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Abstract

A general approach is developed for the rigorous analysis of radiation, scattering, and guid-

ance of electromagnetic fields by conducting objects of arbitrary shape embedded in layered

dielectric media. This approach is based on the mixed-potential form of the electric field

integral equation, which is amenable to the existing, well-established numerical solution

procedures. originally developed for objects in homogeneous space. Numerical results are

presented for surfaces and wires that penetrate an interface between dissimilar media and

for open mi rostrip transmission lines of finite thickness. Computed and measured data are

also given for coax-fed rectangular and triangular microstrip patch antennas.
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Chapter 1

Introduction

Simple and efficien+ .-=-.cLhoit ur ,iW,1.1.nts (MOM) [1] procedures have recently been developed

for the solution of the electromagnetic scattering and radiation problems involving objects

of arbitrary shape [2, 3, 4, 5, 6, 7]. These procedures are based on the mixed-potential form

of the electric field integral equation (EFIE) - so named, because it involves both the vector

and scalar potentials, the former expressed in terms of the induced current, and the latter in

terms of the induced charge. In the case of perfectly electrically conducting (PEC) objects,

the EFIE is more general than the magnetic field integral equation (MFIE) [8], since it is

applicable to both closed and open surfaces [9]. The mixed-potential EFIE (MPIE, for short)

is preferable to several other possible variants of the EFIE, because it only requires potential

forms of the Green's functions, which are less singular than their derivatives encountered

in other forms of the EFIE [4]. In the MOM technique originally developed by Rao et
0 al. [5], the surface of the PEC object is modeled in terms of triangular patches and specially

designed basis functions defined on pairs of adjacent triangles are used, which yield a surface

current representation free of line or point charges at subdomain boundaries. This technique

also employs a testing scheme in which the derivatives of the scalar potential are in effect
0 replaced by finite differences. More recently, Schaubert et al. [10] extended this procedure to

volume integral equations for penetrable bodies, which they modeled in terms of tetrahedral

elements.

The procedures described above were originally developed for antennas and scatterers
0 residing in a homogeneous space. Aithough this restriction is not severe in some aerospace

applications where the effect of the environment can be neglected, it does exclude many

problems of practical interest in which the proximity of the earth must be taken into account.

Indeed, often the influence of the ground or the ocean, which in many cases czn be adequately
0 represented by a model consisting of one or more planar, dielectric layei-, is the dominant



effect in the problem. Microwave and millimeterwave integrted circuits also consist of
conductors embedded in layered dielectric media.

In this report we develop MPIE formulations for arbitrarily shaped objects in layered me-
dia that are amenable to the well-established MOM procedures, such as those implemented

in the trianigle-patch code [5, 7, 11] and its thin-wire counterpart, MININEC [12, 13]. Since

9 a great amount of effort went into the development of these codes - which can presently only

handle objects in free space or over PEC ground - it is desirable to have a formulation that

would allow one to easily extend them to the case of bodies in stratified media Although.

for simplicity, we limit attention to PEC objects and surface integral equations, our formu-

0 lation can easily be extended to dielectric bodies in conjunction with either volume [10] or

surface [6] integral equations Unlike in free space, or even in some complex environments

with PEC boundaries, it is not a trivial task to formulate an MPIE for objects of arbitrary

shape in layered media, because in such enilronments the vector and scalar potentials are

0 not unique [14] and the scalar potentials of point charges associated with horizontal and
vertical dipoles are not, in general, identical [15]. Additional complications arise when the

objects penetrate one or more of the interfaces between dielectric layers.

The advantages of the MPIE over the other forms of the EFIE are even more pronounced

* in layered medium than in free space, because the Green's functions for layered media com-

prise Sommerfeld-type integrals [16], which are extremely laborious to evaluate. Since the

MPIE involves potential forms of the Green's functions, the Sommerfeld integrals it requires

converge faster than those present in any other form of the EFIE [4]. These advantages were

* previously recognized by several researchers. Mosig and Gardiol [17, 18] have applied the

MPIE in conjunction with the Glisson and Wilton's [4] MOM procedure to a rectangular

microstrip antenna. Johnson [19] has used a similar approach to solve the problem of a verti-

cal cylin-ler penetrating the interface between contiguous half-spaces. Wilton and Singh [20]

*0 have applied an MPIE to analyze a periodic array of slots in a conducting screen backed

with a layered dielectric. Michalski et al. [21, 22] have used an MPIE to solve the problem

of a horizontal two-element wire array above and on opposite sides of the interface between

two media. As was pointed out in [23, 24, 25], the success of these efforts can be attributed

* to the fact that the structures considered could only support either vertical or horizontal

components of the current. To our knowledge, an MPIE for arbitrarily shaped objects in a

layered medium was first published in [24]. However, it was assumed in that paper that the

antenna or scatterer was confined to a single layer. In a two-dimensional case, an MPIE has

* been derived by Xu [26].
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Numerous papers have been published on the subject of antennas and scatteLers in lay-

*1 ered media, but - with the exception of the geophysics literature - most of them only deal

with planar geometries, such as microstrip antennas, transmission lines, etc. Since the em-

phasis here is on objects of arbitrary shape, we do not review papers in this cate' .ry, to

conserve space. The problem of arbitrarily shaped thin wires which are near to or penetrate

an interface between contiguous half-spaces has been solved by Burke and Miller [27]. How-

ever, their approach, which is implemented in the powerful Numerical Electromagnetics Code

(NEC) [28], is not easily extendable to arbitrary surfaces. From the many works devoted to
electromagnetic modeling of buried inhomogeneities in the context of geophysical prospect-

ing, we only mention the recent representative papers by HhClimann [29] and by Wannamaker

et al. [30]. These authors use the volume integral equation technique in conjunction with a
rather crude -- but entirely adequate in the quasi-static regime - MOM procedure employing

piece-wise constant current expansion and point-matching [1]. To overcome the problems

*0 associated with the singular behvvior of the electric Green's function, Hohmann [29] em-

ployed a mixed-potential formulation, but only to the primary (or whole-space) component

of the kernel; the part comprising the Sommerfeld integrals was left in the slowly convergent

field form. Mention should also be made of the work by Karlsson and Kristensson [31,,
* who employed the extended boundary condition integral equation in conjunction with the

T-matrix approach to compute the field scattered by obstacles buried in a stratified ground.

This method, however, is only appiicable to closed, smooth bodies and is only practical for

simple shapes.

40 The outline of this report is as follows. Chapter 2 contains the statement of the problem

and a general discussion of various forms of the EFIE in a layered medium. In ChapteI 3,

alternative forms of the vector potential Green's function are derived for the layered medium.

These Green's functions are utilized in Chapter 4, where three alternative mixed-potential

0 formulations, referred to a- )rmulations A, B and C, are developed for arbitrarily shaped

PEC objects. Formulation C, which is found to be particularly well suited for the application

of the moment method, is specialized in Appendix A to two particularly important situations,
where the object resides in contiguous half-spaces or is partially f mbedded in a grounded

dielectric slab. In Chapter 5, the MOM procedures introduced in [4, 5, i] are adapted to

solve the MPIE based on Formulation C of Chapter 4. For surfaces of arbitrary shape,

the triangle-patch model [5] is employed, while thin-wire structures are modeled by straight

tubular segrneixts (7]. The wire-to-patch junction model developed by Hwu et al. [7] has

been adopted for the analysis of coax-fed microstrip patch antennas. Formulation C is also

3



specialized in Chapter 5 to the case of an open transmission line consisting of an infinite
conductor of arbitrary c,.oss-section partially embedded in a grounded dielectric slab. In

the numerical procedure, the conductor's cross-section profile is modeled by straight line
segments [4]. In Chapter 6, the numerical procedures used to evaluate the Sommerfeld

integrals are discussed. In Chapter 7, sample numerical results are presented for several cases
of interest involving PEC plates, cylinders, thin-wire antennas, coax-fed microstrip patch

antennas, and open microstrip lines. Where possible, comparisons are made with measured

data or with computed results obtained by other researchers. Finally, in Chapter 8, we draw

conclusions and make recommendations for future work.
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Chapter 2

Preliminaries

2.1 Statement of the Problem

Consider a medium consisting of n + 1 dielectric layers separated by n planar interfaces

parallel to the xy-plane of a Cartesian coordinate system and located at z = z1, l = 1,2,...,n,

as illustrated in Fig. 2.1. The medium of the ith layer is characterized by permeability Yj

and permittivity ci, which may be complex if the medium is lossy. Let the PEC object (or

collection of objects) in Fig. 2.1 occupy p layers with indices 11, 12,. •., 4,, where I < p : n+ 1.

For later convenience, define the ordered set of indices L = {11, 12,..., }, in which Ik < 1k+1.

Let Si denote the surface of the object(s) in the ith layer and let i be a unit vector normal

to Si. The quantity of interest is the surface current density J(r) excited on the object(s)

by a given time-harmonic incident electric field E"'. The ejWt time variation is assumed and

suppressed.

2.2 Electric Field Integral Equation (EFIE)

The EFIE for the current density J on the surface S of the PEC object(s) embedded in a

layered medium is obtained by enforcing the boundary condition [32]

-h, x E (r) = t,,, x E m (r), r on Sm,, m E L (2.1)

where r is the position vector defined with respect to a global coordinate origin, EC is the
"incident" electric field (i.e., the field in the absence of the object) in the mth layer, and E.

is the scattered field in the mth layer. For the structure of Fig. 2.1, E' and the scattered

magnetic field H,, can be expressed as

* -Es(r) = [jwA"(r) + V¢bmt(r)] (2.2)
iEL

5
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0

H'(r) = V x A m'(r) (2.3)
* l~m iEL

where A mI is the magnetic vector potential in the mth layer due to the current density J in

the ith layer, and is given as

A m ,(r) = G'(r I r') - J(r') dS' (4)

SO

and Cm'(r) is the corresponding scalar potential which is related to A m'(r) through the

Lorentz condition

• qm'(n(r) = WV. Am:(r) (2.5)k2
m

where k = wfmpm. In (2.4), Gm' is the dyadic Green's function which represents the

magnetic vector potential in region m due to a unit-strength, arbitrarily oriented current

0 dipole in region i. G ' can be found by solving the inhomogeneous Helmholtz equation

(v 2 + km) G (r Ir') = -YmL6 (r - r') (2.6)

where I is the idemfactor, subject to the condition that the tangential component of E-

and H' be continuous across the interfaces between dielectric layers. As is well known [16],

for a horizontal, say, x-directed dipole, two components of the vector potential are required

to satisfy the boundary conditions at the interfaces. Traditionally [33], the z component has

been selected in addition to the x component. The Green's function in this case takes the

form [24]

Gm' = (±)ic + GmG; + iiGm +i ' Gml + i, Gm. (2.7)

However, one may as well postulate the y component of the vector potential to accompany

the primary x component [14]. This strategy leads to an alternative form of the Green's

function,

mA c Uic + Gams + ( ic + )iG' + &Gm'. (2.8)

In (2.7) and (2.8) Gm' denotes the x-component of A m ' due to an x-directed, unit-strength

electric dipole, Gm" the x-component of A m ' due to a similar, y-directed dipole, etc. We

note that, except for Gm, the corresponding components in (2.7) and (2.8) are different, even

* though the same notation is used. The entries of the dyadics in (2.7) and (2.8) are developed

7



in the next chapter, and are shown to comprise improper integrals of the Sommerfeld [16]

* type.

Still other Green's functions, in addition to those in (2.7) and (2.8) are possible. For

example, one can obtain another form of GA by postulating that the y and z components of

the vector potential, instead of the x and z or x and y, components, accompany an x-directed

* dipole. However, this and other forms of n are less attractive for our purpose than (2.7)

and (2.8), and are not considered here.

Substitution of (2.2) into (2.1) yields

A, X E [jwAmi(r) + Vbm(r)] = it, x Ec(r), r on Sm, m E L (2.9)
iEL

which, by invoking (2.4) and (2.5), can be further transformed to

) W-nm x (V V . +k2) Z g.GA(r I r') . J(r') dS'

m iE Si

l mxE"'(r), r on Sm, m E L. (2.10)

This equation is referred to as vector-potential EFIE [34], since it only involves the magnetic
vector potential. Although (2.10) has often been used in MOM analyses of straight wire

antennas or planar scatterers, the presence of the mixed tangential derivatives makes it less

suitable for objects of arbitrary shape. By introducing the differential operator under the

integral sign in (2.10), we may obtain another form of the EFIE, in which the dyadic kernel

is the Green's function for the electric field. However, this EFIE is not attractive because the

kernel is highly singular, which makes the evaluation of the integrals required by the MOM

procedure difficult when the observation point is within the integration interval [35]. Also, the

required differentiation of the Sommerfeld-type integrals adversely affects their convergence.

These difficulties can be avoided if only one of the operators nabla is introduced inside the
integral in (2.10) and then transferred, by a series of transformations, to act on the current.

The result is the mixed-potential EFIE discussed below.

2.3 Mixed-Potential EFIE (MPIE)

We note that (2.9) would be in the desired mixed-potential form if the scalar potential

were expressed in terms of the surface charge density q(r). With this goal in mind, we

substitute (2.4) into (2.5) and introduce the operator nabla under the integral sign (this step

can be justified [36, 37]) to obtain

8



k2 = aJ(r [ r')]. J(r') dS'. (2.11)
MS

Obviously, our objective would be achieved if we transferred the divergence operator to act

on the current, in view of the equation of continuity, V • J = -jwq. It is shown below that

this can only be accomplished if a scalar function Gm' can be found, such that
iw1 m V (r I r') = --- V'G (r I'). 

(2.12)

In a homogeneous medium, where Gn' may be interpreted as the Green's function for the
scalar potential, this is a quite trivial task. If the medium is stratified, however, Gmt sat-
isfying (2.12) does not in general exist [24], which can be attributed to the fact that the

scalar potentials of point charges associated with horizontal and vertical current dipoles in

a layered medium are in general different [15]. Hence, in order to achieve our goal, we follow
the procedure proposed in [23, 24], and introduce a scalar function K " and a vector function

0 pmi according to

JW G" (r I r')= V'K (r I r') + jwP m i(r I r'). (2.13)
M Jw

One should note that in the above the choice of KV i and Pm' is not unique.

Upon substituting (2.13) into (2.11) and using a vector identity (p. 487, [38]) and the

Gauss theorem [38, p. 503], we can express the scalar potential as

q m i(r) = J K (r r') q(r') dS' + jw J P m (r I r') J(r') dS'

* SI Si

+ K.( I r') J(r') -i do' - Km'(r I r') J(r') • ii_- do' (2.14)
3w Li  c1-1

where Ci and C-1 are the contours formed by the intersection of the surface Si with the inter-
faces at z = zi and z = z,- 1, respectively, and fi and fii-1 are the unit vectors perpendicular

at r' to Ci and C_1, respectively, in the planes tangent to S: (Fig. 2.2). Sibdtituting (2.141

into (2.9), we finally obtain

SJ I' ) dS' + V JK (r I r')q(r') dS'
SI I

+ KV(r I r')J(r')c, ii d' -J K(r I r')J(r') -iL- do]

ft, x E"(r), r on Sm, m E L (2.15)

9
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0

where we have introduced the dyadic kernel

0 & g7(r I r') = rI') + V P (r I '). (2.16)

We note that (2.15) would be in the desired mixed-potential form [4, 5] if it were not for

the presence of the term contributed by the contour integrals, which occur when the object

0 penetrates one or more of the interfaces. In Chapter 4 we show that with a proper choice

of 97 and K"' in (2.13) the contour integrals cancel out. We note, however, that even if a

formulation is chosen in which the contour integrals persist, the MOM procedures developed

in [4, 5] can be extended to accommodate these terms. As a matter of fact, the "correction

0 term" V pn" could also be handled in this manner, instead of being incorporated into the

vector potential kernel via (2.16).

S40
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Chapter 3

Derivation of Green's Functions for
41 the Magnetic Vector Potential

The dyadic Green's function a A (r I r') in (2.4) is the vector potential in region m due to

* a unit-strength, arbitrarily-oriented Hertzian dipole in the ith layer. The direcL solution

of (2.6) for GA is extremely tedious, since various components of this dyadic couple in the

boundary conditions at the interfaces between dielectric layers. Therefore, in this chapter, we
derive the Green's function by means of the Fourier transformation, which in effect reduces

* the original problem to that of solving an equivalent transmission-line network along the z

coordinate.

3.1 Reduction of Maxwell's Equations to Transmis-
* sion Line Equations for Sources in Layered Media

For the geometry of Fig. 3.1a, we are interested in the electromagnetic field (E, H) every-

where in the medium due to prescribed distributions of time-harmonic electric and magnetic

* currents J and M, respectively. Since the structure is infinite along the x and y coordinates,
we can simplify the analysis by utilizing the "shifted" Fourier transform pair

F-{f(x - x',y - y')} =(k, ky)

* = f f( X - x', Y - I-)e-[k(x--')+k( ] d- dy (3.1)
-00-00

'-{f(k., kv)} = f(x - x',y - y')
1 77 fO0 ~k(X)+~~)

f (2r)2  dfk](k, k,)e-kfk.( -x')+kk(' -')Adk (3.2)
--i -- 00
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Figure 3.1: (a) Plane-stratified dielectric medium and (b) its transmission-line network rep-
resentation.
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where (x',y') locates the projection of the source point on the xy-plane (Fig. :3.2). The

inverse Fourier integrals (3.2) can be conveniently expressed in terms of the Sommerfeld

integrals [161 of the form

S" [f(kp)] I Jf(kp) J,'(kp ) k n dkp (:3.3)
0

by changing to polar coordinates in both the transform and space domains according to

x-x = cos(, y-y = sin( (3.4)

k k==kP cosa, ki = k.sino (3.5)

where (Fig. 3.2)

= (x- x') 2 + (y - y')2 , =arctan (Y )(3.6

kp= 2+ k. a = arctan (3.7)

and where J, is the Bessel function of order n. Hence, using (3.3), we can express (3.2) as

):7- {f(kp)} -So [f(k,)] .(3.S)

We also find that

F- {jk.f(kp)} cosCSl[f(k)] (3.9)
= -.;-s[J(k)] (3.0)

'{kyfi(kp)} sin(s,[fi(k,)] (3.10)

2r-

1F{ k 2 - cos2( S 2[f(kp)] - So[kP2 f(kp)]} (3.11)-{ k2 f(kp)} = 4r

1.lfykp)= -- s2(S2[f(kp)].+S~P ~pj (3.13)
47r'' k~ (o }  -4-- sin 2( S [ (kp)]. (3.13)
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These relationships will be used in the formulation of vector potential Green's functions. We

list them here for later convenience.

Since the structure of Fig. 3.1a can be regarded as a uniform cylindrical waveguide (of

infinite cross-section) with z as the longitudinal (axial) coordinate, it is fruitful to decompose

the field and source vectors into their transverse and longitudinal parts, i.e.. we can write E =

Et*+ E,, H = Ht + iH,, etc. The solution of the field equations for E and H is facilitated

by eliminating the dependent longitudinal components from the Maxwell's equations [39. 40].

Hence, by eliminating E, and H, and invoking the Fourier transformation (3.1), we arrive

at

dZ 

where the equivalent transverse electric and magnetic current distributions are given, respec-

tively, as

VjM,t,- = 3,- V X - (3.16)

and
-- VtJ,

Mt = Mt +zX tz (3.17)

I is a unit dyadic, and Vt = --jk . -jkvy is the transform domain counterpart of the trans-

verse operator nabla. The longitudinal field components are derivable from the transverse

components as [40]

*~ =i A-Vt kt) -. 4(3-19)

Equations (3.14)-(3.19) hold for each layer of the stratified medium (Fig. 3.1a). The iayer

subscript has been suppressed in these equations for simplicity.

Since any vector can be represented as a sum of two parts, one of which is solenoidal and
the other irrotational, we may express the vectors Et and Ht x i as (40]

E, ,- V - tVh x Z (3.20)

16



H, x z = -VI - VIh x i. (3.21)

Using these equations in (3.18) and (3.19), we can express the longitudinal field components

as

Sc(k2 - (3.22)

H (k2vh (3.23)
LO -I

where kP2 = k2 + k. Equations (3.20)-(3.23) indicate that in source-free regions, (Ve, If)

0 and (Vh, Ph) generate, respectively, field transverse magnetic (TM) and transverse electric

(TE) to z. To determine the scalar functions V', 1', Vh, and 1h, we use (3.20) and (3.21)

to eliminate Et and Ht from (3.14) and (3.15). As a result, we obtain the equations [40]

-d JkZqlq + V q  (3.24)
dz

dlq -jkzYqV q + iq (3.25)
-dz kY z 3

where the superscript "q" stands for either "e" or "h" and where k' = k2 - k, 2 . The modal

impedances Z q (admittances Yq) are defined as

Ze = I- k, (3.26)
ye WE)

0 1 wit

Zh - - k (3.27)yh k,

and the source functions vq and iq are given by (401

ve= - +1 (3.28)

1P- . (3.29)

vh 2 t. Mt (3.30)
kp

M _ 1 2(i x 't '3 (3.31)
• i - jwp k,2
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Equations (3.24) and (3.25) have the form of transmission-line equations for the voltage

Vq and current Iq. To the /th layer of the stratified medium (Fig. 3.1a) there corresponds

a transmission line section with characteristic impedance Z4 and propagation constant k,,.
Hence, the layered medium of Fig. 3.1a may be represented by two transmission-line net-

works, which may be referred to as the TM and TE networks, each of the form shown in

0 Fig. 3.lb. The TM network has characteristic impedances Z1 and sources (ve, 2'), while
the TE network has characteristic impedances ZI and is driven by (vh, h). Depending

on the sources (cf. (3.28)-(3.31)), the TM, TE, or both networks may be excited. These

network problems must be solhed subject to the condition that the voltages and currents
* be continuous across the interfaces between contiguous line sections. These conditions are

the consequence of the continuity of the transverse components of the electric and magnetic

fields across the interfaces between adjacent dielectric layers (Fig. 3.1a).

The solution of the transmission-line equations (3.24) and (3.25) is facilitated if one

0 appeals to the principle of superposition and considers the effect of the voltage and current

sources separately. Hence, with only voltage sources present (iq = 0), (3.24) and (3.25)

reduce to

* + k I q = jk2 Yqv9  (3.32)

Zq d
Vq = -P. (3.33)

jk, dz

From these equations, the impedances seen looking to the left and to the right at a point z

on the transmission line can be expressed, respectively, as

- Vq (z) Zq d
Zq(z) - =I() -j- zln I q (z) (3.34)

and

Vq (z) Zq d
Z(z) - dIn 19(z). (3.35)Iq(z) jkdz

Similarly, with only current sources present (vq = 0), (3.24) and (3.25) reduce to

A + k V q = jkZqi q  (3.36)

Iq = V .  (3.37)
jk, dz

18



The admittances seen looking to the left and to the right at a point z on the transmission
0 line can be in this case expressed, respectively, as

+- I q(z) Yq dYqz - = - -jVq(Z) (3.38)

and
0Iq(z)_ yq d

V(z) jkdzIn Vq(z). (3.39)

Once the transmission-line equations (3.32), (3.33), (3.36) and (3.37) are solved for

(Ve, P ) and (Vh, 1h), we determine (E, H) from (3.20)-(3.23). Finally, the inverse Fourier

transformation (3.2) is employed to recover (E,H). The solution of (3.32), (3.33), (3.36)

and (3.37) for the stratified medium of Fig. 3.a is discussed in the next section.

3.2 Solution of Transmission-Line Equations

It was shown in the last section that the layered medium of Fig. 3.1a can be represented by

the transmission-line network of Fig. 3.lb. The voltage and the current in each transmission-

line section are governed by (3.24) and (3.25), or equivalently, by (3.32), (3.33), (3.36),
and (3.37). In solving these equations, it is helpful to define for each interface the impedances

and voltage reflection coefficients, as illustrated in Fig. 3.3. (For notational simplicity, we

suppress the superscripts "q".) The solution of (3.32), (3.33), (3.36), and (3.37) is simplified

by first considering point-source excitations and then obtaining the total response by use

of the superposition theorem [40]. Without loss of generality, we assume that the sources

are located in the ith section of the transmission line (which corresponds to the ith layer in

Fig. 3.1a) and that the impedances Zi(zi) - Zi and Zi(zi- 1) - Zi- 1 (or their inverses Yi

and Yi- 1) are specified. Hence, if we denote the current I in the ith line section due to a

point voltage v = -b(z - z') in the same section as G,, we obtain from (3.32)

( z + kzi  ) (%(z, z') = -jk,Y5(z - z'). (3.40)

This equation must be solved subject to the boundary conditions (cf. (3.34) and (3.35))

- _ Z, d nGd'(z,z'), z z (3.41)
jki dz

Z-, - I lna /(z, z) z = zi_1 . (3.42)

jki dz
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Equations (3.40)-(3.42) can be represented by the network shown in Fig. 3 .4a.
In a like manner, if we denote the voltage V in the ith line section due to the point

current i = -6(z - z') in the same section as Gii, we obtain from (3.36)

( + k 2.) G,(z,z') = -jkz,6 (z - z'). (3.43)

The boundary conditions in this case are (cf. (3.38) and (3.39))

Y d
- n t(z,z'), z = z( 3.44)jkz, dz

1 d -In (z, z, z = zi-1. (3.45)
jkz, dz

Equations (3.43)-(3.45) have the network representation shown in Fig. 3.4b.
We first turn attention to (3.43); the solution of (3.40) will follow by duality. Hence,

solving (3.43) subject to the boundary conditions in (3.44) and (3.45), we obtain

ff (z,z') = -,-. Iz-' I + QVY(z, z')] (3.46)

with

* Q(z z) -..L. {*Jeiz(+z')-2.] + -jk,[2j- -(z+z')]

+2 +ri File- j 20, cos [k,i(z - z')] (3.47)

Di = 1 - Fi Fi-1e - j 2¢O (3.48)

where 'i = k,1di, di = zi-1 - zi. The reflection coefficients Fk and Fk (see Fig. 3.3) are

given by, respectively,

-kk - -Zk+I k = 1,2,.. ,n (3.49)
Zk + Zk+1

and

-- ZAk - Zk
k - . , k=1,2,...,n (3.50)

Zv+ Zk
where ro0-0= Fn+l-

The yet unspecified impedances -7k and Zk can be obtained from the analysis of the

transmission-line network of Fig. 3.lb. It can be shown that these impedances are given by

the recursion formulas
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Zk Zk-I +jZktk
Zk=Zk + , k= 2,3,...,n (3.51)

Zk + j Zk-Itk

and
4Zk+I + jZk+ltk+l

Zk=Zk+I 7 k=n-,n-2,...1 (3.52)
Zk+l + j Zk+ltk+l

where Z 1  Zi, Zn = Zn+l, and t k = tan Ok.

From (3.46), one can compute the voltage anywhere in the ith line section, including the

terminals, due to a unit current source in the same section (cf. Fig. 3.4b). The voltage in

any other, say mth section due to this source can be easily determined from the analysis of

the transmission-line network of Fig. 3.1b as
(Yzi, z') T'j(z), -1>

G. (z- ZIii > >1
~VV

= i(zi, z Tni(z), n + I > m > I + 1

where the voltage transfer functions TMi and TMin are given, respectively, as

TI (z) ejkzm(z-zm) + 4- ~ ~ , 1 ) t. 2 ( + F )e3''k+l

m = 1 + Fmie -12k+( - -l)} (3.54)
1 + Frm-e

-2
,m k=m 1 + Fke-J 2k+(

and

-- m..) { 1 + rme-  z -zm)}r-i j 20k (3.55)

1 + ]pmej2V k=i+l 1 + F keJ 2 (3

This completes the solution of (3.43). Equation (3.40) can be solved by a dual procedure.

However, this is not necessary: we can obtain ~$,,, from Gv by replacing in the latter all

impedances Z, by their reciprocals Y (as a result of this operation, all reflection coefficients

change signs, as is evident from (3.49)-(3.50)). The functions G$,, and G, will be referred

to, respectively, as the current and voltage transmission-line Green's functions.

3.3 Derivation of Dyadic Green's Functions for the
Magnetic Vector Potential in a Plane-Stratified
Medium

The magnetic vector potential A m in the mth layer of the stratified medium (Fig. 3.1a) due

to a current distribution J occupying a volume V, in the ith layer can be obtained from
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A (r)= JG (" I r'). J(r') dV' (3.56)
v,

where GmI is the dyadic Green's function for the magnetic vector potential, which can be

expressed either in the traditional form (2.7), or the alternative form (2.8). To determine

the elements of the dyadic in (3.56), we appeal to the transmission-line analogy and make

use of the transmission-line Green's functions developed in Sections 3.1 and 3.2. Hence,

from (3.29) and (3.31) we determine that an x-directed dipole with J J= i(z - z')

gives rise to transmission-line sources 1e and ih given, respectively, as

i'(z) Jk (z - z" (3.57)

and

ih(z) _ --- h(z - z') (3.58)

where we assume that the sources are in the ith layer, i.e., zi < z' < zi- 1.Obviously, both

the TM and TE transmission-line networks are excited in this case. The current generators

given by (3.57) and (3.58) excite, respectively, the voltages Ve and Vhi in the mth sections

of the transmission-line network. From Section 3.2, we find

1mv(z) = Jk (3.59)
kp

and

Vpi(z) = k (z, z'). (3.60)kp 2 Ml

For a y-directed dipole with J t= 6(z - z'), (3.29) and (3.31) yield

iC(z) =- Jk5(z- z') (3.61)

kp

ih(z) = +J k 5(Z Z). (3.62)
kp

These sources excite the voltages (cf. Section 3.2)

V,,(z) = k-K ,,,,,z') (3.63)

an(2
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Vhi (Z) k~~v dk(z

~k' 2 M-(z,z') (3.64)

respectively.
Finally, for a vertical dipole with j = iJ, = i6(z - z'), we obtain from (3.28)

ve(z)= - I 1(z- z'). (3.65)
JWEj

Hence, only the TM transmission-line network is excited in this case. The current Ii in the
mth section due to the voltage source give in (3.65) is easily found as (cf. Section 3.2)

-mi(Z) . Gm,(z,z'). (3.66)
JWci

We now must relate these transmission-line voltages and currents to the components of

the magnetic vector potential. First, we turn our attention to a vertical dipole source, which

gives rise to only the z-component of the vector potential. Outside the source (z 7 z'), the

z-component of the electric field can be expressed in terms of A"j' as

jwd 2  2
Em' = -- (- + km)A7 = -k2 2A" (3.67)

m M'

* On the other hand, from (3.22) we have

1 21! m l - - kI (3.68)

Eliminating E" between (3.67) and (3.68), we obtain
Am= ' lmi" (3.69)

It can be shown that this solution also holds in the source region (z = z'). If the current

l ii in (3.69) is that generated by a z-directed dipole, then A-' = dm'. Hence, substituting

from (3.66) into (3.69), we obtain

Gdm - I'my (3.70)

*The horizontal (x- or y- directed) dipole source may give rise to all components of A'm, i...,

= iA + y t + iA . The transverse electric field components can be expressed as

- (k - j~.)Am2\ jA'- Am' (3.71)
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0I

kkAmi + (k 2 - k )Ami - Jky A7l (.2)*k [XV V. + km - z-

On the other hand, from (3.20) we find
, k, Vi + kVm (3.73)

0y' = jky V: - 3kxvm (3.74)

Eliminating Ev and !yi from (3.71)-(3.74), we have two independent equations and three

unknown components of Ami. Therefore, the solution of these equations is not unique, and

one of the components of the vector potential can be set to zero.

3.3.1 Traditional Form of the Green's Function

In the traditional approach [16], it is postulated that an x-directed current dipole generates

the x and z components of the vector potential. Hence, eliminating £' and Em from (3.71)-

(3.74), and letting A", = 0, we obtain

A mi : k, Vhi  (3.75)

A =1 2  .  k 2 h]

= -k,
2 V/- '. k _ Vhx . (3.76)

fr.. [mm k.ymt

Substituting (3.59) and (3.60) into (3.75) and (3.76), we have

xx l__ t (3.77)

and
*__a-. k [ b o

a (-Mi Gx W k 2 rn -km2 ,](3.78)

from which we obtain
2

-- k. [ km a ,- m a . (3.79),,, kp2 Pk, ml OZ "

Similarly, we assume that the y-directed current dipole generates the y and z components of
the vector potential. Changing x to y and k., to k. in (3.77) and (3.79), we obtain

*Gi = Gn= (3.80)
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f k& - v-  (3.81)

Thus, the elements of the dyadic (2.7) have been obtained in the Fourier transform

domain. By using the relationships given in (3.8)-(3.13), one can express the space domain

counterparts of (3.70) and (3.77)-(3.81) as

1 1 Q2
=t _0 q~ (3.82) V

2rj w o k$) (3.83)

Gmt tan C Gml (3.84)

and

G 1 PS 
(3.85)27rjw 

[

3.3.2 Alternative Form of the Green's Function

Taking an alternative approach [15], we suppose that a horizontal (x- or y- directed) dipole

source gives rise to x and y components of Ami. Eliminating n and t from (3.71)-(3.74),

and letting A j = 0, we obtain

j,,* 1 k "' 3  me -Ak" Vhi (3.86)

.-i kV i .Jkx i ., (3.87)

If the voltages Vi and Vmj in (3.73) and (3.74) are those generated by an x-directed dipole,

then Am' - Gm' and A - . Hence, substituting from (3.59) and (3.60) into (3.86)

and (3.87), we obtain

G Mk2 2  ) kP2 m, (3.88)

~,mt k~kv ( kLn -;v ~vh (3.89)G1-jwkp2 P km -G i"

Similarly, substituting from (3.63) and (3.64) into (3.86) and (3.87), we obtain
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G -GY (3.90)

and

-yyj, k2mk 2 mt kP 2 
ms (3.91)3u w (~mp---- Z m + P- r,

,That Gm t  was already anticipated in (2.8).

Thus, we have obtained the elements of (2.8) in the Fourier transform domain. Upon

using (3.79)-(3.13), they can be expressed in the space domain as

G' 1 -vo -v[ k _v -v,+,6h
* Gm 4 {So [-!-G, +GI - cos (S2 [ ( -G. - c")] (3.92)

{so[ .__ G +- cosk22 k (----mi -- )]} (3.93)

GmC = G 6COS (sin 2(S 2  \ v. v,)-] (3.94)

with Gm' given by (3.85).

3.4 Electric Field in the Layered Medium due to a
Plane Wave Incident in Region 1

Consider an incident plane wave in region 1, given as

E'(r) = (EoO, + E, p,) ej k  r  (3.95)

where the propagation vector k, is

k, = k, (sin01 cos 1pj i + sin01 sinp oji+ cos 01 i) (3.96)

and (bl, p) define the angle of arrival of the plane wave in terms of the usual spherical

coordinate convention. We can utilize the analysis in Sections 3.1-3.3 to obtain the total

"incident" electric field in the mth layer due to the plane wave given in (3.95). We easily

find that the incident field in the top layer (m = 1) is given as

Ein(r) = J{+ [- E, sin o ( + 4 Fe-~1cslz2)

+Ee cos ,p cos 0 (1+ 4 -e-j2k cos(z-zj))]
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E,' cos p I+ 'h e -j2k, cos0 (z-z))

+Ee sin i cos 01 (i F ie 2k, cose(z-zi

-i.Eosin 0l (1 -
4-e-j2k cos01(z-zl)) } ejk,[sin01(cos Ix+sin 1y)+cos~z] (3.97)

*and the field in other layers (m 54 1) as

E~c(r) = {i [-E, sin,) (l + r, ) T-v (z)

+Eo cos 1 -Z I - re Th )

71
+ i [E ocosi (i 1+ F-h) T-'Y 1(Z) ± F0 sin o - (i1- Th-) -Y'h(z)]

- ~orl- sin Om (1- 4~~'7 1-T(Z)} ej km(cosw1 sin OZ + s in l sinOm y+ cosO z) (3.98)

-ioli, I- - FeT(98

where Ze, F 1 , and Tmi are given in Section 3.2, with k,, = km cos 0m, where 0m can be

obtained from the Snell's law, k, sin 01 = km sin Om. In (3.98), im = Jim/Em is the intrinsic

impedance of the dielectric of region m.

0

0

0
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Chapter 4

Formulation of the Mixed-Potential
Electric Field Integral Equation

As mentioned in Chapter 2, the decomposition embodied in (2.13) is non-unique, which

* means that an infinite number of different MPIEs is possible. We observe, however, by

referring to (2.16), that the presence of the "correction" function pm has the undesirable

effect of introducing new elements in the dyadic kernel K m , in addition to those already

present in GV. Ideally, of course, pm should be zero, which - unfortunately - is only

* possible in a few special cases [15]. Hence, the best one can do is to develop MPIEs for which

one or two of the components of pm are zero. It is shown below that for the vector potential

Green's functions (2.7) and (2.8) the x and y components of pm are not independent, thus

leaving us, for each G i, with only two degrees of freedom: either Pxt p, = 0 and

P -4 0, or Pm, 0 0, Py $0, and Pm =0. Of the four possible "minimal" formulations,

only three iead to distinct MPIEs. These three are discussed in detail below, where they are

referred to as Formulations A, B, and C. Most of our derivations are done in the Fourier

transform domain defined in (3.1) and (3.2), which greatly simplifies the algebra.

4.1 Formulation A

In this formulation, we employ the alternative form of GA given in (2.8). In the Fourier

transform domain, the x, y, and z components of (2.13) become

3 W ~-', '-', ' kkmi +'~xni(A

W,,Zi rniY ,wi I

(-jk -14•0-.) = + jwP7 (4.2)
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* -- ! ! +

3 j wOz, aZ +j m. (4.3)

Using (3.88) through (3.91) in (4.1) and (4.2), one finds that 16,1 and P/5 are related by
i ky I

(4.4)

* In Formulation A, we choose p17i = Py" = 0, in which case K" can be interpreted as

the scalar potential of a point charge associated with a horizontal dipole [15j. Solving (4.1)

or (4.2) for -i; one obtains

* A1 = -j (4.5)
kzm

which can be substituted into (4.3) to yield

ml Pt [L - Alm 6m v,,Pr - " (4.6)

where we have introduced for later convenience

P' ~Gj Z-zi -1--, z) T q (z), I - 1 > m > I

-m, =(4.7)

Z? Gi F(z,, z') Tm,.(z), n + > m > i +

in which the superscript "q" stands for "e" or "h." Observe that Pm = 0 when m z, i.e.,

when the source and observation points are within the same layer.

Substituting (3.70), (3.88)-(3.91) and (4.6) into the Fourier domain counterpart of (2.16),

* and using the relations given in (3.8)-(3.13), one obtains the dyadic kernel

K '.(r I ') = i K " . + y K  , + i iK"" i

-(± )K/- + c K' + K- 1  (4.8)

* with the elements given by

K' . = Gms 1 {k 2so (k v ' +SO0 (d)Ifx' = x' 47rjw 'n k2 ml,

+ cos 2( S2 [+1i(dv, km' dv) (4.9)

= - 1 {k2S °  1GLm) + So (G.,)

•- cos 2(S2 V G  k v)]} (4.10)
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1~1(vh k ,v (411
K = G' - sin2( S 2  , kVh m l '2(4.11)rvj x. ip \ z1k2m 1

_ -n -Cos( S, (4.12)
TXZ 27r \Z

a___~ i  _ sin C

ay = s (4.13)

G + pn = So (G-2i) "(4.14)
Kzi = z G a z - 27rjwL6,,M

Finally, the Fourier inversion of K-. in (4.5) yields the scalar potential kernel

Km' =_-"So , ) (4.15)

We observe from (4.9) through (4.15) that in this formulation, when rn -$ i, the effect of

v pm' in (2.16) is to introduce two new entries, K',i and K' , and to modify G'. However,

when the object is confined to a single layer (m = i), we simply have Km' = Gi so no

modification of the Green's function is required.

* A useful property of Formulation A is the cancellation of the contour integrals in (2.15),
which is the result of the continuity with respect to the z' coordinate of the scalar potential

kernel at the ith interface: Ki(z ' = zi + 0) = K,.+(z = - 0). We note, however,
that a continuity with respect to the z coordinate does not hold, i.e., K" (z = zm + O)

K2+"i(z = zm - 0).

4.2 Formulation B

In this formulation, as in Formulation A, we employ the alternative form (2.8) of a~ i.

However, rather than choo3ing PTi =/5t  = 0, we select P67i = 0 in (4.1) through (4.3). In

ihis case K" can be interpreted as the scalar potential of a point charge associated with a

vertical dipole [151. From (4.3) and (3.70), we find

Kk=-~ -2. (4.16)

which can be substituted into (4.1) to yield

wk_ imrn - m, (4.17)
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which, in view of (4.4), also specifies/P t i
* Referring to (2.16) and proceeding as in Formulation A, we obtain the dyadic kernel

=KA' (r I r") = ic K m + K + i iKm

+(, + i) ,)I' + iiK ' + iyKzy (4.18)

* with the elements given by
a + So,)

jfrniGni xm  
_ 1 ml MI

I ax r=4Grj~a+ Ox 4rjw kJ

*( h i2s2S [-± V .)]} (4.19)

i= G + My n - 4 1 2S0 ( V..) + So (ah)
ay 47rjW Z,

0 cos

pmi co2 S (2m) (4.22)
az k2 mgr

= 0 p - sin I (4
K0 (4a.232) ~

K =m' = - ir 2 s (_,,) (4.24)

where/ ' is nonzero only for m 2 i and is given by

ffl,,m ai -W mi(

R =aM siC m (4.25)

K mg zI s

in which -, can be obtained from -v,, given in (4.7) by replacing in the latter the charac-

teristic impedances Zj' by their reciprocals.

Finally, the Fourier inversion of KV" in (4.16) gives the scalar potential kernel

j - so (GM) (4.26)
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We note that in Formulation B two new entries (Krni and!K' .), not present in

are introduced to the dyadic kernel KM. Also, extra terms are added to Gm, G"', and

G-m. In the case where the object is confined to a single layer (m = i), K A = GA, and

Formulation B becomes identical to Formulation A.

The continuity properties of the scalar potential kernel in Formulation B are complemen-

tary to those in Formulation A; that is, in the present case Ko'(z' = zi + 0) 54 IKO '(z' =

zi- 0) and Km't(z = Zm + 0) = K; z = zm - 0). As a result, the contour integrals

in (2.15) do exist when the object penetrates one or more of the interfaces.

* 4.3 Formulation C

The point of departure in this formulation is the traditional form of fA given in (2.7).

Using it in (2.13), we obtain in the Fourier transform domain

0- k.jG G + a7i) = k~K~ 1 + wP " (4.27)k,,, OX z zX ] W I0.

J ,)jk~ik + 19 ) = 4 -jk,,km +jwAP6ym (4.28)* (w& . 1. w~

-C = a -Ms.+ 
(4.29)k ;z jwOz' JP

From (4.27) and (4.29), and referring to (3.79) through (3.81), we find that (4.4) still holds.

Since G"j' in the present case is the same as that in the "alternative" Green's function (2.8),
* specifying 157' = 0 results in an MPIE identical to that in Formulation B. We therefore set

Pm i = Pr, = 0 in (4.27) and (4.28), which yields the scalar potential kernel

j7V- JW( v k ) (4.30)
- p2

From the above and (4.29), there results

-tM  k =& , I [ -M z' + 1 . (4.31)

M P

Substituting (3.70), (3.79) through (3.81) and (4.31) into the Fourier domain counterpart

of (2.16), and using the relations given in (3.8)-(3.13), we obtain the dyadic kernel
Km'(r I r') = (i + +) K, + K t +zK '

+iKm i Km +i -mK (4.32)

with the elements given by
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1
Km' = G -(G=h (4.33)

rr a 2rjw [1 /4.3k
Km = - 2 cos L" 5' W - - ) (4.34)

Kz 5X 2rv k2

K m' -C
m' - --- " WS, (4.3,5)

1 1 k - (4.36KZX' =ZGX - 27rjw [cos ~( -

2 Am

Kzm' = G1 1 ... (M, (4.37)

where we have introduced

*2ZD,{i e-Jkz[(z+z')-2z'] - F -e- '[z--(z+z')]

I- [-I (" ' FVI! F

+ 2jLIFei, - sin [k(z - z')] m = (4.39)

2

Gm* 9m -kj k zm i (4.40)

with I'v given in (4.7). For notational simplicity, we have suppressed in (4.39) and (4.40)

the superscripts "e" or "h". We note that one can obtain W4/, from 'v by replacing in the
latter the characteristic impedances Z, by their reciprocals.

2Finally, the Fourier inversion of (4.30) gives

= IZv kz-Gm • (4.41)

As in Formulation A, this Kspi may be interpreted as the scalar potential of a point charge

associated with a horizontal dipole [15] owe these two potentials are not identical,

since each corresponds to a different form of the vector potential Green's function.

We observe from (4.33) through (4.38) that Formulation C introduces two new entries

(K i  = KjW), notprsen1i)

(Kg' an ~ notpresen in ,n to the dyadic kernel. Also, extra terms are added to
Gs. In contrast to Formulations A and B, these modifications occur even if the object is

confined to a single layer. As in Formulation A, the scalar potential kernel in the present

case has the continuity property that Kmi(z' = zi + 0) = Km+l(z = - 0), which causes
the contour integrals in (2.15) to cancel. Formulation C also shares with Formulation B the

useful property that Km'(z = z,, + 0) = Km+li(z = zm - 0).
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0

4.4 Discussion
0

The properties of three MPIEs are summarized for easy reference in Table 4.1. Each of

the three formulations, called A, B or C, can be derived from either the alternative or the

traditional form of the dyadic Green's function for the vector potential. These two dyadics

* are shown in matrix form in the first column of Table 4.1. We note that Formulation A is

derived from the alternative forms of G" Formulation C from the traditional form, and

Formulation B from either of the two (this is due to the fact that both forms of Gi share

the same G"'). The distinguishing feature of each of the three formulations is the choice of

* the scalar potential kernel K, which also specifies the "correction" vector P according

to (2.13). Although, as the second column of Table 4.1 indicates, the scalar potential kernels

in Formulations A and C are both associated with a horizontal dipole, they are different,

because they correspond to different vector potential Green's functions. In Formulation B,

K m is that associated with a vertical dipole. Actually, by properly choosing Km', one can

also derive Formulation A from the traditional form of Gi and Formulation C from the

alternative form.

The forms of the dyadic vector potential kernel are shown for each of the: three formula-

tions in the third column of Table 4.1. Comparing this column with column one, we observe

that in all three formulations two new entries, in addition to those already present in m

appear in K A, which is of course undesirable. We note, however (as indicated in the fourth

column of Table 4.1), that in Formulations A and B the number of the entries in K' is

not increased over that in A when the object is confined to a single layer (m = i). We

should also point out that the correspondence between the number of entries in K and

the number of distinct Sommerfeld integrals that need be evaluated is not one-to-one. In

fact, we can show by referring to Sections 4.1-4.3 that in the general case only four distinct

Sommerfeld integrals are required in all three formulations. When m = i, the number of

distinct integrals in Formulations A and B reduces to three.

As mentioned at the end of Chapter 2, one may leave the pi term as a part of the

scalar potential (cf. (2.15)), thus avoiding the modification of the vector potential kernel as

* in (2.16). However, since this would constitute a departure from the standard form of the

MPIE [4, 5], we prefer to proceed according to (2.16). Although in our formulations some

of the terms introduced to Km' by V P" in (2.16) become singular when r and r' coincide

on an interface, they are no more singular than the terms already present in 9A , and can

* be handled in a similar way as the latter.
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The continuity properties of the scalar potential kernels across the interfaces are sum-

* marized in the fifth column of Table 4.1. In Formulations A and C, K" is continuous with

respect to z', which results in the cancellation of the undesirable contour integrals in (2.15)

(cf.the sixth column). In Formulations B and C, Km' is continuous with respect to z, which

results ip considerable simplifications in the nmmerical procc& ,7"-, wben the ohject pen-trates

* one or more interfaces. This last point can be fully appreciated only after we have discussed

the details of the MOM procedure in the next chapter.

We conclude from the above summary that when the object is confined to a single layer,

Formulations A and B become identical and are preferable to Formulation C, because they

• have fewer terms in K7n. In the general case, Formulation C enjoys a clear advantage

over Formulations A and B, because it does not have contour integrals and because its

scalar potential kernel is continuous at the interfaces with respect to z, which results in

the simplifications mentioned above. If we had to choose between Formulations A and B,

* we would prefer the latter, because the advantages of having the scalar potential kernel

continuous with respect to z more than compensate for the complications caused by the

presence of the contour integrals. This point is further elaborated upon in the next chapter.

The previous works related to the mixed-potential EFIE and reviewed in Chapter 1 can

* be classified as shown in the last column of Table 4.1.
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Chapter 5

Numerical Method

In the previous chapter, three alternative MPIE formulations - referred to as Formulations
A, B and C - have been derived for PEC antennas or scatterers residing in plane-stratifieu
dielectric media with an arbitrary number of layers. Formulation C has been found to be
particularly well suited for the application of the MOM procedures originated by Wilton
and his co-workers [4, 5, 7]. This formulation is adopted here in conjunction with those
procedures to analyze the radiation and scattering by a PEC object of arbitrary shape
residing in layered media. For simplicity, but without loss of generality, we describe this
method in the context of the two-media problem illustrated in Fig. 5.1. Also, for simplicity,
the interface between the two media is taken to be the xy-plane of a Cartesian coordinate
system. The upper (z > 0) half-space, which is characterized by (I and U1, will be referred
to as region 1, and the lower (z < 0) half space in Fig. 5.1a, or the slab (-d < z < 0) in
Fig. 5.1b, both characterized by E2 and 12, as region 2. The parts of the surface S of the
object which are in regions 1 and 2 are denoted as S, and S2, respectively.

As was already mentioned, based on the analysis of Section 4.4, Formulation C has been
selected for the problems of Fig. 5.1. Hence, upon specializing the MPIE of (2.15) to the
present case, one obtains

2

x-[jwA' (r) + Vom' (r)] = im x E'(r), r on Sm, m=1,2 (5.1)

where, for notational simplicity, we have introduced

Am (r) = J K'"(r It') J (r') dS' (5.2)
S,

(r) =J K '(r r') q(r') dS' (5.3)

S.
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Figure 5.1: PEC object of arbitrary shape embedded in (a) contiguous half-spaces, and (b)

in a grounded slab.
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in which the kernel elements are given in Appendix A. The integrals (5.2) and (5.3) represent

the modified potentials, and should not be confused with the original potentials given in (2.4)

and (2.5).

We note that the contour integrals encountered in (2.15) are absent in (5.1), which is

characteristic of Iormulation C. The quantity of interest for the scattering and radiation

0 problems is the surface current distribution on S, from which other characteristics, such as

the far field pattern or radar cross-section, can readily be computed. For the transmission

line problem, there is no excitation and (5.1) becomes a non-standard eigenvalue problem,

with the propagation constants as eigenvalues and the modal current distributions as eigen-

functions.

In solving the integral equations, the MOM schemes developed in [3, 4, 5, 7] are employed.

These procedures are modified to account for the dyadic character of the vector potential

kernel, to ensure the current continuity across the interface, and to allow for the charge

discontinuity there [19]. In the MOM, basis functions.are chosen to represent the unknown

currents, testing functions are chosen to enforce the integral equation, and these are used to

derive ,r, imnedance matrix approximant to the integral equation.

5.1 Surface of Arbitrary Shape

Following the procedure described by Rao et al. [5], the surface S of the ob. -t is modeled in

terms of triangular patches in a manner suggested in Fig. 5.2. The surface current density

on S is approximated as

N

J(r) = IA.(r) (5.4)
n= 1

where N is the number of interior (nonboundary) edges and A, is the vector basis function

defined on the adjacent triangles associated with the nth edge, and is given as

h+

" in

An(r)= pk, =(5.5) -, r in S-

0, otherwise

in which h is the height of triangle S' relative to the nth edge of length l,, and ±p' is the

* vector from the free vertex of Sn' to an arbitrary point on patch S, as shown in Fig. 5.3. The
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$2

Figure 5.2: Triangle-patch model of an arbitrary surface penetrating the interface between
dissimilar media.
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Figure 5.3: Local coordinates associated with an edge.
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expansion for the surface charge densit) q, which is obtained by using (5.4) in the equation

of continuity, calls for the surface divergence of A,, which is found as

2r r( = (5.6)
V ,hA , r in S _

0, otherwise

When the expansions for J and q are used in (5.1) and the resulting equations tested by

integration along the path from the centroid of S+ to the middle of the edge 1p and then to

the centroid of @-, an N x N system of linear equations is obtained, which may be written

in matrix form as

[Zpn][I,,] = [Vp] (5.7)

where the elements of Zp, and I" are given as

(A ±A+ )-4 -( -7 D+ (5.8)

VP = (- + E) (5.9)

where p, n = 1,2, ... ,N, and

A = P Km (rc+ I r') • A,, (r') dS' (5.10)

S,

, = / (rc, I r') V",. A, (r') dS' (5.11)

S,

*~~n E~=~ E C±r) (5.12)

In the above, pc, is the vector between the free vertex and the centroid of S±, with p,-

directed toward and pc+ directed away from the vertex, and rc, is the vector from the

coordinate origin to the centroid of S±.

It is worthwhile to elaborate on one aspect of the above procedure, which is peculiar to

the layered medium case. As suggested in Fig. 5.2, the triangle-patch model of S must take

into account the position of the interface, since no triangular patch is allowed to cross it.

This arrangement ensures the continuity of the current on S across the interface and allows

for the discontinuity of the charge there (cf. (5.5), (5.6)). A typical triangle pair associated
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with edge p on the interface is illustrated in Fig. 5.4. In testing (5.1) with Ap, one should
bear in mind that S" and S+ are in different layers. For example, testing Vsmt in (5.1)

with Ap yields

sf s- fs-f

S+1[ (o2'A+" ii+ + ¢"A-. i- L) dl (5.13)
] P P P/

where use has been made of the Gauss' theorem [38, p. 503] and where A' and A- signify,

respectively, AP evaluated at the top and bottom sides of the interface. We observe the
undesirable line integral in (5.13), which does not occur for objects in homogeneous space.

Even in the present case, however, this integral disappears for Formulations B and C (see

Chapter 4) in view of the continuity of the scalar potential kernels as z crosses an interface
and the fact that it . A+= -it-" . A- on I, which follows from (5.5). In Formulation A,

the line inLegrals contribute a contour integral at the intersection of S with the interface,

quite similar to that in (2.14), which is present in Formulation B. However, due to the
approximations made in the testing procedure [5], the latter is actually easier to handle than
the former-hence our statement in Chapter 4 regarding the superiority of Formulation B

over A. Formulation C is, of course, free of either of these contour integrals.
It is worth noting that, apart from the presence of the Sommerfeld integrals, the only

difference between (5.8)-(5.12) and their free space counterparts [5] is the dyadic character
of the vector potential kernel in (5.10). The surface integrals in (5.10)-(5.11) can be effi-
ciently evaluated in normalized area coordinates and reused for different matrix elements, as

described in [5].

As in the free space problem, the integrands of Ami(r) and 'mI(r) are singular at r = r',

i.e., when the observation point coincides with the source point. As mentioned in Ap-
pendix A, this singularity arises from the closed form part of the Green's function. Thus,
when the observation point is close to the source point, extraction of the inverse-I r - r'I
behavior is necessary before numerical integration is performed. The technique developed in

[41] may be used for the treatment of such singularities.

5.2 Thin Wire of Arbitrary Shape

We next consider a thin-wire structure of arbitrary shane with radius a, which may penetrate

the interface between two dissimilar dielectric layers, as shown in Fig. 5.5. The parts of the
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Figure 5.5: Straight-segment model of a thin-wire of arbitrary shape which penetrates Lhe
interface between dissimilar media.
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wire which are in regions 1 and 2 are denoted as L1 and L2, respectively. The wire is

modeled in terms of N + 1 straight tubular segments and the vectors r,,, n = 0, 1, ....

N + 1, defined with respect to the global coordinate origin 0, locate the end points of the

linear segments, as illustrated in Fig. 5.5. The same points are designated by 4, with respect

to the local arc-length coordinate I along the axis of the wire. By making use of the thin

wire approximation [3], we may express the potentials (5.2) and (5.3) as

A m (1) = K (l I '). I(') dl' (5.14)

*Pmi (1) = J K'(l I I') Q(l') dl' (5.15)

L ,

where we have introduced the total current I(1) = 21ra J(l) and the linear charge density

Q(1) = 2raq(l). Since on the wire r is determined by 1, we have, for simplicity, replaced the

former by the latter in (5.14) and (5.15). Similar remarks apply to r' and 1'. Following the

MOM developed in [7], the current density along the wire is approximated as

N

I(I) = ZIA.(/) (5.16)
n=1

where An() is the vector expansion function given by

P--+ I/in Sn+

h+

An(l) = p (5.17)

0, otherwise.

in which h' is the length of the segment S relative to the nth node and :p is the vector

from the free node of SnI to an arbitrary point on the S, segment, as shown in Fig. 5.6. The

divergence of An(l), which is proportional to the linear charge density assc-;ated with this

basis function, is

(1 1 1in S+h+'n

V an(/) 1 (5.18)
h-n

0, otherwise.
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Figure 5.6: Local coordinates associated with the nth node of a wire.
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When the expansions for I and Q are used in (5.1) and the resulting equations tested with

A,(l), an N x N system of linear equations is obtained, which may be written in matrix

form as

[z1][I] = [V,1 (5.19

where
+1

ZPj (A+ + A-)- (q-, - +)(5.20)

P ' El (l) + PC• E tc(lI) (5.21)

in which

= " -"(l+ I') A,(l') dl' (5.22)

SK,"(l - I I') V• A(l') dl' (5.23)

and

0 JC= P + lp± (5.24)

2

In (5.22) and (5.23), we employ the exact kernel on the source segment and the reduced

kernel otherwise.

It is observed that the integrand of (5.22) consists of seven terms contributed by the

non-zero elements of the dyadic kernel K7 . For example, the contribution of K., to A+ is

c , 1,c+1

..- '(+- II') P " dl' + I K,',-(Ic+ 1') P i d1' (5.25)

In-I n n

The integrals in (5.25) may be further transformed as

In '* J K,'(lc+ I') Pv dl'P +

In-In

=* I s' + 1c+ ) ds' + hC- ' lc)s'ds' (5.26)
n
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and

1n+1~il+ '~'n ,-c, It /)Pf dl'

P. h;

- - P_ Is'+ - - -+ 1'l d ''-)s ds' (5.27)
-A -A-

where A' - h1/2.

An examination of (5.20) and of the above expressions reveals that the right-hand inte-
grals in (5.26) can be used in the matrix elements Zp-l,,-1, Zp,,-l, ZP-I,,, and Zp,, resulting

in considerable savings in matrix fill time.

As suggested in Fig. 5.5, no straight segment is allowed to cross the interface, where the
charge is discontinuous. Also, by using the same arguments as given in Section 5.1, one

can prove that no extra terms need to be added to (5.20) to account for the interface, if

Formulation C is used.

5.3 Microstrip Patch Antenna of Arbitrary Shape

The structure considered in this section is a microstrip patch antenna of arbitrary shape
driven by a coaxial transmission line, as illustrated in Fig. 5.7. The dielectric slab and the
PEC ground plane are assumed to be of infinite extent. The shape of the patch (also assumed
to be PEC) is arbitrary and is modeled by triangular elements. The probe-to-patch junction

can be located anywhere on the patch, including edges and corners, but it must coincide

with a node of the triangle-element mesh.

Following the procedure developed by Hwu and Wilton [71, the surface current density on
the patch Sp and the total axial current on the wire Sw are approximated as, respectively,

Np

J(r) 1: IpAP(r) + IJA(r), r on Sp (5.28)
n=1

and
Nw

I(r) t 1 y IWAW(r) + IAJ(r), r on Sw (5.29)
n=1

where AP(r) and AW(r) are the basis functions previously defined in (5.5) and (5.17),
respectively (the superscripts "P" and "W" have been introduced to distinguish between

functions associated with the patch and the wire). The basis function associated with the

wire-to-patch junction is given as [7, 42]
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Figure 5.7: Coax-fed microstrip patch antenna. (a) Cross-sectional view. (b) Top view
showing a triangle-element model of an arbitrarily shaped patch.
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K, [I ( j- ) A P (r), r in SJ-

AS(r) = r in S (5.30)

0, otherwise

where the index I refers to the lth triangle, S-, at the junction (cf. Fig. 5.8), Ar(r) and

I are the patch basis function and the vector height, respectively, associated with the

edge opposite the junction vertex in S-, AW(r) is the wire basis function associated with

the junction node Nw + 1, and K is the normalization constant given as
K - N -(5.31)

iteZa
1=1

where al is the angle between the two edges of SJ- common to the junction vertex, 11 is the

length of the edge opposite the junction in SJ- , Nj is the number of triangular elements

attached to the junction, and at is the sum of the Nj junction vertex angles. The divergence

of AJ(r), which is proportional to the surface charge density near the junction, is given as

0 ( 2K1 r in SJ-

V,. AJ(r)= 1 r in SJ+ (5.32)

0, otherwise.

The basis function (5.30) enforces the current continuity at the junction and it correctly

models the near-singular behavior of the patch current near the feed probe. Unlike some

other "attachment modes" described in the literature [18, 43, 44, 45, 46], it is applcable

even in cases where the microstrip patch antenna is driven at an edge or a vertex.

The testing procedures for Sp and Sw are identical to those described in Sections 5.1
and 5.2, respectively. In testing the equations associated with the junction, we first integrate

along the wire axis from the center of the attached wire segment to the junction, and then

along the paths from the junction to the centroid of each triangle element associated with

the junction. The resulting equations are subsequently combined into a single equation for

the junction, by weighting each with the associated triangle vertex angle and summing the

results for each junction triangle element. Substituting the current expaiisions (5.28-5.29)
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Figure 5.8: Geometrical parameters associated with the wire-to-surface junction.
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into (5.1) and testing the resulting equations by the method described above, we obtain an

N x N system of linear algebraic equations, where N = Np + Nw + 1, which may be written

in matrix form as

[ZPP] [Zpw] [z.P] [,P] [V]

[zWP] [ ] [ZW ] [w] = [] (5.33)

[zJP] [z w] - V

where the elements of the submatrices [zPP], [zWW], [VP], and [VW] are defined in pre-

vious sections, and the elements of the other submatrices are given as

zpl=jW (Ap' + Apy+ y _ 1 t-rJ(+4

2 ( '=WorJ (5.34)

*Y w (,(D-y- t-+ , =P or J (5.35)
W --pn Pn pnp

1NJ
=Zj - a (wA# I w + .W =P,W or J (5.36)

_j NJin + n w

= -- Z Pa " Esnc(rN) + E)C+ l , 1+ (5.37)
A' - E (r- Nw+I)

/=1

in which

P - K.Ar1j I r') . A"(r') ds', y = W or J (5.38)

Aw f pC;+. __ I rt'). A (r') ds', -, = P or J (5.39)
S

-. J K 2 (l I r') V A W(r') d s', P = or J (5.42)
S

* _ n -, Ay+ w+ (5.43)

--" I n -n -- Nw+,n
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The antenna is excited by a coaxial cable from below the ground plane (cf.Fig. 5.7).

The magnetic current frill model [47] is ;"d to model the junction between the coaxial

transmission line and the dielectric substrate. It is assumed that the field distribution in the

coax aperture is that of the TEM mode with a known voltage V,. The magnetic current

radiating in the grounded slab environment provides the "incident fields" [48, 49]

En c(p, z) = ----- So {-jk2 + kz2E cot(k, 2 z)

sin(k2Z ) - J0(bk)] (5.44)Scos(k 2d ) =IP-P I

E z =jkz,2+ kz24E tan(kz2z)
In (b) D,1kP2

cos(kz2 z) o(ak) - o(bkp)]5.45)
cos~kz~d) 1=1 P-P.:I

where D e and Dh are definded in Appendix A.2, and is the horizontal distance between
the field point and the center of the coax inner conductor at p, Once the system (5.33) is

solved, the input impedance of the microstrip patch antenna is found as

Zi, = in (5.46)

where Iin is the current at the base of the coaxial probe.

The computation of the matrix elements in (5.33) is extremely time consuming, due

mainly to the presence of Sommerfeld-type integrals, which must be repeatedly evaluated

for different source and field points. For the structure showa in Fig. 5.7, the integrals

encountered in [ZPP] depend only on the distance , while those in [ZPW] and [ZW P]

depend, respectively, on ( , z') and ( , z). This suggests a time saving scheme, in which the

Sommerfeld integrals for a given geometry and frequency are pre-computed for a grid of

points (using the methods of Chapter 6), and these values are used in the solution phase to

interpolate the values of the Sommerfeld intergals for all required combinations of source and

field points [50, 17, 18]. We have implemented this method using one-dimensional quadratic

Lagrange interpolation for the Z P P terms, and two-dimensional cubic Lagrange interpolation

for the ZWP and ZPW terms.

In cases where the substrate is electrically thin, a simplified feed model may be employed

to analyze the antenna of Fig. 5.7, without appreciable loss of accuracy. In this model,

56



the coax probe is replaced by a vertical filament of constant current I,,, which enters the
microstrip patch and spreads radially away from the junction point. The excitation current
on the patch can be approximated by IiAJ-(r), where A3 is defined in (5.30). This current
is now considered to be the source of the "incident held," and the current distribution on

the microstrip patch is the only unknown. Otherwise, the solution procedure is similar to

that described above, and it leads to a matrix equation

[ZPP][IPI = [VP] (5.47)

where ZPP are given in (5.8), and VP is very similar in form to Zr", given in (5.34). Once
(5.47) is solved for the patch current, the antenna's input impedance is calculated as0

Zi, = - J E P . dz' + Zcoax (5.48)

where E P is the field due to the total current on the microstrip patch evaluated at the
location of the probe, and Zcoax is the correction term required to account for the "probe

self-impedance." Several different expressions for Zco,, have been used in the literature [51,
52, 53], with the most elaborate form recently given by Mosig and Hall [54, p. 434]:jo kod 2 ) +a - V/a +4 4d2

Zca - r Ik od % arsinh (2 +a 2 (5.49)

where it is assumed that the upper medium is free space with the intrinsic impedance q70,

and e, is the relative dielectric constant of the substrate.

The simplified and rigorous coax-feed models will be referred to as the 1st- and 2nd-order

models, respectively.

5.4 Transmission Line of Arbitrary Cross-Section

The structure under consideration is shown in a cross-secLiuual view in Fig. 5.9. The ground

plane at z = -d is assumed to be perfectly conducting. The arbitrarily shaped PEC cylinder
may be open (for example, infinitely thin strip) or closed (finite-thickness strip), and is of
infinite extent and invariant along the y coordinate. As illustrated in Fig. 5.9, the contour of
the cylinder cross-section is approximated in terms of straight line segments. The definitions
of the ends of the segments and the local arc-length coordinate parallel to the segments
are the same as those in Section 5.2, except thea in this case I dnd r depend only on
the transverse coordinates x and z. We assume that all field components depend on the
longitudinal coordinate y according to e-AY , where k. "= / -ja represents the propagation
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Figure 5.9: Straight line segment model of a cylinder of arbitrary cross-section embedded in
a grounded slab.
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constant of the mode. For this two-dimensional problem, the surface current density on the

cylinder can be decomposed as

J(r) = Jt(r) + J(r) (5.50)

where Jt(r) and Jy(r) are the transverse and longitudinal surface current densiLies, respec-

tively, and can be expressed as

Jt(r) = Jt(1)e - jky (5.51)

J,(r)- J,(1)e- j k s, (5.52)

where I is the local arc-'length coordinate along the circumference of the conductor and is

a function of the transverse position only (cf. Fig. 5.9). Thus, for the fransmission line

structure, (5.1) may be expressed as
2

1 it x [jwAMi (1) + (V, - jky)V'(1)] = 0, m = 1,2 (5.53)
2=1

where

0 V0• Vt = + i (5.54)

A m'(1) = fK[_ I Il') . J(l') dl' (5.55)

* m(D ) = J K (l I ') q(I') d'. (5.56)

The charge density q(l) in (5.56) can be obtained by using the equation of continuity,
1

0 q(1) = 1 (V, - jjky) . J(l). (5.57)

The elements of K7 and Kn' can be obtained from (A.18)-(A.37) by making the following

changes:

----, .7) = /r k ) - k " dkr (5.58)
-00Q

cos (S [ ( k,)] --- ,Sobk. (k.)] (5 59)

• sin ('SI [ (k,)] -- jk Sofl(k )] (5.60)
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g,(r) = * 2 HSo)(p , (5.6 )
r - V

where p (x - x')2 + (z - z') 2. Following the MOM procedure developed in [4] for objects

in free space, the surface current densities may be approximated as
Nt

Jt = I, A,,(1) (5.62)
n=1

NY

Jy = E I In(/) (5.63)
n 1

where An(1) is given in (5.17) and

In(l) = 1, (5.64)
0, otherwise

Substituting (5.55) and (5.56), and using (5.62) and (5.63) in (5.53), and testing the resulting
equation with An and with nn- one obtains the matrix equation

* Lt n z J i.yn ['Int]j[O] (5.65)
where the elements of Zpn are given as

ztt =j \A tt + +. p  + LP, ) + - + Att,..
= jW [LP (A~ + At)+t'A++ ~j

I~ [~ 1 4 - - 0 + ) - 1I ( -- (5.66)
h+ ) h

+ + A,,, + - (o-+ - )(5.6)

(568
h = h+ Ay++ - L , I (5.69)

*~ n pn 2pn Wln p

in which
2 n

A 7 = , - ,- 1' , r, = (t,y) (5.70)

lr*:c 11
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n
pn ,€ ,p l') d1'. (5.71)

In:lF1

where ± in front of the integrals (5.70) and (5.71) corresponds to the segment S±. In the

above equations, the first and second superscripts ± correspond, respectively, to segments

S± and S,.

The evaluation of the matrix elements (cf.(5.70)-(5.71)) involves double integrations in

the space and spectrum domains. One notes that the order of the integrations may be

changed and the integration in space domain can be done in closed form. Here, we only give

the expressions for the matrix elements for the practically most important case of a strip

confined to the cover medium (region 1):

Kilnl)d ' M- S*Z± [ikz 2 cot(k 2 d) - jII2k.i 1
I v '1 41i± I')hdi - (5.72)* In
1n:F1 XP4r 

'DhJz

In K.(; l')dl'- (,-/IE)S±± jk]K2-'" [l± D' dl j(5.73)

In

K J (lc± I') dl' = - (5.74)
ln:F1

In In

J " (1c±I') d1' - J K ,(c It ')dl' (5.75)

In-1 In±1

41In inIKl(lc± 1') d' =- K11(lr Il')dl' (5.76)
1
n4-1 Ln~I

1
1n±

In K±llC 1 S±. f,k,2 tan(k,2d)+ -i 2k.,
_,,,1r P)ad' = "'j P47r I'De'k.,

In:F1

+2/s2:2 - )S [A h (5.77)
f 2L22 - [ill S:- s;T hJ

9, In p i± ± t'dl 1jk,2 cot(k.2d) j#I2k l"

1 04rEIn 1 D h jk,l

[jk.]}
+2(Pf2 - P,,COS D, DD h (5.78)

where we have introduced the notations
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±7 IH6 2)P±± 2il d' (5.79)

S3

jk,(z± +z±) )j-.,(x -x,,)

Sp [(k,)] =±2 J (k,) e kuI(4 +ne-kxPtzn

* -00s

sin _(k21 D " 
- k D)A +] dk, (5.80)

k,1 Dz - kx Dx

where
++ [(P + ,s') 2 +(Z± -2 z2
p= [(X - - ± - - D+s')2 ] 2 (5.81)

Dx+ i + Dz± p,± -i, =, (5.82)

*with A± = h±/2, and where the 4- in front of integrals (5.79) and (5.80) corresponds to

the segment S . Substituting (5.72) through (5.77) into (5.70), and (5.78) into (5.71), one

obtains the matrix elements for the case of a strip confined to the cover region. In a manner
similar to that mentioned in Section 5.2, the integrals in (5.70) and (5.71) may be reused for

* different matrix elements.

The homogeneous system (5.65) has non-trivial solutions for those valucs of k., which
render its determinant vanish. Hence, to obtain the propagation constants of the various
modes of the microstrip, a search is performed for the zeroes of the determinant in the

* complex k-plane. For each propagation constant, the homogeneous system (5.65) is solved

for the corresponding modal current distribution.
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Chapter 6

Numerical Evaluation of Sommerfeld
* Integrals

The dyadic and scalar kernels of the MPIE comprise Sommerfeld integrals S.(f) of the form

* (3.3). When the MPIE is solved by the MOM, as discussed in the previous chapter, these

integrals must be numerically evaluated for wide ranges of variation in media parameters,

frequency, and spatial variables. Several numerical algorithms for the computation of those

integrals are developed in this chapter, based on the deformation of the integration path off

* the real axis into the complex k,-plane. Section 6.1 contains a detailed discussion of the

integrals associated with the half-space problem. One of the techniques developed therein is

also employed to evaluate the improper integrals that arise in the grounded slab geometry

pertinent to microstrip patch antennas. Section 6.2 is devoted to the evaluation of spectral

* integrals associated with the microstrip transmission line problem.

6.1 Sommerfeld Integrals for the Half-Space Problem

* The Sommerfeld integrals encountered in this work can be expressed as (cf. (3.3))
00

S.[/f(k,)] = Jf(k) J,( kp)k, 'n+l dk,. (6.1)
0

For the half-space problem, the integrand in (6.1) is given as

N(kl,k 2; kp) f e-Jk lz+z'l, m =
f(kp) = Dkik2 .ko) e - (k.mn lz l+k. I ' l'), m (6i

where the functions N and D can assume different forms (cf. Appendix A.1), and where

0 k,, = /k, k2 , i = 1, 2. (6.3)
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The function k2, has branch points at k, = ±k,. For analytical convenience, we will assume
that the media are lossy; that is, k, = k -jk', where both k' and k are positive numbers. A
lossless medium will be considered to be the limit of a lossy medium as the dissipation goes

to zero (k' -* 0). We also assume that k' > k' and k' > k"', which hold in most practical
situations. To specify k2, uniquely, we may view the complex k,-plane, where k, = (' + j(",

as a two-sheeted Riemann surface with the sheets connected along the branch cuts. On

this surface, kz, is a single-valued analytic function of k. The choice of the branch cuts in
the complex k0-plane is rather arbitrary, although a particular choice may be convenient
for a specific problem. In this work, we exclusively use the branch cuts specified by the

* requireme't that Im(kj,) < 0 everywhere on one sheet, referred to as the top or proper

sheet. The other sheet, on which Im(kzi) > 0, is then referred to as the bottom, or improper

sheet. This definition implies that the two sheets are joined together by the curve defined

by Im(ki) = 0, which therefore locates the desired branch cut. Let us first write [551

* e = k 2 - k 2, -27r <0<27r (6.4)

whence

= I e= i (6.5)

It is clear that if Im(ki) < 0, -7r < 0/2 < 0, and if Im(k,) > 0, 0 < 0/2 < 7r. This suggests
that we define a two-sheeted k,-plane, where -27r < 9 < 0 on the top sheet and 0 < 9 < 27r
on the bottom sheet, as shown in Fig. 6.1. These sheets are joined along the positive real

0 axis, where

Im(k ,) = 0 and Re(k 2 .) > 0. (6.6)

For later reference, we also show in Fig. 6.1.the regions where Re(ki) > 0 and Re(k,) < 0 in

* the entire two-sheeted k,-plane. We now map the two-sheeted k., -plane into a two-sheeted
kp2-plane by means of (6.4). The result is shown in Fig. 6.2, where we have introduced the

notation

k? = (k' - k) -j2 k k' + jfQ. (6.7)

It follows from (6.4) and (6.7) that the branch cuts in the k, 2-plane are defined by

Re(k 2) < r and Im(k 2) = fl. (6.8)

0
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O2

Im(kZ2)

Re(k~j) < 0 Re(k.,) < 0

Re(k )

Re(kzi) > 0 Re(k.1 ) > 0

top sheet (Im(kz,) < 0)
(a)

Im(k 2i)

Re(kz,) > 0 Re(k..) > 0

* Re(k,1)

Re(k,,) < 0 Re(kz1 ) < 0

bottom sheet (Im(k,,) > 0)

(b)

Figure 6.1: Two sheets of the k2,-plane. (a) Top sheet (Imk,i < 0) and (b) bottom sheet
(Imk,, > 0).
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Ini(kP2 )

Re(k) >O0 Re(k) >O0

Re(k,) <O 0 Re(k,) < o

* top sheet (Im(kzt) < 0)
(a)

Im(kp 2 )

Re(ki) < 0 I Re(k) <O0
*Re(k 2 )

Re(k~1 ) >0 Re(k,) > 0

bottom sheet (Im(k~1 ) > 0)
* (b)

Figure 6.2: Two sheets of the k 2-plane. (a) Top sheet (Lmin, < 0) and (b) bottom sheet
(Imk~j > 0).
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Finally, the two-sheeted complex k, 2-plane is mapped into a two-sheeted k,-plane. Noting
that k_2 = (,2 - C112 + j2('(", we conclude from (6.8) that the branch cuts in the k,-plane

are specifed by

C.2 _ C,,2 < 7, and 2('(" = Q. (6.9)

This mapping is illustrated in Fig. 6.3.

So far, we have only considered a single square root function kr,. However, the integrand
of (6.1) depends on both kz1 and kz2 . Therefore, to make it single-valued, we must introduce

two pairs of branch cuts in the kp-plane, defined by Im(ki) = 0 and Im(k, 2 ) = 0, respec-
* tively (Fig. 6.4a). We may now view the kp-plane as a four-sheeted Riemann surface, as

illustrated schematically in Fig. 6.4b [33]. Observe that ever;,where on Sheet I, Im(k j) < 0

and Im(k, 2 ) < 0.

In addition to the branch point discussed above, the integrand of (6.1) may exhibit a
* pair of first order poles at the zeroes of the denominator function

D(k, k2; kp) = 6lkz2 + f2kzl (6.10)

which are given by

kj k2 
(6.11)k~p=+ k2  "

These poles only exist on Sheets I and IV. Their location is indicated in Fig. 6.4a, which
represents Sheet I of the Riemann surface.

0 In view of the above discussion it should be clear that to ensure the convergence of the

integral (6.1), the integration path should be selected on Sheet I, as illustrated in Fig. 6.4a.

Numerical evaluation of the Sommerfeld integrals (6.1) is difficult because of the oscilla-

tory behavior of the integrand and its rapid variation near the singularitites (branch points
and poles). Various numerical integration techniques have been developed to carry out these

integrals. The real-axis path has been used in related problems by Siegel and King [56], Kuo
and Mei [57], Lin and Mei [58], Katehi and Alexopoulous [59], Johnson and Dudley [60],

and Mosig and Gardiol [17, 61]. The techniques of deforming the integration path to a con-

tour off the real axis to avoid the singularities and to accelerate convergence of the integrals
have been developed by Miller et al. [62], Sarkar [63], Burke et al. [50], Michalski [24] and

Michalski and Butler [64]. The method of deforming the integration path from the real axis

to vertical branch cuts has been used by Fuller and Wait [65], and Kong et al. [66]. Several

approximate approaches have been used by Hansen [67], and by Mosig and Gardiol [61].
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Re(k " 2) r

Re(k.,) < 0

*k I

/ \ Im(k. )fl
* / Re(k,,) < 0

/

top sheet (Im(k.,) < 0)

(a)
Lm(ko)

0Re(k "2 ) T 7

* - ReRk5 k) R >k0

bottmseet-_______>_0

Fiur .3 wosheedk,-lae ()To set Ik.i ) n ()bottom sheet (Imkk81  > 0

0 0).
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Im(kp)

-k 2 °
-k_ _ C

, > ,-Re(kP)

k* k 2

(a)

sheet /ell k,2h k Im(k.1) < 0, Im(k, 2 ) < 0

II Im(k.1) > 0, Im(k, 2) < 0

III Im(k~Z) > 0, Im(k, 2 ) > 0

Iv Im(ki) < 0, Im(k, 2 ) > 0

(b)

Figure 6.4: (a) The k,-plane showing the branch cuts for k.. and k. 2 . (b) The Riemann
surface of four sheets in the k,-plane.
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The steepest descent path (SDP) is probably the most efficient one to use [24]. However,

since a closed form expression for the SDP is not available when r and r' are in different

layers, we employ in this work, as a compromise, four suboptimal paths, which are chosen

depending on the relative values of = I p - p'[ and h = I z + I z'I, and on the param-

eters of the media. The necessity to evaluate Bessel functions of complex arguments on

these paths does not significantly affect the efficiency of our approach, because it has been

demonstrated by Grun and Rahmat-Samii [68] that the simple polynomial approximations

of Bessel functions given in [69] can be analytically continued into the complex plane. Since

all the paths employed, or similar, have been previously described in the literature, we only

summarize them below.

Path I

Tie integration path developed by Michalski and Butler [64] is illustrated in Fig. 6.5a.

This path avoids the real-axis singularities and is the SDP for the exponential function part

of the integrand (but not for the whole integrand). Hence, on this path the exponential

function decreases monotonically, because the imaginary part of the exponent is by definition

constant on the SDP. When the source and observation points are in the same layer i for

z = 1,2, one can use the transformation

* kP=skoV2jn,+s 2, 0<s<c (6.12)

where s is a real variable, n, = vi and ReV- > 0. If i 54 m, i.e., the source and field points

are in different layers, we choose

2 =0 < (6.13)

B+VB+ 4AC' 0so

in which the Re f_ > 0 and Imf/ < 0 branches should be selected for the external and

internal roots, respi.tively. The parameters in (6.13) are given as

A = (2 - z2) 2  (6.14)

B= 41z'zlde- 2s(z'2 + Z2 ) (6.15)

C = 2 - 4sninmI z'z 1 (6.16)

with

d=n,lz'I +nlzl (6.17)
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0 Lm(kp)

Path I

*i Re(kp)

Im(kp)

Path II

(p, P)

Sxk 1  Re(k)

S (b)
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* 1m(kp)

Path III

X k2 T

* Re~kp)

pole n ShPathk IV
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e-= nj z I -n+ ml z' 1 (6.18)

* Since the oscillations due to the Bessel function are still present, this path selection is most
efficient when h = I z'I + I z I > . Also, the exponential growth of the Bessel function away

from the real axis limits how far the path can veer off into the complex plane. which restricts
the applicability of this method. In 'he case m = i. this method is applicable provided is

electrically small in the mediumi, i.e.,
1

ko < 1 (6.19)n',

When m $ i, this restriction becomes

kzj < (6.20)nI,1 -7 1 + 'Iz I

To numericaily evaluate the integral (6.1) along this path, a low-order Gauss-Legrandre

quadrature is repeatedly employed between consecutive "break points," which are derived

from the real-axis zeroes of the Bessel function. When each of three consecutive intervals
contributes less than 10' of the accumulated sum, the semi-infinite integration is terminated

-nd is said to converge.

* Path II

An alternate path [50], which initially z;rays from the real axis to avoid the branch points

at k, and k2, tL.en continuts parallel to the real acis, as shown in Fig. 6.5b, has been used

to overcome the limitations (6.19) and (6.20) in using Path I. The parameter P is chosen

• according to

P = mm (, 1). (6.21)

which restr:, ts the contour to smali values of Im(k.), to limit the growth of the Bessel

• function. This c,.mpromise path accelerates the convergence of the exponential function
(even though it is not the SDP), while avoiding the overflo, in the evaluation of the Bessel
function. On this path we employ the same nume . al integration technique as that used on

Path '

0 ,Path III

Wh > h. tspeciallv when h = 0, Paths I and II are nct efficient, because there may
be many oscillations of '-e Bessel function before convergence is achieved. Therefore, we

introd-.ce Path Ill, which in;tia!ly strays from the real axis to avoid the singularities, then

returns a, A T to th., real axis. The point T is arbitrzrilv chosen as T = A.d(n 2 + 1)
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(recall that we assume k' > k'). On the first part we employ the same numerical integration
technique as that used on Path 1. On the real axis (k, > T) we employ the method of

averages [17., 61, 70], which is summarized below.

Let us consider the integral

00 I = f (k,) J,, ( kp) kn + 1 dkp (6.22)

T

where f(k,) is a continuous function, and J,( k,) has successive zeroes, kp,, superior to the
integration boundary T. It follows from the method of averages [17, 61] that

I I M ==2 1M L1 M I (6.23)

where

I f(kp)J,( k)k + ' dkp, m= 1,2,...,M. (6.24)
T

The choice of M in (6.23) depends on the requirement of the accuracy in the problem. In this
work, we choose M = 5. The method of averages is especially suitable when the observation
and source points are on the interface. We find that one still can obtain the accurate result
of Sommerfeld intcgrals by using this method when the observation and source points are

off the interface, provided that > h.

Path IV
integration along Path III becomes inefficient when becomes large, bacause there may

be many oscillations of the Bessel function between 0 and T. In this case, it is useful to

deform the integration path to two vertical paths, as shown in Fig. 6.5d. For this purpose,

by using the -elation

2J,(x) = H(2 )(x) + (-1)n+1H(2)(-x) (6.25)

where H( 2) is the Hankel function of the second kind and order n, one can express (6.1) as

S, (f) = 2 f(kl,k, 2 ;kp)Q( (kp) P +le-kPdkp (6.26)

where we ,tve' troduced

Q,( kp) = H(2)( kp)e j kp  (6.27)
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which has the asymptotic form [69]

Q,( k) - 2/(7rk.) eJ2+4 (6.28)

It is noted the transformation (6.25) introduces a branch point singularity at kp = 0 and the

associated branch cut on the negative real axis (Fig. 6.5d). Hence, the integral (6.26) should
0 be taken in the Cauchy principal value sense for n > 1. As a result, (6.26) becomes

S,, = J (k,)dkP - j'Res{g(0)} (6.29)
C

where

9(k,) f 2(kp) Q, kpkpn1e-k (6.30)

and Res {g(0)} is the residue of the integrand at kp = 0. The integration path C is that

illustrated in Fig. 6.5d. In the following analysis, we will refer to this path as the "original"

path of integration.

We observe that when Im(k,) becomes negative, the integrand in (6.26) decays exponen-
tially. It is clear that, for large values of , one should deform the integration path into the

vertical paths [65, 661 as illustrated in Fig. 6.5d. The integral (6.26) can be written in this

case as

S, = S(l) + Sn2 )  (6.31)

where S 1) and SPs) are the integrals along the two vertical paths emanating from k, and

k2 , respectively, as shown in Fig. 6.5d. Referring to Figs. 6.3 and 6.4, we observe that the

integration path C, starts on Sheet IV, where Re(ki, kz2 ) _ 0, and proceeds upward along
the vertical; it leaves Sheet IV when it crosses the k,2 branch cut, and enters a region of

* Sheet II, where Re(kr, k. 2 ) > 0; it then reaches Sheet 1, where Re(k, 1 ) < 0 and Re(k 2) _ 0,
when it crosses the kzj branch cut; it turns around the branch point at k, and goes down

along the vertical; finally, it leaves Sheet I when it crosses the k.2 branch cut, and enters a

region of Sheet TI, where Re(ki) _< 0 and Re(k,2 ) > 0. Similar analysis indicates that the

* path C2 starts on Sheet III, proceeds upward along the vertical from Sheet III to Sheet I,

and reaches the branch point at k2 . On this part of C2, Re(k.,) < 0 and Re(k, 2) >_ 0. The

integration path C2 finally emanates from k2 and proceeds down along the vertical on Sheet I,

where Re(ki, k 2 ) < 0. From the above considerations, one can determine the branches of
*the square root functions k21 and k,2 along the vertical paths as follows:
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Re(kzi, k, 2 ) > 0, on C-
Re(ki) < 0, Re(k,2) > 0, on C' and C- (6.32)

e z2, ) < 0, on C2.

Introducing the variable transformations

k =k-jkos, 0<s< c, onC 1  (6.33)

kP=k 2 -jkos 2 , 0<s<oo, on C2 (6.34)

we obtain the following integrals by invoking (6.32):

_ * [f- Z1,1z2; k/f -fk,, k. ; kp]
0

•Q.( k,) k'n+1 (-2jkos)ek °° 2 ds (6.35)

k = ko(n, - is2)

and
ek2 i ; , /- ',-]

S 2)f[- J1 J ,k 2 ; pc) -f(-k.i,k 2 ; kp)j
0

Q( k ' k n 1  (-2jkos)e- ko  ds (6.36)

kp = ko(n 2 - 's2)

where it is assumed that Re(ki,k. 2) > 0. The proximity of the pole at kp (cf. (6.11))

on Sheet I to the integration path C, makes the integrand vary rapidly near s = 0. To

remedy this difficulty, a pole subtraction technique is employed [71], which transforms the

integral (6.35) as

*S(1) = e-jk1 {1 (7~z z2;Afp) f(kzi 1kz2; kP)]

*Q.( kp) k n+1 (-2 *kos) - J?7psp) CkOC2 da + '7r RpW ( Vks)} (6.37)

kp = ko(n, - js 2 )

where R is the Residue of {f(kzkz2; kp) Q,(kp)kn+1} at kp = kpp, sp is the pole location

in the s-plane, and W(z) = e- 2erfc(-jz) is the Error function [69].

Based on the considerations above and on our computational experience, a set of guide-

lines has been developed for determining the "best" path of integration. The guide chart is

given in Fig. 6.6.
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Figure 6.6: Diagram illustrating the selection of integration paths.
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The integrals that arise for the grounded slab geometry pertinent to microstrip patch

antennas are similar to those considered above. Their integrand functions have similar

behavior to those of the half-space problem, except that they do not have branch points

associated with the slab region, but have surface wave poles, which are located betwen k,

and k2 in the kr-plane. To evaluate those integrals, we have employed Path III shown in

Fig. 6.5c, in conjunction with the interpolation scheme described in Section 5.3.

6.2 Sommerfeld Integrals for the Transmission Line
Problem

In this section, to simplify the discussion, we only consider the case where the infinite

conductor is confined to the cover medium (region 1). A typical integral that arises in this

context is given in (5.80). This integral can be expressed in terms of the integrals of the

form

007 N (k ., k 2, k ) e jk l(z+z') J cos[k .(x - x) dk ,( .8I Ns D D h  sin[k.(x - x')] (6.38)
0

where the cosine or sine functions arise depending on whether the numerator functions N

are even or odd in k.. The denominator functions De and Dh are given in (A.38) and (A.39),

respectively, and

k-, 2 -- k2, i = 1,2. (6.39)

The propagation constant will be expressed as

ky = 3 - ja (6.40)

where 3 is the phase constant and a is the attenuation constant. It will be assumed that

a > 0 and 0 > 0.

It can be shown that the integrand of (6.38) is an even function of k. 2. Therefore,

unlike in the half-space problem, only one pair of branch points, associated with k. 1 , arise

in the present case. These branch points and the associated branch cuts, selected by the

criteria given in Section 6.1, define a ks-plane as a two-sheeted Riemann surface. As before,

Im(k.,) < 0 on the top sheet and the opposite holds on the bottom sheet. Since the value

of k. will be specified on each iteration of the search procedure, we express k, 1 as

Sk., = K- k. (6.41)
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*

where we have defined

2 = k2 -k2 = (k -2  + a 2 )+2ct3

= r + . (6.42)

We assume, for simplicity, that the media are lossless. Consequently, ki in (6.42) is real.
* With the notation introduced above, we can directly use the analysis which led to Fig. 6.2,

provided that k, 2-plane is replaced by k,-plane. Therefore, referring to Fig. 6.2, we define
the branch cut in the k2-plane by

* Re(k2) < r and Im(k2) = q. (6.43)

These relations define a pair of branch cuts in the k,-plane, whose shape depends on the

values of k, (and thus frequency) and k, (or a and 3). In addition to the branch points,

there will also be a finite number of poles in the top sheet of the k,-plane, contributed by

the zeroes of the denominator functions De and Dh. These poles are easily determined in the
k,-plane (recall that k_2 = k + k2), where they are located on the real axis between k, and

k2, and also between -k 2 and -kl [32]. Their locations in the k.-plane will depend on the
value of ku. In the following analysis, we assume for simplicity that only one pair of poles,

±k8 , associated with the TM0 mode of the slab, occurs. This is the case most frequently

encountered in practice.

As mentioned above, the shape and location of the branch-cuts in the ks-plane depends
on the value of ky. Following the analyses of [72, 73, 74], we divide the range of ky into three

subregions, according to

(ii) k2 <-_02 _-al < k,' (6.44)

(iii) - < 2 -a 2 <k

where 032 - a 2 = Re(k2). In region i, k, is real and the stripline mode is bound, i.e., it

propagates unattenuated. The fields of bound modes are concentra d in the region of the

strip and decay exponentially in transverse directions away from it. In regions ii and iii, ks,
* is complex (a > 0), and the mode is said to be leaky [72, 73, 74]. In this regime, the mode is

attenuated as it propagates, due to the leakage of energy into the environment. In region ii,

there is only leakage into a surface wave of the slab, which propagates away from the strip.

It can be shown [72] that the field of such mode decays exponentially in the z direction,

* but increases exponentially away from the strip in ±x directions. For k, in region iii, the

79



leakage is both into the surface wave and into the space wave. The field amplitude increases

exponentially in the directions perpendicular to the strip [72, 75].

Let us first consider the bound modes, for which ky is in region i (cf.(6.44)). With 7 < 0

and Q = 0 in (6.42), the two-sheeted complex k2-plane is mapped into a two-sheeted k,-

plane as illustrated in Fig. 6.7a. The poles are in this case located in the (-i/k 7
2 - k2k

j k - k2) interval of th2 imaginary ks-axis, as shown in Fig. 6.7a. The integration path in

(6.38) is chosen along the real axis on the top sheet (Fig. 6.7a).

When ky passe- from region ito region ii, ky acquires the imaginary part, so that r < 0

and Q > 0. In this process the pole on the negative imaginary axis in the k,-plane moves

to the origin, then enters the first quadrant, as illustrated in Fig. 6.7b. In a like manner,

the pole on the positive imaginary axis moves to the third quadrant. The integration path

must be deformed so that the pole in the first quadrant lies below the path, as illustrated in

Fig. 6.7b. The first quadrant pole contributes an exponentially increasing surface wave, in

agreement with the discussion above.

When ky moves from region ii to region iii, the value of r changes sign, hence in region iii

r > 0 and Q > 0 (cf. (6.42) and (6.44)). At the transition point r = 0, the branch points

in the first and third quadrants switch positions along the diagonal line in the ks-plane.

Therefore, the integration path must go above the branch point , in the first quadrant, as

illustrated in Fig. 6.7c. One can prove that this, in turn, leads to a modal field which grows

exponentially in the z direction [75]. The dashed line on the integration path in Fig. 6.7c

signifies that the path is on the bottom sheet.

* As the above analysis indicates, different integration paths must be employed depending

on which mod,- is being computed. The various paths are suggested in Fig. 6.7. In the

computer implementation, to accelerate the convergence of the integral and to avoid the

singularities, slightly modified paths, shown in Fig. 6.8, have been employed. F Ur bound

modes, we use the paths shown in Fig. 6.8a, where the value of P is arbitrarily chosen as

P = kj. For ky in region ii, the paths in Fig. 6.8b are employed, where P is the same as that

in Fig. 6.8a and the value of T is chosen as T = Re(k - k)1 I + ki, to ensure that the

pole is located to the left of this point. The integration around the pole is carried out by

the method of residues. For ky in region iii, we employ the paths shown in Fig. 6.8c, where

T is the same as that in Fig. 6.8b and the value of P is chosen as P = Im(k' - k') 2 + ki,

to ensure that the branch point in the first quadrant lies below the paths. In all three cases,

when z = z' = 0 (this is always the case for an infinitely thin strip), we use path C, in

Fig. 6.8. When the path is on the real axis, the method of averages [17] discussed in the
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Figure 6.7: The k.-plane showing the branch cuts, the poles, and the integration paths for
(a) bound modes, region i, (b) leaky modes, region ii, and (c) leaky modes, region iii.
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Figure 6.8: Various integration paths actuafly implemented for (a) bound modes, region i,
(b) leaky modes, region ii, arnd (c) leaky modes, region iii.
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previous section is employed to accelerate the rate of convergence. When h = I z + I z' > 0.
path C2 is used to benefit the convergence from the exponential function associated with h.

40
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Chapter 7

Numerical Results

In this chapter, we present sample numerical results for antennas and scatterers partially

buried in earth or water, for coax-fed microstrip patch antennas, and for open microstrip

lines. In all cases, the medium of region 1 is free space with parameters f, = Co and P, = Uo.

0 The medium of region 2 is characterized by C2 and 12 = /o, and it may be lossy or lossless.

In the former case, its permittivity is complex and is given as E2 = 06, - j'/w, where C,

and a are the relative dielectric constant and the conductivity of the medium, respectively,

and w = 27rf. The loss tangent, tan 6 = a/(wE), is also used to characterize the losses of the
medium.

In Sections 7.1 and 7.2, to facilitate the interpretation of the results, we take in all

cases f = 300 MHz, which corresponds to free space wavelength A0 = 1 m. The results for

driven antennas assume unit-strength 6-gap generators, and the results foi 6carterers assume
0 illumination by plane waves incident normally on the interface.

7.1 Surfaces

0 We first consider a straight, inclined, thin-wire antenna with radius a, partially buried in dry

earth, as illustrated in Fig. 7.1a. In the numerical procedure, the wire was approximated

by a flat, narrow strip of equivalent width 4a [76], which was modeled by 60 triangular

patches, as shown in Fig. 7.lb. In Fig. 7.2, the computed current distributions on the wire

are compared with the data from the NEC [27]. A good agreement is observed for the

inclination angle a = 450 (Fig. 7.2a), while for a = 80* (Fig. 7.2b) the agreement is less

favorable. A possible explanation of this slight disagreement is the fact that in the NEC

formulation a charge discontinuity condition at the interface is enforced, which is strictly
* valid only for the vertical antenna [27]. Obviously, this condition would affect the solution
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Figure 7.1: (a) Inclined thin-wire antenna partially buried in earth and (b) its strip model.
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Figure 7.2: Current distribution on the strip model of Fig. 7.1 for (a) a = 450 and (b)

800
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more for a = 80* than for a = 45 ° .

In Fig. 7.3 is shown a relatively thick, vertical, cylindrical antenna, which penetrates the

interface between two media. This so-called ground stake antenna was previously analyzed

by Butler and Michalski [77]. In the numerical procedure, the circular cylinder was approxi-

mated by a square cylinder with the same circumference, and was modeled by 112 triangular

patches. We show the axial current distribution on the antenna for the cases where the lower

medium is dry earth (Fig. 7.4a) and salt water (Fig. 7.45). Our results are seen to perfectly

agree with the data obtained in [77]. Since our code can handle surfaces of arbitrary shape,
it was a simple matter to examine the effect of putting the end caps on the hollow cylinder.

The resulting current distributions are also displayed in Fig. 7.4. One observes that, as

expected, the caps only affect the current near the ends of the cylindrical surface.

The results in Fig. 7.5 are for a finite, hollow, horizontal cylinder, which is partially buried
in a dielectric medium (see the inset). The corresponding two-dimensional problem has been

solved by Xu [26], who employed the magnetic field integral equation formulation. One
observes that both the magnitude (Fig. 7.5a) and phase (Fig. 7.5b) of the normalized current

distribution along the circumference and in the middle of the finite tube agree favorably with

the corresponding results for the infinite cylinder. In the triangle-patch model of the cylinder,

288 patches were employed.

In Figs. 7.6-7.9, we present results for a flat, rectangular plate partially buried in dry earth

(see the inset in Fig. 7.6a). The magnitudes of the dominant and transverse components of
the current distribution on the plate are shown in Fig. 7.7a and Fig. 7.7b for the inclination

angle c, = 30*, and in Fig. 7.9a and Fig. 7.9b for a = 600. In the triangle-patch model of the

plate, 252 patches were employed.

The slight nonsymrnmetry with respect to the center line of the plate observed in the
transverse component of the current is due to the fact that the symmetry of the plate was

not preserved in its triangle-patch model. In Figs. 7.6 (a = 30*) and 7.8 (a = 600) we
compare the dominant component of the current distribution along the center line of the

plaLe with the corresponding result for an infinite strip [26]. One observes a reasonably good

agreement between the two results, both in magnitude (Fig. 7.6a) and phase (Fig. 7.6b) for
a = 300, and a less favorable agreement for a = 60*. This discrepancy can perhaps be

attributed to the fact that an infinite strip is not a very good model for the relatively short

plate.
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Figure 7.3: Triangle-patch approximation of a vertical, cylindrical antenna that penetrates
the interface between two media.
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Figure 7.4: Current distribution on an open-ended and closed tubular antenna of Fig. 7.3
partially buried in (a) dry earth and (b) salt water.
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Figure 7.5: (a) Magnitude and (b) phase of the current J, on a horizontal tube partially
*buried in a dielectric medium. The current is uurm-,alize-d to the incident magnetic field at

=900 on the surface of the tube.
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Figure 7.6: (a) Magnitude and (b) phase of the current J, along the center line of a rectan-

* gular plate partially buried in dry earth, for the inclination angle a = 300. The current is

norm~alized to the incident magnetic field at to = 0.125m.
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Figure 7.7: Magnitude of (a) the longitudinal and (b) transverse component of the current
induced on the rectangular plate of Fig. 7.6 for a = 300, by a normally-incident plane wave
with H. = 1 A/r.
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Figure 7.8: (a) Magnitude and (b) phase of the current J1 along the center line of a rectan-
gular plate of Fig. 7.6 for a = 600. The current is normalized to the incident magnetic field
at to = 0. 125 m.
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Figure 7.9: Magnitude of (a) the longitudinal and (b) transverse component of the current
induced on the rectangular plate of Fig. 7.6 for a = 600, by a normally-incident plane wave
with/-/' = 1 A/m.
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7.2 Thin Wires

The next problem considered is that of a straight, inclined, thin-wire antenna which is

partially buried in moist earth, as shown in Fig. 7.10. The computed current distributions

on the antenna for a = 45' and a = 800 are compared in Figs. 7.1la and 7.11b, respectively,
with the NEC [27]. The agreement is seen to be excellent in the first ca,,e, but it is poor in

the last case. A possible explanation of this discrepancy of the results for a = 80' has been

given in the previous section.

Next, we consider the case of a vertical, rectangular, loop antenna partially immersed in

water, as illustrated in Fig. 7.12, for which measured data are available [78]. The current

distributions on the lower arm of the loop are presented in Fig. 7.13 (f, = 81, o = 0) for

tap water, and in Figs. 7.14 (E, = 79, a = 1S/m) and 7.15 (6, = 76, o = 1.75S/m) for

salt water. One observes a good agreement of the computed and measured results, both in

magnitude and phase.

7.3 Coax-Fed Microstrip Patch Antennas

In this section, we present sample computed and measured input impedance data (normalized

to 50 Q) for triangular, rectbagular, and square coaxially fed microstrip patch antennas, as

illustrated in Fig. 5.7. In all cases, the substrate parameters are: c,= 2 .484 and tan6 =

6 x 10- 4 , and the dimensions of the probe are: a = 0.635mm and b = 2.095 mm.

The results in Fig. 7.16 are for a triangular patch antenna previously analyzed by Pi-

chon et al. [43] using a simple, zero-order coax feed model. In the numerical method, the

conducting patch was modeled by 121 triangular elements. Computed results are presented

for both the 1st- and 2nd-order models of the coax feed (cf. Section 5.3). As expected, the

2nd-order model data are closer to the measured results than the simplified model data. In

- Fig. 7.17 are shown results for the same triangular patch antenna, but driven at a vertex.

This case illustrates the flexibility of the rigorous coax-feed model presented in Section 5.3.

In Figs. 7.18 and 7.19, we present results for a rectangular patch antenna with two different

substrate thicknesses. This antenna was previously analyzed by Hall and Mosig [46], who

used a rectangular element model of the patch. In the present case, the antenna was alr -

proximated by 160 triangular elements. The results indicate that, as expected, the 1st-order

feed model breaks down for thick substrates.

Finally, in Fig. 7.20, we show results for a square patch antenna fed by a coaxial probe
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Figure 7.10: Inclined thin-wire antenna partially buried in moist earth.
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* Figure 7.11: Current distribution on the thin-wire antenna of Fig. 7.10 for (a) a = 450 and

(b) a800.
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* Figure 7.14: (a) Magnitude and (b) phase of the current Jt on the lower arm of the
rectangular-loop antenna of Fig. 7.12 (c, = 79, a = 1 S/rn). The current is normalized
to its value at the point to = 23.3 cm.
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Figure 7.15: (a) Magnitude and (b) phase of the current J, on the lower arm of the
rectangular-loop antenna of Fig. 7.12 (f, = 76, a = 1.75S/m). The current is normal-
ized to its value at the point to = 23.3 cm.
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at an edge. The patch was approximated by 128 triangular elements. As in the other cases'
* presented above, we observe a good agreement between the measured data and the results

computed using the 2nd-order coax-feed model, except for a small phase shift, which we
attribute, in part, to measurement inaccuracies and to discrepancies between the catalog

and actual values of e,.

7.4 Open Microstrip Transmission Lines

In this section we present results for open microstrip lines of the form shown in Fig. 5.9,
except that the conductor is confined to the upper medium. The current distributions

included here are normalized to have a maximum value of one for the longitudinal current

density.

The first set of results is for an essentially planar microstrip line, illustrated in Fig. 7.21.
The PEC strip is of width w and it may be infinitely thin, or it may have finite thickness

t. In Fig. 7.22, we present the dispersion curves for the lowest mode (EH0 ) and the first
higher mode (EH1 ) for an infinitely thin microstrip line and for a line with finite thickness
(t/w = 0.1). The dimensions are w = 15mm, d = 0.794mm, e, = 2.32. In this figure, Oliner

and Lee's results [73, 79] for t = 0 are also plotted for comparison. Oliner and Lee's analysis
is based on the transverse-resonance method in conjunction with the Wiener-Hopf approach
developed in [801. Our result for the phase constant of the EH1 mode, shown in Fig. 7.22a, is

seen to agree completely with Oliner and Lee's work (within the error in reading from their
* curves) both in the bound and leaky regimes, except at the low end of the frequency range.

The agreement of the attenuation constants, plotted in Fig. 7.22b, appears to be slightly less
favorable. Note that in [73] and in [79], data for a are only given for, respectively, f > 5 GHz
and f > 6 GHz. In Figs. 7.18 and 7.19, we show the current distributions of the EH0 and

* EH1 modes on an infinitely thin strip at f = 5GHz and f = 10GHz, respectively. The
longitudinal currents (J,) are plotted in Figs. 7.23a and 7.24a, and the transverse currents

(J) in Figs. 7.23b and 7.24b. The symbols correspond to the locations where the current
values are actually computed. Observe that nonuniform-width basis functions were used to

better capture the singular behavior of the longitudinal current near the edges of the strip.

It is noted in Figs. 7.23 and 7.24 that there is very little change in the longitudinal current
distribution as the mode passes from the bound regime to the leaky regime. However, there
is a noticeable change in the transverse current distribution.

In Figs. 7.25 and 7.26, we show the current distributions of the EHo and EHI modes for
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Figure 7.20: Input impedance of a square patch microstrip antenna coax-fed at an edge.
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Figure 7.21: Open microstrip line.

108



1.6

1.4- ELI0

1.0

0-8-

0 Fl ELi W 15.OMM
EHI td O.794nmm

0.4-C 2.2

0--0

1 4 7 10

f [GHz]
* (a)

10.0

*75- our method (t/w0.)
- -. our method (t/w=0.1)

Ct0 Oliner's method (t/w~0.)

5.0-

2.5 -

-0.0*

V4 7 10

f [GHz]
* (b)

Figure 7.22: Variation with frequency (a) of the normalized phase constant for the lowest
mode (EHo) and the first higher mode (EH1 ), and (b) of the normalized attenuation constant

* for the EHI mode.
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Figure 7.23: (a) Longitudinal and (b) transverse current distributions of the EHo mode at
* f = 5 GHz and f = 10 GHz for an infinitely thin microstrip.
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Figure 7.24: (a) Longitudinal and (b) transverse current distributions of the EHI mode
at f = 5GHz (leaky regime iii) and f = 10GHz (bound regime i) for an infinitely thin
microstrip line.
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Figure 7.25: (a~) Longitudinal and (b) transverse current distributions of the EHo mode at
0 f = 5 GHz and f = 10 GHz for a rnicrostrip line of finite thickness.
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a strip with finite thickness (tlw = 0.1) at f = 5GHz and f = 10GHz, respectively. It is

noted that the current is concentrated on the lower face of the strip, as expected.

In Fig. 7.27, we present the dispersion curves for the lowest mode (EHo) and the first

three higher modes (EH 1, EH2 , and EH 3 ) for an infinitely thin microstrip line with w -=

3mm, d = 0.635mm, and f = 9.8. One should keep in mind that the actual boundary

corresponding to the leaky mode region iii for each mode is (1 + (a/ko)2, which obviously

depends on the attenuation constant of the mode (cf. (6.44)). As is evident in Fig. 7.27, the

phase constants for the higher modes increase again after reaching a minimum and continue

to increase as the frequency is lowered further. It is noted that k. stays in region iii as the

40 frequency decreases. In Fig. 7.28, we show the normalized phase constant for the EH1 mode

and the region iii boundary corresponding to this mode. In Fig. 7.29, we present the current

distribution for the EH2 mode at f = 25GHz (leaky regime iii) and f = 35GHz (bound

regime). In Fig. 7.30, we show the current distribution for the EH 3 mode at f = 35GHz

* (leaky regime iii) and at f = 50 GHz (leaky regime ii).

In Fig. 7.31, we plot the effective dielectric constant, defined as 6e, = ( /ko) 2 , as a

function of d/Ao, for various widths and thicknesses of the strip. One observes that the

effective dielectric constant decreases with the thickness of the strip. This effect is more

* pronounced at low frequencies.

We should mention that, at this writing, the results for an open microstrip line with finite

thickness by a rigorous approach are not available. We only can compare our results with

those for a shielded microstrip with finite thickness. The result in Fig. 7.31 has been found

to agree favorably with that given in [81] (which is not shown in the figure) for a shielded

strip line with a large size of the outer shield.

The last set of results is for a circular-wire transmission line backed by a grounded

dielectric slab, for-which a limited amount of data are available in the literature [821. In

* Fig. 7.32, we present the fundamental mode effective dielectric constant as a function of d/Ao.

The corresponding data taken from [82] are also plotted for comparison and are seen to agree

well with our results. In Fig. 7.33, we present dispersion curves of the fundamental mode

(EHo) and the first higher d (EH.,) for a circular-wire transmission line with h/d=0.25.

It is observed that in the chosen frequency range the EHI mode is leaky troughout. Finally,

in Fig. 7.34 we show the longitudinal and transverse modal current distributions for both

modes at d/Ao=0.3.
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Figure 7.26: (a) Longitudinal and (b) transverse current distributions of the EH1 mode at
f = 5 GHz (leaky regime iii) and f = 10 GHz (bound regime i) for a microstrip transmission
line of finite thickness.
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Figure 7.27: Variation with frequency (a) of the normalized phase constant for the lowest
mode (Elio) and the first three higher modes (EHI1 , EH2, EH3), and (b) of the normalized
attenuation constants for the EHi1 , Eli2, and Eli 3 modes of an infinitely thin mnicrostrip
transmission line.
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Figure 7.28: Normalized phase constant of the Eli 2 mode and the boundary of region iii
* corresponding to this mode.
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Figure 7.29: (a) Longitudinal and (b) transverse current distributions of the EH2 mode
at f = 25 GHz (leaky regime iii) and f = 35 GHz (bound regime i) for an infinitely thin

* microstrip line.
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Figure 7.30: (a) Longitudinal and (b) transverse current distributions of the Ef 3 mode
at f = 35 GHz (leaky regime iii) and f = 50 GHz (leaky regime ii) for an infinitely thin

* microstrip line.
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Figure 7.33: Dispersion curves of the fundamental mode and the first higher mode for a
circular-wire transmission line. (a) Phase constants. (b) Attenuation (leakage) constant for
the higher mode.

121



005

0.5lo

/ - Real
-0.5- -- mog.

M H~ (bound)

-1.0- 4100 EH (leaky)

0 45 90 135 18 0 225 270 315 360
JO (degrees]

0 (a)
0.8-

* ~~0.4-~.AA~-

JW0.0 0

-0.4

-0.8

O 5 9'0 135 180 225 270 315 360

* ~(degrees]

(b)
Figure 7.34: (a) Longitudinal and (b) transverse current distributions of the fundamental
mode and the first higher mode on a circular-wire transmission line.
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Chapter 8

Conclusions

In this work, a rigorous and general procedure has been developed for the analysis of radi-

ation, scattering, and guidance of electromagnetic fields by conducting objects of arbitrary

shape embedded in a medium consisting of an arbitrary number of planar, dielectric layers.

The key step in this procedure is the transformation of the electric field integral equation into
a mixed-potential form, which is amenable to the well-established numerical solution tech-

niques originally developed for arbitrarily-shaped objects in free space. Three particularly

useful mixed-potential integral equations (MPIEs) are derived and their properties discussed.

One of the three MPIEs, called Formulation C, which is found to be especially well suited for

the application of the moment method, is implemented to analyze arbitrarily-shaped, open

or closed, conducting surfaces, which penetrate the interface between contiguous dielectric

half-spaces. Thin-wire structures are treated as special cases. Formulation C is also special-
* ized to the case of an open transmission line consisting of an infinite conductor of arbitrary

cross-section partially embedded in a grounded dielectric slab.

Since at this writing the capability of analyzing the problems of electromagnetic radiation

and scattering by three-dimensional PEC surfaces of arbitrary shape in layered media does
0 not exist, the task of validating our results was a difficult one. Data for comparison were

only available for thin-wire antennas, the ground stake antenna, and for microstrip patch

antennas of several simple shapes. In other cases, we had to rely on the results of two-

dimensional analyses. With a few exceptions, our results presented in Chapter 7 compare
favorably with the few available measured and numerical results, thus demonstrating-we

believe--the validity of the approach advanced here.

Although open microstrip lines have been analyzed by both spectral-domain [83, 84] and

space-domain [85, 86] integral equation methods, to our knowledge no results have been
published for microstrips of finite thickness. Even for infinitely thin strips, results are only
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available for the bound modes. This is possibly due to the fact that the integration paths

* of the spectral-plane integrals that constitute the kernels of the integral equations must be

chosen differently for the bound and leaky modes, respectively, as explained in Section 6.2.
Hence, a computer code that is successful for bound mode is likely to fail to find a leaky

mode, unless special precautions are taken in the program. This prompted some researchers

* to voice skepticism about the very existence of the leaky modes in a microstrip. We hope that

the results presented in Chapter 7 will put to rest the controversy regarding the existence of

leaky microstrip modes.

We wish to point out that, at present, matrix fill time, not the available computer mem-
o ory, is the overriding factor, which puts practical limits on the size of objects that can be

analyzed by the technique advanced here. This is due to the fact that the matrix elements

comprise improper, Sonmerfeld integrals, which must be repeatedly evaluated by numerical

quadrature. as is discussed in Chapter 6. Although it is possible, and desirable, to develop
* analytical approximations for the Sommerfeld integrals-and thus drastically reduce the com-

putational expense-we have opted in this work for rigorous treatment of those integrals, to

avoid the uncertainties associated with approximations, whose ranges of applicability are

usually not well-defined. In the case of microstrip patch antennas, considerable savings
*in matrix fill-time can be realized by using an interpolation method for the Sommerfeld

integrals (cf. Section 5.3).

Although, for simplicity, we have concentrated in Chapter 5 on the analysis for objects

embedded in a two-layer medium, we could almost as easily treat the n-layer case (n > 2),
* for which explicit MPIEs are given in Chapter 4. Also, the approach developed here can

be used to analyze arbitrary configurations of surfaces and wires. One could, for example,

easily adapt the JUNCTION code [7] for that purpose - as is demonstrated in Section 5.3,
where the attachnient mode used in JUNCTION was employed to solve the problem of a

@ microstrip patch antenna driven by a coaxial cable. This made it possible to rigorously

analyze uiicrostrip antennas coax-fed at an edge or vertex of the patch. The approach

developed here -qan also be directly used to calculate resonant frequencies of microstrip

antennas of arbitrary-possibly exotic-shapes. One could also extend it to analyze infinite

= and finite arrays of microstrip patch antennas of arbitrary shape.

Future work in this area might involve dielectric bodies of arbitrary shape in layered

media. For homogeneous bodies, one could apply the surface integral formulation in con-

junction with the triangle-patch code [6] and for inhomogeneous objects, the volume integral

* approach in conjunction with the tetrahedral element model [10]. These techniques can also
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be specialized to the analysis of dielectric waveguides consisting of infinite dielectric slabs of

arbitrary cross-section embedded in layered media.

Finally, as was already mentioned, there is room for improvements in the evaluation of

the Sommerfeld integrals, since most of the computational effort is spent on them.
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Appendix A

Kernel Elements of Formulation C
for Contiguous Half-Spaces and for a
Grounded Slab

A.1 Kernel Elements for Contiguous Half-Spaces

The expressions for the elements of the kernels in (5.1)-(6.3) can be written down by spe-

cializing the formulas given in Section 4.3 to the two-layer case (Fig. 5.1a). Thus, when the

source and observation points are in the ith region (i = 1, 2), one obtains

K; - g= /- (I r-r'l)+ 'IP -- gi0 r1 -r1) -Ij (A.1)
47r Al + P2 II +P2

Kz", - sgn (z) , j( p - 'P,)

27r co(JAI + P2) (El + IE2)

{ [ I -z+ z'Ig,(I r -r"I 1 (A.2)

0 . K i Pi g4 (I r- r l) + 2 LP + '4-4' g ( - r

r _-1 + f-2(il +  I -

+21 { I -2 i' + 1 (A.3)
ipe, - #Uifp P1 + /42 LPE - Aifp fl + f2j)I

K 1J g(r( r-r' I) - +g,(r- r"I)
. . . ... .. E1 + 2

-2 C' (A - mi) iii +2 f P +'' fP f-)] 1" (A.4)
Pf ,i - Ap 1l + ( 2 P - ,ijJ

with
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K."= -Ki., and Kt; =-K'YZ (A.5)

* where K" is given by (2.4) with cos C replaced by sin . In the above, we have introduced

the notation (cf. (3.4))
i (jj (kz, - k2 p) e- j ,I z+z' 1

k2= S+ {- 2  k, k. (A.6)

I=So j(k-k,)e - k., z+ z'}
2 -k2 + 2kzl ki (A.7)

s1 { [ (Y 1 + 92) (' + C2) +k 2] e,-k, z+z' I (A.8)• i - 1 (y.1kz2 +-4-/.1z) (Elk;,2 + E-2k.1 l)I

g,(r) = (A.9)

r

and r" = r' + 2iz'. The index p in (A.1)-(A.8) assumes the values 1 or 2, but not equal to
* i (i.e., p = 1,2 and p 0 i).

When the source point is in region i and the observation point in region m i, one

obtains

mK . Pm (g,(Ir-r')_Ir' (A1)
-2r 4,+ M2 1

- sgn (z) cos P pi (4if - m m)

2ir (.01 P+ /2) ('1E + 62)

* {-[ .km-"'Iz z/Ig,(I- I)]-/} (A.11)

Km Pr +if /Af - , J/im,, fm. A" (A12
Kz 2r {[Am (2) - ( + A2

-2+ ,jA-r n j P L S )

- iPEM - Aei - + 112

2lC - 2 '
£1U2 /VjP (A. 12)

1212

El + E2 Pm (Pifm - Pmfi)

1m irgm(Ir - I)
40 21rf, +c2L

El + C2 A(~ m)I~ -_ 12m~jn (A. 13)
PzCm P M~i C1 + C2 J

0 with
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-and K-' = (A.14)

where Km, ' is given by (A.11) with cos( replaced by sin(. In these equations, we have

introduced the notation

I , = { [ j (Al + '2) +-k'+ e - jkm lz'1 e}jk z

0 1 S Ltjkz2 + J+2kz, jkzm IJI (A.15)

IT = so I (El + ) ejk..IZ'I + e *'' 1 e -j k. Iz l  (A.16)
I 1k 2 + f 2kz1 jkm J
( (1I +P2)(f1 +6 2) e( -k ' + Z' l  e- -k.i) ' m I ,i.. }

•1 { [ (jk.2 + 2k.1) (,k.2 + 62k) )eiksP' + k 1 . (A.17)

Several comments are in order concerning the form of the above expressions, which

resulted-after a considerable amount of manipulations-from the corresponding formulas de-

* rived in Section 4.3. The chosen forms have the advantage that most of the contribution

to the value of a given kernel element comes from the closed form term, thus deemphasiz-

ing the importance of the Sommerfeld integral. We also note that for the given r and r',

only three distinct Sommerfeld integrals are called for. Another advantage of this particular

9 formulation is that the Sommerfeld integrals are well-behaved, even when r = r' on the

interface.

A.2 Kernel Elements for a Grounded Slab

We now specialize the formulas of Section 4.3 to the grounded slab case (see Fig. 5.1b).
When the source and observation points are both in region 1, we obtain

K k.2 fgi(Its - I) - S0 .+o.I (A.18)K.1 J~~ , 1 Dh jk., j

e'z'1 2C2) cos CSi D, Dh (A.19)

* K., = -Kz (A.20)

Ki =4 / r11 gr( r')j+So{ j (2k' i + elk,2 tan(k,2 d)
4r I I' S Dejk~i

* +2(A 2 E2 - Plfl) i-D ejkx h1(z+') (A.21)
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it I( .{I k,2 cot(k. 2d) - j12k.l

2- lEl) jkl ejk., (z+z') }}  (A.22)
DeDh I I I--

When the source point is in region 1 and the observation point is in region 2 (i = 1, m = 2),
* we obtain

K 21 A2 so i sin[k, 2(z + d)]e-jk, z'

.o 2 r Dh sin(kz2d) e (A.23)

21 DD sin[k,2(z+d_,d ) ]
pi0i~ )CosS ( D + e)] (A.24)tI DDh sin(kF-2 d)

K 2. - 2 (A262 - P, 1 ) cos (S 1 cos(kz2d) e-jk' (A.25)

2 7rP2(2~ DeDh cosk.2z

0 21 So .tik 2cot(kz2d) cos[k,2(z+d)] .
2w 02 62 - Af I)co ) e-'. 1 j (A.26)

21 f P,- 2 k. 2 tan(k.2 2 d) sin[k,2(Z + d)] eki'
K 2r DCDh sin(k,2d) (A27

When the source point is in region 2 and the observation point is in region 1 (i = 2, m = 1),
we obtain

* 12 = l A2 sin[k,2(z' + d)] ( 8
0 K.=1. 21 r Dh sin(k, 2d) e(A.28)

K2 = -. ) Co ( 1D cos[kx2(z' + d)] e-jklz (A.29)2 -cs ( S 1 DD cos(k, 2d)

K' - O 1 sink.(z' + d)] iks(.. -rtll -/De2co(Sh sin(k,2d) (.0

K [12 =. 1Af jk,., cos~k,2(z' + d)] _ (A.31)

ZZ r D- DeDhA J COS(k, 2d) ~

K12 = -so Jl k1 - A2 k"2 tan(k.2 d) sin[k 2(z' + d)] e-jkxl. (A.32)

0=2r I De Dh sin(k, 2d) J (-2

Finally, when the source and observation points are in region 2 (i = 2, m = 2), we obtain
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2 2 KhA= 2 kzj +o {-k 2 cot(k.2 z>) sin(k, 2z>) sin[k.2 (z< + d)])
K =2r' -pk~ Dh kz.2 sin(k, 2d) (.3

K2 = P2 ( 1 sin[k.2(z + d)] cos[k, 2(z' + d)] (A.34)

j-(P22-lr1)cosCS1 DhDe sin(k, 2d) cos(k, 2d)

2 1 sin[k 2(z' + d)] cos[k 2(z + d)](

-(2 2 - DhDe sin(k 2 d) cos(k(:d)

2 f-j 2 kzl + f 1k. 2 cot(k..2Z>) sin(k,2z>) cos[k-.2 (Z< + d)]
K. 2-r' De k.2 cos(k. 2d)

-(22-Af1I)D e snkdcok 2 dk2 cos[k, 2 (Z + d)] cos[k, 2(Z' + d)] (A.36)

K 2 2 r1 SoI pjjAk~j+IA2 COt(k, 2z>) sin(kz2Z>) sin[k,,2(Z< + d)]

1 t k Dh k.2 sin(k, 2d)

2- Al) k, 2 sink,2(z + d)] sin[k. 2(z' + d)] (A.37)

D hDe cos(k.2d) sin(k.2d) J

where z< and z> denote, respectively, the lesser and the greater of z and z'. Kr"n' and K-ZY

(m = 1,2, 1 = 1,2) are given by K.. and K., respectively, with cos C replaced by sin C. In

the above equations, we have introduced the notation

Dh = jA 2ki + pAk. 2 cot(k. 2d) (A.38)

D' = jE2k. - fIk,2 tan(k.2 d). (A.39)
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