
UNCLASSIFIED .
SECURITY CLASSIFICATIONg 0F THIS PAGI (WhenDoto Entered) ~ jI

i REPORT DOCUMENTATION PAGE rlo ~ or, S
1. REPORT UL04BLR 12. 60VT ACCESSION NO. 3. IECIPIENI'S CATALOG NUMBER

4. TITLE (ailSubtltle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report:concurren 18 Aug. 1989 to 18 Aug. 1990
Computer Corporation, MC-Ada ,Version 1.2, Concurrent 6600
with MC68030 CPU, Lightning Floating Point (Host & Target) 6. PRFORMINGbRG. REPORT NUMBER

Ag90iiS 10131 ,,

I. AUTNOR(s) 8. CONTRACT OR 6RANT NUMBER(s)

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

t. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA & WORE UNXT NUMBERS

National Institute of Standards 
and Technology

Gaithersburg, Maryland, USA

It. CONTROLLING orct NAME AND APOREss 1. REPORT DATE
Aa Joint Program Office _
United States Department of Defense 1.'...o At
Washington, DC 23301-3081

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (ofthis reprt)
UNCLASSIFIED

National Institute of Standards and Technology '5&e JJCLAS JFICATIONDOW%,RAIN.'
Gaithersburg, Maryland, USA N/A

16. DISTRIBUTION STATEMENT (of thiReport)

Approved for public release; distribution unlimited.

17. OISTRIBJTIO STATEMENT (of the obsnr~rt enteredmnBlockO ifd, H'erent from Report)

UNCLASSIFIED D",

13. SUPPEMENTARI NOTES D I.
DEC 04 1989

10. KEYWORDS (Continue On reverse sde if fecessory endidentify by block number) S
Ada Programming language, Ada Compiler Validation Summary Report, Ada

Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Con:,ue on reverse side ,fneceszary 1nd idenmtf by block number)

Concurrent Computer Corporation, MC-Ad Version 1.2, Gaithersburg, MD, Concurrent 6600

with MC68030 CPU, Lightning Floating Point (Host & Targt), ACVC 1.10.

AD-A214 907
D "'" 1473 tim -.. . . .

I JAN 73 S/4 0102LF-014-t0 UNCLASCIfiD
SECURITY CLASSIFICATION OF INIS PAGE (whaenot*Enitered)8i/ 59



AVF Control Number: NIST89CON570 2 1.10
DATES COMPLETED PRE-VAL 07-13-89
DATES COMPLETED ON-SITE 08-18-89

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890818S1.10131
Concurrent Computer Corporation

iC-Ada Version 1.2

Concurrent 6600 with MC68030 CPU, Lightning Floating Point Host
and

Concurrent 6600 with MC68030 CPU, Lightning Floating Point Target

Completion of On-Site Testing:

August 18, 1989

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081



Ada Compiler Validation Summary Report:

Compiler Name: MC-Ada Version 1.2

Certificate Number: 890818S1.10131

Host: Concurrent 6600 with MC68030 CPU, Lightning Floating

Point under RTU Version 5.0

Target: Concurrent 6600 with MC68030 CPU, Lightning Floating
Point under RTU Version 5.0

Testing Completed August 18, 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada alidaton Fa i yAda Valiation Facility
Dr. David K.' Jef rsol Mr. L. Arnold Johnsq-/
Chief, Information Systems Manager, Software Standards
Engineering Division Validation Group
National Computer Systems Engineering Division

Laboratory (NCSL) National Computer Systems
National Institute of Laboratory (NCSL)
Standards and Technology National Institute of

Building 225, Room A266 Standards and Technology
Gaithersburg, MD 20899 Building 225, Room A266

Gaithersburg, MD 20899

Ada V lidation Organization
Dr. John F. Kramer

Institute for Defense Analyses

Alexandria VA 22311

Ada Joint Program Office

Dr. John Solomond

Director
Department of Defense
Washington DC 20301



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . ... 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT ........ .. 1-2
1.3 REFERENCES .......... .................... 1-3
1.4 DEFINITION OF TERMS ...... ............... .1-3
1.5 ACVC TEST CLASSES ...... ................ .1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED ....... ............... 2-1
2.2 IMPLEMENTATION CHARACTERISTICS ... .......... .2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS ....... ................... .3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS ........ . . 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER .. ........ .3-2
3.4 WITHDRAWN TESTS ...... ................. .3-2
3.5 INAPPLICABLE TESTS ............................ 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-5
3.7 ADDITIONAL TESTING INFORMATION ... .......... .3-5
3.7.1 Prevalidation ....... ................. .3-6
3.7.2 Test Method ....... .................. .3-6

3.7.3 Test Site ....... ................... .3-7

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY Acoession For
Concurrent Computer Corporation NTIS G RA&I

DTIC TAB
Un&.nxounced

($9 AvalllIb±11t, Codes

- Av11 8nd/oi
Di(al, Ispecial.



CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR)? describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability .(*V An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.-,

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between

implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. > The purpose of validating is to ensure
conformity of the compiler\ to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects ille al language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six qlasses of tests are used. These tests are
designed to perform checks /at compile time, at link time, and during
execution.

k___- --- /

1-1



1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

On-site testing was completed August 18, 1989 at Westford, MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of thip validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Croup
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

1-2



Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

Alt-::andria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Oftice, i JaLiuary 1937.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada

programs that tests the conformity of an Ada compiler to

the Ada programming language.

Ada An Ada Commentary contains all information relevant to

the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Prociedures and

Guidelines.

AVO The Ada Validation Organization. The AVO has oversight

authority over all AVF practices for the purpose of

maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

technical support for Ada validations to ensure

consistent practices.

Compiler A processor for the Ada language. In the context of

1-3



this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the

1-4



program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is

passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada

programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of

identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D 'est fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check

implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during ccmpilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is

aztempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECK FILE is used to check the contents of text files written by some

1-5



of the Class C tests for Chapter 14 of the Ada Standard. The operation

of REPORT and CHECKFILE is checked by a set of executable tests. These

tests produce messages that are examined to verify that the units are

operating correctly. If these units are not operating correctly, then

the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended

to ensure that the tests are reasonably portable without modification.

For example, the tests make use of only the basic set of 55 characters,

contain lines with a maximum length of 72 characters, use small numeric

values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values

that require the test to be customized according to

implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showing that the test is inapplicable

to the implementation. The applicability of a test to an

implementation is considered each time the implementation is validated.

A test that is inapplicable for one validation is not necessarily

inapplicable for a subsequent validation. Any test that was determined

to contain an illegal language construct or an erroneous language

construct is withdrawn from the ACVC and, therefore, is not used in

testing a compiler. The tests withdrawn at the time of this validation

are given in Appendix D.

1-6



CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: MC-Ada Version 1.2

ACVC Version: 1.10

Certificate Number: 890818S1.10131

Host Computer:

Machine: Concurrent 6600 with MC68030 CPU, Lightning

Floating Point

Operating System: RTU Version 5.0

Memory Size: 8MBytes

Target Computer:

Machine: Concurrent 6600 with MC68030 CPU, Lightning
Floating Point

Operating System: RTU Version 5.0

Memory Size: 8MByes

2-1



2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implemer.-ation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Universal integer calculations.

(1) Ar implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT
f?, Implementation processes 64-bit integer calculations.
(See tests D4AO02A, D4AO02B, D4AO04A, and D4A004B.)

c. Predefined types.

(1) This implementation supports the additional predefined
types SHORTINTEGER, TINYINTEGER, SHORTFLOAT in the
package STANDARD. (See tests B86001T..Z (7 tests).)

d. Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the lanbuage.
While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results indicate
the following:

2-2



(1) All of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised for pre-defined integer comparison,
pre-defined integer membership, LARGEINT comparison,
LARGEINT memLership and SMALLINT comparison and no
exception is raised for SMALLINT membership when an
integer literal operand in a comparison or membership test
is outside the range of the base type. (See test C45232A.)

(5) CONSTRAINT ERROR is raised by membership test "l.OE19 in
LIKEDURATIONM23" and "2.9E9 in MIDDLEM3" when a literal
operand in a fixed-point comparison or membership test is
outside the range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..K (11

tests).)

e. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..K (11 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..K (11 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AO14A.)

f. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

(1) Declaration of an array type or subtype declaration with

2-3



more than SYSTEM.MAX INT components raises no exception.

(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTZ-GER'LAST - 2 components. (See test C36202A.)

(3) NUMERICERROR is raised when 'LENGTH is applied to an array

type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR when the array type is
declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments This
implementation raises NUMERIC ERROR when the array type is
declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

g. Discriminated types.

(1) During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that
is used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

(2) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the

expression's subtype is compatible with the target's
subtype. (See test C52013A.)

2-4



h. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. (See test E43211B.)

i. Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

j. Generics.

(1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CAI012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAI012A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

2-5



(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OIIA.)

k. Input and output.

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE220ID, and EE220IE.)

(2) The package DIRECT 10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE21OlH,
EE240ID, and EE240IG.)

(3) Modes IN FILE and OUTFILE are supported for SEQUENTIAL_10.
(See tests CE2102D..E, CE2102N, and CE2102r.)

(4) Modes IN FILE, OUTFILE, and INOUTFILE are supported for
DIRECT_10. (See tests CE2102F, CE21021..J (2 tests),
CE2102R, CE2102T, and CE2102V.)

(5) Mode INFILE is supported for the operation of CREATE for
text files. (See test CE3102E.)

(6) Modes INFILE and OUTFILE are supported for text files.
(See tests CE3102E and CE31021..K (3 tests).)

(7) RESET and DELETE operations are supported for
SEQUENTIAL_10. (See tests CE2102G and CE2102X.)

(8) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

(9) RESET and DELETE operations are supported for text files.
(See tests CE3102F. .G (2 tests), CE3104C, CE311OA, and
CE3114A.)

(10) Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

(11) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(12) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(13) Temporary text files are given names and deleted when
closed. (See test CE3112A.)

(14) More than one internal file can be associated with each

2-6



external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

(15) More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(16) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..B (2 tests), CE3111D..E (2 tests), and
CE3114B.)

2-7



CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF

determined that 329 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for

201 executable tests that use floating-point precision exceeding that

supported by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 1992 17 28 46 3344

Inapplicable 0 6 323 0 0 0 329

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1



3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 331 137 36 252 292 299 3344

Inapplicable 14 72 135 3 0 0 5 1 0 0 0 77 22 329

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A

CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A8lG CD2A83G CD2A84M
CD2A84N CD2Bl5C CD2DIlB CD5007B CD50110 CD7105A

CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D

ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily

inapplicable for a subsequent attempt. For this validation attempt, 329

tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L. .Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

3-2



C45241L..Y (14 tests) G45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L.Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35702B and B86001U are not applicable because this implementation
supports no predefined type LONGFLOAT.

c. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG-INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD71OIF

d. C45531M..P (4 tests), C45532M..P (4 tests) are not applicable
because this implementation does not support a 48 bit integer
machine size.

e. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

f. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT or
SHORTFLOAT.

g. C86001F is not applicable because, for this implementation, the
package TEXTIO is dependent upon package SYSTEM. This test
recompiles package SYSTEM, making package TEXTIO, and hence
package REPORT, obsolete. A link-time error is generated.

h. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

i. CDI009C, CD2A41A, CD2A41B, CD2A41E, CD2A42A, CD2A42B, CD2A42C,
CD2A42D, CD2A42E, CD2A42F, CD2A42G, D2A42H, CD2A421, CD2A42J (14
tests) are not applicable because this implementation does not
support 'SIZE representations for floating-point types.

j. CD2A61I..J (2 tests) are not applicable because this implementation
does not support size specifications for array types that imply
compression of component type when the component type is a
composite ot floating point type. This implementation requires an
explicit size clause on the component type.

k. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are inapplicable
because this implementation does not support size clauses for
access types. Access types are represented by machine addresses
which are 32 bits.

1. CD2A91A..E (5 tests) are not applicable because this implementation

3-3



does not support the 'SIZE representation clauses for task types.

m. CD5003B, CD5003C, CD5003D, CD5003E, CD5003F, CD5003G, CD5003H,
CD5OIlA, CD5OllB, CD5011C, CD5011D, CD5011E, CD5011F, CD5011G,
CD5OIIH, CD5011L, CD5011M, CD501N, CD5011Q, CD5OIIR, CD5012A,
CD5012B, CD5012C, CD5O12D, CD5OI2E, CD5OI2F, CD5OI2G, CD5012H,
CD5012I, CD5012L, CD5013B, CD5013D, CD5013F, CD5013H, CDSO!3L,
CD5OI3N, CD5OI3R, CD5OI4T, CD5014U, CDSOI4V, CD5OI4W, CD5014X
(42 tests) are not applicable because this implementation does not
support 'ADDRESS clauses where a dynamic addresses is applied to a
variable requiring an initialization. The AVO has ruled that these
tests may declared to be inapplicable.

n. CD5012J, CD5013S, CD5014S are not applicable because this
implementation does not support 'ADDRESS clauses for tasks. The
host system linker does not support location of object segments or
of data items.

o. CE2102D is inapplicable because this implementation supports CREATE
with INFILE mode for SEQUENTIAL_10.

p. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIALIO.

q. CE2102F is inapplicable because this implementation supports CREATE
with mode INOUTFILE for direct access files.

r. CE21021 is inapplicable because this implementation si'psrts CREATE
with INFILE mode for DIRECTIO.

S. CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECT_10.

t. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIAL_10.

U. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

V. CE2102P is inapplicable because this implementation supports -PEN
with OUTFILE mode for SEQUENTIALIO.

W. CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIALIO.

x. CE2102R is inapplicable because this implementation supports OPEN
with mode INOUTFILE for direct access files.

y. CE2102S is inapplicable because this implementation supports RESET
with INOUT FILE mode for DIRECTI0.

Z. CE2102T is inapplicable because this implementation supports OPEN

3-4



with INFILE mode for DIRECTIO.

aa. CE2102U is inapplicable because this implementation supports RESET
with IN-FILE mode for DIRECTIO.

ab. CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECT_10.

ac. CE2102W is inapplicable because this implementation supports RESET
with OUTFILE mode for DIRECTIO.

ad. CE3102E is inapplicable because text file CREATE with IN_FILE mode

is supported by this implementation.

ae. CE3102F is inapplicable because text file RESET is supported by
this implementation.

af. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

ag. CE31021 is inapplicable because text file CREATE with OUTFILE mode
is supported by this implementation.

ah. CE3102J is inapplicable because text file OPEN with INFILE mode is
supported by this implementation.

ai. CE3102K is inapplicable because text file OPEN with OUTFILE mode
is not supported by this implementation.

aj. CE3115A is inapplicable because this implementation does not
support RESET to mode OUT FILE when another internal file is
associated with the same external file which is opened to mode
INFILE.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

No modifications were required for any tests.

3.7 ADDITIONAL TESTING INFORMATION

3-5



3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the MC-Ada Version 1.2 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the MC-Ada Version 1.2 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration
in which the testing was performed is described by the following
designations of hardware and software components:

Host computer: Concurrent 6600 with MC68030 CPU,
Lightning Floating Point

Host operating system: RTU Version 5.0
Target computer: Concurrent 6600 with MC68030 CPU,

Lightning Floating Point
Target operating system: RTU Version 5.0
Pre-linker: a.ld
Linker: ld

A magnetic tape containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precision was taken on-site
by the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to
the magnetic tape.

TEST INFORMATION

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the Concurrent 6600 with MC68030 CPU, Lightning
Floating Point, and all executable tests were run on the Concurrent 6600
with MC68030 CPU, Lightning Floating Point. Results were printed from
the host/target computer.

The compiler was tested using command scripts provided by Concurrent
Computer Corporation and reviewed by the validation team. See Appendix
E for a complete listing of the compiler options for this
implementation. The compiler options invoked during this test were:

-M -01 (invoked by default)

Tests were compiled, linked, and executed (as appropriate) using a

3-6



single computer. Test output, compilation listings, and job logs were

captured on magnetic tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Westford, MA and was completed on August 18,
1989.

3-7



APPENDIX A

DECLARATION OF CONFORMANCE

Concurrent Computer Corporation has submitted the following
Declaration of Conformance concerning the MC-Ada Version 1.2.

A-I



Appendix A

Declaration of Conformance

Compiler Implementer: Concurre.,t Computer Corporation

Ada Validation Facility: U.S. Department of Commerce
National Institute of Standards and Technology
Gaithersburg, MD 20899

ACVC Version: 1.10

Base Configurations

Base Compiler Name: MC-Ada Version 1.2

Host Architecture: Concurrent 6600 with MC68030 CPU,
Lighming Floating Point, running
RTU Version 5.0

Target Architecture: Same

Base Compiler Name: MC-Ada Version 1.2

Host Architecture: Concurrent 6600 with iviC68030 CPU,
MC68882 Floating Point, running
RTU Version 5.0

Target Architecture: Same



Derived Compiler Registration

Base Compiler Name: MC-Ada Version 1.2

Host Architecture: Concurrent 6000 series with MC68030 CPU,
Lightning Floating Point, running
RTU Version 5.0

Target Architecture: Same

Base Compiler Name: MC-Ada Version 1.2

Host Architecture: Concurrent 6000 series with MC68030 CPU,
MC68882 Floating Point, running
RTU Version 5.0

Target Architecture: Same

Base Compiler Name: MC-Ada Version 1.2

Host Architecture: Concurrent 5000 series with MC68020 CPU,
Lightning Floating Point, running
RTU Version 5.0

Target Architecture: Same

Base Compiler Name: MC-Ada Version 1.2

Host Architecture: Concurrent 5000 series with MC68020 CPU,
MC68881 Floating Point, running
RTU Version 5.0

Target Architecture: Same



Implementer's Declaration

We, the undersigned, representing Concurrent Computer Corporation have implemented
no deliberate extensions to the Ada Language Standard ANSIMJL-STD-1815A in the compiler
listed in this declaration. We declare that Concurrent Computer Corporation is the owner of
record of the Ada language compiler listed above and, as such, is responsible for maintaining
said compiler in conformance to ANSIIMIL-STD-1815A. All certificates and registrations for
the Ada language compiler listed in this declaration shall be made only in the owner's name.

Clark D'Elia
Director, Software Development

B rucle Lutz
Senior Engineer
Languages

Owner's Declaration

We, the undersigned, representing Concurrent Computer Corporation take full responsi-
bility for implementation and maintenance of the Ada compiler listed above, and agree to the
public disclosure of the final Validation Summary Report. We further agree to continue to com-
ply with the Ada trademark policy, as defined by the Ada Joint Program Office. We declare that
all of the Ada language compiler listed, and their host/target are in compliance with the Ada
Language Standard ANSIIMIL-STD-1815A. We have reviewed the Validation Summary
Report for the compiler and concur with the contents.

Clark D'Elia
Director, Software Development

Brce Lutz
Senior Engineer
Languages



APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the MC-Ada Version 1.2
compiler, as described in this Appendix, are provided by Concurrent
Computer Corporation. Unless specifically noted otherwise, references in
this appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;
type FLOAT is digits 15 range

-1.79769313486232E308 .. 1.79769313486232E308;
type SHORTFLOAT is digits 6 range -3.40282E38 .. 3.40282E38;

type DURATION is delta 1.OE-3 range -2.147483648E6 .. 2.147483648E6;

end STANDARD;

B-1



ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1.1. INLINEONLY Pragma
The INLINEONLY pragma, when used in the same way as progma INLINE, indicates to the compiler
that the subprogram must always be inlined. This pragma also suppresses the generation of a callable ver-
sion of the routine which save code space.

1.2. BUILTIN Pragma
The BUILT_IN pragma is used in the implementation of some predefined Ada packages, but provides no
user access. It is used only to implement code bodies for which no actual Ada body can be provided, for
example the MACHINE-CODE package.

1.3. SHARE-CODE Pragma
The SHARE-CODE pragma takes the name of a generic instantiation or a generic unit as the first argument
and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed immedi-
aiely at the piace of a deciararve item in a declarative part or package specification, or after a library unit
in a compilation, but before any subsequent compilation unit.
When the first argument is a generic unit the pragma applies to all instantiations of that generic. When the
first argument is the name of a generic instantiation the pragma applies only to the specified instantiation,
or overloaded instantiations.
If the second argument is TRUE the compiler will try to share code generated for a generic instantiation
with code generated for other instantiations of the same generic. When the second argument is FALSE
each instandation will get a unique copy of the generated code. The extent to which code is shared
between instantiations depends on this pragma and the kind of generic formal parameters declared for the
generic unit.
The name pragma SHAREBODY is also recognized by the implementation and has the same effect as
SHARE-CODE. It is included for compatability with earlier versions of VADS.

1.4. NO_ IMAGE Pragma
The pragma suppresses the generation of the image array used for the IMAGE attribute of enumeration
types. This eliminates the overhead required to store the array in the executable image.

1.5. EXTERNAL NAME Pragma
The EXTERNALNAME pragma takes the name of a subprogram or variable defined in Ada and allows
the user to specify a different external name that may be used to reference the entity from other languages.
The pragma is allowed at the place of a declarative item in a package specification and must apply to an
object declared earlier in the same package specification.

1.6. INTERFACENAME Pragma
The INTERFACENAME pragma takes the name of a variable defined in another language and allows it
to be referenced directly in Ada. The pragma will replace all .ccurrences of the variable name with an
external reference to the second, linkargumenL The pragma is allowed at the place of a declarative item
in a package specification and must apply to an object declared earlier in the same package specification.
The object must be declared as a scalar or an access type. The object cannot be any of the following:

a loop variable,



a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICIT-CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is ON.

2. Implementation of !Predeflned Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either functions
or procedures. The .ypes of parmeters and the res Ut tv fo r funcuons must be scalar, access or the
predefined type ADDRESS in SYSTEM. Record and array objects can be passed by reference using the
ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORYSIZE
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.8. PACK
This pragma will cause the compiler to choose a non-aligned representation for composite types. It will not
causes objects to be packed at the bit level.

2.9. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED

This pragma is recognized by the implementation but has no effect.



2.12. STORAGE-UNIT
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS
This pragma is implemented as described, except that RANGE-CHECK and DIVISIONCHECK cannot
be supressed.

2.14. SYSTEM-NAME
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
-nodeif-vt by mpa_-s of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address of the first of the storage units allocated to P. For a subpro-
gram, package, task unit, or label, it ,% rs to the address of the machine code associated with the
corresponding body or statement. ForM tntry for which an address clause has been given, it refers to the
corresponding hardware interrupt. The attribute is of the type OPERAND defined in the package
MACHINECODE. The attribute is only allowed within a machine code procedure.

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)



4. Specification Of Package SYSTEM

P a.6 
SYSTIDA

type %1^11 is ( maueco.eaa ix

SYSTfoJI" coe tset NAM. :Nm-oC-al

S7U.ACE UNIfT constant ::
H§Q1ORY.1731 constant 16.7772116:

.Sy. ters-Dependent Nomd Numbers

hON-IPT constant :e-2.147_.463_.648;
NRt3LIPT :constant 2-.147-.483.67;
M'iA-DIOI1S constant :.is:
N'AJCNiWTISSA :constant 31;
PINS..DU..A coasnal .tssq1
TIC corns tant 0.0166666;

.Other System-~dependent Declarations

subtype FRICIITY is INTEGER r&ng. 0 .. 99:

NMREC_.SIZI integer :. 64-1024;

typo AWABSI is priute:

NI-DR:constant ADDRESS;

function PHYSICAL.ADASS(I; INWER) return ADDESS:
function ADDR..GT(A. 3: ADDRESS) return BLEAN;
function ADR.T(A. B: ADDRESS) return BOLMN1:
function ADD-G(A. B: ADDESS) return BSDLAf:
Inact ion ADDftJA(A. 3: ADDRESS) return B3OLAK:
function AWDR.DIPP(A. B: ADDRESS) return INTCE:
function 1NC..AD(A: ADRESS: INCR: INTGE) return ADRESS;
(auction DECR.AMRA: ADDR.ESS: MCR: !VTEP) rctu.: AMPMBS:

fnction *>(A. 8: ADDRESS) return BODLEAN reas ADft..GT:
function '<'(A. 3: ADDRESS) return RCDLEAN reasnsa ADDRLT:
function *:i.(A. 3: ADDRESS) return BODLEAS reuas ADDR.G3:
function ""*(A, 3: ADRESS) return BOLEWM rensmse ADDR-1.2
function '-(A. 8: ADDRESS) return INI1ENA reasns 9 ADft..DIPP:
funct ion '+'(A: ADRESS: INCR: IifTEOM) return ADDRESS rension INCR-ACMR
function *-*(A: ADDRESS: DBCR: INTWER) return ADDRESS rens= DCma DR

prasm ink ine(PYSCAL.AUMRES):
pram ink ine(A~m-r);~
prego ink ine(AMR.LT);
prga io3line(ADWftGE):
pragan ink ine(AWDR.LB);
pragin inline(AWR-DIPP):

pragm ink loe(DBCP.MDD):

pr ivat e

t ype ADDRESS is ue integer-,

NDR:conestent ADDRESS :- 0:

end SYSTW4

5 . Restrictions On Representation Clauses

5 .1 . Pragnia PACK
In the absence of pragma PACK record components are padded so as to provide for efficient access by the
target hardware, pragma PACK applied to a record eliminate the padding where possible. Pragma PACK
has no other effect on the storage allocated for record components a record representation is required.

S .2. Record Representation Clauses
For scalar types a represenation clause will pack to the number of bits required to represent the rage of the
subtype. A record representation applied to a composite type will not cause the object to be packed to fit in
the space required. An explicit representation clause must be given for the component type. An error wil
be issued if there is insufficient space allocated.



5 .3. Address Clauses
Address clauses are supported for variables and constants.

5 .4. Interrupts
Interupt entries are not supported.

S .S. Representation Attributes
The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINECODE provides an assembly language interface for the
target machine. It provides the necessary record type(s) needed in the code statement, an enumeration type
of all the opcode mneumonics, a set of register definitions, and a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

CODEn'( opcode, operand (, operand) );

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.
The format is as follows:

CODEN'( opcode, (operand (, operand)));

For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)).

CODE_0'( op => opcode );

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE_CODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINECODE must be static expressions, string
literals, or the functions defined in MACHINECODE. The 'REF attribute may not be used as an argu-
ment in any of these functions.

Inline expansion of machine code procedures is supported.



6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Addre,i Clauses

Address clauses are supported for constants and variables.

S. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of 110 Packages
Instantiations of DIRECT_10 use the value MAX-RECSIZE as the record size (expressed in
STORAGEUN1TS) when the size of ELEMENTTYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENTTYPE'SIZE is very large, MAX-REC-SIZE is used
instead. MAX_RECORDSIZE is defined in SYSTEM and can be changed by a program before instan-
dating DIRECT_10 to provide an upper limit on the record size. In any case the maximum size supported
is 1024 x 1024 x STORAGE_UNIT bits. DIRECTIO will raise USEERROR if MAXREC_SIZE
exceeds this absolute limit.

Instantiations of SEQUENTIALJO use the value MAXRECSIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENTTYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENTTYPE'SIZE is very large, MAXRECSIZE is used
instead. MAXRECORD-SIZE is defined in SYSTEM and can be changed by a program before instan-
tiating INTEGERIO to provide an upper limit on the record size. SEQUENTIALJO imposes no limit on
MAXRECSIZE.

11. Implementation Limits
The following limits are actually enforced by the implementation. It is not intended to imply that resources
up to or even near these limits are available to every program.

11 .1. Line Length
The implementation supports a maximum line length of 500 characters including the end of line character.

11 .2. Record and Array Sizes
The maximum size of a statically sized array type is 4,000,000 x STORAGEUNITS. The maximum size
of a statically sized record type is 4,000.000 x STORAGE-UNITS. A record type or array type declaration
that exceeds these limits will generate a warning message.

11 .3. Default Stack Size for Tasks

In the absence of an explicit STORAGE-SIZE length specification every task except the main program is
allocated a fixed size stack of 102.40 STORAGE-UNITS. This is the value returned by
T'STORAGE-SIZE for a task type T.

11 .4. Default Collection Size

In the absence of an explicit STORAGE-SIZE length attribute the default collection size for an access type
is 100 times the size of the designated type. This is the value returned by T'STORAGE_.SIZE for an



access type T.

11 .5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGEUNITS for objects declared statically within a compi-
lation unit. If this value is exceeded the compiler will terminate tne compilation of the unit with a FATAL
error message.



APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

C-1



ATTACHMENT III

Values Needed as Parameters for the" .TST" Tests

- - MACO. DEFS

-- THIS FILE CONTAINS THE MACRO DEFINITIONS USED IN THE ACVC TESTS.
-- THESE DEFINITIONS ARE FOR:

- C-Ada Version 1.2

-- SMAX-IN_LEN
-- AN INTEGER LITERAL GIVING THE MAXIIM LENGTH PERMITTED BY THE
-- avWILER FOR A LINE OF ADA SOURCE (ODE (NOT INCLUDING AN END-OF-LINE

CHARACTER).
-- USED IN: A26007A
MAX_ IN_LEN 499

-- SBIG-IDI
AN IDEN7IFIER IN WHICH THE NMBER OF CHARACTERS IS AX IN LEN.
USED IN: C23003A C23003B C23003C B23003D B23003E C23003G

-- C23003H C230031 M3003J C35502D C35502F
BIGIDI

AAAA AAA A. . ......... .. .......

-- SBIGQID2
-. AN IDE4TFIER IN WHICI THE .NURSER OF CHARACTERS IS SMAXIN LEN,

DIFFERI?.3 FRCM SBIG_ID1 CZN'LY IN THE LAST CHARACTER.
-- USED IN: C23003A C23003B C23003C B23003F C23003G C23003H
-- C23003I C23003J
BIGID2

AAAAAAAAAAAAAAAAAAAAAAAAAA2

2

-- SBIG-ID3
- N IDE,'TIFIER IN WH-ICH TIE .-NtLER OF CHARACTERS IS SM-X INLON.

-- USED IN: C23003A C23003B C23003C C23003G C23003H C230031
- - C230031
B IO ID3

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/AAAAAAAAAAAAAA44A~AAA,

SBIG ID4
AN IDE 7IFIER IN WHICH THE MNIBER OF CIIARACTERS IS SMAXjNLE.

-- DIFFERING rRCv1 SBIG_'D3 ONLY IN THE MIDDLE CARACTER.
-- USED IN: C23003A C23003B C23003C C23003G C3003H C230031

--3003J
BIGID4

AAAAAAAAA4



A AA AA AAAAAAAAAA AAA A

-SBIG STRINGI
-A STRINKG LITERAL (WITII QUOTZS) 'Al-OSE CATENATION WITH SaIG-STRING2
*(SRIGSTRINGI & SBIGSTRING-) PRODUCES THlE LMIAGE OF SBIG- Dl,
*USED IN: C35502D C35502F

AAAAAAIGAAAAAASTRINGIAAAAAAAAAAAA

-SBIG STRING2
A STRkING LITERAL (WITH QUOTES) 'Al-OSE CATENATION WITH SBIG ISTR ING I

-(SBIG..STRINGI & SBIG-STRING2) PRODUCES THE IMAGE OF SBIG-IDI.
-USED IN: C35502D C35502F

BIG-STRING2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAAAAAAAAAAA AA

SMAX..STR ING-LITERAL
-A STRING LITERAL CXSISTING OF SMAXINLEN CHIARACTERS (INCLIDING, THE
-. QUOTE (2{ARACrERS).
-USED IN: A26007A

.MXSTRING-LITERAL AAAAAAAAAAAAAAAAAAAAAAAAAAAAA~

SNEG-BASED-JNT
-A BASEDINTEGER LITERAL (PREFERABLY BASE 8 OR 16) WHOSE HIGHEST ORDER
-NG.N-ZERO BIT V6OULD FALL IN THE SIGN BIT POSITION OF THE

PREPRESENTATICK FOR SYSTeA..'M-.XNT, I. E. , AN ATrD& r T~O %RITE A
.NEGATIVE VALUED LITERAL SUCH AS -2 BY TAKING ADVANTAGE OF THE
S. IT REPRESEN7ATION.

-USED IN: E24201A
NEG-BASED-INT 1 6#FFFFFFFD#

SBIG_ INTLIT
*AN4 INTEGER LITERAL WHOSE VALUE 1S 298, BUTY AHIC-i HAS
-(SMAXIN-LEN - 3) LEADING ZEROES.
-USED IN: =24003A

BIGJNT-LIT OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO000O000000000000
0000000000000000000000000000000000000000000000000000000 00000 000000 000 0 000 0000 0
0 00000000000000000000000000000000 00000000 00000 000000000000 00 0000 000 00000000 0000 0
00000 0000000000000 00000000000000000000000 0000000000 00000000 0000 00 0000 00 000000 0 0
00000000000000000000000000000000000000000000000 000000 00000000 00000 000 0000 0000 000
000000000000000000000000000O0000000000000000000000000000000000000000000000000000o
0000 000 0000 0000000000 (i000000 29 8

SB IG -REAL-L IT
A UNIVERSAL REAL LITERAL AIIOSE VALUE IS 690. 0. BUT WiH HAS

*(SM4.XINLEN -5) LEADING ZEROES.
-USED IN: C40038 C24003C

BIG REAL-.LIT
0000000000000000000000000000000000000000000000000000000000000000000,-l0000000000
0000000000000000000000000 0000 00000 000000 0000000000000 0000000000000000000000 00 000
00000000000000000 00000000000000000000 00 000000000 0000000 000 000 00 000 000 0000000 0 0 0
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO00000000000000000oo
0000000000000000000000000000000000000000000000000000000000000000000000000000000
OGOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO00OOOOOOOO000000000000c00000oo
000000000000069. OEI

-SMX.L2NLB-ASEDLITERAL

A BASED INTEGER LITERAL (USING, CO)LONS) WHOSE VALUE IS 2: 11: , HAVING
(SMAX_ INLEN - 5) ZEROES BETWEEN THE F IRST 0)LON AND THE F IRST I.

*USED IN: C2AOO9A
.MAXLrENINTBASEDLITERAL 2 :0000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000



0000000 OCOC O000000000000 000000 000000000000000000000000000000 000000 0000 0000000
000 000000000000000000000000000 0000000000 00000000000 0000000000 000000 000 0 0000 0 0000
000 0000 000000 000000000000 00 000000 000 0000000 000 00000 0000000000U00000000 000 0000000
0000000000000 00000000000 0000000000 000 00 000000 0 00 000 000000 00 0000000 QOOQooc 000000
0000000000000000000000000000000000000000001l :

&% SAkX-LENRE--AL BASED LITERAL
-- A BASED REAL I TERAL (USIN.G CX)LDS) VWfOSE VALLE I S 16: F. E:, HAV ING
*(SMAX- IN-LEN - 7) ZEROES BETVEEIN TE FIRST CO)LON AND TH-E F.
-USED rN: C2AOO9A

,MAX LEN-REAL-BASED-LITERAL 16:OOOOOOOOOOOOOOOOO0OOOOOOOOCOlOOOOOOOOOOOOOOOOOCOOO
00000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000o00000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000 000 00000 00000000000 000 000000000 000 000 0 0000 00000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000 0000000000 0000 00000000000 000000 000 000000 00000000 0000 00 00000000 000000 0000000
OOOOOOOOOOOOOOOOOOOUOOOOOOOOOOOOOOOOOOOOOOF.E:

-A SEQUENCE OF (TvAX_ INLEN - 20) BLANKS.
-USED IN: 322001A B22001B B22001C B22001D B22001E B22001F

-- B2200IG B220011 B2200IJ B22001K B22001L 13220011\
- -B2O00IN

< LLWvTS OF SAMPLE SIKAN BY AN4GLE BPA(XEIS>
BLANKS

WM ~IX-DIGITS
*AN INTEGER LITERAL V&IOSE VALUE IS SYSTIL.NMDIGITS.
-USED IN: B35701A CD7102B

MAAX-DIGITS 15

TH-E NA:AE OF A PREDEFINED INTEGER. TYlPE OTHER THkN INTEGER,
-SHOLRT-INTEGER, ORLGGITER
-(IMPL-IE\TAT IONS V411CH HAVE ';0 SUM~ TYPES SHOULD USE AN LNDEFINED

IDEIDIFIER SLQ-I AS 'NO_5UCH-7YPEAVAILABLE.)
-USED IN: AVAT007 C45231D B8600IX

\AA TINY-INTEGER

-S FLOAT NA
THE NAM1E OF A PREDEFINED FLOATING POINT TYPE OTHIER THAN FLOAT,

-SHORT-FLOAT, OR LCNG_3FLOAT. (DvfILCv TATIaNS VIII HAVE \NO SUCH
*-TYPES SHOLD USE AN *A1)DFINED :DF-\,IFIER SUQ{ AS NO SUCC-TYPE.)
-USED IN: AVAT013 B86001Y

FLOAT.M\E NQ-SU-F IXED TYPE

*-SFIXED- NAE
TH-E NAME OF A PREDEFINED FIXED POINT TYPE OTHER THAN DURATIO.N.
( -(IPLEY1ENTATIONS %WIC HAVE NO SUMI TYPES SHOULD USE AN UN.DFIN.\ED

-IDENTIFIER SCH- AS NOSUM-lYPE.
USED IN: AVAT030 B8600lZ

Fl= I -CNAN NO-SUCH-TYPE

SIN EGERFIRST
-AN INTEGER LITERAL, WTH SICK, Wi-OSE VALUE IS ITGER'FIRST.
*USED IN: C35503F B54BOIB

IN'TEGER-FIRST -2147_483 648

-S INTEGER LAST
-AN INTEGER LITERAL WHOSE VALUE :S NTEs-1GER'LAST.
USED IN: C303F 845232A B345B011B

INTEGER-LAST 2_147_483 647

-. S INTEGERLAST_ PLUS -I
AN IN EGER L ITERAL W~i-OSE VALUE IS 'N7ETGER LAST - I.



-- USED IN: C45232A
INTEGERLAST PLUS 1 2,147_483648

- - SMINNT
-- AN iNTEGER LITERAL, WITH SIGN, W OSE VALUE IS SYSTLv'M.MININ.
-- THE LITERAL MIUST NOT CNTAIN UNDERSCX)RES OR LEADING OR TRAILING

BLANKS.
-- USED IN: C35503D C35503F CD7101B
.M\_INJNT- 2147483648

-- ,M&.XINT
-- AN INTEGER LITERAL %HOSE VALUE IS SYSTVA.MX_INT.

THE LITERAL MJST NOT INCLDE UNDERSCORES OR LEADING OR TRAILING
-- BLANKS.
-- USED IN: C35503D C35503F C4A007A CD7101B
MAX_INT2147483647

-- SMX _ IN''_PLUSI
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX_INT + 1.
.. USED IN: C45232A
MAXINTPLUS_ 1 2_147_483_648

-- SLESS-TIAWDURATION
-- A REAL LITERAL (WITH SIGN) WHOSE VALUE (NOT SUBJECT TO
-- ROUND-OFF ERROR IF POSSIBLE) LIES BETWEEN DURATIaN'BASE'FIRST AND
- - IXRATIMN'FIRST. IF NO SUCH VALUES EXIST, USE A VALUE IN
-- DRAT ION' RANGE.

USED IN: C96005B
LESS_THAN_IXRATICN -100_000.0

SGREATERTHANDURAT ION
-- A REAL LITERAL WHOSE VALUE (NOT SUBJECT TO ROUND-OFF ERROR
-- IF POSSIBLE) LIES BEIWEEN DURATION'BASE'LAST kND DURATION'LAST. IF
-- NO SUCH VALUES EXIST, USE A VALUE IN DURATION'RANGE.
- USED IN: C96005B

GREATERTHANDURATION 1 00_000 .0

-- SLESS_THAN_DURATIONBASE_ FIRST
-- A REAL LITERAL (WITH SIG') WIOSE VALUE IS LESS THAN
- - 1CRATION'BASE'FIRST.
- USED IN: C96005C
LESS_TI-HANDURATINBASEFIRST -10_000000

-- SGREATER AN _DURATION_BASELAST
- A REAL LITERAL WHOSE VALUE IS GREATER THAN DURATION'BASE'LAST.
-- USED IN: C96005C
GREATERHANDURATI ONBASE _LAST 10_000_000

- - SOCLXNTLAST
-- AN INTEGER LITERAL VHOSE VALUE IS TEXTIO.COLUNTI"LAST.
-- USED IN: CE3002B
COUNTLAST 2_I147_483_647

-- SFIELDLAST
-- AN INTEGER LITERAL WHOSE VALUE IS TEXTIO.FIELD'LAST.
-- USED IN: CE3002C
FIELD-LAST 2_147_483_647

S ILLEGALXTERNALFILE NANEI
-- AN ILLEGAL ETNAL FILE N.ME (E.G., TOO LCG, (aTAINING :.NVALID
-. Cl{ARACTERS, CONrAINING WILD-CARD CHARACTERS, OR SPEC:FYING k
-- NONEXISTLNT DIRECTORY).
-- USED IN: CE2103A CE2102C CE2102H CE2103B CE3102B CE3I07A
ILLEGAL_EXTERNAL FILENAEl "/illegal/filenmne/2{] S%2102C.DAT"

- $ILLEGALEXTERNALFILENANE2
-- AN ILLEGAL EXTERNAL FILE NAN, DIFFER.NT FRCM SEXTM\NALFILE.NASIE1.
-- USED IN: CE2102C CE2102H CE2103A CE2103B
ILLEGALEXTERNAL FILE NAVE2 I/il legaI/file-name/CE2102C'.DAT"

- SACCSIZE



AN INTEGER LITERAL YMOSE VALUE IS THE MINDLM NLv9ER OF BITS
-- SUFFICIENT TO HOLD ANY VALUE OF AN ACCESS TYPE.

USED IN: CDIC03C CD2A8IA CD2A8IB CD2A8IC CD2ASID CD2A8IE
* - C2A8IF CD2A8IG CD2A83A CD2A83B (D2A63C CD2A83E
- - CD2A83F CD2A83G ED2A86A CI2A87A
ACCSIZE 32

-- STASK-SIZE
-- AN INTEGER LITERAL VoHOSE VALUE IS THE NUABER OF BITS REQUIRED TO
- - HOLD A TASK OBJECT 'MiICH HAS A SINGLE ENTRY WITH ONE IN~r'T PARAMvETE1R.

USED IN: CD2A91A CD2A91B CD2A91C CD2A91D CD2A9IE
TASKSIZE 32

-- SMINTASK-SIZE
-- AN INTEGER LITERAL VA40SE VALUE IS THE NUABER OF BITS REQUIRED TO

O- LD A TASK OBJECT VHIC7l HAS NO E'TRIES, NO DECLARATIONS, AND ".NULL;"
-- AS THE ONLY STATIENT IN ITS BODY.

USED IN: QD2A95A
%AINTASKSIZE 32

-- SNAVIE- LIST
-- A LIST OF THE eNUvRATION LITERALS IN 'IM TYPE SYST .NlE, SEPARATED
-- BY CviMS.
-- USED IN: CD7OO3A
NAVE_LIST MASSCOAPLNIX

-- SDEFAULTSYSNAME
-- THE VALUE OF THE CNSTANT SYSTEM. SYSTEM.AME.
-- USED IN: CD7004A CD7004C CD7004D
DEFAULTSYSJYA V mASSCOAPL NIX

-- SNWBW_SYS_.ME
-- A VALUE OF THE TYPE SYSTEM.NA\E, OTHER THAN SDEFAULT SYS NAMvE. IF
-- THERE IS ONLY ONE VALUE OF THE TYPE. THEN USE THAT VALUE.

NOTE: IF THERE ARE .1DRE THAN ) VALUES OF THE TYPE, THLN THE
- - PERTINENT TESTS ARE TO BE RUN ONCE FOR EACH ALTERNATIVE.
-- USED IN: ED7004B]
NVEW SYSNA.vE MkSSC(0PUNIX

SDEFAULTSTORL.NIT
-- AN INTEGER LITERAL VAlOSE VALUE IS SYSTEM. STORAGEUNIT.
-- USED IN: CD7005B ED7005D3M CD7005E
DEFAULTSTORLNIT 8

- SNEWSTOR UNIT
- AN INTEGER LITERAL YMIOSE VALUE IS A PERMITTED ARGLNE 'I FOR

- PRACMA STORAGELNIT, OTHER THAN SDEFAULTSTORL.NIT. IF 1HERE
- IS NC OTHER PERMITTED VALUE, THEN USE THE VALUE OF

SSYSTMM.STORAGEUNlIT. IF THERE IS MVDRE THAN ONE ALTERNATIVE,
- THEN THE PERTINENT TESTS SHOULD BE RLN ONCE FOR EACH ALTERNATIVE.

.. USED IN: ED7005CI ED7005DI CD7005E
NEW STOR.LNIT 8

-- SDEFAULT_\_ SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEMA.EMDRYSIZE.
-- USED IN: CD7006B ED7006D3M CD7006E
DEFAULTVEMSIZE 16_777216

- SNE_.MSIZE
- AN IN-TEGER LITERAL HOSE VALUE IS A PERMITTED ARGLE' " FOR

PRAIIA I.'1ORYSIZE, OTHER THAN SDEFALTMEM_SIZE. iF T-H.E IS N40

- OTHER VALUE, 71104 USE SDEFAULT_.4MSIZE. IF THERE IS \V0RE THAN
- ONE ALTERNATIVE. THEN THE PERTINSLT TESTS SHOULD BE RUN ONCE FOR

EAC{ ALTERNATIVE. IF THE NUMIBER OF PERMITTED VALUES IS LARGE, T4
-- SEVERAL VALUES SHOULD BE USED. COVERING A WIDE RANGE OF
-- POSSIBILITIES.
-- USED IN: ED7006CI ED7006DI CD7006E
NW.'jMEMSIZE 16_777216

-S- $LOWPRIORITY
- AN INTEGER LITERAL AHOSE VALUE IS THE LAER BOUND OF THE RA.GE



-- FOR THE SUBTYPE SYSTEM. PRIORITY.
- USED IN: CD7007C

WLW PRIORITY 0

SHIUiHPRIORITY
-- AN INTEGER LITERAL YMOSE VALUE IS THE UPPER B3OUND OF THE RANGE

- FOR ThE SUBTYPE SYSTEM. PRIORITY.
-- USED IN: CD7007C
HI(QIPRIORITY 99

-- SbMWrISSADOC
- AN !'..OC. LITERAT VWOSE VALUE IS "S.!STEM.MAX_,VANTISbA AN SPECIFIED

IN THE IMPLIETOR' S DOCUENTATI(N.
-- USED IN: CD71O3B CD7103D
MArISSA-DOC 31

-- STICK
- A REAL LITERAL VA-'OSE VALUE IS SYSTEM. TICK AS SPECIFIED IN THE
-- IMPLML TOR'S DOCLME'lATICN.
-- USED IN: CD7104B
TICK 0.0166666



APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A390050
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E

This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

C97116A
This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved

execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THE GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality

need not be detected until execution is attempted (line 95).

CD2A62D

This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D (16 tests)

These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a

derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause

and attribute, whose interpretation is considered problematic by the WG9

ARG.

CD2A8lG, CD2A83G, CD2A84M & N, & CD50110

These tests assume that dependent tasks will terminate while the main

program executes a loop that simply tests for task termination; this is

not the case, and the main program may loop indefinitely (lines 74, 85,

86 & 96, 86 & 96, and 58, resp.).

D-2



CD2BI5C & CD7205C
These tests expect that a 'STORAGE SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA ERROR is expected to be raised
by an attempt to read one object as of the other type. However. it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

D-3



CE34113
This test requires that a text file's column number be set to COUNT'LAST
in order to check that LAYOUTERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204

will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-4



APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

Concurrent Computer Corporation

Compiler: MC-Ada Version 1.2

ACVC Version: 1.10

E-1



Ada Command Directives

The only option used with the Ada command during the validation was the -M option.

Ada Library Info Directives

Two different INFO directives were used to prepare the validation results. The directives, specified
in the adailb file. are used to control the type of floating point instructions generated.

The following directive gnerates floating point instructions that are executed on the MC68881 co-
processor.

FLOATING POINT SUPPORT:INFO:MC68881:

To generate floating point instructions that are executed on the LIGHTNING co-processor, the fol-
lowing directive was placed In the ada.lIb file.

FLOATING POINT SUPPORT:INFO:LIGHTNING:

July 18. 1989 1



ada - Ada compiler

Syntax

ada [options] [aadojource.al ... lld-options) [object .J'ie.o],,,

Description

The command ada executes the Ada compiler and compiles the named Ada
source file, ending with the .a suffix. The file must reside in a VADS library
directory. If the source file name has the form aaalbbb.a, aaa must be a VADS
library directory. The ada.11b file in this directory is modified after each Ada
unit is compiled.

All files created and modified are located in subdirectories of the directory that
contains the adasource.a file. The object program is left in a file with the
same name as that of the source with .o substituted for .a unless the -o option
is used. The object file is written to the .objects subdirectory of the VADS
library.

By default, ada produces only object and net files. If the -M option is used, the
compiler automatically invokes a.ld and builds a complete program with the
named library unit as the main program.

Non-Ada object files (e.g., ,o files produced by the C or FORTR.N compiler)
may be given as arguments to ada. These files will be passed on to the linker
and will be linked with the specified Ada object files.

Command line options may be specified in any order, but the order of
compilation and the order of the files to be passed to the linker can be
significant.

Options

-a fllename (archive) Treat filename as an ar file, Since archive files end
with .a, -a is used to distinguish archive files from Ada
source files.

-d (dependencies) Analyze for dependencies only, Do not do
semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. The -d option is
used by a.make to establish dependencies among new files.

-e (error) Process compilation error messages using a.error and
direct it to stdout. Only one -e or -E option should be used.



_ -"ada

-E
-Efile
-E direcwry (error output) Without a file or directory argument, ada

processes error messages using a.error and directs the output
to stdout; the raw error messages are left in source.err. If a
file pathname is given, the raw error messages are placed in
that file. If a directory argument is supplied, the raw error
output is placed in dir/source.err. Only one -e or -E option
should be used.

-el (error listing) Intersperse error messages among source lines
and direct to stdout.

-El
-El file
-El directory (error listing) Same as the -E option, except that source

listing with errors is produced.

-ev (error vi) Process the raw error messages using a.error,
embed them in the source file, and call v on the source file.

-lfile.abbreviation
(link) Link this library file. (Do not space between the -1 and
the file abbrea.,tic.n.) See I, .

-M unit-name (main) Produce an executable program using the named unit
as the main program. The unit must be either a parameterless

) procedure or a parameterless function returning an integer.
The executable program will be left in the file a.out unless
overridden with the -o option.

-M ada-source.a
(main) Like -M unit name, except that the unit name is
assumed to be the root naTe of the .a file (e.g., for foo.a the
unit is foo). Only one .a file may be preceded by -M.

-o executable.file
(output) This option is to be used in conjunction with the -M
option. executable.file is the name of the executable rather
than the default a.out.

-0[1-91 (optimize) Invoke the code optimizer. An optional digit limits
the number of optimization passes. The default, 0, optimizes
as far as possible.

-R VADS library
(recompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of any that are out of
date.9



ada *-

-S (suppress) Apply pragm, SUPPRESS to the entire
compilation.

-T (timing) Print timing information for the compilation.

-u (update) Cause library status to reflect the current program
source. Unless the source is syntactically incorrect, the
compiler updates the library ada.llb. Normally, the library is
changed only if the unit compiles without errors of any kind.

(verbose) Print compiler version number, date and time of
compilation, name of file compiled, command input line, total
compilation time, and error summary line.

-w (warnings) Suppress warning diagnostics.

Files

flle.a Ada source input file
/tmp/flle.$$ IL code file created by front end
ada.lib VADS directory information file
gnrx.lib VADS generics library information file
GVAS table GVAS table in the current VADS project
ada.lo7ck lock link to ada.lib, for mutual exclusion
gnrx.lock lock generics library, for mutual exclusion
GVAS table.LOCK lock link to GVAS table, for mutual exclusion

See Also

a.db, a.error, a.Id, a.mkllb, Id(l)

Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the RM. Each RM reference includes a section
number and optionally, a paragraph number enclosed in parentheses.


