AD-A214 900

UNCLASSIFIED _ FiLE Copy -

SECURITY CLASSIFICATION OF THIS PAGE (When Dava Entered)

READ DNSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORV
1. REPORT NUMBLR (2. GOVY ACCESSION NO. 3. RECIPIENT S CATALOG WUMEBER
4. TITLE (and Sudtitie) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: sp-scicon ! March 1989 to 21 March 199
plc, XD Ada MC68020 T!.0-02V, VAX Cluster (Host) to MC6802
(Target), 890321N1.10041

. nurouxnc"bas. REPORT WUMBER

7. AUTHOR(s) 8. CONTRALT DR GRANT NUMBER(s)
National Computing Centre Limited,
Manchester, United Kingdom.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMINT, PRCIECT, TASK
AREA & WORK UNIT MUMBERS
National Computing Centre Limited,

Manchester, United Kingdom.

L1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DaTE

Ada Joint Program Office

United States Department of Defense DI ——

Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15, SECURITY CLASS (of thisreport)
UNCLASSIFIED

National Computing Centre Limited, 15a. EESk'SEE"“”°""°°"‘5“°”‘°

Manchester, United Kingdom. oV

16. DISTRIBUTION STATEMENT (of thus Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (of the abstractentered nBiock 20 If g:ifferent from Report)

UNCLASSIFIED DTIC

18. SUPPLEMENTARY NOTES

DECO 4 1989
<z

19. KEYWORDS (Continue onreverse s:0e f necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue onreverse side (f necessary and dent ity by dlock number)

SD-Scicon plc. XD Ada MC68020 TI.0-02V, Machester Ml 7ED England, VAX Cluster comprisin
of a VAX 8600 and sen MicroVAX IIs under VMS 5.0 (Host) to MC68020 implemented on the
MVME 133 XT board (bare machine) (Target), ACVC 1.10.

E7) S 083

DD U 1473 €DITION OF 1 NOv 65 1S OBSOLETE
130 13 S/N 0102-LF-014-8601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (whenDate Entered)

e

Ada Compiler Validation Summary Report:

Compiler Name: XD Ada MC68020 T1.0-02V

Certificate Number: #890321N1.10041

Host: VAX Cluster comprising of a VAX 8600 and seven
MicrovAX IIs under VMS 5.0

Target: MC68020 implemented on the MVME 133 XT board (bare
machine)

Testing Completed 21 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

pEn
Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Ana)}yses
Alexandria VA 22311

Ada Joint Program Office
Dr J. Solomon

Director AJPO
Department of Defense
Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: XD Ada MC68020 T1.0-02V

Certificate Number: #890321N1.10041

Host: VAX Cluster comprising of a VAX 8600 and seven
MicroVAX IIs under VMS 5.0

Target: MC68020 implemented on the MVME 133 XT board (bare
machine)

Testing Completed 21 March 1989 Using ACVC 1.10

This report has been rev.awed and is approved.

"S‘ v \\‘\\ ‘
Jane Pin¥k
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

Ll

‘Ada’Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

ML P Y A

Ada Joint Program Office
Dr J. Solomon

Director AJPO

Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-90502/48

Ada COMPILEK
VALIDATION SUMMARY REPORT:
Certificate Number: #890321N1.10041
. Sh-Scicon plc
XD Ada MC68020 T1.0-02V
VAX Cluster Host and MC68020 Target

Completion of On-Site Testing:
21 March 1989

Prepared By:
Testing Services
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION 1
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES . . . e e e e e e e e e 3
1.4 DEFINITION OF TERMS e e e e e e e e e e 3
1.5 ACVC TEST CLASSES 4
CHAPTER 2
CONFIGURATION INFORMATION ¢ &+« « « o« o o =« 1
2.1 CONFIGURATION TESTED e e s e s 1
2.2 IMPLEMENTATION CHARACTERISTICS e e e e e . 2
CHAPTER 2
TEST INFORMATION . . ¢ ¢ ¢ & ¢ o o o o o o o o o o = 1
3.1 TEST RESULTS e e e 1
3.2 SUMMARY OF TEST RESULTS BY CLASS e e e e 1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 1
3.4 WITHDRAWN TESTS . . . ¢ « « + o« o o o o @ 2
3.5 INAPPLICABLE TESTS . . « .« ¢ « « o« o o o« = 2
3.6 TEST, PROCESSING, AND EVALUATION
MODIFICATIONS . . . « e e e e e 6
3.7 ADDITIONAL TESTING INFORMATION e e e 7
APPENDIX A
DECLARATION OF CONFORMANCE v ¢ ¢ « v o« o o @ 1
APPENDIX B
APPENDIX F OF THE 2da STANDARD « . o « « . 1
APPENDIX C
TEST PARAMETERS v &4 o & s o o o o o o o o & 1
W
APPENDIX D O
WITHDRAWN TESTS . . . ¢ ¢ ¢ ¢ & o o o o o o o o o 1 0
By .
Distribution/
! Avallabllity Codes
‘ ' "iAvail and/er
Dist Special
-\ .
R -
Validation Susmary Report AVF-VSR-90502/48

SD-Scicon plc XD Adas MC68020 T1.0-02v Table of Contents Page i of i

o INTRODUCTION

‘ CHAPTER 1

\ INTRODUCTION

N LT T T

P

//This Validation Summary Report (¥SR}- describes the extent to
which a specific Ada compiler conforms to the Ada Standard,
ANSI/MIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing

~ this compiler using the Ada Compiler Validation Capability,

— {A€VEY>.. An Ada compiler must be implemented according to the

- Ada Standard, and any implementation-dependent features must
conform to the requirements of the Ada Standard. The Ada
Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.

Fadme P

Even though all validéted Ada compilers conform to the Ada
Standard, it must be understood that some differences do exist

between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length
of identifiers or the maximum values of integer types. Other

differences becween compilers result from the characteristics of
particular operating systems, hardware, or implementation
strategies. All the dependencies observed during the process of
testing this compiler are given in this report.

S

The information in this report is derived from the test results
produced during validation testing. The validation process
includes submitting a suite of standardized tests, the ACVC, as
inputs to an Ada compiler and evaluating the results.- The
purpose of validating is to ensure conformity of the compiler to
the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and
rejects 1illegal 1language constructs. The testing also
identifies behavior that is implementation dependent, but is
permitted by the Ada Standard. Six classes of tests are used.
These tests are designed to perform checks at compile time, at
link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT
This VSR documents the results of the validation testing

performed on an Ada compiler. Testing was carried out for the
following purposes:

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ade MC48020 T1.0-02v Chapter 1 Page 1 of 7

INTRODUCTION

o To attempt to identify any language constructs
suppcrted by the compiler that do not conform to the
Ada Standard

o To attempt to identify any language constructs not
suppoirted by the compiler but required by the Ada
Standard

o To determine that the implementation-dependent

behavior is allowed by the Ada Standard

Testing of this compiler was conducted by The National Computing
Centre according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation
Organization (AVO). On-site testing was completed 21 March 1989
at SD-Scicon Plc, Pembroke House, Pembroke Broadway, Camberley,
Surrey.

1.2 USE_OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country,
the AVO may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the
"Freedom of Information Act" (5 U.S.C. #552). The results of
this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this
report do not represent or warrant that all statements set forth
in this report are accurate and complete, or that the subject
compiler has no nonconformities to the Ada Standard other than
those presented. Copies of this report are available to the
public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Stre
Washington DC 20301-3081

or from:

Testing Services

The National Computing Centre Limited
Oxford Road
Manchester M1l 7ED
England

validation Summary Report AVF-VSR-502/48
SD-Scicon plc XD Ada MC68020 T1.0-02v Chapter 1 Page 2 of 7

INTRODUCTION

Questions regarding this report or the validation test results
should be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines,
Ada Joint Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide,
SofTech, Inc., December 1986.

4, Ada Compiler Validation Capability User's Guide,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The
set of Ada programs that tests the
conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information
relevant to the point addressed by a comment
on the Ada Standard. These comments are
given a unique identification number having
the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and IS50
8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is
responsible for conducting compiler
validations according to procedures

contained in the Ada Compiler Validation
Procedures and Guidelines.

Validation Sumsary Report AVF-VSR-90502/48

SD-Scicon plc XD Ade MCA8020 T1.0-02v Chapter 1 Page 3 of 7

INTRODUCTION

AVO The Ada Validation Organization, The AVO
has oversight authority over all AVF
practices for the purpose of maintaining a
uniform process for validation of Ada
compilers. The AVO provides administrative
and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the
context of this report, a compiler is any
language processor, including cross-

compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler
generates a result that demonstrates
nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the
language that a compiler is not required to
support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates
the expected result.

Target The computer which executes the code
generated by the compiler.

Test A program that checks a compiler's
conformity regarding a particular feature or
a combination of features to the Ada
Stauaard. In the context of this report,
the term is used to designate a single test,
which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not
used to check conformity to the Ada
Standard. A test mav he incorrect because
it has an invalid test objective, fails to
meet its test objective, or contains illegal
or erroneous use of the language.

1.5 ACVC TEST_ CLASSES

Conformity to the Ada Standard is measured using the ACVCQ. The
ACVC contains both legal and illegal Ada programs structured into

Validation Susmary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC48020 T1.0-02V Chapter 1 Page & of 7

‘“_

INTRODUCTION

six test classes: A, B, C, D, E and L. The first letter of a
test name identifies the class to which it belongs. Class A, C,
D and E tests are executable, and special program units are used
to report their results during execution. Class B tests are
expected to produce compilation errors. Class L tests are
expected to produce errors because of the way in which a program
library is used at link time.

Class A tests ensure the successful compilation and execution of
legal Ada programs with certain language constructs which cannot
be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example,
a Class A test checks that reserved words of another language
(other than those already reserved in the Ada language) are not
treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program
executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language
usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation 1listing is
examined to verify that every syntax or semantic error in the
test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C
test is self-checking and produces a PASSED, FAILED, or NOT
APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of
a compiler. Since there are no capacity requirements placed on
a compiler by the Ada Standard for some parameters =-- for
example, the number of identifiers permitted in a compilation or
the number of units in a library ~-- a compiler may refuse to
compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the
capacity of the compiler is exceeded, the test is classified as
inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during
execution.

Class E tests are expected to execute successfully and check
implementation-dependent opticns and resolutions of ambiguities
in the Ada Standard. Each Class E test is self-checking and
produces a NOT APPLICABLE, PASSED or FAILED message when it is

compiled and executed. However, the Ada Standard permits an
implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a
validation Summary Report AVF-VSR-90502/48
SD-Scicon plc XD Ada WMC58020 T1.0-02v Chapter 1 Page 5 of 7

e — . SE———

INTRODUCTION

Class F test is passed by a compiler if it 1is compiled
success.ully and executes to produce a PASSED message, or if it
is ¢ jected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada progranms
involving multiple, separately compiled units are detected and
not allowed to execute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time -- that is, an attempt to execute the main
program must generate an error message before any declarations
in the main program or any units referenced by the main program
are elaborated. In scme cases, an implementation may
legitimately detect errors during compilation of the test.

Two 1library wunits, the package REPORT and the procedure
CHECK_FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report PASSED, FAILED or NOT APPLICABLE results.
It also provides a set of identity functions used to defeat some
compiler optimizations allowed by the Ada Standard that would
circumvent a test objective. The procedure CHECK FILE is used
to check the contents of text files written by some of the Class
C tests for Chapter 14 of the Ada Standard. The operation of
REPORT and CHECK FILE is checked by a set of executable tests.
These tests produce messages that are examined to verify that the
units are operating correctly. If these units are not operating
correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are
intended to ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72
characters, use small numeric values, and place features that may
not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be
customized according to implementation-specific values -- for
example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite
and demonstrate conformity to the Ada Standard by either meeting
the pass criteria given for the test or by showing that the test
is inapplicable to the implementation. The applicability of a
test to an implementation is considered each time the
implementation is validated. A test that is inapplicable for one
validation 1is not necessarily inapplicable for a subsequent
validation. Any test that was determined to contain an illegal
language construct or an erroncous language construct is
withdrawn from the ACVC and, therefore, is not used in testing

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ade MNC468020 T1.0-02v Chapter 1 Page 6 of 7

INTRODUCTION

a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Validation Summary Report AVE-VSR-90502/48

SD-Scicon ple XD Ada MCAS8020 11.0-02v Chapter 1 Page 7 of 7

EEEEEEEEE———— |

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFCRMATION

2.1 CONFIGURATION TESTED

The candidate compilatiocn system for this validation was tested
under the following configuration:

Compiler: XD Ada MC68020 T1l.0-02V

AC\VC Version: 1.10

Certificate Number: #890321N1.10041

Host Computer:

Machine:

Operating System:

Memory “ize:

Target Computer:

Machine:

Memory Size:

Communications Network:

VAX CLUSTER comprising of a VAX
8600 and seven MicroVAX II's.

VMe 5.0

90Mb

MC68020 implemented on a MVME 133
XT board (bare machine)

1Mb

RS232 link

Validation Sumsary Report

SD-Scicon ple XD Ada MCAB020 T1.0-02v

AVF-VSR-90502/48

Chapter 2 Page 1 of 6

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementations +to differ. Class D and E tests
specifically check for such implementation differences. However,
tests in other classes also characterize an implementation. The
tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation
containing 723 variables in the same declarative part.
(See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H
(8 tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D560013.)

(4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits
nested to 17 levels. (See tests D64005E..G (3 tests))

b. Predefined types.

(1) This implementation supports the additional predefinec
types SHORT_ INTEGER, SHORT_SHORT INTEGER, LONG FLOAT
and LONG_LONG_FLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time
at which constraints are checked are not defined by the
language. While the ACVC tests do not specifically attempt
to determine the order of evaluation of expressions, test
results indicate the following:

(1) None of the default initialization expressions for
record components are evaluated before any value is
checked for membership in a component's subtype. (See
test C32117A.)

Validation Susmary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC58020 T1.0-02v Chapter 2 Page 2 of 6

—

CONFIGURATION INFORMATION

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra
precision and uses all extra bits for extra range.
(See test C35903A.)

(4) No exception is raised when an integer literal operand
in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a
fixed-point comparison or membership test is outside
the range of the base type. (See test C45252A.)

(6) Underflow 1is gradual. (See tests C45524A..2 (26
tests).)

d. Rounding.

The method by which values are rounded in type conversions
is not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding,
the test results indicate the following:

(1) The method used for rounding to integer is round to
even. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is
round to even. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static
universal real expressions is round away from zero.
(See test C4A014A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

(1) Declaration of an array type or subtype declaration
with more than SYSTEM.MAX INT components raises
NUMERIC _ERROR. (See test C36003A.)

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC48020 T71.0-02v Chapter 2 Page 3 of 6

e

CONFIGURATION INFORMATION

(2)

(3)

(4)

(3)

(6)

(7)

NUMERIC_ERROR 1s raised when an array type with
INTEGER'LAST + 2 components 1is declared. (See test
C36202A.)

NUMERIC ERROR is raised when an array type with
SYSTEM.MAX INT + 2 components is declared. (See test
C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC_ ERROR when the array type
is declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the
array type is declared. (See test C52104Y.)

assigning one-dimensional array types, the

expression 1is evaluated in its entirety before
CONSTRAINT_ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

assigning two-dimensional array types, the

expression is not evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

f. A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

g. Discriminated types.

(1) In assigning record types with discriminants, the
expression 1is evaluated in its entirety before
CONSTRAINT_ ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

h. Aggregates.

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MCA8020 T11.0-02v Chapter 2 Page &4 of 6

;_

CONFIGURATION INFORMATION

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated
before checking against the index type. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing
subaggregates, all choices are evaluated before being
checked for identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR 1is raised after all choices are
evaluated when a bound in a non-null range of a non-
null aggregate does not belong to an index subtype.
(See test E43211B.)

i. Pragmas.

(1) The pragma INLINE 1is supported for functions or
procedures. (See tests LA3004A..B (2 tests),
EA3004C..D (2 tests), and CA3004E..F (2 tests).)

j. Generics.

(1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CA1012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A
and CA2009F.)

(3) Generic library subprogram specifications and bodies
can be compiled in separate compilations. (See test
CA1012A.)

(4) Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled
in separate compilations from their stubs. (See test
CA2009F.)

(6) Generic unit bodies and their subunits can be compiled
in separate compilations. (See test CA3011A.)

Validation Susmary Report AVF-VSR-90502/48

SD-Scicon plc XD Ade NC48020 T71.0-02v Chapter 2 Page 5 of 6

N —

CONFIGURATION INFORMATION

(7) Generic package declarations and bodies can be compiled
in separate compilations. (See tests CA2009C, BC3204C,
and BC3205D.)

(8) Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

(9) Generic unit bodies and their subunits can be compiled
in separate compilations. (See test CA3011A.)

k. Input and output.

(1) The package SEQUENTIAL IO cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

(2) The package DIRECT IO cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101H,
EE2401D, and EE2401G.)

(3) The director, AJPO, has determined (AI-00332) that
every call to OPEN and CREATE must raise USE_ERROR or
NAME ERROR if file input/output is not supported. This
implementation exhibits this behavior for
SEQUENTIAL IO, DIRECT_IO, and TEXT_ IO.

Validetion Susmary Report AVE -VSR-90502/48

SD-Scicon plc XD Ade MC68020 T1.0-02v Chapter 2 Page 6 of 6

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this
compiler was tested, 43 tests had been withdrawn because of test
errors. The AVF determined that 550 tests were inapplicable to
this implementation. All inapplicable tests were processed
during validation testing except for 159 executable tests that
use floating-point precision exceeding that supported by the
implementation. Modifications to the code, processing, or
grading for 12 tests were required to successfully demonstrate
the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 126 1133 1787 17 14 46 3124

Inapplicable 3 5 528 0 14 0 550

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9_.10__11_ 12 _13__14
Pass 201 591 568 245 172 99 161 332 137 36 252 254 76 3124

N/A 11 58 112 3 0 0 5 1 0 0 0 115 245 550
W/D 1 1 0 0 0] o 0 1 0 0 1 35 4 43

TOT 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

Validstion Summary Report AVF-VSR-90502/48

SD-Scicon ple XD Ada MCAB020 71.0-02V Chapter 3 Page 1 of 9

TEST INFORMATION

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at
the time of this validation:

E28003C A39005G
B97102E BC3009B
CD2A62D CD2A63A..D (4 tests)
CD2A66A..D (4 tests) CD2A73A..D (4 tests)
CD2A76A..D (4 tests) CD2A81G
CD2A83G CD2A84N..M (2 tests)
CD50110 CD2B15C
CcD7205C CD2D11B
CD5007B ED7004B
ED7005C..D (2 tests) ED7006C..D (2 tests)
CD7105A CD7203B
CD7204B CD7205D
CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use
of features that a compiler is not required by the Ada Standard
to support. Others may depend on the result of another test that
is either inapplicable or withdrawn. The applicability of a test
to an implementation is considered each time a validation is
attempted. A test that is inapplicable for one validation
attempt is not necessarily inapplicable for a subsequent attempt.
For this validation attempt, 550 tests were inapplicable for the
reasons indicated:

a. The following 159 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)

C357060..Y (11 tests) C357070..Y (11 tests)

C357080..Y (11 tests) C358020..2 (12 tests)

C452410..Y (11 tests) C453210..Y (11 tests)

C454210..Y (11 tests) C455210..Z (12 tests)

C455240..Z (12 tests) C456210..Z2 (12 tests)

C456410..Y (11 tests) C460120..2 (12 tests)
validation Susmary Report AVF-VSR-90502/48
S$D-Scicon plc XD Ada WC468020 T1.0-02v Chapter 3 Page 2 of 9

e

TEST INFORMATION

b. The following 16 tests are not applicable because 'SMALL
representation clauses are not supported.
A39005E c87B62C
CcDl10o0gL CD1CO3F
CD2AS53A..E (5 tests) CD2A54A..B (2 tests)
CD2A54G CD2A541
ED2AS56A CD2D11A
CD2D13A

c. C35702A and B86001T are not applicable because this
implementation supports no predefined type SHORT_FLOAT.

d. The following 16 tests are not applicable because this

implementation does not support a predefined type
LONG_INTEGER:
C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09SC B86001W
CD7101F

e. C45531M..P (4 tests) and C45532M..P (4 tests) are all
inapplicable because this implementation has a 'MAX MANTISSA
of 31 and these tests require the compiler to support a
greater value,

f. C4A013B is not applicable because the evaluation of an
expression involving 'MACHINE RADIX applied to the most
precise floating-point type would raise an exception; since
the expression must be static, it is rejected at compile
time.

g. B86001Y is not applicable because this implementation
supports no predefined fixed-point type other than DURATION.

h. C86001F is not applicable because package system is used by
TEXT IO.

i. C96005B is not applicable because there are no values of
type DURATION'BASE that are outside the range of DURATION.

j. CD1009C, CD2A41A..E (5 tests) and CD2A42A..J (10 tests) are
not applicable because 'SIZE representation clauses for
floating-point types are not supported.

k. The following 25 tests are not applicable because 'SIZE
representation clauses for array types are not supported.

validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada WCA68020 T1.0-02v Chapter 3 Page 3 of 9

g

TEST INFORMATION

CD1009E..F (2 tests) CD2A61A..L (12 tests)
CD2A62A..C (3 tests) CD2A64A..D (4 tests)
CD2A65A..D (4 tests)

1. The following 17 tests are not applicable because 'SIZE
representation clauses for record types are not supported.
CD1009G CD2A71A..D (4 tests)

CD2A72A..D (4 tests) CD2A74A..D (4 tests)

CD2A75A..D (4 tests)

m. CD1C04C is inapplicable for because this implementation does
not suppoert model numbers of a derived type that are not
representable values of the parent type.

n. CD2A52J and CD2A54J are not applicable because these tests
require an unsigned representation for a fixed point type:
this implementation does not support unsigned fixed point
representation.

o. CD2A52C..D (2 tests), CD2A52G..H (2 tests), CDAS4C..D (2
tests) and CD2A54H are not applicable because foi this
implementation the legality of a 'SIZE clause for a derived
fixed point type can depend on the representation chosen for
the parent type.

p. The following 23 tests are not applicable because 'SIZE
representation clauses for access types are not supported.
CD2A81A..F (6 tests) CD2A83A..C (3 tests)

CD2A83E..F (2 tests) CD2A84B..I (8 tests)
CD2A84K..L (2 tests) ED2A86A
CD2A87A
q. CD2A91A..E (5 tests) are not applicable because 'SIZE

representation clauses for task types are not supported.

r. CD2B15B is not applicable because this implementation allows
'STORAGE_SIZE to yield the size requested by the user

S. CD7004C, CD7005E and CD7006E are all not applicable because
of other limitations, not specified in the Referance Manual,
on the use of the pragmas SYSTEM_NAME, STORAGE UNIT and
MEMORY SIZE.

t. AE2101C, EF2201D, and EE2201E use instantiations of package
SEQUENTIAL IC with unconstrained array types and record
types with discriminants without defaults. These

instantiations are rejected by this compiler.

Validation Summary Report AVF-VSR-90502/48

SD-Scicon ple XD Ade NC68020 T1.0-02v Chapter 3 Page & of 9

__

TEST INFORMATION

u. AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT IO with unconstrained array types and record types
with discriminants without defaults. These instantiations
are rejected by this compiler.

v. The following 236 tests are inapplicable because sequential,
text, and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L

CE2108A..B (2 tests) CE2108C..H (6 tests)
CE2109A..C (3 tests) CE2110A..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F. .V (9 tests)
CE2204A..D (4 tests) CE2205A

CE2208B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B

CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A

CE3102A..B (2 tests) EE3102C

CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A

CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A

CE3208A EE3301B

CE3302A CE3305A

CE3402A EE3402B

CE3402C..D (2 tests) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B

CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A

CE3410C..E (3 tests) EE3410F

CE3411A,C (2 tests) CE3412A

CE3413A CE3413C

CE3602A..D (4 tests) CE3603A

CE3604A..B (2 tests) CE3605A..E (5 tests)
CE3606A..B (2 tests) CE3704A..F (6 tests)

validation Summary Report AVF-VSR-90502/48
SD-Scicon plc XD Ada MCS8020 T1.0-02v Chapter 3 Page 5 of 9 !

TEST INFORMATION

CE3704M..0 (3 tests) CE3706D
CE3706F..G (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests)
CE3806D..E (2 tests) CE3806H
CE3905A..C (3 tests) CE3905L
CE3906A..C (3 tests) CE3906E..F (2 tests)
W. CE3806G and CE3901A are inapplicable because this

implementation raises NAME ERROR on the attempt to create
a text file with a non-null filename.

X. EE3412C is not applicable because this implementation's body
of the package REPORT does not use TEXT_IO.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of
code, processing, or evaluation in order to compensate for
legitimate implementation behavior. Modifications are made by
the AVF in cases where legitimate implementation behavior
prevents the successful completion of an (otherwise) applicable
test. Examples of such modifications include: adding a length
clause to alter the default size of a collection; splitting a
Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test
demonstrate conforming behavior that was not anticipated by the
test (such as raising one exception instead of another).

Modifications were required for 15 tests.

C45524A..N (14 tests) were modified because these tests
expect that the result of continued division of a real
number will be 2zero; the Ada Standard, however, only
requires that the result be within the type's SAFE SMALL of
zero. Thus, these tests were modified to include a check
that the result was in the smallest positive safe interval
for the type. The implementation passed the modified tests.
Each test was modified by inserting the following code after
line 138;

ELSIF VAL <= F'SAFE SMALL THEN
COMMENT ("UNDERFLOW IS GRADUAL")

The following test was split because syntax errors at c¢ne point
resultea in the compiler not detecting other errors in the test:

B97103E
Validation Summary Report AV -VSR-90502/48
$D-Scicon plc XD Ada MC68020 T1.0-02V Chapter 3 Page 6 of ¢

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the VAX/VMS x MC68020 XD Ada compiler was submitted
to the AVF by the applicant for review. Analysis of these
results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the VAX/VMS x MC68020 XD Ada compiler using ACVC
Version 1.10 was conducted on-site by a validation team from the
AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software
components:

Host computer ¢ VAX Cluster comprising of a VAX
8600 and seven Micro VAX TIs

Host operating system : VMS 5.0

Target computer : MC68020 implemented on a MVME 133

XT board (bare machine)

Compiler : XD Ada MC68020 T1.0-02V
Assembler : XD Ada MC68020 T1.0-02V
Linker : XD Ada MC68020 T1.0-02V
Loader/Downloader : XD Ada MC68020 Ti.0-02V
Runtime System : XD Ada MC68020 T1.0-02V

The host and target computers were linked via a RS232 connector.

A magnetic tape containing all tests except for withdrawn tests
and tests requiring unsupported floating-point precisions was
taken on-site by the validation team for processing. Tests that
make use of implementation-specific values were customized before
being written to the magnetic tape. Tests requiring
modifications during the prevalidation testing were not included
in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the
host computer.

After the test files were loaded to disk, the full set of tests
was compiled and linked on the VAX Cluster, then all executable
images were transferred to the MC68020 via the RS232 1link and
run. Results were printed from the host computer.

Validation Summery Report AVF-VSR-90502/48

SD-Scicon plc XD Ade WMC68020 71.0-02v Chapter 3 Page 7 of 9

_

TEST INFORMATION

The compiler was tested using command scripts provided by SD-
Scicon and reviewed by the validation team. The compiler was
tested using all following option settings:-

OPTIGN

DEBUG=ALL

OPT=(TIME, INLINE: NORMAL)

CHECK

NOANALYSIS CHECK

COPY_ SOURCE

NODIAGNOSTICS

LIST

NOMACHINE CODE

NOTE_SOURCE

SHOW = PORTABILITY

NOSYNTAX ONLY

EFFECT

Both debugger symbol records and
traceback information are included
in the object file

Provides full optimisation with
time as primary objective and also
provides normal subprogram
expansion

Overrides all the suppressing
programs in the source code

No cross reference file is created

Creates a file containing a copy
of the source code when errors are
found

Does not create a file to contain
the diagnostic messages from the
computer

A Listing file is created

No machine code to be included in
he Listing file

Note's the file specification or
the source code 1in the program

library

Includes a program portability
summary in the Listing file

The compiler performs all checks
on the source code

Tests were compiled, linked, and executed (as appropriate) using
a cluster of 8 computers and 2 target computers. Test output,
compilation listings, and job logs were captured on magnetic

Validation Summery Report

SD-Scicon plc XD Ada MC48020 11.0-02v

AVF-VSR-90502/48

Chapter 3 Page 8 of 9

TEST INFORMATION

media and archived at the AVF. The listings examined on-~site by
the validation team were also archived.

3.7.3 Test Site

Testing was conducted at SD-Scicon plc, Pembroke House, Pembroke
Broadway, Camberley, Surrey and was completed on 21 March 1989.

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC68020 71.0-02v Chapter 3 Page 9 of 9

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

SD-Scicon plc has submitted the following Declaration of
Conformance concerning the XD Ada MC68020 T1.0-02V compiler.

Validation Suwmmary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC68020 T1.0-02v Appendix A Page 1 of 3

N —

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE
Compiler Implementor: SD-Scicon plc
Ada Validation Facility: The National Computing Centre
Oxford Road
Manchester M1 7ED
England
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Confiquration

Base Compiler Name: XD Ada MC68020 T1.0-02V

Host Architecture: VAX CLUSTER comprising of a
VAX 8600 and seven MicroVAX
II's

Host 0S and Version: VMS 5.0

Target Architecture: MC68020 inplemented on the
MVME 133 XT board (bare
machine)

Implementor's Declaration

I, the undersigned, representing SD-Scicon plc, have
implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler(s) listed in
this declaration. I declare that SD-Scicon plc is the
owner of record of the Ada language compiler(s) listed
above and, as such, is responsib’e for maintaining said
compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compiler(s)
listed in this declaration shall be made only in the
owner's corporate name.

R@(/\/\.ﬂ pate : 2/ 1/37/9‘7

~—

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC68020 T1.0-02V Appendix A Page 2 of 3

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing SD-Scicon plc, take full
responsibility for implementation and maintenance of the
Ada compiler(s) listed above, and agree to the public
disclosure of the final Validation Summary Report. I
declare that all of the Ada language compilers listed, and
their host/target performance, are in compliance with the
Ada Language Standard ANSI/MIL-STD-1815A.

_@V\/‘;— pate : 24/5/?6

Validation Summary Report AVF - VSR -90502/48

SD-Scicon plc XD Ada MC58020 T1.0-02v Appendix A Page 3 of 3

_

APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the XD Ada MC68020
T1.0-02V compiler, as described in this Appendix, are provided
by SD-Scicon plc. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and
not to this report. Implementation-specific portions of the
package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT_SHORT_INTEGER is range -128 .. 127;

type FLOAT is digits 6 range -(2%%128 - 2**104) ..
2*%%128 - 2*%*104;
type LONG FLOAT is digits 15 range -(2**1024 -~ 2**971) ..
2*¥%1024 - 2%%3971;

type DURATION is delta 1.E-4 range =131072.0000 ..
131071.9999;

end STANDARD;

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC68020 T1.0-02v Apperdix 8

T

Appendix F

Implementation-Dependent
Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the following implementation-dependent
characteristics of XD Ada:

.

Listing the XD Ada pragmas and attributes.
Giving the specification of the package SYSTEM.

Presenting the restrictions on representation clauses and unchecked
type conversions.

Giving the conventions for names denoting implementation-
dependent components in record representation clauses.

Giving the interpretation of expressions in address clauses.

Presenting the implementation-dependent characteristics of the
input-output packages.

Presenting other implementation-dependent characteristics.

implementation-Dependent Characteristics F-1

F.1 Impiementation-Dependent Pragmas

XD Ada provides the following pragmas. which are defined elsewhere

in the text. In addition, XD Ada restricts the predefined language
ragmas INLINE and INTERFACE, replaces pragma SHARED with

prag p prag

pragma VOLATILE, and provides pragma SUPPRESS_ALL in addi-

tion to pragma SUPPRESS. See Appendix B for a descriptive pragma

summary.

* EXPORT_EXCEPTION (see Section 13.9a.3.2)

¢ EXPORT_FUNCTION (see Section 13.9a.1.2)

e EXPORT_OBJECT (see Section 13.9a.2.2)

o EXPORT_PROCEDURE (see Section 13.9a.1.2)

o IMPORT_EXCEPTION (see Section 13.9a.3.1)

¢ [MPORT_FUNCTION (see Section 13.9a.1.1)

e IMPORT_OBJECT (see Section 13.9a.2.1)

o [MPORT_PROCEDURE (see Section 13.9a.1.1)

o LEVEL (see Section 13.5.1)

¢ LINK_OPTION (see Appendix B)

¢ MACHINE_CODE_PROCEDURE (see Section 13.8)

e SUPPRESS_ALL (see Section 11.7)

e TITLE (see Annex B)

o VOLATILE (see Section 9.11)

F.2 Implementation-Dependent Attributes

XD Ada provides the following attributes. which are defined elsewhere
in the text. See Appendix A for a descriptive attribute summary.

* BIT (see Section 13.7.2)
¢ MACHINE_SIZE (see Section 13.7.2)
o TYPE_CLASS (see Section 13.7a.2)

F-2 Implementation-Dependent Characteristics

F.3 Specification of the Package System

The package SYSTEM for the MC68020 is as follows:

F.3.1 Package System for MC68020 Target

package SYSTEM is
type NAME is (MCA301C, MIL_STD_1752A);

SYSTEM_NAME : constant MNAME := MCA200(;
STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant = J**32;
MIN_INT : conmtant = -(2**31);
MAX_INT : constant := 2**31-1;
MAX_DIGITS : constant := 18;
MAX_MANTISSA : constant := 31;
FINE_DELTA ¢ ccastant = 2.0+*(-31);
TICK ¢ constant := 162.5E-6

subtype PRIORITY is INTEGER range O .. 15;

subtype LEVEL is INTEGER range O .. 7;

type ADDRESS_INT i{s range MIN_INT .. MAX_INT;
-~ Address type

type ADDRESS 1is private;

ADDRESS_ZERQ : constant ADDRESS;

function TO_ADDRESS (ADDR : universal_integer) retura :-CIFESS;

function CONVERT_ADDRESS (ADDR : ADDRESS) retura AICSZSS
function CONVERT_ADDRESS (ADDR : ADDRESS_INT) retura =

fuaction "+~ (LEFT : ADDPRESS; RIGHT : ADDRESS_I!NT) returm :DDRESS;
function "+~ (LEFT : ADDRESS_INT; RIGHT : ADDRESS) returm ADDRESS;
function -~ (LEFT : ADDRESS; RIGHT : ADDRESS) returm :D0TISS_INT;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS_INT) returas :DDRESS;

~- functiom "=" (LEFT, RIGHT : ADDRESS) return
~~ fumction "/=" (LEFT, RIGHT : ADDRESS) retura
tunction "<" (LEFT, RIGHT : ADDRESS) return
function "<=" (LEFT, RIGHT : ADDRESS) return
function °>" (LEFT, RIGHT : ADDRESS) return
function ">=" (LEFT, RIGHT : ADDRESS) return

~- Note that because ADDRESS is a private type
~- the functions "=" and "/=" are already available

~- Gereric functions used to access memory

implementatic1-Depe~dent Characteristics F-3

F-4

generic
type TARGET is private;
function FETCH_FRGM_ADDRESS (A : ADDCRESS)

return TARLET:

generic
type TARGET is private;
procedure ASSIGN_TC_ADDRESS

(A ¢ ADDRESS; T : TAR:

type TYPE_TLASS is (TYPE_TLASS_ENUMERATIN,
TYPE_CLASS_INTEGER,
TiPE_TLASS_FIXED_P INT,
TYPE_CLASS_FLCATING_PTINT,
TVPE_CLASS_ARRAY,
TYPE_CLASS_RECCRD,
TVPE_TLASS_ACCESS,
TYPE_TLASS_TASK,
TYPE_TLASS_ADDRESS);

X6 Ada hardware-oriented types and functions

type BIT_ARRAY is array (INTEGER range <>) of BYCLEAN;
pragma PACK(BIT_ARRAY);

subtype BIT_ARRAY_8 is BIT_ARRAY (C .. 7);

subtype BIT_ARRAY_16 is BIT_ARRAY (9O 1)

subtype BIT_ARRAY_32 is BIT_ARRAY (0 .. 31);

subtype BIT_ARRAY_64 is BIT_ARRAY (0 .. 63)

type UNSIGNED_BYTE {s range O .. 255;

for UNSIGNED_BYTE'SIZE wuse B;

function "not" (LEFT ¢ UNSIGNED_BYTE) retura UNSIGNED_BYVTE;
function ~and” (LEFT, RIGHT : UNSIGNED_BYTE) retursm UNSIGHNED_BYTE;
function "or" (LEFT, RIGHT : UNSIGNED_B7TE) returm UNSIGHED_BYTE;
function "xor” (LEFT, RIGHT : UNSIGNED_BvTE) returm UNSIGHED_BYTE;
function TO_UNSIGNED_BYTE (LEFT : BIT_ARRAY_%) return UNSIGNED_BYTE;

function

type UNSIGNED_WORD

TC_BIT_ARRAY_8 (LEFT : UNSIGHNED_BiTE) retura BIT_ARRAY_8;
type UNSIGNED_BYTE_ARRAY is array (INTEGER range <>) of UNSIGNED_BYTE:

is range ?
use 16;

.. 699535;

UNSIGNED_WORC)
UNSISNED_WTRD)
UNSIGNED_WORD |
UNSIGNED_WORD)

return
return
return
return

UNSI3HED_WORD:
UNSI3NED_WORD;
UNSISNED_WCORD;
UNS1SNED_WORD;

TO_UNSIGNED_WORD (LEFT : BIT_ARRAY_1%) return UNSIGNED_WORD;

for UNSIGNED_WCRD'SIZE
function "not" (LEFT
function "“and" (LEFT, RIGHT
function “or~ (LEFT, RIGHT
function "xor~ (LEFT, RIGHT
function

function

TO_BIT_ARPAY_1% (LEFT : INSIGHNED_WTRD) returm BIT_ARRAT_15;
type UNSIGNED_WORD_ARRAT {8 array (INTEGER range <>) of THSIGHED_WORD:

type UNSIGNED_LONGWORD {$ range MIN_INT .. MAX_INT;

function
function
function
function

“not-~
~and”
~or~"

“xor"

(LEFT
(LEFT,
(LEFT,
(LEFT,

RIGHT
RIGHT
RIGHT

H
.

UNSIGHED_LONGWORD)

UNSIGNED_LONGWORD)
UNSIGNED_ LONGWCRD)
UNSIGNED_LJONGWCRD)

implementation-Dependent Characteristics

return
return
return
return

UNSIGHED_LCNGWCRD;
UNSIGHNED_LONGWORD;
UNSTGNED_LONGWORD;
UNSTSHED_LONGWORD;

functiom TO_UNSIGNED_LONGWCRD (LEFT : BIT_ARRAY_ 0| returw .NSISNED_LONGWCRD;
function TO_BIT_ARRAY_32 (LEFT : UNSISNED_WORP! returm BI7T_SRPAY_1]:
type UNSIGNED_LCNGWORD_ARRAY L8 array (INTEGER range <> of HSISHNES LONGWORD;

“onventional names for static subtypes of type TNSISHED_ L C.UWIRD

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

private

UNSIGNED_1

UNSI3LID_D

UNSIGNED_ 3

UNSIGNED_4

UNSISNED_S

UNSIGNED_5

UNSIGNED_7

UNSIGNED_8

UNSIGNED_9

UNSIGNED_10
UNSIGNED_11
UNSIGNED_12
UNSIGNED_13
UNSIGNED_14
UNSIGNED_15
UNSIGNED_16
UNSIGNED_17
UNSIGNED_18
UNSIGNED_19
UNSIGNED_20
UNSIGNED_21
UNSIGNED_22
UNSIGNED_23
UNSIGNED_24
UNSIGNED_25
UNSIGNED_26
UNSIGNED_27
UNSIGNED_28
UNSIGNED_29
UNSIGNED_30
UNSIGNED_31

-~ Not shown

end SYSTEM;

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

UNSTSNED_L NGW RD
UNSI3INED_Lt
UNSISNED_ Lo
UNSTSHED_L
UNSI3NED_LTHIWORD
UNSIGNED_LONGWTRD
UNSIZNED_LOHGWORD
UNSISNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSTGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNS IGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_ LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LCHGWORD

Implementation-Depe~dent Characteristics F-5§

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
rvange
range
range
range
range
range
range
range
range
range
range
range
range
range

B

1> 4D 3D D D

DD O D D2 DD

1Y D D Dy D)

2

F.4 Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,
record representation, and address clauses

In XD Ada. a representatinn clause for a generic formal type or a type
that depends on a generic formal type is not aliowed. [n addition, a
representation clause for a composite type that has a component or
subcomponent of a generic formal type or a type derived from a generic
formal type is not allowed.

Restrictions on length clauses are specified in 13.2; restrictions on
enumeration representation clauses are specified in Section 13.3; and
restrictions on record representation clauses are specified in Section
134.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in package SYSTEM (see Section 13.7a.1 and Section F.3).

XD Ada allows address clauses for variables (see Section 13.5). For
address clauses on variables, the address expression is interpreted as a
Motorola full 32-bit address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the
address expression is interpreted as a Motorola exception vector offset.

F-6 Implementation-Dependent Characteristics

In XD Ada for the MC68020 family. values of tvpe SYSTEM ADDRESS

are interpreted as integers in the range 0 2'~ .1 As SYSTEM ADDRESS
is a private type. the only operations allowed on ~bjects of this type are
those given in package SYSTEM

F.7 Restrictions on Unchecked Tyne Conversions

XD Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in Section 13.10.2.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIAL_IO and DIRECT_IO are implemented as
null packages that conform to the specification given in the LRM. The
packages raise the exceptions specitied in Chapter 14 of the LRM. The
two possible exceptions that are raised by these packages are given
here, in the order in which they are raised.

Exception When Raised

STATUS_ERROR Raised by an attempt to operate upon a file that is
not open (no files can be ccened).

USE_ERROR Raised if exception STATUS_ERROR is not raised.

MODE_ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode) and NAME_ERROR cannot be raised
since there are no restrictions on file names.

The predefined package LOW_LEVEL_IO is not provided.

Implementation-Depe~dent Characteristics F-7

F.8.1 The Package TEXT_IO

The package TEXT_[O conforms to the specificatien given in the LRM.
String input-output is implemented as< defined File input-output is
supported to STANDARD_INPUT and STANDARD_OUTPUT only.
The possible exceptions that are raised by package TEXT_IO are as

follows:

Exception When Raised

STATUS_ERROR Raised by an attempt to operate upon a file that is
not open (no files can be opened).

MODE _ERROR Raised by an attempt to read from, or test for
the end of. STANDARD OUTPUT, or to write to
STANDARD_INPUT

END_ERROR Raised by an attempt to read past the end of
STANDARD_INPUT.

USE_ERROR Raised when an unsupported operation is attempted.

that would otherwise be legal.

NAME_ERROR cannot be raised since there are no restrictions on file
names.

The type COUNT is defined as follows:
type COUNT is range C .. INTEGER'LAST;
The subtype FIELD is defined as follows:

type FIELD is INTEGER range 7 .. 130:

F.8.2 The Package |IO_EXCEPTIONS

The specification of the package IO_EXCEPTIONS is the same as that
given in the LRM.

F.9 Other Implementation Characteristics

Implementation characteristics associated with the definition of a main
program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F-8 Implementation-Dependent Characteristics

F.9.1 Definition of a Main Program

Any library procedure can be u<ed as a main program provided that it
has no formal parameters.

F.9.2 Values of Integer Attributes

The ranges of values for integer tvpes declared in package STANDARD
are as follows:

SHORT SHORT INTEGER 2Y -128 . 127)
SHORT INTEGER 22 A (-32768 . 32767)
INTEGER 2V Y (-2147483648 .. 2147483647)

For the package TEXT_1O. the range of values for types COUNT and
FIELD are as follows:

COUNT 0..2" (0 .. 2147483647)
FIELD 0. 132

F.9.3 Values of Floating-Point Attributes

Floating-point types are described in Section 3.5.7. The representation
attributes of floating-point types are summarized in the following table:

Implementation-Dependent Charactenstics F-9

DIGITS

SIZE
MANTISSA
EMAX
EPSILON
SMALL
LARGE
SAFE_EMAX
SAFE_SMALL
SAFE_LARGE
FIRST

LAST

MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS

MACHINE_OVERFLOWS

FLOAT
) [}
32
2
84
2=
2_23
bV
125
27
2111_21(\4
_(213“_21(\4)
2'2“_2”\4
2
24
128
123
FALSE
FALSE

LONG_FLO

15

63

1024
-1021
FALSE
FALSE

AT LONG_LONG_FLOAT
e
a6
61
234
2—'4\
2—:43
2.‘44_2:*1
16382

2—]«\!'\

zlhmznzlh}jl
_(zlkm _zw_\:n)
2\'«’(’14‘211_120
p
64
16384
-16382
FALSE
FALSE

F-10 Imp.ementation-Dependent Characteristics

F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as

follows:

DURATION ‘DELTA 1.E-4 (104
DURATION *SMALL 261.04E-14 (2°h
DURATION 'FIRST -131072.0000 (-27)
DURATION ' LAST 131071.9999 2" 'DELTA)

F.9.5

Implementation Limits

Limit Description

120 Maximum identifier length (number of characters)

120 Maximum number of characters in a source line

2 Maximum number of library units and subunits in a compilation
closure'

27 Maximum number of library units and subunits in an execution
closure’

2" Maximum number of enumeration literals in an enumeration
type definition

2™ -1 Maximum number of lines in a source file

pAL Maximum number of bits in any object

2" Maximum number of exceptions

'"The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly

h
“The execution ciosure of a given unit is the compilation closure plus all associated
secondary units

imptementation-Dependent Characteristics F-11

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be
substituted are represented by names that begin with a docllar
sign. A value must be substituted for each of these names before
the test is run. The values used for this validation are given
below:

Name and Meaning Value

SACC_SIZE 32
An integer literal whose value is the
number of bits sufficient to hold any
value of an access type.

$BIG_ID1 (1..254=>'A"', 255=>])
Identifier the size of the maximum
input line length with varying last
character.

$BIG_ID2 (1..254=>'A"', 255=>2)
Identifier the size of the maximum
input line length with varying last
character.

$BIG_ID3 (1..127=>'A"', 128=>3,
Identifier the size of the maximum 129..255=>"'A")
input line length with varying middle
character.

$BIG_ID4 (1..127=>'A"', 128=>4,
Identifier the size of the maximum 129..255=>"'A")
input line length with varying middle
character.

$BIG_INT LIT (1..252=>0,
An integer literal of value 298 with 253..255=>298)
enough leading zeroes so that it is
the size of the maximum line length

validation Susmary Report AVF-VSR-90502/48

SD-Scicon plc XD Ads MC68020 T71.0-02v Appendix C Page 1 of 6

e

TEST PARAMETERS

$BIG_REAL LIT (1..249=>0,
A universal real 1literal of value 250..255=>69.0E1)
690.0 with enough leading zeroes to
be the size of the maximum 1line
length.

$BIG_STRING1 (1..127=>"'A")
A string literal which when catenated
with BIG_STRING2 yields the image of
BIG_ID1.

$BIG_STRING2 (1..127=>'A", 128=>1)
A string literal which when catenated
to the end of BIG_STRING1l yields the
image of BIG_ID1.

$BLANKS (1..235=>' ')
A sequence of blanks twenty
characters less than the size of the
maximum line length.

SCOUNT_LAST 2147483647
A universal integer 1literal whose
value is TEXT_ IO.COUNT'LAST.

$DEFAULT MEM_SIZE 2147483647
An integer 1literal whose value is
SYSTEM.MEMORY SIZE.

$DEFAULT_STOR_UNIT 8
An integer 1literal whose value is
SYSTEM.STORAGE_UNIT.

$DEFAULT SYS_NAME MC68020
The value of the constant
SYSTEM.SYSTEM NAME.

$DELTA_DOC 2#1.04E-31
A real literal whose value |is
SYSTEM.FINE DELTA.

$FIELD LAST 255
A universal integer 1literal whose
value is TEXT_IO.FIELD'LAST.

SFIXED_NAME NO_SUCH_TYPE
The name of a predefined fixed-point
type other than DURATION.

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ade MC68020 T1.0-02V Appendix C Page 2 of 6

_

TEST PARAMETERS

$FLOAT NAME LONG_LONG_FLOAT
The name of a predefined floating-
point type other than FLOAT,
SHORT_FLOAT, or LONG_FLOAT.

$GREATER_THAN_DURATION 131072.0
A universal real literal that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in the
range of DURATION.

$GREATER THAN DURATION BASE LAST 131073.0
A universal real 1literal that is
greater than DURATION'BASE'LAST.

SHIGH_ PRIORITY 15
An integer literal whose value is the
upper bound of the range for the

subtype SYSTEM.PRIORITY.

$ILLEGAL_EXTERNAL_FILE_NAMEl THERE ARE NO ILLEGAL
An external file name which contains FILENAMES
invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 N/A
An external file name which is too
long.
$INTEGER_FIRST -2147483648

A universal integer 1literal whose
value is INTEGER'FIRST.

$INTEGER LAST 2147483647
A universal integer 1literal whose
value is INTEGER'LAST.

$INTEGER_LAST PLUS_1 2147483648
A universal integer 1literal whose
value is INTEGER'LAST+1.

SLESS_THAN DURATION -131072.0
A universal real 1literal that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in the
range of DURATION.

$LESS_THAN DURATION BASE_ FIRST -131073.0
A universal real literal that is less
than DURATION'BASE'FIRST.

Validation Summary Report AVF-VSR-90502/48

SD-Scicon pic YD Ads WC58020 T1.0-02v Apperddix C Page 3 of 6

_

TEST PARAMETERS

SLOW_PRIORITY 0
An integer literal whose value is the
lower bound of the range for the
subtype SYSTEM.PRIORITY.

SMANTISSA DOC 31
An integer 1literal whose value is
SYSTEM.MAX MANTISSA.

$MAX DIGITS 18
Maximum digits supported for
floating~point types.

$MAX_IN_LEN 255
Maximum input line length permitted
by the implementation.

SMAX_INT 2147483647
A universal integer 1literal whose
value is SYSTEM.MAX INT.

$MAX INT PLUS 1 2147483648
A universal integer 1literal whose
value is SYSTEM.MAX INT+1.

$MAX_LEN INT BASED LITERAL (1..2=>'2:",
A universal integer based literal 3..252=>'0",
whose value 1is 2#11# with enough 253,.255=>"'11:")
leading zeroces in the mantissa to be
MAX IN_LEN long.

$MAX_LEN_REAL_BASED_LITERAL (1..3=>'16:"
A universal real based literal whose 4,.251=>"'0"',
value is 16:F.E: with enough leading 252.,.255=>'F.E: ")
zeroes in the mantissa to be
MAX IN LEN long.

$MAX STRING_LITERAL (1=>'"', 2,.254=>"'A",
A string literal of size MAX IN_LEN, 255=>'1"1)
including the quote characters.

SMIN_ INT -2147483648
A universal integer 1literal whose
value is SYSTEM.MIN_INT.

Validation Susmsary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC68020 T1.0-02v Appendix C Page & of 6

—

TEST PARAMETERS

$MIN_TASK SIZE 32
An integer literal whose value is the
number of bits required to hold a
task object which has no entries, no
declarations, and "NULL;" as the only
statement 1in its body.

$SNAME SHORT_SHORT_ INTEGER
A name of a predefined numeric type
other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT INTEGER,

LONG_FLOAT, or LONG_INTEGER.

$NAME_LIST MC68020
A list of enumeration literals in the
type SYSTEM.NAME, separated by
commas.

$NEG_BASED_INT 164#FFFF_FFFF#
A based integer literal whose highest
order nonzero bit falls in the sign
bit position of the representation
for SYSTEM.MAX INT.

$NEW_MEM_SIZE 123456
An integer literal whose value is a
permitted argument for pragma
memory size, other than
$DEFAULT MEM_SIZE. If there is no
other value, then use

SDEFAULT_ MEM SIZE.

$NEW_STOR UNIT 8
An integer literal whose value is a
permitted argument for pragma
storage_unit, other than
$DEFAULT_STOR_UNIT. If there is no
other permitted value, then use value
of SYSTEM.STORAGE UNIT.

$NEW_SYS_NAME MC68020
A value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If

there is only one value of that type,
then use that value.

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc XD Ada MC48020 T1.0-02v Appendix C Page 5 of 6

EEEE——————

TEST PARAMETERS

STASK SIZE 32
An integer literal whose value is the
number of bits required to hold a
task object which has a single entry
with one inout parameter.

STICK 162.5E~-6
A real 1literal whose value is
SYSTEM.TICK.

Validation Summary Report AVF-VSR-90502/48

$D-Scicon plc XD Ade MCA8020 T1.0-02v Appendix C Page 6 of 6

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. The following 43 tests had been
withdrawn at the time of validation testing for the reasons
indicated. A reference of the form AI-ddddd is to an Ada
Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. -
-63" of line 204 will appear at the top of the listing
page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this
that must appear at the top of the page.

A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a
selective wait alternative (line 31).

BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even
though none of the units is illegal with respect to
the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line
95).

CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was
specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE length
clause is given) by passing them to a derived
subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally,
they use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9
ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests])
These tests assume that dependent tasks will terminate
while the main program executes a loop that simply

Validation Susmary Report AVF-VSR-90502/48

SD-Scicon plc VAX/VMS x MC68020 XD Ada APPENDIX D Page 1 of 3

]

WITHDRAWN TESTS

tests for task termination; this is not the case, and
the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

CD2B15C & CD7205C
These tests expect that a 'STORAGE SIZE length clause
provides precise control over the number of designated
ubjects in o collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a
derived fixed~point type (at line 30) that defines a
set of model numbers that are not necessarily
represented in the parent type; by Commentary AI-00099,
all model numbers of a derived fixed-point type must
be representable values of the parent type.

CD5007B This test wrongly expects an implicitly declared
subprogram to be at the the address that is specified
for an unrelated subprogram (line 303).

ED7004B, FD7005C & D, ED7006C & D [5 tests]
These {t:sts check various aspects of the use c¢f the
three SYSTEM pragmas; the AVO withdraws these tests
as being inappropriate for validation.

CD7105A This test requires that successive calls to
CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK-
-particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute,
whose interpretation is considered problematic by the
WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a
task's activation as though it were 1like the
specification of storage for a collection.

CE21071 This test requires that objects of two similar scalar
types be distinguished when read from a file--
DATA_ERROR is expected to be raised by an attempt to
read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not
considered valid. (line 90)

Validation Sumsary Report AVF-VSR-90502/48

SD-Scicon plc VAX/VMS x NC48020 XD Adas APPENDIX D Page 2 of 3

—

4 aw -

WITHDRAWN TESTS

CE3111C This test requires certain behavior, when two files
are associated with the same external file, that is
not required by the Ada standard.

CE3301A This test contains several calls to END _OF LINE &
END_OF_PAGE that have no parameter: these calls were
intended to specify a file, not to refer to
STANDARD INPUT (lines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number
be set to COUNT'LAST in order to check that
LAYOUT ERROR is raised by a subsequent PUT operation.
But the former operation will generally raise an
exception due to a lack of available disk space, and
the test would thus encumber validation testing.

Validation Summary Report AVF-VSR-90502/48

SD-Scicon plc VAX/VMS x MCS8020 XD Ada APPENDIX D Page 3 of 3

I

