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Abstract

A single-mode laser theory was applied to two coupled Ar-ion lasers in Fabry-
Perot resouators and the equations were solved numerically to predict intensity
tuning curves and locking ranges for various types of mirror translations. The
same theory was extended to model two modes in each cavity, which predicted a
decrease in locking range as well as a mutually-reinforced hole-burning minimum.
With a single, uncoupled, two-mode He-Ne lascr, the existence of the minimum
was verified experimentally. Two multiline/multimode Ar-ion lasers were coupled
through a common end mirror and the effect of coupling strength on phase locking
was investigated by varying the reflectivity of that mirror. In order to character-
ize the phase-locked performance of multiline/multimode and single-line/ mnul-
timode coupling, interference fringe visibilities, output power, and {requency and
RF mode beat spectru were measured. It was tound that the optimal phase lock-
ing oceurred at approximately 25%% coupling as determined by the maximum
fringe visibilities produced by laser phase locking. That 259 coupling was the op-
timum coupling strength was aiso substantiated by the fact that the maximum
power output was also achieved at this point, and the appearance of the super
cavity mode spacing verified that the behavior was due to phase locking. A pas-
sive cavity mode analysis of the uree-mirror Fabry-Perot resonator showed that
the system oscillated on the composite resonator frequency as well as the {requen-

cies of both subresonators.




A Theoretical and Experimental Investigation
of Coupled Ar-ion Lasers

Chapter I. Introduction

This dissertation research theoretically and experimentally investigated the
phase-locked perfromance of two coupled Ar-ion lasers in Fabry-Perot resonators
along with several other associated aspects of coupling. The following is a brief
overview of why the U.S. Air Force and the military in general is interested in
coupled laser systems. In the remainder of the introduction, the concepts of laser
coupling will be presented followed by a discussion of the advantages of phase-
locked operation. The next section will review some of the previous experiments
studying phase locking using conventional coupling, and the final part will be a

synopsis of the dissertation contents.

A. Overview

The United States Air Force is currently investigating the feasibility of usiag
high-energy lasers as one component of the ballistic missile defense network pro-
posed as part of the Strategic Defense Initiative (SDI). High-energy lasers could
also be used in a lower power and somewhat more peaceful role as a means of
communicating with undersea vehicles or as the drivers for laser fusion power
plants. For the ballistic missile defense applications, a simple diffractive optics
calculation using intercontinental distances indicates that a tremendous amount of

energy is needed to achieve the required power density on target to assure a kill.




Whether for civillian or military application, laser output energy must increase by
several orders of magnitude before any system can be deployed. Although it is
theoretically possible to increase laser output by proportionately scaling the size of
the laser and the amount of gain medium, current technology restrictions put

severe limitations on the size and power of lasers that can be constructed.

One possible method for scaling laser power to higher cutput levels and thus
circumventing some of the technology shortfalls is to coherently combine or phase
lock an array of small, low power, independent lasers using conventional coupling.
Conventional coupling means injecting a portion of the output of each laser into
the other resonators via partially transmitting mirrors, holes in the optics, or
diffraction around the mirrors. In spite of some added complexities, coherent com-
bination of lasers offers advantages over incoherent combination because the resul-
tant smaller far-field spot size produced by phase locking increases the power den-
sity on target by the square of the number of lasers. Also, because the system is
comprised of independent lasers, the array can still function, although below peak

capacity, with one or more of the lasers inoperative.

B. Laser Coupling

The study of coupled oscillators is by no means a new field of endeavor, but
the study of coupled lasers is still in its infancy mostly because lasers have only
been around as a useful tool since the early 1960’s. Despite a thorough under-
standing of many types of coupled oscillators, coupled lasers have escaped com-

plete characterization not only because they operate on the order of 10" Hz, but




also because the oscillating fields originate within the medium itself. This self-
generating oscillation presents a unique set of problems from which the low-
frequency coupled oscillators do not suffer. Coupled oscillators can be roughly
divided into four different frequency subgroups ranging from subhertz all the way
to 10" Hz. The first category is the mechanical oscillators; springs-and-masses
and pendulums which oscillate up to several hertz. Next are the coupled acoustic
resonators which function from several hertz up to tens of kilohertz before air
mass movement in the coupled Helmholtz resonators begins to pose an upper
limit. In tank and radio circuits, the light, nimble electrons can respond to elec-
tric fields all the way up into the gigahertz régime. Presently, the upper limit of
coupled oscillators is lasers whose electric fields oscillate at a frantic 10'° Hz (See

Figure 1.1).

What is truly remarkable is that the four vastly different types of coupled
oscillators are governed by equations similar in form. Each is based on the funda-

mental expression which comprises the time variation of the equation of motion

mr + bz + kz (1.1)

plus a coupling and driving term. Superficially, the analogy appears to be
encouraging, but examination of the characteristic frequency of each oscillatory
system uncovers a marked difference between the coupled lasers and the others.
The mass attached to the spring, the acoustical inertance of the air mass in the
Helmholtz resonator, and the opposing magnetic field encountered by an electron

in an inductor all constitute the mass term in the equation of motion, but the
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Figure 1.1:

(a) Coupled masses and springs; (b) Coupled Helmholtz resonators:
(¢) Coupled tank circuits; (d) Coupled Lasers.




photon "mass" is hidden and undiscernable in the laser frequency term:

Mechanical !

Acoustical 2

Electrical 3

Optical *
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k = spring constant

m = mass

A = area

V = volume
! = neck length
v = velocity

L = inductance

C = capacitance

= integer

= resonator length
= velocity of light

o~ 3

Similarly, the damping caused by friction, viscosity, or resistance is more easily

traced than the nebulous losses associated with diffraction and absorption in the

laser cavity. The most striking disparity between the first three systems and the

coupled lasers lies in the driving term. Simple sinusoidal and constant phase driv-

ing forces lead nicely to analytical solutions, but the complexities and approxima-

tions inherent in the derivation of the driving quantum mechanical polarization

separates an optical maverick from a stable of better behaved oscillators.

C. Advantages of Phase Locking

There are significant advantages to a phase-locked laser system over the same

number of uncoupled lasers focussed to the same target point. The intensity




distribution on target from independent lasers is the diffraction limited sum of the
intensities of the individual lasers, N X I, but the peak intensity from the same
number of phase-locked lasers is proportional to the square of the number of
lasers, N2 X [. The .N* effect arises from coherence and can be understood in
terms of the theory of a Young's two-slit interference experiment as presented by

-

Goodman ” and of interference theory.

Q

Observation
Screen

Figure 1.2: Configuration for a Young's two-slit interference experiment.

Consider the interference experiment depicted in Figure 1.2. The intensity at

some point Q on the screen is given by

1(Q)=<|E,+E,|*> (1.3)

where <> denotes a time average and

E’ = EO:’ é exP[i (7‘-'{ T - wit + ¢)t(t))] (1'4)
E,, is the field amplitude of the waves
-8-




é; is the unit polarization vector
I—c; is the propagation vector
T is the position vector of a point on the screen

w; is the frequency

@;(t) is the initial phase of the wavefront.

If the polarizations are identical, then substituting (1.4) into (1.3) yields

—

1(Q)= |Eq|*+ |Ep|? + 2EqEgy” cos|(ky — F3)F — (wy — w)t + (8,(¢) — o(2))] (1.5)

If IEOI IZ = IEOQ |2 = I, then

I(Q) = 2I(1 + cosb) (1.6)

Ead

where § = (B, — o) 7 — (w; — wp)t + (¢ ~ #,). The locking phenomena may be
understood through closer examination of 8. If w; = wy, the two waves are =aid to
be frequency locked, but the phases may continue to change as random functions
of time and spoil the N? peak intensity. If on the other hand, a fixed relationship
occurs between ¢; and ¢,, the laser phases are locked, but any difference between
w; and w, will cause a beat signal which creates a time-dependent interference
pattern whose amplitude varies with the amplitude of the beat envelope. When
w; = Wwo, and there is a fixed phase relationship, the two waves are phase locked
and produce a steady intensity distribution in the near field as described by equa-
tion (1.5). At all points for which cosf = 1, the intensity is 4 X [ or 22 X [.

The coherent summation concentrates the energy into a smaller area giving

rise to the N? effect. To better understand the mathematics of the far-field nar-




rowing which causes this V* effect, consider the following example of the coherent

summation of two plane waves. When two plane waves are combined in the far

field (See Figure 1.3), the field distribution at the observation screen is

Intensity
Profile

a
\V

Observation
Screen

rigure 1.3:  Configuration for far-field interference of two plane waves.

. 3a
l. e'kl 2 ) 2 "
= ___EO f et?rrqz dr + fen.rrqx dr
A / 4

where t(z) is the transmission function of the lens, f is the focal length, a is the

diameter of the beams, and ¢ is the spatial frequency associated with some point




on the screen. Taking the magnitude gives the intensity:

E, sin?2mqa
4(12_‘_(]_

I(q)= |— 1.8
()= |~ i (2rqa (1.8)
where I(g) = 0 when ¢ =1/(2¢). For a single beam of diameter a,
Eq sin’mqa
I{q) = a? 1.9
(9)= |5 i ]Z - (1.9)

where I(g¢) = 0 when ¢ = 1/a. This says that the diameter of the diffraction lim-
ited spot in one dimension of the intensity pattern for the coherent mixing is one-
half that of a single beam. Compressing twice the intensity into half of the area
means a fourfold increase in the peak power density. Even though the lasers emit
Gaussian beams, the mathematics of plane waves is far simpler and more trans- .
parent. The far-field interference of both types of wavefronts gives the same

results, but equation (1.9) describes the fringes within the Gaussian pattern.

Wher some degree of coherence exists among wavefronts, proper mixing of
the waves produces near-field interference fringes in accordance with (1.5). The
amount of coherence is characterized by measuring the visibilitv of the fringe pat-
tern. The visibility is defined by

Ima.x - [min

Vo= _max S mn (1.10)
Ima.x + [mm

where I, and I, are the maximum and minimum intensities of two consecu-
tive light and dark fringes, respectively. If V =1 (high contrast fringes). the

waves are completely coherent, but if there are no fringes, V = 0 and the waves

-9-
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are incoherent.

Anpother practical military advantage of a coupled laser system is the prop-
erty, as termed by the coupled devices community, of graceful degradation. For a
single, high-energy laser, if a critical component fails, the laser cannot function
and the mission can not be performed. If instead, a phase-locked coupled laser
system is employed and one or several of the lasers are inoperative, the system can

still be used as a weapon albeit at reduced effectiveness. For example, imagine the

United States to have a coupled laser system of 10-10 kilowatt lasers for a total of
1 megawatt peak output power. Perhaps two component lasers of the system are
down for maintenance. Instead of operating at the maximum performance level of
1 megawatt of peak phase-locked power, the system could still function at 640
kilowatts and continue to berform the defensive mission. Even il no phase locking
occurred, the 10 laser system would generate 100 kilowatts of power showing that
the coupled laser system exhibits several levels of fault tolerance. The nunibers
and the scenario previosly described are fictitious, but the concepts involved in

such an event are quite plausible.

. D. History of Laser Coupling

In 1966, Stover and Steier of Bell Telephone Laboratories made what was
perhaps the first attempt at coupling independent lasers by injection locking two
frequency-stabilized He-Ne lasers 6. Man and Brillet duplicated the work in 1984
using two Ar-ion lasers by injecting the stabilized, single-frequency output of a

master laser into a multiline/multimode slave laser and produced almost three

-10-




times the single frequency output of one laser 7. Even though injection locking is
an excellent method for increasing the single-mode output power from lasers, the
requirements for precision control of the system components a..re considerable and’
not always easy to satisfy. Another method of scaling laser power is the master
oscillator/power amplifier (MOPA) 8. In a MOPA system, a relatively clean seed
beam passes through one or more amplifiers in which the seed beam is amplified

w
thereby increasing the beam intensity to higher power levels.

Both MOPA and injection locking have a critical dependence on a master
oscillator. Should the master oscillator fail, there would be no output from the
former, and only the unphased output of the slave lasers of the latter. Conven-
tional coupling, however, not only eliminates the dependence on a master oscilla-
tor, but it also makes it possible to extract phase-locked energy on multiple
wavelengths simultaneously. Palma, ef. al. coupled 2, 4, and 6 unstable CO,
lasers by injecting portions of the beams through holes in the the feedback mirrors
and by using beamsplitters to reflect the beams into the other resonators ?. This
work resulted in a coherent sum of 65% of the theoretical phase-locked intensity
for the 6 laser experiment and 887% and 959 of the ideal intensities for 4 and 2
lasers, respectively. Bernard, Chodzko, and Mirels coupled two ¢w HF chemical
lasers in unstable resonators by seeding each laser with 20¢ of the output
power!®, Even though’ the multiline fringe pattern had an overall visibility of 0.6.
the visibiliLyI of the filtered P,(6) III laser line was nearly equal to one indicating
that the transitions in each iaser were almost completely coherent. Currently,

Cunningham et. al. are undertaking a similar experiment with chemical oxygen-

-11-




iodine lasers (COIL) 1.

E. Dissertation Outline

Although there have been a number of coupled-laser experiments, apparently
none have made a parametric study of the effect of the transmitted coupling
power on the coupled system, especially in multiline lasers with Doppler-
broadened media in standing-wave cavities. This dissertation research focussed on
the behavior of two coupled Ar-ion lasers both theoretically and experimentally.
Ar-ion will definitely not be used in any high-energy laser system, but understand-
ing the physics of coupling in Doppler-broadened media should be applicable to
other systems whose media exhibit Doppler-broadened behavior such as HF or
oxygen-iodine. Additionally, Ar-ion lasers can be operated for extended periods of

time without the hazards associated with the highly toxic HF and COIL lasers.

Chapter Il will derive from first principles the equations describing single
mode laser operation, and then work through the important points of both the
single- and two-mode coupled laser equations. The computer solutions to those
equations for various tuning configurations are then examined. In Chapter lII. the
coupling experiment itself will be discussed showing the three configurations stu-
died and the measurement procedures. Chapter [V will present and analyze the
experimental results. Finally, Chapter V presents the conclusions and some

recommendations for continued research in this area.




Chapter II. Coupled Laser Theory

Because many real lasers oscillate on many wavelengths and many modes for
each wavelength, it is extremely difficult if not impossible to accurately model the
complex behavior of a single laser let alone two or more coupled lasers. Despite
the enormity of the real problem, simpler theories developed under suitable
approximations produce significant and useful insights into the coupled laser
processes. This chapter will begin with a cursory historical examination of cou-
pled laser theory, which will be followed by a derivation of the equations for two,
coupled, single-mode Fabry-Perot lasers. The solutions to the single-mode equa-
tions will be discussed along with their accompanying tuning curves. The chapter
continues with the extension of the single-mode equations to describe two modes
oscillating in each cavity and an examination of some of the interesting

phenomena that were discovered during the solution of the two-mode equations.

A. History of Laser Coupling Theory

Since Spencer and Lamb first introduced their coupled-laser theory in 1972 12,
the field has blossomed with many related theories; each seeking to expand the
range of applicability of Spencer and Lamb’s treatment, or study a different
aspect of a coupled laser system. Palma, et. al applied Spencer and Lamb’s
theory directly to two coupled CO, lasers %, and Chow derived an analytical
expression for the locking range in terms of changes in the cavity length '3. The
original theory has also been modified by Mirels ! to more accurately represent

the physical coupling mechanism. These theories have dealt only with a single
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mode oscillating in each cavity and, except for Mirels, with homogeneous laser

media. Spencer and Lamb’s theory is also limited to cases of weak coupling.

With the growing interest in coupled laser systems, the theories likewise
expanded to more closely model the prevailing experimental research. Shakir and
Chow, based on the fundamentals of Spencer and Lamb's theory, extended the
coupled laser theory to model any number of lasers in a phased array with any

amount of coupling !°.

Their paper also introduced the concept of supermodes;
laser modes which satisfy the boundary conditions of the composite resonator.
Both Walsh ! and Shakir and Erkkila !7 applied the Shakir and Chow supermode
theory to CO, lasers; Walsh to Fabry-Perot resonators and Shakir and Erkkila to
unstable resonators. Since coupled ring resonators offei the possibility of higher
output power, Benda and Palma adapted the supermode theory to mcdel such a
system 8. Not all theories find their roots in Spencer and Lamb’s model. Rinaldi
and Erkkila introduced a new approach by treating the coupling as an injected
signal and used a rate-equation approximation as the model for the laser
medium'®.

This dissertation also presents its own contribution to the increasing number
of coupled laser theories by planting a seed in an area of interest that has
apparently been overlooked. As stated above, the theories generally deal with
single-mode, homogeneously broadened, coupled lasers. A logical extension is to
model two modes oscillating in each cavity. The second theoretical section of this

chapter performs that analysis by developing two-mode conpled laser equations

for boppler-troadened gain media. It should be noted that the single- and two-
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mode theories developed here describe the behavior of a coupled-cavity laser sys-

tem with one or two modes oscillating in each cavity.

B. Single-Mode Theory

The objective of this research was to study the coupling of two standing-
wave Ar-ion lasers. Although the theories fall far short of describing the complex
interactions between the up to ten possible different wavelengths and dozens of
modes in the real system, analysis of the coupled-laser theory aids in understand-
ing some of the processes involved in coupling. If simple systems cannot be
understood, then there is little hope of interpreting any results from more compli-
cated experiments. This section will derive the single-mode coupled laser equa-
tions from the principles of electrodynamics. These equations will then be applied
to coupled Ar-ion lasers and the resulting sofutions will be examined and dis-
cussed.

The following derivation closely parallels that first introduced by Lamb in

20

1964 in his now famous paper on the "Theory of an Optical Maser™?. It is reas-

suring to know that the derivation of the coupled-laser equations begins with the
e

familiar Maxwell’s equations. First, a driven wave equation describes the field in

each cavity of Figure 2.1:

&E,(z,t) 49 OF, (z,t) 1 OE,(z.,t) 1 PP, (z.t)
ot?

where n = A, B (the cavity designations); E, is the complex field in each cavity;

', are the cavity losses; and P, is the complex polarization of the Doppler-
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Figure 2.1: Geometry for coupled laser theory.

broadened medium. Since the spatial variations of the field inside the cavity are
not important to the steady-state solutions of the output wave, the z-dependence

is removed by performing a Fourier transform on the wave equation. Equation

(2.1) is multiplied by L;sinkA(z + L4 ) and integrated over Z from —L, to 0.
A

By defining the Fourier transform of the mode amplitude £, by

0
E, =_L?- [ sinky(z + Ly )E, (2,t) d2 (2.2)
-L,
the resultant wave equation becomes
. . 1 2 % OEq(z.t) 1
E,(t)+ 24 E (t) — —  [sinka(z + Ly) ———— dz = ——p,(t) (2.3)
€ty Ly -1, a:z* €0

where p, is the Fourier transform of the polarization. If the two outside mirrors
have reflectivities of 100°¢, then the boundary conditions for the laser resonator

are

EA (O.t) =EA ("‘LA,t) =0 (‘2.4)

Integrating by parts twice eliminates the z-dependence from equation (2.3), and
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the wave equation simplifies to

v . kol
B4 (t) + 2T, EA(t)+%jl—oEA(t)=—% balt) (2.5)

Two further simplifications may be made by noting that {1, = k4 ¢ is the bare

cavity frequency and (€qup)~! = ¢

E,(t) + 2l EA(t)+ﬂA2EA(t)=-% palt) (2.6)

In the pioneering work on coupled laser resonators developed by Spencer and
Lamb !2, a "dielectric bump", an infinitely narrow region of change in the dielec-
tric permittivity between the two cavities, was the boundary condition through
which the lasers were allowed to interact. The dielectric bump mirror model is

mathematically described by

dz) =6 [1 + T &) (2.

o
~1
~—

where n =2 (R./T.)* and R,, T, are the reflectivity and transmissivity of the
coupling mirror, respectively. The dielectric bump changes the boundary condi-
tion at £(0.t) and would have been included during the integration by parts if
this derivation was strictly following that of Spencer and Lamb. Not only is the
dielectric bump completely unphysical because no reflection occurs at an interface
between two media of the same index of refraction, but the Spencer and Lamb
model also allows no provision for output coupling and therefore makes the model

somewhat artificial. In 1986, Mirels improved the model and made it more
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representative of the actual coupling involved by replacing the dielectric bump
term with a net perturbation per round trip term, accounting for light leakage
through the output mirrors in the cavity loss terms, while retaining the funda-
mental medium interaction terms of Spencer and Lamb !4, Since this derivation

uses Mirels’ coupling terms, the development continues from equation (2.6).

Even though the problem has been reduced to a second-order differential
equation, it is difficult to solve in this form, therefore some approximations must
be made. Let the electric field and polarization be represented by complex,

sinusoidally varying functions:

By () = Eq(t) et * 440

pa(t) = Py(£)e™ e+t

By invoking the slowly varying amplitude and phase approximation, all the
second order terms in E4(t) and @4 (¢) can be neglected, and only the zeroth
order term in polarization is retained. Since the terms containing ['4 E"A (t) and
| d)A (t) are roughly 107 times stialler than the others, they may also be elim-
inated. After making these simplifications, the resultant first-order coupled

differential equation in E(¢) and éA (t) becomes

—20WE, (t) + E4(t) [ = (4 84 ()] — 2iwly Eq (1) = ==P, (1) (2.9)

Because optical frequencies are on the order of 10!, factors of 2 are also negligible,

SO

18-




G ~w (2.10)

After dropping the ég(t) term, the quadratic frequency expression can be reduced

to

2= [w+ s (1)) = 2w [y —w— 8] (2.11)

Making this substitution and dividing equation (2.9) by 2w gives

_'E.4(t) + E ()[04 —w - ¢‘AJ -y E, = “:—PA(’) (2.12)

~*0

= 3“:_0 Re{P, ()} + i Im{P(¢)}]

Equating the real and imaginary parts of both sides of the expression gives two

first-order coupled differential equations in field and phase:
EA + FA EA =—'i)— Irn P,‘(t)
2¢,

b4 +w=0, — — E,~1Re P (¢)
2¢,

A similar pair of expressions results from the treatment of Ep.

Once the field and phase equations have been obtained, expressions for the
polarization of the medium in each cavity must be derived. This derivation
involves the quantum mechanics of the laser medium and is specific to whether
the medium is homogeneously or inhomogencously broadened. Because the formu-
lation of the polarization for a Doppler-broadened medium is long and difficult
and provides little that is necessary to the understanding of this derivation. the

results will be transferred directly. (For a complete derivation of both the
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inhomogeneous and homogeneous media polarization, consult Lamb 2, pp.
A1430-A1438, or Sargent, et. al.?l, pp. 144-152.) Finally, the field and phase
equations describing a single mode oscillating in a Doppler-broadened medium of a

Fabry-Perot resonator are

E, =(c, — 8,1, (2.14)

Wy + ¢, =0, +0, —p, I, (2.15)
where the symbols and coefficients are defined in Table 2.1.

Before the coupling terms are derived, it is useful at this point to examine the
details of the coupling mirror. The mirror model used in this analysis is a single,
non-absorbing, reflective surface detached from any glass substrate. The surface
is matematically described by complex coefficients of reflection and transmission
which are assumed to be identical for waves incident on either side of the coupling

mirror (See Figure 2.2):

ry =rg=r= retdrened \/-Ec_ew' (2.16)
tA — t‘B =t = te“’tvnnsmumd = -\/T—cei¢f (2.17)

To couple the two pairs of equations for the field and phase of the modes in
each cavity, Mirels’' net perturbation per round trip coupling terms ! are
appended to equations (2.14) and (2.15). When photons cross the coupiing mirror,

there is a perturbation to the parent field and phase as shown in Figure 2.3, and




Table 1: Symbols and Definitions

a, =F, ¢ Linear Net Gain Coefficient
By =Fs, (1 +Z(€,)) Self-Saturation Coefficient
- [L]Z £.2 %6"
O, =2i, € I { e” dr Linear Mode Pushing Coeflicient
Pn = F3, EZ(€,) Self-Pushing Coefficient
Oum = Fan [X(%E, + %E,) + (%L, — %E,)]

+ F3, Z(,)Z(E, —€n) (1 = &,(60 — €0) Cross Saturation CoefTicient
+ Fan Z(&n — €n)Z(%En — %Em) [ ~ %(§, — €, )7

1
Tam = > Fj, [(En + Em)'((l/zfn + l'ﬁém) + (Eu - gm)Z(%En - l/zfm)]
— F3, Z(£,) (€, — &) (26, — €) Cross Pushing Coeflicient
3
- ?F:}n z(’Sn - €m)l(‘/2£n - l/26111) (‘Sn - Em)
F N go ¢ ! . -
in =F3, = I'= Peak Unsaturated Gain Coeflicient
Nr 2L
1 C . . .
Fyp = T'= QLLJH [W] Distributed Cavity Attenuation Coefficient
T 1
M, = TCL_ [ R° J- etV Distributed Coupling Mirvor Coeflicient
it [
€, = (wo — wa)/Y Normalized Laser Frequency Detuning from Line Center
A, =(wy — )/ Normalized Cavity Frequency Detuning from Line Center
Z(z)=(1+ 2% Lorentzian Line Profile




Table 2.1: Symbols and Definitions (cont’d)

v=¢; — ¢, Phase Introduced by Coupling Mirror
N = 1 N 1 power-broadened Natural Linewidth (HWHM)
2 NT Trad
26 = -27772—0 Normalized Free Spectral Range
®n = P8n — Pun Mode Phase Difference
Wy Laser Oscillation Frequency
Wy Line Center Frequency
Q, Cavity Resonance Frequency
Ry Output Mirror Reflectivity
R, Coupling Mirror Reflectivity
T, Coupling Mirror Transmission
do Single-Pass Gain
{ Length of Gain Medium
L Cavity Length
T 1
AEA = [RC ].' EB COS(¢B - ¢A + d)) (2 18)
[
T T E
2 B .
Ad, = || == 2.19
NEA .

When all the pieces are assembled, the single-mode coupled laser equations become

dE |
th = (al - rBIIA) EA + “/[A EB cos(é -+ zb) (2«20)
dE

_d:j" = (g — Bylg) Eg + Mp E4 cos(¢ — 1) (2.21)
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Figure 2.2: Reflected and transmitted waves at the coupling mirror interface.

doy Eg ) |
d =79 —-A8)+o0y—ply + My |—=——]sin(¢ + 1) (2.22)
¢ EA
dé E
L~ (§ =) + oy = palp + My | | sin(6 — ) (2.23)
dt Eg )

whose symbols and coeflicicnts are also defined in Table 2.1. These equations

model the laser cavities and modes depicted in Figure 2.4(a).

In order to solve the equations in the steady state, the time derivatives were
set to zero and the Jacobian Matrix was constructed to solve the system for the

variables I, , I , £, and sin¢ using the Newton-Raphson method *2. Self-
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Figure 2.3:  Geometry to derive net perturbation per round trip coupling terms.

consistent solutions were allowed to converge to within one part in a million by a
computer program coded on a Zenith Z-248 computer. Each solution set was
checked for stability by performing a perturbation calculation on the time-
dependent field equations and an equation comprised of the difference between the
two phase equations. If all the real parts of the eigenvalues of the perturbation
matrix were negative, then the solution was considered stable. The details of the
reduction of the equations to expressions readable by a computer and the com-

puter code used to generate the solutions can be found in Appendix A.

The solutions to the coupled laser equations with Doppler-broadened media
permitted the evaluation of the intensity of each mode, Iy and /g, the total inten-
sity, I,, which is the coherent sum of the mode intensities, the offset of the lasing

frequency from the line center frequency, € , and the phase difference between the
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Figure 2.4: Schematic diagram of the coupled laser system for (a) a single mode
oscillating in each cavity and (b) two modes oscillating in each cavi-

ty.

two modes, ¢ . The parameters describing the Ar-ion lasers are found in

Table 2.2. To generate the tuning curves, the mirrors were translated (by varying

the cavity frequency term, {1, contained in the A term of equations (2.22) and




(2.23)) in three different combinations. Each w term contains the bare cavity fre-
quency, 2, implicitly, but w need not be determined for each mirror displace-
ment. The change in the bare cavity frequency is absorbed into the lasing fre-
quency, w , during each step of the iterative solution process. Therefore, the
implicit relationship between w and €2 is satisfied once a self-consistent solution is

reached.

Table 2.2: Ar-ion Laser Parameters
L=175m R, =06t 0.95
| =038 m Vpsp = 85.6 MHz

Y4 =271X4 GH: Toag =7.5ns 4

go =001 em™1 3 A =351L5 nm

Figures 2.5 (a)-(c) show the case of a symmetric tuning in which both output
mirrors were translated simutaneously (mirrors 1 and 2 of Iigure 2.1) while main-
taining equal cavity lengths. As expected from the symmetric tuning, the intensi-
ties in each cavity both display the same behavior and, as the mode crosses the
gain center, it burns out the Lamb dip. Although it is difficult to see on the
figure, the minimum of the Lamb dip is slightly offset from the point where the
resonator frequency is equal to the gain center frequency due to the phase shift,
¥ , encountered as the light wave traverses the coupling mirror. Including this

additional phase perturbation displaces the lasing frequency from the cavity

-26-




frequency. This displacement is more pronounced for two-mode coupling and will
be discussed more extensively later in the chapter. Not surprisingly, the two
modes exhibit zero phase difference in this case and the solut.ions remain stable
throughout the tuning range. For the curves depicted by Figures 2.6 (a)-(c), mir-
rors 1 and 2 were kept stationary while mirror 3 was transiated. The intensity
curve (Figure 2.6(a)) shows that the maximum total intensity is reached when the
two cavity lengths are made equal even though neither mode intensity is at its
peak. This results because the phase angle is initially zero allowing the largest
contribution from the cross product term of the coherent intensity sum. The final
tuning case involved translating only the coupling mirror (mirror 2 of Figure 2.4)
preserving a constant total cavity length (Figures 2.7 (a)-(c)). Once again, the
coherent intensity was a maximum when the cavity lengths were equal, but in this
instance, both the intensity and frequency curves are symmetric about the zero

detuning point.

Notice also that the right side of Figure 2.6 (a) matches the intensity to the
right of zero in Figure 2.7 (a). The reason this occurs is because it is immaterial
which of the mirrors is translated when changing the cavity length insofar as one
laser is concerned. [ad the other output mirror of the asymmetric tuning been
moved, then the left sides of the two figures would show identical intensities. One
further piece of information concerning the desired operating point of the coupled
laser systerﬁ is available from the tuning curves. In order to achieve the max-
imum power output from the single-mode coupled laser system, both cavity

lengths must be equal to each other while the laser frequencies should be detuned
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Figure 2.5: Intensity, frequency detuning, and phase as a function of cavity
detuning for single-mode coupling for the case of translating both
output mirrors. The solutions are stable for all displacements.
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Figure 2.8:
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Intensity, frequency detuning, and phase as a function of cavity
detuning for single-mode coupling for the case of translating a single
output mirror. The solutions are stable from -3.48 MHz to +3.14
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detuning for single-mode coupling for the case of translating the
coupling mirror. The solutions are stable from -1.65 MHz to +1.65
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from the gain center to avoid the intensity drop which results from the hole-

burning associated with the Lamb dip.

"One motivation for studying coupled lasers is to determine the set of condi-
tions that is necessary to generate the maximum stable coherent output. Stable
operating regions were calculated for different values of the coupling mirror rang-
ing from R, =095 to R, =0.6. Although there are several interpretations of the
definition of locking range, the term locking range as used in this paper refers to
the frequency region over which the solutions to the time-dependent coupled laser

equations remained stable as determined by the perturbation calculations:

AL Aw L
~ (

= 2.9
27 ¢ 2.24)

The upper curve of Figure 2.8 shows the locking ranges for the case of translating
a single output mirror with an internal phase shift of ¢ = —r/2 which was
chosen to match the phase shift derived by Spencer and Lamb 2 . As stated pre-
viously, when both output mirrors were translated, the solutions remained stable,
but when tuning only the center mirror, the locking ranges were almost exactly

one half of those resulting from tuning a single oﬁtput mirror.

The internal phase shift encountered by the coupling beam as it crosses the
coupling mirror depends on the optical length of the reflective surface of the mir-
ror and the phase change introduced into the wave upon reflection at the mirror
interface. Although exact determination of the phase shift is difficult, the choice
of ¥ is not arbitrary. The complex reflectivities and transmissivities must obey

conservation of energy according to *°
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rAtB‘ +t‘ArB‘ =0 (2.25)

If the reflection phase change is chosen to be =, then the only allowable values for

Y are +7/2 .

As the amount of coupling increases, the locking range increases nearly
linearly. The curve ends at 40% coupling because the population inversion ration,
N/Nr, falls below 1 for any larger value of transmission. With larger coupling
coefficients which correspond to lower reflectivities of the coupling mirror, each
cavity can no longer sustain oscillation so the character of the coupled laser sys-
tem changes. Instead of two independent lasers coupled through a common mir-
ror, the system becomes a single laser oscillating between the two output mirrors
with a phase disturbance in the center caused by the coupling mirror in the cavity

interior.

The plateau at 5% transmission shows that only a small amount of coupling
is required to initiate stable, phase-locked operation, but the cavity length restric-
tions necessary for phase locking are quite severe. For wavelengths on the order
of .5 um for Ar-ion lasers, the corresponding locking ranges indicate that the laser
cavities must be equal to each other to within about 100 nm. Control of this
magnitude for a 1.75 m-long cavity would be an extraordinary engineering accom-
plishment. Since the locking range for stable operation is wavelength dependent,
these control problems are relaxed somewhat for longer wavelength lasers. The
values of the locking ranges determined by Palma et.al.® in their theoretical
analysis of coupled CO, lasers are on the same order as those comput.ed here for

the Ar-ion lasers, but with a 10.6 um operating wavelength for CO,, the lengths




of the two cavities can differ by several microns and still maintain single-mode,

phase-locked oscillation.

Remember that the theory developed by Spencer and Lamb accurately
models only cases of weak coupling. Weak coupling is a frequently-used but
rarely-defined term which can be thought of as a coupled system in which the
fraction of the coupling intensity compared to the cavity’s internal intensity is
small. Even though the theory in this dissertation was applied to lasers with as
high as 40% coupling, no inconsistencies surfaced in the results, and therefore the
risk was warranted. A strong coupling theory was developed by Chow % in which
the laser modes are expanded in terms of the composite resonator or supermodes

and applicable to any amount of coupling.
C. Two-Mode Theory

Lamb laid the foundation for the development of multimode coupled laser
theory by deriving the field and phase equations for two and three modes lasing in
a single cavity %, but the application of these equations to coupled laser systems
seems to have escaped the attention of researchers. Although mathematically not
difficult to manipulate, the two-mode coupled Fabry-Perot laser equations contain
many terms which generate long expressions for derivatives that must be carefully
coded to produce computer solutions. This snowballing mathematical mass serves
as an effective deterent to pursuing multimode coupled laser theory, and the law
of diminishing returns quickly manifests itself. Nevertheless, an interesting physi-

cal phenomenon was discovered during analysis of the two-mode theory.
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Figure 2.8: Locking range as a function of coupling mirror transmission for both
: sir}gle- and two-mode coupling during translation of a single output
mirror.

Examination of the two-mode coupled laser system (represented pictorially in
Figure 2.5(b)) closely paralleled that of the single mode case. It is important to
note that the two-mode theory describes only two modes even though a real laser
could sustain all the modes in the region of the gain curve above the threshold.
The tuning curves were again created by translating the same mirror combina-
tions, and the solutions for [y, , I4a2, Ig1, g2, & » €2, sind, , and sing, were
obtained by applying the Newton-Raphson method to the eight coupled equations.

The eigenvalues, however, were numerically determined for the 6 X 6 perturbation
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matrix using a program for computing the eigenvalues of an upper Hessenburg
matrix ¥. The preparation of the two-mode equations for solution along with the

computer program used to solve the system are also included in Appendix A.

To construct the two-mode coupled laser equations, Mirels’ round-trip pertur-
bation terms were added to Lamb’s medium expressions for each pair of like-
frequency modes. The net perturbation per ronnd trip roupiing terms for the
second mode in each cavity are formed in exactly the same manner as those for
the single-mode treatment except the subscripts are changed to indicated the new
mode. With an additional mode oscillating in each cavity, it seemed necessary to
allow the adjacent longitudinal modes from each cavity to interact with their
respective mode pairs in the cross-saturation and cross-pushing terms. Because
the adjacent longitudinal mode from the coupled cavity oscillates at the same fre-
quency as the mode included in the cross terms, those two waves (adjusted by the
proper phases and reflectivities or transmissivities) were allowed to mix coherently

according to the general form of the expression

| VB B e’ * %) 4 /T, Eg, e’ * 2|2 2.26
A

The result of this amalgamation is equations (2.27)-(2.34) whose coefficients are

defined in Table 2.1.

IE4,

ST Eqrfar =B, Tay =82 ( R, Iio+ T, Ipg + 2V R, T  EqoEgocos(dy + ) )]

+ My Epycos(éy + ¥) (2.27)
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OE,,

=Eqplag— By Iap— 0 (R I5y + T, Iy, + 2V R, T E4\Egcos(é, + $) )|

at
+ M, Egj cos(é; + ¥) (2.28)
dEg,
T Egyfay = By Isy — 812 ( R. Ipo+ T. Iig+ 2V R, T. EgoEgacos(éo — ¢) )]
+ Mp Ey4, cos(¢, — ¢) (229)
3Epg,
Tl Epglag— Bz lpo— 0 (R, Ipn+ Tc Iy + 2V R, T. Eq1Epicos(éy — ¥) )|
+ My Eqgcos(d — ) (2.30)
al
—%-‘1(61—5,4—4,1)“'”1—011“ (2.31)
E
— 12 {R. Lo+ T, Iga + 2V R, T. EpoEpocos(do + ¥)] + M, [Esl ]Sin(dﬁ + ¢)
Al
0d
8:2 =7 (et b0 —A4)+op—po Iy (2.32)
— Ty [Rc Iy + T, Ig: + 2V R, TCEAIEBlCOS(¢1 + ll’)l + M, 1582 ]Sln(¢2 + l/))
A2
¢
=& =6 — A5} + o1~ p [y (2.33)
—r2 R Iga+ T. Iyo+ 2V R. T, E4oBpgocos(ds — ¥)] — Mp [%] sin(¢, — ¥)
81
g0
(’}f =7(€a+bp — Qp)+ 00— p2lpe (2.34)

— o IR, Igy + T, I4y + 2V R, T, E4\Epcos($, — ¥)| — Mg lg“ }sm(oe _—)

82

Since the equations did not explicitly contain two different frequencies. the com-

puter program relaxed to a single intensity-phase solution satisfying all eight of

the coupled equations. It was therefore necessary to artificially split the coded fre-
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quencies by the free spectral range of the cavity (26) to force oscillation at two dis-

tinct frequencies.

Since the principal reason for studying coupled laser systems is the potential
increase in the laser output power, the concept of a multifrequency intensity sum
must be introduced. Electric fields oscillating at different frequencies add as sim-

ple intensities, but fields with the same frequency combine according to

I, =E}+ E}+2E,Egcos(¢p — ¢,) (2.35)

For the multimode intensities consideied in the present analysis, it is presumed
that the outputs from both lasers travel identical paths and are sunerposed. The
mode oscillating at w4, is at the same frequency as the mode at wg, , theretore
the associated fields add coherently and similarly for the modes at w,, and wg, .
In addition, since the phases ¢, and v, are equal or nearly equal in each of the
thirce tuning configurations for all mirror displacements, it can be assumed to a
good approximation that the maxima and minima of the resultant interference
fringes produced by the paired fields occur at the same poiﬁts in space. The
overall intensity sum is then the incoherent addition of the coherent combination

of each pair of like-frequency fields:

Isyy = [EFy + Ejy + 2B Epcosdy| + [Efy + Efy + 2E 2Epacosdy]  (2.36)

Figures 2.9(a)-(d) show the solutions for both values of ¥ during simultane-
ous displacement of both output mirrors. Because the general character of the

two-mode tuning curves is similar to those from the single-mode case, only the




salient features will be discussed in detail. The top curve of Figure 2.9(a) is the
intensity sum (scaled by one-half) discussed in the preceding paragraph, and the
two lower curves trace the intensities of the like-frequency mode pairs. This
unique intensity profile is identical in shape whether two coupled lasers or a single
laser is allowed to oscillate on two longitudinal modes. Figure 2.10 is an output
intensity curve of a single two-mode laser oscillating under the same conditions as
the coupled laser case. To understand the profile, some of the aspects of Doppler-
broadened laser media and spectral hole burning must be considered. As the
modes are tuned across the gain curve and the first mode reaches the gain center,
it burns out a Lamb dip decreasing the output intensity (Figure 2.10(b)). When
the modes are symmetrically spaced about the line center frequency, the spectral
holes burned into the medium by the two modes overlap and mutually reinforce
each other by burning holes at exactly the same points on each side of the gain
center. 'luis mutual overlap causes a larger decrease in the output intensity than
the decrease caused by a single mode (Figure 2.10(c)). Continued mirror transla-
tion draws the remaining mode across the gain center which burns a second L.mh
dip (Figure 2.10(d)). In fact, this type of hole-burning phenomenon occurs in all
Doppler-broadened multimode lasers. The existence of the mutual hole burning
minimum was experimentally verified with a single He-Ne laser oscillating on two

B
modes 8.

Even though the He-Ne experiment investigated the hole burning
phenomenon with a single (uncoupled) two-mode laser, the observation of the
mutually-reinforced hole-burning minimum substantiates the interpretation of the

theoretical curve and provides some experimental support for the validity of this

two-mode laser theory. (See Appendix B for the details of the experiment.)
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Figure 2.9: Intensity, frequency detuning, and phase as a function of cavity de-
tuning for two-mode coupling for the case of translating both out-
put mirrors simultaneously (a}(c) v =-m2 ,(d) ¢ =+72. The
solutions are stable for all displacements.

The transmitted waves of the coupled resonators encounter a phase shift as

they transit the coupling mirror. This phase shift changes the effective length ot
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the resonators thereby displacing the actual cavity frequencies from the expected
cavity frequencies. For the i = —n/2 phase difference used in Spencer and
Lamb's theory 1%, the modes are moved approximately 12 MHz higher in frequency
(Figure 2.9(a)), but if the phase difference is 7/2 , then the laser modes are shifted
roughly 11 MHz lower than the unperturbed cavity frequency (Figure 2.9(d)). If
the phase difference can be manipulated siuch that ¢ =0, then not only are the
solutions stable for all displacements, but the output intensities reach their max-
ima as well. This result is encouraging, but ¥ =0 does not satisfy conservation

of energy when applied to the mirror model used in this analysis (ie. o, == ).

The behavior displayed in the remaining tuning curves is remarkably similar
to those for the single-mode case. In the case of translating a sinzle output mirror
(Figures 2.11(a}(c)), the maximum intensity sum docs not occur at zero displace-
ment because of the asymmetries of the individual intensities. The asyminetric
tuning is alsc borne out by the appearance of the intensity and frequency curves,
When translating the coupling mirror while maintaining a constant total resona-
tor length (Figures 2.12(a}(c)), the intensity sum in this instance reaches a max-
imum at zero detuning, and the curves are completely symmetric about this point.
As in the case of the single-mode lasers. the desired operating point of a two-mode
coupled laser system for maximum output intensity is when the two conpled eavi-
ties are equal in length but tuned such that the frequency of one mode 1s farther

than at least one free spectral range from the gain center.

Perhaps the most notable comparison between the single- and two-maode

theories is that the two-mode locking ranges are almost exactly one half of the

10
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Figure 2.10:  Mode structure of intensity verses cavity detuning for a single. un-
coupled laser. See text for complete explanation.
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single-mode locking ranges. The presence of the additional mode significantly
aflects the coupled laser stability (Lower curve of Figure 2.8). In the absence of
any hard experimental evidence at the present iime to support the predicted
decrease in locking range from coupled single-mode lasers to coupled two-mode
lasers and without additional information for other multimode systems, it is
difficult to be absolutely certain that this lccking range reduction should occur.
In an analogous situation, Anderson, Chow, and Scully observed a decrease in the
lockband of ring-laser gyros oscillating on two strong longitudinal modes and two
weak transverse modes over ring-laser gyros oscillating on only two modes °.
Although ring-laser gyros are different from coupled lasers in mary respects, the
interaction of the forward and reverse waves, in a sense, form coupled waves
which should obey the same medium physics whether in gyros or coupled
stand’ng-wave cavities. Nevertheless, the difference in the two locking ranges is
understandable because not only is there cross communication between adjacent
longitudinal modes in each cavity, but the additional influence of the adjacent
longitudinal modes of the coupled resonator causes further perturbation to the

system.

Since there has been no analysis of systems with more than two modes. gen-
eralization of the reduction in locking range would be highly speculative. [Further
descrease in the locking range is expected with the addition of more modes. but
because the interaction of the new mode with the non-adjacent mode is weaker
than for adjacent modes, the incremental reduction in locking range should be

smaller than the factor of one-lalf seen in going from one to two modes.

-
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Intensity, frequency detuning, and phase as a function of cavity de-
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Figure 2.12:
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detuning for two-mode coupling for the case of translating the cou-
pling mirror. The solutions are stable for -2.94 MHz to +3.26
MHz.
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D. Conclusion

Existing coupled laser theories have been extended to analyze the case of two
coupled lasers supporting two modes in each cavity. A number of oddities in
behavior have been found to exist including a mutually-reinforced hole-burning
minimum and a shift of the laser {requencies from the bare cavity frequencies.
Locking ranges were computed for both the single- and two-mode coupled laser
systems, and it was found that the presence of an additional mode reduces the
locking range. The possible utility of coupled laser systems r;xakes theoretical
analysis necessary, but further development of Lamb’s electromagnetic treatment
may prove too tedious to apply to multimode/multiwavelength lasers. A new
approach developed by Rinaldi and Erkilla ¥ which treats the coupling as an
injection process may be the preferred method to completely model a real coupled

faser system.




Chapter III. Coupled Ar-ion Lasers Experiment

This chapter will describe the experiment performed to phase lock two Ar-ion
lasers using conventional resonator coupling. In the first section, the experimental
configurations used to couple the lasers will be explained along with descriptions
of some of the primary operating characteristics. The second section will detail the
measurements made and the purpose of those measurements in diagnosing the

phase-locked performance.

A. Experimental Configurations

The basic experimgntal configuration was based on the coupled laser system
examined theoretically by Spencer and Lamb !? (i.e. two lasers coupled through a
common end mirror). Unlike the idealized initial conditions conceived by Spencer
and Lamb in which the lasers oscillate on a single mode in cavities of exactly
equal length and identical gain media, the Ar-ion lasers were initially allowed to
operate in multiline and multimode on as many wavelengths and modes as possi-
ble (the final experiment was on single wavelength) in order to increase the proba-
bility of phase locking. Phase locking can only occur between two modes of
exactly the same frequency, so the chances of overlapping one or several of the
hundreds of modes oscillating is greatly enhanced when air turbulence, vibrations.
and thermal expansion and contraction tune the lasers. The Spencer and Lamb
theory couples two single-mode lasers with homogeneously-broadened media, but

more importantly, it assumes a prior: that the lasers are phase locked. This is
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certainly not a valid, realistic assumption. In fact, little is known about what
mechanism may actually induce phase locking, and at least in the case of Ar-ion
lasers, the coupling process is dynamic and the coupled system is poorly behaved

in terms of frequency jitter and fringe stability.

Active stabilization is needed to tune and maintain the lasers at exactly the
same frequency in order to allovs; single-mode lasers to phase lock. Not only was
active stabilization not a desired requirement of this investigation, but it would
have been extremely difficult to implement with such long, open cavities even if
the equipment had been available. In addition to the ;;i'oblem of stabilization, no
unambiguous diagnostics would have been possible because the single-mode coher-
ence length is so long that the visibilities of the interference fringes measured in a
preliminary experiment were uniformly high and exclusively due to self interfer-
ence. Also, no radio frequency mode beat exists for single-mode lasers, so there

could be no independent verification of phase locking.

Two nominally identical Spectra-Physics Model 165 Ar-ion lasers were
configured in a U-shaped cavity with 90% reflective output couplers and coupled
together through a common end mirror which also served as the coupling mirror
for the lasers (See Figures 3.1, 3.2, and 3.3). Figure 3.2 also depicts the diagnostic
equipment used to make the measurements for the various experiments. The two
output beams were superposed in the near field by constructing an interferometer
and matching the optical paths to within the coherence length of Ar-ion (about 3
cm). Two different experiments were performed, one to study multiline/ mul-

timode coupling, and the other to study single-line coupling. In the first experi-
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Figure 3.1: Schematic diagram for multiline coupling without an optical trom-
bone for path length compensation.
ment (Figure 3.1 and 3.2), the lasers were operated in multiline and multimode
and an optical trombone with submicron resolution was incorporated into one side
of the coupling paths which were equalized to within a millimeter. The results
without the optical trombone were essentially a benchmark for comparison for the
more carefully controlled experiments, In the second experiment (Figure 3.3).
single-line operation at 488.0 nm was studied by placing dispersing prisms in the

cavities and realigning the output couplers while using the same coupling
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Figure 3.3: Schematic diagram for single wavelength coupling with an optical
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configurations.

The total optical cavity length of the coupled system was 348.640.4 em with
each sub resonator half of that optical length. Without the coupling mirror in the
cavity, the transmitted power from each output coupler was 1.0 W on four mul-
timode wavelengths (514.5 nm, 496.5 nm, 488.0 nm, and 476.5 nm). The Brew-
ster windows of the laser plasma tubes force the lasers to emit vertically polarized
light. For the single wavelength experiment at 488.0 nm, the dispersing prisms
could only be oriented horizontally which meant the vertically polarized light
incident on the prism faces would be strongly reflected and not transmitted as
desired. Fortunately, the system gain was sufficiently high to overcome the losses
induced by the reflections of the polarized cavity beam and still generate 500 mW

of output intensity.

When multiple wavelengths interfere at some point in space, the {ringe

envelope of the composite pattern is goverened by the equation

Irn eren i .
[total jm] >‘x

where P, is the power {raction of each wavelength and AL is the path length

detuning in microns. To determine which wavelengths were lasing and the inten-
sity of each, the output beam was dispersed into four separate beams using a
Pellin-Broca prism. The intensities were then measured by placing a power meter
behind an adjustable iris to block all but one wavelength. The output intensities
of each wavelength are shown in Table 3.1. With these values, the equation of

the multiline fringe cnvelope is given by




I
—IC— = 0.186 cos(24.42AL ) + 0.064 cos(25.31AL) (3.2)
14

+ 0.636 cos(25.75AL ) + 0.114 cos(26.37AL)

where AL is in um units, The equation is graphed in Figure 3.4 which shows the
the theoretical multiline fringe envelope produced from the interference of two
beams of equal intensity consisting of the four Ar-ion laser wavelengths as the

coupling paths are detuned from each other.

Table 3.1: Ar-ion Wavelengths and Intensities
Wavelength (nm) Power (mW)

476.5 46.0

488.0 257.0

496.5 26.0

514.5 75.0

Even though the maximum multiline fringe visibility only occurs when there
is zero path length difference between the two legs of the interferometer, the calcu-
lation shows the condition is not as stringent for interference of the four \r-ion
wavelengths listed previously. The figure shows most of the local maxima are
roughly the same magnitude. When flucuations of the fringes are taken into
account, it is evident that the maximum practical fringe visibility could be
obtained as long as the detuning remained within the peak region of one of the
large envelopes. The low visibility regions were easily identitied by scanning the

optical trombone and watching the envelopes with a PIN diode connected to an

-59-




e

oscilloscope. Once the coupling path lengths were within a few millimeters of each
other, the trombone was set at one of the local maxima close to the zero optical

path difference and periodically readjusted as the path changed with thermal

expansions and contractions.
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Path Length Detuning (#m)
Figure 3.4:  Multiline fringe envelope generated from the near-field interference

of the four Ar-ion laser wavelengths described in the text as the opt-
ical trombone is scanned.




B. Measurements

To investigate the effect of coupling strength on the phase-locked behavior.
eight different coupling mirrors ranging in reflectivity from 10%% to 90%% were
inserted into the cavity. The mirrors were all of slightly different thicknesses. so
it was impossible to control the exact cavity lengths to within the resolution of
the ruler used to measure the cavity length. The thickness differences were on the
order of 0.002 inches which is quite large on the optical scale but imperceptible in
length measurements of 3.5 m. No measurements could be made with the 40¢
reflective mirror because the substrate wedge was so severe that balanced lasing
could not be achieved between the two cavities. After each coupling mirror was
placed in the cavity and aligned, the output couplers were then realigned to pro-
duce the maximum power output and the maximum activity of the frequency

spectrum.

Phase locking means that the lasers are mutuzliy coherent, and the principal
diagnostic used to identify phase locking was the appearance of stable interference
fringes. The fringe visibilities were measured by capturing a fringe pattern with a
CID (charge-injected diode) camera and frame grabber and calculating the visibil-
ity according to eauation {1.10). Since the fringe patterns fluctuated on a maere-
scopic time scale, 10 to 10 visibilities were averaged for 2ach measurement.
Single-line visibilities at 488.0 nm and 514.5 nm as well as the toral multiline visi-
bility were measured. The single-line visibilities during multiline operation were
isolated with 100 A narrow-bandpass interference filters placed in the interferome-

ter immediately in front of the CID camera,




The lasers operated in a long open cavity and were combined along a sizeable
coupling path so the beams were subject to a significant amount of air turbulence
and mechanical vibrations which caused the fringes to fluctuate. One of the pri-
mary disturbances was the vibration caused by the water flowing through the
cooling jackets of the laser plasma tubes. The visibility of each pattern changed
continually so only the best fringes were captured for each mirror. Although some-

what subjective, this procedure gave solid statistics and reproduceable results.

Because fringes can also arise from reflections not related to phase locking
(for example, interference is produced even with one laser turned off due to pho-
tons leaving the coupling mirror simultaneously), other diagnostics were needed to
definitely determine the origin of the interference whether they resulted from
phase locking or self interference. Detectors were slid into the beam to make a
measurement or part of the beam was redirected into them with beamsplitters. In
multimode lasers, each pair of adjacent modes beat with each other to generate a
radio frequency signal which indicates the spacing between the modes. In his
theoretical paper on coupled lasers, Chow found that coupled lasers oscillate at
frequencies whose mode spacings are determined by the total length of the super

cavity called "supermodes"°.

The presence of a radio frequency (RF) mode beat
whose frequency is at the mode spacing of the entire resonator turned out to be
the strongest corroborative evidence of phase locking since its presence meant that
the two subcavities were operating as parts of one supercavity. In the limit of a
single 3.5 m-long laser, the mode beat spectrum will display a peak at 3 NIz

corresponding to the free spectral range of the per cavity. With coupling mir-

rors inserted into the laser, the appearance of uper cavity mode beat,
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particularly at low coupling powers, will indicate the two sub-cavities are phase
locked with each other. Each mode also beats with the other modes and these sig-
nals show up as evenly spaced overtones in the mode beat spectrum. If any tran-
verse modes are oscillating in the laser, these will also create mode beats, but the
signals will be at odd frequencies and serve to broaden the spikes in the longitudi-

nal mode beat spectrum.

In addition to the RF mode beat spectrum, the output intensities were meas-

ured with a power meter to track notable changes in output power and to deter-

mine which combination of mirrors generated the maximum output power. The
information was also needed to balance the intensities of the coupling beams
which were combined to form the fringes because the best visibilities are achieved
when the intensities of the two beams are equal. The opiical frequency spectrum
was monitored using a scanning Fabry-Perot interferometer. The frequency spec-
tru™m nroved to be a valuable tool in optimizing the laser cavity alignment and in
understanding the mode selection of the coupled laser system by giving a visual

representation of the frequency-locking process.
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Chapter IV. Results and Analysis

This chapter will present the experimental results and an analysis of the
behavior of the coupled laser system. The first section will describe the perfor-
mance of the lasers in terms of the frequency and mode beat spactra, the power
output, and the interference {ringe patterns. In the second section, the data is

tabulated and plotted and those plots are interpreted.

A. Data

i. General Descriptions

Not surprisingly, all three experimental configurations (the two multiline
experiments with and without the optical trombone and the single line experi-
ment) exhibited the same general behavior, so the descriptions which follow are
applicable to all except where specitically stated. Without the coupling mirror,
the multimode frequency spectrum which spans more or less uniformly over 6 GHz
was broader than the free spectral range of the interferometer (1.5 GHz) and
resulted in an an equal intensity "grass" (Sce Figure 4.1(a)). With any coupling
mirror. a discrete number of modes were selectively reinforced and increased in
intensity by about 3 to 5 times that of the other modes (Figure {.1(b}). This
mode spiking was a strong indication that the mirror alignments were good and
that phase locking might occur. The frequency spikes were neither fixed nor
steady but varted in intensity and jittered freely probably due to air turbulence,

mechanieal vibrations, and/or mode corpetition. Generally, the intensity of the




spikes was different among the different coupling mirrors with the spikes for the

90-70% transmission much less intense than those for the 50-10°% coupling.

Both the output power and the mode beat spectra parallelled the behavior of
the frequency spectrum. Rising from 1.2 W multiline output from each output
coupler at 10% reflectivity, the output power reached a maximum of 1.85 W at
70 coupling mirror reflectivity before tapering off to 1.65 W at 909. The power
outputs measured for each of the coupling mirrors are compiled in Table 4.1.
This intensity increase occurs because the higher reflectivity mirrors increased the
saturation in each of the gain tubes and extracted more energy from the active
media. The power output tapered off at 90%% reflectivity as the out-coupled power
fraction decreased faster than the cavity’s internal power density increased. Even
though the cavities were made as symmetric as possible, the intensity from both
output couplers were close but not equal. This may be due in part to unequal
zain in each tube. but it may also result from an intensity imbaiance inherent in
three mirror cavities. There will be a further discussion on this imbalance later in

the chapter.

The intensity of the RF mode beat at 43 NHz (the composite resonator mode
spacing) was also higher for the higher reflectiity coupling mirrors. and the signal
was broad indieating both longitudinal and transverse modes were coupling. As
the coupling strength was increased, the mode beat signal narrowed and eventu-
ally became a single spike. The importance of the interpretation of the RF mode
beat spectra will be discussed in greater detail in conjunction with the analysis of

rhe fringe patterns. The significance of these measurements and observations will




L

be more easily understood when viewed with the evolution of the visibility of the

interference fringes.

ii. Interference Fringes

Interference fringes were present with every coupling mirror, but all were not
produced as a result of phase locking. As stated in the previous chapter, the
fringes jittered, wiggled, and danced in concert with the frequency spectrum. For-
tunately, the sampling rate of the frame grabber was fast enough to capture
usable patterns. The unstable activity varied among the different coupling mir-
rors. Some of the isolated wavelengths were more stable than others, and the sta-
bility varied from mirror to mirror following no discernable trend. Figures 4.2,
4.3, and 1.1 are samples of interference fringe pattern profiles from the three
experiments. The fringes in Figure 4.2 were produced without benefit of the opti-
cal trombone. Iigure 4.3 is the multiline coupling with the trombone, and Figu.e
4.1 shows the fringes {rom the single-line case also with the trombone incor-
porated into the coupling path. In Tables 4.2, 1.3, and 4.4, the number of sam-
ples, average visibilities, and standard deviations are recorded for the three experi-
ments. Notice the sample standard deviations decrease in the second and third
experiments. Not only does this result from more closely matched coupling paths
but also from a refinement in measurement techniques as the experiment pro-

gressed.
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Table 4.1: Output Power for each Coupling Mirror
Coupling Mirror Power
Reflectivity (%) (W)

0 1.00
10 1.20
20 1.25
30 1.40
50 1.75
60 1.80
70 1.85
80 1.35
90 1.65

B. Analysis

The behavioral trends surface when the visibilities are plotted as a function
of the coupliug mirror transmission (See Figures 4.5, 4.6, and 4.7). Figures 4.5
and 4.7 are the plots of the visibilities for the multiline coupling experiments, the
latter without the optical trombone, and Figure 1.6 is the single-line experiment
at -188.0 nm. For comparison, the multiline experiment was repeated without the
optical trombone but with the coupling paths adjusted to within 0.540.4 ¢m.
Equalizing the path lengths with the trombone increased the visibilities in most
cases by about one-third. The results (plotted in Figure 4.7) show a degradation
in the visibilities compared to those in Figure 4.5 which is consistent with coher-
ence considerations. The data points were fitted with a cubic spline interpolation
in order to enhance the salient features. Note that several of the points at 20¢¢
coupling (80°7 reflectivity) fall below the curve except for the visibilities at
5145 nm. For this same mirror, the output intensity also showed a substantial

drop below the trend exhibited with the other mirrors. The transmission of each
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Figure 4.4:

Sample near-field interference fringes from single line coupling at

488.0nm. R, = Coupling Mirror Reflectivity, V' = Visibility.

mirror was measured with a spectrophotometer, and the actual transmissivities
varied from the manufacturers specifications by as much as 7.
was approximately 17.5¢ transmissive (which is good, relatively speaking) so I
am at a loss to explain the anomoly in the fringe visibilities. Since the actual

transmissivities were available, the fringe visibilities were plotted as a function of
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the true values of the coupling mirror transmission. Table 4.5 shows the meas-
ured transmissivities for 514.5 nm and 488.0 nm along with the estimated overall

transmissivity compared to ne manufacturers specifications.
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Figure 4.5:  Fringe visibilities plotted as a function of coupling mirror transmis-
sion for two coupled multiline lasers with the optical trombone in
the coupling path.

Before undertaking the experiment, it was expected that the fringe visibilities
would be poor or non-existent for the low coupling powers, and then increase
more or less monotonically as the coupling strength increased, since at 100°¢ cou-

pling (no coupling mirror) the two lasers are totally coherent with each other
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Figure 4.6: Fringe visibilities plotted as a function of coupling mirror transmis-
sion for two coup!~d single-line lasers oscillating at 488.0 nm with
the optical trombone in the coupling path.

because they are in fact a single laser. In addition, it was also thought that the

RF mode beat at the super cavity resonance would grow from a negligible level at

high coupling mirror reflectivities and increase in strength as the mirror

reflectivities were gradually lowered to smaller values and the two coupled lasers
became closer to a single laser cavity. This was not observed in the experiment.

Odd though the actual results appear to be, they are understable when interpreted

in conjunction with information provided by the RF mode beat spectrum and
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Figure 4.7:  Fringe visibilities plotted as a function of coupling mirror transmis-
sion for two coupled multiline lasers without the optical trombone
in the coupling path.

when treating the fringe production in terms of coherence packets.

The interference fringes are not formed exclusively from the phase-locked
operation of the lasers. Consider a single packet of coherent photons. When the
ccherent packet is incident upon the coupling mirror, iL‘is split into transmitted
and reflected pieces. In some cases, both the transmitted and reflected packets
travel back through the lasers without interacting with the media. along the cou-

pling paths, and eventually arrive at the point of superposition at roughly the
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same instant to form self-interference fringes. The desired outcome of coupling is
for the two packets to influence both laser media to emit photons at the same fre-
quency and in phase with each other, and to have these photons interfere to gen-
erate phase locked interference fringes. The resultant fringe pattern in the obser-

vation plane will be some combination of these two events.

Beginning from the left in Figures 4.5, 4.6, and 4.7 at 09 coupling, the curve
should, in theory, show zero visibility because the two lasers are completely
independent from each other. In the 10% to 20% coupling range, there is enough
mutual injection to initiate phase locking and produce fringes. For these coupling
strengths, there is also an RF mode beat at 43 MHz corresponding to the free
spectral range of the super cavity, formed by the output couplers of Figures 3.1.
3.2, and 3.3, in addition to an 86 MHz mode beat from each subcavity (See Figure
4.8). With many modes in oscillation, the RF mode beat is not a single clean spike
but an extended peak around 43 MHz with many secondary peaks caused by vari-
ous beat combinations between the longitudinal and transverse modes. Increasing
the coupling strength increases the fringe visibility to a local maximum near 25%¢
coupling. Further increases in coupling strength begin to wash out the fringes
beeause too much of the cavity's internal power is being transmitted 't,o the cou-
pled cavity, and the lasers lose thelr identities as separate oscillators. Fach laser
cenerates self-interference fringes from photons that don’t interact with the cou-
pled media to induce phase locking, and those fringes overlap and smear out any

fringes produced from phase locking.

Beyond 50¢¢ coupling, the fringe visibility rises sharply. but this is no louger
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Flgure 4.8 Radio frequency mode beat spectrum of the multiline conpled lisers
with a 709 reflective coupling mirror.
from phase locking but almost exclusively from selt-interference. Fach coherent
packet of photons traversing the coupling mirror interferes with the retleeted por-
tion of the packet. The approximate equality in the coupling paths allows hoth
packets leaving the conpling mirror to interfere with eanch other even i they do
not contribute to phase oeking, This can be seen from the faet that when one
In=er sain tube is off, the fringes are actuadly more stable and hicher in visibility
than with both tubes on. [n the region of 60-70°¢ coupling. there is no longer

self-oseillation in the subeavities since the threshold for oscillation becomes too
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high for those values, and the mode beat at 43 MHz narrows and becomes a single
clean spike indicating all the subsidiary modes are extinguished. There are no
longer two distinct lasers but one laser in a 3.5 m-long cavity with an internal
perturbation caused by the weakly reflecting rear mirror. So much power is going
into coupling that there is not enough intensity on each side of the coupled reso-
nators for them to fuuction as independent lasers. If the coupling mirror is
removed for 1009 coupling, the system becomes a single laser anc . completely
coherent wiih itself, but no fringes can be formed since a coherent packet leaving
one output mirror is not coherent .vith the packet leaving the other cutput
coupler at the same time. The two packets are separated by 3.5 m and well

bevond the coherence length of the Ar-ion laser.

The visibility curves indicate an optimal coupling strength exists for the Ar-
on lasers around 259 transmission.  As the fringes reach their highest phase-
loeked visibility at 259 conpling, the output laser power also reaches its max-
fmum as wells Inereasing the o tpling sirength nco only decreases the output
laser power. but it also inhibits plhase locking. A similar phenomenon was
ohserved in the frequency locking of semiconductor lasers vsing erternal feedback
“iicetion o the outpat beam. i the semicondietor Tasers, the most stable fre-
qreney ocked aperati o ocenrred at o tinite injecton level rather than inereasing

. . P . )
with inereaxed power injection™,

The <cecnd maximum merely determines the
it minror parametess for production of high visibilloy self-interference fringes

aned the Visibilities appear to resch g saturation limit around 757¢ coupling,

Neowhere does the evont <7 10077 phase loekine oeenr (G a visihility mens-
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urement of one). There are several possible explanations for this and one of the
arguments iz that there is competiton for gain between 514.5 nm and 488.0 nm
since both share a common lower lase: level. Dist,urbance; to the lasers will con-
tinually shift the relative strengths of the two competing lines and alter the fringe
visibilities. Interestingly enough, 488.0 nm is the stronger transition, but the
514.5 nm line dominates in the multiline coupling. Even when operating on = sin.
gle transition, there are evidently other perturbations of sufficient magnitude to

prevent 1009 phase locking.

Even if gain competition is not a significant cont‘ribunor, there is another fac-
tor which turns out to be quite self-defeating when coupling lasers in standing-
wave cavities. In his theoretical treatment of phase-locked lasers using the super-
mode expansion of the laser fields, Chow = found that when there is strong cou-
pling between the two lasers, svmmetric and antisyvmmetric modes, which differ in
phase from each other by 7 radians. oscillate simultaneously. (The two super-
modes are the same frequency only when the lengths of the coupled cavities are
equal.) Although it would be difficult to verify the presence of the symmetric and
antisymmetrie supermodes experimentally, if 2 mixture of these modes truly
evists, then complete constructive interference would be extremcly difficult to
obtain because the maxima of the fringe pattern of one frequency woul I nearly
overlap the minima of the fringe pattern of the other frequency creating a fairly
uniform intensity distribution. The obvious result would certainly be fringe visi-
bilities of less than V=1.00.

Another possoole explanation can be found Lom the analysis of the resonant




modes of the three-mirror Fabry-Perot cavity used in the experiment. All the
fields indicated in Figure 4.9 must satisfy stringent boundary conditions and con-
servation of energy at each interface and therefore a system of equations can be
written for the cavity which specify the amplitude and phase of each field in terms
of the other flelds. Since the current interest is in the strength of each field when
the lasers are oscillating on a phase-locked mode { a mode at the supeci-cavity fre-
quency), one of many possible solutions is to set the round trip gain term for the
left hand cavity, g, equal to the round trip gain term for the right hand cavity, h,
thereby demanding solutions for the round trip gain which staisfies a super cavity
mode. By enforcing a steady-state condition wlich means the fields must repro-
duce their amplitudes and phase after a round trip in order to constitute a mode,
it was found that the system can oscillate at three different frequencies: the com-
posite resonator frequency determined by L, + L,, the frequency determined by

2. and the frequency determined by 2L,. For all cases. the magnitude of the of

the round trip field amplitude gair was

i 1

(1.1)
ryrs

Incidently. this is the same value for the round trip field amplitude gain for a
two-mirror cavity, (For an in depth treatment of the passive cavity analysis
along with other applications of this method, see Appendix C.) By substituting
these vulues into the equations for the fields and choosing one lield amplitude
(C'=1.00). the relative strengths of the remaining fields can be evaluated. Those

ficld strengths at resonauce for two 90°¢ output couplers and a range of coupling




mirror reflectivities are found in Table 4.6.

<« <1 <€
B D |
rl)tl r29t2 r37t3

L Ly

Figure 4.9: Fields, phases, mirror reflectivities and transmissivities, and round
trip gains for a three mirror cavity.

Choosing the value for field C fixes the relationship between B. C, and D
when the detuning is zero, but those field amplitudes are only equal with G, F,
and E, respectively, when there is no coupling mirror. The imbalance in the
intensity on each side of the resonator at any particular frequency or mode
increases drastically as the retlectivity of the coupling mirror increases. The
imbalance also alternates between the two cavities when the laser oscillates on the
even or odd modes. At the mirror transmissions shown to generate optimal phase
locking, the intensity imbalance is nearly its greatest. The intensity imbalance
associated with the th.ee mirror cavity may also explain, in part, why the intensi-

ties from the output couplers were not equal. The main point of this digression,

“




however, is that it is unlikely that the two lasers could phasz lock completely
when then there is such a disparity in the circulating intensities in the two cavi-
ties. It must be noted, however, that only selected values for g and h were exam-

ined. Incorporating a saturation model into this formulation may readjust the

intensity imbalances predicted by the passive cavity analysis.




Table 4.2: Fringe Visibilities and Standard Deviations for Coupling
without the Optical Trombone ( R, : Coupling Mirror

Reflectivity, N: Number of Samples, V: Visibility,

o: Standard Deviation)

Total 514.5 nm 488.0 nm

R, N \% o N \% o N \% o

09 | 19 226 038 | 20 483  .104 | 14  .319 050
0.8 19 307 055 8 .ol1 101 20 .324 .020
0.7 15 .300 051 19 .454 115 14 312 046
0.6 17 254 072 22 396 .094 19 257 .065
0.5 16 202 037 18 372 .069 14 .196 .030
0.3 13 279 .050 20 .599 .093 12 .322 047
0.2 14 .259 064 15 .756 .090 14 .330 055
0.1 17 .298 074 16 .800 .053 16 .340 .058




e

Table 4.3: Fringe Visibilities and Standard Deviations for Ccupling
with the Optical Trombone ( R, : Coupling Mirror
Reflectivity, N: Number of Samples, V: Visibility,

o: Standard Deviation)

Total 514.5 nm 488.0 nm

0.9 37 382 .040 37 .668 .095 31 A47 D44
0.8 23 412 046 30 17 .056 32 446 076
0.7 41 448 .086 23 .660 048 34 459 087
0.6 35 375 .040 35 .622 .069 32 401 .061
0.5 30 361 047 29 .632 .056 24 394 046
0.3 41 424 .038 39 .810 .062 35 A7 .050
0.2 32 441 055 36 .851 .031 31 D14 .060
0.1 19 492 .037 23 .858 025 14 535 041
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Table 4.4: Fringe Visibilities and Standard Deviations for Single

Line Coupling (488.0 nm) with the Optical Trombone
( R, : Coupling Mirror Reflectivity, N: Number
of Samples, V: Visibility, o Standard Deviation)

R, N \' o
0.9 18 .330 019
0.8 18 228 .022
0.7 19 574 .028
0.6 19 465 .023
| 0.5 20 .333 .020
| 0.3 18 856 022
0.2 18 751 .020
0.1 18 815 .021




—*

Table 4.5: Actual Coupling Mirror Reflectivities Measured with
a Spectrophotometer Compared to the Manufacturers
Specifications for the Experimental Wavelengths
R, Total 514.5 nm 488.0 nm
Specified (%) (%) (%) (%)
90 88.5 87.8 89.7
80 82.5 82.5 81.0
70 70.0 68.0 73.0
60 60.0 57.5 63.0
50 55.0 53.5 55.7
30 29.4 29.4 26.0
20 7.0 5.3 7.9
10 24.5 24.0 25.0
-78-




Table 4.6: Wave Intensities for Passive Cavity Mode Analysis of
Two Coupled Fabry-Perot Resonators ( R, : Coupling
Mirror Reflectivity; See Figure 4.9 for Symbols; C=1.00)

0 s
2
R, B D E F G B D E F G

0.0 | 0.111 1.054 1.054 1.000 0.111 | 0.111 1.054 1.054 1.000 0.111
0.1 | 0.111 1.054 2.029 1.924 0.213 | 0.111 1.054 0.547 0.519  0.057
0.2 | 0.111 1.054 2.759 2.618 0.290 | 0.111 1.054 0.402 0.381 0.042
03 | 0.111  1.054 3.607 3.422  0.380 | 0.111 1.054 0.308 0.292 0.032
04 | 0.111  1.054 4.681 4.441 0493 | 0.111 1.054 0.237 0.225 0.025
05 | 0.111 1.054 6.143 5.828 0.647 | 0.111 1.054 0.180 0.171 0.019
0.6 | 0.111 1.054 8.298 7.872 0.874 | 0.111 1.054 0.133 0.127 0.014
0.7 1 0.111 1.054 11.852 11.244 1.249 | 0.111 1.054 0.093 0.088  0.009
0.8 | 0.111 1.054 18.914 17.944 1.993 | 0.111 1.054 0.587 0.055 0.006
0.9 | 0.111 1.054 40.027 37.973 4.219 | 0.111 1.054 0.027 0.026 0.002




Chapter V. Conclusions and Recommendations

A wide variety of topics relating to phase locking lasers was studied during
this dissertation research, so this chapter will highlight and summarize the
findings and point out the original contributions to the field of coupled lasers.
The first section will review the theoretical and experimental results, and the
second section will advance some reccmmendations for further research, both

theoretical and experimental, in coupled lasers.

A. Summary

The study of coupled lasers is currently and will continue to be an important
area of research as the limits of technology are strained in development of high-
energy lasers for both civilian and military applications. When two or more [asers
are coherently combined. or phase locked. the effect of far-field narrowing increases
the peak power density which scales as the square of the number of coupled lasers.
This along with the graceful degradtion of the systems realizes several of the cri-
teria desireable in high-energy lasers.

Two coupled Ar-ion lasers each oscillating on a single mode were examined
theoretically using pre-existing mathematical frameworks. Coupled lasers with
homogencous'-broadened media have been studied previouslv, but although the
theory existed, it had not been applied to Doy pler-broadened media to compute
intensity, frequency, and phase tuning curves until this analysis. By continuing

the development, these theories were extended to model two modes oscillating in
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each cavity containing Doppler-broadened media which also had not been accom-
plished before this dissertation research. Using a computer code programmed on a
desktop computer to solve the single- and two-mode coupled systems, the solu-
tions showed that the two laser cavities should be equal in length with frequencies
detuned from the gain center to generate the maximum possible coherent output.
Adding another mode to the single-mode lasers yielded a two-fold decrease in the
laser locking range which is on the order of hundreds of nanometers for Ar-ion
laser wavelengths. Without further investigation into multimode coupling, it is
difficult to predict if this trend would continue as the number of modes in oscilla-
tion increases. Additionally, despite extensive observation of hole-burning
phenomena by other researchers, the two-mode analysis uncovered a mutually-
reinforced hole-burning minimum whose existence was veritied experimentally with
a two-mode FHe-Ne laser. A discovery of this nature adds credibility to the
theoretical models is spite of the many necessary approximations involved in their

formulation.

Using the fundamental configuration studied in the theoretical analysis, an
experiment was performed on coupled Ar-ion lasers operating on multiple
wavelengths and multiple modes with and without interference path length com-
pensation and also operating on a single wavelength (488.0 nm). The Ar-ion
lasers were chosen because the gain media exhibit many of the same media charac-
teristies as the higher energy HE and COIL lasers but can be operated for
extended periods of time without any of the latter’s associated hazards. To deter-
mine the degree of laser phase locking, near field interference fringes from the

coherent mixing of the two output laser beams were measured as the amount of
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coupling was varied from 10% to 90% of the internal laser intens'ty. The output
power and the RF mode beat and frequency spectra were also measured to further

characterize and aid in the understanding of the phase-locked behavior.

When the data collected was plotted as a function of the coupling mirror
transimission, each of the three configurations showed that phase locking occurred
for less than 50% coupling with the maximum phase-locked fringe visibility and
the maximum output power at about 25% coupling before the deleterious affects
of self-interference took over and dominated the coupled resonators. That the
lasers were in fact phase locked was corroborated by the appearance of a 43 NMHz
RF mode beat which indicated the lasers were oscillating at the super-cavity fre-
quency. In addition, it was found that phase locking occurs for low coupling
strengths (109) which was a fact notably in contrast to the expected behavior.
Alr turbulence, mode competition, mechanical vibrations, and thermal expansion
and contraction caused the interference fringes to flucuate and were also partly
responsible for decreasing the fringe visibilities. The experimental results suggest
that there is an optimum coupling strength for phase-locked operation of Ar-ion
lasers. Apparently no other researcher has performed coupling experiments over a
wide range of coupling strengths nor has any observed such an optimum operating
condition. This knowledge may influence the design of future coupled laser exper-
iments. Even though Ar-ion lasers will not be used for high-energy laser appliea-
tions, the information from this experiment should be applicable to other lasers
which also have Doppler-broadened gain media and possibly other types of lasers

as well,




The desired condition of total phase-locked operation (V=1.00) was never
reached. \When several wavelengths oscillate, some of those wavelengths compete
for the same gain. If the coupling is too strong and the symmetric and antisym-
metric modes oscillate, their phase difference spoils near field interference. A pas-
sive cavity mode analysis showed that there is a severe imbalance in the internal
intensities of the two coupled lasers. One or more of these factors serves to

explain why complete phase locking was not achieved.

B. Recommendations

There are two areas of further theoretical research that are a logical extension
of the theories discussed in this dissertation. Since there are equations which
describe a laser in which three modes are oscillating (Lamb 9). it would be poss.-
ble, although painstaking and labor intensive. to solve the coupled laser system
for three modes oscillating in each cavity. Results from such an analysis would
provide valuable information in projecting the behavior of coupled lazers osciflat-
ing on many modes. The passive cavity mode analysis also seems to be crying out
for application to active laser cavities. By including saturation expressions for the
circulating intensities. the specific operating characteristies of the coupled lasers
conld be determined unambigously.

Fxperimentally. similar studies to that undertaken in this research could lw.
conducted with He-Ne, CO,, Nd:YAG, and dye lasers to support or disprove the
previous observations and continue to fill in some of the vast, unexplored frontier

ol coupled lasers. Finally, active stabilization couid be implemented with the Inser

AN-




cavities in an attempt to control and <tabilize phase locking and fringe stability.

It would then also be possible to investigate single- and two-mode coupling experi-

mentally as well as theoretically.
C. Finis

This research touched a broad range of topics and ai times appeared to ask
as many, if not more, questions than it answered. The results are new, interest-
ing, and valuable, but more importantly, the insight gained is applicable to con-
tinued research in this area. No aspect of the studs.f of coupled lasers is even par-
tially complete, but the contribution of this dissertation research has expanded
the present knowledge base of an emerging field and hopefully will serve as a wel-

come trail blaze to those who follow.
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Appendix A: Computer Simulation

This appendix consists of two sections of three narts each. In both parts, the
" first section will derive the mathematics necessry to cast the the coupled laser
equations into forms suitable for computer simulations followed by the perturba-
tion calculations used to check for solution stability. The third sections of each
part contain the computer codes with explanations of their important features.
The single-mode equations are treated first followed by the two-mode coupled

laser equations.
A. Single-Mode Equations

i. Mathematics

Since the transients of the laser system diminish rapidly and are of little
interest when condisering continuous-wave lasers, only the steady-state solutions
to the coupled laser equations are necessary. To obtain the steady-state solutions,
each of the time derivatives of equations (2.20)-(2.23) in chapter II are set equal to
zero. Because all the equations are similar in form and differ ouly in the signs and
subscripts, only one field and one phase equation will be manipulated. With the

symbols explicitly written, the equations are

,
F "[*T‘Q Fau F
F(l) - 1A T4 _ ;A _ 3A

I [+ (1+ €97 (A1)

1
L
N M, [3]2 cos(é + ¥) = 0
1o
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Fu ~(fe

F3)=€-0, +2 e

v
{ e* dz - ;‘ I £(1 + &y (A.2)

1
M Iz |2
o My [iTsin(¢+¢)=o
7 1

Even though the distinction between £,, and F,g is retained throughout this
treatment, these coeflicients are equal because it is assumed that both laser gain
media are identical, but this need not be true in general. The variables of interest
are I, Ig, €, and sing. To employ the Newton-Raphson method 2%, the Jacobi
matrix consisting of four partial differentials for each of the four equations is

formed:

. n
OF(1)  OF(1) OF(1)  OF(1)
al, al5 5€ sind
| 8F(a)  oF(®) AF(2) OF(9)
Ty, In, & sind) = al, 3l B¢ oo (A.3)
OF(3)  OF(3) OF(3)  OF(3)
ETA olg o€ Osind
F(4)  OF(H)  OFH)  OF(4)
| "I, ET € sind
where
1
i?fﬂ)-=—-F—"f—-[1+(1+62)“] LM [ircos(¢+w)= J(1,1) (A.4)
al, q 2 Ly (L
_L
55”7(& = LML (1, 15) ® cos( + ¥) = J(1.2) (A.5)
s 2
_[Te
OF(1) _ . Fia 2_ |2, {n]z - J(1: )
Ge - 26 ” [IA (1 + &%) [‘14 ]2 J(1.3) (A.6)
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1
dF(1 I . o TE L
Bsir(w) =-M, [TE_]E [sind cosy (1 —sing) 2 +siny | = J(1,4) (A.7)
and
dF(3) F M I Y7
3 . gL A By -
e I A { : f sin(6 + ¥) = J(3,1) (A.8)
OF(3) 1 -7
%]B—L =3 My (I, Ig) ? sin(¢ + ¥) = J(3,2) (A.9)
J
—¢
B e 7
6F(3)=l_4Fm6 ks e[vdrﬁ }'632d1+2F1A _7_1 (A.10)
¢ v T4 0 7 Td J )
L
- L+ P2 @1+ =U(3,3)
9F (3) Ip }: :
<, . . T
Demp M, [%]* [cost ~ siné siny (1 — sin®6) 2] = J(3.4) (A.11)

Notice that the equations are solved for sing rather than ¢ to eliminate some
operations and to simplify the equations. The Jacobian is used to solve the matrix

equation

J(zy, 29y T3, 74) X215 Tg, T3, 74) = F (2}, 79, 23, 1,) (A.12)

( where J is the Jacobian, X is the solution vector, and F is the steady-state
equation vector) by choosing an initial guess vector for the variables and iterating
until the matrix equation converges to a self-consistent solution. For a tolerance
of one part in a million, a convergent solution was usually produced in less than

10 iterations taking 2-3 seconds of computing time. Each solution served as the
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initial estimate for the next detuning step, so subsequent solutic as required fewer

iterations. Experience showed that X = [0.1, 0.1, 0.1, 0.0] was a good initial

guess. Wild guesses, especially for the £ term, commonly forced the solutions to

diverge.

ii. Stability

Once a solution vector was determined, it was checked for stability by per-
forming a perturbation calculation on the time-dependent field amplitude equa-

tions and an equation containing the phase difference:

7
¢
P e R P> 7
déps  dép  do, [n r‘
- dt T Tt =7(8, —2p)+2(FipFia)e ,({e dz

E
+(Faa I — Fap Ip) (1 + €7 — Mg [FA—}sinms - ) (A.13)
B

E
- M, [-E—B—]sin(cﬁ + ¥)

A

The perturbation calculation is done by solving for the eigenvalues of the matrix

equation

AEA a b [ AEA
AEB =|d € f AEB (A.14)

where each row of the equation is computed according to the general form of
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G G BG
AG = — AE _ .
3E, 4+ 3, AEg 3¢ A¢ (A.15)
dF dF do
and G = A , 5 , Or b4 . The elements of the coefficient matrix can be

dt di dt

found in Table A.1.

Table A.1: Single-Mode Perturbation Matrix Coefficients

)
G=F1A€ i —FQA—3F3AEA2[1+(1+§2)—I]

b =My cos(d+ 1Y)

E4
c=—MA[ sin( ¢ + )

Ep

d =Mpgcos( 9 —17)

£
e =Fpe “ ~Faop —3F3p[ 1 + (1 + &7

f =—Mgsin( ¢ —¢)

B

]sm(¢ '(/})"}' F3A€(1+§2)1EA +‘MA[§:
A

g =—Mpg [g ]sm(¢+¢)

h=—2F5 €E(1+EYVE,Ep + Mg

EA—]' sin(¢ — ¥) — My sin(é + )

B

= =M, [———— (6 —¥) — M —-—-] (¢ + ¥)
cos cos

The solution of the stationary state is stable if all the real parts of the eigen-

values are negative. For a 3 X 3 perturbation calculation, it is possible to analyti-
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cally determine the coaditions uecessary to satisfy such a coustrain.. The stabil-

ity criteria, already derived by Spencer and Lamb !2 are

V>0
Uy V> Uy (A.16)
3>0
where
n=-—(a+e+7j) (A.17)
Vo=a(e+j)+e —hf —bd —cg (A.18)
vz==a(hf —ej)+b(dj = fg)+c (eg — dh) (A.19)

ili. Computer Program for Single-Mode Coupled Laser Equations

Translating the single-mode coupled laser equations into acceptable computer
language was not a difficult problem. Because of the inherent flexibilities of desk-
top personal computers, the equations were coded in the BASIC language for a
Zenith Z-248 computer to allow for easy parameter variations. The code is

explained in the paragraphs to follow.

The first 16 lines of the program input the parameters into the machine.
The coded parameters are cross-referenced to the equation parameters in Table
A.2. In this example of the code, the input parameters are for a coupling mirror

of R, =0.9.
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10 CLEAR
20 CL3

30 DIM A(10,10),M(10,10),J(10,10)
40 L1=1.75

50 L2=1.75

60 N=4

70 M1=.1187

80 M2=M1

90 AA=.2708

100 AB=AA

110 BA=.03754

120 BB=BA

130 SG=2.404E+08

140 G=.009568

150 GAM1=9025000

160 GAM2=GAM]1

Table A.2: Definitions of Computer Symbols

M, M Foi Fa
M1, M2 = A T8 BA,BB = A %5
v i Y Y
Fi, F
AA,AB= 4 1B SG = ~
i i

GAM1, GAM2 =T, G=-L

PSI = ¢ PHI = ¢

Because the polarization expressions for a Doppler-broadened medium contain
integrals, those integrals must be evaluated for each value of £&. The next four
values are the constants used for the five-point Gaussian quadrature needed to
evaluate the integrals.

170 X1=.7745957
180 X2=0
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190 W1=.5555556
200 W2=.8888889

The desired tolerance is defined

210 TOL=.000001

and then the initial guess vector is input from the keyboard

220 PRINT "ENTER THE INITIAL GUESS VECTOR: I1,12,Z,SINPHI"
230 FOR [=1 TO N

240 INPUT (I}

250 NEXT I

where X(1) =11 =1,,X(2)=I2=1I5,X(3) =27 =&, and X(4) = SF =sind

along with the choice of phase angle Y»

260 INPUT "ENTER THE PHASE ANGLE PSI ",PSI

Since certain functional forms are reneated frequently throughout the com-

puter code, two general functions were defined

270 DEF FNE(X)=EXP(-G"2*X"2)
280 DEF FNZ(X)=1/(1+X"2)

where
_ [."_T,z
FNE =¢ ! (A.20)
and
FNZ =1 + &|! (A.21)
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The next three steps are important because they determine exactly how the
cavity mirrors are displaced while tuning and how far the cavities are detuned.
290 FOR COUNT=0 TO .2 STEP .01
300 D1=COUNT
310 D2=D1
The COUNT variable is a measure of the number of halfwidths of the power-
broadened linewidth, v, the mirrors are to be detuned. DI corresponds to A,
and D2 = Ap. When D1 = D2, both output mirrors are translated simultane-
ously. If D2 = 0, then only a single output mirror is displaced, but if D2 = - D1,
the central coupling mirror is tuned. Positive values of COUNT decrease the cav-

ity length while negative values increase it.

Variable K is the abort counter used in case the program does not converge
within the specified number of iterations. A maximum of K < 100 was adequate.
Next, the input vector is converted to the equation variables and the integral is

also computed

320 K=1

330 11=X(1)
340 12=X(2)
350 Z=X(3)

360 SF=X(4)

370 GD=ABS(Z)*G/2

380 NT=GD*(WI*EXP((GD*(X1+1))*2)+ W2*EXP((GD*(X2+1))*2)
+WI*EXP((GD*(1-X1))*2))

where

NT = e’ dr (\.22)

o 5lj
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“

‘The next 20 lines define the equaiion vector, F(x), and the Jacobi matrix, J(x.y),

and the abort counter is checked before proceeding.

390 F(1)=AA*FNE(Z)-BA-AA*I1*(1+FNZ(Z))+M1*(12/11)" .5*(COS(PSI)
*(1-SF*2)" 5-SF*SIN(P3I))

100 F/2)=AB*FNE(Z)-BB-AB*[2*(1+FNZ(Z))}+M2*(11/12)" .5*(COS(PSI)
*(1-SF*2)" 5+SF*SIN(PSI))

110 F(3)=Z-D1+2* AA*FNE(Z)*NT-AA*[1*Z*FNZ(Z)+M1*(12/11)".5
*(SF*COS(PSI)+SIN(PSI)*(1-SF "2)".5)

120 F(4)=2 D2+2* AB*FNE(Z)* NT-AB*I2*Z*F NZ(Z - M2* (11 /12)".5
*(SF*COS(PSI)-SIN(PSI)*(1-SF "2)".5)

130 J(1,1)=-AA*(1+FNZ(Z)}F.5*M1*(I2/11)".5%(1 /11)*(COS(PSI)

*(1-SF *2)".5-SF*SIN(PSI)) »

140 J(1,2)=.5*M1*(11*12)"-.5%(COS(PSI)*(1-SF *2)".5-SF*SIN(PSI))
450 J(1.3)=-AA*G"242* Z*F NE(Z)+AA*2* 211 *(FNZ(Z)) 2

160 J(1,4)=-M1*(12/11)".5*(SF*COS(PSI)*(1-SF “2)"-.5+SIN(PSI))
170 J(2,1)=. 5*M‘>*(11*I’) 5*(COS(PSI)*(1-SF "2)".5+SF*SIN(PSI))
180 J(2,2)=-AB*(1+FNZ(Z)}.5*M2*(11/12)".5%(1 /12)*(COS(PSI)

#(1-SF "2)".5+SF*SIN(PSI))
190 J(2.3)=-AB*G " 2¥2*Z*F NE(Z)+AB*2*2*12*(FNZ(Z)) "2
500 J(2,4)= Mz*(u/m)*.5*(-51?*(:05(%1) (1-SF"2)"-.5+SIN(PSI))
510 J(3.1)=-AA*Z*FNZ(Z)-.5*(M1/11)*(12/11)*.5*(SF*COS(PSI)
+SIN(PSI)*(1-SF2)".5)
2)=(M1/2)*(I1*[2) - 5*(SF*COS(PSI)+3IN(PSI)*(1-SF "2)".5)
3)= -4 AACNT*G 2+ Z*F NE(Z)+2*.&»\*G-;L\*I1*F1\'Z(Z)
SR VARARY \*11*(1“\2(2))

520 J(3.
530 J(3.

510 J(3.)=M1*(12/11)" COb(PbI) [*SIN(PSI)*(1-SF"2)"-.5)
550 J(4.1)=-. a*\[’*(ll*[’) (bF*CO\(PS )-SIt (P I*(1- \F‘Q)“.S)
560 J(4.2)=-AB*Z*FNZ(Z)+.5*(M2/12)*(11/12)".5*(SF*COS(PSI)

-SIN(PSI)*(1-SF 2)".5)
570 J(4.3)=1-41*AB*NT*G " 2¥Z*F NE(Z)+2* AB*G-AB*12*F NZ(Z)
+)*Z*>*m*1>*(rwz(2))* .
580 J(4.4)=-M2¥(11/12)".5*(COS(PSI)+SIN(PSI)*SF*(1-SF "2)"-.5)
590 IF K> 100 THEN 1930

Once all the parameters, equations, and matrices have been digested, the next

routine searches for a self-consistent solution to the matrix equation (A.12).

600 FOR R=1TO N
610 FOR Q=1 TO N
620 A(R.Q)=J(R.Q)

630 NEXT Q

610 A(R.N+1)=[F(R)
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650 NEXT R
660 FOR I=1 TO N-1

670 FOR J=I+1 TO N

680 M(J,I)=A(J,I)/A(L])

690 FOR Q=1 TO N+1

700 A(J,Q)=A(J,Q)-M(J,)*A(L,Q)
710 NEXT Q

720 NEXT J

730 NEXT I

740 Y(N)=A(N,N+1)/A(N,N)
750 FOR [=N-1 TO 1 STEP-1
760 FOR J=I+1 TO N

770 P=P+A(1,J)*Y(J)

780 NEXT J

790 Y(I)=(A(L,N+" }-P)/A(LI)
800 P=0

810 NEXT I

820 FOR I=1 TO N

830 X(I)=X(I}Y(I)

840 NEXT I

850 MAX=0

860 FOR I=1 TO N

870 IF ABS(Y(I))<=MAX THEN 890
880 MAX=ABS(Y(I))

890 NEXT I

900 IF MAX< TOL THEN 930
910 K=K+1

920 GOTO 330

The matrix system is solved using the Newton-Raphson method ** which is out-

lined helow:

To solve F(x) = 0 given an initial guess vector X to within a predifined toler-
ance:

1. Calculate F(z,, 14, r3, 24) and J(z|, L, T3, T4).

2. Solve the 4 X 4 system J(x) Y = - F(x) for the small correction Y.
| 3. Add the small correction Y to X
X=X+Y

4, When Y is less than the tolerance, a solution has been reached.
otherwise repeat from step 1.

-95-

——————————————————————————




After a solution is found, the vector is printed along with the coherent intensity,

[C:

930 PRINT "THE FREQUENCY OFFSET IS "“;COUNT
940 PRINT

950 PRINT “THE SOLUTION VECTOR IS "

960 FOR I=1 TO N

970 PRINT "X("I;")=";X(1)

980 NEXT I

990 [C=X(1)+X(2)+2*(X(1)*X(2))".5%(1-X(4)"2)".5
1000 PRINT

1010 PRINT "THE COHERENT INTENSITY IS "IC
1020 PRINT

The final subsections check each solution for.Stability:

1030 PHI=ATN(SF /((1-SF"2)".5))

1040 A1=SG*AA*FNE(Z)-GAM1-3*11*AA*SG*(1+FNZ(Z))

1050 B1=SG*M1*COS(PHI+PSI)

1060 C1=-SG*M1*(12/11)".5*SIN(PHI+PSI)

1070 D3=SG*M2*COS(PHI-PSI)

1080 E1=AB*SG*FNE(Z)-GAM2-3*12*AB*SG*(1+FNZ(Z))

1090 F1=-SG*M2*SIN(PHI-PSI)

1100 G1=2*Z*AA*SG*FNZ(Z)*11+SG*(-M2*(11/12)" .5*SIN(PHI-PSI)
+M1*(12/11)".5*SIN(PHI+PSI))

1110 HI=-2%¥Z*AB*SG*(I1*12)".5*FNZ(Z)+SG*(M2*(11/12)*SIN(PHI-PSI)
-M1*SIN(PHI+PSI))

1120 J1=-SG*(M2*(11/12)".5*COS(PHI-PSI)+M1*(12/11)".5*COS(PHI+PSI))

1130 NUl=-(Al1+E1+J1)

1140 NU2=A1*(E1+J1)+E1*J1-H1*F1-B1*D3-C1*Gl

1150 NU3=A1*(H1*F1-E1*J1)+B1*(D3*J1-F1*G1)+C1*(E1*G1-D3*H1)

1160 PRINT "NU1l= ";NU1

1170 PRINT "NU2= ";NU2

1180 PRINT "NU3= ";NU3

1190 PRINT "NU1*NU2= ";NU1*NU2

1200 PRINT

1210 NEXT COUNT

1220 END

The value for ¢ is extracted from sind , and then the computed values {rom Table
A.l are inserted into the stabilit: criteria equations (A.16-A.19) and printed. At

this juncture, one complete solution has been determined, and the loop is repeated
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for the next mirror displacement. The final line of the code is the abort message:
1230 PRINT "EXCEDED MAXIMUM NUMBER OF STEPS"
B. Two-Mode Equations

i. Mathematics

The reduction of the two-mode equations to expressions usuable by a com-
puter is understandably quite similar to the treatment of the single-mode equa-
tions even though many more terms are involved. As in the first section, only one
field and one phase equation will be treated because there are no fundamental
mathematical difference between them and the other six equations and their
derivitives. The time derivatives of equations (2.27) (2.34) of chapter II are set to

zero, and the two representative equations explicitly written are

Fia -[er,z Fax  Fsa

r(1) = . ¢ - T Loy 1+ (1 + €971
F3, ‘;—
- [Relag + Telga + 2 (R. T, Lyolps) * cos(¢y + )
{1+ 5 (& + &7 + [+ (6 - &7 (A.23)

++E - N+ -6 (6~ &)

R R R A R AL R AL

v

Al

1
M Ipy {2
+ 1—4 [_IELT C05(¢] + 'b) =0




1 s|.
F ) Fia _[%relz h PR Fy 2)~1
B)=6&—A4 -84 +2 o {0 dz ~ Iy 1+ &%

o
1 Fag -%

~2 5 (Relaz + Tolpa + 2 (R, TeIpolgy) * cos(¢y + ¥)]

{(& + &)1+ i‘(fx + 52)2]-1 +(&-&) 1+ %(51 - 52)2]—1 (A-24)

-2 -&) 1+ (6 -7 1 +67T

—3 (6~ &) 1+ (6 - & L+ (6 - &)

1
M 15 2
+ TA [—I:i—]\sm(m +9¥)=0

From the preceding equations, it is readily apparent that great care must be taken
to ensure that all signs and subscripts are accurately transcribed during each step
of the development. One saving grace is that there are many symmetric relation-
ships which can be exploited, so it is only truly necessary to corapute the partial
derivatives of the two previous equations and then perform the appropriate sign
21d subscript changes to generate the 48 remaining matrix elements. The reader
will be relieved to see that the partial derivatives will not be written in the

interest of brevity.

Solutions for the two-mode equations are produced in exactly the same maner
as the single-mode equations, except an eight-element guess vector, X, is substi-
tuted into the 8 X 8 Jacobian, J, and eight-element steady-state equation vector,
F. Self-consistent solutions converged to within a tolerance of less than one part

in a million again in less than 10 iterations, but the computer time was increased
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to 10-15 seconds per detuning step with an initial input vector of

X =/[0.1,0.1,0.1,0.1, 0.1, 0.1, 0.0, 0.0].
ii. Siability

To check each solution for stability, a perturbation calculation was per-
formed on the four time-dependent field equations and two equations formed from

the difference between each pair of time-dependent phase equations:

‘.bBl - 4.5,“ = ¢2’31 =q(As + 64 — Ap — ) + p1 (Iay — Ipy)
1
+ 7o (Relag + Telpe + 2 (R T.)? EqoEpq cos(¢p + ¥) (A.25)

1
= (Relpa + Telpo + 2 (R T.)? EpqEpy cos($y — ¥)]

E E
- M, [Eji ]sin(¢1 +9)~ My [73&}5@(45l - ¥)

Bl

and a similar expression for ¢go — @,4,. The perturbation matrix

- T T 1 r .
AE 4, a b ¢ d e [ AE,,
AE‘Bl g hk ¢ 7 Kk AFg,
AEAQ =|m n o p ¢ r AE,, (\.20)
AEg, st w v w 7T AFEg,
Ady, y 2z aa bb cc dd Aoy,
Adyy ee [f g9 hh i 5| | Ady
L 4 L J L 4

is produced by taking the total derivative of each of the six time-dependent equa-

tions according to

oG oG oG G oG aG -
=—A —AE ——AF,, + Adagy + Ao, (A2
B¢ OE,, Ens 0Eg, ! * BE,, ° * 3Epy = 8¢y O dog (A.27)

(For the expressions contained in the perturbation matrix, consult the values of
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B(i,j) in lines 1930-2280 of the computer listing which follows.) Each stationary

state of the two-mode system will be stable if the eigenvalues of the matrix equa-

tion (A.26) have negative real parts. In the case of a 6 X 6 matrix, no simple
analytical solution is possible for such complicated elements. Therefore, the eigen-
values were computed numerically by first balancing the matrix, casting it into an

upper Hessenberg matrix, and then using a iiumerical routine from Press, et.al.’ s

Numerical Recipes %7,

iii. Computer Program for Two-Mode Coupled Laser Equations

Since the framework of the computer codes were the same for both the single-
and two-mode programs, only the unique features of the second code will be dis-
cussed in detail. The first 47 lines of the program perform the same function as
the first 40 lines of the single-mode program except the number of elements in the

input vector is doubled and the free spectral range of the cavity is defined in line

70.

10 CLEAR

20 CLS

30 DIM A(10,10), M(10,10), J(10,10), B(10,10), WR(10), WI(10)
40 L1=1.75

50 L2=1.75

60 N=8

70 FSR=3.2724
80 M1=.8506
90 MT=.4

100 MR=.6

110 M2=M1
120 F11=.7916
130 F12=F11
110 F21=.3211
150 F22=F21
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160 SG=8.223E+07

170 G=.003272

180 GAM1=2.693E+07

190 GAM2=GAM]1

200 X1=.7745967

210 X2=0

220 W1=.5555556

230 W2=.8838889

240 TOL=.000001

250 PRINT "ENTER THE INITIAL GUESS VECTOR: 11,12,13,14,Z1,22,SINPHI31,SINPHI42"

260 FOR I=1 TO N

270 INPUT X(I)

280 NEXT I

290 INPUT "ENTER THE PHASE ANGLE PSI ", PSI

300 DEF FNE (X)=EXP(-G"2 * X"2)

310 DEF FNZ (X) = 1/(1 + X"2)

320 FOR COUNT = 0 TO 20 STEP .1

330 D1=COUNT

340 D2=-D1

350 K=1

360 I1=X(1)

370 I12=X(2)

380 [3=X(3)

390 [4=X(4)

400 Z1=X(5)

410 Z2=X(6)

420 SF31=X(7)

430 SF42=X(8)

440 GD1=ABS(Z1) * G/2

450 GD2=ABS(Z2) * G/2

460 NT1=GD1*(WI*EXP((GD1*(X1+1))"2)+W2*EXP((GD1*(X2+1))"2)
+WI1*EXP((GD1 * (1 - X1)) " 2))

470 NT2=GD2*(W1*EXP((GD2*(X1+1))"2)+ W2*EXP((GD2*(X2+1))"2)
+W1*EXP((GD2*(1-X1))"2))

The input parameters describe the system with a coupling mirror of 60%
reflectivity. Because some of the equations are unmanageably large and also
because many common expressions are frequently repeated, lines 480 through 710
divide the functions of £, and &, into acceptable lengths. Lines 720-750 contain
the coherent mixing expressions used with the cross saturation and cross pushing

terms.
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480 FACT1=FNZ(.5*21+.5%22)+FNZ(.5*Z1-.5*Z2)+FNZ(Z1)
*FNZ(Z1-22)*(1-Z1%(Z1-722))+(1-.5*%(Z1-22)"2)
*FNZ(Z1-72)*FNZ(.5*71-.5%72)

490 FACT2=FNZ(.5*71+.5*Z2)+FNZ(.5*Z2-.5*Z1)+FNZ(Z2)
*FNZ(22-Z 1)*(1-22%(22-21))+(1-.5%(22-21)"2)
*FNZ(Z2-21)*FNZ(.5*Z2- .5*71)

500 FACT3=(Z1+Z2)*FNZ(.5*Z1+.5*Z2)+(Z1-Z2)*FNZ(.5*Z1-.5*Z2)
-2%(2*Z1-22)*FNZ(Z1-22)*FNZ(Z1)-3*(Z1-72)
*FINZ(Z1-Z2)*FNZ(.5%Z1-.5*22)

510 FACT4=(Z1+Z2*FNZ(.5*Z1+.5*22)+(Z2-Z1)*FNZ(.5*Z2-.5*Z1)
-2%(2*72-71*FNZ(Z2-Z1)*FNZ(Z2)-3%(Z2-71)
*FNZ(22-71)*FNZ(.5*72-.5*Z1)

520 FACT11=-.5*%(Z1+Z2)*FNZ(.5*Z1+.5*22)"2-.5%(Z1-72)
*FNZ(.5*Z1-.5%22)" 2+FNZ(Z1)*FNZ(Z1-22)
*(-2*Z1+22-2%(1-Z1%(Z1-72)*(21-22)*FNZ(Z1-72)
-2%71%(1-21%(Z1-22))*FNZ(Z1))

530 FACT21=-.5 *(Z1+Z2)*FNZ(.5*Z1+.5%Z2)"2-.5%(Z2-21)
*FNZ(.5*Z22-.5*%Z21)"2+FNZ(Z2)*FNZ(Z2-71)
*(-2%Z24Z1-2%(1-22%(22-71))*(22-Z1)*FNZ(Z2-71)
-2%72%(1-22%(22-71)*FNZ(Z2))

540 FACT12=-FNZ(Z1-22)*(Z1-22)*FNZ(.5*21-.5*72)

*(.5%(1-.5%(21-22)" 2)*F NZ(.5*Z1-.5*Z2)
+2*(1-.5%(Z1-22)" 2)*FNZ(Z1-22)+1)

550 FACT22=-FNZ(Z2-Z1)*(Z2-Z1*FNZ(.5*Z2-.5*Z1)
*(.5%(1-.5%(22-21)"2)*FNZ(.5*22-.5*Z1)
A2%(1-.0Y(Z2-71)"2)*FNZ(Z2-71)+1)

560 FACT13=-.5*(21+Z2)*FNZ(.5%21+.5*22)" 2+.5%(Z1-22)
¥FNZ(.5*Z21-.5%22) 2+ NZ(Z1)*FNZ(Z1-72)
*(Z142%(21-22)*(1-21*(Z1-22))*F NZ(Z1-22))

570 FACT23=-.5%(Z1+Z2)*FNZ(.5%21+.5*72)" 2+.5%(Z2-Z
*FNZ(.5%22-.5*71)" 2+FNZ(Z2)*FNZ(Z2-71)
*(22+2*%(Z2-21)*(1-72%(72-71))*FNZ(Z2-11))

580 FACT14=(Z1-22)*FNZ(Z1-22)*FNZ(.5*Z1-.5*Z2)
*(.5*(1-.5%(Z1-22)" 2)*F NZ(.5*Z1-.5*Z2)
+2%(1-.5%(21-22)" 2)*FNZ(Z1-22)+1)

590 FACT24=(Z2-21)*FNZ(Z2-21)*FNZ(.5¥Z2- .5*Z1)
*(.5%(1-.5%(Z2-71)"2)*F NZ(.5*72-.5*Z1)
+2%(1-.5%(22-21)"2)*FNZ(Z2-Z1)+1)

600 FACT31=-.5*(Z1+22)"2*FNZ(.5*Z1+.5*22)"2
+FNZ(.5%Z1+.5*72)-.5%(Z1-22)"2
*FNZ(.5*Z-.5*72)" 2+FNZ(.5*Z1-.5*722)

610 FACT41=-.5%(Z14+22)"2*FNZ(.5*21+.5*72)"2
+FNZ(.5*21+.5%22)-.5%(22-21)"2
*FNZ(.5*Z2-.5%Z1)"2+FNZ(.5*22-.5%Z1)

620 FACT32=FNZ(Z1-Z2)*FNZ(Z1)*(Z1*(8*Z1-4*72)
*FPNZ(Z1)+(8*21-4*72)*(Z1-72)*FNZ(Z1-22)-1)

630 FACT42=FNZ(Z2-Z1)*FNZ(Z2)*(22*(8*Z2-4*71)

1)
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*FNZ(Z2)+(8*22-4*Z1)*(22-Z1)*FNZ(Z2-Z1)-4)

640 FACT33=3*FNZ(Z1-Z2)*F NZ(.5*Z1-.5*Z2)*(.5%(Z1-22)"2
*FNZ(.5%Z1-.5%72)+2%(Z1-22)" 2*FNZ(Z1-72)-1)

650 FACT43=3*FNZ(Z2-Z1 *FNZ(.5*22-.5*Z21)*(.5%(22-21)"2
*FNZ(.5%Z2-.5%21)+2*%(22-21)"2*FNZ(Z2-21)-1)

660 FACT34=-.5*(Z1+22) 2*FNZ(.5*21+.5*22)"2
+FNZ(.5*Z1+.5*Z2)+.5%(Z21-22)"2
*FNZ(.5*Z1-.5%72)"2-FNZ(.5*Z1-.5*72)

670 FACT44=-.5%(Z1+22)"2*FNZ(.5*Z1+.5%72)"2
+FNZ(.5*Z21+.5%72)+.5%(Z2-21)"2
*FNZ(.5*Z2-.5%21)"2-FNZ(.5¥Z2-.5*71)

680 FACT35=FNZ(Z1)*FNZ(Z1-Z2)*(-(8*Z1-4*72)*(21-22)
*FNZ(Z1-22)+2)

690 FACT45=FNZ(Z2)*FNZ(Z2-71)*(-(8*Z2-4*Z1)*(Z2-71)
*FNZ(Z2-71)+2)

700 FACT36=-3*FNZ(Z1-Z2)*FNZ(.5*Z1-.5%22)*(.5*(Z1-22)"2
*FNZ(.5*Z1-.5%722)+2%(Z1-22)" 2*FNZ(Z1-72)-1)

710 FACT46=-3*FNZ(Z2-Z1)*FNZ(.5*22-.5¥Z21)*(.5%(Z2-21)"2
*FNZ(.5%Z2-. 5*Zl)+2*(ZQ—Z1) 2*FNZ(Z2-Z1)1)

720 NWT1=2*(MT*MR*12*4)".5%( 5

-SF42*SIN(PSI))

730 NWT2=2*(MT*MR*I1*I3)".5*(COS(PSI)*(1-SF31°2)".5

-SF31*SIN(PSI))

710 NWT3=2*MT*MR*12*14)".5*(COS(PSI)*(1-SF42"2)".5

+SF42*SIN(PSI))

750 NWT1=2*(MT*MR*11*13)".5*(COS(PSI)*(1-SF31°2)".5

+SF31*SIN(PSI))

COS(PSI)*(1-SF42"2)"

The next section defines the Jacobian, J(i, j), and the equation vector F(1).

760 F(1)=F11*FNE(Z1)-F21-F11*11*(1+FNZ(Z1))
FII*(MR*I24+MT*4+NWT1*FACT1+M1*(13/11)".5
+(COS(PSI)*(1-SF31°2)" .5-SIN(PSI)* SF31)

770 F(2)=F11*FNE(Z2)-F21-F11*12*(1+FNZ(Z2))
F1I¥MR*1+MT*I3+NWT2*FACT2+M1%(14/12)".5
*(COS(PSI)*(1-SF42°2)".5-SIN(PSI)* SF42)

780 ['(3)=F12*FNE(Z1)-F22-F12*13*(1+FNZ(Z1))
-F12*(MR*[4+MT*I2+NWT3)*FACT1+M2*(11/13)".5
*(COS(PSI)*(1-SF31°2)".5+SIN(PSI)*SF31)

790 F(4)=F 12*FNE(Z22)-F22-F 12*14* (1+FNZ(Z22))
-F12%(MR*[3+MT*I1+NWT4)*FACT2+M2%(12/14).5
*(COS(PSI)*(1-SF42" 2)".5+SIN(PSI)*SF42)

800 F(5)=21-(D1+FSR)+2*F11*FNE(Z1)*NT1-F11*[1*Z1*FNZ(Z1)
- 5¥F11¥(MR*I2+MT*4+NWT1)*FACT3+M1*(13/11)".5
*(SF31*COS(PSI)+SIN(PSI)*(1-SF31°2)".5)

810 F(6)=22-(D1-FSR)+2*F11*FNE(Z2)*NT2-F 11*[2*Z2*F NZ(Z2)
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-S*FI(MR*II+MT*I3+NWT2PFAC . 1+M1*(14/12)".5
*(SF42*COS(PSI)+SIN(PSI)*(1-SF42°2)".5)

820 F(7)=271-(D24FSR)+2*F12*FNE(Z1)*NT1-F12*I3*Z1*FNZ(Z1)
-S*F12%(MR*[4+MT*[2+NWT3)*FACT3-M2*(11/13)".5
*(SF31*COS(PSI)-SIN(PSI)*(1-SF31°2)".5)

830 F(8)=172-(D2-FSR)+2*F12*FNE(Z2)*NT2-F12*14*Z2*F NZ(Z2)

- 5*F12%(MR*I3+MT*I1+NWT4)*FACT4-M2*(I2/14)".5
*(SF42*COS(PSI)-SIN(PSI)*(1-SF42°2)".5)
840 J(1,1)=-F11*(1+FNZ(Z1))-.5*M1*(13/11)".5%(1/11)
*(COS(PSI)*(1-SF31°2)".5-SIN(PSI)*SF31)
850 J(1,2)=-F11*FACTI*(MR+(MT*MR*14/12)".5*(COS(PSI)
*(1-SF42°2)" .5-SF42*SIN(PSI)))
860 J(1,3)=.5*M1*(I1*I3)"-.5*(COS(PSI)*(1-SF31°2)".5
-SIN(PSI)*SF31)
870 J(1,4)=-F11*FACT1*(MT+(MT*MR*I2/14)".5*(COS(PSI)
*(1-SF42°2)".5-SF42*SIN(PSI)))
880 J(1.5)=-2*F11*G"2*FNE(Z1)+2*F11*[1*Z1*FNZ(Z1)
-F1I(MR*[24+MT*14+NWT1)*(FACT11+FACT12)

890 J(1.6)=-F11*(MR*I24+MT*I4+NWT1}*(FACT13+FACT14)

900 J(1,7)=-M1*(I3/11)".5*(COS(PSI)*SF31*(1-SF31°2)"-.5

+SIN(PSI))
910 J(1,8)=F11*FACT1*2*(MT*MR*I2*14)".5*(COS(PSI)
*SF42*(1-SF42°2)"-.5+SIN(PSI))

920 J(2,1)=-F11*FACT2*(MR+(MT*MR*I3/11)".5*(COS(PSI)
*(1-SF31°2)".5-SF31*SIN(PSI)))

930 J(2,2)=-F11*(1+FNZ(Z2))-.5*M1*(14/12)".5%(1/12)
*(COS(PSI)*(1-SF42°2)".5- bI\’(PSI)*SFP)

940 J(2.3)=-FI1*FACT2*(MT +(MT*MR*[1/I3)".5*(COS(PSI)
*(1-SF3172)".5-SF31*SIN(PSI)))

950 J(2,4)=.5*M1*(I12*]4)"-.5*(COS(PSI)*(1-SF42°2)".5
-SIN(PSI)*SF42)

960 J(2.5)=-F11*(MR*[1+MT*I3+NWT2)*(FACT23+FACT24)

970 J(2,6)=-2*F11*G"2*FNE(Z2)+2*F11*[2*Z2*F NZ(Z2)
-F1I*(MR*[1+MT*I3+ NWT2)*(FACT21+FACT?22)

980 J(2,7)=F11*FACT2*2*(MT*MR*11*13)".5*(COS(PSI)
*SF31*(1-SF31°2)"-.5+SIN(PSI))

990 J(2,8)=-M1*(14/12)".5*(COS(PSI)*SF42*(1-SF42"2)"-.5

+SIN(PSI))

1000 J(3,1)==.5*M2*(11*I3)"-.5%(COS(PSI)*(1-SF31°2)".5

+bI\‘(PSI)*SF31)

1010 J(3.2)=-F12*FACT1*(MT+MT*MR*[4/12)".5*(COS(PSI)

*(1-SF42°2)".5+SF42*SIN(PSI)))
1020 J(3.3)=-F12*(14+FNZ(Z1))-.5*M2*(I11/13)".5*(1/13)
*(COS(PSI)*(1-SF31°2)" 5+SIN(PSI)*SF31)
1030 J(3.4)=-F12*FACTI1*(MR+(MT*NMR*I2/I4)".5*(COS(PSI)
_ *(1-SF42°2)".54+SF42*SIN(PSI)))
1040 J(3.5)=-2*F12*G"2*F'NE(Z1)+2*F12*I3*Z1*FNZ(Z1)
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-F12¥(MR*I[4+MT*I12+NWT3)*(FACT11+FACT12)

1050 J(3,6)=-F12*(MR*I4+MT*I2+NWT3)*(FACT13+FACT14)

1060 J(3,7)=-M2*(11/13)".5*(COS(PSI}*SF31*(1-SF31"2)"-.5
-SIN(PSI))

1070 J(3,8)=-F12*FACT1¥2*(MT*MR*I2+14)".5%(-COS(PSI)
*SF42*(1-SF42°2)"-.5+SIN(PSI))

1080 J(4,1)=-F12*FACT2*(MT-+MT*MR*I3/11)".5*(COS(PSI)
*(1-SF31°2)".5+SF31*SIN(PSI)))

1090 J(4,2)=.5*M2*(12*14)"-.5¥(COS(PSI)*(1-SF42°2)".5
+SIN(PSI)*SF42)

1100 J(4,3)=-F12*FACT2*(MR+(MT*MR*I1/13)".5*(COS(PSI)
*(1-SF31°2)".5+SF31*SIN(PSI)))

1110 J(4,4)=-F12*(1+FNZ(Z2))-.5*M2*(12/14)".5%(1 /14)
*(COS(PSI)*(1-SF42°2)".5+SIN(PSI)*SF42)

1120 J(4,5)=-F12*(MR*I3+MT*[1+NWT4)¥(FACT23+FACT24)

1130 J(4,6)=-2*F12*G"2*FNE(Z2)+2*F12*[4*Z2*FNZ(Z2)
-F12¥(MR*I3+MT*[1+NWT4)*(FACT21+FACT22)

1140 J(4,7)=-F12*FACT2*2*(MT*MR*I1*13)".5*(-COS(PSI)
*SF31*(1-SF31"2)"-.5+SIN(PSI))

1150 J(4,8)=-M2*(12/14)" .5*(COS(PSI)*SF42*(1-SF42°2)"-.5
-SIN(PSI))

1160 J(5,1)=-F11*Z1*FNZ(Z1)-.5*M1*(13/11)".5*%(1/I1)
*(SF31*COS(PSI)+SIN(PSI)*(1-SF31°2)".5)

1170 J(5,2)=-.5*F11*FACT3*(MR+(MT*MR*14/12)".5%(COS(PSI)
*(1-SF42°2)".5-SF42+*SIN(PSI)))

1180 J(5,3)=.5*M1*(11*I3)"-.5*(SF31*COS(PSI)+SIN(PSI)
*(1-SF31°2)".5)

1190 J(5,1)==-.5*F11*FACT3*(MT+(MT*MR*12/11)".5¥(COS(PSI)
*(1-SF42°2)".5-SF42*SIN(PSI)))

1200 J(5,5)=1-4*Z1*G"2*F11*FNE(Z1)*NT1+2*F11*G-F11*11
*(FNZ(Z1)-2*Z1°2*FNZ(Z1)"2)-.5*F11
*(MR*I24+-MT*4+NWT1)*(FACT31+FACT32+FACT33)

1210 J(5,8)=-.5*F 11 ¥(MR*I2+MT*[4+NWT1)*(FACT34+FACT35+FACT30)

1220 J(5,7)=M1*(I3/11)".5*(COS(PSI)-SIN(PSI)*SF31
*(1-SF31°2)"-.5)

1230 J(5,8)=F11*FACT3*(MT*MR*I2*14)".5*(COS(PSI)*SF 12
*(1-SF42°2)"-.5+SIN(PSI))

1240 J(6,1)=-.5*F11*FACT4*(MR+(MT*MR*13/11)".5*(COS(PSI)
*(1-SF31°2)".5-SF31*SIN(PSI)))

1250 J(6,2)=-F11*Z2*FNZ(Z2)-.5*M1*(14/12)".5*(1/12)
*(SF42*COS(PSI)+SIN(PSI)*(1-SF42°2)".5)

1260 J(6,3)=-.5*F LI*FACT-t*(MT+(MT*MR*11/13)".5*(COS(PSI)
*(1-SF31°2)".5-SF31*SIN(PSI)))

1270 J(6,4)=.5*M1*(I2*14)"-.5*(SF12*COS(PSI)+SIN(PSI)
*(1-SF427°2)".5)

1280 J(6,5)=-.5*F I 1 ¥*(MR*[1+MT*[3+NWT2)*(FACTH4+FACT 5+ FACT-16)

1290 J(6,6)=1-4*Z2*G " 2*F11*FNE(Z2)*NT2+2*F 1 1 *G-F 1 1 ¥[2*(F NZ(Z2)
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-2%72"2*FNZ(Z2)"2)-.5*F11*(MR*[1 +MT*I3+NWT?2)
*(FACT414+FACT42+FACT43)

1300 J(6,7)=F11*FACT4*(MT*MR*I1*I3)".5*(COS(PSI)*SF31
*(1-SF3172)"-.5+SIN(PSI))

1310 J(6,8)=M1*(14/12)".5*(COS(PSI)-SIN(PSI }*SF 42
*(1-SF42°2)"-.5)

1320 J(7,1)=-.5*M2*(11*13)"-.5*(SF31*COS(PSI)-SIN(PSI)
*(1-SF31°2)".5)

1330 J(7,2)=-.5*F12*FACT3*(MT+(MT*MR*I4/12)".5*(COS(PSI)
*(1-SF42°2)".5+SF42*SIN(PSI)))

1340 J(7,3)=-F12*Z1*FNZ(Z1)+.5*M2*(I1/13)".5%(1/13)

*(SF31*COS(PSI)-SIN(PSI)*(1-SF31°2)".5)

1350 J(7,4)=-.5*F12¥*FACT3*(MR+(MR*MT*I2/1.{)".5*

*(1-SF42°2)".5+SF42*SIN(PSI)))
1360 J(7,5)=1-4*Z1*G"2*F12*FNE(Z1)*NT1+2*F12*G-F12
*[3%(FNZ(Z1)-2*21"2*FNZ(Z1)"2)-.5*F 12
*(MRH*44+MT*2+NWT3)*(FACT31+FACT32+FACT33)
1370 J(7.6)=-.5*F12*(MR*[4+MT*[2+NWT3)*(FACT34+FACT35+FACT36)
1380 J(7,7)=-M2*(11/13)".5%(COS(PSI)+SIN(PSI)*SF31
*(1-SF31°2)"-.5)
1390 J(7,8)=-F12*FACT3*(MT*MR*I2*14)".5*(-COS(PSI)*SF42
*(1-SF+42"2)"-.5+SIN(PSI))
1400 J(8,1)=-.5*F12*FACT4*(MT+(MT*MR*I3/11)".5*(COS(PSI)
*(1-SF31°2)" 5+SF31*SIN(PSI)))
1410 J(8.2)=-.5*M2*(I2*[.1)"-.5%(SF12*COS(PSI}-SIN(PSI)
*(1-SF42°2)".5)

1420 J(8.3)=-.5*F 12*FACT4*(MR+(MT*MR*I1/13)".5*(COS(PSI)
*(1-S[F3172)".5+SF31*SIN(PSI)))

1430 J(8,4)=-F12*Z2*FNZ(Z2)+.5*M2*(12/14)".5%(1/14)
*(SF42*COS(PSI}SIN(PSI)*(1- SF42‘2)‘.5)

1440 J(8,5)=-.5*F12¥(MR*I3+MT*[1+NWT4)*(FACT44+FACT{5+FACT6)

1450 J(8.6)=1-4*Z2*G " 2*F 12*F NE(Z2)*NT2+2*F 12*G-F 12*]4
*(FNZ(Z2)-2%72° 2*FNZ(Z2) 2)- 5*F12
F(MR*IB4+MT*II+NWTH)*(FACT41+FACTH24+FACT43)

1460 J(8.7)=-F12¥*FACT4*(MT*MR*I1*13)" .5*(-COS(PSI)*SF31

*(1-SF31°2)"-.5+SIN(PSI))
1470 J(8,8)==-M2*(12/14)".5*(COS(PSI)+SIN(PSI)*S
*(1-SF4272)"-.5)

(COS(PSI)

The Newton-Raphson method is used again to solve for a self consistent solution.

1480 IF K > 100 THEN 4430
(490 FORR = 1 TO N

1500 FOR Q = 1 TO N

1510 A(R.Q) = J(R.Q)

1520 NEXT Q
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1530 A(R,N + 1) = F(R)

1540 NEXT R

1550 FOR [ = 1 TO N-1

1560 FOR J = I+1 TO N

1570 M(J,I) = A(J,1)/A(L])

1580 FOR Q = 1 TO N+1

1590 A(J,Q) = A(J,Q-M(J,)*A(1,Q)

1600 NEXT Q

1610 NEXT J

1620 NEXT I

1630 Y(N) = A(N,N+1)/A(N,N)

1640 FOR [ = N-1 TO 1 STEP -1

1650 FOR J = I+1 TO N

1660 PP = PP + A(1,J) * Y(J)

1670 NEXT J

1680 Y(I) = (A(I,N+1)}-PP)/A(LI)

1690 PP = 0

1700 NEXT I

1710 FORI =1 TO N

1720 X(I) = X(I) - Y(I)

1730 NEXT I

1740 MAX = 0.

1750 FORI =1 TO N

1760 IF ABS(Y(I)) <= MAX THEN 1780
1770 MAX = ABS(Y(I))

1780 NEXT I

1790 IF MAX < TOL THEN 1820

100 K=K +1

1810 GOTO 360

1820 PRINT "THE FREQUENCY OFFSET IS "; COUNT
1830 PRINT

1840 PRINT "THE SOLUTION VECTOR IS “
1850 FORI =1 TO N

1860 PRINT "X(": I; ")="; X(I)

1870 NEXT I

1880 PRINT

1890 PRINT "THE INTENSITY SUM IS " X(1) + X(2)
1900 PRINT

The remainder of the program checks each solution for stability. Lines 1910-2280
input the perturbation matrix (A.26) which then undergoes a balancing operation
(2290-2660) is reduced to an upper Hessenberg matrix (2670-3060), and then the

eigenvalues for the upper Hessenberg matrix are determined and printed (3070-
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4440). (For complete details of the matrix manipulations using a QR algorithm,

consult Numerical Recipes pages 366-376 7.

1910 PHI31=ATN(SF31/((1-SF31°2)".5))

1920 PHI42=ATN(SF42/((1-SF42°2)".5))

1930 B(1,1)=SG*(F11*FNE(Z1)-F21-3*[1*F11
*(1+FNZ(Z1)}F11*(MR*I2+MT*[4+NWT1)*FACT1)

1940 B(1,2)=-2*[1".5*SG*F i I*FACT1*(MR*I2".5
+(MR*MT*[4)".5*COS(PHI42+PSI))

1950 B(1,3)=SG*M1*COS(PHI31+PSI)

1960 B(1,4)=-2*I1".5*SG*F11¥*FACT1*(MT*[4".5
+(MR*MT*12)".5*COS(PHI42+PSI))

1970 B(1,5)=-SG*M1*I3" .5*SIN(PHI31+PSI)

1980 B(1,6)=-2*F 11*SG*FACT 1 (11 *I2*[4*MR*MT)".5
*SIN(PHI42+PSI)

1990 B(2,1)=-2%[2" .5*SG*F 1 1*FACT2*(MR*I1".5+(MR*MT*I3)".
*COS(PHI31+PSI))

2000 B(2,2)=SG*(F11*FNE(Z2)-F21-3*I2+F 1 1*(1+FNZ(Z2))
F11*(MR*[1+MT*I3+NWT2)*FACT?2)

2010 B(2.3)=-2*13".5*SG*F11*FACT2*(MT*I3" .5+ (MR*MT*I1)".
+COS(PHI31+PSI))

2020 B(2.1)=M1*SG*COS(PHI42+PSI)

2030 B(2,5)=-2*F11*FACT2*SG*(I2*I1 *I3*NR*MT)".5
+SIN(PHI31+PSI)

2040 B(2.6)=-M1*SG*[1".5*SIN(PHI42+PSI)

2050 B(3.1)=SG*\M2*COS(PHI31-PSI)

2060 B(3.2)=-2*13"5*SG*F12*FACT1*(MT*12"5+(MR*MT *14)",
*COS(PHI2-PSI))

2070 B(3.3)=SG*(F12*FNE(Z1)-F22-3*[3*F 12%(1+F NZ(Z1))
FI2*(MR*H+MT 24+ NWT3)*FACTI)

2080 B(3.4)=-2*13".5*SG*F12*FACTI*(MR*11".5+(MR*MT*[2)".
*COS(PHI2-PST))

2090 B(3.5)=-M2*SG*11".5*SIN(PHI31-PSI)

2100 B(3.6)=2*SG*F I12*FACT1*(MR*MT*[3*12¢[1)".5
«SIN(PHI2-PS)

2110 B(4.1)=-2*14" 5*SG*F12*FACT2* (M T*1" 5+ (MR*MT*13)"
*COS(PHI31-PSI))

2120 B(4.2)=M2*$G*COS(PHI2-PSI)

2130 B(4.3)=-2¢11" 5*SGHF 12 FACT2* (MR *13" 5+(MR*MT*11)" 7
«COS(PHI31-PSI))

2040 B(4.4)=SG*(F12¢F NE(Z2)- F22-3* 141+ F 12 (1 +F NZ(Z2))
CFI2F (MR IB+MT I+ NWTA)*FACT?)

2150 B(-l.-")):‘l*ﬁ(i*Fl'.l*l".-\("["."‘(I\IR‘.\IT“[ 1¢01*13)° .5
+SIN(PHIB1-PSI)

2060 B(4.6)=-\M2*SG 412" 5*SIN(PHT12-PST)

(11

o

1]

]
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-
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2170 B(5,1)=SG*(2*F11*11".5*Z1*FNZ(Z1)}(M2/13".5)
*SIN(PHI31-PSI)+(M1/11)*13".5*SIN(PHI31+PSI))

2180 B(5,2)=2*F11*SG*FACT2*((MR*I2".5+(M R*MT*I4)".5
*COS(PHI424+PSHFMT*I2".54+(MR*MT*[4)".5
*COS(PHI42-PSI)))

2190 B(9,3)=SG*(-2*F11*13".5*Z1*FNZ(Z1)+(M2/I3)*11".5
*SIN(PHI31-PSI}(M1/11".5)*SIN(PHI31+PSI))

2200 B(5,4)=2*F11*SG*FACT3*((MT*I4".5+(MT*MR*I2)".5
*COS(PHI42+PSI)FMR*I1".5+(MT*MR*12)".5
*COS(PHI42-PSI)))

2210 B(5.5)=-SG*(M2*(I11/13)".5*COS(PHI31-PSI)+M1*(13/11)".5
*COS(PHI31+PSI))

2220 B(5.6)=-4*SG*FI1*FACT3*(MR*MT*[2*[4)".5
*SIN(PST)*COS(PHI42)

2230 B(6.1)=2*F12*SG*FACT*((MR*[1".5+(MR*MT*[3)"
*COS(PHI31+PSH}F(MT*I1".54+(MR*MT*[3)"
*COS(PHI31-PSI)))

2240 B(6.2)=SG*(2*F12*12".5*Z2*FNZ(Z2 )-(\ 2/147.3)
*SIN(PHI42-PSI)+ (M1 /12)*(14".5)
*SIN(PHI42+-PSI))

2250 B(6.3)=2*F12*SG*FACT4*((MT*I3".5+(MT*\R*[1)"
*COS(PHI314+PSI)(MR*I3".5+(MT*MR*I1)"
*CCS(PHI31-PSI)))

2260 B(6.4)=SG*(-2*F12*14" .5*Z2*FNZ(Z2)+ (M2 /14)*[2" .5
*SIN(PHI42-PSIF(M1/12)*SIN(PHI424-PS1))

2270 B(6.5)=-4*SG*F12*FACT*(MR*MT*11*I3)".5
*SIN(PST)*COS(PHI31)

2230 B(6.6)=-SG*(M2*(12/14)".5*COS(PHI42-PSI)+M1*(I4/12)".5
*COS(PHI42+PSI))

2290 LAST = 1

2300 FOR I=1 TO 6

2310 C =0

2320R =0

2330 FOR J=1 TO 6

2340 IF J<>I1 THEN

2350 C = C+ABS(B(J.I))

2360 R = R+ABS(B(L.))

2370 END IF

2380 NEXT J

2390 IF C< >0 AND R<>0 THEN

2100 GG = R/2

2410 F =1

2120 5 = C+R

2430 [F ¢ < GG THEN

2110 F = [*2

2150 C = (x4

2160 GOTO 2130

or &J.

'C)‘ .C)‘
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2470 END IF

2480 GG = R*2

2490 IF C>GG THEN

2500 F = F/2

2510 C = C/4

2520 GOTO 2490

2530 END IF

2540 IF (C+R)/F <.95*S THEN
2550 LAST = 0

9560 GG = 1/F

2570 FOR J=1 TO 6

2580 B(I,J)=B(1,J)*GG

2500 NEXT J

2600 FOR J = 1 TO 6

2610 B(J,[)=B(J,[)*F

2620 NEXT J

2630 END IF

2640 END IF

2650 NEXT I

2660 IF LAST=0 THEN 2290
2670 CN = 6

2680 IF CN>2 THEN

2690 FOR M=2 TO CN-1
2700 X = 0

27101 = M

9720 FOR J=M TO CN

2730 IF ABS(B(J,M-1))>ABS(X) THEN
740 X = B(JM-1)

~1 =~1

D)

60 END IF

70 NEXT J

80 IF 1< >M THEN

90 FOR J=M-1 TO CN
2800 Y == B(1,J)

2810 B(1,J)=B(M,J)

2820 B(M,J)=Y

2830 NEXT J

2840 FOR J=1 TO CN
2850 Y = B(J.I)

2860 B(J,1)=B(J,M)

2870 B(J,M)=Y

2880 NEXT J

2890 END IF

2900 IF X< >0 THEN
2910 FOR [=M+1 TO CN
2920 Y = B(I,M-1)

2930 IF Y < >0 THEN

¥

WD

=] ~1 =2
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2940 Y = Y/X

2950 B(I,M-1)=Y

2960 FOR J=M TO CN

2970 B(I,J)=B(I,J)}-Y*B(M,J)

2980 NEXT J

2990 FOR J=1 TO CN

3000 B(J,M)=B(J,M)+Y*B(J,])

3010 NEXT J

3020 END IF

3030 NEXT I

3040 END IF

3050 NEXT M

3060 END IF

3070 ANORM = ABS(B(1,1))

3080 FOR I=2 TO CN

3090 FOR J=I-1 TO CN

3100 ANORM = ANORM + ABS(B(LJ))
3110 NEXT J

3120 NEXT I

3130 NN = CN

3140 T =0

3150 IF NN>1 THEN

3160 ITS = 0

3170 FOR L = NN TO 2 STEP -1
3180 S = ABS(B(L-1,L-1)) + ABS(B(L,L))
3190 IF $=0 THEN S=ANORM
3200 IF ABS(B(L,L-1))+S=S THEN 3230
3210 NEXT L

3220L = 1

3230 X = B(NN,NN)

3240 IF L = NN THEN

3250 WR(NN) = X+T

3260 WI(NN) = 0

3270 NN = NN-1

3280 ELSE

3290 Y = B(NN-1,NN-1)

3300 W = B(NN,NN-1)*B(NN-1,NN)
3310 IF L = NN-1 THEN

3320 P = .5*(Y-X)

3330 Q = P 24W

3340 Z = (ABS(Q))".5

3350 X = X+T

3360 IF Q=0 THEN

3370 IF P>=0 THEN Z=P+ABS(Z)
3380 IF P <=0 THEN Z=P-ABS(Z)
3390 WR(NN) = X+7

3400 WR(NN-1) = WR(NN)
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3410 [F Z< >0 THEN WR(NN)=X-W/Z

3420 WI(NN) = 0

3430 WI(NN-1) = 0

3440 ELSE

3450 WR(NN) = X+4P

3460 WR(NN-1) = WR(NN)

3470 WI(NN) = Z

3480 WI(NN-1) = -2

3490 END IF

3500 NN = NN-2

3510 ELSE

3520 IF ITS=30 THEN PRINT "NO ROOTS FOUND"
3530 IF ITS=10 OR ITS=20 THEN

3540 T = T+X

3550 FOR I=1 TO NN

3560 B(L,[)=B(L,I)}-X

3570 NEXT I

3580 S = ABS(B(NN,NN- ))+ABS(B(NN-1,NN-2))
3590 X = .75*S

3600 =X
3610 W = -.4375*%S"2
3620 END [F

3630 ITS = ITS+1

3640 FOR M=NN-2 TO L STEP -1

3650 Z = B(M,M)

3660 R = X-Z

3670 S = Y-Z

3680 P = (R*S-W)/B(M+1,M)+B(MM+1)
3690 Q = B(M+1.M+1)Z-R-S

3700 R = B(M+2.M+1)

3710 S = ABS(P)+ABS(Q)+ABS(R)

3720 P = P/S
3730 Q = Q/S
3740 R = R/S

3750 IF M=L THEN 3800

3760 U = ABS(B(M.M-1))*(ABS(Q)+ABS(R))
3770 V = ABS(P)*(ABS(B(M-1.M-1))+ABS(Z)+ABS(B(M+1,M+1)))
3780 IF U+V=V THEN 3800

3790 NEXT M

3800 FOR I=M+2 TO NN

3810 B(L1-2) = 0

3820 IF [<>M+2 THEN B(LI-3)=0

3830 NEXT I

3840 FOR KK=M TO NN-1

3850 IF KK< >M THEN

3860 P = B(KIK.KIK-1)

3870 Q = B(KK+1.KIK-1)
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3880R =0

3890 IF KK< >NN-1 THEN R=B(KK+2,KK-1)
3900 X = ABS(P)+ABS(Q)+ABS(R)

3910 IF X< >0 THEN

3920P =P/X

3930 Q = Q/X

3940 R = R/X

3950 END IF

3960 END IF

3970 IF P>=0 THEN S=ABS((P"2+Q"2+R"2)".5)
3980 IF P <=0 THEN S=-ABS((P"2+Q"2+R"2)".5)
3990 IF S< >0 THEN

4000 IF KI{=M THEN

4010 IF L<>M THEN B(KK,KK-1)=-B(KK,KK-1)

4020 ELSE

4030 B(KI,KK-1)=-S*X
4040 END IF

4050 P = P+S

4060 X = P/S

4070 Y = Q/S

4080 Z = R/S

4090 Q = Q/P

4100 R = R/P

4110 FOR J=KK TO NN

4120 P = B(KK,J)+Q*B(KK+1,J)
4130 [F KIK< >NN-1 THEN

4140 P = P+R*B(KK+2,J)

4150 B(KIK+2,J)=B(KIK+2,J}-P*Z
4160 END I+

4170 B(KK+1,J)=B(KK+1,J}-P*Y
4180 B(KK,J =B(KK,J)}-P*X

4190 NEXT J

4200 IF NN<=KK+3 THEN MIN=NN
4210 IF NN>=KK+3 THEN MIN=KK+3
4220 FOR I=L TO MIN

4230 P = X*B(I,KI{)+Y*B(LKK+1)
4240 IF KIK< >NN-1 THEN

4250 P = P+Z*B(I,KK+2)

4260 B(I,KK+2)=B(I,KK+2)-P*R
4270 END IF

4280 B(I,KKK+1)=B(LKK+1)-P*Q
4290 B(I,KIK)=B(I,KK)-P

4300 NEXT I

4310 END IF

4320 NEXT KK

4330 GOTO 3170

4340 END IF
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4350 END IF

4360 GOTO 3150

4370 END IF

4380 FOR I=1 TO 6

4390 PRINT "WR("; ; ") = "; WR(I), "WI("; ; ") = "; WI(I)
4400 NEXT I

4410 NEXT COUNT

4420 END

4430 PRINT "EXCEEDED MAXIMUM NUMBER OF STEPS"
4440 END

Once the eigenvalues were returned, the signs of the real parts were inspected to

determine the extent of the stable operating range.
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Appendix B: Experimental Verification of the Multually-Reinforced
Hole-Burning Minimum

This appendix will present the experiment used to verify the existence of the
mutually-reinforced hole-burning minimum mentioned in chapter II. In the first
section, a brief overview of hole-burning phenomena will be discussed along with
the theoretical modelling of a two-mode He-Ne laser. The second part will

describe the experimental setup and comment on the results.

A. Spectral Hole Burning Theory

Spectral hole burning in a Doppler-broadened gain profile is a well known

phenomenon in gas lasers 3!

. The most famous consequence of hole burning is the
"Lamb dip" which Lamb predicted in his treatise on laser theory in 1964 %9, The
Lamb dip, which is usually observed using a single (longitudinal) mode laser,
represents a small dip at the peak of the relative intensity curve of the laser as it
is tuned across a Doppler-broadened gain profile of the medium. Although single
mode operation of lasers has been studied thoroughly ?°, the case of hole burning
by multiple modes oscillating simultaneously does not seem to have received the
close attention of previous investigators. When a laser with a Doppler-broadened
gain medium oscillates on two longitudinal modes, the relative intensity tuning
curve manifests not only the two Lamb dips associated with the two modes oscil-

lating, but also another dip which is somewhat more pronounced than the more

familiar Lamb dips.

If a single laser mode oscillates in a standing-wave cavity containing an
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inhomogenously-broadened medium, the Doppler frequency shift of the photons
travelling in each direction permits the photons to interact generally with two
different velocity groups of the laser medium, saturating the gain and "burning
holes" at two frequencies in the gain curve (See Figure B.1a). When the laser
mode is tuned to the gain center, the two holes burned into the gain curve overlap

and produce a measureable reduction in the laser output intensity known as the

Lamb dip (Figure B.1b).

When the laser is operated in multimode (longitudinal), however, the laser
exhibits, in addition to the Lamb dips due to individual modes, a secondary dip in
its intensity curve, which is associated with a mutually reinforced hole burning by
different modes. This point can be seen from Figure B.2 which shows the
incoherent sum of the individual mode intensities representing the total laser out-
put. This intensity tuning curve was generated by numerically solving the set of
four coupled equations obtained for a two-mode He-Ne laser using Lamb'’s semi-

classical laser theory 20:

OE,
_at_‘—El (ay = ByIy = by015) (B.1)
OE.
99
S R B R A (B.3
&%,
—a—;—=’7(€2+6—A)+O’2—p212—72111 (84)

-116-




Wo

>

i |
]
|
3 |
-V (a) +V
Wo
A
|
!
(b)
Lout /\\
(@) ?

Figure B.1.  Spectral hole burning of a Doppler-broadened gain curve: (a) A
laser mode oscillating at a frequency away from the gain center
burns two holes in the gain curve. (b) A mode oscillating at the
gain center burns one hole. (c) The laser output intensity exhibits a
Lamb dip as the laser is tuned across the gain curve.
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Figure B.2.  Intensity tuning curve of a two-mode laser. The intensity shown
represents the incoherent sum of the individual mode intensities.
The spectral locations of the modes at various points along the
tuning curve are shown as (a}-(d).
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The coeflicients are identical to those found in Table 2.1 and the laser parameters

used can be found in Table B.1.

Table B.1: He-Ne Laser Parameters

Cavity Length Laser Wavelength

L =29 cm A = 632.8 nm

Tube Diameter Doppler Gain Width
d =2mm Y4 = 1500 MHz
Gain Length Mirror Reflectivities
[ =14 cm R =0.99 and 0.995

Single-Pass Gain 32

go = .0015 cm ™!

Examination of the frequency detuning of each mode from the gain center
frequency reveals the physical process involved. At the position marked (a) in
Figure B.2, the two laser modes, split by a free spectral range, appear under the
gain profile as shown in Figure B.2a. (The dashed mode in the figure is included
for physical accuracy even though the theory does not explicitly treat the three
modes. In reality, it is difficult to achieve true two-mode oscillation in a laser as
the laser is tuned through several free spectral ranges.) As the cavity is tuned by
translating one of the mirrors, the mode frequency at w, reaches the gain center

and burns out the Lamb dip at the position marked (b) of Figure B.2. When the
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modes are tuned such that they are symmetrically spaced about the line center as
shown in Figure B.2¢, the holes burned by the mode at w; on each side of the
gain center align exactly with the holes burned by the other mode at w,. This
overlap of holes burned by the two modes produces an additional intensity
minimum at the position marked (c) in a manner analogous to that creating the
Lamb dip as shown in Figure B.2c. Continued tuning brings the mode at w; to
the line center which, in turn, burns out the second Lamb dip denoted by (d) in
Figure B.2. The additional intensity minimum should be present whenever a laser
oscillates in multimode and when those modes are symmetrically spaced about the

gain center, not just for two modes.

B. Experimental Verification

The existence of the mutually-reinforced hole-burning minimum was demon-
strated using an open-cavity He-Ne laser configured to support two longitudinal
modes. Figure B.3 shows the schematic diagram of the experimental system used
in this experiment with the laser parameters listed in Table B.1 One of the cavity
mirrors was mounted on a piezoelectric transducer (PZT) and driven by a signal
generator/amplifier generating a sawtooth ramping voltage. To isolate the laser
from room air turbulence, the entire cavity was enclosed in a housing. The laser
was slowly tuned through several free spectral ranges during which the intensity
output through one mirror was detected with a photodetector and sent to a chart
recorder. In order to monitor the mode structure, the output from the other mir-

ror was directed into a scanning Fabry-Perot spectrum analyzer.
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Figure B.3: Schematic diagram of the experimental setup. PZT is a piezoelectric
transducer.

Figure B.4 shows the intensity trace from the chart recorder. The deeper val-
ley is the mutually-reinforced hole-burning minimum corresponding to the sym-
metric placement of the laser modes about the gain center as verified by observing
the mode spectrum while the dip occurred. The smaller valley is the Lamb dip
whose width (FWHM) was measured to be approximately 130 MHz which is in
rough agreement with the theoretical value of the power broadened linewidth.
Note the absence of the second Lamb dip which should have appeared as the
second mode crossed the gain center. In a real laser, an infinite string of longitu-
dinal modes exists. As a mode on one side of the gain curve is tuncd bevond the
lasing region. the next mode on the other side of the gain curve enters the lasing
region and begins to lase. Unlike the behavior of a real laser, the theory does not
account for the replacement of the first mode as it passes out of the gain region.

Pictured in Figure B.4 is the reinforced hole-burning minimum and a Lamb dip,
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but as tuning progresses, a new mode begins to lase causing the intensity to

increase and smear out the second Lamb dip which is predicted by the two-mode

theory.
300
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Figure B.4: Recorder trace of the photodetector output exhibiting the mutually-
reinforced hole-burning minimum as the PZT-mounted cavity mirror
is translated by a ramp signal. See the text for explanation.

Although the theoretical intensity curve shows the multimode dip to be
slightly deeper than the [.omb dip, the disparity is much more prononnced in the
experimental trace. This is likely due to the difficulty in accurately defining all
the parameters used in the theoretical model. especially the single-pass gain and

the mirror reflectivities, both of which significantly affect the output intensity.
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The qualitative character of the theoretical curve, however, can be seen to be con-
sistent with the experimental observations. As was pointed out, the multimode
dip should be observable for any number of modes symmetrically placed about the
line center, but the difficulties associated with stabilizing more modes in a longer

cavity and the resultant higher amplitude noise precludea its observation.

A laser oscillating in multiple longitudinal modes in a standing-wave cavity
containing a Doppler-broadened medium exhibits a dip in the intensity tuning
curve in addition to the more familiar Lamb dip. The existence of the dip has
been verified both analytically and experimentally. Although many newer theories
describing lasers have been developed, this experimental verification shows that
Lamb’s theoretical model accurately predicts some aspects of the behavior of two-

mode as well as single-mode lasers.




Appendix C: Passive Mode Analysis of Three-Mirror Fabry-Perot Resonators

This appendix will examine the mode structure of the three—mir.ror optical
resonator used for the coupled lasers in this dissertation reasearch. Section A
presents the field equapions describing general three-mirror interferometers. In sec-
tion B, the conservation-of-energy condition is applied Fabry-Perot interferome-
ters to derive the transmission characteristics and resonant modes for the inter-
ferometers acting as a passive filters. The equations are solved for two- and
three-mirror resonators to benchmark the t,he;ry. In section C, the field equations
are solved for the analysis of coupled laser resonators. First, solutions are
obtained for the resonant modes and the field distributions for the case of the cou-
pled resonators with a gain medium in only one subcavity. The case of the cou-
pled resonators with a gain medium in each of the two subcavities is studied next.
Due to the non-uniqueness that exists in the threshold conditions ( i.e., the thres-
hold gains for the two gain media are not uniquely determined by the cavity reso-
nance conditions alone when there are two gain media available in the system),
the system is solved for the special case of imposing the condition of equal gains

in both subcavities.

A. Field Equations for Three-Mirror Interferometers

In 1986, Van de Stadt and Muller 3* applied conservation-of-energy boundary
conditions which are usually used in the study of multilayer dielectric films to

multimirror interferometers to analyze the resonant modes and transmission pro-
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perties of such a device. In the treatment, they derived a compact matrix muiti-
plication to model any number of partially reflecting mirrors. While concise and
convenient, their analysis is limited in versatility and can only be applied to
multi- mirror cavities used as a filter rather than as a laser cavity, since the field
distributions within the cavity cannot be evaluated. Also, their theory cannot be
used to analyze any two-dimensional resonators such as the Fox-Smith cavity 34,
The theory presented in this chapter removes these limitations by generalizing
Van de Stadt and Muller’'s method. The generalization makes it possible to deter-
mine the relative intensity of the circulating complex fields at all the partially
reflecting mirrors and solves for the resonant modes of the multimirror interferom-
eter and the threshold gain for laser oscillation. The solutions identify the
amount of gain needed to sustain steady-state oscillations (threshold gain), the
relative strength of the cavity intensities, and the resonance frequencies
corresponding to the longitudinal modes of the composite resonators. Iknowledge
of the the field amplitudes and resonant frequencies should allow experimentalists
to tailor their laser cavity configurations to match as closely as possible the condi-
tions necessary to initiate phase locking (i.e., all lasers oscillating on the same fre-

quency with identical phases).

Consider the three-mirror resonator depicted in Figure C.1. Each of the elec-
tric fields in the figure (A-G) must saitsfy conservation-of-energy requirements.
Therefore, the field leaving a mirror in a particular direction is composed of the
sum of the waves transmitted through and reflected from the mirror (modified by
the appropriate phase shifts and single-pass gains). For example, field E is equal

to the transmission of C through mirror (2) after being multiplied by the single-




pass amplitude gain g and delaved by the phase associated with length L,. plus
the reflected portion of F which encounters the single-pass amplitude gain h while
shifted in phase by the optical distance of L, and the 7 phase change upon

reflection at mirror (2).

A C @ E SO c
> >

—~~
—bd
~—

<t <
B D - Fo

r,t, rzk r;,t;
L, L

Figure C.1: Fields, phases, mirror reflectivities and transmissivities. and round
trip gains for a three mirror cavity.

The optical thicknesses of the mirror substrates are ignored since they can be
compensated by adjusting the cavity lengths, but the direction in which the
reflective coating on the substrate faces is important because it determines which
waves receive an additional 7 phase change upon reflection off that interface.
Claiming to obviate the need for such a distinction, Van de Stadt and Muller
embed their reflective surfaces in media with equal refractive indices on both sides

thereby eliminating the necessity of tracking the phase changes. That construct is
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artificial since there must be different indices on each side of an interface for
reflection to occur, but the bookkeeping involved would spoil the symmetry of

Van de Stadt and Muller’s asthetically pleasing matrix multiplication.

A set of linear equations can be written for each electric field in terms of the

others:

B=rA+1ty De'’ (C.1.a)
C=tA+rg D't (C.1.b)
D =ryg Ce'™ + toh Fe'® (C.1.c)
E =ty Ce'™ 4 ryh Fc;'.(‘s”' ™) (C.1.d)
F =r3h Ee'(2* ) (C.l.e)
G = tgh Ee'® (C.1.0)

T 27 . N .
where §; = QTLl and 6, = ——>\—L2. From this set of six linear equations, a

number of different properties of the three-mirror resonator can be determined by

instituting the appropriate intial conditions.

B. Application to Filters

The system of equations (C.l.a-f) can be used to analyze the three-mirror
interferometer as a passive filter. First, consider the familiar case of the two-

mirror Fabry-Perot interferometer which is a limiting case of the three-mirror




Fabry-Perot resonator when r, =0 and g = h = 1.0. To accomplish this, the

system of equations is solved for B and G in terms of A for this situation and the

results are:

B _ . t1273ei2(6l + 65) ©2)
=y - n <
A 1 — 71736‘2(61 + 62)

I - 1 — rlroei"’(a‘ + &) (C'S)

which are readily recognizable as the expressions for the reflection and transmis-
sion coefficients of the two mirror Fabry-Perot interferometer normally derived

using amplitude splitting summations.

For the case of the passive three-mirror cavity (as a filter), let g = h = 1.0.

The solutions are

B tlg"'f_)ei?&l(l - r2r3e'.26"’) - t12t22r3e'.(26‘ + 26)

A T 126, 126, o 1(28, + 206, (C4)
(1 + rlr2e )(1 - T2T3€ ) - T1T3t.2 (4

G bytotge it

' 26, (26, + 26
A (1 + ’1738'26‘)(1 — rarze’ ) — Tx’stzge‘( bt 2

which collapse to the equations derived by Van de Stadt and Muller when their
interfacial phase condition is substituted into the expressions. As required. the
intensities of the transmitted and reflected beams are complimentary to each other
indicating energy is conserved, but when both outside mirrors have the same

reflectivity (mirrors (1) and (3) of Figure C.1), the intensity transmittance of the
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resonator (acting as a filter) is governed exclusively by the intensity transmittance
of the center mirror. The transmission peaks are spaced at the free spectral range

of the super cavity

c
Dupsp = AL, +Ly) (C.6)

Figure C.2 shows the intensity curves for the transmitted and reflected beams
with 72 =732 =09, r,2=0.5,and L, =L, =1.0m. When L, # Lo, a
sinusoidal envelope is superimposed on top of the mode structure which further
discriminates against selected modes depending on the length mismatch between
the two cavities. To achieve an intensity throughput of 1.0, the values of the mir-
ror reflectivities can be manipulated to meet such a requirement. Mirrors of

r2 = 0.6, 7,2 = 0.5, and r4* = 0.9, for example, result in a peak throughput of
0.991. Other filtering characterisitics were examined in detail by Van de Stadt

and Muller .
C. Application to Coupled Laser Resonators

Despite some fascinating peculiarities of multimirror cavities used as optical
filters, of more interest to the laser resonators community are the resonant mode
structure and the threshold gain required to sustain a steady-state oscillation for a
gain medium placed in the cavity. To build a deeper understanding of the charac-
teristics of three-mirror Fabry-Perot lasers, the system is first examined with a

gain medium in only one side of the resonator. Second, the more pertinent case of

gain medium in both cavities will be discussed.
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Figure C.2: Normalized reflected and transmitted intensities for a three mirror
cavity plotted as a function of frequency with the two end mirrors
of 90% reflectivity and the center mirror of 50% reflectivity.

To demonstrate the strength of the present treatment, it was applied to the
Fox-Smith cavity whose solution was derived by Smith 2 using amplitude split-
ting arguments. With the assurance that both treatments yielded identical results
for the round trip gain, conservation-of-energy boundary conditions were deter-
mined to be suitable for use with the three-mirror cavity. For the analysis of
laser resonators, the field A is set identically to zero since the fields are internally
generated from the gain medium. Considering the case in which a gain medium is

placed only in the left cavity, h is set equal to one and the set of equations

(C.1.a-f) is solved for g, yielding
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1 — 2r,yr5c08(26,) + (r473)°

(r1ra)® + 2r *rorgeos(26,) + (ryry)?

lg I* = (C.7)

Similarly, by setting g = 1.0, the system can be solved for the case where a gain

medium is placed in the right side of the cavity. The results are:

1 + 2rroc08(26)) + (ry 7o)

h|?=
| (rira)® + 2r rorg2eos(268) + (rorg)?

(C.8)

These equations specify the minimum single-pass gain the medium must provide
to sustain a steady-state field distribution, t.e., the threshold gain. Also, the fre-
quencies at which g and h become real constitute the resonant modes. Plotting
lg |? and |A |2 as functions of frequency (Figure C.3) shows that the threshold
gains are equal for both cases, but the mode resonances are out of phase with each
other by exactly 90 degrees because of the orientation of the central mirror. Rev-
ersing the physical direction of the middle mirror exchanges the mode structures
of the two gain expressions. Perhaps more interesting is that the resonances are
determined solely by the length of the cavity in which the gain resides although
the threshold gain depends on all mirrors. This means that additional cavities
coupled to the one containing the gain medium do not affect the free spectral
range when the medium is in only one subcavity. In real laser systems, the
steady-state field intensity will be at the point where the gain saturates to the
threshold level with the relative intensities of the various beams being determined

by the resonance conditions.

For coupled lasers with gain media in both cavities, each resonator should. in

general, satisfy different gain requirements. Solving equations (C.1) with arbitrary
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Figure C.3: Round trip gain plotted as a function of frequency showing the
spacing of the resonant modes magnitudes with the gain medium in
the left- or right- hand cavity only.

h results in a single equation with two unknowns:

1 + rlrgge‘26’ = rlr3ghe"(?‘6‘ *2h) 4 rQrgke'.‘M2 (C.9)
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This illustrates one operational aspect of coupled lasers; the threshold gains are

not uniquely determined, meaning that steady-state laser operation can be
attained for many combinations of gain g and h. Physically, this implies that no
matter what the threshold gain, g, is, a threshold gain, h, for the other medium
can always be found which can sustain steady-state oscillation, and vice versa.
Consequently, an additional condition must be imposed in order to solve the equa-
tions uniquely. A reasonable additional condition would be to calculate the gain
when both subcavities are oscillating at the same frequency. By setting g = h,
solutions are found only for those frequencies which oscillate simultaneously in

both cavities.

Once again, the system of equations (C.1.a-f) is solved to eliminate all the

fields producing a complex quadratic equation in the round trip gain, g:

0 r —_ —
g4+g' {__e—x-él 2 126, | 1 e l(..61+..52)=0 (C.].O)
T T3 T3
with roots
g% = Be'? (C.11)
where
1|’ b Lr
3= {— + - cos(26, — 26,) (C.12)
4 1r, r 4r % 2 TT3
2
1
7 28, 5 (5 + ) 3 L cos(2F, 5 (8 + )
0y =+ ) el COS{ 2 e )
+ errs COS( 2] +( 1 ..) + 27'127'3 O l+ 1 2
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b= ry(rt + rg?) +4r Prg¥(2 = r9%)% + 25 %rytra%cos(46, — 46,)  (C.13)

+ 4r r3ro3(2 — ro?) (1% + r3?)cos(28, — 26;)

T2 . T2 o op = 0%
?—sm%l — 7——3111252 + - sin(6; + 6,)
T
§ = tan™!{ TI T" — » (C.14)
—icos252 - —2-cos:2<5l + cos(d; + 9,)
73 ™1 T173

the field amplitude gain for a round trip through the entire cavity is

gt = FPe'? (C.15)

Despite the daunting complexity of these expressions, the actual solutions for the
gain become quite transparent. In one special case when r| =rzand L; = L,
(i.e., 6, = &), the resultant field amplitude gain reduces to

—i48,

1
gt = —¢ (C.18)
Tl'

In order to constitute a mode of the multimirror cavity, after every round
trip, the adjustment in phase the medium has to provide to the fields must be
some integer multiple of 27 for the fields to exactly reproduce themselves. There-
fore, only those frequencies at which 26 is an integer multiple of 27 a.r;e modes.
Figure C.4 graphs 20/ 27 as a function of frequency for r; = rj and the two cavi-
ties mismatched in length by 109%. Any horizontal slice through the curve at
some integer value determines which frequencies can oscillate. In some regions.
there are three distinct frequencies all of which satisfy the conditions imposed

upon g'. The first intersection of the slice ((a) of Figure C.4) correspondes to the
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free spectral range determined by L, + L,, the second intersection, (b},
corresponds to the mode spacing determined by 2L, and the third to that of 2L.,.
There are three different frequencies because a wave can encounter a round trip
gain of g! in three ways: one total round trip through the resonator, two round
trips through the left-hand cavity, or two round trips through the right-hand cav-
ity. When the composite lasers oscillates at the proper frequency, (d), all three
combinations of the round trip gain are at exactly the same frequency at the same

time.

The most surprising but satisfving result is that the magnitude of the round
trip fleld amplitude gain, g*, is equal to 1/ r12 for all frequencies. For a two-
mirror cavity, the round trip gain required of the medium to compensate for cav-
ity losses is determined only by the transmission losses through the mirrors. The

same condition is true for the three mirror cavity.

Once the magnitude of gt is found, the value is substituted into the field
equations (C.l.a-f), and the associated intensities are then computed relative to
one of the other intensities. Each field is solved in terms of C, C is chosen to be
1.00, and then the relative intensities are calculated by multiplying each field
expression by its respective complex conjugate. The values of the intensities for
two 90°¢ reflective end mirrors with a range of coupling mirrors are recorded in

Table 1.6 in chapter [V along with the interpretation of those results.

D. Conclusion

Conservation of energy boundary conditions were applied to the electric fields
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Figure C.4: Phase angle § / 27 plotted as a function of frequency showing the
three oscillating frequencies corresponding to (a) L, + L.. (b) 2L,
(¢) 2L, and (d) when all three frequencies are equal.
incident upon each interface of a three-mirror Fabry-Perot resonator to calculate
the resonant behavior and relative intensities of the circulating beams. The
method was used to rederive the resonance and transmission properties of two-
and three-mirror Fabry-Perot interferometers and also -to determine the round trip
gain the laser media must supply in order to sustain steady-state oscillation for
gain in each subcavity separately, and identical gain in both cavities. The theory

can analyze any configuration of partially reflecting mirrors. The results from
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two-coupled lasers showed that the imualance of the circulating intensities may
inhibit complete phase locking. More rigorous treatments which include the active
gain media must be conducted to conclusively determine if the imbalance is a true

manifesiation of coupled lasers.
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19. (continued)

substantiated by the fact that the maximum power output was also
achieved at this point, and the appearance of the super cavity
mode spacing verified that the behavior was due to phase locking,
A passive cavity mode, analysis of the three-mirror Fabry-Perot
resonator showed that the system oscillated on the composite
resonator frequency as well as the frequencies of both sub-

resonators. <
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