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Abstract

A single-mode laser theory was applied to two coupled Ar-ion lasers in Fabry-

Perot resoAators and the equations were solved numerically to predict intensity

tuning curves and locking ranges for various types of mirror translations. The

same theory was extended to model two modes in each cavity, which predicted a

decrease in locking range as well as a mutually-reinforced hole-burning minimum.

With a single, uncoupled, two-mode He-Ne laser, the existence of the minimum

was verified experimentally. Two mcltiline/multimode Ar-ion lasers were coupled

through a common end mirror and the effect of coupling strength on phase locking

was investigated by varying the reflectivity of that mirror. In order to character-

ize the phase-locked performance of multi~lne/multimode and single-line/ inul-

timode coupling, interference fringe visibilities, output power, and frequency and

RF mode beat spectra were measured. It was round that the optimal phase lock-

ing occurred at approximately 25% coupling as determinea by The maximum

fringe visibilities produced by laser phase locking. That 25% coupling was the op-

timum coupling strength was aiso substantiated by the fact that the maximum

power output was also achieved at, this point, and the appearance of the super

cavity mode spacing verified that the behavior was due to phase locking. A pas-

sive cavity mode analysis of th, ,ree-mirror Fabry-Perot resonator showed that

the system oscillated on the composite resonator frequency as well a~s the frequen-

cies of both subresonators.



A Theoretical and Experimental Investigation
of Coupled Ar-ion Lasers

Chapter I. Introduction

This dissertation research theoretically and experimentally investigated the

phase-locked perfromance of two coupled Ar-ion lasers in Fabry-Perot resonators

along with several other associated aspects of coupling. The following is a brief

overview of why the U.S. Air Force and the military in general is interested in

coupled laser systems. In the remainder of the introduction, the concepts of laser

coupling will be presented followed by a discussion of the advantages of phase-

locked operation. The next section will review some of the previous experiments

studying phase locking using conventional coupling, and Lhe final part will be a

synopsis of the dissertation contents.

A. Overview

The United States Air Force is currently investigating the feasibility of using

high-energy lasers as one component of the ballistic missile defense network pro-

posed as part of the Strategic Defense Initiative (SDI). High-energy lasers could

also be used in a lower power and somewhat more peaceful role as a means of

communicating with undersea vehicles or as the drivers for laser fusion power

plants. For the ballistic missile defense applications, a simple diffractive optics

calculation using intercontinental distances indicates that a tremendous amount of

energy is needed to achieve the required power density on target to assure a kill.

-1-



Whether for civillian or military application, laser output energy must increase by

several orders of magnitude before any system can be deployed. Although it is

theoretically possible to increase laser output by proportionately scaling the size of

the laser and the amount of gain medium, current technology restrictions put

severe limitations on the size and power of lasers that can be constructed.

One possible method for scaling laser power to higher output levels and thus

circumventing some of the technology shortfalls is to coherently combine or phase

lock an array of small, low power, independent lasers using conventional coupling.

Conventional coupling means injecting a portion of the output of each laser into

the other resonators via partially transmitting mirrors, holes in the optics, or

diffraction around the mirrors. In spite of some added complexities, coherent com-

bination of lasers offers advantages over incoherent combination because the resul-

tant smaller far-field spot size produced by phase locking increases the power den-

sity on target by the square of the number of lasers. Also, because the system is

comprised of independent lasers, the array can still function, although below peak

capacity, with one or more of the lasers inoperative.

B. Laser Coupling

The study of coupled oscillators is by no means a new field of endeavor, but

the study of coupled lasers is still in its infancy mostly because lasers have only

been around as a useful tool since the early 1060's. Despite a thorough undcr-

standing of many types of coupled oscillators, coupled lasers have escaped com-

plete characterization not only because they operate on the order of 1015 Hz, but

-2-



also because the oscillating fields originate within the medium itself. This self-

generating oscillation presents a unique set of problems from which the low-

frequency coupled oscillators do not suffer. Coupled oscillators can be roughly

divided into four different frequency subgroups ranging from subhertz all the way

to 1015 Hz. The first category is the mechanical oscillators; springs-and-masses

and pendulums which oscillate up to several hertz. Next are the coupled acoustic

resonators which function from several hertz up to tens of kilohertz before air

mass movement in the coupled Helmholtz resonators begins to pose an upper

limit. In tank and radio circuits, the light, nimble electrons can respond to elec-

tric fields all the way up into the gigahertz regime. Presently, the upper limit of

coupled oscillators is lasers whose electric fields oscillate at a frantic 1015 Hz (See

Figure 1.1).

What is truly remarkable is that the four vastly different types of coupled

oscillators are governed by equations similar in form. Each is based on the funda-

mental expression which comprises the time variation of the equation of motion

niX + bx + kx (1.1)

plus a coupling and driving term. Superficially, the analogy appears to be

encouraging, but examination of the characteristic frequency of each oscillatory

system uncovers a marked difference between the coupled lasers and the others.

The mass attached to the spring, the acoustical inertance of the air mass in the

Helmholtz resonator, and the opposing magnetic field encountered by an electron

in an inductor all constitute the mass term in the equation of motion, but the

-3-



(a)

(b)

F1  'C c 02 F

(c)

(d)

Figure 1.1: (a) Coupled masses and springs; (b) Coupled He(rnholtz resonators-,
(c) Coupled tank circuits; (d) Coupled Lasers.
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photon "mass" is hidden and undiscernable in the laser frequency term:

Mechanical 1 o _ --f k =spring constant

W mass

Acoustical 2 W Av J A - area

V = volume
I neck length
v = velocity

(1.2)

Electrical 3 L = inductance

C = capacitance

Optical 4 w0 = n L n = integer
L

L = resonator length
c = velocity of light

Similarly, the damping caused by friction, viscosity, or resistance is more easily

traced than the nebulous losses associated with diffraction and absorption in the

laser cavity. The most striking disparity between the first three systems and the

coupled lasers lies in the driving term. Simple sinusoidal and constant phase driv-

ing forces lead nicely to analytical solutions, but the complexities and approxima-

tions inherent in the derivation of the driving quantum mechanical polarization

separates an optical maverick from a stable of better behaved oscillators.

C. Advantages of Phase Locking

There are significant advantages to a phase-locked laser system over the same

number of uncoupled lasers focussed to the same target point. The intensity
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distribution on target from independent lasers is the diffraction limited sum of the

intensities of the individual lasers, N X I, but the peak intensity from the same

number of phase-locked lasers is proportional to the square of the number of

lasers, A-2 X I. The A 2 effect arises from coherence and can be understood in

terms of the theory of a Young's two-slit interference experiment as presented by

Goodman 5 and of interference theory.

Q

Observation
Screen

Figure 1.2: Configuration for a Young's two-slit interference experiment.

Consider the interference experiment depicted in Figure 1.2. The intensity at

some point Q on the screen is given by

I(Q) = < JR11 + E"_, 12> (1.3)

where < > denotes a time average and

= E 0. e, exp[i ( w7"- wt + O,(t))] (1.4)

E 0 is the field amplitude of the waves
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ej is the unit polarization vector

is the propagation vector

7 is the position vector of a point on the screen

wi is the frequency

Oi(t) is the initial phase of the wavefront.

If the polarizations are identical, then substituting (1.4) into (1.3) yields

I(Q) = 1E01 12 + IE02 12 + 2Eo0 Eo2" cos[(k'1 - k2Y.F - (WI - w2 )t + (01(t) - 02(t))] (1.5)

If E0 , 12 = E02 12 = 1, then

I(Q) = 21(1 + cosO) (1.6)

where 9 = ( )- - (w1 - w2)t + (01 - 02). The locking phenomena may be

understood through closer examination of 0. If w, = w2, the two wves qre- said to

be frequency locked, but the phases may continue to change as random functions

of time and spoil the N2 peak intensity. If on the other hand, a fixed relationship

occurs between 01 and 02, the laser phases are locked, but any difference between

W and w,2 will cause a beat signal which creates a time-dependent interference

pattern whose amplitude varies with the amplitude of the beat envelope. When

w, = w2, and there is a fixed phase relationship, the two waves are phase locked

and produce a steady intensity distribution in the near field as described by equa-

tion (1.5). At all points for which cosO = 1, the intensity is 4 X I or 22 X J.

The coherent summation concentrates the energy into a smaller area giving

rise to the N2 effect. To better understand the mathematics of the far-field nar-

-7-



rowing which causes this N 2 effect, consider the following example of the coherent

summation of two plane waves. When two plane waves are combined in the far

field (See Figure 1.3), the field distribution at the observation screen is

Intensity
Profilie

a

V/ f

Observation
Screen

iigure 1.3: Configuration for far-field interference of two plane waves.

i eikf

E(u)--'Eo i ft(X) ei 2 1rqz dx

a 3a

I . e ikf 2 2
= - --E 0e f f e f e2q d (1.7)

a a
-7 -

E e iq sin27rqa

where t(x) is the transmission function of the lens, f is the focal length, a is the

diameter of the beams, and q is the spatial frequency associated with some point

-8-



on the screen. Taking the magnitude gives the intensity:

()-_ 2 sin 2 2rqa

X f I (27rqa) 2

where I(q) = 0 when q = 1/(2a). For a single beam of diameter a,

I(q) an (1.9)
x fI (7rqa )'

where I(q) = 0 when q = 1/a. This says that the diameter of the diffraction lim-

ited spot in one dimension of the intensity pattern for the coherent mixing is one-

half that of a single beam. Compressing twice the intensity into half of the area

means a fourfold increase in the peak power density. Even though the lasers emit

Gaussian beams, the mathematics of plane waves is far simpler and more trans-.

parent. The far-field interference of both types of wavefronts gives the same

results, but equation (1.9) describes the fringes within the Gaussian pattern.

When some degree of coherence exists among wavefronts, proper mixing of

the waves produces near-field interference fringes in accordance with (1.5). The

amount of coherence is characterized by measuring the visibility of the fringe pat-

tern. The visibility is defined by

V Imax - /min (.0v= 1~l~ mn(1.10)
Imax + min

where Imax and /rin are the maximum and minimum intensities of two consecu-

tive light and dark fringes, respectively. If V = 1 (high contrast fringes), the

waves are completely coherent, but if there are no fringes, V = 0 and the waves

-9-



are incoherent.

Another practical military advantage of a coupled laser system is the prop-

erty, as termed by the coupled devices community, of graceful degradation. For a

single, high-energy laser, if a critical component fails, the laser cannot function

and the mission can not be performed. If instead, a phase-locked coupled laser

system is employed and one or several of the lasers are inoperative, the system can

still be used as a weapon albeit at reduced effectiveness. For example, imagine the

United States to have a coupled laser system of 10-10 kilowatt lasers for a total of

1 megawatt peak output power. Perhaps two component lasers of the system are

down for maintenance. Instead of operating at the maximum performance level of

1 megawatt of peak phase-locked power, the system could still function at 640

kilowatts and continue to perform the defensive mission. Even ift no phase locking

occurred, the 10 laser system would generate 100 kilowatts of power showing that

the coupled laser system exhibits several levels of fault tolerance. The numbers

and the scenario previosly described are fictitious, but the concepts involved in

such an event are quite plau- 4 ble.

* D. History of Laser Coupling

In 1966, Stover and Steier of Bell T-lephone Laboratories made what was

perhaps the first attempt at coupling independent lasers by injection locking two

frequency-stabilized I-Ie-Ne lasers 6. Man and Brillet duplicated the work in 1984

using two Ar-ion lasers by injecting the stabilized, single-frequency output of a

master laser into a multiline/multimode slave laser and produced almost three

-10-



times the single frequency output of one laser 7. Even though injection locking is

an excellent method for increasing the single-mode output power from lasers, the

requirements for precision control of the system components are considerable and'

not always easy to satisfy. Another method of scaling laser pnwer is the master

oscillator/power amplifier (MOPA) 8. In a MOPA system, a relatively clean seed

beam passes through one or more amplifiers in which the seed beam is amplified

thereby increasing the beam intensity to higher power levels.

Both MOPA and injection locking have a critical dependence on a master

oscillator. Should the master oscillator fail, there would be no output from the

former, and only the unphased output of the slave lasers of the latter. Conven-

tional coupling, however, not only eliminates the dependence on a master oscilla-

tor, but it also makes it possible to extract phase-locked energy on multiple

wavelengths simultaneously. Palma, et. at. coupled 2, -1, and 6 unstable CO.,

lasers by injecting portions of the beams through holes in the the feedback mirrors

and by using beamsplitters to reflect the beams into the other resonators ',. This

work resulted in a coherent sum of 65% of the theoretical phase-locked intensity

for the 6 laser experiment and 88% and 95% of the ideal intensities for A and 2

lasers, respectively. Bernard, Chodzko, and Mirels coupled two cw I-IF chemical

lasers in unstable resonators by seeding each laser with 20-c of the output

power'. Even though the multiline fringe pattern had an overall visibility of 0.6,

the visibility of the filtered P.,(6) 11F laser line was nearly equal to one indicating,

that the transitions in each iaser were almost completely coherent. Currently.

Cunningham et. al. are undertaking a similar experiment with chemical oxygen-

-III- m



iodine lasers (COIL) 11

E. Dissertation Outline

Although there have been a number of coupled-laser experiments, apparently

none have made a parametric study of the effect of the transmitted coupling

power on the coupled system, especially in multiline lasers with Doppler-

broadened media in standing-wave cavities. This dissertation research focussed on

the behavior of two coupled Ar-ion lasers both theoretically and experimentally.

Ar-ion will definitely not be used in any high-energy laser system, but understand-

ing the physics of coupling in Doppler-broadened media should be applicable to

other systems whose media exhibit Doppler-broadened behavior such as HF or

oxygen-iodine. Additionally, Ar-ion lasers can be operated for extended periods of

time without the hazards associated with the highly toxic HF and COIL lasers.

Chapter II will derive from first principles the equations describing single

mode laser operation, and then work through the important points of both the

single- and two-mode coupled laser equations. The computer solutions to those

equations for various tuning configurations are then examined. In Chapter lI, the

coupling experiment itself will be discussed showing the three configurations stu-

died and the measurement procedures. Chapter IV will present and analyze the

experimental results. Finally, Chapter V presents the conclusions and some

recommendations for continued research in this area.

-12-



Chapter II. Coupled Laser Theory

Because many real lasers oscillate on many wavelengths and many modes for

each wavelength, it is extremely difficult if not impossible to accurately model the

complex behavior of a single laser let alone two or more coupled lasers. Despite

the enormity of the real problem, simpler theories developed under suitable

approximations produce significant and useful insights into the coupled laser

processes. This chapter will begin with a cursory historical examination of cou-

pled laser theory, which will be followed by a derivation of the equations for two,

coupled, single-mode Fabry-Perot lasers. The solutions to the single-mode equa-

tions will be discussed along with their accompanying tuning curves. The chapter

continues with the extension of the single-mode equations to describe two modes

oscillating in each cavity and an examination of some of the interesting

phenomena that were discovered during the solution of the two-mode equations.

A. History of Laser Coupling Theory

Since Spencer and Lamb first introduced their coupled-laser theory in 1972

the field has blossomed with many related theories: each seeking to expand the

range of applicability of Spencer and Lamb's treatment, or study a different

a.spect of a coupled laser system. Palma, et. al. applied Spencer and Lanibs

theory directly to two coupled CO, lasers 9, and Chow derived an analytical

expression for the locking range in terms of changes in the cavity length 13. The

original theory has also been modified by Mirels 14 to more accurately represent

the physical coupling mechanism. These theories have dealt only with a single
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mode oscillating in each cavity and, except for Mirels, with homogeneous laser

media. Spencer and Lamb's theory is also limited to cases of weak coupling.

With the growing interest in coupled laser systems, the theories likewise

expanded to more closely model the prevailing experimental research. Shakir and

Chow, based on the fundamentals of Spencer and Lamb's theory, extended the

coupled laser theory to model any number of lasers in a phased array with any

amount of coupling 15. Their paper also introduced the concept of supermodes;

laser modes which satisfy the buundary conditions of the composite resonator.

Both Walsh 10 and Shakir and Erkkila 17 applied the Shakir and Chow supermode

theory to CO2 lasers; Walsh to Fabry-Perot resonators and Shakir and Erkkila to

unstable resonators. Since coupled ring resonators offei the possibility of higher

output power, Benda and Palma adapted the supermode theory to model such a

system "s. Not all theories find their roots in Spencer and Lamb's model. Rinaldi

and Erkkila introduced a new approach by treating the coupling as an injected

signal and used a rate-equation approximation as the model for the laser

medium

This dissertation also presents its own contribution to the increasing number

of coupled laser theories by planting a seed in an area of interest that has

apparently been overlooked. As stated above, the theories generally deal with

single-mode, homogeneously broadened, coupled lasers. A logical extension is to

model two modes oscillating in each cavity. The second theoretical section of this

chapter performs that analysis by developing two-mode coupled laser equations

for loppler-Lroadened gain media. It should be noted that the single- and two-
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mode theories developed here describe the behavior of a coupled-cavity laser sys-

tem with one or two modes oscillating in each cavity.

B. Single-Mode Theory

The objective of this research was to study the coupling of two standing-

wave Ar-ion lasers. Although the theorieb fall far short of describing the complex

interactions between the up to ten possible different wavelengths and dozens of

modes in the real system, analysis of the coupled-laser theory aids in understand-

ing some of the processes involved in coupling. If simple systems cannot be

understood, then there is little hope of interpreting any results from more compli-

cated experiments. This section will derive the single-mode coupled laser equa-

tions from the principles of electrodynamics. These equations will then be applied

to coupled Ar-ion lasers and the resulting solutions will be examined and dis-

cussed.

The following derivation closely parallels that first introduced by Lamb in

1964 in his now famous paper on the "Theory of an Optical Mfaser' °0 . It is reas-

suring to know that the derivation of the coupled-laser equations begins with the

familiar Maxwell's equations. First, a driven wave equation describes the field in

each cavity of Figure 2.1:

a 2E ( ,t) +En (z,t) 1 2E (z,t) 1 a2P ( ,t) (2.1)32 +2Fr- ___ - (2.1)2
at, at fol0 az" 2 C oat 2

where n = A , B (the cavity designations); E, is the complex field in each cavity;

Fn are the cavity losses; and Pn is the comp!ex polarization of the Doppler-
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Figure 2.1: Geometry for coupled laser theory.

broadened medium. Since the spatial variations of the field inside the cavity are

not important to the steady-state solutions of the output wave, the z-dependence

is removed by performing a Fourier transform on the wave equation. Equation

(2.1) is multiplied by -sink 4 (z + LA) and integrated over Z from -L 4 to 0.
LA

By defining the Fourier transform of the mode amplitude EA by

0

EA(t) 2 f sinkA(z + LA)EA(z,t) dz (2.2)
LA -LA

the resultant wave equation becomes

1o 02EA (Z ,t

9 (t) + 2r A E() A M f sinkA(z + LA ) d: = - A(t) (2.3)
(O£O LA -LA 

2

where PA is the Fourier transform of the polarization. If the two outside mirrors

have reflectivities of 100%, then the boundary conditions for the laser resonator

are

E4 (0,t) = E4 (-LA ,t) =0 (2.I)

Integrating by parts twice eliminates the z-dependence from equation (2.3), and
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the wave equation simplifies to

Ea(t) + 2FA EA(t)+ EA(t) Pa(t) (2.5)

Two further simplifications may be made by noting that f1A = kA c is the bare

cavity frequency and (e0p0) - 1 = C2 :

EA(t) + 2FA EA(t) + nA'EA(t) pA(t) (2.6)
60

In the pioneering work on coupled laser resonators developed by Spencer and

Lamb 12, a "dielectric bump", an infinitely narrow region of change in the dielec-

tric permittivity between the two cavities, was the boundary condition through

which the lasers were allowed to interact. The dielectric bump mirror model is

mathematically described by

((z) --- 60 [1 + -2- 44z) (2.7)
k

where r = 2 (R,/T) ' and Re, T, are the reflectivity and transmissivity of tile

coupling mirror, respectively. The dielectric bump changes the boundary condi-

tion at E(O.t) and would have been included during the integration by parts if

this derivation was strictly following that of Spencer and Lamb. Not only is the

dielectric bump completely unphysical because no reflection occurs at an interface

between two media of the same index of refraction, but the Spencer and Lamb

model also allows no provision for output coupling and therefore makes the model

somewhat artificial. In 1986, Mirels improved the model and made it more
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representative of the actual coupling involved by replacing the dielectric bump

term with a net perturbation per round trip term, accounting for light leakage

through the output mirrors in the cavity loss terms, while retaining the funda-

mental medium interaction terms of Spencer and Lamb 14. Since this derivation

uses Mirels' coupling terms, the development continues from equation (2.6).

Even though the problem has been reduced to a second-order differential

equation, it is difficult to solve in this form, therefore some approximations must

be made. Let the electric field and polarization be represented by complex,

sinusoidally varying functions:

EA(t) = EA (t) e- i(Wt + OA(t)l

(2.8)

PA (t) = A (t )e-i[Wt + OA(t)]

By invoking the slowly varying amplitude and phase approximation, all the

second order terms in EA (t) and OA (t) can be neglected, and only the zeroth

order term in polarization is retained. Since the terms containing FA EA (t) and

FA a(t) are roughly 107 times si.ialler than the others, they may also be elim-

inated. After making these simplifications, the resultant first-order coupled

differential equation in EA (t) and OA (t) becomes

-2iWEA(t) + EA(t) [PA2
-(. + OA(t)) 2 - 2i 4

'
A EA(t) = ---PA(t) (2.9)

Because optical frequencies are on the order of 105 , factors of 2 are also negligible,

so
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nA (2.10)

After dropping the 0 2(t) term, the quadratic frequency expression can be reduced

to

[11.4 2 _ [W + A (t)]] >. 2w [q4 -- W- A 1(2.11)

Making this substitution and dividing equation (2.9) by 2w gives

-i,(t + EA(t)I(l a -M - OAI - irA EA = -- PA(t) (2.12)

= ' !Re{PA (t)} + i Im{P4 (t)}

Equating the real and imaginary parts of both sides of the expression gives two

first-order coupled differential equations in field and phase:

WEA + FA EA =_- Im PA (t)
2E0

(2.13)

a + =f1A - 2 E A - ' ReP A (t)

A similar pair of expressions results from the treatment of EB.

Once the field and phase equations have been obtained, expressions for the

polarization of the medium in each cavity must be derived. This derivation

involves the quantum mechanics of the laser medium and is specific to whether

the medium is homogeneously or inhomogeneously broadened. Because the formu-

lation of the polarization for a Doppler-broadened medium is long and difficult

and provides little that is necessary to the understanding of this derivation, the

results will be transferred directly. (For a complete derivation of both the
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inhomogeneous and homogeneous media polarization, consult Lamb 20, pp.

A1430-A1438, or Sargent, et. al. 21, pp. 144-152.) Finally, the field and phase

equations describing a single mode oscillating in a Doppler-broadened medium of a

Fabry-Perot resonator are

En -(on - OnIn) (2.14)

wn + On =fl + orn - Pn In (2.15)

where the symbols and coefficients are defined in Table 2.1.

Before the coupling terms are derived, it is useful at this point to examine the

details of the coupling mirror. The mirror model used in this analysis is a single,

non-absorbing, reflective surface detached from any glass substrate. The surface

is matematically described by complex coefficients of reflection and transmission

which are assumed to be identical for waves incident on either side of the coupling

mirror (See Figure 2.2):

r A = r B = r = Tec' ' ted - \R oe, (2.16)

tA .t. .t te . VT C ei (2.17)

To couple the two pairs of equations for the field and phase of the modes in

each cavity, Mirels' net perturbation per round trip coupling terms 14 are

appended to equations (2.14) and (2.15). When photons cross the coupling mirror,

there is a perturbation to the parent field and phase as shown in Figure 2.3, and
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Table 1: Symbols and Definitions

Oan = Fine - F 2. Linear Net Gain Coefficient

13, = F3. (1 +X (i,)) Self-Saturation Coefficient

122
a n = 2 i: , e f e 2 dx Linear Mode Pushing Coefficient

0

P. = F 3, ,n Z ( Self-Pushing Coefficient

Own,, = F. 1;(~ + Y2Wm +-,(~ -~ )

+ - m) [1 -(n m)] Cross Saturation Coefficient

+ F3. ( - m)C( n - 'a) (I -V ( - )21

rm = -I F3n [( n + n)t(Yn + YK.m) + ( n - r)ZYK2 n - m)]

- F3. , -) n) Cross Pushing Coefficient

- F 3 ., ( n - rn )Z_4 n - Ym) ( n m2

Fin = F3 n r c Peak Unsaturated Gain Coefficient
NT 2 L

F., = r = -ln 1
F", n = 1 = RoR Distributed Cavity Attenuation Coefficient

AI,, = rC- -e Distributed Coupling Miror Coefficient2.'_L (RC

n = (wO - wn)/' Normalized Laser Frequency Detuning from Line Center

A = (w0 - f2. )/'/ Normalized Cavity Frequency Detuning from Line Center

, (X) = (1 + x 2 )-1 Lorentzian Line Profile
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Table 2.1: Symbols and Definitions (cont'd)

V= t 0. Phase Introduced by Coupling Mirror

,= Power-broadened Natural Linewidth (HWHM)
2 NT rrad

26 = 2ic Normalized Free Spectral Range"yL

on = OBn - CAn Mode Phase Difference

Wan  Laser Oscillation Frequency

Woa Line Center Frequency

o". Cavity Resonance Frequency

R 0  Output Mirror Reflectivity

R, Coupling Mirror Reflectivity

TC  Coupling Mirror Transmission

go Single-Pass Gain

I Length of Gain Medium

L Cavity Length

1 iEA -" 12 EB cos(¢B - OA + 0) (2.18)

When all the pieces are assembled, the single-mode coupled laser equations become

dEA-= (el - 0 ) EA + 1'A EB cos() + (2.20)
dt

dEB ( - 021B) EB + "D E 4 Cos( - V) (2.21)

dt
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Figure 2.2: Reflected and transmitted waves at the coupling mirror interface.

d { _ )EB }sin( +t) (2.22)

dt -)+

dt - ( - -B) + 021 - P2L8 + ,B s 1 sin( - ) (2.23)

whose symbols and coefllicnts are also defined in Table 2.1. These equations

model the laser cavities and modes depicted in Figure 2.4(a).

In order to solve the equations in the steady state, the time derivatives were

set to zero and the Jacobian MIatrix was constructed to solve the system for the

variables 1A , IB , , and sins using the Newton-Raphson method 22o Self-

-23-



{TfEB

S\EA
R0 E A  (6B 6A +

Figure 2.3: Geometry to derive net perturbation per round trip coupling terms.

consistent solutions were allowed to converge to within one part in a million by a

computer program coded on a Zenith Z-248 computer. Each solution set was

checked for stability by performing a perturbation calculation on the time-

dependent field equations and an equation comprised of the difference between the

two phase equations. If all the real parts of the eigenvalues of the perturbation

matrix were negative, then the solution was considered stable. The details of the

reduction of the equations to expressions readable by a computer and the com-

puter code used to generate the solutions can be found in Appendix A.

The solutions to the coupled laser equations with Doppler-broadened media

permitted the evaluation of the intensity of each mode, 'A and 1B, the total inten-

sity, 4, which is the coherent sum of the mode intensities, the offset of the lasing

frequency from the line center frequency, , and the phase difference between the
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Figure 2.4: Schematic diagram of the coupled laser system for (a) a single mode

oscillating in each cavity and (b) two modes oscillating in each cavi-
ty.

two modes, 0 . The parameters describing the Ar-ion lasers are found in

Table 2.2. To generate the tuning curves, the mirrors were translated (by varying

the cavity frequency term, Q , contained in the A term of equations (2.22) and
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(2.23)) in three different combinations. Each w term contains the bare cavity fre-

quency, 0 , implicitly, but w need not be determined for each mirror displace-

ment. The change in the bare cavity frequency is absorbed into the lasing fre-

quency, w , during each step of the iterative solution process. Therefore, the

implicit relationship between w and Q is satisfied once a self-consistent solution is

reached.

Table 2.2: Ar-ion Laser Parameters

L = 1.75 m R, = 0.6 to 0.95

= 0.38 m VFSR = 85.6 AfHz

Id 2 7r X 4 GIz Trad =7.5 ns 24

go 0.01 cn - 1 123 X = 514.5 rn

Figures 2.5 (a)-(c) show the case of a symmetric tuning in which both output

mirrors were translated simutaneously (mirrors 1 and 2 of Figure 2.-I) while main-

taining equal cavity lengths. As expected from the symmetric tuning, the Intensi-

ties in each cavity both display the same behavior and, as the mode crosses the

gain center, it burns out the Lamb dip. Although it is difficult to see on the

figure, the minimum of the Lamb dip is slightly offset from the point where the

resonator frequency is equal to the gain center frequency due to the phase shift,

encountered as the light wave traverses the coupling mirror. Including this

additional phase perturbation displaces the lasing frequency from the cavity
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frequency. This displacement is more pronounced for two-mode coupling and will

be discussed more extensively later in the chapter. Not surprisingly, the two

modes exhibit zero phase difference in this case and the solutions remain stable

throughout the tuning range. For the curves depicted by Figures 2.6 (a)-(c), mir-

rors 1 and 2 were kept stationary while mirror 3 was translated. The intensity

curve (Figure 2.6(a)) shows that the maximum total intensity is reached when the

two cavity lengths are made equal even though neither mode intensity is at its

peak. This results because the phase angle is initially zero allowing the largest

contribution from the cross product term of the coherent'intensity sum. The final

tuning case involved translating only the coupling mirror (mirror 2 of Figure 2.4)

preserving a constant total cavity length (Figures 2.7 (a)-()). Once again, the

coherent intensity was a maximum when the cavity lengths were equal. but in this

instance, both the intensity and frequency curves are symmetric about the zero

detuning point.

Notice also that the right side of Figure 2.6 (a) matches the intensity to the

right of zero in Figure 2.7 (a). The reason this occurs is because it is immaterial

which of the mirrors is translated when changing the cavity length insofar as one

laser is concerned. I-lad the other output mirror of the asymmetric tuning been

moved, then the left sides of the two figures would show identical intensities. One

further piece of information concerning the desired operating point of the coupled

laser system is available from the tuning curves. In order to achieve the max-

imum power output from the single-mode coupled laser system, both cavity

lengths must be equal to each other while the laser frequencies should be letuned
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Figure 2.5: Intensity, frequency detuning, and phase as a function of cavity
detuning for single-mode coupling for the case of translating both
output mirrors. The solutions are stable for all displacements.
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Figure 2.6: Intensity, frequency detuning, and phase as a function of cavity
detuning for single-mode coupling for the case of translating a single
output mirror. The solutions are stable from -3.48 MIz to +3.14
MHz.
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Figure 2.7: Intensity, frequency detuning, and phase as a function of cavity

detuning for single-mode coupling for the case of translating the

coupling mirror. The solutions are stable from -1.65 MHz to +1.65
MHz.
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from the gain center to avoid the intensity drop which results from the hole-

burning associated with the Lamb dip.

One motivation for studying coupled lasers is to determine the set Df condi-

tions that is necessary to generate the maximum stable coherent output. Stable

operating regions were calculated for different values of the coupling mirror rang-

ing from R, = 0.95 to R, = 0.6 . Although there are several interpretations of the

definition of locking range, the term locking range as used in this paper refers to

the frequency region over which the solutions to the time-dependent coupled laser

equations remained stable as determined by the perturbation calculations:

z L z L
-= (2.24)X 27r c

The upper curve of Figure 2.8 shows the locking ranges for the case of translating

a single output mirror with an internal phase shift of 0 = -7r/2 which was

chosen to match the phase shift derived by Spencer and Lamb 12 As stated pre-

viously, when both output mirrors were translated, the solutions remained stable,

but when tuning only the center mirror, the locking ranges were almost exactly

one half of those resulting from tuning a single output mirror.

The internal phase shift encountered by the coupling beam as it crosses the

coupling mirror depends on the optical length of the reflective surface of the mir-

ror and the phase change introduced into the wave upon reflection at the mirror

interface. Although exact determination of the phase shift is difficult, the choice

of 0 is not arbitrary. The complex reflectivities and transmissivities must obey

conservation of energy according to 25
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rAtBE + tArE =0 (2.25)

If the reflection phase change is chosen to be r, then the only allowable values for

V are ::r/2 .

As the amount of coupling increases, the locking range increases nearly

linearly. The curve ends at 40% coupling because the population inversion ration,

N/NT, falls below 1 for any larger value of transmission. With larger coupling

coefficients which correspond to lower reflectivities of the coupling mirror, each

cavity can no longer sustain oscillation so the character of the coupled laser sys-

tem changes. Instead of two independent lasers coupled through a common mir-

ror, the system becomes a single laser oscillating between the two output mirrors

with a phase disturbance in the center caused by the coupling mirror in the cavity

interior.

The plateau at 5% transmission shows that only a small amount of coupling

is required to initiate stable, phase-locked operation, but the cavity length restric-

tions necessary for phase locking are quite severe. For wavelengths on the order

of .5 um for Ar-ion lasers, the corresponding locking ranges indicate that the laser

cavities must be equal to each other to within about 100 nm. Control of this

magnitude for a 1.75 m-long cavity would be an extraordinary engineering accom-

plishment. Since the locking range for stable operation is wavelength dependent,

these control problems are relaxed somewhat for longer wavelength lasers. The

values of the locking ranges determined by Palma et.al.9 in their theoretical

analysis of coupled CO. lasers are on the same order as those computed here for

the Ar-ion lasers, but with a 10.6 pin operating wavelength for CO.,, the lengths
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of the two cavities can differ by several microns and still maintain single-mode,

phase-locked oscillation.

Remember that the theory developed by Spencer and Lamb accurately

models only cases of weak coupling. Weak coupling is a frequently-used but

rarely-defined term which can be thought of as a coupled system in which the

fraction of the coupling intensity compared to the cavity's internal intensity is

small. Even though the theory in this dissertation was applied to lasers with as

high as 40% coupling, no inconsistencies surfaced in the results, and therefore the

risk was warranted. A strong coupling theory was developed by Chow 26 in which

the laser modes are expanded in terms of the composite resonator or supermodes

and applicable to any amount of coupling.

C. Two-Mode Theory

Lamb laid the foundation for the development of multimode coupled laser

theory by deriving the field and phase equations for two and three modes lasing in

a single cavity 20, but the application of these equations to coupled laser systems

seems to have escaped the attention of researchers. Although mathematically not

difficult to manipulate, the two-mode coupled Fabry-Perot laser equations contain

many terms which generate long expressions for derivatives that must be carefully

coded to produce computer solutions. This snowballing mathematical mass serves

as an effective deterent to pursuing multimode coupled laser theory, and the law

of diminishing returns quickly manifests itself. Nevertheless, an interesting physi-

cal phenomenon was discovered during analysis of the two-mode theory.
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Figure 2.8: Locking range as a function of coupling mirror transmission for both
single- and two-mode coupling during translation of a single output
mirror.

Examination of the two-mode coupled laser system (represented pictorially in

Figure 2.5(b)) closely paralleled that of the single mode case. It is important to

note that the two-mode theory describes only two modes even though a real laser

could sustain all the modes in the region of the gain curve above the threshold.

The tuning curves were again created by translating the same mirror combina-

tions, and the solutions for [Al , IA" , IBI , 1B2 , fi , 2 , sin4' , and sin. 2 were

obtained by applying the Newton-Raphson method to the eight coupled equations.

The eigenvalues, however, were numerically determined for the 6 X 6 perturbation
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matrix using a program for computing the eigenvalues of an upper Hessenburg

matrix 27 . The preparation of the two-mode equations for solution along with the

computer program used to solve the system are also included in Appendix A.

To construct the two-mode coupled laser equations, Mirels' round-trip pertur-

bation terms were added to Lamb's medium expressions for each pair of like-

frequency modes. The net perturbation per ro,,nd trip ,-oupling -2eiUs f ' the

second mode in each cavity are formed in exactly the same manner as those for

the single-mode treatment except the subscripts are changed to indicated the new

mode. With an additional mode oscillating in each cavity, it seemed necessary to

allow the adjacent longitudinal modes from each cavity to interact with their

respective mode pairs in the cross-saturation and cross-pushing terms. Because

the adjacent longitudinal mode from the coupled cavity oscillates at the same fre-

quency as the mode included in the cross terms, those two waves (adjusted by the

proper phases and reflectivities or transmissivities) were allowed to mix coherently

according to the general form of the expression

I \/_7 EA n e 40A. + 0 + \7TE 8  . + 0 12 (2.26)

The result of this amalgamation is equations (2.27)-(2.34) whose coefficients are

defined in Table 2.1.

_T- EA I j( I - $1 IAI - 012( R, IA2 + T, 182 + 2V'-, T,EA..EB2COS(62 + 0) )j

+ MA EB cos(, I + ,) (2.27)
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OEA2
a - E 2 [22 - 02 1A2 - 02, ( R, [A, + T, [a + 2V,T, EAEBcos(Oj + ,P) )]

+ AlA E 2 Co6(2 + 40) (2.28)

8 -_ E 1 [,kl - fl 181 - 012 ( R, 182 + T, TA2 + 2%/', T, E4E2cos( 2 - 4'))]

+ Me EA, Ios(4, -- 4) (2.29)

a- -EB2 I2 - #2 '82 - 2, ( R, '1 + T, 'A, + 2 ,, T,EB, Ecos(Ol -4) )J

+ MB EA2COs(4 2 - 4') (2.30)

---- - I - 6A - aA ) + O, - P I'A (2.31)

- (,, ]R, 1,2 + T, '82 + 2/ R-,, TEAE 2cos(0 2 + 0)] + AfA EA } sin(O, + 4)

A = 2 + 6A - A, ) + C2 - P2 IA2 (2.32)

- r21R, 1A, + T, ,, + 2VR TEA,EBcos(O, + 4') + A A EA sin(,. + 0)

-1 b 6 - a 8 ) + al - Pi fil (2.33)

-r 12 ] R, 1a2 + 2', 1A 2 + 2V'R T, EA 2E 2cos(, - 4')] - MR _ sin(4'l - 4')
[EB Isn(,

-- " ( 2 + bB - aB) + 02 - P2 1 82 (2.34)

r [R, 1I + T, I, + 2%/, T,4E)E]cos(O, -- O)j - 'B E) -

Since the equations did not explicitly contain two different frequencies, the com-

puter program relaxed to a single intensity-phase solution satisfying all eight of

the coupled equations. It was therefore necessary to artificially split the coded fre-
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quencies by the free spectral range of the cavity (26) to force oscillation at two dis-

tinct frequencies.

Since the principal reason for studying coupled laser systems is the potential

increase in the laser output power, the concept of a multifrequency intensity sum

must be introduced. Electric fields oscillating at different frequencies add as sim-

ple intensities, but fields with the same frequency combine according to

I = E + EB2 + 2EA EBcos(B - OA ) (2.35)

For the multimode intensities consideted in the present analysis, it is presumed

that the outputs from both lasers travel identical paths and are sunerposed. The

mode oscillating at WA1 is at the same frequency as the mode at CBI , thereiore

the associated fields add coherently and similarly for the modes at WA% and WB2

In addition, since the phases 01 and . are equal or nearly equal in each of the

Lhrcc tuning configurations for all mirror displacements, it can be assumed to a

good approximation that the maxima and minima of the resultant interference

fringes produced by the paired fields occur at the same points in space. The

overall intensity sum is then the incoherent addition of the coherent combination

of each pair of like-frequency fields:

IsuM = [E, + E, 1 + 2EA 1EBcos~ll + [E, 2 + E , + 2EA.,Ey1 cos6.,j (2.36)

Figures 2.9(a)-(d) show the solutions for both values of Vb during simultane-

ous displacement of both output mirrors. Because the general character of the

two-mode tuning curves is similar to those from the single-mode case, only the
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salient features will be discussed in detail. The top curve of Figure 2.9(a) is the

intensity sum (scaled by one-half) discussed in the preceding paragraph, and the

two lower curves trace the intensities of the like-frequency mode pairs. This

unique intensity profile is identical in shape whether two coupled lasers or a single

laser is allowed to oscillate on two longitudinal modes. Figure 2.10 is an output

intensity curve of a single two-mode laser oscillating under the same conditions as

the coupled laser case. To understand the profile, some of the aspects of Doppler-

broadened laser media and spectral hole burning must be considered. As the

modes are tuned across the gain curve and the first mode reaches the gain center,

it burns out a Lamb dip decreasing the out-put intensity (Figure 2.10(b)). When

the modes are symmetrically spaced about the line center frequency, the spectral

holes burned into the medium by the two modes overlap and mutually reinforce

each other by burning holes at exactly the same points on each side of i'Ic gain

center. 'I hl, mutual overlap causes a larger decrease in the output intensity than

the decrease caused by a single mode (Figure 2.10(c)). Continued mirror transla-

tion draws the remaining mode across the gain center which burns a second Lwnh

dip (Figure 2.10(d)). In fact, this type of hole-burning phenomenon occurs in all

Doppler-broadened multimode lasers. The existence of the mutual hole burning

minimum was experimentally verified with a single He-Ne laser oscillating on two

modes 21. Even though the He-Ne experiment investigated the hole burning

phenomenon with a single (uncoupled) two-mode laser, the observation of the

mutually-reinforced hole-burning minimum substantiates the interpretation of the

theoretical curve and provides some experimental support for the validity of' this

two-mode laser theory. (See Appendix B for the details of the experiment.)
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Figure 2.9: Intensity, frequency detuning, and phase as a function of cavity de-

tuning for two-mode coupling for the case of translating both out-

put mirrors simultaneously (a)-(c) 01 = -,r, 2 (d) = + 2 . Th,

solutions are stable for all displacements.

The transmitted waves of the coupled resonators encounter a phase shift as

they transit the coupling mirror. This phase shift changes the effective length ot
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the resonators thereby displacing the actual cavity frequencies from the expected

cavity frequencies. For the 0' = -r,/2 phase difference used in Spencer and

Lamb's theory 12, the modes are moved approximately 12 \IHz higher in frequency

(Figure 2.9(a)), but if the phase difference is 7r/2 , then the laser modes are shifted

roughly 11 MHz lower than the unperturbed cavity frequency (Figure 2.9(d)). If

the phase difference can be manipulated such that , = 0 . then not only are 1he

solutions stable for all displacements, but the output intensities reach their max-

ima as well. This result is encouraging, but 0 = 0 does not satisfy conservation

of energy when applied to the mirror model used in this analysis (i.e. o. = 7

The behavior displayed in the remaining tuning curves is remarkably similar

to those for the single-mode case. In the case of translating a sin¢!e output mirror

(Figures 2.11(a-(c)), the maximum intensity sum does not occur at zero displace-

ment because of tile asymmetries of the individual intensities. The asymmetric

tuning is also borne out by the appearance of the intensity and frequency ,u",s.

When translating the coupling mirror while maintaining a constant total resona-

tor length (Figures 2.12(a)-(c)), the intensity sum in this instance reaches a max-

imum at zero detuning, and the curves are completely symmetric about this point.

As in the case of the single-mode lasers. the desired operating point ot a tiwo-mole

coupled laser system for maximum output intensity is when the two roup,], -:t%1-

ties are equal in length but tuned such that the frequency of one mode is'

than at least one free spectral range from the gain center.

Perhaps the most notable comparison between the single- and two-mole

theories is that the two-mode locking ranges are almost exactly one halt' f the
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single-mode locking ranges. The presence of the additional mode significantly

affects the coupled laser stability (Lowcr curve of Figure 2.8). In the absence of

any hard experimental evidence at the present time to support the predicted

decrease in locking range from coupled single-mode lasers to coupled two-mode

lasers and without additional information for other multimode systems, it is

difficult to be absolutely certain that this lccking range reduction should occur.

In an analogous situation, Anderson, Chow, and Scully observed a decrease in the

lockband of ring-laser gyros oscillating on two strong longitudinal modes and two

weak transverse modes over ring-laser gyros oscillating on only two modes '
.

Although ring-laser gyros are different from coupled lasers in ma'.y 'espects, the

interaction of the forward and reverse waves, in a sense, form coupled waves

which should obey the same medium physics whether in gyros or coupled

stand'ng-wave cavities. Nevertheless, the difference in the two locking ranges is

understandable because not only is there cros3 communication between adjacent

longitudinal modes in each cavity, but the additional influence of the adjacent

longitudinal modes of the coupled resonator causes further perturLation to the

system.

Since there has been no analysis of systems with more than two modes. gen-

eralization of the reduction in locking range would be highly speculative. Fiirt hvr

descrease in the locking range is expected with the addition of more mode s, bot

because the interaction of the new mode with the non-adjacent mode is weaker

than for adjacent modes, the incremental reduction in locking range dholil he

smaller than the factor of one-half seen in going from one to two mod(es.
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D. Conclusion

Existing coupled laser theories have been extended to analyze the case of two

coupled lasers supporting two nodes in each cavity. A number of oddities in

behavior have been found to exist including a mutually-reinforced hole-burning

minimum and a shift of the laser frequencies from the bare cavity frequencies.

Locking ranges were computed for both the single- and two-mode coupled laser

systems, and it was found that the presence of an additional mode reduces the

locking range. The possible utility of coupled laser systems makes theoretical

analysis necessary, but further development of Lamb's electromagnetic treatment

may prove too tedious to apply to multimode/multiwavelength lasers. A new

approach developed by Rinaldi and Erkilla '9 which treats the coupling as an

injection process may be the preferred method to completely model a real coupled

laser system.
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Chapter III. Coupled Ar-ion Lasers Experiment

This chapter will describe the experiment performed to phase lock two Ar-ion

lasers using conventional resonator coupling. In the first section, the experimental

configurations used to couple the lasers will be explained along with descriptions

of some of the primary operating characteristics. The second section will detail the

measurements made and the purpose of those measurements in diagnosing the

phase-locked performance.

A. Experimental Configurations

The basic experimental configuration was based on the coupled laser system

examined theoretically by Spencer and Lamb 12 (i.e. two lasers coupled through a

common end mirror). Unlike the idealized initial conditions conceived by Spencer

and Lamb in which the lasers oscillate on a single mode in cavities of exactly

equal length and identical gain media, the Ar-ion lasers were initially allowed to

operate in multldine and multimode on as many wavelengths and modes as possi-

ble (the final experiment was on single wavelength) in order to increase the proba-

bility of phwse locking. Phasc locking can only occur between two modes of

exactly the same frequency, so the chances of overlapping one or several of the

hundreds of modes oscillating is greatly enhanced when air turbulence, vibrations.

an( thermal expansion and contraction tune the lasers. The Spencer and Lamb

theory couples two single-mode lasers with homogeneously-broadened media, but

more importantly, it assumes a priori that the lasers are phase locked. This is
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certainly not a valid, realistic assumption. In fact, little is known about what

mechanism may actually induce phase locking, and at least in the case of Ar-ion

lasers, the coupling process is dynamic and the coupled system is poorly behax ed

in terms of frequency jitter and fringe stability.

Active stabilization is needed to tune and maintain the lasers at exactly the

same frequency in order to allow single-mode lasers to phase lock. Not only was

active stabilization not a desired requirement of this investigation, but it would

have been extremely difficult to implement with such long, open cavities even if

the equipment had been available. In addition to the problem of stabilization, no

unambiguous diagnostics would have been possible because the single-mode coher-

ence length is so long that the visibilities of the interference fringes measured in a

preliminary experiment were uniformly high and exclusively due to self interfer-

ence. Also, no radio frequency mode beat exists for single-mode lasers, so there

could be no independent verification of phase locking.

Two nominally identical Spectra-Physics Model 165 Ar-ion lasers were

configured in a U-shaped cavity with 90% reflective output couplers and coupled

together through a common end mirror which also served as the coupling mirror

for tile lasers (See Figures 3.1, 3.2, and 3.3). Figure 3.2 also depicts the diagnostic

equipment used to make the measurements for the various experiments. The two

output beams were superposed in the near field by constructing an interlferometr

and matching the optical paths to within the coherence length of Ar-ion (about 3:

cmr). Two different experiments were performed, one to study multiline/ mul-

timode coupling, and the other to study single-line coupling. In the first, experi-
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Output Couplers t::-

Compensato~r

Figure 3.1: Schematic diagram for multiline coupling without an optical trom-
bone for path length compensation.

ment (Figure 3.1 and 3.2), the lasers were operated in multiline and multimode

and an optical trombone with submicron resolution was incorporated into one side

of the coupling paths which were equalized to within a millimeter. The results

without the optical trombone were essentially a benchmark for comparison for the

more carefully controlled experiments. In the second experiment (Figure 3.3).

single-line operation at 488.0 nm was studied by placing dispersing prisms in the

cavities and realigning the output couplers while using the same coupling
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Figure 3.2: Schematic diagram for multiline coupling with an optical trombone
for path length compensation and the diagnostic equipment used for
the measurements.
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configurations.

The total optical cavity length of the coupled system was 348.6±0.4 cm with

each sub resonator half of that optical length. Without the coupling mirror in the

cavity, the transmitted power from each output coupler was 1.0 W on four mul-

timode wavelengths (514.5 nm, 496.5 nm, 488.0 nm, and 476.5 nm). The Brew-

ster windows of the laser plasma tubes force the lasers to emit vertically polarized

light. For the single wavelength experiment at 488.0 nm, the dispersing prisms

could only be oriented horizontally which meant the vertically polarized light

incident on the prism faces would be strongly reflected and not transmitted as

desired. Fortunately, the system gain was sufficiently high to overcome the losses

induced by the reflections of the polarized cavity beam and still generate 500 mW

of output intensity.

Vhen multiple wavelengths interfere at some point in space, the fringe

envelope of the composite pattern is goverened by the equation

rnbPrent n 7r L  (3.)

Itotal ,Px, cos J(
where PX, is the power fraction of each wavelength and AL is the path length

detning in microns. To determine which wavelengths were lasing and tle inten-

sity of each, the output beam was dispersed into four separate beams using a

Pellin-Broca prism. The intensities were then measured by placing a power meter

behind an adjustable iris to block all but one wavelength. The output intensities

of each wavelength are shown in Table 3.1. With these values. the equation o

the niultiline fringe envelope is given by
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= 0.186 cos(24.42-AL) + 0.064 cos(25.31,L) (3.2)It

+ 0.636 cos(25.75AL) + 0.114 cos(26.37AL)

where AL is in itm units, The equation is graDhed in Figure 3.4 which shows the

the theoretical multiline fringe envelope produced from the interference of two

beams of equal intensity consisting of the four Ar-ion laser wavelengths as the

coupling paths are detuned from each other.

Table 3.1: Ar-ion Wavelengths and Intensities

Wavelength (nm) Power (mW)

476.5 46.0
488.0 257.0
496.5 26.0
514.5 75.0

Even though the maximum multiline fringe visibility only occurs when there

is zero path length difference between the two legs of the interferometer, the calcu-

lation shows the condition 's not as stringent for interference of the four Ar-ion

wavelengths listed previously. The figure shows most of the local maxima are

roughly the same magnitude. When flucuations of the fringes are taken into

account, it is evident that the maximum practical fringe visibility could be

obtained as long as the detuning remained within the peak region of one or the

large envelopes. The low visibility regions were easily identified by'scanning the

optical trombone and watching the envelopes with a PIN diode connected to an
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oscilloscope. Once the coupling path lengths were within a few millimeters of each

other, the trombone was set at one of the local maxima close to the zero optical

path difference and periodically readjusted as the path changed with thermal

expansions and contractions.

1 9

2.0

U)

:=1.0
a)

0.0

-22.0 0.0 22.0

Path Length Detuning (Ium)

Figure 3.A: Multiline fringe envelope generated from the near-field interference

of the four Ar-ion laser wavelengths described in the text as the opt-

ical trombone is scanned.
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B. Measurements

To investigate the effect of coupling strength on the phase-locked behavior.

eight different coupling mirrors ranging in reflectivity from 10% to 90% were

inserted into the cavity. The mirrors were all of slightly different thicknesses, so

it was impossible to control the exact cavity lengths to within the resolution of

the ruler used to measure the cavity length. The thickness differences were on the

order of 0.002 inches which is quite large on the optical scale but imperceptible in

length measurements of 3.5 m. No measurements could be made with the 40%

reflective mirror because the substrate wedge was so severe that balanced lasing

could not be achieved between the two cavities. After each coupling mirror was

placed in the cavity and aligned, the output couplers were then realigned to pro-

duce the maximum power output and the maximum activity of the frequency

spectrum.

Phase locking means that the lasers are mutually coherent, and the principal

diagnostic used to identify phase locking was the appearance of stable interference

fringes. The fringe visibilities were measured by capturing a fringe pattern with a

CID (charge-injected diode) camera and frame grabber and calculating the visibil-

it- accordinz to eauation (1.10). Since the fringe pnttern, fluctuated on a macrr-

scopic time scale. 10 to -10 visibilities were averaged for 2ach meqsurement.

Single-line visibilities at 488.0 nm and 51-1.5 nm as well as thl tetal mrnltiiine vlsi-

bility were measured. The single-line visibilities during multiline operation were

isolated with 100 .A narrow-bandpass interference filters placed in the interferom,,

ter imniediately in front of the CID camera.
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The lasers operated in a long open cavity and were combined along a sizeable

coupling path so the beams were subject to a significant amount of air turbulence

and mechanical vibrations which caused the fringes to fluctuate. One of the pri-

mary disturbances was the vibration caused by the water flowing through the

cooling jackets of the laser plasma tubes. The visibility of each pattern changed

continually so only the best fringes were captured for each mirror. Although some-

what subjective, this procedure gave solid statistics and reproduceable results.

Because fringes can also arise from reflections not related to phase locking

(for example, interference is produced even with one laser turned off due to pho-

tons leaving the coupling mirror simultaneously), other diagnostics were needed to

definitely determine the origin of the interference whether they resulted from

phase locking or self interference. Detectors were slid into the beam to make a

measurement or part of the beam was redirected into them with beamsplitters. fin

multimode lasers, each pair of adjacent modes beat with each other to generate a

radio frequency signal which indicates the spacing between the modes. In his

theoretical paper on coupled lasers, Chnw found that coupled lasers oscillate at

frequencies whose mode spacings are determined by the total length of the super

cavity called "supermodes"' 6. The presence of a radio frequency (RF) mode heat

whose frequency is at the mode spacing of the entire resonator turned out to be

the strongest corroborative evidence of phase locking since its presence meant that

the two subcavities were operating as parts of one supercavity. In the limit of a

sihgle 3.5 m-long laser, the mode beat spectrum will display a peak at 13 .Mllz

corresponding to the free spectral range of th,. iwr cavity. With compimr mir-

rors inserted into the laser, the appearance of iiper cavity mode bent.
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particularly at low coupling powers, will indicate the two sub-cavities are phase

locked with each other. Each mode also beats with the other modes and these sig-

nals show up as evenly spaced overtones in the mode beat spectrum. If any tran-

verse modes are oscillating in the laser, these will also create mode beats, but the

signals will be at odd frequencies and serve to broaden the spikeb in the longitudi-

nal mode beat spectrum.

In addition to the RF mode beat spectrum, the output intensities were meas-

ured with a power meter to track notable changes in output power and to deter-

mine which combination of mirrors generated the maximum output power. The

information was also needed to balance the intensities of the couplipg beams

which were combined to form the fringes because the best visibilities are achieved

when the intensities of the two beams are equal. The spuical frequency spectrum

was monitored using a scanning Fabry-Perot interferoieter. The frequency spec-

tr -r proved to be a valuable tool in optimizing thc laser cavity alignment and in

understanding the mode selection of the coupled laser system by giving a visual

representation of the frequency-locking process.
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Chapter IV. Results and Analysis

This chapter will present the experimental results and an analysis of the

behavior of the coupled laser system. The first section will describe the perfor-

mance of the lasers in terms of the frequency and mode beat spectra, the power

output, and the interference fringe patterns. In the second section. the data is

tabulated and plotted and those plots are interpreted.

A. Data

i. General Descriptions

Not surprisingly, all three experimental configurations (the two multiline

experiments with and without the optical trombone and the single line experi-

ment) exhibited the same general behavior, so the descriptions which follow are

applicable to all except where specifically stated. \Without the coupling mirror,

the mtltimode frequency spectrum which spans more or 1ess uniformly over ( CHz

was broader than the free spectral range of the interferometer (1.5 U1lz) and

resulted in an an equal intensity "grass" (See Figure -1.1(a)). With any coupling

mirror, a discrete number of modes were seletikvely reinforced and increased in

intensity bv about :3 to5 times that of the other modes (Figure4.1(b)). This

1no(k! spiking was a strong indication that the miirror alig nments were g)od and i

that phase locking inighit occur. The frequency spikes were neither fixed nor

steady hilt varied in intensity ind jittered freely prolwbvly Ine to air turbilence.

1iech:linliel vibratiolls, :liim/or l1lOd code ,,mpetitloll. Geler:lly, th" ilntensity of the
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spikes was different among the different coupling mirrors with the spikes for the

90-70% transmission much less intense than those for the 50-10% coupling.

Both the output power and the mode beat spectra parallelled the behavior of

the frequency spectrum. Rising from 1.2 W multiline output from each output

coupler at 10% reflectivity, the output power reached a maximum of 1.85 W at

70c coupling mirror reflectivity before tapering off to 1.65 NV at 90%. The power

outputs measured for each of the coupling mirrors are compiled in Table 4.1.

This intensity increase occurs because the higher reflectivity mirrors increased the

saturation in each of the gain tubes and extracted more energy from the active

media. The power output tapered off at 90' reflectivity as the out-coupled power

fraction decreased faster than the cavity's internal power density increased. Even

though the cavities were made as symmetric as possible, the intensity from both

output couplers were close but not equal. This may be due in part to unequal

gain in each tube. but it may also result from an intensity imbaiance inherent in

three mirror cavities. There will be a further discussion on this imbalance later in

the chapter.

The intensity of the RF mode beat at -13 MHz (the composite resonator mode

spacing) was also higher for the higher reflectivity coupling mirrors, and the signal

was broad indicating both longitudinal and transverse modes were coupling. As

the coupling strength was increased. the mod( beat signal narrowed and eventu1-

ally became a single spike. The importance of the interpretation of the RF" mode

beal spectra will be liscussed in greater detail in conijunction with he arialysis or

Ow fringe patterns. The significance of lhese in easuremenits aml obqservations will



be more easily understood when viewed with the evolution of the visibility of the

interference fringes.

ii. Interference Fringes

Interference fringes were present with every coupling mirror, but all were not

produced as a result of phase locking. As stated in the previous chapter, the

fringes jittered, wiggled, and danced in concert with the frequency spectrum. For-

tunately, the sampling rate of the frame grabber was fast enough to capture

usable patterns. The unstable activity varied among the different coupling mir-

rors. Some of the isolated wavelengths were more stable than others, and the sta-

bility varied from mirror to mirror following no discernable trend. Figures 4.2,

4.3, and .1 are samples of interference fringe pattern profiles from the three

experiments. The fringes in Figure 4.2 were produced without benefit of the opti-

cal trombone. Figure 4.3 is the multiline coupling with the trombone, and Figu.'e

-1.4 shows the fringes from the single-line case also with the trombone incor-

porated into the coupling path. In Tables 4.2. -4.3, and 4.4. the number of sam-

ples. average visibilities, and standard deviations are recorded for the three experi-

ments. Notice the sample standard deviations decrease in the second and third

experiments. Not only does this result from more closely matched coupling paths

but, also from a refinement in measurement techniques as the experiment pro-

gressed.
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Figure 4.1: Nlultimode frequency spectrum showing (a) the equal intensity grass
with no coupling mirror, and (b) the mode spiking with a 70c

reflective coupling mirror.
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Table 4.1: Output Power for each Coupling Mirror

Coupling Mirror Power
Reflectivity (%) (W)

0 1.00
10 1.20
20 1.25
30 1.40
50 1.75
60 1.80
70 1.85
80 1.35
90 1.65

B. Analysis

The behavioral trends surface when the visibilities are plotted as a function

of the coupl*,,g niiior tansmission (See Figures 4.5, 4.6, and 4.7). Figures 4.5

and 4.7 are the plots of the visibilities for the multiline coupling experiments, the

latter without the optical trombone, and Figure -4.6 is the single-line experiment

at -ISS.0 nm. For comparison, the multiline experiment was repeated without the

optical trombone but with the coupling paths adjusted to within 0.5:0.4 cm.

Equalizing the path lengths with the trombone increased the visibilities in most

cases by about one-third. The results (plotted in Figure 4.7) show a degradation

in the visibilities compared to those in Figure -4.5 which is consistent with coher-

ence considerations. The data points were fitted with a cubic spline interpolation

in order to enhance the salient features. Note that several of the points at 20c

coupling (80% reflectivity) fall below the curve except for the visibilities at

5141.5 nm. For this same mirror, the output intensity also showed a substantial

drop below the trend exhibited with the other mirrors. The transmission of each
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Figure 4.4: Sample near-field interference fringes from single line coupling at
488.Onm. R. = Coupling Mirror Reflectivity, V = Visibility.

mirror was measured with a spectrophotometer, and the actual transmissivities

varied from the manufacturers specifications by as much as 7c. The 80- mirror

was approximately 17.5"c transmissive (which is good, relatively speaking) so I

am at a loss to explain the anomoly in the fringe visibilities. Since the actual

transmissivities were available, the fringe visibilities were plotted as a function of
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the true values of the coupling mirror transmission. Table 4.5 shows the meas-

ured transmissivities for 514.5 nm and 488.0 nm along with the estimated overall

transmissivity compared to ne manufacturers specifications.

1.0

A 514.5 nm
0488.0 nm

0.8 Total

" 0.6

r)
(D)

oy) 0.4

0.2

0.0
0 20 40 60 80 100

Coupling Mirror Transmission (%)

Figure 4.5: Fringe visibilities plotted as a function of coupling mirror transmis-
sion for two coupled multiline lasers with the optical trombone in
the coupling path.

Before undertaking the experiment, it was expected that the fringe visibilities

would be poor or non-existent for the low coupling powers, and then increase

more or less monotonically as the coupling strength increased, since at 100( cou-

pling (no coupling mirror) the two lasers are totally coherent with each other

-65-



1.0

0 488.0 nm

0.8

S0.6

(D

o) 0.4

U..

0.2

0.0
0 20 40 60 80 100

Coupling Mirror Transmission (%)

Figure 4.6: Fringe visibilities plotted as a function of coupling mirror transmis-
sion for two coup!ed single-line lasers oscillating at 488.0 nm with
the optical trombone in the coupling path.

because they are in fact a single laser. In addition, it was also thought that the

RF mode beat at the super cavity resonance would grow from a negligible level at

high coupling mirror reflectivities and increase in strength as the mirror

reflectivities were gradually lowered to smaller values and the two coupled lasers

became closer to a single laser cavity. This was not observed in the experiment.

Odd though the actual results appear to be, they are understable when interpreted

in conjunction with information provided by the RF mode beat spectrum and
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Figure -4.7: Fringe visibilities plotted as a function of coupling mirror transmis-
sion for two coupled multiline lasers without the optical trombone
in the coupling path.

when treating the fringe production in terms of coherence packets.

The interference fringes are not formed exclusively from the phase-locked

operation of the lasers. Consider a single packet of coherent photons. When the

coherent packet is incident upon the coupling mirror, it is split into transmitted

and reflected pieces. In some cases, both the transmitted and reflected packets

travel back through the lasers without interacting with the media. along the cou-

pling paths, and eventually arrive at the point of superposition at roughly the
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same instant to form self-interference fringes. The desired outcome of coupling is

for the two packets to influence both laser media to emit photons at the same fre-

quency and in phase with each other, and to have these photons interfere to gen-

erate phase locked interference fringes. The resultant fringe pattern in the obser-

vation plane will be some combination of these two events.

Beginning from the left in Figures 4.5, 4.6, and 4.7 at 0% coupling, the curve

should, in theory, show zero visibility because the two lasers are completely

independent from each other. In the 10% to 20% coupling- range, there is enough

mutual injection to initiate phase locking and produce fringes. For these coupling

strengths, there is also an RF mode beat at 43 MHz corresponding to the free

spectral range of the super cavity, formed by the output couplers of Figures 3.1.

3.2, and 3.3, in addition to an 86 MHz mode beat from each subcavity (See Figure

4.8). With many modes in oscillation, tHie RF mode h at is not a single clean snike

bit an extended peak around -13 M1-lz with many secondary peaks caused by vari-

ous beat combinations between the longitudinal and transverse modes. Increasing

the coupling strength increases the fringe visibility to a local maximum near 25C

coupling. Further increases in coupling strength begin to wash out the fringes

because too much of the cavity's internal power is being transmitted to the cou-

pled cavity, and the lasers lose thel identities as separate oscillators. Each Iaser

generates self-interference fringes from plhotons that (Ion't interact Wi I the ( ou-

phlc, 1nedia to induce phase locking, and t hose fringes overlap and siear out an1v

fringes pro liiced from phase locking.

IBevonl 50c'3-. coupling, the fringe visibility rises sharply. butt this is no loner

-68-



0 43 86 129 172 225

Frequency (MHz)
1i~jiirfe -. 8 R~adio fre~pit nry mode be-at spectruml of the muilt jun1e rolI Iisr'-

%%it I:ia 7( e tlet ive (OH ph Hlin irr()

t'rot ph ]e()(-kill,, biltiuis ~Iievtot sel-ltelrlrfl. h;:wh rohirent

p:icket oh phiototiw v'rit thle c()uuIhin" 'ilr(it %kith x th ii relibtI p

tu()Ii of the packet. T he :ipp[.uxiiiiite ((lii.iIII 1 lhwi p hLl 11- isSiI W t

J :Wkfts eairt, thet(mhii-u: mtirror IC iti hr with :wh 'mu ihr .%(ii iflix I~(k

hot. ((11trihfitle C to u. 'kiruu. Thlis vosriho seve l 1,p)[1 r I I1:).t Il)it 1l 'i

l:L- er gail ti 1 *I. ' ii lf he i1s :thb :L( ue ae t 11:111Y ior, st ahf and 111vi~h r in is i hi v

II;I wi it hI Ibot h t, I e Cfw ()II. hli t Ie, rIi( it 4 )f;6)-7 0 ()('( ii ph1i n!-. t Iterf is, ti b it eI

sd fr-oscill-ation ill t het sith, avi ties sinlce the thitreshiold( for oscill ation become s too



highi for those values, and the mode beat at 43 N'll-z narrows and becomes a single

clean spike indicating all the subsidiary modes are extinguished. There are no

longer two distinct lasers but one laser in a 3.5 rn-long cavity with an internal

perturbation caused by the weakly reflecting rear mirror. So much power is going

into coupling that there is not enough intensity on each side of the coupled reso-

nators for them to funiction as independent lasers. If thle coupling mirror is

removed for 100% coupling, the system becomes a single laser aund v completely

coherent -vN' h itself, 'jit no fringes can be formed since a coherent packet leaving

one output mirlror is not coherent .;ith the packet leav ing the other outpuit

couplcr at the same time. Thle two packets are separated by 3.53 mT and well

beyond the coherence length of the Ar-lon laser.

The v-isibility curves indicate an optimal coupling strength exists for thle Ar-

.41n laz -rs around 25'% transmnission. As the fringes reach thieir highest phase-

lon-Kel y- i hilit v at 25%- coupling, the ouit put lager power also reaches its max-

urn111 as . !ucrea I uig tilie ,o !pliiigr strength nc nl l ereS thle oujt pjt

lerpower. but it als-o i tihi bits p Las,-e locking. A si inila-r p1,enomenon wvas

nsrnIin lie 1lre(:uioiicv loc'kii n of' s emiiconductor laser, w~iiig e-:ternal feedback
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urement of one). There are several possible explanations for this and one of the

argumento is, that there is competiton for gain between 514.5 nm and 488.0 nm

since both share a common lower lase-: level. Disturbances to the lasers will eon-

tinually shift the relative strengths of the two competing lines and alter the fringe

visibilities. Interestingly enough, -188.0 nm is the stronger transition, but the

514.5 nm line dominates in the multiline coupling. Even when operating on a

gle transition, there are evidently other perturbations of sufficient magnitude to

prevent 100% phase locking.

Even if gain competition is not a significant contributor, there is another fac-

tor which turns out to be quite self-defeating when coupling lasers in standing-

wave cavities. In his theoretical treatment of phase-locked lasers using the super-

mode expansion of the laser fields, Chow 26 found that when there is strong cou-

pling between the two lasers, symmetric and antisymnmetric modes. which differ in

phase from each other by 7r radians. oscillate simiultaneonsly. (The two super-

modes are the same frequency only when the lengths of the coupled cavities are

equal.) Although it woud be diffictilt to verify the presence of the symmetric amd

antisymmietric supermodes experimentally, if a mixture of these modes truly

e::iqts. then complete constructive interference would be extremely difficult to

obtain becaise the maxima of the fringe patt'rn of' one frequency wotml 1 nearly

oxerl a p the in i iii ma of the fringe pat ter of the ot her frequency creating a fairly

tninmformlt intensity dist 1.'itation . The obvious result wouli certain ly he frihne 'isi-

bilities of less than V=1. .00.

.\motlher po .-, 'le exllan:tio (.:Ill be 'ounl ', 'in the :un:|lvs'b of 11w rs0Vu:unl
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modes of the three-mirror Fabry-Perot cavity used in the experiment. All the

fields indicated in Figure 4.9 must satisfy stringent boundary conditions and con-

servation of energy at each interface and therefore a system of equations can be

written for the cavity which specify the amplitude and phase of each field in terms

of the other fields. Since the current interest is in the strength of each field when

the lasers are oscillating on a phase-locked mode ( a mode at the supn-,,-itv fre-

quency), one of many possible solutions is to set the round trip gain term for the

left hand cavity, g, equal to the round trip gain term for the right hand cavity, h,

thereby demanding solutions for the round trip gain which staisfies a super cavity

mode. By enforcing a steady-state condition which means the fields must repro-

duce their amplitudes and phase after a round trip in order to constitute a mode,

it was found that the system can oscillate at three different frequencies: the com-

posite resonator frequency determined by L, + L2, the frequency determined by

2L 1. and the frequency determined by 2L,,. For all cases, the magnitude of the of

the round trip field amplitude gaie was

1 (4.1)

incidently. this is the same value for the round trip field amplitude gain for a

two-mirror cavity. (For an in de)th treatment of the passive cavity analysis

lojj n_ with other ap plic-tiomis of this inetho, ce \p penlix C.) By substitIti g

,ies, v-dlws iin to the eqiiations for tOe lields and choosing one field amplitude

('= I.()()). the relative strengths of the remaining fields can he evaluated. Those

iield -1t relngt is :Lt reson ance for two O(.) OlitlUt co plers :nd a range oh' couiling
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mirror reflectivities are found in Table -t.6.

(1) C (2) E (3) G

B D F
r1 , t1 r2 , t 2  r3 t3

L L 2

Figure 4.9: Fields, phases, mirror reflectivities and transmissivities, and round
trip gains for a three mirror cavity.

Choosing the value for field C fixes the relationship between B. C, and D

when the detuning is zero, but those field amplitudes are only equal with G, F,

and E, respectively, when there is no coupling mirror. The imbalance in the

intensity on each side of the resonator at any particular frequency or mode

increases drastically as the rellectivity of the coupling mirror increases. The

imbalance also alternates butween the two cavities when the laser oscillates on the

even 'or odd modes. At thi mirror transmissions shown to generate optimal phase

locking, the intensity imbalance is nearly its greatest. The intensity imbalance

associated with the th, ee mirror cavity may also explain, in part, why the intensi-

ties from the output couplers were not equal. The main point of this digression,
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however, is that it is unlikely that the two lasers could phase lock completely

when then there is such a disparity in the circulating intensities in the two cavi-

ties. It must be noted, however, that only selected values for g and h were exam-

ined. Incorporating a saturation model into this formulation may readjust the

intensity imbalances predicted by the passive cavity analysis.
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Table 4.2: Fringe Visibilities and Standard Deviations for Coupling
without the Optical Trombone ( R, : Coupling Mirror

Reflectivity, N: Number of Samples, V: Visibility,
c-: Standard Deviation)

Total 514.5 nm 488.0 nm

R e  N V N V N V o

0.9 19 .226 .038 20 .483 .104 1- .319 .050
0.8 19 .307 .055 8 .511 .101 20 .324 .020
0.7 15 .300 .051 19 .454 .115 14 .312 .046
0.6 17 .254 .072 22 .396 .094 19 .257 .065
0.5 16 .202 .037 18 .372 .069 14 .196 .030
0.3 13 .279 .050 20 .599 .093 12 .322 .047
0.2 14 .259 .064 15 .756 .090 14 .330 .055
0.1 17 .298 .074 16 .800 .053 16 .340 .058
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Table 4.3: Fringe Visibilities and Standard Deviations for Coupling
with the Optical Trombone ( Re : Coupling Mirror
Reflectivity, N: Number of Samples, V: Visibility,
or Standard Deviation)

Total 514.5 nm 488.0 nm

Re N V N V Cr N V Cr

0.9 37 .382 .040 37 .668 .095 31 .447 .044
0.8 23 .412 .049 30 .717 .056 32 .446 .076
0.7 41 .448 .086 23 .660 .048 34 .459 .087
0.6 35 .375 .040 35 .622 .009 32 .401 .061
0.5 30 .361 .047 29 .632 .056 24 .394 .046
0.3 41 .424 .038 39 .810 .062 35 .474 .050
0.2 32 .441 .055 36 .851 .031 31 .514 .060
0.1 19 .492 .037 23 .858 .025 14 .535 .041
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Table 4.4: Fringe Visibilities and Standard Deviations for Single
Line Coupling (488.0 nm) with the Optical Trombone
( R, : Coupling Mirror Reflectivity, N: Number
of Samples, V: Visibility, o Standard Deviation)

R C  N V 0'

0.9 18 .330 .019
0.8 18 .228 .022
0.7 19 .574 .028
0.6 19 .465 .023
0.5 20 .333 .020
0.3 18 .656 .022
0.2 18 .751 .020
0.1 18 .815 .021
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Table 4.5: Actual Coupling Mirror Reflectivities Measured with
a Spectrophotometer Compared to the Manufacturers
Specifications for the Experimental Wavelengths

R C  Total 514.5 nm 488.0 nm
Specified (%) (%) (%) (%)

90 88.5 87.8 89.7
80 82.5 82.5 81.0
70 70.0 68.0 73.0
60 60.0 57.5 63.0
50 55.0 53.5 55.7
30 29.4 29.4 26.0
20 7.0 6.3 7.7
10 24.5 24.0 25.0
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Table 4.6: Wave Intensities for Passive Cavity Mode Analysis of
Two Coupled Fabry-Perot Resonators ( R, : Coupling
Mirror Reflectivity; See Figure 4.9 for Symbols; C=1.00)

0 7r
2

R 2  B D E F G B D E F G

0.0 0.111 1.054 1.054 1.000 0.111 0.111 1.054 1.054 1.000 0.111
0.1 0.111 1.054 2.029 1.924 0.213 0.111 1.054 0.547 0.519 0.057
0.2 0.111 1.054 2.759 2.618 0.290 0.111 1.054 0.402 0.381 0.042
0.3 0.111 1.05-1 3.607 3.422 0.380 0.111 1.054 0.308 0.292 0.032
0.4 0.111 1.054 4.681 4.441 0.493 0.111 1.054 0.237 0.225 0.025
0.5 0.111 1.054 6.143 5.828 0.647 0.111 1.054 0.180 0.171 0.019
0.6 0.111 1.054 8.298 7.872 0.874 0.111 1.054 0.133 0.127 0.014
0.7 0.111 1.054 11.852 11.244 1.249 0.111 1.054 0.093 0.088 0.009
0.8 0.111 1.054 18.914 17.944 1.993 0.111 1.054 0.587 0.055 0.005
0.9 0.111 1.054 40.027 37.973 4.219 0.111 1.054 0.027 0.026 0.002
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Chapter V. Conclusions and Recommendations

A wide variety of topics relating to phase locking lasers was studied during

this dissertation research, so this chapter will highlight and summarize the

findings and point out the original contributions to the field of coupled lasers.

The first section will review the theoretical and experimental results, and the

second section will advance some recommendations for further research, both

t heoretical and experimental, in coupled lasers.

A. Summary

The study of coupled ', sers is currently and will continue to be an important

area of research as the limits of technology are strained in development of high-

energy lasers for both civilian and military applications. When two or more lasers

are coherently combined, or )hase locked, the lffect of far-field narrowing increases

the peak power density which scales as the square of the number of coupled lasers.

This along with the graceful degradtion of the systems realizes several or the cri-

teria desireable in high-energy Iasers.

Two coupled Ar-ion la.sers each oscillating on a single mode were ex:a.minedt

theoretically iising pre-existi ng mathematical frameworks. Couipled lasers with

honmgneois"---broadlened media have been studie t previousl,. but although the

theory existet, it hia i not beeni applied to Dol Aler-broa(lenedl media to ommpite

it ensit, frequeney, and phatse tining curves until this analysis. By coatinui ng

the development, these theories were exten(led to model two modes oscillating in
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each cavity containing Doppler-broadened media which also had not been accom-

plished before this dissertation research. Using a computer code programmed on a

desktop computer to solve the single- and two-mode coupled systems, the solu-

tions showed that the two laser cavities should be equal in length with frequencies

detuned from the gain center to generate the maximum possible coherent output.

Adding another mode to the single-mode lasers yielded a two-fold decrease in the

laser locking range which is on the order of hundreds of nanometers for Ar-ion

laser wavelengths. Without further investigation into multimode coupling, it is

difficult to predict if this trend would continue as the number of modes in oscilla-

tion increases. Additionally, despite extensive observation of hole-burning

phenomena by other researchers, the two-mode analysis uncovered a mutually-

rcinforced hole-burning minimum whose existence was verified experimentally with

a two-mode He-Ne laser. A discovery of this nature adds credibility to the

theoretical models is spite of tile many necessary approximations involved in their

formulation.

Using the fundamental configuration studied in the theoretical analysis, an

experiment was performed on coupled Ar-ion lasers operating on multiple

wavelengths and multiple modes with and without interference path length corn-

pensation and also operating on a single wavelength (488.0 nm). The Ar-ion

lasers were c-hosen Iecause the gain media exhibit many of the same media charac-

teristic. as the higher energy I IF and COIL lasers but can be operated for

extended periods of time without any of the latter's associatel hazards. To deter-

firne the dcgree of laser phase locking, near field interference fringes from the

coherent mixinig of the two out p t laser eans were measured as t he amount I'
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coupling was varied from 10% to 90% of the internal laser intensty. The output

power and the RF mode beat and frequency spectra were also measured to further

characterize and aid in the understanding of the phase-locked behavior.

When the data collected was plotted as a function of the coupling mirror

transmission, each of the three configurations showed that phase locking occurred

for less than 50% coupling with the maximum phase-locked fringe visibility and

the maximum output power at about 25% coupling before the deleterious affects

of self-interference took over and dominated the coupled-resonators. That the

lasers were in fact phase locked was corroborated by the appearance of a 43 \11Hz

RF mode beat which indicated the lasers were oscillating at the super-cavity fre-

quency. In addition, it was found that phase locking occurs for low coupling

strengths (!0%) which was a fact notably in contrast to the expected behavior.

Air turbulence, mode competition, mechanical vibrations, and thermal expansion

:Liln contraction caused the interference fringes to ttucuate and were also partly

responsiljle for decreasing the fringe visibilities. The experimental results ;tiggest

that there is an optimum coupling strength for phase-locked operation of Ar-ion

lasers. Apparently no other researcher has performed coupling experiments over a

wlle range of coupling strengths nor has any observed such an optimum op-rating

n mdition. This knowledge may influence the design of future coupled laser exper-

iuicntsl. Lven though Ar-ion lasers will not be used for high-energy laser applic:-

ti<)ns. the inform ation from this experinment shlould be applicable to ot her l: sers

\% hiich also have l)oppler-b roadene, gain media and possibly otier types of' lasen,

.. well.



The desired condition of total phase-locked operation (V=-1.00) was never

reached. When several wavelengths oscillate, some of those wavelengths compete

for the same gain. If the coupling is too strong and the symmetric and antisym-

metric modes oscillate, their phase difference spoils near fie!d interference. A pas-

sive cavity mode analysis showed that there is a severe imbalance in the internal

intensities of the two coupled lasers. One or more of these factors serves to

explain why complete phase locking was not achieved.

B. Recommendations

There are two areas of further theoretical research that are a logical extension

of the theories discussed in this dissertation. Since there are equations which

describe a laser in which three modes are oscillating (Lamb 20). it would be poss,-

bl,, although painstaking and labor intensive, to solve the coupled laser system

fhr three modes oscillating in each cavity. Results from such an analysis would

provide valuable information in projecting the behavior of coupled lagers osellat-

ing on many modes. The passive cavity mode analysis also seems to be crying out

l')or application to active laser cavities. By including saturation expressions for the

circulating intensities, the specifie operating characteristics o1' the eoupled lasers

coi111( be determined tinalnbigous lv.

Fxperilnentally. si milIar studies to that ii ndert ak en in t his research coultl he

r'n Itucte I with le-.Ne. CO., Nd:YAG, and dye lasers to siupport or is prove the

previous observations anld continue to fil, in somle of, the vast. 1nexplored 1'irou ier

' colpled lasers. FinaIlly. active .tahiliz'atioli co iIul he iiiplea n il wi t 1 tlie l:sr



cavities in an attempt to control and -tnhilize phase locking and fringe stability.

It would then also be possible to investigate single- and two-mode coupling exreri-

mentally as well as theoretically.

C. Finis

This research touched a broad range of topics and , times appeared to ask

as many, if not more, questions than it answered. The results are new, interest-

ing, and valuable, but more importantly, the insight gained is applicable to con-

tinued research in this area. No aspect of'the study of coupled lasers is even par-

tially complete, but the contribution of this dissertation research has expanded

the present knowledge base of an emerging field and hopefully will serve as a wel-

come trail blaze to those who follow.
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Appendix A: Computer Simulation

This appendix consists of two seetionq or three parts each. In both parts, the

first section will derive the mathematics necessry to cast the the coupled laser

equations into forms suitable for computer simulations followed by the perturba-

tion calculations used to check for solution stability. The third sections of each

part contain the computer codes with explanations of their important features.

The single-mode equations are treated first followed by the two-mode coupled

laser equations.

A. Single-Mode Equations

i. Mathematics

Since the transients of the laser system diminish rapidly and are of little

interest when condisering continuous-wave lasers, only the steady-state solutions

to the coupled laser equations are necessary. To obtain the steady-state solutions,

each of the time derivatives of equations (2.20)-(2.23) in chapter II are set equal to

zero. Because all the equations are similar in form and differ oaly in the signs and

subscripts, only one field and one phase equation will be manipulated. With the

symbols explicitly written, the equations are

7 11
FtA (' 'dd A a 8)

'A 2 Cos(O + 0) =0
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F la Id F a
F(3) - ., + 2f '2 d -e I JA + f)-I (A.2)

0 -

+) A i ( 0 + ¢ ) =

Even though the distinction between FnA and FnB is retained throughout this

treatment, these coefficients are equal because it is assumed that both laser gain

media are identical, but this need not be true in general. The variables of interest

are IA, IB , and sine. To employ the Newton-Raphson method 22, the Jacobi

matrix consisting of four partial differentials for each of the four equations is

formed: F OF(1) OF(1) 9F(1) &F(1)

a'a aIB a9: ainO

J(, , sinb) ---- F(2) &F(2) aF(2) aF(2) (A.3)
' aIA a9IB a : dsin¢

aF(3) aF(3) aF(3) aF(3)

aIA aIB a asinO
,F(4) 9F(4) 9F(4) 9F(4)

(9IA  a[B  (-OsinO

where

A A cos( + ) = J(ii) (A.4)
a IA ~2 'A 'A JCSO+0)J11

MA (/I IB)-2 cos(O + V) = J(1,2) (A.5)
a1 B 2

O(IA [IA (1+ 2)~2-.~}2 e~l} J(1.3 (A.6)
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II

TFi)- =-M4 L [snO cosO (I - sin 2O) 2 + sina' J (1,4)(A7
8

Sifl0 ~IAj(A7

and

=F3 fA +1"A l sin(O + 0b) = J(3,I) (A.8)
a-I 2 'A I.A)

9F(3) 1I M
a01'9 2 MA (IA 'B) sin(O + 0) = J(3,2) (A.9)

aF(3) 1-4FLA j f27 22dM+1 L1+ (A.1O)

FA FA
I /A (I + 2) 2 + IA (1 + 2)-2= j(3,3)*7 -T

1' 1
0 IF3 B MAcosO - sin6 sinO (1 - sinL2 ) -

2 = J (34) (A.11)

Notice that the equations are solved for sine rather than 6 to eliminate some

operations and to simplify the equations. The Jacobian is used to solve the matrix

equation

J(x 1 , X2, X 3, X4) X(x 1 , X2, X 3, X 4) = F(x1. x,, X3, X 4) (A.12)

where J is the Jacobian, X is the solution vector, and F is the steady-state

equation vector) by choosing an initial guess vector for the variables and iterating

until the matrix equation converges to a self-consistent solution. For a tolerance

of one part in a million, a convergent solution was usually produced in less than

10 iterations taking 2-3 seconds of computing time. Each solution served as the
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initial estimate for the next detuning step, so subsequent soluticas required fewer

iterations. Experience showed that X = [0.1, 0.1, 0.1, 0.01 was a good initial

guess. Wild guesses, especially for the term, commonly forced the solutions to

diverge.

ii. Stability

Once a solution vector was determined, it was checked for stability by pcr-

forming a perturbation calculation on the time-dependent field amplitude equa-

tions and an equation containing the phase difference:

d BA dOB dOA _ e 4 2
dt - dt t ('IA - A B ) +2 (FIBFIA)e f ez dz

+ (F3A IA - F3 B IB) (+ A2) s - I8 ~ sin(O - V,) (A. 13)

-IVA ( E sn, + 0)
EAJ~

The perturbation calculation is done by solving for the eigenvalues of the matrix

equation

1E a b c] [AEA1
AEB d f ':E B  (A. 14)

EA~q AOj EA "

where each row of the equation is computed according to the general form of



AG AE aG G aG AO
a- EA AE B + (A.+

dEA dEB d OBA
and G = dt dt ,or The elements of the coefficient matrix can be

found in Table A.1.

Table A.1: Single-Mode Perturbation Matrix Coefficients

a = F1A e- kl2 _F2A _3F 3AEA2 [ I( + 2 )-I]

b =MA cos( ¢ +4)

C =-MA (- EAsin(C0+V))

d =MB cos( -4)

e =F-Be [ FoB _3F3B [ 1 +( 1 + 2)-II

f = -MB sin(C-4)

9 = [-MB E _ si(A -4) + 2F 3A (1 + 2)- EA 2 + MA EBsin(¢ + 4P)-M B W -A

h = -2F 3B (1 + 2)-1 EAEB + MB -fA f sin(q -4') - AfAsIn(O! + 0)

j ;-MB _AcoS(O - )- AI LA I}COSO+4')

The solution of the stationary state is stable if all the real parts of the eigen-

values are negative. For a 3 X 3 perturbation calculation, it is possible to analyti-
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cally determine tht coditions uecesjary to satisfy buch a coustraiuL,. The stabil-

ity critpria, already derived by Spencer and Lamb 12 are

Vj>0

L1 1 2 > L 3  (A.16)

V3 >0

where

--(a + e + )(A.17)

v 2 = a (e +J) + ej - hf -bd - cg (A.18)

v 3 = a (hf - ej) ± b (dj - f g) + c (eg - dh) (A.19)

iii. Computer Program for Single-Mode Coupled Laser Equations

Translating the single-mode coupled laser equations into acceptable computer

language was not a difficult problem. Because of the inherent flexibilities of desk-

top personal computers, the equations were coded in the BASIC language for a

Zenith Z-248 computer to allow for easy parameter variations. The code is

explained in the paragraphs to follow.

The first 16 lines of the program input the parameters into the machine.

The coded parameters are cross-referenced to the equation parameters in Table

A.2. In this example of the code, the input parameters are for a coupling mirror

of R C = 0.0.
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10 CLEAR
20 CLS
30 DIM A(10,10),M(10,10),J(10,10)
40 L1=1.75
50 L2==1.75
60 N=4
70 M1=.1187
80 M2=M1
90 AA=.2708
100 AB= AA
110 BA=.03754
120 BB=BA
130 SG=2.404E+08
140 G=.009568
150 GAM1=9025000
160 GAM12=GANM1

Table A.2: Definitions of Computer Symbols

M1, M2 = . / A B BA, BB-FA F B

'Y "-y7 ':kA i[3- F 1A , F1B '

GA\1, GAM2 -- rA,FB G =
Itd

PSI= ¢ PHI=

Because the polarization expressions for a Doppler-broadened medium contain

integrals, those integrals must be evaluated for each value of . The next four

values are the constants used for the five-point Gaussian quadrature needed to

evaluate the integrals.

170 X1=.77459,7
180 X2=0
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190 W 1=.5555556
200 W2=.8888889

The desired tolerance is defined

210 TOL=.000001

and then the initial guess vector is input from the keyboard

220 PRINT "ENTER THE INITIAL GUESS VECTOR: I1,12,Z,SINPHI"
230 FOR 1=1 TO N
240 INPUT X(I)
250 NEXT I

where X(1) = = IA, X(2) = 12 = 1B , X(3) = Z = {, and X(4) = SF sine

along with the choice of phase angle V.

260 INPUT 'ENTER THE PHASE ANGLE PSI ",PSI

Since certain functional forms are repeated frequently throughout the com-

puter code, two general functions were defined

270 DEF FNE(X)=EXP(-G-2*XA2)
280 DEF FNZ(X)=/(I+X-2)

where

FVE e (A.20)

and

FNZ = 1 + (A.21)
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The next three steps are important because they determine exactly how the

cavity mirrors are displaced while tuning and how far the cavities are detuned.

290 FOR COUNT=0 TO .2 STEP .01
300 DI=COUNT
310 D2=D1

The COUNT variable is a measure of the number of halfwidths of the power-

broadened linewidth, -y , the mirrors are to be detuned. Di corresponds to A4

and D2 = AB. When D1 = D2, both output mirrors are translated simultane-

ously. If D2 - 0, then only a single output mirror is displaced, but if D2 = - D1,

the central coupling mirror is tuned. Positive values of COUNT decrease the cav-

ity length while negative values increase it.

Variable K is the abort counter used in case the program does not converge

within the specified number of iterations. A maximum of K < 100 was adequate.

Next, the input vector is converted to the equation variables and the integral is

also computed

320 K-=1
330 I1=X(1)
340 12=X(2)
350 Z=X(3)
360 SF=X(4)
370 GD=ABS(Z)*G/2
380 NT=GD*(W*EX:((GD*(X+1 ))-2)+W2*EX.P((GD*(X2+ 1))'2)

+W1 * E:XP((GD* (1-Xl1))-2))

where

NT f e' dx (A.22)
0
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The next 20 lines define the equauion vector, F(x), and the Jacobi matrix, J(x,y),

and the abort counter is checked before proceeding.

390 P()=AA*FiNE(Z).BA-AA*1*(1+FNZ(Z))+Ml*(12/I1y .5*(COS(FSI)
*(1.SF-2y .5-SF*SIN(PF3I))

400 F 2)==XB*FNE(Z) BB-AB*I2*(l+FNZ(Z))+Mv2*(I1/I2)-.5*(COS(PSI)

410 F(3)==Z-Dl±2*AA*FNE(Z)*NT-AA*11*Z*FNZ(Z)+M1vi*(I2/1)^.5
*(SF*COS(PS)+S1N(PSI)*(..SF^2) .5)

420 F(4I)=Z-D2+2*XB*FN- E(Z)*NT-XB*2*Z*FNZ(Z. M2*(11/2)- .5
*(SF*COS(Ps1)..SIN(PS)*(L-SF-2)-.5)

430 J( 1,1 )=.A-A*( 1+FNZ(Z))Y.5*M1 *(12/I1 )'.5*(1/f1 )*(COS(PSJ)

4410 J( 1,2)==.5*M1 l*(I1 *I2)^-.*(COS(PSI)*(1..SF -2) .5-SF*S1N(PSI))
4.50 J(1,3)=-,\A*G^2*2-*Z*FNE(Z)+AA*2--*Z*L*(FNZ(Z))^2
460 J(1,4I)=---M1*(12/I1)^.5*(SF*COS(PSJ)*(L-SF'2)%s.+SIN(PSI))
470 J(2,1 )- 5*\49*(I11*12 )A -. *(COS(PSI)*(L-SF-2)-.5+SF*SIN(PSI))
480 J(2,2)=-I\B*(1±FNZ(Z)Y.5*M,2*(I1/12)-.s*(1 /12)*(COS(PSI)

*(1PSF-2)-.5+SF*SIN(PSJ)
490 J(2,3)=-.AB*G-2*2--*Z*FNE(Z)+AB*2-*Z*I2*(FNZ(Z))-2
500 J(2,4I)=M ,2*(I1/I2).5*(-SF*COS(PSI)*(1-SF^2)^-.5±SIN(PSI))
310 .J(3.1)=-:AA*Z*FNZ(Z)-.5*(M1/I1)*(I2/I1)-.5*(SF*COS(PSI)

+S[N(PS[)*(1-SF-2f .5)

+2*Z'2*NA--*ll*(FNZ(Z))-2
01 i.J(:3.1)== N\!1*(12/l1 )-.*(COS(PSI)-SF*SIN(PSI)*( 1-SF^2)^-.5)
550 .1(4.1 )==-.5*\12*(11 *12)--.5*(SF*COS(PSl)-SlN(PSI)*( i-SF-2)^.5)
560 .J(4.2)=:-A\B*Z*FNZ(Z)+.5*(M[2/2)*(A!/2)^.5*(SF*COS(PSI)

50 .J(4,3)=I-.*,.\*N'*G-2*Z*FN(Z)+2*.AB3*G-.\-*12*FNZ(Z)
+2*Z^2*AB*12*(FNZ(Z))f2

.580 .14-)-I*1/2^5(O(PI+I(S)S*IS^)-5
590 IF K> 100 THEN 1230

Once all the parameters, equations, an(1 matrices have becni dicsted. thle next

routine s.earchcs for a self-cons-istent solution to the miatrix equation (A\.12).

(00 FOR 11=1 TO 'N
61it FOR 0=1 TrON
620 .. (1{.Q) =.I(H.Q)
(mo( NEAT Q
6 1t) A(R.N+ I )=E'(R)



650 NEXT R
660 FOR I=1 TO N-1
670 FOR J=I+ TO N
680 M(J,I)=A(J,I)/A(I,I)
690 FOR Q=1 TO N+1
700 A(J,Q)=A(J,Q)-M(J,I)*A(I,Q)
710 NEXT Q
720 NEXT J
730 NEXT I
740 Y(N)=A(N,N+1)/A(N,N)
750 FOR I=N-1 TO 1 STEP-I
760 FOR J=I+1 TO N
770 P=P+A(I,J)*Y(J)
780 NEXT J
790 Y(I)=(A(I,N+- )-P)/A(I,I)
800 P=O
810 NEXT I
820 FOR 1=1 TO N
830 X(I)=X(I)-Y(I)
840 NEXT I
850 MtAX=0
860 FOR 1=1 TO N
870 IF ABS(Y(I))<=MAX THEN 890
880 LAX=ABS(Y(I))
890 NEXT I
900 IF AL\X<TOL THEN 930
910 K=K-+1
920 GOTO 330

The matrix system is solved using the Newton-Raphson method 22 which is out-

lined below:

To solve F(x) = 0 given an initial guess vector X to within a predifined toler-
ance:

1. Calculate F(xl, x2, X3, x4) and J(x 1, x2, x3, x 4).

2. Solve the 4 X -i system J(x) Y = - F(x) for the small correction Y.

3. Add the small correction Y to X

X=X+Y

4. When Y is less than the tolerance, a solution has been reached.
otherwise ,epeat from step 1.
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After a solution is found, the vector is printed along with the coherent intensity,

IC:

930 PRINT "THE FREQUENCY OFFSET IS ";COUNT
940 PRINT
950 PRINT "THE SOLUTION VECTOR IS
960 FOR 1=1 TO N
970 PRINT "X'I"=";X(I)
980 NEXT I
990 LC=X(1 )+X(2)+2*(X(1)*X(2))^.5*(1-X(4)^2)^.5
1000 PRINT
1010 PRINT "THE COHERENT INTENSITY IS ";IC
1020 PRINT

The final subsections check each solution for stability:

1030 PFII=ATN(SF/((1-SF2)-.5))
1040 A1=SG*AA*FNE(Z)-GAMI-3*I1*AA*SG*(1+FNZ(Z))
1050 B1=SG*.M1*COS(PHI+PSI)
1060 C1=-SG*M1*(I2/I1)^.5*SIN(PHI±PSI)
1070 D3=SG*M2*COS(PIPSI)
1080 E I A*SG*FNE,(Z)GA,{2-3*12*A*SG*(l FNZ(Z))
1090 Fl=-SG*NI12*S1N(PHII-PSI)

1100 *(2/1*SI5*(PI(PIbPSI)
1110 I 11=-2*Z*Ai3*SG*(Il *12 f .5*FNZ(Z)+SG*(N142*(I1/12)*SIN(PI-I)

\,j *S[N(P1II+PSI))
1120 JI=-SG*(M%2*(I1/I2)^.5*COS(PI.PSI)+N1 *(12/I1 )^.5*COS(PHI+PSI))
11.30 NUI=-(AI+EL+Jl)
1140 iNU=Al*(E1+Jl)+E1*J-H1*F1-B1*D3-C1*G1
1150 NLT3=A1*(H1*F-E1*Jl)+B*(D3*J-F1*G1)+C*(E*G-D3*1H1)
1160 PRINT "NUL= ";NUl
1170 PRINT 'N T2= ";NU2
1180 PRINT "NU3= ';NU3
1190 PRINT ",NUI*NU2= ";NUL*NU2
1200 PRINT
1210 NEXT COUNT
1220 END

The value for 0 is extracted from sin~b , and then the computed values from Table

A.1 are inserted into the stabilit,- criteria equations (A.16-A.19) and printed. At

this juinctuir-, one ('omIplete solution has been determined, and the loop is repeated
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for the next mirror displacement. The final line of the code is the abort message:

1230 PRINT 'EXCEDED MAXIMUM NUMBER OF STEPS"

B. Two-Mode Equations

i. Mathematics

The reduction of the two-mode equations to expressions usuable by a com-

puter is understandably quite similar to the treatment of the single-mode equa-

tions even though many more terms are involved. As in the first section, only one

field and one phase equation will be treated because there are no fundamental

mathematical difference between them and the other six equations and their

derivitives. The time derivatives of equations (2.27)- (2.34) of chapter 11 are set to

zero, and the two representative equations explicitly written are

F(l) ]A [A F1

F-y -£

FA
- - It[e A2 +T: IB2 + 2 (R, T, 1A21B2) 2 COS(0 2 + 0)]

+ + ( + 2)21- + [ + -( -2)2 (A.23)

+ + ( - 2)2)- 1 + 1' [1 -[1 -

4 2

+ Vo4 II + 1) = 0
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FFj,

F(5) = -A -6,4 +2 z2 d -- -FzA~

0 -1

- - [Re 'A 2 + T IR2 + 2 (R, TIA2B 2 ) 2 cos( 2 + 0)]
1 1

{( , + 2) F1 + - ( + 2)- + ( - 2) [I + -( - 2)21- 1 (A.24)
4 4

- 2 (2 1 - 2) 11 + (I - 2)2 - ' [1 + 0-'

-3 ( j - 2) (1 + ( l - 1 + I ( 2)92I}4

MA fIB.
+ I Sin(0 + b) -- 0

From the preceding equations, it is readily apparent that great care must be taken

to ensure that all signs and subscripts are accurately transcribed during each step

of the development. One saving grace is that there are many symmetric relation-

ships which can be exploited, so it is only truly necessary to compute the partial

derivatives of the two previous equations and then perform the appropriate sign

2-id subscript changes to generate the 48 remaining matrix elements. The reader

will be relieved to see that the partial derivatives will not be written in the

interest of brevity.

Solutions for the two-mode equations are produced in exactly the same maner

as the single-mode equations, except an eight-element guess vector, X, is substi-

tuted into the 8 X 8 Jacobian, J, and eight-element steady-state equation vector,

F. Self-consistent solutions converged to within a tolerance of less than one part

in a million again in less than 10 iterations, but the computer time was increased
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to 10-15 seconds per detuning step with an initial input vector of

X = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.0, 0.0].

ii. Stability

To check each solution for stability, a perturbation calculation was per-

formed on the four time-dependent field equations and two equations formed from

the difference between each pair of time-dependent phase equations:

OB I - A I = 031 =Y(AA + 6A - AB - 3B) + P1 (IA I - IB 1)

I

+ 112 [R IA2 + TCJ'B2 + 2 (R, T) 2 EA 2EB 2 cos(0 2 + 0) (A.25)
I

- (RIB2 + TJ[A2 + 2 (R, TJ)
2 EA 2 EB 2 cos( 2 - 01

- MA (EBI sin(O1 + 0) - MB (E'AII O -]

and a similar expression for OB2 - dA 2 . The perturbation matrix

-EAI a b c d e f AEAI

EB I g h i I k I AEB

-EA 2 m n o p q r z-IEA2 (.26)

AEB2 S t U V W X ZS.EB 2

A31 y z aa bb cc dd A031

A42 ee ff gg hh ii A! "42

is produced by taking the total derivative of each of the six time-dependent eqlia-

tions according to

AG =G AE + G +.9G AoG(A.27
A l + E8 1 + + + OG j +~lD , D Et+" O~l 04

9E EB .,2 ER2  8 31 aQ 40

(For the expressions contained in the perturbation matrix, consult the values of
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B(i,j) in lines 1930-2280 of the computer listing which follows.) Each stationary

state of the two-mode system will be stable if the eigenvalues of the matrix equa-

tion (A.26) have negative real parts. In the case of a 6 X 6 matrix, no simple

analytical solution is possible for such complicated elements. Therefore, the eigen-

values were computed numerically by first balancing the matrix, casting it into an

upper Hessenberg matrix, and then using a inumerical routine from Press, et.al.' s

Numerical Recipes 27

iii. Computer Program for Two-Mode Coupled Laser Equations

Since the framework of the computer codes were the same for both the single-

and two-mode programs, only the unique features of the second code will be dis-

cussed in detail. The first 47 lines of the program perform the same function as

the first 40 lines of the single-mode program except the number of elements in the

input vector is doubled and the free spectral range of the cavity is defined in line

70.

10 CLEAR
20 CLS
30 DIM A(10,10), M(10,10), J(10,10), B(10,10), WR(10), WI(10)
40 L1=1.75
50 L2= 1.75
60 N-=8
70 FSR=3.2724
80 ML=z.8506
90 MT=.4
100 MR=-.6
110 M2=M1
120 F II =--.7916
130 F12=F11
1410 F21=.3211
150 F22=F21
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160 SG=8.223E+07
170 G=.003272
180 GAM1=2.693E+07
190 GAM2=GAMI
200 X1=.7745967
210 X2=O
220 W1=.5555556
230 W2=.8888889
240 TOL=.000001
250 PRINT "ENTER THE INITIAL GUESS VECTOR: I1,12,I3,4,Z1,Z2,SINPHI31,SINPHI42"
260 FOR I-=1 TO N
270 INPUT X(I)
280 NEXT I
290 INPUT "ENTER THE PHASE ANGLE PSI ", PSI
300 DEF FNE (X)=EXP(-G-2 * X^2)
310 DEF FNZ (X) = 1/(I + X-2)
320 FOR COUNT = 0 TO 20 STEP .1
330 D1=COUNT
340 D2=-DI
350 K=1
360 I1=X(1)
370 12=X(2)
380 13=X(3)
390 14=X(4)
400 Z1=X(5)
410 Z2=X(6)
420 SF31=X(7)
430 SF42=X(8)
440 GD1=ABS(Z1) * G/2
450 GD2=ABS(Z2) * G/2
460 NT1=GD1*(W1*E)P((GD1*(X1+1))-2)+W2*E)T((GDI*(X2+1))^2)

+WI*EXP((GD1 * (1 - X1)) 2))
470 NT2=GD2*(W*EXP((GD2*(X1+1))^2)+W2*E)P((GD2*(X2+1))^2)

+WI*EXP((GD2*(1-X1))^2))

The input parameters describe the system with a coupling mirror of 60%

reflectivity. Because some of the equations are unmanageably large and also

because many common expressions are frequently repeated, lines 480 through 710

divide the functions of j and 2 into acceptable lengths. Lines 720-750 contain

the coherent mixing expressions used with the cross saturation and cross pushing

terms.
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480 FACTI=FNZ(.5*Zl+i.5*Z2)±FNZ(.5*Zl-.5*Z2)+FNZ(ZI)

*FNZ(ZI-.Z2)*FNZ(.5*Zl..5*Z2)
490 FAGT2=FNZ(.5*Z1+.5*Z2)+FNZ(.5*Z2-.5*Z1)+FNZ(Z2)

*FNZ(Z2.ZI)*FNZ(.5*Z2-.*Zl)
500 FACT3=(Z+Z2)*FNZ(.5*Zl+.5*Z2)+(Z-Z2)*FNZ(.5*Z-.5*Z2)

-2*(2*Z1-Z2)*FNZ(Zl-Z2)*FNZ(Z1 )3*(Z1..Z2)
*FNZ(Z1..Z2)*FNZ(5*Zlp5*Z2)

510 FACT4=(Z+Z2)*FNZ(.5*Z+.5*Z2)+(Z2-Z)*FNZ(.5*Z2-.5*Z1)
-2*(2*Z2-Zl)*FNZ(Z2-Z1 )*FNZ(Z2).3*(Z2.Z1)
*FNZ(Z2..ZI)*FNZ(.5*Z2-.5*Zl)

520 FACTIIl- *(Zl+Z2)*FNZ(*Z+5*Z2-2.5*(Zp-Z2)
*FNZ(.5*Z1..5*Z2) ^2+FNZ(Z1)*FNZ(Zl-Z2)
*(-2*Zl±Z2-2*(lPZl*(Z1.Z2))*(Zp-Z2)*FNZ(Z1-Z2)

530 FACT21=-.5 *(Zl±Z2)*FNZ(5*Zl+.5*Z2)y2.*(Z2-ZI)
*FNZ(.5*Z2-.5*Z1 )-2+FNZ(Z2)*FNZ(Z2-Z1)
*(-2*Z2+Z1-2*(1-Z2*(Z2.Z1))*(Z2..Zl)*FNZ(Z2-ZI)
-2*Z2-(1-Z2*(Z2-Zl))*FNZ(Z2))

540 FACT I2=-FNZ(ZI-Z2)*(Z1-Z2)*FNZ(.5* Z1-.5*Z2)
*(.5*(1..5*(Z1.-Z2)2)*FNZ(5*Zl1.5*Z2)
+2*(1-.5*(Z1-Z2)-2)*FNZ(Z1-Z2)+l)

550 FACT22=-FNZ(Z2-Zl)*(Z2-Zl)*FNZ(.5*Z2-.5*Zl)
*(.5*(1.5*(Z2.Zl)'2)*FNZ(.5*Z2-.5*Zl)
-Lg*('. k(ZlZ)^2)*FNZ(Z2-Z1)+1)

560 FACT13=-.5*(Z1 +Z2)*FNZ(.5*Zl+.5*Z2)-'2±.5*(Z1-Z2)
*FNZ(.5*Zl1&*Z2)^2±FVNZ(Z1)*FNZ(Z1-Z2)
*(Z1 +2*(Z1-Z2)*(l-Z1*(Z1-Z2))*FNZ(Z1-Z2))

570 FACT23=-.5*(Zl+Z2)*FNZ(5*Zl+.5*Z2)-2+.5*(Z2-ZI)
*FNZ(.5*Z2-.5*Zl)^2+FNZ(Z2)*FNZ(Z2-ZI)
*(Z2+2*(Z2%Zl)*(1.Z2*(Z2.Z1))*FNZ(Z2-Z1))

580 FACT14=--(Z1-Z2)*FNZ(Z1-Z2)*FNZ(.5*Z1-.5*Z2)
*(.5*(1..5*(Zl.Z2)'-2)*FNZ(5*Z1-5*Z2)
+2*(1-.5*(Z1-Z2)^2)*FNZ(Z1-Z2)+1)

590 FAGT24==(Z2-Zl)*FNZ(Z2-Z1)*FNZ(.5*Z2-.5*Z1)
*(.5*(1-.*(Z2.Zl)-2)*FNZ(.5*Z2-.5*Zl)
+2*(1-.5*(Z2-Z1)-2)*FNZ(Z2-Zl)+1)

600 FAGT31=-.5*(Z1+Z2)-2*FNZ(.5*Zl+.5*Z2)-2
+FNZ(.5*Zl+.5*Z2)-.5*(Z1-Z2)-2
*FNZ(.5*Z-.5*Z2) 2±FNZ(.5*Zl1.5*Z2 )

610 FACT41=-.5*(Zl+Z2)-2*FNZ(.5*Zl+.5*Z2)Y2
+F Z.* l .*2).*Z -l-
*FNZ(.5*Z2.5*ZI)^2+FNZ(5*Z2-.5*Z1)

620 FAGT32==-FNZ(Z1-Z2)*FNZ(Z1)*(Z1*(8*Zl-4*Z2)
*FNZ(Z1 )+(8*Z1-4*Z2)*(Z1-Z2)*FNZ(Z1-Z2)--I)

630 FACT42=FNZ(Z2-Z1 )*FNZ(Z2)*(Z2*(8*Z2-4*Z1)
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*FNZ(Z2)+(8 *Z2-4* Z 1)*(Z2-Z 1)*FNZ(Z2.Z 1)-.4)
640 FACT33=3*FNZ(Z-Z2)*FNZ(.5*Z1-.5*Z2)*(.5*(Z1-Z2)'2

*FNZ(.5*Z1.s*Z2)+2*(ZlpZ2)-2*FNZ(Zl1Z2}1)
6,50 FACT43=3*FNZ(Z2-Z)*FNZ(.5*Z2-.5*Z1)*(.5*(Z2-Zl) '2

*FNZ(.s*Z2-.*Zl)+2*(Z2..Z)'9*FNZ(Z2-Zl1))
660 FACT34=-.5*(Z1+Z2)-2*FNZ(.5*Z1+.5*Z2)'2

+FNZ(.5*Zl+.5*Z2)+.5*(Z-Z2)-2
*FNZ(.5*Z1-..*Z2)-2-FNZ(.5*Zlp5*Z2)

670 FAGT44=-.5*(Zl+Z2)'2*FNZ(.5*Zl+.5*Z2)'2
+FNZ(.5*Z1 +.5* Z2)+.5*(Z2-Z1)' 2
*FNZ(.5*Z2-.*Zl)'2..FNZ(.5*Z2-.5*Z1)

680 FACT35=FNZ(Z)*FNZ(Z-Z2)*(-(8*Z-4*Z2)*(Z1-Z2)
*FNZ(Z1-Z2)+2)

690 FAGT45=FNZ(Z2)*FNZ(Z2-Z1)*(-(8*Z2-4*Z1 )*(Z2-Z1)
*FNZ(Z2..Zl)+2)

700 FACT36=-3*FNZ(Z1-Z2)*FNZ(.5*Zl-.5*Z2)*(.5*(Z1-Z2)'2
*FNZ(.5*Z1..5*Z2)+2*(ZlPZ2)-2*FNZ(Z1.Z2).1)

710 FACT46=-3*FNZ(Z2-Zl)*FNZ(.5*Z2-.5*Z1 )*(.5*(Z2-Zl )'2
*FNZ(.5*Z2-5*Zl)+2*(Z2.Z1)-2*FNZ(Z2.Zl1)

720 NWT1=2*(MT*NIR*12*14)-.5*(COS(PSI)*(1..SF42'2)' .5
-SF42*SIN(PSI))

730 NWAT2=2*(MT*NMR*I1*I3)' 5*(COS(PSI)*(1.SF3L '2)' .5
-SF31 *SIN(PSI))

710 NWT3=2*(MT*MIR*12*14)' .5*(COS(PSI)*(1-SF42'2)' .5
+SF42 *SIN(PSI))

750 NWVT41=2*(MIT*NIR*I1*I3)' 5*(GOS(PSI)*(1.SF31 '2)' .5
+SF31 *SIN(PSI))

The next section defines the Jacobian, f(i', fl, and the equation vector F(0).

760 F(1 )==F1 *FNE(Z1)-F21-F1 1*11*(1+FNZ(Z1))
-Fll*(MR*2+MT*I4+NVTI)*FACTI1i+M1*(I3/11)-.5
*(GOS(PSI)*(1..SF31-2)-.5SIN(PSI)* SF31)

770 F(2)=-F1 1*FNE(Z2)..F21..F1 1*12*(1+FNZ(Z2))
-Fll1*(M*1+MT*3+NWT2)*FACT2+NI1 *(I1/2)-5
*(COS(PSI)*(1.SF42' 2)' .5-SIN(PSI)* SF42)

780 F(3)==F12*FNE(Zl)-F22-F12*I3*(1+FNZ(Z1))
-F12*( MR*-+MT*12+NWT3)*FACTI+M2*(I1/13)'.5
*(COS (PSI)* (1.SF31 ' 2)' .5+SIN(PSI) *SF3 1)

790 F(4)=F12*FNE(Z2)-F22-F12*I4*(1+FNZ(Z2))
-F 12*(MR*13+MT*I1+NWT4)*FACT2+M2*(12/14)' .5
*(COS(PSI)*(1..SF42^ 2)' .5+SIN(PSI)*SF42)

800 F(5)=Zl-(D1+FSR)+2*F11*FNE(Zl)*NT-F11*1*Z1*FNZ(Z1)
-5*Fll1*(NJIj*I2+,\.IT*14+NWV~T1)*FACT3+NI1 l*(13/I1)' .5

*(SF31*COS(PSI)+SIN(PSI)*(1.SF3l'2)-.5)
810 F(6)=Z2-(D1-FSR)+2*F1 *FNE(Z2)*NT2-F1 1*12*Z2*FNZ(Z2)
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-5*Fll*(NjR-hI1+MT*3+NW T 9)*FAC. 1+Ml*(I4/2)^ .5
*(SF42*COS(PSI)+SLN(PSI)*(1..5F42' 2)^.5)

820 F(7)=Z1-(D2+FSR)+2*F2*FNE(Z)*NT-F12*3*Zl*FNZ(Z1)
-5*Fl2*(M*14+MT*2+NWdT3)*FACT3-12*(11/I3y' .5

*(sF31 *COS(PSl).SIN(PSl)*(1..SF31-2)- .5)
830 F(8)=Z2-(D2-FSR)+2*F12*FN-E(Z2)*NT2-F12*I4*Z2*FNZ(Z2)

-.5*Fl2*(MivR*I3+MT*I1+N\VT4)*FAGT4-M2*(I2/I4)' .5
*(SF42*COS(PSIYSIN(PSI)*(lSF42-)-~.5)

840 J(1,1)=-Fll*(1+FNZ(Zl))-.5*Ml*(I3/Il)>.5*(1/11)
*(COS(PSI)*(1..5F31-2)- .5-SIN(PSI)*SF31)

850 J(1,2)=-Fl1*FACT1*(MiR+(MT*MR*I4/2-.s*(COS(PSI)
*(1..SF42^2)^ .5-SF42*SIN(PSI)))

860 J(i ,3)=.5*Ml*(I1*I3)^-.5*(COS(PSI)*(1-SF3l ^2)^.5
-SIN(PSI)* SF3 1)

870 J(1,-)=-F1 1*FACT1 *(MNvT+(NT*MJR*I2/14)-..5*(COS(PSI)
*(1..SF42'-2)-.SF42*SIN(PSI)))

880 J(1L5)=-2*FIl*G-2*FNE(Zl)+2*Fll*Il*Z1*FNZ(Zl)
-Fl1 l* (MR*I2+MvT*4+sNWT 1)*(FACTl 11+FACTl12)

890 J(1.6)=-F 1 l* (M'R*I2+MT*I4+NWTl1)* (FACT 13+FACT 14)
900 J(i ,7)=-= Ml*(I3/Il) .5*(COS(PSI)*SF31*(l-SF3l ^2)-.

+SIN(PSI))
910 J(1,8)=F I I*FACT 1*2*(NT*N[R*I12*14) -.5*(COS(PSI)

*SF42*(l..SF42^2)--5+SIN(PSI))
920 J(2,1 )=-F1 1*FACT2*(NllIR+(,NIT*MR*3/11y .5*(COS(PSI)

930 J(2,2)==-F1 1*(l±FNZ(Z2))-.5*Ml*(I4/I2)' .5*(l/12)
*(COS(PSI)*(l.SF42-2)- .5-SIN(PSI)*SF42)

9-10 J(2.3)==-Fl l*FACT2*(NIT+(M\T*MR*I1/I3)^ .5*(COS(PSI)

950 J(2,4)=.5*M\11*(12*I 1y s.*(COS(PSI)*(l1SF42-2)-.5
- SIN(P SI) *SF42)

960 J(2,5)=-F1 1*(N-vR*1+M\,T*I3+iN\VT2)*(FACT23+FACT24)
970 J(2,6)=-2*Fll*G^2*FNE(Z2)+2*F1*12*Z2*FNZ(Z2)

-Fll1*(\IR*11I +MT*13+iNWT2)*(FACT2l ±FACT22)
980 J(2,7)=Fll*FACT2*2(M'vT*MVR*I1I3)- .5*(COS(PSI)

990 J(2,8)=-,Ml1*(I4/I2)- .5*(GOS(PSI)*SF42*(l-SF42^2)^-.5
+SIN(PSI))

1000 J(3,1 )- 5*.M9*(Il*I3yA_.5*(GOS(PSI)*(lI-SF31 -2)-.5
+SIN(PSI)*5F31)

1010 J(3.2)=- F12*FAkCT 1 * (N1T+(IT*% IR*I4 /12) -.5 *(COS(P SI)
*(l-SF42-2)- .5+SF42*SIN(PSI)))

1020 J(.)-l*l+N(l .* v2(11).5*(1/13)
*(COS(PSI)*(l..5F31 '2)- .5+SIN\(PSI)*SF31)

1030 J(3.4)=-Fl2*FACT1 *(\%,R+(\i'T*\IR*12/It1)A .5*(COS(PSI)
*(1..SF42-2) .,5+SF42*SIN,(PSI)))

1040 J(3,5) - *F19*G-2*FNE(Zl)±2*F12*I3*Z1*FNZ(ZI)
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-F12*(MR*14+MT*12+NWT3)*(FACT1 1+FACT12)
1050 J(3,6)=-FL2*(M4R*I4+&MT*12+NWT3)*(FACT13±FACT14)
1060 J(3,7)=-M2*(I1/I3)^.5*(COS(PSI)*SF31*(1.SF31 ^2)^-.5

-S5IN( PSI))
1070 J(3,8)=-F12 *FACT 1*2* (NIT *MR*12* 14) -.5*(-.COS(P SI)

*SF42*(1-SF42-2)--.+SN(PSI))
1080 J(4,1)=-F12*FACT2*(MT+(MT*M*3/11 )^ 5*(COS(PSI)

1090 J(4,2)=.5*M2*(I2*4)--.5*(COS(PSI)*(-SF42- 2)- *5
+SIN(PSl)*SF42)

1100 J(4,3)=-F12*FACT2*(MvIR+(MT*MR*I1/I3)-.5*(COS(PSI)

1110 J(4,4)=-F12*(1+FNZ(Z2))-.5*M2*(I2/I4)-.5*(1/14)
*(COS(PSI)*(1.SF42-2)-.5+SIN(PSI)*SF42)

1120 J(4,5)=-.F12*(MIR*13+MIT*I1+NWT4)*(FAGT23+FACT24)
1130 J(4,6)=-2*F12*G-2*FNE(Z2)2*F2*14*Z2*FNZ(Z2)

-F 12*(iNvtR*3+MT*11+NWT4)*(FACT21 +FACT22)
1140 J(4,7)=-F19*FACT2*2-*(MT*M/R*1*3)^ .5*(.cos(PSI)

1150 J(4,8)=~-.M2*(I2/I4)^ 5*(GOS(PSI)*SF42*(1.SF4'2)^-5
-SIN(P SI))

1160 J(5,1)=- F1*Z1*FNZ(Z1)y.5*M1l*(3/I1)'.5*(1/I1)
*(SF31*COS(PSI)±SIN(PSI)*(1..SF31 -2)-5)

1170 J(5,2)=-5*F11*FACT3*(MIR+(NIT*1R*14/I2)- .5*(cos(PSI)
*(1..SF42-2-.-SF42*slN(PSl)))

1180 J(5,3)=.5*M1*(11*13)'--.5*(SF31*COS(PSI)±SIN(PSI)
*(1.SF31-2)5

1190 J(5,.I) -. 5*F11*FACT3*(NIT±(MT*MR*I2/.I)' .5*(COS(PSI)

1200 J(5,5)=1-4*Z1*G'2*F11*FNE (Z1)*NT1+2*Fl1*G-F11*I1
*(FNZ(Zl)2*Z1-2*FNZ(Zl)-2)-.*Fl1
*(MR*12+NIT*14+N\VT1 )*(FAGT31 +FACT32+FACT33)

1210 J(5,6)-=-.5*F1 1*(M[R*12+MT*I4+NWT1 )*(FACT3.1+FACT35+FACT36)
1220 J(5,7)=M1*(13/L1) .5*(COS(PSI)-.SIN(PSI)*SF31

*(l.SF31-2)-.s)
1230 J(5,8)==F11*FACT3*(MT*MI[R*12*14)-.5*(COS(PSI)*SF412

*(1..SF42-2)--.+SIN(PSI))
1240 J(,1)=-5*F1 1*F \CT4*(NIR+(MT*v1R*I3/I1)-.5*(COS(PSI)

1250 J(6,2)=-F1 1*Z2*FNZ(Z2)-.5*M1*(14t/12)-.5*(1/12)
*(SF42*COS(PSI)+SIN(PSI)*(lSF42-~2)- .5)

1260 J(6,3)=-..5*FI 1*FACT4l*(MvT±(NT*MvR*I1/I3)- .5*(COS(PSI)

1270 .J(6,4I)=.5*M1 *(12*11)%-.5*(SF.;2*COS(PSI)+SIN(PSI)

1280 J(6,5)=-5*F I1I *(itR* I I+NIT*13+N\VT2)*(F ,CT4-1+FACT15±FACT-tf3)

1290.J(6,6)=-4*Z2*G-2*Fl 1*FNE(Z2)*NT2+2*FI 1*G-.F1 *12*(FNZ(Z2)
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-2*Z2-2*FNZ(Z2)-2)-.5*Fl11*(MR*1+MT*I3+NWT2)
*(FACT41±FACT42+FACT43)

1300 J(6,7-)=F1 *FACT4*(MT*M/R*I1*13)" .5*(COS(PSI)*SF31
*(1-SF31^2)'-s+SIN(PSI))

1310 J(6,8)=Ml*(I4/12)-.5*(COS(PSI)-SIN(PSI)*SF42

1320 J(7,1)=-5*M91*(I1*I3)--.5*(SF31*GOS(PSI) SIN(PSI)

1330 J(7-,2) -.5*F2*FACT3*(MNT+(M'vT*kR*1/I2)-.5*(COS(PSI)
*(1..SF42-2)- .5+SF42*SIN(PSI)))

13410 J(7.,3)=-F12*Z1*FNZ(Z1)+.5*Mk2*(I1/I3)'.5*(1/13)
*(SF31*COS(PSI}SIN(PSI)*(.-SF31 2)- .5)

1350 J(7,4)- 5*Fl2*FACT3*(N +(M.,R*MNT*21.1)-.5*(COS(PSI)
*(1..SF,12 2)^.5+SF42*SIN(PSI)))

1360 J(7,5)=1-4*Z1*G-2*F12*FNE(Zl)*NT1+2*Fl2*G-Fl2
*13*(FNZ(Z1)-2*Zl12*FNZ(Z1)-2) .5*F12
* (MvR*14±M'vT*12+,NWT3)*(FACT31 -iFACT32±FACT33)

1370 J(7-,6)=-.5*F12*(M!IR*14±MvT*I2+,NWT3)*(FACT341+FACT35±FACT36)
1380 J(7,7-)=- M2*(Il13)^ .5*(COS(PSI)+SIN(PSI)*SF31

1390 J(7,8)=-~F19*FACT3*(MT*NfR*L2*14y' .5*(..COS(PSI)*SF42
*(1-SF42"9)^-.+S1N(PSI))

1400 J(8,1)=-5*F19*FACT4*(NAT+('ivT*MR*I3/I1 )-.*(O(PI
*(1.SF31'2)>5+SF31*SIN(PSI)))

1410 J(8.2)=-.5*M ,2*(2*14Y'--.5*(SF42*COS(PSI)-SIN(PSl)

1-120 J(8.3)=-.5*Fl2* FACT4I*(MiLR+(MT*\MR*11/I3)- .5*(COS(PS1)
*(l.SF31-2)-.+SF31*SIN(PSI)))

14130 J(8,4);=-F12*Z2*FNZ(Z2)+.5*NI2*(12/14)-.5*(1/14)
*(SFt12*COS(PSI)SIN(PSI)*(..SF42- 2)' 5)

1-1-10 J(8,5)=- .5F12*([*3-f*1+ IT)(FC4+. T-5F-C-6
1430 J(8.6)=-4*Z2*G-2*F12*FNE(Z2)*NT2+2*F12*G-F12*I41

*(FNZ(Z2}2*Z2-2*FNZ(Z2)-2)-.5*F12
* (MkR* 13±M\T*1 1 +NWVT4)*(FACT4 1+FACT42+FACT413)

1-160 J(8.7)=-F2* F.CT4*(MNT*NIR*11*I3)' .5*(-COS(PSI)*SF31

1470 J(8,8)=-\12*(12/141)^.5*(COS(PSI)±SIN(PSI)*SF-12

The Newton-Raphson method is used again to solve for a self consistent solution.

1480 IF K > 100 THEN 41430
1-100 ['OR R =I TO N
1500 FOR Q I TO N
1510 A(R,Q) = J(R.Q)
1520 -NEXT Q
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1530 A(R,N + 1) = F(R)
1540 NEXT R
1550 FOR I 1 TO N-i
1560 FOR J 1+1 TO N
1570 M(J,I) =A(J,I)/A(I,I)

1580 FOR Q =1 TO N+1
1590 A(J,Q) =A(J,Q) M(J,I)*A(I,Q)
1600 NEXT Q
1610 NEXT J
1620 NEXT 1
1630 Y(N) =A(N,N+1)/A(N,N)
1640 FOR I =N-1 TO 1 STEP -1
1650 FOR J =1+1 TO N
1660 PP =PP + A(I,J) * Y(J)
1670 NEXT J
1680 Y(I) =(A(I,N±1)-PP)/A(I,I)

1690 PP =0

1700 NEXT I
171FORI=1I TON
1720 X(I) =- X(1) - Y(I)
1730 NEXT 1
1740 MAX = 0.
1750F0R1= 1 TON
1760 IF ABS(Y(I)) <= MAX THEN 1780
1770 MAX = ABS(Y(I))
1780 NEXT I
1790 IF MLAX < T OL THEN 1820
1800 K = K + 1
1810 GOTO 360
1820 PRINT "THE FREQUE NCY OFFSET IS ";COUNT

1830 PRINT
1840 PRINT "THE SOLUTION VECTOR IS"
1850F0R1 = 1 TON
1860 PRINT'%X(", 1;") ; X(1)
1870 NEXT 1
1880 PRINT
1890 PRINT "TH-E INTENSITY SUM IS "; X(1) + X(2)
1900 PRINT

The remainder of the program checks each solution for stability. Lines 1910,2280

input the perturbation matrix (A.26) which then undergloes a balanceing operation

(2290-2660) is reduced to an upper Hessenberg matrix (2670-3060). and then the

eigenvalues for the uipper Hessenberg miatrix are (determined andl printed (3070-
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4440). (For complete details of the matrix manipulations using a QR algorithm,

consult \rumeri'Cal Reci~pes pages 366-376 27.)

1910 PI-131=ATN(SF31/((-SF31-2)-.5))
1920 PHI-12=ATN(SF42/((-SF42-2)- .5))
1930 B(1, 1)=SG*(F I I *F7j4(Z~ I)-F21-3*I1 *F~ 1

*(i+FNZ(Z )}.FII1*(N',R*12±MT*14±NWT1 )*FACT1)
1940 B(1,2)=-2*11r.*SG*FI*FACT*(MR*I2-.5

+(MiR*MiT*14)-.5*COS(PH142+PSI))
1950 B(1,3)=SG*M1l*COS(P131 +PSI)
1960 B(1,4)=-2*I11.5*SG*Fl1*FAGT1*(MT*I4 .5

+(M, R*MT*I2) .5*COS(PH142+PSI))
1970 B(1,,5)=-SG*I1 *13'.5*SIN(P131 +PSI)
1980 B(1,6)=-2*F~I*SG*FACTI*(1*I2*I4*MNIR*MT)-.5

*SIN(PUI142+PSI)
1990 B(2,1 )=-2*I2'.5*SG*FL 1*FACT2*(\R*11 .5+(M' R*MT*13)-.5

*COS(PH131 +PSI))
2000 B(2,2)=SG*(F11 *FNE(Z2)..F21-3*I2*F1 1*(1+FNZ(Z2))

-Fl I*(MIR*I1+M~T*13+NWT2)*FACT2)
2010 B(2.3)=.2*I3-.5*SG*F11*FACT2*(\NIT*13 .5±(M\,R*M T*llf-.5

*COS(PV1131 +1SI))
2020 B(24-)=NM1*SG*COS(PHI42+PSI)
2030 B(2,5)=- 2FII*FAkCT2*SG*(12*ll*130*NER*M',Tf-.5

* STN( P11131+ PSI)
20-10 B(2.6)=-NM1*SG*1.r .s*SIN\(PH142+PS[)
2050 B(3,1)=S~G*\1.)*COS(PIl31-PSI)
2060 1(:32)=-2*3.5*SG*F2*FCT*(\tT*12>.5(R*\ITII.;f .5

* COS (PI 11-2- PSI1))
2070 B(:3.3)=SG*(F12*F\TE(Z)-F22-3*I3*F12*(1 +FNZ(Zi))

2080 B(31,.)=-2*I3 .5*SG*F12*F.-CTI*(.\Il11f.3±(N1IR*.\T*12)f.5

2090 (3.)=- \1)*SC;*l11.5*SIN(PI1131-PSI)
2100 B(:3.6)=2*SG*I' 12*FACTI*(\IR*\IT*13*12*I If .5-

*SIN(PIl1112-PSI)
211 U) (11 )=..2*I.l1.5*SG;*F12*F'A-CT2*(\1'if*I1 .5±(\1R*\IT'*1:3).5

*C'OS(pl 1131-PSI))
2120 fiY.2)=\.)1*SG*COS(P1 1.12-PSI)
21.30 1U3~2 r3S~F1*AT*Nl*1 5(l*I~ f

21-10 lb(-.I) -S*(F2*FNE (Z2)-F22-i*P1*F2*(1+FNZ(Z2))

2150 1(1.6)- \1.)**F12*.lN(II2PI
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2170 B(5,1)=~SG*(2*F1 1*11 .5*Z1*FNZ(Z1)l (M2/I3- .5)
*SIN(PHI31-PSI)+(Nf1/I1)*I3~ .5*SIN(PH131 +PSI))

2180 B(5,2)==2*FI I*SG*FACT?9*((MNR*12- .5+(Y IiR*NMT*14) .5
*COS(PFIA42+PSI)>.(NIT*I12'.5±(N1P*M\T*14)^.3
* COS(PH142-PSI)))

2190 B ,,3)=SG*(-2*F11*13'.5*Z1*FNZ(Z1)+(Mv2/13)*I1i.5
*SIN(PH131-PSIY(k11/I1 -5)*SIN(PH131 +PSI))

2200 B(5,4)==2*F11*SG*FACT3*((M\T*I4f.5±(M ,T*M\R*12)-.5
*COS(PHI42±PSI)}(\fl*I1's.+(\1IT*\,IR*12)-.5
*COS(PH142..PSI)))

2210 B(5.5)=- SG*(M2*(I1/I3)^.5*COS(PH131..PSI)±\f1 *(13/II )^..5
*COS(PH131+PSI))

2220 B(5.6V =4*SG*F1 1*FACT3*(.,NfT*2*A) .5
* SIN(P SI) *C Os(PHI12)

2230 B(6.1)=2*F19*SG*FACT4*((\,R*11 .5+(Nf*MT*I3)-.5
*COS(PH131+PSI)}(\IT*11 .5+(\IR*MT*13) .,S
*COS(PI111PSI)))

2240 B(6.2)=SG*(2*F12*12- .5*Z2*FN-Z(Z2) (M12/I4 35)

*SIN(PH142+PSI))
2250 B(6.3)=.2*Fl2*SG*FACT4*((MT*I3^ .5±(MT*\MR*I1)'.5

*COS(PH1U31+PSI))(\fltR*13' .5+(MIT*MR*11> .5
*CCS(PH131-PSI)))

2260 B(6,4)=SG*(-2*Fl2*I4' .5*Z2*FNZ(Z2)± (\12/I4)*I2- .5
*51N(PI 11-1 2-PSI)-(Nfl /12)*SI.N(PHiJ142+PSI))

2270 B(6,5)=-4*SG'F12*FAkCT4I*(NLR*NIT*I1*I3)-.5
SN(PSI)*COS( PH131)

* COS (P11142 +PSI))
2290 LAST=1
2:300 FOR 1=1 TO 6
2,310 C = 0
2320 R = 0
2:330 FOR .J=1 TO 6
2340 IF J <>I THEN
2:350 C = Ci-XBS(B(JI))
2:360 R = R+A.\BS(B(I..J))
2370 END IF
2380 NEXT J
2390 IF C< >0AND HR<>0 THEN
2 100 GG R/2
2.110 F 1
212'0 ('+R

2 1:30 IF' C< <G( T' [EN
2-110 V: V*2
2150) C (* 1
2 160 (0T() 2 13(
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2470 END IF
2480 GG = R*2
2490 IF C > GG THEN
2500 F = F/2
2510 C = C/4
2520 GOTO 2490
2530 END IF
2540 IF (C+R)/F<.95*S THEN
2550 LAST = 0
2560 GG = 1/F
2570 FOR J=1 TO 6
2580 B(I,J)=B(I,J)*GG
2590 NEXT J
2600 FOR J = 1 TO 6
2610 B(J,I)=B(J,I)*F
2620 NEXT J
2630 END IF
2640 END IF
2650 NEXT I
2660 IF LAST=0 THEN 2290
2670 CN = 6
2680 IF CN>2 THEN
2690 FOR M=2 TO CN-1
2700 X = 0
2710 1 = M
2720 FOR .=M TO CN
2730 IF ABS(B(J,M-1))>ABS(X) THEN
2740 X = B(J,M-1)
2750 I J
2760 END IF
2770 NEXT J
2780 IF I< > M THEN
2790 FOR J=M-1 TO CN
2800 Y = B(IJ)
2810 B(I,J)=B(M,J)
2820 B(M,J)=Y
2830 NEXT J
2840 FOR J=1 TO CN
2850 Y = B(J,I)
2860 B(J,I)=B(J,M)
2870 B(J,M)=Y
2880 NEXT J
2890 END IF
2900 IF X< >0 THEN
2910 FOR I=M+I TO CN
2020 Y = B(I,M-1)
2930 IF Y< >0 THEN
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2940 Y = Y/X
2950 B(I,M-1)=Y
2960 FOR J=M TO CN
2970 B(I,J)=B(I,J-Y*B(M,J)
2980 NEXT J
2990 FOR J=l TO CN
3000 B(J,M)=B(J,M)+Y*B(J,I)
3010 NEXT J
3020 END IF
3030 NEXT I
3040 END IF
3050 NEXT M
3060 END IF
3070 ANORM = ABS(B(1,1))
3080 FOR 1=2 TO CN
3090 FOR J=I-1 TO CN
3100 ANORM = ANORM + ABS(B(I,J))
3110 NEXT J
3120 NEXT I
3130 NN = CN
3140 T = 0
3150 IF NN>1 THEN
3160 ITS = 0
3170 FOR L = NN TO 2 STEP -1
3180 S = ABS(B(L-1,L-1)) + ABS(B(L,L))
3190 IF S=0 THEN S=ANORM
3200 IF ABS(B(L,L-1))+S=S THEN 3230
3210 NEXT L
3220 L = 1
3230 X = B(NN,NN)
3240 IF L = NN THEN
3250 WR(NN) = X+T
3260 WI(NN) = 0
3270 NN = NN-1
3280 ELSE
3290 Y = B(NN-1,NN-1)
3300 W = B(NN,NN-1)*B(NN-1 ,NN)
3310 IF L = NN-1 THEN
3320 P = .5*(Y-X)
3330 Q = P^2+W
3340 Z = (ABS(Q))-.5
3350 X = X+T
3360 IF Q=o THEN
3370 IF P>=0 THEN Z=P+ABS(Z)
3380 IF P < =0 THEN Z=P-ABS(Z)
3390 WR(NN) = X+Z
3400 WVR(NN-1) = VR(NN)

-111-



34 10 IF Z <> 0 THEN WR(NN)=X-W/Z
3420 WI(NN) = 0
3430 WI(NN-1) = 0
3440 ELSE
3450 WR(NN) = X+P
3480 WVR(NN-1) = WR(NN)
3470 WI(NN) = Z
3480 WVI(NN-i) = -Z
3490 END IF
3500 NN = NN-2
3510 ELSE
3520 IF ITS=30 THEN PRINT 'NO ROOTS FOUND"
3530 IF ITS=Ji0 OR ITS=20 THEN
3540 T = T+X
3550 FOR 1=1 TO NN
3560 B(I.I)=B(I,I-X
3570 NEXT I
3580 S =.ABS(B(NN,NiN- ))+ABS(B(NN-1,.N-2))
3590 X = .75*5
3600 Y = X
3610 W =-.4375*S^2

3620 END IF
3630 ITS =-- ITS+1
3640 FOR M=NN- TO L STEP -1
3650 Z = B(MI,M%)
3660 R = X-Z
3670 S = -
3680 P = (R*S-XW)/B(M,+1 ,M)+B(M.M±1I+)
3690 Q = B(Mi+i)-~lZ-R-S
3700 R = B(NM+2A1+1)
3710 S = .ABS(P)+ABS(Q)+ABS(R)
3720 P = P/S
3730 Q = Q/S
3740 R = R/S
3750 IF M'v=L THEN 3800
3760 U = ABS(B(MM-1))*(ABS(Q)+.-BS(R))
3770 V = ABS(P)*(-ABS(B(M\,L .M,-1 )).ABS(Z)+AkBS(B(Mf+1,N\I+1 )))
3780 IF U+V=V THEN 3800
3790 NEXT M
3800 FOR I=M+2 TO NiN
3810 B(1,1-2) = 0
3820 IF I< > i,+2 THEN B(I,I-3)=0
3830 NEXT I
38410 FOR 10K=MN TO N N-1
3850 IF IUK< >)4 THEN
3860 P =B(lKCKIK-1)

3870 Q B( NII+11 JKK--1)
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3880 R = 0
3800 IF KK< >NN-I THEN R=B(KK+2,IKK-1)
3900 X = ABS(P)+ABS(Q)+ABS(R)
3910 IF X< >0 THEN
3920 P = P/X
3930 Q = Q/X
3940 R = R/X
3950 END IF
3960 END IF
3970 IF P>=0 THEN S=ABS((P^2+Q 2+R'2)' .5)
3980 IF P <=0 THEN S=-ABS((P^2+Q 2+R 2)^.5)
3990 IF S< >0 THEN
4000 IF KM=M THEN
4010 IF L< >M THEN B(I,K-1)=-B(KK,tK-1)
4020 ELSE
4030 B(KI,KK- 1)=-S*X
4040 END IF
4050 P = P+S
4060 X = P/S
4070 Y = Q/S
4080 Z = R/S
4090 Q = Q/P
4100 R R/P
4110 FOR J=KK TO NN
4120 P = B(I(K,J)+Q*B(I0K+I,J)
4130 IF KK< >NN-1 THEN
4140 P = P+R*B(KK 2,J)
4150 B(KK+2,J)=B(KI0+2,J)-P*Z
4160 END !F
4170 B(K. +1,J)-=B(IK+1,J)-P*Y
4180 B(KIK,J =B(IK-,J-P*X
4190 NEXT J
4200 IF NN< =KK+3 THEN MIN=NN
4210 IF NN>=KK+3 THEN MIN=IK+3
4220 FOR I=L TO MIN
4230 P = X*B(I,KKI)+Y*B(I,,KN+I)
4240 IF KI(< >NN-1 THEN
4250 P = P+Z*B(I,KK,+2)
4260 B(I,CK+2)=B(I,KK+2)-P*R
4270 END IF
4280 B(I,IKK+I)=B(I,KK+I)-P*Q
4290 B(I,KK)-B(I,KK)-P
4300 NEXT I
4310 END IF
4320 NEXT IQ(
4330 GOTO 3170
4340 END IF
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4350 END IF
4360 GOTO 3150
4370 END IF
4380 FOR I=1 TO 6
4390 PRINT 'WR("; I; "; WR(I), "WI("; I; ") - "; WI(I)
4400 NEXT I
4410 NEXT COUNT
4420 END
4430 PRINT "EXCEEDED MAXIMUM NUMBER OF STEPS"
4440 END

Once the eigenvalues were returned, the signs of the real parts were inspected to

determine the extent of the stable operating range.
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Appendix B: Experimental Verification of the Multually-Reinforced
Hole-Burning Minimum

This appendix will present the experiment used to verify the existence of the

mutually-reinforced hole-burning minimum mentioned in chapter II. In the first

section, a brief overview of hole-burning phenomena will be discussed along with

the theoretical modelling of a two-mode He-Ne laser. The second part will

describe the experimental setup and comment on the results.

A. Spectral Hole Burning Theory

Spectral hole burning in a Doppler-broadened gain profile is a well known

phenomenon in gas lasers 31 The most famous consequence of hole burning is the

"Lamb dip" which Lamb predicted in his treatise on laser theory in 1964 '20. The

Lamb dip, which is usually observed using a single (longitudinal) mode laser,

represents a small dip at the peak of the relative intensity curve of the laser as it

is tuned across a Doppler-broadened gain profile of the medium. Although single

mode operation of lasers has been studied thoroughly 20, the case of hole burning

by multiple modes oscillating simultaneously does not seem to have received the

close attention of previous investigators. When a laser with a Doppler-broadened

gain medium oscillates on two longitudinal modes, the relative intensity tuning

curve manifests not only the two Lamb dips associated with the two modes oscil-

lating, but also another dip which is somewhat more pronounced than the more

familiar Lamb dips.

If a single laser mode oscillates in a standing-wave cavity containing an
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inhomogenously-broadened medium, the Doppler frequency shift of the photons

travelling in each direction permits the photons to interact generally with two

different velocity groups of the laser medium, saturating the gain and "burning

holes" at two frequencies in the gain curve (See Figure B.la). When the laser

mode is tuned to the gain center, the two holes burned into the gain curve overlap

and produce a measureable reduction in the laser output intensity known as the

Lamb dip (Figure B.lb).

When the laser is operated in multimode (longitudinal), however, the laser

exhibits, in addition to the Lamb dips due to individual modes, a secondary dip in

its intensity curve, which is associated with a mutually reinforced hole burning by

different modes. This point can be seen from Figure B.2 which shows the

incoherent sum of the individual mode intensities representing the total laser out-

put. This intensity tuning curve was generated by numerically solving the set of

four coupled equations obtained for a two-mode He-Ne laser using Lamb's semi-

classical laser theory 20:

aE 1

Ot = E l (a , - h111 - 012'12) (B.1)

aE2at = E ( 2 - 0 2 1, - 02111) (B.2)

at = 67 --5- A) + 01 -- plI -- 'r12I2  (13.3)

at2at = Y(2 + -- ) + a2 -- P212 -- 21 1
(1.4)



(b)

lout

Figure B.1. Spectral hole burning of a Doppler-broadened gain curve: (a) A

laser mode oscillating at a frequency away from the gain center

burns two holes in the gain curve. (b) A mode oscillating at the

gain center burns one hole. (c) The laser output intensity exhibits a

Lamb dip as the laser is tuned across the gain curve.
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Figure B.2. Intensity tuning curve of a two-mode laser. The intensity shown
represents the incoherent sum of the individual mode intensities.
The spectral locations of the modes at various points along the
tuning curve are shown as (a)-(d).
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The coefficients are identical to those found in Table 2.1 and the laser parameters

used can be found in Table B.1.

Table B.1: He-Ne Laser Parameters

Cavity Length Laser Wavelength

L = 29 cm X = 632.8 nm

Tube Diameter Doppler Gain Width

d = 2 mm y d = 1500 M-z

Gain Length Mirror Reflectivities

I 14 cm R =0.99 and 0.995

Single-Pass Gain 32

go= .0015 cm-1

Examination of the frequency detuning of each mode from the gain center

frequency reveals the physical process involved. At the position marked (a) in

Figure B.2, the two laser modes, split by a free spectral range, appear under the

gain profile as shown in Figure B.2a. (The dashed mode in the figure is included

for physical accuracy even though the theory does not explicitly treat the three

modes. In reality, it is difficult to achieve true two-mode oscillation in a laser as

the laser is tuned through several free spectral ranges.) As the cavity is tuned by

translating one of the mirrors, the mode frequency at w, reaches the gain center

and burns out the Lamb dip at the position marked (b) of Figure B.2. When the
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modes are tuned such that they are symmetrically spaced about the line center as

shown in Figure B.2c, the holes burned by the mode at w1 on each side of the

gain center align exactly with the holes burned by the other mode at W2. This

overlap of holes burned by the two modes produces an additional intensity

minimum at the position marked (c) in a manner analogous to that creating the

Lamb dip as shown in Figure B.2c. Continued tuning brings the mode at Wi to

the line center which, in turn, burns out the second Lamb dip denoted by (d) in

Figure B.2. The additional intensity minimum should be present whenever a laser

oscillates in multimode and when those modes are symmetrically spaced about the

gain center, not just for two modes.

B. Experimental Verification

The existence of the mutually-reinforced hole-burning minimum was demon-

strated using an open-cavity le-Ne laser configured to support two longitudinal

modes. Figure B.3 shows the schematic diagram of the experimental system used

in this experiment with the laser parameters listed in Table B.1 One of the cavity

mirrors was mounted on a piezoelectric transducer (PZT) and driven by a signal

generator/amplifier generating a sawtooth ramping voltage. To isolate the laser

from room air turbulence, the entire cavity was enclosed in a housing. The laser

was slowly tuned through several free spectral ranges during which the intensity

output through one mirror was detected with a photodetector and sent to a chart

recorder. In order to monitor the mode structure, the output from the other mir-

ror was directed into a scanning Fabry-Perot spectrum analyzer.
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Figure B.3: Schematic diagram of the experimental setup. PZT is a piezoelectric

transducer.

Figure B.4 shows the intensity trace from the chart recorder. The deeper val-

ley is the mutually-reinforced hole-burning minimum corresponding to the sym-

metric placement of the laser modes about the gain center as verified by observing

the mode spectrum while the dip occurred. The smaller valley is the Lamb dip

whose -,. idth (FWHMv1) was measured to be approximately 130 Ml-z which is in

rough agreement with the theoretical value of the power broadened linewidth.

Note the absence of the second Lamb dip which should have appeared as the

second mode crossed the gain center. In a real laser, an infinite string of longitu-

dinal modes exists. As a mode on one side of the gain curve is tuned beyond the

lasing region, the next mnode on the other side of the gain curve enters the lasing

region and begins to lase. Unlike the behavior of a real laser, the theory does not

account for the replacement of the first mode as it passes out of the gain region.

Pictured in Figure B.4 is the reinforced hole-burning minimum and a Lamb dip,
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but as tuning progresses. a new mode begins to lase causing the intensity to

increase and smear out the second Lamb dip which is predicted by the two-mode

theory.

300

200-

U

- 100-

0
0 100 200

RAMPING VOLTAGE (V)

Figure BA: Recorder trace of the photodetector output exhibiting the mutually-
reinforced hole-burning minimum as the PZT-mounted cavity mirror
is translated by a ramp signal. See the text for explanation.

Although the theoretical intensity curve shows the multimode (lip to be

slightly deeper than the ljmb dip, the disparity is much more pronounced in the

experimental trace. This is likely due to the difficulty in accurately defining all

the parameters used in the theoretical model, especially the single-pass gain and

the mirror reflectivities, both of which significantly affect the output intensity.
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The qualitative character of the theoretical curve, however, can be seen to be con-

sistent with the experimental observations. As was pointed out, the multimode

dip should be observable for any number of modes symmetrically placed about the

line center, but the difficulties associated with stabilizing more modes in a longer

cavity and the resultant higher amplitude noise precludea its observation.

A laser oscillating in multiple longitudinal modes in a standing-wave cavity

containing a Doppler-broadened medium exhibits a dip in the intensity tuning

curve in addition to the more familiar Lamb dip. The existence of the dip has

been verified both analytically and experimentally. Although many newer theories

describing lasers have been developed, this experimental verification shows that

Lamb's theoretical model accurately predicts some aspects of the behavior of two-

mode as well as single-mode lasers.
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Appendix C: Passive Mode Analysis of Three-Mirror Fabry-Perot Resonators

This appendix will examine the mode structure of the three-mirror optical

resonator used for the coupled lasers in this dissertation reasearch. Section A

presents the field equations describing general three-mirror interferometers. In sec-

tion B, the conservation-of-energy condition is applied Fabry-Perot interferome-

ters to derive the transmission characteristics and resonant modes for the inter-

ferometers acting as a passive filters. The equations are solved for two- and

three-mirror resonators to benchmark the theory. In section C, the field equations

are solved for the analysis of coupled laser resonators. First, solutions are

obtained for the resonant modes and the field distributions for the case of the cou-

pled resonators with a gain medium in only one subcavity. The case of the cou-

pled resonators with a gain medium in each of tle two subcavities is studied next.

Due to the non-uniqueness that exists in the threshold conditions ( i.e. , the thres-

hold gains for the two gain media are not uniquely determined by the cavity reso-

nance conditions alone when there are two gain media available in the system).

the system is solved for the special case of imposing the condition of equal gains

in both subcavities.

A. Field Equations for Three-Mirror Interferometers

In 1986. Van de Stadt and Muller 33 applied conservation-of-energy boundary

conditions which are usually used in the study of multilayer dielectric filis to

multimirror interferometers to analyze the resonant modes and transmission pro-
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perties of such a device. In the treatment, they derived a compact matrix multi-

plication to model any number of partially reflecting mirrors. While concise and

convenient, their analysis is limited in versatility and can only be applied to

multi- mirror cavities used as a filter rather than as a laser cavity, since the field

distributions within the cavity cannot be evaluated. Also, their theory cannot be

used to analyze any two-dimensional resonators such as the Fox-Smith cavity a

The theory presented in this chapter removes these limitations by generalizing

Van de Stadt and Muller's method. The generalization makes it possible to deter-

mine the relative intensity of the circulating complex fields at all the partially

reflecting mirrors and solves for the resonant modes of the multimirror interferom-

eter and the threshold gain for laser oscillation. The solutions identify the

amount of gain needed to sustain steady-state oscillations (threshold gain), the

relative strength of the cavity intensities, and the resonance frequencies

corresponding to the longitudinal modes of the composite resonators. k'nowledge

of the the field amplitudes and resonant frequencies should allow experimentalists

to tailor their laser cavity configurations to match as closely as possible the condi-

tions necessary to initiate phase locking (i.e. , all lasers oscillating on the same fre-

quency with identical phases).

Consider the three-mirror resonator depicted in Figure C.1. Each of the elec-

tric fields in the figure (A-G) must saitsfy conservation-of-energy requirements.

Therefore, the field leaving a mirror in a particular direction is composed of the

sum of the waves transmitted through and reflected from the mirror (modified by

the appropriate phase shifts and single-pass gains). For example, field E is equal

to the transmission of C through mirror (2) after being multiplied by the single-
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pass amplitude gain g and delayed by the phase associated with length L1, plus

the reflected portion of F which encounters the single-pass amplitude gain h while

shifted in phase by the optical distance of L2 and the 7r phase change upon

reflection at mirror (2).

A (1) C (2) E (3) G

g h 61

B -D -F1'00 1B r1 , t 1  r 2 , t2 r3, t3

\- L2

Figure C.I: Fields, phases, mirror reflectivities and transmissivities. and round
trip gains for a three mirror cavity.

The optical thicknesses of the mirror substrates are ignored since they can be

compensated by adjusting the cavity lengths, but the direction in which the

reflective coating on the substrate faces is important because it determines which

waves receive an additional 7r phase change upon reflection off that interface.

Claiming to obviate the need for such a distinction, Van de Stadt and Muller

embed their reflective surfaces in media with equal refractive indices on both sides

thereby eliminating the necessity of tracking the phase changes. That construct is
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artificial since there must be different indices on each side of an interface for

reflection to occur, but the bookkeeping involved would spoil the symmetry of

Van de Stadt and Muller's asthetically pleasing matrix multiplication.

A set of linear equations can be written for each electric field in terms of the

others:

B = r1 A + tlg De ib (C.1.a)

C = tjA + r1g De i {(b + 7r) (C.1.b)

D = r 2g Ce 6 + to h Fe ib (C.1.c)

E t29g Ce + r2h Fe"( + )  (C.1.d)

F = r3h Ee"02 + 7)  (C.1.e)

G = tah Ee i2 (C..f)

where 61 2-" L= and 6, = ---- L2 . From this set of six linear equations, a
X~ Tx

number of different properties of the three-mirror resonator can be determined by

instituting the appropriate intial conditions.

B. Application to Filters

The system of equations (C.i.a-f) can be used to analyze the three-mirror

interferometer as a passive filter. First, consider the familiar case of the two-

mirror Fabry-Perot interferometer which is a limiting case of the three-mirror

-127-



Fabry-Perot resonator when r 2 = 0 and g = h = 1.0. To accomplish this, the

system of equations is solved for B and G in terms of A for this situation and the

results are:

t2 r3ei2(6 + 62)
A - r1 r 3 e i 2(61 + 2)

t t3ei2(61 + 6)

A 1 - rlrle i2(6, + 62)

which are readily recognizable as the expressions for the reflection and transmis-

sion coefficients of the two mirror Fabry-Perot interferometer normally derived

using amplitude splitting summations.

For the case of the passive three-mirror cavity (as a filter), let g = h 1.0.

The solutions are

t 2 i i 2b2 i2, 2
B t r-,)e i1(1 - r 2r 3e -) - t 1 2t 22r 3 e( 2 1 + 26o)

= r (1 + r 1 r 2ei2b,)(1 - r2r3ei 2 b - rlr3t22ei(26, + 2&.) (C4)

G =tI 2 t 3 ei(61 + 
62)

iio62& i(26, + 2b2)(C)-rlr.e" ( - r.,r 3e .) - rlr 3t 2 2e

which collapse to the equations derived by Van de Stadt and Muller when their

interfacial phase condition is substituted into the expressions. As required. the

intensities of the transmitted and reflected beams are complimentary to each other

indicating energy is conserved, but when both outside mirrors have the same

reflectivity (mirrors (1) and (3) of Figure C.1), the intensity transmittance of the
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resonator (acting as a filter) is governed exclusively by the intensity transmittance

of the center mirror. The transmission peaks are spaced at the free spectral range

of the super cavity

2(LI + L2) (C.6)

Figure C.2 shows the intensity curves for the transmitted and reflected beams

with r 2 = r 3
2 = 0.9, r 2

2 = 0.5, and L I = L 2 = 1.0m. When L 1 =k L2 , a

sinusoidal envelope is superimposed on top of the mode structure which further

discriminates against selected modes depending on the length mismatch between

the two cavities. To achieve an intensity throughput of 1.0, the values of the mir-

ror reflectivities can be manipulated to meet such a requirement. Mirrors of

r12 
- 0.6, r 2

2 = 0.5, and r 3
2 = 0.9, for example, result in a peak throughput of

0.991. Other filtering characterisitics were examined in detail by Van de Stadt

and Muller aa

C. Application to Coupled Laser Resonators

Despite some fascinating peculiarities of multimirror cavities used as optical

filters, of more interest to the laser resonators community are the resonant mode

structure and the threshold gain required to sustain a steady-state oscillation for a

gain medium placed in the cavity. To build a deeper understanding of the charac-

teristics of three-mirror Fabry-Perot lasers, the system is first examined with a

gain medium in only one side of the resonator. Second, the more pertinent case of

gain medium in both cavities will be discussed.
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Figure C.2: Normalized reflected and transmitted intensities for a three mirror
cavity plotted as a function of frequency with the two end mirrors
of 90% reflectivity and the center mirror of 50% reflectivity.

To demonstrate the strength of the present treatment, it was applied to the

Fox-Smith cavity whose solution was derived by Smith 34 using amplitude split-

ting arguments. With the assurance that both treatments yielded identical results

for the round trip gain, conservation-of-energy boundary conditions were deter-

mined to be suitable for use with the three-mirror cavity. For the analysis of

laser resonators, the field A is set identically to zero since the fields are internally

generated from the gain medium. Considering the case in which a gain medium Is

placed only in the left cavity, h is set equal to one and the set of equations

(C.i.a-f) is solved for g, yielding
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Ig 2 = 1 - 2r 2r3cos(262) + (r 2r 3)2  (C.7)
(rlr3 )2 + 2r 1

2r2r3cos(262) + (rlr2)2

Similarly, by setting g = 1.0, the system can be solved for the case where a gain

medium is placed in the right side of the cavity. The results are:

1h 12 = 1 + 2rjr2cos(26j) + (rlr2 )2  (C.8)
(rlr3 ) 2 + 2rjr 2 r 3

2cos(2b1 ) + (r 2 r 3 ) 2

These equations specify the minimum single-pass gain the medium must provide

to sustain a steady-state field distribution, i.e., the threshold gain. Also, the fre-

quencies at which g and h become real constitute the resonant modes. Plotting

Ig 12 and Ih 12 as functions of frequency (Figure C.3) shows that the threshold

gains are equal for both cases, but the mode resonances are out of phase with each

other by exactly 90 degrees because of the orientation of the central mirror. Rev-

ersing the physical direction of the middle mirror exchanges the mode structures

of the two gain expressions. Perhaps more interesting is that the resonances are

determined solely by the length of the cavity in which the gain resides although

the threshold gain depends on all mirrors. This means that additional cavities

coupled to the one containing the gain medium do not affect the free spectral

range when the medium is in only one subcavity. In real laser systems, the

steady-state field intensity will be at the point where the gain saturates to the

threshold level with the relative intensities of the various beams being determined

by the resonance conditions.

For coupled lasers with gain media in both cavities, each resonator should. in

general, satisfy different gain requirements. Solving equations (C.1) with arbitrary
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Figure C.3: Round trip gain plotted as a function of frequency showing the
spacing of the resonant modes magnitudes with the gain medium in
the left- or right- hand cavity only.

h results in a single equation with two unknowns:

1 + r 1 r 2ge = r1 r 3gheZ(2 b1 + 22) + r2r3he 
i2( .
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This illustrates one operational aspect of coupled lasers; the threshold gains are

not uniquely determined, meaning that steady-state laser operation can be

attained for many combinations of gain g and h. Physically, this implies that no

matter what the threshold gain, g, is, a threshold gain, h, for the other medium

can always be found which can sustain steady-state oscillation, and vice versa.

Consequently, an additional condition must be imposed in order to solve the equa-

tions uniquely. A reasonable additional condition would be to calculate the gain

when both subcavities are oscillating at the same frequency. By setting g = h,

solutlions are found only for those frequencies which oscillate simultaneously in

both cavities.

Once again, the system of equations (C.ia-f) is solved to eliminate all the

fields producing a complex quadratic equation in the round trip gain, g:

g 4 + g2 [uei2b1 -- _-rei262 12'r e -"(26, + 26) =0 (C.10)
r. I r 3  rjr 3

with roots

_= fleie (C.11)

where

1r 2 r2 2 br
- r1  4ri 3  -261) (C. 12)4 r -  r 12 4r 12r3 2  2 rr a

rb)02 b 4 cos(2&l T (61 + A))+o(-. T (6l + 6.2)) T 1) -r
2rIr3

2  9r
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b r2
4(r1

4 + r 3
4 ) + 4r1

2 r 3 2 (2 - r 2 )2 + 2r 1
2 r 2

4 r 3
2cos(452 - 46,) (C.13)

+ 4r 1 r 3 r2
2 (2 - r 2

2 ) (r 1
2 + r 3

2)cos(26, - 231)

r.) r2
-_sin2b1 - -_sin26 2 + - sin(51 + 62)

tan 1  r1  r 3  r 1 r 3  (
r 2  r 2  '/z
-cos26 2 - -cos2 1 ± -cos(6 1 + 82)
r3 r, rlr 3

the field amplitude gain for a round trip through the entire cavity is

9 4 = 32i20 (C. 15)

Despite the daunting complexity of these expressions, the actual solutions for the

gain become quite transparent. In one special case when r 1 = r 3 and L I-- L-

(i.e. , 61 = 62), the resultant field amplitude gain reduces to

g4  1 - i4b (16)

r1"

In order to constitute a mode of the multimirror cavity, after every round

trip, the adjustment in phase the medium has to provide to the fields must be

some integer multiple of 27r for the fields to exactly reproduce themselves. There-

fore, only those frequencies at which 20 is an integer multiple of 27r are modes.

Figure C.-A graphs 20/ 27r as a function of frequency for r, = r3 and the two cavi-

ties mismatched in length by 10%. Any horizontal slice through the curve at

some integer value determines which frequencies can oscillate. In some regions,

there are three distinct frequencies all of which satisfy the conditions imposed

up() g. The first intersection of the slice ((a) of Figure C.4) correspondes to the
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free spectral range determined by LI + L,2, the second intersection, (b),

corresponds to the mode spacing determined by 2L , and the third to that of 2L .

There are three different frequencies because a wave can encounter a round trip

gain of g"' in three ways: one total round trip through the resonator, two round

trips through the left-hand cavity, or two round trips through the right-hand cav-

ity. \Vhen the composite lasers oscillates at the proper frequency, (d), all three

combinations of the round trip gain are at exactly the same frequency at the sane

time.

The most surprising but satisfying result is that the magnitude of the round

trip field amplitude gain, g4, is equal to 1/ r 1
2 for all frequencies. For a two-

mirror cavity, the round trip gain required of the medium to compensate for cav-

ity losses is determined only by the transmission losses through the mirrors. The

same condition is true for the three mirror cavity.

Once the magnitude of g4 is found, the value is substituted into the field

equations (C.i.a-f), and the associated intensities are then computed relative to

one of the other intensities. Each field is solved in terms of C, C is chosen to be

1.00, and then the relative intensities are calculated by multiplying each field

expression by its respective complex conjugate. The values of the intensities for

two 60%-rellective end mirrors with a range of coupling mirrors are recordel in

Table 1.6 in chapter IV along with the interpretation of those result.s.

D. Conclusion

Conservation of energy boundary conditions were applied to the eleetri tlields
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Figure CA: Phase angle 8 / 27r plotted as a function of frequency showing the
three oscillating frequencies corresponding to (a) LI + L.,. (b) 2L
(c) 2L 2 , and (d) when all three frequencies are equal.

ircident upon each interface of a three-mirror Fabry-Perot resonator to calcilat,,

the resonant behavior and relative intensities of the circulating beams. The

method was used to rederive the resonance and transmission properties of' two-

and three-mirror Fabry-Perot interferometers and also to determihni the round trip

gain the laser media must supply in order to sustain steady-state oscillation for

gain in each subcavity separately, and identical gain in both cavities. The theory

can analyze any configuration of partially reflecting mirrors. The results from
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two-coupled lasers showed that the imbalance of the circulating intensities may

inhibit complete phase locking. More rigorous treatments which include the active

gain media must be conducted to conclusively determine if the imbalance is a true

manifestation of coupled lasers.
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19. (continued)

substantiated by the fact that the maximum power output was also
achieved at this point, and the appearance of the super cavity
mode spacing verified that the behavior was due to phase locking.
A passive cavity mode analysis of the three-mirror Fabry-Perot
resonator showed that the system oscillated on the composite
resonator frequency as well as the frequencies of both sub-
resonators. - ,
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