2,7].
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The case for the linear Stark shift is very similar to the quadiatic case,

except the calculation for the instantaneous energy states is much simpler, as will be

shown. Recall, the Hamiltonian for the atom in an RF field is

HA = 2  ou3 - i" E, (3.70)

For a linear shift, the interaction term can be written

E, = [JOj cost (3.71)

To determine the energy levels, let HAn n E.n) ,which results in

1
El = - 00 -EA#ncOs .1t (3.72a)

E2 = Po - CA22cos "t (3.72b)

The instantaneous transition frequency is then

w'(t) = wo -Dvcos 4t (3.73)

where fi? - -

As in the previous case, when a probe beam is turned on, the equations of

motion for the Heisenberg operators become

a = -iw'(t) 0' - i bcos t o,3  (3.74a)

a3 = -i2f2cos ut (a - t) (3.74b)
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The solution is similar to the previous case. Define A(t) = w - wo + l(cos vt,

then

eiftA(t ' ) dt' - i(w - wo + nv)te 0n~ e (3.75)

Let w 'o - mu, and consider only terms where n =m

S U3  (3.76a)

0'3  -[-=) (3.76b)

Ts j 3 and the solution can be expressed as

q3 = o,3(0) sin[J(-) f1,t + 01 (3.77)

This differs from the result in the quadratic case by the Bessel function

argument and that the transitions occur for every integer multiple of the RF

frequency v with no static shift, instead of just the even harmonics. The expression

for steady state absorption in the linear case is the same as equation (3.69) except

again the Bessel function term has a different argument. The relative strength of

the absorption sidebands is given by M _

The descriptions of the Townes-Merritt effect derived using the Heisenberg

operator formalism and the adiabatic approximation agree exactly with previous

published approaches and experimental results [2,261. This gives a great deal of

credibility to the approach, which will be used to describe level crossings and

quantum beats. But before moving on to those subject, it is important to consider a

quantum electrodynamic analysis of the Townes-Merritt effect.

38



Quantum Electrodynamic Treatment

In the previous suction, spontaneous emission was included based on a

phenomenological argument. A more rigorous approach involves quantization of the

radiation field. This QED approach gives stronger justification for the spontaneous

:_n'rinP 'ermq. and provides a more accurate representation of the atom-field

system. Recall, that level crossings and quantum beats result from QED effects. It

will be shown, however, that for a strong, classical-like field the QED description of

the Townes-Merritt effect agrees with the Heisenberg operator approach presented.

The Hamiltonian for the atom-field system in QED is

1 - (3.78)H = ,oa3 + htkaxakx E (3.78)

The first term is the Hamiltonian for the isolated atom. The second represents the

electromagnetic field where ak and ak-' are the creation and destruction operators.

The third term is the interaction Hamiltonian in which the electric field is now

quantized. In the Townes-Merritt effect, the electric field consists of the

nonresonant RF field and a near resonant probe beam:

E Ev + EO (3.79)

First consider the atom and the RF field. Following the adiabatic approach,

define a set of basis states which satisfy the equation

HA I n(t) ) = E(t) I n(t) ) (3.80)

where HA = hwoa3 - p. E, , as before. These states are the instantaneous energy
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eigenstates of the atom in the RF field, which adiabatically follow the relatively

slowly changing field. In the Townes-Merritt effect, the RF field is sufficiently

strong that E. can be treated. Thus, expressions for the energy states and values

would agree with those previously developed. Also recall, in the adiabatic

approximation, the equation of motion for ij is

aij ='T [ij'HA ] = i ij(t)o'ij (3.81)

Here the H superscript for the Heisenberg picture has been dropped for simplicity.

Adding the probe field, E, , the equation of motion becomes

I
Oj Z' [iJ] -- iwi(t)abiJ- [hijp. Ej  (3.82)

The operator Oij commutes with the a and a operators so the electromagnetic field

term of the Hamiltonian has no impact on the equation of motion. To derive an

expansion for the remaining commutator relation, recall = 4a + at). Also for

the two level system, use

r = I1 )(21 (3.83a)

o3 = 12 )(21- I )( l (3.83b)

as the a basis set. The equations of motion are then

o = -iw'(t) 0- i.E"a3  (3.84a)

r3 = - (or -or 'E4 (3.84b)
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where w'(t) The total field E, commutes with the atomic operators

since it is a function of a and a

The electric field E , can be separated into free field ant source field terms:

EW = Eo + ES  (3.85)

The free field term represents incident electromagnetic radiation. The source field

results from the radiation reaction field of the atom. These terms can be further

separated into positive and negative frequency components, after Glauber [24]:

E = E ") + E( - )  (3.86)

This is easily seen in the quantized expression for the free field:

E k~x-wkt) + - -i(k x- x-wkt )  (
[2 7J [tkxa kXe +~~ CkXk (387

where the first term with a is E" ) and the second term E(-'. Before discussing the

source field, there are some relations between the a and a operators and field

coherent states to cover, which are important in evaluating the equations of motion.

A coherent state provides the closest quantum mechanical representation of a

classical electromagnetic wave. It is a good description of laser radiation, which is

the case of interest here. The coherent state is a linear combination of number

states given by

1a) -=e-Hl'" • 1 2 nn o • (3.88)

n = WiT
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where a is any complex number. Unlike for the number states In), the expectation

value of the E and B fields are non-zero for coherent states. Coherent states are

also described as minimum uncertainty states, for the product of the position and

momentum uncertainties is the minimum allowed by the Heisenberg uncertainty

principle. This type of state is then the closest description of a strong classical field.

7Ihe coherent ns e it, ai eigeiwcac,- uLf the detructicn operator a:

ala) = ala) (3.89)

The field coherent state, I a) ' is defined as the product of individual coherent

states:

la)F 'al )la 2 " (3.90)

where the indices represent all possible k and A. Relations foi field coherent states

are

akxl a )F = akXl a )F (3.91a)
alakX = Oti,( al (3.9 1b)

With these expressions, it can be shown that

a F )F (3.92a)

F< al ' (-)F < a' (3.92b)

where

) = rttwk k i(kx-Wkt) (3.93a)

k, X
0 (kXakxe
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Equation (3.92) will be useful in developing equations of motion for the 0 operators.

The source field, E. , occurs due to the presence of the atom. It is a!so

referred to as the self field or radiation reaction field. It arises from the need to

compensate for energy lost from the system due to radiation. Classically, as the

atom radiates energy, the energy of the atomic dipole must decrease accordingly.

Q'nantium mechanically, the expectation value of the electric field due to the atomic

dipole decreases. From classical electrodynamics and the correspondence principle,

a QED expression for the source field is [31]

2

S 3 -(3.94)

This agrees with the QED derivation [29]. In the equation of motion for o, equation

(3.84a), the primary term on the right hand side is -w'(t)a since J O . Thus,

the -h'd derivative can be approximated as

The source field expression then becomes

E = +) + - ) =2-() a ) (3.96)

which will be used iii developing the equations of motion.

The equations of motion are put in the normal form, where the at operators

are to the left and the a operators are to the right, by separating the electric field

into positive and negative frequency portions:
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0' -iw'(t) 0'4is.EI + (3.97a)

o3 -2 ( , - at ) + (o -t Et + (3.97b)

This is possible since the positive and negative frequency portions individually

commute with the atomic operators. Each' field term can then be split into free field

and source field terms. Using equation (3.96) and the o operator product rule

ae A O A t (3.98a)

~ t _t
0' 2tpE' a )+(a - o )p .E ' A(o,3 + 1) (3.98b)

where A is the Einstein A coefficient, representing the rate of

spontaneous emission. This leaves only the free field terms.

Since the atom-field system is fully quantized, the state of the system can be

represented by the product of the atomic state and the field state:

Iq > ) = 1PA ) I a )r (3.99)

where Ia F is a field coherent state. Taking the expectation values and using the

eigenvalue relations of equations (3.92), the equations of motion are

01 -ia'(t) 0- p.io(t) a3 - - a (3.1noa)

4 -2F i.o(t)[o- a - A(a 3 + 1) (3.100b)

where Co(t) =- E(* + CI-1 , represents the incident probe beam and can be written

as Co(t) = Cocos wt. In this case, the equations of motion are equivalent to those in
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the previous section usihg the adiabatic approach. To demonstrate this, let

= S(t) exp{-if tw'(t ' ) dt'}, where S(t) is a slowly varying function. Since w : w'.

the rotating wave approximation is valid, and the equations become

t

-ifA(t') dt' A= - z f ea00' - _ _ ( (3 .10 1a )
t t

eoA(t')* d t '  -ifA(t') dt']
U3 = -if-ei a--$ e o - A(a 3+i) (3.101b)

where flu, = F- and A(t) = w - w'(t) . These are equivalent to equations (3.63)

in the adiabatic approach; hence, the results are the same.

For a quadratic Stark shift, the instantaneous transition frequency is

w'(t) = fr o + f)2cos2vt] . Transitions then occur a frequencies wm = wO + -
' +Wo

2mv, where m is an integer, with relative intensity M . The instantaneous

transition frequency for a linear shift is w'(t) = wo - RQcos vt , and transitions

occur at Lm = w + my with relativc intensity Ji-v

The results of this more rigorous description of the Townes-Merritt effect

agree exactly with the previous method and with the original Townes-Merritt

experiment. This adds greatly to the confidence of the model using the Heisenberg

operator formalism and the adiabatic approximation to describe the effect of the

nonresonant RF field. This adiabatic approach will be used to model a three level

atom in level crossings. But first, a third method using dressed states to describe

the Townes-Merritt effect will be examined to provide further insights to the

physical processes.

45



n

-_ -_ -_ -_ -_ -_ - -_12 )
m -

Ii)

Figure 11 Dress'd States for a Two Level Atom. Each atomic state is
combined with a photon ladder representing the possible
number of photons in the field. The combined energy states
are represented by dashed lines.

Dressed States Model

Dressed statcz z.re useful in visualizing the transitions which can occur in the

Townes-Merritt effect, although the mathematics is cumbersome. The purpose here

is to describe, with the dressed states model, transitions which give rise to the

adsorption sidebands, and thus, further validate the adiabatic approach. Cases for

both the linear and quadratic Stark shift will be examined.

A given dressed state is a co-mbination of the atomic state and the photon

number state. The energy level diagram consists of the atomic energy states

superimposed with a ladder of the photon states. Figure 11 shows a two level atom

in a nonresonant field. The state I 1,m ) represents the ground atomic state with m

photons present, and is equal to the product of the two states, 1 1) a I m ) p . When

a probe beam is applied, transitions may occur between the ground state ladder and

the excited state ladder, say between I l,m ) and 12,n ) . Allowed transitions

depend on the actual energy states. If only the original states are considered, the

dipole matrix would be
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/hm2n = ( 1,mp 12,n ) 12( m ) = 12bm. (3.102)

This would prescribe that only transitions where n = m could occur. However, the

actual energy states are liear combinations of the unperturbed states,

7i--) = ECijjnlj'mn) (3.103)

j,m

so transitions where n # m may occur. These states are indicA, 2d by dashed lines in

figure 11, and are slightly shifted in energy. The transition strength is proportional

to the square of the dipole moment and is then dependent on the coeffi ient Cijn, .

The transition frequency is a function of the new energy levels. The new states

satisfy

Hi ) = EinliT-) (3.104)

and thus, are dependent on the Hamiltonian. Two cases will be considered here, the

linear Stark shift of the excited state and a quadratic Stark shift.

For the linear case, the Hamiltonian can be written as

H = hwoat " + hvata- po.EI2)(21(a + a) (3.105)

where IEI = £/2Fm-- and m is the average number of photons [29]. The

ground state is uncharged, so I1-,-m) = I 1,m ) . The new excited state ladder is

a linear combination of tlhe 12,m ) states only, given by

ITn) C,12, m (3.106)
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Note that the coefficient Cnm should tend towards b,,. as the field strength goes to

zero. Substituting this into equation (3.104)

XCnm(hwo+ twml)12,m) - ICnpo.E[i-ii2,m-1) + +1I2,m+l)]
in in

= E2 n 1CnmI2,m) (3.107)

Multiplying by ( 2,m' I results in

CPm(ho+ trn) - Cnm-, Aso' Ef-ii + Cnm.i Po' Efii = E2nCnm (3.108)

Let E2. = hwo + nhw, and assume f m+; F F m f which is valid for high

photon occupation states. Equation (3.108) then becomes

n2(m-n)v

am f - Cnm_1 + Cnm-1 (3.109)

where = = - = QV as before. This recursion relation is equivalent to one

for Bessel functions [9], where Cnm = Jmn(fv) . Thus the energy eigenstates are

J'n(--) 12,m (3.110)I2-I>

with energy

E,, = ho +n (3.111)

Note as C tends toward zero, becomes nm•

Transitions from the atomic ground state to the excited state are a function

of the dipole matrix element. For an atom initially in the I1--) state, the
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transition probability to the I -) state is proportional to

Al1m2I 2 -I( ^,ml1 ,-n)1 2

k

= po j2( v) (3.112)

The transition would occur at frequency w = wo + (n-m)hv,, with relative
intensity Jm_n( v) . This agrees with the result in the adiabatic approach; here the

difference term, n-m, represents the n-m sideband. For the total transition

strength, the individual moments are summed over the distribution in the ground

state ladder, but the relative strengths of the sidebands would remain the same.

For the quadratic case, the situation is a little more complex since the energy

eigenstates are functions of both original atomic states summed over the photon

states:
IJF) ZCjnkm~k,m) (3.113)

k, m

The Hamiltonian for a many level atom in the RF field is

H hw^+hzs aa - - a E^t (3.114)
O'n nnmPnm Ia

n nlM

Substituting equations (3.113) and (3.114) into (3.104)

ICjnkm(hw&k+ mhv)lk,m) - ICjnkm Ppk.E[-mIp,m-1) + -I- p,m+1)]
k, m p, kim

=EjnZCjnkmlk,m) (3.115)
k,m
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Multiplying by ( k',m' I results in the following recursion relation:

[thWk + mttw- Ejn]Cjnkm /kp.E[1-m+-Cjnpm+i+ -mCjnpm.-] (3.116)
P

This is still a general relation; the linear Stark shift of the previous example occurs

when pkp is non-zero only for k = p = 2. For the quadratic shift, Pkp = 0 for k = p.

Consider initially the upper state of the two level atom, j = 2. Let

E2 = Mwo + nh, + f. . The index k can take on values of I or 2. For k = 2,

[(m-n)hv- (C =n2 =-121.E[4M+C 2nlm+l + 4f-mC 2 U1 ]w-d (3.117)

For k = 1,

[--O.w(m-n)tw- nIC 2 nim = A 2 ,E[ m-+1C 2 n2 m+, + T-MC 2 2mI] (3.118)

Then substitute equation (3.118) into equation (3.117):

[(m-n)hv-fn]C2 n2 = Ip 2 ,E12[(m+1)C 2 n2m + m+2 )(m+ C 2 n2m+2
1I I .hw - (m-n+!)Ttv + cn

+ mC 2 n2 m + rmm-l)C 2n2 mU-2] (3.119)h Two - ( m-n-1I)hw - en J

Again assume a highly populated photon state, m m+1 - m, and let (n =

hQ2' where 2 , Noting that hwo > h, n , the recursion relation

simplifies to

4 (n-mUo(.1)
Q2V C 2 n2m - C2n2m+2 + C2n2m-2 (3.120)

This relates alternate coefficients in the photon ladder of the excited state. Since
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the perturbation is relatively small, the largest coefficient is for m = n. In fact,

when the RF field goes to zero this is the only coefficient in the series. In the

presence of an RF field, the other non-zero coefficients could only be the even

series, or where m = n h 2k; k is an integer. This result agrees with the experiment;

absorption sidebands exist only for the even harmonics of v.

Equation (3.120) is a Bessel function recursion relation where C2n2m

Jmyn(i2-o ) , imposing the condition m = n + 2k , for the even seres. The energy

states can then be written

n = Jktwo 12,n+2k) (3.121)

with energy

E2. = hwo + nht, + TO (3.122)

This ignores terms involving the ground atomic state since the coefficients C 2 nl,

are smaller by a factor of ,as can be seen in equation (3.118). The last term in

the expression for the energy is the static Stark shift, which agrees with previous

theory. Similar expressions for the ground state ladder can be developed:

I ,m) = X iw(vo"i _1,m-2j ) (3.123)

E. = tW _mh02 (3.124)

Now consider a transition from the -,-m ) state to the I-,-) state as a

result of the probe beam. The strength of this transition is directly proportional to
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2 2/ 1I I~2 = I<-i,mIlP, 1,- i

A21 j( 02 n2  j2
= Pl L ( )Jk(wo") (m-2jfn+2k)

kt, j

k

The last line results from the relation m - 2j = n + 2k. Notice also that for this

to be satisfied, the indices m and n must differ by a multiple of 2, m - n = 2p.

This becomes a selection rule for the transition. The sum of the Bessel function

products can be further reduced by the relation E Jk(Z)JVk(Z) = J,(2z) [9]; thus,
k

2 2 .2 .
I P12n I= P12 .- n(2joT) (3.126)

Transitions can then occur at frequencies wk = wo + P + 2pv, where p - isWo

an integer. The relative strengths are given by 2( .

0

The result here agrees with previous approaches in describing the

Townes-Merritt effect, which provides an added degree of confidence in the

adiabatic approximation for defining the energy states of an atom in a nonresonant

field. The dressed states model provides a convenient picture for understanding the

physical transitions; however, its complexity warrants use of the adiabatic approach

in describing the three level atom for level crossings and quantum beats. The

dressed states picture raises one other issue, the question of quantum beats in a two

level atom due to interfetence between transitions from adjacent atom-field states,

which will now be discussed.
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Quantum Beats in a Two Level Atom

Quantum beats have not been observed in a two level atom, nor are they

predicted in the adiabatic model. In the dressed states picture, the possibility arises

if adjacent photon states in the excited atomic state ladder transition to a common

state in the ground state ladder. These type of transitions, n,p photons to m

photons, are allowed due to the mixing of states, as shown in the previous section.

This is, however, a simplistic view of the transitions from excited state to ground

state since it ignores the total contribution from all states in the ladder. It will be

shown that when all possible transitions are considered, there is no beating effect,

although the sidebands are still present.

The quantum beat phenomenon occurs when two excited states can

transition to a common ground state. Interference between the two possible

tran. -ions can produce a beat signal. In the dressed states picture, it is possible in

a twc leve! atom fcr to different excd states to transition to the same ground

state, if one considers the various atom-field states. To demonstrate this, consider

the simplest example, where only the upper state exhibits a linear Stark shift.

Recall I1,n = j 1,n ), and from equation (3.110),

1 -) = XJk.n(-'1Y) 12,k (3.127)
k

The mixing of states allows this situation to exist. Figure 12 depicts relaxation

from various levels in the excited state ladder to a single level in the ground state

ladder, which could conceivably produce the beat signal at multiples of the RF

frequency. To fully evaluate the potential for interference, these type of transitions

must be summed over the entire excited ladder.
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Figure 12 Quantum Beats in a Two Level Atom. Transitions occur
between combined atom-RF field states.

The quantum beat signal is given by equation (2.20), which is repeated here,

assuming Wo 1 O wo :

P = L! p..,umpme Ppn (3.128)
n, ,

The dipole matrix elements are between the excited state (2--,iI and the lower state

I T-). If the field is considered to be a coherent state, then it can be assumed that

the excited states of interest have equal initial populations. This is reasonable since

in a strong field, the coefficients of the coherent state change little between adjacent

states, and the coefficients of the energy states 12--,) drop off rapidly as k differs

from n.

The dipole matrix can be written as

',nto= (-,In lI!,m--) = XJk-n(v) (2,k pIl,m )
k

= o(3.129)
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Upon substitution of this into equation (3.128), the power radiated is

4 W6 U . Q Q -v. 4f__ en-p)t H

4'==4-m-nx// ,v)Jp-n(: Ppn (3.130)

The Bessel function series reduces to E Jm-nip-n = bnp ;thus,

P= = 4 =H(3.131)

Since P is constant, there are no quantum beats present despite the existence

of transitions on the various harmonic sidebands. An interpretation of this is the

individual beat signals, which would be present if the atom were initially excited to

only two states in the ladder, become washed out when combined with all other

possible transition pairs. Quantum beats can still occur in a three level atom as will

be shown later.
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IV. Quantum Beats and Level Crossings

Three Level Atom

Level crossings and quantum beats result from interference between the

spontaneous decay of two coherently excited states which have the same final or

ground state. To treat this phenomenon, the simplest atomic model is that of a

three level atom with the two excited states close in energy; refer to figure 4. A

level crossing occurs when the upper states coincide, resulting in a shift of the

fluorescence pattern depending on the original transition characteristics. When the

energy states are slightly separated, quantum beats may result which modulate the

radiated power during spontaneous emission.

When the atom is placed in a nonresonant RF field, additional transitions

can occur, as discussed in the section on the Townes-Merritt effect. These

transitions give rise to other possible level crossings or quantum beats, which is

precisely the subject of this study. The adiabatic and the dressed states models,

ured to describe the Townes-MeritL effect, provide the mathematical basis and an

intuitive -1nderstanding of the physical processes occurring. The dressed states

model gives a clear picture in terms of identifying transitions which fit the three

level model for quantum beats or level crossings. Figure 13 shows the photon

ladders associated with each atomic state. Here a level croosing condition exists

when the I1,n ) and 12,p ) states coincide and can each decay to the IO,m.) state.

This of course represents but one of the possible combinations in the dressed states

model. To arrive at the total solution, all possible combinations need be included.

This added complexity is the prime motivation for using the adiabatic approach to

mathematically describe the level crossing and quantum beat effects. In the

description of the Townes-Merritt effect, the adiabatic solution agreed with the
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I1,n) 12,p)

__ _ _ _ I,m )

Figure 13 Dressed states picture of a three level atom in an RF field.
Energy levels represent an atomic states combined with a
photon state with n photons present.

dressed states solution as well as the original experimental results, which gives the

approach significant credibility.

The primary difference between the Townes-Merritt experiment and either

level crossings or quantum beats is that in the latter there is no second applied field

Lu L,6gei . L ra,s2ion. Both level crossings and quantum beats result from

spontaneous emission of the atom after it has been excited by a short pulse;

however, the energy eigenstates which result from the RF field are the same. Thus,

the calculations will consider spontaneous emission transitions from the excited

energy eigenstates to the ground state of the three level atom.

The first requirement is to determine the instantaneous energy eigenstates

for the atom in the RF field. Two cases will be considered: a linear Stark shift of a

single excited state and a quadratic Stark shift of all three states. The first case is

relatively simple and the atomic operators, aij, can be determined exactly. The

second requires an approximate solution, using perturbation theory. These solutions

will then be used to calculate the quantum beat and level crossing effects.
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Linear Stark Shift. For the linear Stark shift case, two methods will be used

to calculate the atomic operators, rij. The first solves the time independent

Schrhdinger equation for the instantaneous energy eigenstates, then uses them to

construct the a operators. The second uses the unperturbed atomic states as a basis

and solves the Heisenberg equation of motion for the a operators in the Heisenberg

picture. Both methods result in the same expression, but the latter can be easily

adjusted to include spontaneous emission.

The Hamiltonian for the atom in the RF field is given by

H=H a (4.1)
n

where

J= i(4.2)
iii

For the case of a single level linear Stark shift, the only non-zero term of Pij is

1 = pc. Let the RF field be given by E:= ccos Vt. Then the Hamiltonian

becomes

H = Xhwnann - iV1 cos K (4.3)
n

The instantaneous energy eigenstates are solutions of

11t(t) In(t ) )=En(t) In(t) )(4.4)

which yields I n(t) ) = In ) and
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E0 -- 0 (4.5a)

El = NO, - hQostt (4.5b)

E 2 =-W 2  (4.5c)

The o operators are then defined by .7ij i(t) ) (j(t) f. In the Heisenberg

picture,

i- [oij,H iwij(t ) o' i j  (4.6)

The solution of this equation results in

. t

^Hj(t) = 'rlj(O) eif ij( I) dt' (4.7)

which defines the time evolution of the a operators.

The second method starts by defining aij H i )(f , where fi ) represents

an unperturbed atnmic state. The Heisenberg equation of motion gives

-H l'H IH
0i = j 10.ij, I

or=O iXuon ()n + i ,Or1 fl csv

consider

' H • I .H If

S .W12 12 - ZRCOS L or2 (4.9)
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The solution is

Oa12 (t) = 0 112 (o) e 0 (4.10)

where w12(t) = w12- Qvcos vt.

These solutions, however, have not considered spontaneous emission. This

can be included by adding a decay term to equation (4.9)

'H " H 'H - H
0112  0W12 0 1 2 - d2,COS Lt or1 2 - A0 1 2

Here it is assumed for simplicity that the decay coefficients for the two transitions

are equal to A. The result agrees with the previous treatment of spontaneous

emission in the section on the Townes-Merritt effect, which lead to equation

(3.98a). The factor of 2 difference arises from the fact that both the 11) and 12)

states are excited states. The solution then reads

H H -AtifW12(t') dt'
0 1'2(t) = O1 2(o)e e 0 (4.12)

This will be useful in calculating the effects of quantum beats and level crossings.

Quadratic Stark Shift. For a quadratic Stark shift, the methods used in the

previous section to find the energy states do not yield simple solutions. In fact, the

second method involving the Heisenberg equation of motion would require solving

six coupled differential equations. The primary reason for this is the form of the

dipole matrix, which can be written
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0 01/ P02]

-= 100 0 (4.13)

/00 0 J

This assumes that transitions between the ground state and each of the excited

states are allowed, but not between excited states. Additionally, each state is of

definite parity so pii = 0.

The time independent Schrdinger equation can be rewritten in matrix form,

using equation (4.13), to read

0 Qcos Vt 1Q2 cos Lt]*$ I

h[fcos~t Wn )= En) (4.14)
fQ2cos t, 0 W2

where il=  An exact solution requires the characteristic equation, in this

case a cubic equation of En .

A more tractable approach is to use time independent pertuibation theory to

find the instantaneous energy states. This is vaiid for small perturbations, when

Q < v. To second order, the perturbed states are given by [8]

n = + ( k nI'In ) ( 4.16)
in) n+ En- En- Ek

k ^

+ -. F t t leve atom In Ik) (4.15)., (En- E ')('En- Em)
man

v ~~ - (--W Ill,)+ I n It'/ k_ j (4.16)
r 'n = F n + +E n- E k

k On

where tt' E -"E. For the three level atoim, (,(uatioiis (4.15) and (4.16) yield
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= 10 -h s L1 W 2 os 12 1 (4.17a)

I -) = 1 ) + __-k osvt 10) +ffl2 SL4t2) (4.17b)

I- =I12 )+ -- W2 Is4 )+ WcosL't1 ) (4.17c)w2 W2 1"'2

and

Eo [h11 + W2 COS2vt (4.18a)
2

El = tud + hQtcOs214 (4.18b)
01

2 C O 2 t

E2 = tU1& + hQ2 W2 (4.18c)

From these expressions, the a operators may be written. Note that in forming aij,

: , So,

I i X( Jl Z Ii X( J (4.19)

Thus, the term can be ignored, and the Heisenberg equation of motion is, as

before

=ij Z iwij(t) 'ij (4.20)

Spontaneous emission is again included by adding an exponential decay term in the

solution. In the case of a12 , the result is

-At if w12(t') dtl
a 12(t) = a,2(O) e_ e 0 (4.21)

where
2 2

W12(t) = L'12 + .f, - -f'2cos2t (4.22)
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Equation (4.21) is the same result as for the linear case, equation (4.12),

except for the definition of the instantaneous transition frequency. These equations

will be central to calculating level crossing and quantum beat effects in the next

section. It is worth noting that the effects for the quadratic shift are expected to be

much less due to the smaller instantaneous shifts; of order 9 less. Also if Q1 = f2,

the effects will be negligible.

Quantum Beats Calculation

Before addressing level crossings, the effect of the Townes-Merritt sidebands

on quantum beats will be discussed. Specifically, this section will cover the presence

of quantum beats in which the magnitude and frequency are dependent on the RF

field. This is a simpler calculation, primarily since it considers the total radiation

from the atom as a function of time instead of radiation in a specific direction.

Both the single linear Stark shifted level and the quadratic Stark shift, covered in

the last section, will be considered. The calculation follows the adiabatic approach,

but for the simpler linear case, the dressed states model is also used as a

comparison.

Quantum beats can occur when the atom is initially excited by a pulse such

that there is a finite probability of being in either upper state. In this way, the off

diagonal elements of the initial density matrix are non-zero. The off diagonal terms

are defined as the product of the amplitude coefficients of the wave function for

each of the excited states, for example P12 - ala 2 . As the atom decays back to the

ground state from the 'mixed' upper state via spontaneous emission, there is

potential interference between the two distinct transitions. The interference results

in a beating effect, or an amplitude modulation of the radiated power, which has a

frequency directly related to the energy separation of the two excited states. The
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Townes-Merritt effect causes a splitting of these excited states raising the

possibility of other beat signals dependent on the RF field frequency. The following

calculations will show this dependence.

Equation (2.12) described the power emitted from the atom as a function of

the expectation value of the inner product of the positive and negative frequency

portions of the dipole acceleration operator:

p= 4( (4.23)
= 303

In the adiabatic approach, the dipole operator can be represented as

P (t) = lpnmanm(t) (4.24)
[1,m

where am(t) is defined by the adiabatic energy states. Following the development

in chapter II, an expression for the inner product, similar to equation (2.18), results:

(-) (n mnm/pm _ np) (4.25)

The expression for the power radiated then becomes

4  *
2-n = nmW'Wm Anm Pm ( a np(t) ) (4.26)

c , pm n

Considering the possible values for the indices in the case of the three level atom,

the index m must be zero, and (n,p) can be (1,1), (1,2), (2,1), or (2,2). The first

and last possibilities are trivial since
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( 11(t) ) - P,(t) = P1 (O) e- At (4.27a)

( a22(t) ) = P 2(t) = P2(0) eAt k4.27b)

where Pn is the probability of being in state n, and it is assumed that both excited

states have a spontaneous emission rate A. The middle two cases are equivalent,

representing complex conjugates of each other. Taking the expectation value of

equation (4.21),

t

Oat2(t) =P2 ee t (4.28)

Note, this is the same for both the linear and quadratic cases; only the expressions

for w12(t) is different.

Finally, using equations (4.27) and (4.28), the equation for power radiated

becomes

[4O&o!o p 4ufo0 1 #0 1 p, + 4wlooj,3c ~,2o2e, * H 'f + c1 f w 2 ( t ')t

Us ii2 2 + +0 304I1io'IP 2 iC~e
t

HfWl 2(t')dt'1 -
+ p 2 10 p12e o e (4.29)

Notice this is very similar to equation (2.21) in the original description of quantum

beats, except for the exponential terms which are now dependent on the

instantaneous transition frequency, w12(t). This reflects the Townes-Merritt effect

in the atomic energy states, and will give rise to beat signals that depend on the RF

field. Again, the distinction between the linear and quadratic cases is the expression

for w12(t).
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Linear Stark Shift. For a linear Stark shift of a single excited level, the

instantaneous energy difference is represented by the frequency

w12(t) = w12 - fvcos 14 (4.30)

The exponential term in equation (4.29) then becomes

t D

if W12(t.) dt' t -zL'sin vt
e 0 = ew1 2t e (4.31)

The last exponential term in equation (4.31) can be expanded into a Bessel function

series:
t

if w12(t') dt' i(w 2 -nv)te (-)e((4.32)

n= -a0

The expression for radiated power, equation (4.29), is then

[4 ,°olu° 2 4wto 1,41123c 4jouo[. .*0 PH i(W2-nv)t

* '2 J ( _,iW12-nv)tlle-At

+ /20" PI2X Jn(l e (4.33)
A= Iml

The series of exponential terms indicate the possibility of quantum beats at

frequencies w, 2 - nv depending on the magnitude of the coefficients. To illustrate

this, assume wjo o wo and /lo =/,o = po- In addition, let the initial

in P H H
excitation result in P P2 = P= P21 Then,
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P = 2POe-At [I + j " o(2-nA (4.34)
n

4 I 12 E
where P0 = 3 3 # i * Expanding the series to a few terms around n 0,

P ; 2Poe-At11 + Jo(fv)c0sw 12t

+ J1(-v)cos(w12-v)t + Ji(-V')cos(wi2+v)t .... (4.35)

This shows the presence of beats with frequencies w12 , w 2  v, . . . , with relative

magnitude J(-n-v). Since one expects v > Q,, , only a few terms around n = 0 will

be significant, and the greatest contribution is likely to come from the J0 term,

which corresponds to the beat frequency of the unperturbed atom. To detect the

other beat frequencies, consider experimental apparatus. In measuring the decay

curve, the equipment will be limited by an effective bandwidth, BW. Only those

signals which vary at a frequency less than this bandwidth can be measured. Any

beat frequency which satisfies w, 2 + nv> BW , will average to, resulting in no

impact on the decay measurement. If, however, for some value m, w12 - my < BW

the beat signal would be detectable and would have magnitude J(Dv) . The

radiative decay would then follow

P = 2Poe- A t [1 + J.(- ") cos(w12-mV)t] (4.36)

Another possible means exists for a very large field such that the term Jo(-) u 0.

In this case, the higher order Bessel functions would be significant, representing

various beat signals. These experimental considerations will be covered in more

detail later.
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Dressed States Calculation. The linear Stark shift provides a relatively

simple case which can be examined with the dressed states model, without great

mathematical complexity. This allows another comparison to the adiabatic

approach, and further validates that model. For the dressed states calculation,

consider the energy level diagram of figure 13. Beat signals can occur when there is

the possibility of transitions from a level in each of the two excited state ladders to

a common level in the ground state ladder. In figure 13, the I 1,n ) to IO,m )

transition could interfere with the 12,p ) to I 0,m ) transition producing a beat

signal. Of course, in the dressed state picture, this combination is summed over the

entire photon ladder, so the expression for the radiated power from equation (2.20),

P- * H iw t-At 137)

p 3U = Wc. mWm /nmPpm Ppne npe Ie
n, p 'm

is summed over the combined atom-field states. The n and p indices each refer to

the excited state ladders and m represents the ground state ladder.

When performing the summation, there are two cases of interest for the

dipole operator, transitions from the first excited atomic state, which is Stark

shifted, to the ground state, and those from the second excited state to the ground

state. The dipole matrices can be simplified, using equation (3.110) to define the

energy states, resulting in

(-"------n Ip1,m ) 20 6nm (4.38a)
I hi (4.38b)

With the approximation Wnm = Wpm = Wo , eqliation (4.37) becomes
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- o H{ 1P0 2 n~mpp i(n-p)LiA + IA10 1 2njnM p H 1 i(n-p)t

+ pO'2ojm-nbpm p~pInezIW2 + (n-p)vlt

H 0 p -W12 + (n-p)Vlt} eAt (439)
"+/ o./ lOJm-nbpm Plp2ne 2(.9

H

where the term 02pln represent the density matrix element between states 12,p )

and I I,n ). The first term in the summation reduces to

2H 22
[IP o0 P2m2. = PII-2 oI 2m = 201P2  (4.40)

m m

where Pm is the probability of being in state 12,m ). Using the relation

M P nJ = -np [9] produces a similar result in the second term of the summation:

Y IIioP 1 (=±.41)

This leaves the last two terms, which are similar to the last two terms of equation
H

(4.33). The primary difference is in the density matrix P2pin which depends on the

probability distribution in the two excited state ladders. To show equivalence

between equations (4.33) and (4.39), first change the summation indices such that

the combinations are summed over all decay pairs q with a constant difference in

photon state r = p - n:

~~ 10 i[W0 J- PplneW12 + (n-p)vlt
nipp

o00 H/o P o r t i( W2 - r )t

I/Y1oP20Jr P2q rlqe (4.42)
r=- q
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Consider now the density matrix summation, specifically the term Jr E P2qrlq•

Since the Bessel fuP ftion argument is small, the higher order Bessel functions, I r

1, are negligible. Thus, the summation over q need only consider a limited range of

r. For a typical photon distribution in a real field, the coefficients of nearby number

states will be approximately equal, so

YHJr P2q+rlq ,Jr P2qlq (4.43)
q q

This last sum is the equivalent of p H Equation (4.39) then becomes

= ,4o, 2  2 * Pri =

P E-II;102o1 P2 + I Ao IP, + /o 2o * 2 Jr( ei(Uw 2-rv)t

+ 20 *PiO P2j Jr(-)e -i(w 1 2-rV)t e- At (4.44)

which is of the same form as the adiabatic result, equation (4.33).

The dressed states calculation agrees with the adiabatic approach when an

assumption is made concerning the photon state distribution. The assumption of

equal populations in nearby states is quite reasonable for real fields. This agreement

gives greater confidence in the adiabatic approach, which is far simpler, particularly

for a quadratic shift or for level crossing calculations.

Quadratic Stark Shift. When a quadratic Stark shift is present, the

instantaneous energy difference between upper levels is represented by the frequency

given in equation (4.22)

w12(t) = w,2 + flcos 2Vt (4.45)
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2 2
where Q, = &212 - QA 2 Notice that if 121 Z 1 then WV z 0 and there would be

no beating effect. Similar to the development in the linear case, the exponential

term in equation (4.30) becomes

ifo w12(t') dt' • e 2 os2,t dt '
e = S~l~e 0o

.w .w'.
iw12t + 1- t + -- in 2t

i(W12+ +2E~

= Jn( i) e +2nv)t (4.46)
n

This is similar to equation (4.32) in the linear case, except the beat frequencies are
fit

at even harmonics of v, given by w12 + - + 2nv. Also, there is a slight shift in

the fundamental frequency by the amount 0_

Using equation (4.46), the power radiated is

[4Ao I ol 2 4wjo0[pt012.

1 3 c 3 2P 2 + 3C3  1

4w3 [0 r o* H in i(w12+- 7 +2nv)t
+ 3  04 ['2 0 P21 4LY (Ti) e

n

+ 0J(!,) i(w12+ - +2nv)t 1 e-At+/Po'/Alo P12 in(,- e (4.47)

n

Beats at frequencies other than w,2 are expected to be much smaller than the linear

case since Q' is small compared to Q.. The dominant term in the expansion is then

.To evaluate the possibility of beats at other frequencies, first consider f'.

For 0l' to be non-zero, the individual Rabi frequencies Q, and 0 2 can not be equal,

so po IL2 . In this case, assume the dipole moments differ by a constant, or
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H H
12 = KpAo. Also, as before, let wlo; wo and P, = P2 = P12 = P21 - Then,

equation (4.47) becomes

P = Poe- At 1 + K2 + 2K Jn(z) cs(w12 +-+ 2nv)t] (4.48)

n

To observe beats resulting from the Townes-Merritt interaction, consider

again the effective bandwidth BW. If there is a value m for whirh

w12 + + 2m < BW (4.49)

then an amplitude modulation in the decay curve at that frequency could be

observed. The power radiated would then be

P = PeAt [I + K2 + 2KJm(--) cos(w+ ± 2nv)t] (4.50)

It is anticipated that this modulation would be much less than in linear case

due to a small IT and the factor K. Here the modulation amplitude would be

2K J 0 )
Q= I + K2 (4.51)

as opposed to the linear case where

M .-- )(4.52)
L = I

Nonetheless, equations (4.36) and (4.50) demonstrate the possibility of quantum

beats which result from interaction with the RF field.
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The additional beat signals result from an effective splitting of the excited

states due to the nonresonant RF field. When any one of the levels in an excited

state ladder comes close to a level in the other excited state ladder, a beat signal in

the radiative decay could be observed. The magnitude of this modulation depends

primarily on the RF field strength and the experimental setup, as will be discussed

in the next chapter.

Level Crossings

If the two excited states have the same energy, a level crossing condition

exists, whether the crossing is the normal occurrence or a result of an energy shift of

one or both levels. When a crossing occurs, the two possible transitions can

interfere causing a shift in the atomic fluorescence pattern, as compared to the

uncrossed situation. The interference is heavily dependent on the specific transitions

involved and the observation angle. From equation (2.23), with the atom at the

origin, the radiated energy as a function of the point of observation is given by

S = (r2bi j-xixj) W.2.' tip,nmp pnt j4.53
2S n pm pn(t) (4.53)

n, p~m

Note the Einstein summation notation is used for the i and j indices. This section

will explore level crossings resulting from an interaction with the RF field. As

previously discussed, the RF field causes an effective splitting of the atomic levels,

which is easily seen with the dressed states model. However, for mathematical

simplicity, the calculations here will follow the adiabatic approach in defining the

atomic dynamics, which has compared favorably with the dressed states result in

simpler cases. Both the linear and the quadratic Stark shift will be covered, with

equations (4.12) and (4.21) used to describe the atom in the RF field for their
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respective cases. The approach is similar to that used in the case of quantum beats.

For the three level atom, the sum in equation (4.53) reduces to four terms:

(r 2 6bii- x i; i *P e -At -AtS=- rcr 4  [o 40 P2e + 11i0 pJUOe
. .* 1

+ Io 014P 21(t) + /ko 4o0P 2(t) (4.54)

assuming w10 ; w2o. In evaluating this equation, the geometry of the experiment

and the dipole moments of the specific transitions involved become very important.

With regard to the experimental geometry, the orientation of the excitation pulse

polarization and the viewing angle are critical parameters. Geometries which yield

the greatest effects will be considered here. The transition dipole moments impact

the degree of interference, in much the same way as the orientation of radiating

elements in an array determine the overall antenna pattern. Three possible

combinations for the two transitions will be covered.

For a dipole transition, the moment can be written as

Am,= ( nPm) = Anm (4.55)

where c is a unit vector in the direction of i. The orientation of ( influences the

initial excitation and determines the polarization of the emitted radiation. This

orientation depends on the initial and final orbital quantum numbers, 1, and

magnetic quantum numbers, m [8]. Table 1 summarizes the possibilities. For the

transition in which the magnetic quantum numbers remain the same, the dipole

moment is oriented in the z direction and radiation would then be linearly polarized

in the same direction if view in the xy plane. The other cases result in circular

polarization if viewed along the z axis. Note that even though these transitions are
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Quantum Numbers
Orbital Magnetic Dipole Moment

=1 1 m' mnmZ

1m' --- -1 Pnm(X + iy)/2 -nm

l' =11 m' =n+1 n( _ y)/ 4 2 -

Table 1. Transition Dipole Moments. Initial state is defined by 1 and m.

consideed ortbogonal, at other viewing "ngles, the radiation from these transitions

do not have a simple polarization, and thus may interfere with each other. With

regard to the initial -xcitation, the orientation of the excitation pulse, relative to

the dipole moments, determines the initial values of the density matrix elements.

For example, to excite a transitio, with the dipole moment in the z direction, the

pulse should optimally be polarized in the l airection.

Whea the atom decays, the degree of interference depends on the ,elative

orientation of the dipole moments. The three cases tV be considered are

1) C, . f_

2) C,,z

3) z ,z

These are representative of all possible combinations, and eAdn case will be

considered for both the linear and the quadratic shi-s. In each of these case. an

optimal orienttf:3n for the xcitation lulse and the viewing angle will be specified.

Linear Stark Shif. As in the case of quantum beats, the diagonal elements

of the (,,lmsity matrix represent the rrobability )f the atom being in Lhe given energy

state. From equation (1.27), these are
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P22(t) =-P peAt (4.56a)

P11(t) = pie-At (4.56b)

The off diagonal elements P21 and P12 represent the interference, and are critical

to the level crossing effect. These are complex conjugates, so only one will be

treated explicitly. Recall from equation (4.28),

PH(t A pi 0~e w12(t ) dt'(4)

For a linear Stark shift, the instantaneous frequency difference is

w12(t) = 12- f'vcos 14t. Using equation (4.32), the second exponential term then

reduces to a Bessel function series:

P21(t) = P H e-At XJ(!) 9 (W2flv)t (4.58)

n

Equation (4.54) then becomes

S -. (r~bi i-iXi)o H .* + -v i(w12-nv)t

0 12 io j 2 J,(-Q') ei~1n't e-t (4.59)
n

Further e-.1uation requires expressions for the the dipole moments and the initial

density matrix, whic. -.pend or. the specifit. combination of dipole moments. Thle

three cases previously discussed will be covered here.



Case 1: First let the two dipole moments be given by

A1o =/ - = A0(x + iy)/' (4.60a)

I20 =/ZOO- = (X - (4.60b)

Also, define the position coordinates using the standard spherical coordinate system:

xi - r sin 0 cos ¢

X2 = r sin Osin ¢ (4.61)

X3 = r cos 0

With these expressions, the summations over i and j in equation (4.59) can be

reduced. Table 2 lists the individual terms involved in the summations.

6ij/AIO/O = 6 iI/ AoI4 =0
.*I . *

6 ij/,iO'4 O = 6jjPO/4 O = 0
o . , .2

n2

xixjlO/,4O --- sin2 0

XiXj/o 0/, EE -sin 2 0

xix1 I!A 0 = "sin 0 e

xiXj40/,4- = sin 2 e

Table 2. Dipole Moment Products for Case 1.

The radiated power as a function of observation angle is then
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S (I + COS 28)(P 2 + P,) - sin 2 0 [e P2OPH IJn(fv) e i(W2-nV)t

n

+12n -iw (4.62)

Next, expressions for the initial density matrix elements are required. These depend

on the orientation of the excitation pulse. An element of the density matrix can be

written as
Ht *

Pn =a a (4.63)

where an is the wave function coefficient corresponding to the atomic state I n)

after initial excitation. For the excited states, an is given by

a. = it.pnQ (4.64)

where f is the polarization of the excitation pulse, and Q is the area of the pulse,

specifically given by Q = Ij%(t)dt. This assumes a short pulse of frequency w and

duration T, such that (wno - w)T ( 1 .

Let the excitation pulse be linearly polarized in the y direction, so =,

which will equally excite both transitions. Figure 14 shows the orientation for this

case. The initial values for the density matrix are then

2 2

P1 = P A - (4.65a)
2 2

H H # (4.65b)
P21i P12 - T
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Figure 14. Level Crossing Geometry

Substituting the density matrix terms into equation (4.62) yields

S = 2 e-At [( l +co s2O) + sin2#XJ A(Iv) cOs(w 12t-nvt-20)] (4.66)

Integrating S over time gives the total energy radiated by the atom in the

direction specified by 0 and 0:

J= f S(t) dt

WON f [+cos 0n 2 J)Acos 2 0+(w2-nv) sin 2(1--- A +sn 01 .,(4.67
j4 c3 r 2 1n (W,1 2 -nv)2+A4

This result is useful in predicting the radiated energy as a function of the RF

frequency, v. Level crossings occur when w,2 - nv = 0 , which agrees with the

dressed states picture. When . level crossing condition exists, there is a maximum

in the interference term, depending on the observation angle, with relative

magnitude Jn(-l)
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Figure 15. Level Crossing Signal for a Linear Stark Shift

For an example of a possible experimental geometry, let the observation

angle be defined by 0 = 7r, = . Then

i=ilo [1+ XJn(-')A +AI] (4.68)

where jo =  - and A2 = (w2-nv) 2 . This indicates a series of peaks in the

radiated energy as v changes. Figure 15 shows a representative level crossing signal

for this case. When mV - w12 , then for n m , the interference term is negligible

since A2 1

I=o[ + J t(-,)A + A] (4.69)

This represents the signal strength near one of the peaks, and is similar to the
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original level crossing calculation, equation (2.29). The magnitude of the peak is

/ma. = [1 + J(O Y)] and the width is approximately -- . This becomes the basis

for using a nonresonant RF field as a spectroscopic tool. If the peaks can be

detected, then the values of v at which the crossings occur determine the original

energy level spacing. Note that other viewing angles will produce different types of

level crossing curves than figure 15.

Case 2: When the relevant transitions have dipole moments given by

PIo = oE+ (4.70a)

#20 Aoz  (4.70b)

the potential interference effect is expected to be diminished. This compares to

antennae placed along orthogonal axes; there is limited overlap between the beam

patterns. Table 3 lists the dipole products for this case.

6ij/4014 o = 6ij40o/4  = 1o

6ijo110/4 o = oij/40pio = 0

xixjP10,4o = sin 20

xixj/OP4O0  = r2p2 cos 20

xixj/'1'o/ = r sin 20 e'
214

xixj/4oI 0* = rWj sin 20 e- i ¢
0 2 2

Table 3. Dipole Moment Products for Case 2.

Substitution of the dipole products into equation (4.59) results in
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- -coO)P 2 + 1- sin sin 20 [ei(~iX'n(!t__ i(w1 2-nv) tz ,Ir4[ ~~24 ) '!I 1 n p Ve

L 1 e, 2 J ( ) J ,n ]j ( ' (4.71)

This shows that there is no interference for 0 = ,7, which is consistent with the

antenna analogy. Further, to obtain'excitation of both levels, the initial pulse

would have to be linearly polarized at an angle between the z axis and the xy plane.

For the excitation pulse, let E = (y + z)/f-, a 45 degree ang!2 tu the z axis.

The initial values for the density matrix are then

131 4 _(4.72a)

P2 q9 (4.72b)

2 2{
p21=_/ (4.72c)

2 T
P -2 2 (4.72d)

The expression for radiated power then becomes

S= r + 3sin2  sin 20 .eJ) sin(wtt-nvt+) -  (4.73)

Integration results in

,= 4 si20 - J:!". ,)v Asin 0 + ( w,2)2w--n v) cos 1 (.)

iW610%2+3sin 0 sin20'l Ai1
,rc3 r 4N T__ ') (4.74)

which is similar to equation (4.67) in case 1. Again, maxima will occur whenever
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W12 - nv = 0, coinciding with the level crossings.

If the detector is placed at e = Ir, 4 =- , the total energy received is

given by

A2  
(

+(

The result compares to the previous case, except that the interference effect is

1reduced by approximately T. The energy received as a function of v would look

like figure 15, but the magnitude of the peaks is given by

imax = Jo + Jm(v )] (4.7)

The unfavorable geometry is the reason for the lesser effect.

Case 3_: The most favorable geometry exists when the transition

dipoles have the same orientation:

NO = =' 0 = Poz (4.77"

This results in a maximum overlap in the radiation patterns. Using the dipole

products given in table 4, the expression for radiated energy becomes

2 4 [ Z (c,2-nv)t

S= ,,_e -At [P2 + P 1+ Pan +e

H ~ -i(W,2-nv) t  2

+p_.Jn(--v)e] sin 2 8 (4.71)
n

Notice there is no 0 dependence.
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0 j[ b ij,4AOO # 2

i iMo/4 10'4** .* .~ 2
6ijI 1O14o = ijxojo0= 2 2 9

* .* . *

xjx 1P 0j 0 = x~j xjopjo = r2pgcos2O

Table 4. Dipole Moment Products for Case 3.

The optimum excitation polarization is c = z, in which case

Pi = P2 = P1p = P12 =AoQ2 (4.79)

Equation (4.78) then becomes

S _0 r e At + ZJn(--v) cos(wl2-n)t sinO (4.80)

Once again, integration results in

W{ Q [+ X - A ] sin2O (4.81)7=[7rco rj + Jjn(v )A Ar+ n] i

n

It is obvious that the maximum radiation occurs for 0 = i. As in the

previous two cases, peaks occur when An = W12 - nv = 0 , and in this case have

magnitude

,max = 4Jo[1 + Jm(-")I (4.82)

This compares favorably with the first case, having the same relative magnitudes

between the peaks and the background, but this case has a larger absolute value.
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/ho = =y =r/2

A20  Po

n

n o o = (y+Z)/ 2  = 7r/4

=2 =oi r/2

j7 'og ~ J0 7A + An

n

II to -oz E=z 0 = r/2

A2o =/L 07

=4Jo [1 + J. A
n

Table 5. Level Crossing Signals for a Linear Stark Shift

All three cases for an atom with a linear Stark shift of an excited state

exhibit changes in the fluorescence resulting from the RF field. Table 5 summarizes

the results for each case with a specific geometry. Recall, J. L 4 4r2 andA

W12 - nv. In these results, the presence of a maximum indicates a level crossing

condition. Other observation angles can result in different level crossing signals, for

example a dec-'-ase in the energy received as the levels cross. In any case, if these

can be measured, then the original energy separation can be determined by the RF

frequpncies at which crossings occurred. The magnitude of the Bessel function

terms, J -, will be key in determining whether the peaks can be detected.

Overall though, the linear case presents the best opportunity for observing the level
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crossings, when compared to quadratic shifts, as will be shown.

Quadratic Stark Shift. For an atom with a quadratic Stark shift, the off

diagonal density matrix elements are given by

t

H -tifW12(t') dt'
P21(t) = P21 eAte (4.83)

2 2

where w12(t) = w12 + 2Acost and ST = - *1 - wlQ 2 . Using the Bessel functionw1w2

expansion, this becomes

p21(t) = P 1 e-At ! n ( W12 +T +2nv)t (4.84)

n

Notice that this is of the sane form as the linear Stark case, equation (4.58), except

for the Bessel function argument and that only even harmonics of the RF frequency

are included. As in the section on quantum beats, if Q, - 2 , then Q' z 0 and

there would be a negligible effect at level crossing, since the only significant term

would be Jo(-v) z 1 . Thus, once again, it is assumed the magnitudpq of the dipole

moments differ by a constant, such that I ti/ = K 1#1o 1

Substitution of equation (4.84) into equation (4.54) yields an expression for

the radiated power:

S _(2b i X.iX U0 i 01 iA,,t
2 ircT r [/40 /4 0P2 + AJi 110'~ '10 0 O2 ,n (-2-v

n

+ P o/P 2 J( 2 ,) e-iA C At (4.85)
n

86



II

1120 PC"
[(1±CO820)(+K 4)+K 2sin 20Jn(-) A cs0AAsin21

=O I4 I K4 V- + T2~(~ A 2 ]

n

7r/2,0 =

4 '9 A2J=j Io[ + K4+ K iJn( 2- A+-AT2

4K4-1~ ~ s2n20 AT n2i2 X~4~.

n

AI 0 = PCo C Y+)
P20 = Poz

J=o2+(4K41)sin20 K2sin20yj " J4 2 nt2-'lAsin¢t+A A n COSA +A ]

0= ir/4, ¢ =-7r/2

= [2+(4K 4-1) + K in( "A 2 ]2
n

In Io = po z  =Z

I o = PoZ

J = 2J o 1 +K 4 + 2K2 Jn( ) + A r sin20

0 = 7r/2

J-2Jo[1 + K4 + 2K2 QJn() NT+2J

n

Table 6. Level Crossing Signals for a Quadratic Stark Shift

where A, = w12 +-Y + 2n,.. This is comparable to equation (4.59) of the linear

case; hence, the results for the three combinations previously considered would be

similar here. These are summarized in table 6.
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Figure 16. Level Crossing Signal for a Quadratic Stark Shift

In each case, the energy received varies as a function of v, as a result of level

crossings. Peaks occur when A n' = w12 + + 2nv = 0 , with relative maxima

determined by . Figure 16 shows the received energy versus RF frequency

for case 1. This is very similar to the linear case, except the peaks occur at half the

frequency, reflecting the even harmonics of the RF frequency. In addition, each
i-v

peak is shifted slightly from even fractions of w2, by the amount due to the static

Stark shift. The width of each peak is A again making this potentially useful for

high resolution spectroscopy. A noteworthy point is that this technique would be

relatively doppler free. Normally, the doppler effect results in a significant line

broadening; however, in this case, the level shifts result from interaction with the

RF field. Doppler shifts at, RF frequencies are very small compared to the

transition frequency.

Limiting factors are the relative r!agnitudes of the dipole moments, indicated

by the constant K, and the magnitude of the Bessel function coefficients JnT-)

These will determine whether the peaks can be detected, and the technique usa)le.
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V. Experimental Feasibility

The previous two chapters presented theoretical descriptions of the

Townes-Merritt effect, quantum beats, and level crossings, which was the goal of

this dissertation. As a final step, a brief look at some experimental aspects will

provide further insight to these phenomena. An example is the field strengths

required to observe these effects for a given atomic sample. The intent here is not

to describe an experiment, but to give an idea of the feasibility of such an

experiment by considering order of magnitude estimates of critical parameters. In

the Townes-Merritt effect, the primary concern is the relative magnitude of the

sidebands. Experimental requirements for observing the sidebands, in linear and

quadratic cases, will be examined, and these conditions will also apply to level

crossings and quantum beats. An additional concern in quantum beats is the beat

frequency, and for level crossings, the viewing angle is important.

The calculations on the Townes-Merritt effect describe absorption sidebands

at integer multiples of the RF frequency for a linear Stark shift and even integer

multiples for a quadratic shift, with relative amplitudes of J(Q v) and j2of22

respectively. In order to observe these sidebands there must be sufficient separation

between adjacent signals so that the natural linewidth does not obscure individual

sidebands, and the magnitudes governed by the Bessel function terms must be large

enough for detection. A condition that v> A ensures separation of individual

sidebands. Typical values for A are on the order of 106 1 i0 9 sec', so a nominal

value for v is 10 times A or 107 & 1010 Hz.

The amount of energy in the sidebands is determined by the Bessel function

coefficients. For a given sideband to be observable, the magnitude of the associated

coefficient should be on the order of Jn u .01 - .1 as a minimum. This then
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places a bound on the Bessel function arguments and subsequently defines

experimental constraints.

The key term, from an experimental perspective, in the Bessel function

arguments is the Rabi frequency, u .The dipole moment for an allowed

transition can be approximated as pt u ea. , where ao is the Bohr radius,

approximately 5 x 10-9cm. The Rabi frequency can then be written

O= 1o7  (5.1)

where 8E, is the magnitude of the RF field in V/cm. For Fu = 100 -- 1000 V/cm,

fl = 109 -" 10 1 0 Hz.

Now consider a specific example where v = 109 Hz and w. =5 x 1015 Hz.

The relative intensities of the sidebands are given by

Linear: j(.) = j2(10-2() (5.2a)
-1 J(1Quadratic: Jn(2 f12 = j2(2) (5.2b)

This illustrates the significant decrease in effect for the quadratic case, as compared

to a linear Stark shift. For an RF field with an amplitude of 100 to 1000 V/cm the

argument for the Bessel function in the linear case is between 1 and 10, resulting in

a significant amount of energy in the sidebands. Table 7 lists relative intensities for

the lower order sidebands in this case.

For the quadratic case, with ', = 1000 V/cm, the sidebands are negligible.

The first sideband has a relative intensity of J2(10 -5) - 2.5 x 10-11. To observe

sidebands for a quadratic shift would require very large field strengths in this case,

or alternately consider transitions with lower frequencies such that the Bessel
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J2(z) J2(z) J2(z) J2(z) J2(z) J2(z) J2(z) j2(z)

1 .5855 .1936 .0132 .0003
2 .0501 .3326 .1244 .0166 .0011
3 .0676 .1149 .2362 .0955 .0174 .0018
4 .1577 .0043 .1325 .1850 .0790 .0174 .0024
5 .0315 .1073 .0021 .1331 .1530 .0681 .0171 .0028
6 .0226 .0765 .0589 .0131 .1279 .1311 .0604 .0167
7 .0900 .0000 .0908 .0280 .0249 .1210 .1150 .0545
8 .0294 .0550 .0127 .0847 .0111 .0345 .1139 .1027
9 .0081 .0601 .0209 .0327 .0704 .0030 .0417 .1072
10 .0604 .0018 .0648 .0034 .0482 .0547 .0002 .0469

Table 7. Sideband Intensities for a Linear Stark Shift

function arguments are near unity.

In determining a feasible range for the Townes-Merritt effect consider the

relationships between wo , A , and v. As previously discussed, the RF frequency

should be greater than the atomic decay rate, on the order of v _ OA , to break out

individual sidebands. Further, the A coefficient is dependent on the transition

frequency [231:

A= ,/' (5.3)

in SI units. Again assuming pi z ea o , this can be simplified to A 3 x 10- 40wto .

Thus, for a given transition frequency, the optimum RF frequency can be

determined and subsequently, as in equations (5.2), the required field strength.

As an example, consider the hydrogen atom IS to 2P transition. The 2P

level exhibits a linear Stark shift due to mixing between the 2S and 2P states

[321, resultirg in energy shifts for the two states of k3eaoE. The transition frequency

is approximately w i0 16Hz and the decay rate is about 6 x 108Hz . A

reasonable choice for the RF frequency is then v = 3 x 109Hz. The relative

intensities of the sidebands in this case are given by equation (5.2a), J2(10-29).

Table 7 lists the intensities for typical values of 4.
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Figure 17. RF Field Strength Required for a Quadratic Shift

For the quadratic case the problem is to determine the approximate range

where the effect could be observed for a given maximum field strength, representing

an experimental constraint. Assuming v = 10A , the Bessel function argument can

be rewritten using equation (5.3)

Q-v 37rcoc 3  1052 o (5.4)

j2 f12
Considering only the first sideband, let J1( -o)> .01 be the criteria for

detection. For small arguments, much less than one, the Bessel function can be

approximated as [9]
J. Z .2f (5.5)

Then if E = 1000 V/cm , using equations (5.4) and (5.5), the transition frequency

must be wo < 5 x 1014Hz. Following the same approach, figure 17 shows the

minimum required field strength for a range of typical transition frequencies.
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Higher field strengths would allow higher order sidebands to be observed. Thus,

based on these order of magnitude estimates, the effect can be observed in a wide

range of potential samples, shown here to have transitions from about the middle of

the visible into the infrared.

Another case of interest involves an atom which exhibits a Zeeman shift in

the energy levels. This is a linear effect proportional to the magnetic field strength

B. The interaction Hamiltonian for the Zeeman effect is

H' =-pm'B (5.6)

where p/, is the magnetic moment and B is an oscillating magnetic field.

Development of the equations of motion is analogous to the linear Stark shift. For a

two level atom in which only the excited state is shifted, the interaction

Hamiltonian can be written

The instantaneous transition frequency is then

W'(t) = Wo - f~bCOs vt (5.8)

where b -v." As in the case of the linear Stark effect, there are absorption

sidebands at w. + nv with relative intensity n •

To estimate the strength of the sidebands i:, this case, the magnetic dipole
e h

can be approximated by the Bohr magneton, pm r -me . The intensities then

depend directly on the B field strength:
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j2( ) = j2(2 eB j j2(101 B (5.9)

where B is in webers/m 2. The primary experimental constraint arises in producing

a strong B field at the relatively high frequency v. The coil inductance limits the

maximum field strength at a given frequency.

To analyze this constraint, consider a typical setup in which an AC power

supply with a maximum voltage V drives a wire coil to produce a B field at

frequency v. The field strength is given by

B = 0I-'sin 0m (5.10)

where po is the permeability of free space, I the instantaneous current, N the

number of turns, I the length of the coil, and 0m the angle from the center to the

edge of the coil [331. The current flow is limited by the maximum available voltage

V and the coil impedance XL according to Ohm's Law: I = V/XL. The impedance

is equal to the product of the field frequency and the coil inductance, which is

L N 2AL =/ -/- h(5.11)

where A is the cross-sectional area of the coil. Thus the maximum B field strength

can be expressed as

VB = sin 0. (5.12)

For a power supply with a maximum voltage of 104V , and a coil which has

N = 100 , A = 100 cm 2, and 0m = 300, the sideband intensities are given by
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j2(fbi) = j2 (01) (5.13)

In order for the sidebands to be observable, the Bessel function argument should

again be of order unity, so the maximum B field frequency is V 107 _- 108 Hz .

The atomic decay coefficient is then an order of magnitude lower, A - 106 1 107

Hz , and using equation (5.3), the maximum transition frequency is on the order of

105 Hz, whiih -s comparable to the quadratic Stark shift case.

These order of magnitude calculations demonstrate the experimental

constraints om observing the Townes-Merritt effect for a Stark or Zeeman shifted

atom. As expected, the greatest effect occurs with the linear Stark shift; however,

few atoms or molecules exhibit such a shift. The quadratic Stark effect and the

Zeeman effect have comparable ranges in which the Townes-Merritt could be

observed. These are generally limited by the maximum field strength available.

Experimental constraints for level crossings and quantum beats are similar to the

Townes-Merritt effect calculations.

Conditions for observing quantum beats in linear and quadratic Stark shifted

atoms are similar to those for the Townes-Merritt effect previously discussed. To

show this, consider the power radiated by a three level atom in an RF field. For the

linear Stark case, this is given by equation (4.34)

P = 2Poe[- A t I + Xfn'(Q-) cos(w 12 -nv)t] (5.14)
n

The signal decays exponentially, at rate A, with a superimposed harmonic

modulation defined by the terms in the Bessel function series. Oscillations occur

with frequency w12-nv and relative amplitude Jn(-u) . The modulation factor Mn

for a given component is in fact equal to the Bessel function coefficient.
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For the beats to be observable, two conditions must be met: the modulation

factor has to be large enough to be detected and the beat frequency must be within

the measuring capability of the experiment. Much as was discussed in the Townes-

Merritt effect, to detect beats resulting from interactions with the sidebands, the

Bessel function argument should be at least of order unity, so higher order terms are

significant. The conditions on Q,, and v are the same here as for the linear shift in

the Townes-Merritt effect, resulting in a wide range of possible transitions.

The second consideration is the beat frequency, and the primary concern is

the signal bandwidth in the experiment. For example, in a decay rate measurement,

the sample is repeatedly excited, then the radiated power is measured during a finite

time period At which is delayed from the initial excitation. As the delay time is

increased, the power received decreases according to the decay curve. The time

period at establishes a maximum bandwidth, and hence, sets a limit on the

measurable beat frequency.

Given a limiting bandwidth, BW, for a particular experimental setup, only

those frequencie3 which are less than that bandwidth are detectable; the others

average to zero. For example, assume BW = 50A and w12 = 100A. If the RF

frequency is on the order of 30A , then the only measurable beats are those whicn

satisfy

I100A - n30AI < 50A (5.15)

In this case, n = 2,3,4 ,corresponding to beat frequencies of 10A, 20A, and 40A.

It would be possible to adjust the RF frequency and the bandwidth such that

only one beat signal is present, and the power radiated would be

P = 2 Poe-At[I + J(- ) cos(w 2-nv)t] (5.16)
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This raises the possibility of using the beat signal to measure the separation between

widely separated upper states, with a large w12 .

There is one further observation concerning the beat signals. It is possible

that the beat signals resulting from interaction with the RF field could be obscured

by the zero field beat signal, w12. This zero field signal can be eliminated by

adjusting the field strength, such that the Bessel function coefficient = 0

The first zero occurs for = 2.4.V

In the case of the quadratic Stark shift, the experimental considerations are

very similar to the linear case. From equation (4.48), the power radiated is

P = Poe tI +K2 + 2K IJi(-v) cos(w21-f +A2niv)tj (5.17)
n

The primary differences are the constant of proportionality K (defined by

I ploI = K I plo I ) and Uc beat frequencies occur on the even harmonics of v. In

addition, the Rabi frequency is now replaced by [' , which is equal to

2 2,= o. - W f1l2 (5.18)

WIW2

Assuming M w2 , ,this can be rewritten as fl, = q2 (1-K 2)

The modulation factor for the nth beat signal is then

mi = 2 Jn 2 ( l-K2) (5.19)

which gives the relative intensity of the beat signal with frequency w21+ +2nv.

If K _ .5 ,then

M n in- 2V (5.20)
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This is very similar to the Bessel function coefficient in the quadratic case of the

Townes-Merritt effect; thus, the same overall conditions for the experimental

parameters apply. As in the linear case, the beat frequencies must be less than the

bandwidth to enable detection.

In a level crossing experiment, instead of determining the radiated power as a

function of time, the total energy radiated in a specific direction is measured. As

shown in the last chapter, variations in the total energy as a function of the RF

frequency are indications of level crossings. As in quantum beats and the

Townes-Merritt effect, these variations are detectable if the Bessel function

coefficients for higher order terms are significant. Again, this requires that the

argument be at least of order unity. One other consideration in a level crossing

experiment is the observation angle. The initial calculations were performed with

peaks indicating the level crossings; another geometry may be more favorable for

precise measurement of the RF frequency at which the crossings occur. For the

purpose of brevity, only the first case, where No = pot. and P,0 = o t- , will be

used; and assume the observation is in the xy plane, so 0 and 0 may vary.

From equation (4.67), the total energy in the linear Stark shifted case is

j = jo1+ X nJ(--vA 2 cos 2t + AA nsin 20 (5.22)

where An = w12-nv. For 4 = 0, this results in a series of peaks occurring when

An = 0 , corresponding to a level crossing condition. The relative magnitude of each

peak is Jn( fl), so the detectability then depends on the RF field strength and

frequency, as before. In fact, the same requirements exist here as for the linear

Stark shifted case of quantum beats.
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Figure 18. Le, A1 Crossing Signal for 7 =r/4

For experimental purposes, it may be more convenient to shift the detector

to € .In this case, the detector is no longer in line with the initial excitation

pulse, reducing potential degradation, and the level crossing signal has a different

shape. For a single level crossing event, where nV - w12, equation (5.22) becomes

[

I) + . -- ) A ,(.3

j = j o I+n ) A7 + '7V n

Figure 18 depicts the energy detected near a level crossing; the crossing occurs whn
An = 0 or when al passes through one. The precise RF frequency t th te

crossing occurs can more easily be determined in this case.

In the case of a Zeeman shift, the level crossing equation takes he same for
Sequation w5.22) except the Bessel function coefficient is replaced with J t( e

The conditions for observing level crossings here are the same as were discussed in

the Townes-Merritt effect.
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For a quadratic Stark shift, the total energy radiated is listed in table 6. For

case I,

+ K4 + Kl n 2 os 2 + AA,'sin 2j~~ =IO+K+K nA1TAn
n

A level crossing occurs when An w12 + + 2nv = 0. The relative intensity of

the individual peaks, when 0 = 0 , is

[ o] max 2 TK2 J n( ') (5.25)

If K ; 1/4- , then using equation (5.18), this becomes

LY' --2 jn( WTov) (5.26)

which is similar to equation (5.20) in the quadratic case of quantum beats. Thus. in

order to detet,, t least the first order peak (n=l), the minimum RF field strength

is about 1000 V/cm for an atomic transition frequency less than 5 x 1014 Hz dnd v

107 Hz.

These order of magnitude calculations demonstrate the nossibility of

detecting qiantum beats and level crossings resulting from interaction between the

atom and a nopresonant RF field. Thus, it is feasible to use the level crossing

technique to measure the spacing between nearby excited states, making this a

useful spectroscopic tool.
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VI. Conclusion

The primary purpose of this research was to investigate the possibility of

using a nonresonant electromagnetic field as a means to measure closely spaced

atomic energy levels by causing a level crossing. Level crossing experiments have

been used to make spectroscopic measurements; however, in these experiments,

static electric or magnetic fields were used to give rise to the energy shifts. Using

static fields has the disadvantages of requiring relatively strong fields to create a

significant shift, field nonuniformities result in broadening and lower resolution, and

the lack of precision in measuring the actual field strength leads to significant

uncertainty. If an oscillating field is used to create the energy shifts and subsequent

crossings, these problems are alleviated.

A nonresonant field causes an effective splitting in the atomic energy states

in what is referred to as the Townes-Merritt effect. The splitting can be viewed as

individual states resulting from the combination of atom and field states into a

single quantum system. In this 'dressed states' picture, photon ladders are

superimposed on the atomic energy states. Transitions between the new states

result in sidebands on the original atomic line separated by multiples of the

nonresonant field frequency. The Townes-Merritt effect for a two level atom was

analyzed here with a quantum electrodynamic (QED) approach, using the

Heisenberg operator formalism to describe the atomic dynamics. The adiabatic

approximation was used to include the effects of the nonresonant field on the atomic

energy states for both linear and quadratic Stark shifts. The description of the

Zeeman effect is mathematically equivalent to the linear case. The results agree

with the dressed states model and the original experiment.

In a multi-level atom, the Townes-Merritt splitting can result in other
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effects: specifically quantum beats and level crossings. These effects result from

interference between separate transitions which originate in nearby excited states

and end in a common ground state. Level crossings ana quantum beats were

analyzed for linear and quadratic Stark shifted atoms, again using the Heisenberg

operator formalism. Quantum beats which depend on the field frequency were

predicted in both cases, with the stronger effect in the linear case. If the quantum

beat signals can be detected, this may provide a means to determine accurately the

difference between widely spaced energy states.

In the case of level crossings, expressions were developed defining the total

radiated energy, along a specific viewing axis, as a function vL" the field frequency. A

level crossing results in a change in the fluorescence pattern indicated by a variation

in the received energy. The peaks in the energy signal are relatively narrow, on the

order of 2A, allowing precise measurement of the crossing point. This can then be

used to accurately determine the original energy spacing. Since the energy shifts

here are a function of the field frequency, using an oscillating field alleviates the

requirement for a strong field in the case of a static shift. In addition, a nonuniform

field does not result in broadening as in the static case, and the critical parameter,

frequency, can be measured with extreme accuracy. Thus, using a nonresonant field

in a level crossing experiment can result in a very accurate spectroscopic technique.

Experimental confirmation of this technique will be the final proof of its

usefulness. The last chapter provided a look at some of the critical parameter in

such an experiment. It was shown that for an idealized atom, there is a wide range

of possible transition frequencies that are applicable, infrared to the mid-visible.

Typical RF field frequencies are on the order of 107 to 1010 Hz and field strengths of

100 to 1000 V/cm. The obvious follow-on work is to find an appropriate atomic or

molecular sample and conduct an experiment to confirm this technique.
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