
ALPHATECH, INC.I

I -"

00

'U-

TR-457

I DEVELOPMENT OF ADVANCED WTA
ALGORITHMS FOR PARALLEL PROCESSING

I FINAL REPORT

October, 1989

Prepared by

0! Dr. David A. Castafion

I

Submitted to:

Dr. Keith Bromley
Code 126
Office of Naval Research
800 North Quincy St.
Arlington, VA 22217-5000

Contract Number N00014-88-C-0718

.. ALPHATECH, Inc.
I l Middlesex Turnpike
Burlington, MA 01803

(617) 273-3388

I
I q /1 024o

I ALPHATECH, INC.

I
I

AC KNOW LEDG EM ENT

I
This effort is sponsored by the Strategic Defense Initiative Innovative Science and

Technology Program managed through the agency of the Office of Naval Research (ONR) as

Phase I of a Small Business Innovation Research (SBIR) Program grant. The COTR for this

effort was Dr. Keith Bromley of ONR and the Naval Ocean Systems Center. We would like to

thank Dr. Bromley for his direction during this effort.

We would like to acknowledge the invaluable assistance in this research provided by

the Mathematics and Computer Science (MCS) Division of tile Argonne National Laboratory

(ANL). The ANL/MCS staff provided access, valuable training and consulting expertise in the

I use of the different parallel computers available at the Advanced Computer Research Facility

(ACRF). In particular, we would like to acknowledge the contributions of Dr. James Boyle of

ANL, Prof. Brian Smith of University of New Mexico, and Dr. Alan Wilcon of Active

Memory Technologies, who provided valuable guidance in the development of many of the

parallel algorithms discussed in tis, study.

We would also like to thank Prof. Dimitri Bertsekas of MIT for assisting us with the

devclopment of the various asynchronous algorithms described in the papers. for providing

cffici~cnt state-of-the-art sequential implenientations of the AUCTION algorithm, and for

numerous discussions concerning approaches for effective parallelization of these algorithms.

I
I R-4 /

I

I il-I

ALPHATECH, INC.

C()N'rvN'I'S

Section Pa._

A cknow ledgem ent ...

C o n te n ts III

L ist o f F ig u res .. iv

Overview ... 1
1.1 Introduction
1.2 Overview of Phase 1 Results .. 3
1.3 Review of related Parallel Algorithm Work 10
1.4 Ideas for Follow-on Research ... 1
1.5 Organization of this Report .. 14

The ILINE Algorithm for WTA ... 15
2.1 Mathematical Description of the WTA Problem 15
2.2 Description of the 'L',INE Algorithm 17
2.3 The AUCTION Algoritun ... 19
2.4 Variations of AUCTION for WTA Problems 24

3 Sy ichronous Parallel AUCTION Algorithms 27
3.1 Introduction ... 27
3.2 Synchronous AUCTION Algorithms on the Encore Multimax 27

3.2. i Gauss-Seidel AUCTION Algorithm 29
3.2.2 Jacobi AUCTION Algorithm 36
3.2.3 Hybrid AUCTION Algorithm 41

3.3 Synchronous AUCTION Algorithms on the Alliant FX/8 44
3.4 SIMD AUCTION Algorithms ... 49

4 Asynchronous Parallel AUCTION Algorithms 59
4.1 Introduction ... 59
4.2 Asynchronous Implementation of the AUCTION Algorithm 60
4.3 Asynchronous Jacobi AUCTION Algorithm 61
4.4 Asynchronous Hybrid AUCTION Algorithms 64

R eferences ... 7 1

A Appendix A The AUCTION Algorithm .. 73
A. 1 'he AUCTION Algorithm for Assignment PLobleis 73
A.2 Computational Aspects -- e-Scaling 76
A.3 The Totally Asynchronous Version of the Auction Algorithm 78
A .4 R eferences .. 84

ii1 TR-457

ALPHATECH, INC.

LIST OF FIGURES

Numher Ile

1-1. Speedup of parallel Jacobi AUCTION algorithm over the single-processor
algorithm on the Encore Multimax as a function of the density of feasible
interceptor assignments for problems with 800 and 1000 targets 5

1-2. Performance of parallel Gauss-Seidel AUCTION algorithms on different
parallel processors for 1000 target assignment problems as a function of
the fraction of targets which can be assigned to each weapon 6

1-3. Performance of the synchronous Hybrid AUCTION algorithm as a
function of the number of processors for 1000 target, 20% dense
assignm ent problem .. 8

1-4. Performance nf -wn-rorc'us Hybrid AUCTI7ON and :zy.- O:,cOnus
Hybrid AUCTION I algorithms on 1000 target assignment problems of
varying density ... 9

2- 1. The structure of transportation problems divides the graph into two sets of
nodes (target nodes Ti and farm/platform nodes Wj) with arcs in
betw een 16

2-2. Structure of the ILINE algorithm ... 18

2-3. Structure of the Gauss-Seidel variation of the AUCTION algorithm 23

2-4. Structure of the Jacobi variation of the AUCTION algorithm 24

2-5. Length of Unassigned Persons Queue versus iteration number for Jacobi
A U CTIO N .. 25

3-1. Percentage of total Gauss-Seidel AUCTION computation time spent in
searching the lists of admissible objects for 1000 person assignment
problems, benefit range 1- IC"" -.s a function of the density of feasible
assig nm ents 30

3-2. Design of the parallel synchronous Gauss-Seidel AUCTION algorithm 30

3-3. Performance of the synchronous Gauss Seidel AUCTION algorithm as
the number of processors increases for a 1000 person, 20% dense
assignment problem with benefit range 11,10001 33

3-4. Theoretical behavior of synchronous Gauss-Seidel AUCTION algorithm
with increasing number of processors ... 33

iv TR-457

ALPHATECH, INC.

Numbner LQe

3-5. Comparison of best parallel and sequential times for Gauss-Seidel
AUC lON algorithm on Encore Multimax for 800 person assignment
problem, benefit range [1.10001 as a function of the density of feasible
assig nm ents ... 34

3-6. Comparison of best parallel and sequential times for Gauss-Seidel
AUCTION algorithm on Encore Multimax for 1000 person assignment
problem, benefit range [1,10001 as a function of the density of feasible
assignm ents ... 35

3-7. Design of synchronous Jacobi AUCTION algorithm 37

3-8. Jacobi AUCTION number of unassigned persons versus iteration number
for 1000 person, 20% dense assignment problem, benefit range [1,1000]
using 10 processors38

3-9. Performance of the synchronous Jacobi AUCTION algorithm for 1000
person, 20% dense assignment problem, benefit range [1,1000] as a
function of number of processors .. 39

3-10. Speedup of parallel Jacobi AUCTION algorithm over the single-processor
algorithm as a function of the density of feasible assignment problems for
problems with 800 and 1000 persons, benefit range 1,l10001 40

3-1 1. Design of the synchronous Hybrid AUCTION algorithm 42

3-12. Performance of the synchronous Hybrid AUCTION algorithm as a
function of the number of processors for 1000 person, 20% dense
assignment problem, benefit range [1,10001 43

3-13. Comparison of Hybrid AUCTION and Gauss-Seidel AUCTION
algorithms for similar numbers "f processors for 1000 person, 20% dense
assignment problem, benefit range [1,1000] 44

3-14. Performance of the different Gauss-Seidel AUCTION algorithms on the
Alliant FX/8 for 800 person assignment problems with benefit range
11,1000], as a function of the density of feasible assignments 47

3-15. Performance of the different Gauss-Seidel AUCTION algorithms on the
Alliant FX/8 for 1000 person assignment problems with benefit range
I 1,10001, as a function of the density of feasible assignments 49

3- 16. Illustration of the data mapping into processors for para!lel SItIvD Gauss-
Seidel A U CT'IO N algorithm .. 50

v TR-457

ALPHATECH, INC.

3-17. Computation times of SIM/lD Gauss Seidel AUCI'ON algorithms for 800
person assignment problems (benefit range [1,1000]) as a function of
feasible assignm ent density .. 52

3-18. Computation times of SIMD Gauss Seidel AUCTION algorithms for
1000 person assignment problems (benefit range 11,10001) as a function
of feasible assignm ent density .. 53

3-19. Performance of best MIMD and SIMD Gauss-Seidel AUCTION
algorithms for 800 person assignment problems, benefit range [1,1000] 56

3-20. Performance of best MIMD and SIMD Gauss-Seidel AUCTION

algorithms for 1000 person assignment problems, benefit range [1,1000] ... 57

4-1. Design of asynchronous Jacobi AUCTION algorithm 61

4-2. Performance of the asynchronous Jacobi AUCTION algorithm for 1000
person, 20% dense assignment problem, benefit range [1,1000] 62

4-3. Design of the asynchronous Hybrid AUCTION algorithm 64

4-4. Average computation time of asynchronous Hybrid AUCTION I for 1000
person, 20% dense assignment problem, benefit range [1,1000] 66

4-5. Comparison of predicted and actual speedups achieved by the
asynchronous Hybrid AUCTION I algorithm fo, 1000 person, 20%
dense assignment problem, benefit range [1,1000] 67

4-6. Performance of different asynchronous Hybrid AUCTION algorithms for
1000 person, 20% dense assignment problems, benefit range [1,1000] 68

4-7. Number of b;ds required for convergence to optimal assignments by
different asynchronous Hybrid AUCTION algorithms for 1000 person,
20% dense assignment problems, benefit range [1,1000] 68

4-8. Performance of synchronous Hybrid AUCTION and asynchronous
Hybrid AUCTION I algorithms on 1000 person assignment problems of
varying density, benefit range [1,10001 ... 69

vi TR-457

ALPHATECH, INC.

I
* SECTION I

OVERVIEW

I 1.1 INTRODUCTION

3 The objective of weapon-target assignment (WTA) in a ballistic missile defense (BMD)

system is to determine how defensive weapons should be assigned to boosters and re-entry

vehicles in order to maximize the survival of assets belonging to the U.S. and allied countries.

The implied optimization problem requires consideration of a large number of potential weapon

target assignments in order to select the most effective combination of assignments. The

resulting WTA optimization problems are among the most complex encountered in

mathematical programming [1,2]. Indeed, simple versions of the WTA problem have been

U shown to be NP-complete [3,4], implying that the computations required to achieve optimal

i solutions grow exponentially with the numbers of weapons and targets considered in the

solution.

The computational complexity of the WTA problem has motivated the developmcr: of

heuristic algorithms that are not altogether satisfactory for use in Strategic Defense Systems

(SDS). Some special cases of the WTA problem are not NP-complete and can be solved using

standard optimization algorithms such as linear programming [51 and maximum marginal return

algorithms [6,7]; these algorithms enjoy low computational requirements and therefore have

3 been adopted as heuristics for solving more general WTA problems. I lowever, experimental

studies [2,8,9,10 have demonstrated that these heuristic algorithms lead to significantly

suboptimal solutions for certain scenarios.

In order to address this deficiency, the Strategic Defense Initiative Office initiated

I several research efforts to develop efficient, near-optimal boost-phase and midcourse-phase

WTA algorithms for directed energy weapons I l t1 and kinetic energy weapons

11,2.9,1 1,12,131. These programs developed advanced optimization-based WTA algorithms

I TR-457

I

ALPHATECH, INC.

which achieved improved performance over the existing SDS WTA algorithms, but wlich

required increased computation in order to be implemented as part of a real-time system.

Among the most successful WTA algorithms developed was the ILINE algorithm [8,91 and its

subsequent extensions [2,10] for assignment of kinetic kill interceptors. The merits of the

ILINE algorithm for Boost and Post-Boost WTA were established in the Air Force's Space-

Based Experimental Version program [10] sponsored by ESD; in this program. various

candidate WTA algorithms were studied, and ILINE was selected and implemented as the

superior algorithm for performance of the WTA function. The ILINE algorithm was made

available to the SDI Battle Management community, and was evaluated in both the Air Force's

[101 and the Army's [141 BM/C3 Experimental Version programs for weapon-target

assignment.

The major limitation of the ILINE algorithm for SDS WTA is the computation time

required for selecting near-optimal weapon-target assignments in scenarios with large numbers

of interceptors and targets. For Boost-Phase WTA, the ILINF. algorithm may have to solve

WTA problems with 800-1000 targets in the order of 1-3 seconds in order to fit within a

reasonable fraction of the overall real-time planning cycle. For Midcourse WTA, the ILINE

algorithm ,nay be imbedded into a dynamic Battle Planning algorithm which requires 10-100

iterative applications of the ILINE algorithm (the extra iterations are required for adaptive

preferential defense and predictive battle planning, as discussed in 12]). Each of these

iterations require the application of ILINE for WTA problems with up to 10,000 targets; the

overall dynamic Battle Planning algorithm computations must be completed within 2-10

seconds in order to fit within a reasonable fraction of the overall real-time midcourse planning

cycle.

As a point of reference, the results of [21 indicate that the computation time for a single

application of the ILINE algorithm for problems involving up to 4500 targets will require about

300 seconds of CPU time on a .5 MIPS sequential processor, and that the computation time

Trows near-linearly with the number of targets. This extrapolates to over 600 seconds of

2 TR-457

ALPHATECH, INC.

computation time for each application of the ILINE algorithm for 10,000 targets. Thus, we

need to achieve up to four orders of magnitude reduction in computation time from the

sequential computation time on a .5 MIPS processor.

These lofty goals appear beyond the scope of single-processor technology in the near-

future. However, the structure of the ILINE algorithm suggested that significant reductions in

computation time could be achieved through parallel processing, so that a combination of

processor technology improvements and parallel processing could be used to achieve the

desired real-time computation goals. The purpose of the phase one research was to

demonstrate the potential reductions in the computation time of the ILINE algorithm which can

be achieved on different multiprocessor architectures by developing and benchmarking

different parallel variations of the ILINE algorithm on commercial multiprocessors. The

resulting parallel WTA algorithms provide the basis for real-time WTA algorithm development

using multiprocessor architectures furthermore, the benchmarking results can be used to

identify characteristics of desirable computer architectures for efficient execution of WTA

algorithms.

1.2 OVERVIEW OF PHASE 1 RESULTS

The basis of the ILINE WTA algorithm is to solve a sequence of linear assignment

problems f1i51 using Bertsekas' AUCTION 116,171 ,Igorithm (as extended by Bertsekas and

Castahion 1181). Each application of ILINE requires the soluion of 4-6 assignment problems

usin g AiCTION Depending on the size of the problem, over 95% of the overall ILINE

computation time is spent in the AUCTION algorithm. Thus, the key to developing parallel

versions of the ILINE algorithm is to develop parallel versions of the underlying AUCTION

algorithm. The AUCTION algorithn is a recently-developed optimal algorithm for the solution

of classical assignment problems (finding an optimal one-to-one match from n persons to n

objects in order to maximize the stum of tihe individual benefits associated with each person-

object match). Assignment problems are important in many aspects of SDS besides weapon-

3 lRqa7"

ALPHATECH, INC.

assignment, these additional applications including single-sensor, multiple trame associatin

for multiobject tracking and multi-sensor correlation.

The AUCTION algorithm has been shown to he a very effcctiv- seq unCtial assignmnclt

algorithm, substantially outperforming its rivals for sparse problems. The algorithm operates

like an auction, whereby at each iteration, unassigned persons bid simultaneously for objects

there y raising their prices. Objects are the,, awazuld ;o the hig-hc:;: bilder. "The AUCIION

algorithm wa, also designed with an orientation towards parallel implementation, making it an

ideal :taning point for our investilgations.

Through analysis of the structure of the AUCTI'ION algorithm, we identified two

different levels where parallel processing could be used to speed up the computations: a

medium-grained level and a fine-grained level. The medium-grained level (refer'ed to as the

Jacohi level, due to its similarity to the iterative Jacobi algorithm for recursive solution of linear

equations) consisted of parallel processing multiple weapon-target pairs simultaneously, while

the fine-grained level (referred to as the Gauss-Seidel level) consisted of processing multiple

targets for a single weapon simultaneously. Ideally, an effective parallel algorithm would

combine the potential speedups achievable at each level in a multiplicative fashion,

In order to explore the potential for parallel implementation on different multiprocessor

architectures, we developed and implemented the following versions of the AUCTION

algorithm on different multiprocessor architectures at the Advanced Computing Research

Facility (ACRF) at Argonne National Laboratory1

1. Two versions of Jacobi AUCTION on the Encore Multimax using sparse data
structures (one synchronous, one asynchronous)

2. Gauss-Seidel AUCTION on the Encore Multimax using sparse data structures

3. Three versions of Iybrid AUCTION on the Encore Multimax using sparse data
structures (one synchronous, two asynchronous)

4. Gauss-Seidel AUCTION on the Alliant FX/8 uing sparse data structures

Access to the A('RF was arranged through S DIO sxnsorship by Capt. S. Johnson ol SDI().

4 T -I

ALPHATECH, INC.

5. Gail . cidel AUCTION Onl the Alliant FX/8 using dense data strctures

6 -jauss-Seidel AUCION on the Connection Machine CM-2 using dense data
structures

7. Gauss-Seidel AUCTION on the DAP 510 using dense data structures

Figutre!1 -I illustrates the speedups obtained from medium-grained parallel izatio

(Jacobi parallelization) for several 800 and 1000 target assignment problems with different

feasible intercept densities (average percentage of total targets which can be attacked by each

weapon), as established by the shared-memory implementation of the Jacobi AUCT'ION

algorithm on the Encore Multimax. As the results of Fig. 1-1 indicate, the maximum speedup

achievable by Jacobi parallelization is approximately 4, independent of the density of feasibie

interc:epts (and also nearly independent ofthe num~ber ofl targets available!). This inmportant

limlitation is due to the incremental nature of the AUCTION algorithm (described in greater

5

~0

(0

0)

0 ,4060. .

0o sl ffa il s in e l

0' 11C 1 1 I-tI1) f V I1lJc h '0 lo ihno c lcsn i

pic ,,(rdp rtn 2ntcF c r , 1111II SZ ~cI1 f11
dcl vo 'aCCs1c-c po s,1tm c t orpo lcn ih')X n

10 0tI 1CtS

ALPI-ATECH, INC.

(clinAppeix A) Vvhereby compile1s -tlin f necpo~ shjl
iinaniterative approach,

-vnujv tile nunnber of urn %V\cfewepons iS smleihnnu thenumilber of availalt)e Processors, which effrectivelv Ilmi tS the poi)tialor acob parallel i z,1ti 1.Fi gui- 1-2 ilsrtsthe Potential speedups available fro tn -rained (Gauss-SeI1lc lIparalielization for several 100OO target as signmnt prohlermls In order to evaluate specdti[p fh rSVID architecture, (such as the CM-2 and DAP 5 10), we Compajre the lperforima~r-ce oif lfheahoI m plemrented onl these architectuires With the SequI.ential Pertlorru1ance of theAUJCTION algorithm~ on a single processor of the Fncore IMultjmi~x As Fig. 1-2 ill ustratc,,S IMVD arch itectures are Particularly effective for exploi ting- fi ne-,rain prleim nparticulaLr the DAP 510's architecture allows for speedups of over 60) when compared to thoperfoi-nance of the AUCTION algorithm, on a single processor of thle EnoeI-t aHowever, the speedu~p achievable from Gauss-Scidel paralleliz~ltion depends explicitly on the

Single Processor, Encore Mulitmrax
100

P

0

E

Alliant F Dens
ifant FX/8 SpreData Structures UE

Data Structures8
DAP 510

0.0 0.2 0.4 0.6 0.8 1.0

Density of Feasible AssignmentsJiuc1-2. P~erforM~lncc of parallel Gatiss-Siel AUION algorithills ondifferent p'arallel provessors for 10(X) target ass'gm~ I- bc~safunction of the fraction of targets WIh can be ;issie(I to eachWeapon.

63
TR 4

U ALPHATECH, INC.

I density of feasible interccptor assignments (unli,,e the speedups obtained from Jacobi

parallelization). Specitically, the spee4ups increase with the aveiage number of targets %khich

cain be attacked by each :nterceptor. Thus, these speedups will increase as the number of

3 t_' gets grows as well as with increased feasible intercept density for a fixed numbe- of targets.

Figure 1-2 also illustrates an interesting tradeoff between the use of sophisticated data

structures and the speed of computation. For problems where the density of feasible

3 interceptor-target assignments is less than one (i.e. each interceptor can only reach a fraction of

the available targets), sparse data structures can be used to keep track only of the feasible

intercepts for each weapon. Howe 'er, such a ,epresehtation hinders efficient computation in

SIMD architectures with limited communications, because of the required data movements

among processors. The most efficient SIMD implementaJons are those which avoid

communications; however, this often requires alignment of the feasible intercept data,

precludi ig the use of sparse data structures, On advanced MIMD processors such as the

I Encore Multimax and the AllIant FX/8, interprocessor communications are less costly, so that

efficient implementations of tht- Al JCTION algorithm using sparse data structures are possible.

SNoto in particular the differences in performamicc of the Alliant Gauss-Seide! AUCTION

algorithms using sparse and dense data structures.

I An important result which was established in the research was the potential for

3 combination of the Jacobi and Gauss-Seidet speedups. The hybrid AUCTION algorithm on

the Encore Multimax was one such implementation, using two processors at a Jacobi le,.el an(

3 a variable number of processors at the Gauss- Seidel level. Note, however, that the speedup of

the hybrid AUCTION algorithm in Fig 1-2 is far less than a multiplicative combination of the

I iGauss-Seidel and Jacobi AUCTION algorithm speedups. The principal lim ition in this

combination is the time required for synchronization of the various processors. Figure 1-3

il luCtates the growth in the synchronization time of the hybrid AU(V'TI()N algorithm as the

I numhr of processors is increased.

I
1[.! 7

U

ALPHATECH, INC.

30

20 -

o Total Computation Time

C/)

a 10
E ~Total Scan

T-ime

Total Synchronization Time

0 2 4 6 8 10 12 14 16
Number of Processors

Figure 1-3. Performance of the synchronous Hybrid AUCTION algorithm as a
function of the number of processors for 1000 target, 20% dense
assignment problem.

In order to reduce the overall synchronization time of the hybrid AUCTION algorit.m,

we dcsigned a new asynchronous version of the hybrid AUCTION algorithm and proved its

convergence to a correct solution. We also implemented this asynchronous hybrid AUCTION

algorithm and verified that significant performance improvements were possible over the

synchronous hybrid AUCTION algorithm. Figure 1-4 illustrates the performance of the

synchronous and asynchronous Hybrid AUCTION algorithms on the Encore Multimax for

several 1000 target problems. As the results indicate, the asynchronous algorithms permit a

more efficient utilization of large numbers of processors, by reducing the synchronization

overhead, leading to significant reductions (nearly 50%) in computation time.

The results of Figs. 1-1, 1-2, 1-3 and 1-4 illustrate the extent to which the research

goals of phase I have been met. In essence, our results establish that significant speedups are

possile for W'A alorithms using multiprocessor architectures; based on the expected size of

8 TH-457

ALPHATECH, INC.

60

50

Cn40 Synchronous Hybrid AUCTION,_ 0
C:

a)

C
. 30

E
C

0
'Z 20

E

10

0.0 0.2 0.4 0.6 0.8 1.0

Density of Feasible Assignments

Figure 1-4. Performance of synchronous Hybrid AUCTION and asynchronous
Hybrid AUCTION I algorithms on 1000 target assignment problems
of varying density.

the scenarios, proper choice of multiprocessor architecture and parallel algorithm

implementation ought to reduce the overall WTA computation requirements to fit as part of real-

time Battle Management processing software.

The results of this research suggest that a superior architecture for assignment problems

using the AUCTION algorithm must be able to exploit both Jacobi and Gauss-Seidel

parallelism. Exploitation of Gauss-Seidel parallelism is best done by SIMD processors capable

of simultaneous associative processing for vectors of significant length (such as the DAP 510).

Exploitation of Jacobi parallelism is best done by MIMD processors with flexible

communications stucture, capable of fast interprocessor communication. Our prototype

algcoithm benchmarks indicate that architectures which successfully combine these features

shold reduce the computation requirements of the AUCTION algorithm by two orders of

1M '-';)Id when compared to a Von Neumann architecture for problems involving 10(X)

9 Th,57

ALPHATECH, INC.

targets. For larger problems involving 10,000 targets, the potential speedups from Gauss-

Seidel parallelization should increase by an order of magnitude, leading to reductions of the

computation requirements of the AUCTION algorithm by nearly three orders of magnitude.

These reductions approach the real-time computation requirements (four orders of magnitude

reduction to the .5 MIPS sequential processing time) discussed earlier, coupled with advances

in individual processor technology, the parallel algorithms (implemented in appropriate

multiprocessor architectures) can be projected to meet the required real-time deadlines.

1.3 REVIEW OF RELATED PARALLEL ALGORITHM WORK

Development of parallel WTA algorithms has been recognized as a difficult problem; in

essence, the nature of the WTA problem requires that a global search among many alternatives

be conducted in order to obtain a set of near-optimal assignments. The global nature of this

processing makes efficient distribution among multiple processors a difficult task. Indeed,

several early efforts at developing parallel WTA algorithms (based on the AUCTION

algorithm) conducted at Los Alamos National Laboratory [191 and Argonne National

Laboratory [20] obtained very limited speedups using shared-memory MIMD architectures. A

similar study conducted at the Jet Propulsion Laboratory (JPL) of the California Institute of

Technology [211 using a heuristic WTA algorithm implemented on a message-passing MIMD

multiprocessor achieved no significant speedup.

In addition to SDS-sponsored efforts on parallel algorithms, there has been a set of

recent research results on the development of parallel algorithms for assignment problems.

Kempa, Kennington and Zaki [22] have reported on the parallel performance of the AUCTION

algorithm on dense assignment problems when implemented on the Alliant FX/8. The

particular variation of the AUCTION algorithm which they implemented addressed only fully

dense assignment problems, and did not include sparse data structures or address the issue of

algorithms for different multiprocessor architectures. In their implementation of the Jacobi

AUCTION algorithm on the Alliant FX/8, they used a synchronous hybrid algorithm which

10 TR-457

ALPHATECH, INC.

uses the vector processing capability of each of the Alliant's processors to scan the admissible

objects for each bid, and uses multiple processors to process several bids in parallel. This

hybrid algorithm is similar in spirit to the recommended approach of combining the S IMD and

MIMD speedups. However, their hybrid algorithm only achieved a speedup of near 8 for 1000

person assignment problems when compared with the single processor version of the same

algorithm because of the short length of the vector processors on the Alliant FX/8.

Furthermore, they did not compare their parallel algorithm results with an efficient sequential

algorithm implementation, so they may have overestimated the true speedups achieved on the

Alliant FX/8.

Recently, Balas, Miller, Pekny and Toth [23] have developed a synchrono,. ,"allel

assignment algorithm based on a successive shortest path algorithm (rather than the AUCTION

algorithm) and have implemented it successfully on a 14-processor Butterfly Plus computer.

Their algorithm is the extension of Jacobi parallelization for successive shortest path methods,

since it handles the assignment of multiple weapons in parallel. However, the synchronization

required in the algorithm limits the effective speedups of the parallel shortest path algorithm to

under two for problems with 1000 persons. Unlike the AUCTION algorithm theory described

subsequently, a theory of asynchronous assignment algorithms based on successive shortest

paths is not available at this time.

Kennington and Wang [24] have also reported on parallel implementation of a

successive shortest path algorithm (the JV algorithm) for dense assignment problems on the 8-

processor Sequent Symmetry S81. In their implementation, multiple processors are used to

construct shortest paths from a single unassigned person. This is the extension of the Gauss-

Seidel parallelization for successive shortest path methods. For problems with 1000 persons,

Kennington and Wang obtained a speedup factor of 3.7 using 8 processors on the Sequent

Symmetry.

For SIMD architectures, Zenios and Phillips 1251 have experimcntcd with variations of

the Jacobi AUCTION algorithm on the Connection Machine CM-2. By spreading the

11 TR-457

ALPHATECH, INC.

information corresponding to potential individual assignments over large numbers of

processors, they are able to implement a SIMD variation of our Hybrid AUCTION algorithm.

However, the performance of their implementation has been disappointingly slow (even though

it was implemented in the C-Paris assembly language); for problems involving 1000 persons,

their computation time on the CM-2 achieves a speedup factor of under 3 when compared with

the sequential computation time of our Gauss-Seidel AUCTION algorithm on a single

processor of the Encore Multimax!

The results presented in this report extend and unify a number of the above studies

using the AUCTION algorithm. By studying carefully the structure of the AUCTION

algorithm, we have identified superior designs for parallel algorithms which can be tailored to

each multiprocessor architecture. Our comparative study of different implementations of the

Gauss-Seidel AUCTION on different multiprocessor architectures provides interesting insights

into the specific advantages and disadvantages of each multiprocessor architecture, rather than

reflect on the specifics of any one implementation on a single architecture. Indeed, our results

suggest that many of the speedups obtained in previous results can be attributed to poor

implementation of the sequential algorithms. In contrast, we have used the most efficient

variations of the sequential AUCTION algorithms for our benchmarks; these variations were

developed in cooperation with Prof. D. Bertsekas of MIT, the originator of the AUCTION

algorithm.

Furthermore, the theory and benchmarking results developed for the asynchronous

variation of the Hybrid AUCTION algorithm provides the basis for the design of asynchronous

AUCTION algorithms which will operate efficiently with greatly reduced communications and

synchronization. These asynchronous algorithms should be suitable for implementation in

distributed memory MIMD architectures or in more advanced hybrid architectures which

combine desirable features of SIMD and MIMD architectures.

12 TR-457

ALPHATECH, INC.

1.4 IDEAS FOR FOLLOW-ON RESEARCH

The results obtained under this phase I research study provide ample evidence that,

with a proper combination of parallel WTA algorithm and multiprocessor architecture,

development of real-time Battle Planning software which incorporates advanced WTA

algorithm technology is a feasible goal for realistic problem sizes. However, the phase I

research has focused only on parallel implementation of the core WTA algorithm (ILINE); in

order to develop real-time Battle Planning software, this core WTA must be integrated

successfully with parallel algorithms for other Battle Planning functions (such as computation

of feasible intercepts) or within recursive Battle Planning algorithms such as the adaptive

preferential defense algorithms or the anticipative algorithms discussed in [2].

One potential direction for continuation of this research into Phase 11 would be to

extend the Phase I results and develop an integrated parallel Battle Planning algorithm on an

advanced multiprocessor architecture which incorporates the various Battie Planning functions

which interact with WTA. This Battle Planning algorithm could be focused either on Boost

and PosE-Boost defense (as in [10]) or on Midcourse and Terminal defense (as in [2], [14]).

The choice of problem area will depend on the criticality of parallel processing technology for

achieving real-time performance in this problem; the Boost and Post-Boost problem may have

more modest computation requirements because of its shorter time scale and smaller number of

targets than the corresponding Midcourse and Terminal problems, but the real-time

computation cycle may be shorter. The goal of such a Phase II effort would produce a

prototype Battle Planning algorithm design (based on advanced WTA algorithm technology)

and associated software which could be used as the b.'.is for Battle Manager suftv.xa.. n

processor design effort. Part of this effort would involve selection of an appropriate

mul iprocessor architecture, as well as development of the appropriate parallel Battle Planning

software.

13 TR-457

ALPHATECH, INC.

A second direction for Phase II continuation would involve extension of the Phase I

work on the core parallel ILINE algorithms to produce advanced parallel WTA algorithms

capable of addressing important requirements such as adaptive preferential defense, anticipative

Battle Planning, nuclear interference avoidance and Battle Planning with discrimination

uncertainty. In [z], a theoretical structure was presented for incorporating the ILINE algorithm

into more general recursive WTA algorithms capable of addressing these important SDS

requirements. Furthermore, extensive testing with sequential versions of these algorithms

indicated that significant SDS effectiveness improvements would result from the use of these

advanced algorithms. The goal of this Phase II effort would be to extend the Phase I efforts in 3
parallel designs for the core ILINE algorithm in order to produce working prototypes of these

advanced WTA algorithms which can be executed in real time on commercial parallel I
computers. Such prototypes can be incorporated into future Command Center designs for 3
SDS.

1.5 ORGANIZATION OF 71HIS REPORT I
The remainder of this report is of a technical nature, and serves to document the 3

advances accomplished under phase I of this research. In Section 2, we describe the variation

of the WTA problem which is the focus of this study, and discuss the ILINE algorithm. In

Section 3, we describe the design of the various synchronous parallel AUCTION algorithms

which were implemented on different multiprocessors; we also describe the benchmarks I
obtained on the different multiprocessors. In Section 4, we overview the theory and design of

the asynchronous parallel AUCTTON algorithms implemented on the Encore Multimax, and

discuss the benchmark results obtained from our implementations. Appendix A contains a 3
discussion of the theory of the AUCTION algorithm, including some new results concerning

the validity of an asynchronous variation of the algorithm. These results are part of a paper 3
[261 which will be submitted for publication.

1

14 TR-457

ALPHATECH, INC.

SECTION 2

THE ILINE ALGORITHM FOR WTA

In this section, we provide a mathematical description of the WTA problem, and

discuss the ILINE algorithm for obtaining a near-optimal solution of this problem.

2.1 MATHEMATICAL DESCRIPTION OF THE WTA PROBLEM

Consider the following target-oriented weapon-target assignment problem. The

objective is to minimize the weighted expected leakage of targets through the defense

T W

(NP) min L Vi I (1-pij)Xi (2-1)
xij i=I j=1

where T is the number of targets, W is the number of weapon farms/platforms, xij is the

number of interceptors assigned from weapon farm/platform j to target i, Pij is the probability

of kill of an interceptor assigned from weapon farm/platform j to target i, and Vi is the value

associated with failure to destroy target i. The constraints on problem (NP) are

T

Xij < Mj (2-2)
i=1

for all weapon farm/platforms j, and to the constraint that interceptors are assigned in integer

quantities; that is,

x ij F_ f 0, 1, Mj} (2-3)

The problem NP subject to the constraints of Eqs. 2-2, 2-3 is a nonlinear integer

programming problem; a recent result by Lloyd and Witscnhausen [31 established that this

15 TR-457

ALPHATECH, INC.

problem NP-complete 1. A simpler version of this problem introduces the additional constraint

w
I Xi 1 (2-4)
j~l

With this additional constraint, problem (NP) becomes equivalent to the following problem:

T

(LP) max vi pij xij (2-5)
x i=1

subject to the constraints of Eqs. 2-2, 2-3, 2-4. Problem (LP) is a linear integer programming

problem of network type, for which efficient algorithms exist.

Figure 2-1 illustrates the structure of the resulting linear integer programming problem.

This type of linear program is known as a transportation problem. In essence, a maximizing

set of flows xij must be found between a set of source nodes (representing the targets in our

Sources Objects

TN WM

Figure 2-1. The structure of transportation problems divides the graph into two
sets of nodes (target nodes Ti and farm/platform nodes Wj) with arcs
in between.

This implics that the time required to find an opinal solution is likely to grow exponentially in the numbers

of weapons and tirgets in the problem.

16 TR-457

I ALPHATECH, INC.

I set of flows xij must be found between a set of source nodes (representing the targets in our

problem) and a set of sink nodes (representing the interceptor platforms and farlrms). The

overall flows must satisfy the conservation ot flow constraints (cf. Eqs. 2-2 to 2-4), so that the

overall flow out of a target source cannot exceed 1, and the overall flow into weapon object j

cannot exceed its available interceptor inventory Mj. When all of the available weapon

5 inventories Mi are equal to one, the resulting optimization problem is known as an assignment

problem; in this case, each interceptor is modeled as a separate weapon platform.

The structure of the constraints of transportation problems 1 is such that the integrality

I constraints of Eq. 2-3 can be relaxed to allow for fractional interceptor assignments xij. That

is, Eq. 2-3 can be replaced by the constraints

1 0 Xij Mj (2-6)

3 With this relaxation, an optimal solution can be found for which all of the xij are integer. This

allows for the development of efficient algorithms by using the duality theory of linear

programming. One such efficient algorithm is the AUCTION algorithm developed by

3 Bertsekas [16] for assignment problems and etended Bertsekas and Casta.Ion 1181 for

transportation problems. We overview the AUCTION and ILINE algorithms in the next

3 subsections.

I 2.2 DESCRIPTION OF THE ILINE ALGORITHM

The basis of ILINE is to solve Problem (NP) by a successive iinearization procedure.

3 whereby Problem (NP) is approximated at each stage by Problem (LP). The solution of

Problem (1P) is computed using AUCTION, and a fixed number of the assignments are

I implemented. Based on these assignmcnts, a new linearized version of Problem (NI') is

3 generated (a new Problem 1P), and the procedure is repeated until all interceptors have been

assigned. Figure 2-2 illustrates the structure of the ILINE algorithm. The key computation-

"hi , i- tructure is known as uninioduli tv 1151.

I 17 TIt-452"I!__ ___

ALPHATECH, INC.

intensive step is the solution of Problem (LP), which must he performed several times in the

procedure. The AUCTION algorithm provides a practical approach for repeated solutions of

Problem (LP), by reusing most of the previous solution as an initial point for obtaining a new

solution.

Solve Problem 1P
using Auction
Variation

Select k best
Modify target values assignments and fix
to reflect fixed them
awsignments

S YesAl

Figure 2-2. Structure of the ILINE Algorithm

At each iteration of the ILINE algorithm, a subset of interceptor assignments x*ij have

already been fixed. Based on these fixed assignments, the ILINE algorithm computes an

expccted probability of survival for each target i, as

w
Ps(i) = 1 (1 - pij) X* ij (2-7)

j~>i

The linearization of Problem NP is based on using the expected probabilities of survival for

each target, resulting in the followin g optimization problem:

I TR-457

ALPHATECH, INC.

T

(SIP) max ViPsi) p ij X ij (2-8)
x ij i :

subject to

xij +x b) < M (2-9)

and the constraints of Eqs. 2-3 and 2-4.

Denote the optimal solution to Problem (SLP) by x~ij. For each pair ij, the ILINE

algorithm ranks the nonzeuo assignments (x 0 ij > 0) in nonincreasing order according to the

marginal return Pij Ps(i) Vi. The top k assignments according to this order are selected and

added to the corresponding permanent assignments x*ij. If additional interceptors remain to be

assigned, then a subsequent iteration of the above procedure is conducted.

The key operation of the ILINE algorithm is the optimal solution of the linearized

Problems (SLP). Tha algorithm used inside of ILINE is a variation of the AUCTION

algorithm, discussed next.

2.3 TE AUCTION ALGORITIIM

The original AUCTION algorithm was described by Bertsekas [16] for assigning

individual bidders (corresponding to interceptors or targets) to individual objects

(corresponding to targets or interceptors). The theory of the AUCTION algorithm is discussed

in detail in Appendix A. In this subsection, we briefly overview the computations of the

AUCTION algorithm.

The classical assignment problem consists otfinlindig a one-to-one match between a list

of n persons and n objects such that the stll) of the benefits of the individual matches is

mnaxit IZed. I)entc he individua l benefits ()f asIgn in person i to object as aij. Then, the

classical assignment problem cir be ,Iatcd a-, iiio, .,.

1 ITR 457

ALPHATECH, INC.

T1

-axI-Ilax >3 a -xi 1 W

Xi i-I

suh.:Cct to

>3 xi lj = i. 11: 2-l

iI

>3x~,ii =1. i =l....n: (2-12)

J: 1

XijE G {0,1},i 1 n; j = I 1.. . 2 (-1I

Note the similarity between the objective in the WTA problem of Eq. 2-8 and the objective in

the classical assignment probklm: the benefit aij of assigning interceptor j to target i is given by

Pij Vi PS(i). Note also that the constraints in Eqs. 2-12 and 2-13 IcLIuire that an equal numbcr

of interceptors and targets be present. This represents no loss in generality, since targets with

value 0 or interceptors with 0 probability of kill can be introduced to balance an uneven

assignment problem.

Ideally, the maximum benefit is obtained when each person I is assigned to an object 1

offering maximal individual benefit aij. However, such an a-ssignment is likely to violate the

constraints in Eq. 2-12 which require that each target be assigned an interceptor. In order to

resolve such conflicts, the AUCTION algorithm assigns a price pj to each object j which

reflects the degree to which an object is in demand by different persons. The key observation

in the AUCTION algorithm is that there exists a set of prices Pi such that the optimul

assignment has the property that each person i is assigned t, inc object .(i) wfhich ol ffr., the

highest net profit aii(i) - Pj(i) = maxj (aij - pj). This is a consequence of the celebrated duliht\

theorem of linear programming 15). The AUCTION algorithm consists (t a search for the rm.11t

20 1 ,

I ALPHATECH, INC.

n level of object prices pj; this search takes the form of an auction, where unassigned persons

"bid" for objects and raise the prices of the objects accordingly.

The AUCTION algorithm can be described in terms of a sequence of iterations.)urin-

Ieach iteraticn, the price pj of some object j is raised; in addition, tentative assignments of

objects to persons which have offered the highest prices for those objects are made. Each

I iteration can be described in terms of two distinct phases:

a. Bid Phase: In this phase, a subset I of persons which do not have a tentative
assignment (unassigned persons) to any objects will offer bids for objects. Each
person i computes his bid as follows, based on the current object prices pj.

1. Person i must determine the object j(i) offering the maximum net profit based on
the current prices; that is,

j(i) = arg maxj {aij- pj}

2. Person i must determine the price level b(i) which it will bid for object j(i); this
price level is determined by computing the two highest net profit levels as follows:

v(i) =maxj { aij - pj}

w(i) = maxjj(i) {aij - pj)

b(i) = Pj(i) + v(i) - w(i) + e

3 where C > 0 is a positive parameter, chosen small enough to guarantee convergence
to an optimal solution.

hb. Auction Phase: In this phase, each objectj which reccived a bid in the Bid Phase
selects the highest bid and is tentatively assigned to the person i which offered the
highest bid. If the object was previously assigned to a different person i', this
assignment is deleted, so peison i' will become unassigned for the next iteration.
This auction process is summarized below.

For each object j, define the set 1(j) = { i E I I j(i) = j) to be the set of bidders
currently bidding for object j. If 1(j) = ((the empty set), leave Pj unchanged and
xij unchanged, i = 1 ... , n. If 1(j)), update the price of object j as

I pj = maxi c- htj) b(i)

If object j was previously assigned to person i' (i.e. xi'i = 1). remove that
assignment (i.e. set xj'j -- 0). Assigon object.' to one oftthe persons offering the
highest hid for object, that is,

i ,i) - arg maxi (h) b(i

Set x1*1 I

I

ALPHATECH, INC.

The above bid and auction steps are repeated until each person is assigned to an object.

As discussed in Appendix A, proper choice of the constant e is required for this procedure to

converge to an optimal assignment. In particular, if the benefits aij are all integer, the constant

e must be chosen to be smaller than I/n, where n is the total number of persons. For integer

benefits aj, by scaling all of the benefits by multiplication by (n+l), the AUCTION algorithm

can be conducted using only integer arithmetic. This was the approach used in our

implementations.

An important issue which affects algorithm performance on different multiprocessor

architectures is the selection of data structures for the implementation of the AUCTION

algorithm. Specifically, there are many WTA problems where certain interceptor-target

assignments are known to be infeasible and should not be represented as part of the problem.

In the assignment problem, this is represented by a set A(i) of admissible objects for the 3
assignment of person i. Thus, the assignment xij = 0 unless j e A(i). The sets A(i) can be

represented explicitly using sparse data structures, or they can be represented implicitly by

selecting the benefit aij = -0 forj e A(i) and using dense data structures. For sequential

comptuation, sparse data structures provide a considerable advantage over dense data m

structures; for parallel computation, use of sparse data structures may require interprocessor 3
movement of data which can reduce efficiency.

Note that any nonempty subset I of unassigned persons may submit a bid at each 3
iteration. This gives rise to a variety of possible implementations, named after their analogs in

relaxation and coordinate descent methods for solving systems of equations or unconstrained m

optimization problems (see e.g.[27,281):

a. The ,Iacohi implementation, where I is the set of all unassigned persons at the
beginning of the iteration.

b. The (;auss-Seidel implementation, where I consists of a single person, who is
uiassigned at the beginning of the iteration.

c. The block Gauss-Seidel implementation, where I is a subset of the set of all I
unassigned persons at the beginning of the iteration. (The method for choosing the

2
22 TI-457!

ALPHATECH, INC.

persons in the subset I may vary from one iteration to the next, so this
implementation contains the preceding two as special cases.)

Generally, in a serial computation environment, the Gauss-Seidel implementation tends

to be the fastest, but with a parallel machine, the choice is unclear because all the bids of the

persons in I may be calculated in parallel. It is important to consider all these different versions

because they provide starting points for different synchronous and asynchronous parallel

implementations.

Figure 2-3 illustrates the Gauss-Seidel variation of the AUCTION algorithm. In this

variation. an unassigned bidder is selected from a queue; this bidder selects the most desirable

object (based on the object's perceived value and its price) and selects a bid price for this object

which outbids every other bidder by as much as possible. Thus, if in a previous iteration

another bidder had successfully bid for this object, this bidder is now rejected and joins the

bidders' queue for future iterations. The auction proceeds until the bidders' queue is empty.

Unassigned
Person
Queue

Select Search Object Award
Person List to Compute IN Auction & --

Bid for Person i Update
Object Price

unassianed
person

Figure 2-3. Structure of the Gauss-Seidel variation of the AUCTION Algorithm

The Jacobi variation of the AUCTION algorithm is similar, but assumes that all of the

bidders on the bidding queue bid simultaneously; thus, an object may be bid on by more than

one bidder at a time. In contrast with the Gauss-Seidel algorithm, a bidder is no longer assured

of winning his hid, since other bidders may bid on the same object at the same time. Similarly,

after all of the bidders have completed their bid, the objects are awarded to the bidder with the

23 TR-457

ALPHATECH, INC.

highest offered price, and a new round of bidding is initiated. Figure 2-4 illustrates the

structure of the Jacobi variation; in this figure, the number of parallel bidders p is equal to the

number of unassigned persons in the unassigned person queue. Figure 2-4 also represents the

block Gauss-Seidel variation when the number of parallel bidders is selected to be a number p

which is smaller than the number of unassigned persons in the queue.

Sequential implementations of the Gauss-Seidel and Jacobi variations have shown that

the Gauss-Seidel variation is 15-20% faster. In both variations, the key computation-intensive

step is the computation of new bids for each bidder. In the Gauss-Seidel variation, this step

encompasses over 95% of the total computation time of the AUCTION algorithm. In the

Jacobi variation, the awarding of new auctions is harder, so the computation of new bids

comprises only 85% of the total computation time.

SeetCompute

PersonBids

Unassigned
Person
Queue

o• Process Bids

a p n and Award----I--- Auctions

PersonBids

Unassigned
Persons

Figure 2-4. Structure of the Jacobi variation of the AUCTION algorithm. In this
figure, p is the number of unassigned persons present in the

unassigned persons queue.

2.4 VARIATIONS OF AUCTION FOR WTA PROBLEMS

The original AUCTION algorithn was designed to solve assignment problems, which

correspond to WTA problems when the interceptor platfomi inventories are all unifoniily equal

24 TR-457

ALPHATECH, INC.

to one. For WTA problems, weapon platforms often carry more than one interceptor, so the

platform inventories are larger than 1, and there are fewer weapons W than targets T. This

asymmetry can be exploited to yield more efficient algorithms; the theory of these algorithms is

described in Bertsekas and Castafion [18]. It also creates variations of the AUCTION

algorithm with different structure, depending on whether we assign the targets to be the

persons, or whether we assign the weapons to be the persons. The choice of variation for

parallel processing depends on the level of parallelism which one is interested in exploiting.

For medium-grained parallelism using shared-memory MIMD processors, the structure

of Fig. 2-4 appears more amenable for parallel processing than the structure of Fig. 2-3. In

this structure, bid tasks for separate persons can be executed in parallel; similarly, auction tasks

for separate objects can be executed in parallel. However, an important limit in the amount of

parallelism which can be obtained from this approach is the average length of the unassigned

persons queue. This limits the number of parallel bid tasks, which in turn limits the number of

parallel auction tasks. Figure 2-5 shows a typical histogram of the queue length for a

sequential implementation of the Jacobi AUCTION algorithm as a function of the number of
100

80

CU 60

-40

-0

E
z

20

0.
:0 40 60 80 100

WI tri No

Iiguire 2-5. Length of 1,:nassincd P'ersons Queue versus iteration number for
Jacohi Al (Vll()N.

'V., l 04 ,W

ALPHATECH, INC.

iterations (the test problem involved 100 persons). As Fig. 2-5 indicates, the average speedup

obtainable by this approach is limited to near 3-4, because of the dynamic load imbalance

across iterations.

For medium-grained parallelism using multiple bid tasks, the variation of the

AUCTION algorithm which should be most successful is one which maximizes the length of

the unassigned persons queue across iterations. This is accomplished by selecting the targets

as bidders, since there are more targets than weapons, leading to longer average queue lengths.

Either the block Gauss-Seidel or the Jacobi variation of the AUCTION algorithms would then

be used, depending on the available number of processors and the overhead required for

interprocessor synchronization. When synchronization overhead is high, an asynchronous

implementation of the AUCTION algorithm may be preferred, the theory of such an

asynchronous implementation is described in Appendix A.

For fine-grained parallelism using SIMD architectures, the structure of Fig. 2-3 is

superior to the structure of Fig. 2-4. In the Gauss-Seidel variation, most of the time is spent in

the computation of individual bids. This operation is similar to finding a maximum value and

maximum element of a list of objects. The amount of parallel work increases with the length of

the object lists. Thus, the preferred variation of the AUCTION algorithm for exploiting fine-

grained parallelism is to use a Gauss-Seidel variation, with weapons as persons. In this

manner, the number of objects (corresponding to targets) is increased, thereby increasing the

size of the bid tasks for fine-grained parallelism.

In the subsequent sections, we describe the design of the various parallel AUCTION

algorithm variations developed under this contract.

26 TR 457

ALPHATECH, INC.

SECTION 3

SYNCHRONOUS PARALLEL AUCTION ALGORITIMS

3.1 INTRODUCTION

In this Section, we overview the designs of the various synchronous parallel

AUCTION algorithm implementations, and discuss the benchmarking results obtained. We

first discuss the parallel AUCTION algorithms designed for MIMD architectures (the Encore

Multimax and the Alliant FX/8). Several parallel AUCTION algorithms were developed and

benchmarked; these algorithms differ in the degree to which fine-grained and coarse-grained

parallelism is used. In later subsections, we discuss the parallel AUCTION algorithms

designed for SIMD architectures (DAP 510 and CM-2); these algorithms were based on

exploiting fine-grained parallelism, and are similar in design across the different

multiprocessors. The benchmarking results illustrate the differences in performance which can

be achieved on different multiprocessor architectures.

3.2 SYNCHRONOUS AUCTION ALGORITHMS ON THE ENCORE

MULTIMAX

In synchronous shared memory implementations of the AUCTION algorithm, all

bidding and assignment phases are separated by a synchronization point. There are two basic

ways to parallelize the bidding phase for the set of unassigned persons I and a combination of

the two:

a. Parallelization across bids (or Jacobi parallelization): Here the calculations involved
in the bid of each person i e I are carried out by a single processor. if the number

of persons in I, call it III, exceeds the number of processors p, some processors will

execute the calculations involved in more than one bid. (This will typically happen

in the early stages of a Jacobi-type algorithm where I is the set of all unassigned

persons.) If III < p, then p - III processors will be idle durine, the hidding phise.

thereby reducing efficiency. This will typically happen in the late stages of a

Jacobi-type algorithm.

27 1

ALPHATECH, INC.

b. Parallelization within a bid (or Gauss-Seidel parallelization): Here the set I consists

of a single person as in the Gauss-Seidel implementation. The calculations

involved in the bid of each unassigned person i are shared by the p processors of

the system. Thus the set of admissible objects A(i) is divided in p groups of objects

Ai(i), A2(i), ..., Ap(i). The best object, best value, and second best value are

calculated within each group in parallel by a separate processor. We call the

calculations within a group a search task. After all the search tasks are completed (a

synchronization of the processors is required to check this) the results are "merged"

by one of the processors who finds the best value over all best group values, while

simultaneously computing the corresponding best object and size of bid. (It is

possible to do the merging in parallel using several processors, but this is inefficient

when the number of processors is small, as it was in our case, because of the extra

synchronization and other overhead involved.) The drawback of this method over

the preceding one is that it typically requires a larger number of iterations, since

each iteration involves a single person. Even though each Gauss-Seidel iteration

may take less time because it is executed by multiple processors in parallel, the

synchronization overhead is roughly proportional to the number of iterations.

c. Hybrid approach (or block Gauss-Seidel parallelization): In this approach, the bid

calculations of each person are parallelized as in the preceding method,but the

number of processors used per bid is k, where l<k<p. We will assume that k

divides evenly p, so we tan compute me bids of p/k persons in parallel, assuming

enough unassigned persons are available for the iteration (il1 > p/k). With proper

choice of k, this method combines the best features and alleviates the drawbacks of

the preceding two.

Once the bidding phase of an iteration is completed (a synchronization point),the

assignment phase is executed. This phase is typically carried out by a single processor in our

synchronous implementations. While it is possible to consider using multiple processors to

execute the assignment phase in parallel, the potential gain from parallelization is modest while

the :sociated overhead more than offsets this gain in our system.

In the subsequent subsections, we describe the designs and benchmark results obtained

Irom diTerent parallel AUCTION algorithm designs for the FLncore Multimax based on Gauss-

28 I ,I ,,)

ALPHATECH, INC.

I Gauss-Seidel parallelism, Jacobi parallelism and Block Gauss-Seidel parallelism. All

algorithms were coded in Fortran 77 using the same sparse data structures.

3.2.1 Gauss-Seidel AUCTION Algorithm

The synchronous Gauss-Seidel AUCTION algorithm generates a single bid at a time,

I and uses multiple processors to search the possible objects n order to generate that bid. The

premise of the parallel Gauss-Seidel AUCTION algorithm is to use multiple processors to

reduce the computation time associated with computing each bid. The flexibility of a shared-

memory MIMD architecture allows for the efficient use of sparse data structures. The parallel

I algorithm design includes synchronization in order to guarantee that the bids generated by the

parallel algorithm are independent of the number of processors used, and thus represent a

faithful replication of the sequential Gauss-Seidel AUCTION algorithm.

Figure 3-1 illustrates the percentage of the total computation time which is spent in

searching the list of admissible objects A(i) for several 1000 person assignment problems with

varying degrees of sparsity. As Fig. 3-1 illustrates, the sequential Gauss-Seidel AUCTION

algorithm spends between 92 - 99 % of its computation time (depending on the problem size

and the density of feasible assignments) searching the list A(i). This percentage increases with

the average number of elements in the admissible assignments A(i), so that greater speedups

are possible for larger problems.

The design of the synchronous Gauss-Seidel AUCTION algorithm is illustrated in Fig.

3-2. The majority of the AUCTION algorithm is conducted on a single processor (called the

I parent processor). Multiple processors are used to assist the parent processor in computing

each bid in parallel using a "divide and conquer" strategy: each processor is assigned to search

a fixed part of the list of objects A(i) which can be assigned to person i. Two synchronization

points are included in each bidding iteration. The first synchronization point is a barrier (based

on the barrier monitor developed at ANL/MCS 1291) which serves to delay the start of the

I search of admissible objects until the previous price update is completed. The second

29 TR-457

ALPHATECH, INC.

1.00

(3

0.98.

z-

C

U) 0.96
C

E

0
13 0.94

U-

0.92 _ I I * I I I

0 20 40 60 80 100

Average percent of Objects in A(i)

Figure 3-1. Percentage of total Gauss-Seidel AUCTION computation time spent in
searching the lists of admissible objects for 1000 person assignment
problems, benefit range 1- 1000, as a function of the density of
feasible assignments.

Unassigned Search
Person -- Assigned Part of
Queue lObject U st A 1 (i)

Select Merge " Computi,e

\Monitor Auction &

Search IUpdate Price
-Assigned Part of

Object List Ap(i)

unassigned
person

Figure 3-2. Design of the parallel synchronous Gauss-Seidel AUCTION
algorithm. Multiple processors are used to search the list of
admissible objects for a person; the results of the searches are merged
to compute a person's bid, and the rest of the bid and auction cycles
are conducted by a single processor.

30 TR-457

ALPHATECH, INC.

synchronization point is a monitor which is an extension of the Argonne monitors for portable

parallel programming [291. The merge search monitor allows each processor, upon completion

of its search of Ak(i), to merge the results of its search (the highest and second highest net

profit levels in the sublist, and the object which provided the highest net profit level) with the

results of other processors which have completed their search, and then proceed to a barrier to

wait for all of the processors to complete their search. The monitor sequences the merging of

the processor searches to guarantee that the results of the merged search are identical with the

I one-processor Gauss-Seidel algorithm.

In order to understand the potential performance of the parallel Gauss-Seidel

AUCTION algorithm, we have constructed an empirical model for the computation time per

iteration with p processors per bid. This time is given by

T(p)=S (p)+M(p)+C(p)+V

where

I S(p)= Time for completing the search tasks

M(p)= Time for merging the results of search tasks

C(p)= Time for synchronization

* V= Constant overhead per iteration.

Let us assume for convenience that each set of admissible objects A(i) has the same

I number of elements, say n. By counting the number of operations and by assuming perfect

load balancing between the search tasks (i.e., an equal number of objects n/p in each of the

groups AI(i), ..., Ap(i), we have estimated roughly that the search time per iteration is

S(p) = Constant - (n/p + log(n/p) + log(log(n/p)) (3-1)

(The logarithmic terms account for the calculations involving the second best value.) The

nergin(tile is proportional to p. while tie synchronizatiim e us'n'g softwrbares

rotighly proportional to p.

31 1R-457

ALPHATECH, INC.

It can be seen that, given n, there is an optimal value of p that minimize the total time

per iteration. For example, if p is large, the increase of the synchronization and merging times

may offset the potential gains from parallelization of the search tasks. Because of various

constants involved in the I receding estimates of the search, merging, and synchronization

times, it is difficult to estimate a priori the optimal value of p required to solve the problem.

Figure 3-3 illustrates the performance of the ,ynchronous Gauss-Seidel AUCTION

algorithm for a 1000 person, 20% dense assignment problem with benefits in the range

[1,1000]. All of the times reported in the figure are measured in terms of the parent processor

(the processor which executes the sequential part of the algorithm). The scan time is the time

which the parent processor (processor 1) spends in searching its part of the admissible object

lists Al(i). The predicted relationship between scan time and the number of processors is

derived from Eq. 3-1. The synchronization time for a bid by person i is measured as the time

from which the parent processor finished scanning .,e subset of objects AI(i) until the time the

parent processor is released from the merge search monitor to continue with the auction

process. As the results of Fig. 3-3 indicate, the achievable speedup for this problem is limited

to a factor of nearly 3 because of the increase in synchronization time required to merge the

results of the various searches. This factor will increase as the number of elements in the sets

A(i) increases.

Figure 3-4 illustrates the conjectured theoretical behavior of the total scan,

synchronization and computation times, based on fitting the models described in the previous

section with appropriate constants to match the problem size. Note the close correspondence

between the predictions of Fig. 3-4 and the empirical results of Fig. 3-3. The only minor

discrepancy is that the empirical synchronization time grows superlinearly with the number of

proccssors: this is probably due to increased corhention for access to critical sections in the

barricr and merge search monitors. Similar phenoncna were observed by Dritz and Bovle 130l1

in their experiments using the Flcore Multiiax.

32 I .

ALPHATECH, INC.

3 50

I 40\

0

E (, Total Computaton Time

20

10- Toa Merge and
10 Synchironization time

Scan Time

20 10 12 14 116

FigureNumber of Processors

Figre -3.Performance of the Synchronous Gauss Seidel AUCTION algorithm
on the Encore Multimax as the number of processors increases for a
1000 person, 20% dense assignment problem with benefit range
[1,1000]. Note the growth in merge and synchronization time
required as the number of processors increa-es. This limits the

50-maximum speedup to a factor of approximately 3.

I 40

I 3 Predicted Computation Time

U)20

EI :10 Predicted Merge and
Pr Synchronization time

0 Pred icte

0 2 4 6 9 10 12 14 1 G

Number of Processors

fEigUre 3-4. Theoretical behavior of synichronlous GauLSS-Seidel AUCTION
algorithtl .vith in1creaiSng1 numb11er of piocessors. Thec conistanits hiave
be-en matched to fit thle times of a I (XX) person. 20',, dense assinl-1entUproblem withi benefit i-an.,e I 1.,10001.

3 33 TB 4

ALPHATECH, INC.

Figure 3-5 illustrates the effective speedup achieved by the parallel (;aIISs-SCidCl

AUCTION algorithm as a function of the density of feasible assignments for an ()0 per,,m

assignment problem. As the density decreaes, the potential for parallel work decreases al(.

However, for denser problems, speedups approaching factors of 6 are possible using Up to I

processors. Figure 3-6 illustrates similar results for larger, 1000 person assigniment prkI....

Note that the sequential computation time for this larger problem has nearly doubled. This

increase in computation time is due to the an increase in the number of feasible assignments

which must be considered in the problem (which has also nearly doubled, from 640,0(X) to

1,000,000 for fully dense problems); the empirical computation time grows near-linearly with

the number of feasible assignments to be considered. For the larger 1000 person assignment

problem, a speedup of nearly 6.7 was achieved for the fully dense problem.

100

80

Sequential time,
-0 1 processor Multimax
C:o 60-
U)
a)

EC
0 40

CL

E
0
o 20 Best Parallel Time

0. I I * I *

0.0 0.2 0.4 0.6 0.8 1 0

Density of Feasible assignments

l'igure 3 5. Comparison of best parallel and sequential times for Gauss-Seidel
AUCTION algorithm on Encore Multimax for 800 person assinlneCnt
problem, benefit range [1,10(X)] as a function of the densitv of
feasible assignments. The maximum nunber of processors used for-
the para!lel Gauss-Seidel AUCTION algorithm was 10 piocessrs tor
th -dn. problem.

34 1 '

I ALPHATECH, INC.

S0 0

I

8 Sequential time,I I~ 100 1 processor Multimax

,..2

=3

E

0E

Best Parallel Time

000.2 ,est '* , *

0.00.4 0.6 0.8 1.0

*Density of feasible assignments

Figure 3-6. Comparison of best parallel and sequential times for Gauss-Seidel
AUCTION algorithm on Encore Multimax for 1000 person
assignment problem, benefit range [1,10001 as a function of the
density of feasible assignments. The maximum number of processors
used for the parallel Gauss-Seidel AUCTION algorithm was 10
processors for the fully-dense problem.

As Figs. 3-5 and 3-6 indicate, the potential speedup on MIMD architectures for the

Gauss-Seidel AUCTION algorithm depends critically on the density of the feasible

assignments (the speedup depends on the average number of feasible assignments for each

person, which is the product of the density times the total number of objects). For many WTA

I problems, we expect the density of feasible assignments to be in the 10-70% range. This limits

the overall speedup for 1000 interceptor assignment problems to factors between 2.5 and 5.5.

"Thes'e factors will increase as the numbers of interceptors and targets increase, since the overall

spatial volume of interest remains constant (thereby preserving the overall density of the

feasIblc assi erImCntIs): in essence. the svchronization overhead in Hi,, 3-3 will remain

constant (dcpcnding only on the numier of proc _ssors used), while the paralelizale work for

3I TR

ALPHATECH, INC.

the searches will increase proportionately to the number of objects. For problems with 10,0()0

objects, the overall speedup should mirror the speedups in the scan time, suggesting that

speedups of over 10 will be possible using 16 processors.

3.2.2 Jacobi AUCTION Algorithm

The second synchronous implementation of the AUCTION algorithm was the

synchronous Jacobi AUCTION algorithm. In this algorithm, multiple processors are used to

generate bids simultaneously for different persons. The number of simultaneous bids

generated is equal to the minimum of the number of processors used and the number of

unassigned persons; in this manner, object prices are updated as soon as possible, leading to an

expected reduction in the overall number of bids required to converge to an optimal solution.

Each processor computes the bid associated with a different person. The resulting bids are

then processed sequentially in order to award new auctions and to update the list of unassigned

persons. Sequential processing of the bids guarantees that the number of iterations required for

convergence of the Jacobi AUCTION algorithm is independent of the order in which

processors finish their computations.

The design of the synchronous Jacobi AUCTION algorithm is illustrated in Fig. 3-7.

Again, there are two synchronization points for each iteration of the algorithm, before and after

the compute bids operation. However, both synchronization points are implemented with the

extensions of the barrier monitors discussed previously. In particular, the synchronization

after the compute bids operation is only a barrier monitor because no merging of the individual

computations by each processor is required (unlike the synchronous Gauss-Seidel AUCTION

algorithm). This reduces the overall synchronization overhead by reducing the length of the

critical section in the synchronization monitor. After the bids have been computed, the parent

processor conducts the auction for each bid and places unassigned persons back into the queue.

36 TR-457

ALPHATECH, INC.

Sele ACompute

:Per-sonBids

Unassigned
PersonQueue t

pcsProcess Bids
smtes.hph p e s andAward

Auctions

sBids
I Unassigned

Persons

iFigure 3-7. Design of synchronous Jacobi AUCTION algorithm. Multiple
processors are used to compute bids for multiple persons
simultaneously. The parent processor then processes sequentially the
bids

An important aspect of the synchronous Jacobi AUCTION algorithm is that the amount

of potential parallel work varies across iterations; specifically, it depends on the number of

remaining unassigned bidders. When the number of unassigned bidders is less than the

number of available processors, some of the processors will be idle. Figure 3-8 illustrates the

number of unassigned bidders per bid iteration for a 1000 person, 20% dense assignment

problem, benefit range [1,1000] using 10 processors. In order to prevent idle processors for

competing for shared resources such as synchronization locks, the size of the synchronization

barriers was adaptively modified to match the number of non-idle processors. Idle processors

were diverted to a rest barrier, waiting to rejoin the computation when the number of

unassigned persons grew larger than the number of available processors (at the beginning of a

new c - scaling phase; see Appendix A).

Figure 3-9 illustrates the performance of the Synchronous Jacobi AUCTION algorithm.

Again, scan time is measured in terms of the time required for the parent processor to compute

a bid; scan time is decreased with the number of processors because the parent processor

computes less bids (other processors compute bids simultaneously). Synchronization time is

measured in terms of the time spent by the parent processor at the two synchronization

37 TR-457

ALPHATECH, INC.

1000

-a---- e=250

(o 100- e \-_ = 31.25
C
0 - e 3.91

0. \-- e =.4875

-a----e =.06

-a"3- e= .007
:.6---- = .00099

D 10

0

E
z

1.
1 10 100 1000 10000

Iteration No.

Figure 3-8. Jacobi AUCTION number of unassigned persons versus iteration
number for 1000 person, 20% dense assignment problem, benefit
range [1,1000 using 10 processors. Curves illustrate the number of
unassigned persons for different values of P corresponding to different
s-scaling cycles. Note the small fraction of iterations for which the
number of unassigned persons exceeds the number of available
processors (10).

barriers. Note that, unlike the synchronous Gauss-Seidel algorithm, scan time cannot be

reduced arbitrarily by increasing the number of processors. In the Jacobi AUCTION

algorithm, increasing the number of processors generally reduces the overall number of

iterations required to converge (by computing multiple bids in parallel); however, for iterations

where the number of unassigned persons is less than the number of processors, increasing the

number of processors has no effect on the number of parallel bids computed, thereby limiting

the reduction possible in scan time.

Note the relatively low level of synchronization required for the Jacobi AUCTION

algorithm when compared to the Gauss-Seidel AUCTION algorithm. This is due to three

38 TR-457

ALPHATECH, INC.

50

40

30

Total yComptation Time

-

0

0

0 2 4 6 8 10 12 16

Number of Processors

Figure 3-9. Performance of the synchronous Jacobi AUCTON algorithm for
1000 person, 20% dense assignment problem, benefit range [1, 1000]
as a function of number of processors.

factors. First, the synchronization after computing bids is simpler because no merging of the

results of the processors is required. Second, the number of synchronization calls is reduced

because the total number of iterations is reduced by processing multiple bids in parallel.

Finally, the number of processors which contend for a synchronization lock is reduced

adaptively when the numbe- of unassigned persons is less than the number of processors,

leading to simpler synchronization (with reduced ction) at each iteration.

I The results in Fig. 3-9 indicate an interesting anomaly which is typical of the

AUCTION algorithm: increasing the number of processors sometimes produces an apparentincrease in computation time, as indicated in the difference between the 10 processor times and

the 8 processor times. The reason for this increase is that the number of iterations required tor

convergence with 10 processors increased significtly over the number of iterations required
finallyethennumberhf processorsw This is because the coniatiof bids with 10
ad ivey wene processors,

increase in ~~~~ ~ ~ computationtieasidctdithdifrnebtente1poesrtmsad

39 TR,457

ALPHATECH, INC.

processors is based on a potentially different set of object prices than the computation of bids

with 8 processors. This fluctuation in the number of iterations required for convergence will

become a dominant factor in the performance of the asynchronous AUCTION algorithms

discussed in Section 4.

Figure 3-10 illustrates the speedups achieved by the Jacobi AUCTION algorithm for

several 800 person and 1000 person assignment problems. The curves indicate that the

effective speedup from Jacobi parallelization in the 10% -70% density range is not likely to

vary much with either the number of persons or the density of the problem (although the

potential speedup will decrease for very sparse assignment problems). This is in contrast with

Gauss-Seidel parallelism, where the speedups possible increased with problem density and

with assignment problem size.

5-

E

a 4

E• = 3 - 800 person problems
0 ---- 1000 person problems

U)
U)
0

0

0~

0.

0 *, , , , ,

0.0 0.2 0.4 0.6 0.8 1.0

Density of feasible assignments

Figure 3-10. Speedup of parallel Jacobi AUCTION algorithm over the single-
processor algorithm as a function of the density of feasible assignment
problems for problems with 800 and 1000 persons, benefit range
[1,10001.

40 TR 457

I ALPHATECH, INC.

I
3.2.3 Hybrid AUCTION Algorithm

The results obtained with tne previous two synchronous algorithms suggest that an

efficient parallel implementation should combine the speedups available from Gauss-Seidel

parallelization and Jacobi parallelization. In particular, by computing multiple bids

bimuitane4Jusiy, aiU ..y usin, umitipie prj.esuci. to cornipute each bid, a mulhpii iAuvA ,

may be achievable where the overall speedup is the product of the Gauss-Seidel speedup and

the Jacobi speedup. The synchronous Hybrid AUCTION algorithm is an attempt to

demonstrate this multiplicative speedup; in this algorithm, persons are selected two at a time,

I and two bids are computed in parallel (Jacobi parallelization with two processors). For each

person i, the admissible objects A(i) are searched in parallel by multiple processors (Gauss-

Seidel parallelization).

The overall design of the synchronous hybrid AUCTION algorithm is illustrated in Fig.

3-11. There are three synchronization points per iteration. An initial barrier is included to

delay the start of the object searches until all of the object prices are updated from the previous

iteration. A separate merge search monitor is included for each person, and a synchronization

barrier is used to wait until both bids are computed before proceeding to award the auctions.

The size of the barriers and monitors were tailored to the number of processors which

rendezvous at each synchronization point. Thus, the first barrier synchronized 2k processors.

the merge search monitors k processors and the last barrier only two processors, thereby

keeping the synchronization overhead to a minimum. The predicted speedup from the hybrid

I approach should be 1.75 for the use of Jacobi parallelization with two bids computed

simultaneously, multiplied times the appropriate speedup (cf. Fig. 3-3) for using k processors

to compute each bid. Thus, when 12 total processors are used, the overall speedup should be

approximately 1.75 x 2.75 (from using 6 processors per bid) = 4.8 125.

I

I

ALPHATECH, INC.

Assigned Part of
Object List A1 1)

Select - Serch Cot~mpute
Person Bid

Unassigned rch
Person Assigned Part of
Queue itij

Process Bids

B Barrierd AwardI ii a erSearch Aucl ions

Assigned Part of

S e=et Compute J
Person B i

Search
Assigned Part of

LIA 1bjUnassigned

1 Persons

Figure 3-11. Design of the synchronous Hybrid AUCTION algorithm.

Figure 3-12 illustrates the performance of the synchronous Hybrid AUCTION

algorithm as a function of the total number of processors used for the same 1000 person, 20%

dense assignment problem described previously. The single processor time for this algorithm

is 44 seconds. The synchronization time is again measured in terms of the parent processor,

and represents the total time that the parent processor spends at the different synchronization

points. As the curves in Fig. 3-12 indicate, the achieved speedup is much lower than the

anticipated multiplicative speedup from combining the Jacobi and Gauss-Seidel speedups. For

example, the actual speedup using 12 processors is under 4, whereas the predicted speedup is

over 4.8. The explanation for this loss of effectiveness can be seen in the growth of the

synchronization time with the total number of processors used, even though the total number of

iterations has been reduced by a factor of 1.83. This synchronization time represents the

dominant part of the overall computation time for large number of processors, and prevents

effective combination of the speedups possible from Gauss-Seidel and Jacobi parallelizat ion.

This motivated the development of asynchronous Hybrid AUCTION algorithms with reduced

synchronization overhead, using the theory developed in Appendix A. These aigorithms will

be discussed further in Section 4.

42 TR-457

ALPHATECH, INC.

30

20

0 ~ Total Computation Time
._)

ED 10

Total Scan
I-

Total Synchronization Time

0 2 4 6 8 10 12 14 16
Numb,-r of Processors

Figure 3-12. Performance of the synchronous Hybrid AUCTION algorithm on
Encore Multimax as a function of the number of processors for 1000
person, 20% dense assignment problem, benefit range [1,1000].

Figure 3-13 illustrates the performance of the parallel Hybrid AUCTION algorithm and

the parallel Gauss-Seidel AUCTION algorithm as a function of the number of processors. As

expected, the Hybrid AUCTION algorithm can use a larger number of processors in a more

effective manner, since the merge and synchronization time is significantly reduced by having a

smaller number of overall iterations (from computing bids two at a time) and by merging the

results of only half the number of processors. However, Fig. 3-13 also illustrates the absence

of a multiplicative speedup; the ratio of the best Gauss-Seidel AUCTION time to the best

Hybrid AUCTION time is about 1.35, which is smaller than the 1.75 factor.

43 TR-457

ALPHATECH, INC.

50

40

c

(D 30

E

5 20cl
E
0

10 • • ,

0 2 4 6 8 10 12 14 16

Number of Processors

Figure 3-13. Comparisur -" Hybrid AUCTION and Gauss-Seidel AUCTION
algorithms for similar numbers of processors for 1000 person, 20%
dense assignment problem, benefit range [1,1000].

3.3 SYNCHRONOUS AUCTION ALGORITHMS ON THE ALLIANT FX/8

The parallel algorithms discussed in Section 3.2 were implemented on the Encore

Multimax with no assistance from any automated parallelization tools. Parallel processing was

implemented by generating parallel tasks, and having the operating system of the Encore

Mul'imax schedule these tasks concurrently on multiple processors. Synchronization of these

tasks was achieved by writing explicit software monitors, using a spinlock mechanism as the

basic synchronization primitive provided by the Multimax.

A different approach for parallel algorithm development is to use a parallelizing

compiler, which searches for work to do in parallel, and automatically distributes parallel work

acros processors. The Alliant FX/8 computer has a Fortran compiler with this capability for

automatic parallelization, furthermore, the Alliant FX/8 had other in cresting architectural

features which made it an interesting candidate for investigation. These features are:

44 TR-457

ALPHATECH, INC.

1. The automatic parallelizing Fortran compiler;

2. The Alliant architecture is designed to implement several synchronization prnilivc\
in hardware, thereby reducing the overhead required for interprocessor
synchronization;

3. Each of the Alliant FX/8's processors is a vector processor, which is a particular
type of SIMD architccture. Thus, the Alliant FX/8 is a hybrid architecture, capable
of multiprocessor MIMD and SIMD processing;

4. The Alliant FX/8 has a high-level array language (Fortran 8X) which is similar to

the array languages used on SIMD architectures such as the DAP 510 or the CM-2.

Thus, conducting experiments on the Alliant FX/8 provided a natural transition from MIMD

architectures to SIMD architectures, and allowed us to evaluate the potential effectiveness of

vector-processing and automatic parallel compilation for implementation of parallel AUCTION

algorithms.

On the Alliant FX/8, we experimented only with the Gauss-Seidel AUCTION

algorithm. Four different versions of the algorithm were developed:

1. Sequential Gauss-Seidel AUCTION, a Fortran 77 version using sparse data
sa-c-1res which corresponded to the most effective sequential implementation;

2. Parallel Gauss-Seidel AUCTION, a Fortran 77 version using sparse data
structures, which was rewritten to avoid data dependencies which restricted the
parallelization capable of the automated compiler.

3. Gauss-Seidel AUCTION 8X, a Fortran 8X version using dense data _. 'ucturcs
which was written to represent the AUCTION algorithm using array operations.

The sequential Gauss-Seidel AUCTION algorithm was identical to the sequential

version used in the Encore Multimax, and required no further development. There is a key

aspect to the sequential algorithm which must be understood in order to identify the

transformations required for developing the parallel Gauss-Seidel AUCTION algorithm. As

Fig. 3-1 illustrates, the key operation which consumes most of the computation time is the

computation of a bid. Referring to the description of this operation in Section 2.3, the

computations required for a bid from person i are:

j(i) = arg max (aij - pj (32

I45 TR *-

ALPHATECH, INC.

v(i) = maxj (aij- pj} (3-3)

w(i) = maxjj(i) {aij - pj} (3-4)

b(i) = Pj(i) + v(i) - w(i) + 6 (3-5)

The difficult computations are in Eqs. 3-2, 3-3, and 3-4. Each of these computations requires

searching the list of admissible objects for person i, and is a reduction operation which maps a

long vector of numbers into a single scalar. In the sequential implcmentation of the Gauss-

Seidel AUCTION algorithm, all three quantities (j(i), v(i), w(i)) are computed in a sinle

search of the object list. However, this computation introduces data dependencies which

prevent the automatic parallelization of these operations on the Alliant FX/8.

In order to achieve maximum speedup and conc,-rrency on the Alliant FX/8, the

quantities j(i), w(i) and b(i) must be computed using three separate searches of the object list (a

fourth array operation is also required, so the total computation is nearly four Limes longer).

Thus, the parallel Gauss-Seidel AUCTION algorithm on the Alliant FX/8 is significantly

slower when executed on a single sequential processor than the sequential Gauss-Seidel

AUCI ION algoritnit. Similarly, the Gauss-Seidel AUCTION 8X algorithm requires three

different array search operations to compute a bid for person i. We defer discussion of the

implementation of the Gauss-Seidel AUCTION 8X algorithm until the next subsection, when

we. discuss array language implementations for the SIMD architectures.

Figure 3-14 illustrates the performance of the three algorithms for 800-person

assignment problems with variable feasible assignment density. Note the logarithmic scale of

the vertical axis. Three different compiled versions of the parallel Gauss-Seidel AUCTION

algorithm were used: the version compiled to execute on one sequential processor (AUCTION

1 S), the version compiled to execute on one vector processor (AUCTION IV), and the version

compiled to execute on all 8 vector processors (AUCTION VC). The other curves correspond

46 TR-457

ALPHATECH, INC.

to the sequential Gauss-Seidel AUCTION algorithm (SAUCTION) and the Gauss-Seidel

AUCTION 8X algorithm (AUCTION 8X).

Note the similar behavior in Fig. 3-14 of the AUCTION IS, AUCTION IV and

SAUCTION algorithms as a function of feasible assignment density. In essence, the ratios of

computaticn times between these algorithms is a constant factor, which reflects the additional

number of searches of the object list required by the parallel Gajiss-Seidel AUCTION

algorithm! As predicted, the AUCTION 1S computation times are nearly four times slower

than the SAUCTION computation times. Surprisingly, the use of vectorization is insufficient

to fully compensate for this difference, so the AUCTION IV times are about 10% slower than

the SAUCTION times. When both vectorization and concurrency are used, the AUCTION VC

times are faster than the SAUCTION times, but the speedup depends explicitly on the density

of the feasible assignments. The maximum speedup (achieved for the fully dense problem)

was nearly a factor of 4 (significantly smaller than the speedup on the Encore Multimax using

only scalar processors). On the other hand, when referenced with respect to the AUCTION IS

times, the AUCTION VC times achieve a speedup of over 15 for dense

100 ,- AUCTPON 1lS

U AUCTION 1V-o

.El SAUCTION
a

o 10 []AUCTION VC

rU

o 10

I- I I I I

0.0 2 04 0.6 0.8 1 0

Density of fea-bie assiqnmen!

I ture 3- 1. 1Pcrtonmicc of the different (;auss-Seidel \UCTI()N algorithms on
the Alliant FX/8 for Y,() person assignment problems with benefit
range I I .l)()., as a fuMction 4 (the density of feasible assienrunclts.

47 TR

ALPHATECH, INC.

assignment problems! This emphasizes the importance of using an efficient sequential

implementation of the AUCTION algorithm as a scalar benchmark.

Figure 3-14 also illustrates the relative advantages of using sparse data structures

versus dense data structures. Note the relatively flat A.'UCT ION 8X computation times as a

function of feasible assignment density, when compared with the curves of the other

algorithms implemented using sparse data structures. Note that, for fully dense problems, a

small efficiency is achieved by using dense data structures (roughly 15% of the overall

computation time. However, once the problems become moderately sparse (below 80%

dense), the sparse AUCTION VC implementation is significantly faster than the dense

AUCTION 8X implementation.

Figure 3-15 illustrates the performance of the same 5 algorithms on a set of 1000

person assignment problems. Again, the AUCTION IS times are nearly four times bigger than

the SAUCTION times, and the use of vectorization in AUCTION IV is insufficient to

compensate for the loss of efficiency required by scanning the admissible object list an

increased number of times. The larger problem size results in an increased maximum speedup

of the AUCTION VC time (nearly 4.5 for fully dense problems) when compared with the

SAUCTION times. Note the interesting anomaly present for the 5% dense problem. The

vector-concurrent version of the parallel Gauss-Seidel AUCTION algorithm is slower than

both the vector version of the same algorithm running on a single processor and the sequential

Gauss-Seidel AUCTION algorithm. This reflects the compiler's inability to select dynamically

how many parallel processors should be used in the computation. For this problem, the object

lists averaged 50 objects- vectorization of the searches using length 32 vectors is more efficient

than use of multiple processors, given the small number of objects to be searched.

48 TR 457

IALPHATECH, INC.

I -D 100

0

C AUCTICTIVN

I ~. SI 0I AUTO AUCLGNORIAUTHOMS

Fgr31. PefracoftedfeetausSeidel AUCTION algorithm pn n h cn)eaiowih oss s of erhn ~

object list A(i) in order to find the object offering the maximal net profit, and the two highest

profit levels. The goal of our sinij-e instruction stream, multiple data s-tream (SIMD)

implementations is to reduce the ')Veral time associated these searches. An important aspect of

doinu, this is to minimize movecment oi data between processors. Thus, the SIMID parallel

aleorithni:, were desifined without the uIse Of SParSe data structures.

Figure 3- 16 illustrates the basic concept of the SINII1) Gauss-Scidel AUCTION

ah sontli in desien'1. Th'le SIMNI) arcli e cture is vilewed as at]on. ve ctor of processors. F~igure

3- 10 S it)\ afu niber of proccvs(rs \k Iiicli equi nais th n umber of persons In the aIs~oinielict

1r b"'11i: 1111" wa s the case tor the flctiatm'k JmVhltIIs and1(lie als-onithims i1rrtp!enien ted II tIIth,

5 1)I~3 () and ific ('nnection VNi.::lun (NI 2. \Vi, imts the beneftits t~ , "Iitfl\. ea'II

ALPHATECH, INC.

processor contains the j column of the matrix (that is, { aij, i = 1 ... , n)) and the price pj of that

column. In this manner, each processor can form independently the net profit aij - pj. The

maximum value of the net profit and the location of a maximal argument are obtained by

reductions of the array of net profits into scalar values using the interprocessor communication

network. Since the Gauss-Seidel AUCTION algorithm operates on only a single person i at a

time, the relevant data is spread maximally across processors, thereby maximizing the potential

speedup.

6 6 6.6
all a 12 a 13 aln-l a 1 n
a 21 a 2 2 a 2 3 a2n-1 a 2n

an an2 an3 a nn- 1 ann

P1 P2 P 3 Pn-l Pn

Figure 3-16. Illustration of the data mapping into processors for parallel SIMD
Gauss-Seidel AUCTION algorithm. Each processor receives a
column of the benefit matrix (corresponding to a single object), as
well as the price of the object corresponding to that column.

With this data-mapping concept, we designed the parallel implementations of the SIMD

Gauss-Seidel AUCTION algorithm on the various architectures by using the appropriate array

language extensions to implement the array arithmetic and reduction operations. On the DAP

510, the array language used was Fortran Plus; oil the Connection Machine CM-2, we used the

C* language tits Fortrmn 8X compiler was still unier development). In order to illustrate the

array operations required, 've piuvide Fortran 8X versions of the key computations required

for a bid by person i, and discuss the :;imilar opernions required for impleenittation in C* and

l' rtran Plus.

I
.53 IR-,45 7

i

ALPHATECH, INC.

In the bid phase of the Gauss-Seidel AUCTION algorithm, the critical computations are

associated with computing v(i), j(i) and w(i) as in Eqs. 3-2, 3-3 and 3-4. The calculation of

v(i) in Fortran 8X is programmed as:

MARGINS = A(i,:) - P

v(i) = maxval(MARGINS)

As may be seen, FORTRAN 8X permits direct calculation to be made on vectors and arrays.

Thus, P and MARGINS are length n vectors, A is an n x n matrix, and v(i) is a scalar. The

construct A(i,:) refers to the ith row of the matrix A. The function maxval is a reduction

operator which returns the value of the largest element contained in its vector or array

argument. Both the C* and Fortran Plus languages contain reduction operators (>?= in C*,

maxv in Fortran Plus) which are equivalent to the above maxval operator.

Computation of j(i) can now be evaluated in Fortran 8X as:

MBIDS = MARGINS .eq. v(i)

TEMP = 0

where(MBIDS) TEMP = INDICES

j(i) = minval(TEMP)

In this excerpt, MBIDS is a logical vector marking all occurrences of v(i) in MARGINS,

INDICES is a vector storing the indices {1, 2, ..., n) and TEMP is set to the integer indices of

these occurrences by the where statement. Thus, j(i) is the index of the first occurrence of v(i)

in MARGINS. Again, both C* and Fortran Plus contain masked assignment operators

corresponding to the Fortran 8X construct.

The remaining parameter required for the computation of a bid is w(i). The Fortran 8X

code for the computation of the remaining parameter is given by:

w(i)= maxval(MARGINS, mask=INDICES.ne.j i))

The ;idd itiona! feature of the Fortran 8X code to be noted here is that the maximum be taken of

a spccilied subslet of elements of MARGINS. This is accomplished by the keyword argument

mask <>. Similar masked reduction operators exist in C* and I orrMI Plu,.

51 TR.457

ALPHATECH, INC.

Figure 3-17 illustrates the performance of the SIMD Gauss-Seidel AUCTION

algorithms on the DAP 510 and the Connection Machine CM-2 for 800 person assignment

problems as a function of feasible assignment density. For comparison, we have included the

times of the sequential Gauss-Seidel AUCTION algorithm on the Encore Multimax and Fortran

8X implementation of the Gauss-Seidel AUCTION on the Alliant FX/8 using 8 vector

processors. Note that the use of dense data structures in the SIMD algorithms results in a

computation time which is effectively constant with feasible assignment density. In essence,

only a fraction of the processors (equal to the feasible assignment density) are doing useful

work in the sparse assignment problems. In contrast, the sequential Gauss-Seidel AUCTION

algorithm uses sparse data structures, and its overall computation time is reduced significantly

for sparse assignment problems. Figure 3-18 illustrates similar results for 1000 person

assignment problems.
100 Sequential Encore

oE

0
E

0

DAP 510

1. I " I 1

0.0 0.2 0.4 0.6 0.8 1.0

Density of feasible assiqnrnents

Figure 3- 1 7. Computation times of SIMI) Gauss Seidel AUCTION algorithmns for
X00 person assi ,inient problems (benefit range I 11,1000) as a
function of feasible assignment density.

52 R

Sequential Encore

-c 100

E

I1

0002040.6
0.81.

pesnassignment Problems (benefit range 11 ~) as a

/fcto
Of ofsi l ass gn en densig ntyfoTeeare two important observations to make about the results of Figs. 3-17 and 3- 18.

FisteIeut on teC -wreobtained using a Sun 4 front end as the sequentialProcssr; evetheessthePerormnceof the GaussSeidel AUCTION algorithm on the

si il arnum er f roc ssos.Aiier consul ting with Thinking m achines personnel, theyS1.1--:sted aaJor source of inefficiency was the language that the algorithm was coded if].In es. ence, the C* compiler on the CM-2 is well-known to generate inefficient code, and iscurrently undervoing major- revisions. In order to achieve optimal Performance, ThinkingMach~ines recommended the use of the C-PARIS assembly language-, due to time limitations,such assembly cdwa xo tescope of this effort and remai ns a topic for future[nvc -ri(_ari(:n- lowv; ,w poil]t out that Similair times were reported by Phli H)ps and ZelliosinterIi]elln a61 fieJcb AUJCTION ahzorithmi uin, both Gauss-Seile n

ALPHATECH, INC.

Jacobi parallelization) in the C-PARIS language for assignment problems with comparable

numbers of persons and similar benefit range.

The second observation is aimed at explaining the exceptionally fast performance of the

DAP 510 on this class of algorithms. In essence, the DAP 510 communications architecture

allows it to execute reduction operations such as minval in a time which is independent of the

number of processors used for the reduction operation. Furthermore, these reductions use a

specific bit-level algorithm across all processors which allows the computation of the minimum

of 1024 32 bit numbers in about 12 microseconds.

To illustrate this algorithm, consider taking the minimum of the following list of 4

numbers: (6, 2, 10, 2). The binary representation of these numbers is

Decimal Binary

6 0110

2 0010

10 1010

2 0010

The minval routine on the DAP 510 employs only logical bit operations and succeeds in

locating all occurrences of the smallest value. Specifically, this routine computes a vector of

bits (of length equal to the number of elements) whose 0-bits locate the minima present in the

list. Note that, in the list of binary numbers above, the column of most-significant bits 0010

contains the information that the third number in the list cannot be the smallest. Therefore,

0010 locates the minimum as being among the first, second and fourth numbers in the list. In a

second application of the same reasoning, note that a Boolean OR combination of the first

column with the secoid column (0010 OR 10(X) = 1010) further narrows the choices for

mininmm to the second and fourth numbers.

The complete algorithm for minval on the DAP 510 is essentially equivalent to OR

together all of the bit columns of the analogous binary representation of a list of numbers,

starting at the most significant end. Some care must be taken in order to avoid obtaining a

54 TR-457

ALPHATECH, INC.

vector of all I's. Whenever the running result comes up all ones, its previous value must be

used to continue the algorithm. That would be necessary, for example, in the next step of the

sample calculation above. Detecting such a condition can be done efficiently in the DAP 510

because of its ability to efficiently test bits across all processors.

A similar approach is used for implementing the maxval reduction operation which is

3 used in the AUCTION algorithm. Thus, as long as the number of processors is larger than the

number of objects, the DAP architecture provides a near-optimal match to the computation

requirements of the Gauss-Seidel AUCTION algorithm for dense assignment problems.

3 There are several unresolved issues associated with the use of SIMD architectures for

implementation of the AUCTION algorithm. The first issue involves the potential use of

3 sparse data structures. For large sparse assignment problems, a lot of the available memory is

wasted in each processor when using dense data structures. However, using sparse data

I structures will require data movements, which will reduce the efficiency of the SIMD

I architectures. For applications using sparse data structures, the more flexible communication

network structure of the CM-2 (versus the grid structure of the DAP 510) may offer some

advanta ges.

The second issue concerns whether a combination of the sp,:cdups possible from

3 Gauss-Seidel and Jacobi parallelism on a SIMD architecture is possible. This requires the

ability to compute bids for multiple persons simultaneously. Although such an arrangement is

possible on the Connection Machine CM-2 by careful arrangement of the data across different

processors (see [251 for a discussion), the persons which wil: be unassigned at any one

iteration are not known apriori, so that, in practice, data movements among processors may be

required to achieve this combination. Again, this would lead to a decrease in the overall

efficiency of the parallel SIMD AUCTION algorithm.

In spite of these unresolved issues, SIMD architectures offer the promise of significant

3 computation reduction for large assignment problems. Figures 3-17 and 3- 18 illustrate that the

Gauss-Seidel AUCTION algonthm was nearly two orders of magnitude tster on the DA P 510

U 55 T-457

ALPHATECH, !NC.

than on a sequential processor. Figures 3-19 and 3-20 illustrate the relative performance of the

DAP 510 algorithm when compared with the fastest MIMD algorithms on the Alliant FX/8 and

the Encore Multimax. Even for very sparse problems (density 5%), the computation time on

the DAP 510 using dense data structures was comparable to the computation times achieved by

the fastest parallel MIMD algorithms.

15

Encore Muhimax

10

C0
8

E

05

E DAP 510

0.0 0.2 0.4 0.6 0.8 1.0

Density of Feasible Assignments

Figure 3-19. Performance of best MIMD and SIMD Gauss-Seidel AUCTION
algorithms for 800 person assignment problems, benefit range
11,1O001

56 lR 45T

U ALPH-A1ECHNC

* 30

3
-~20 Encore Multimax

U)

C

10

0.0 0.2 0.4 0.6 0.81.

Density of Feasible Assignments3Figure 3-20. Performance of best MJMD and SIMD Gauss-Seidel AUCTIONalgorithms for 1000 person assignment Problems, benefit range* [1,10001

SI

ALPHATECH, INC.

* SECTION 4

ASYNCHRONOUS PARALLEL AUCTION ALGORITHMS

4.1 INTRODUCTIONU
In the previous Section, we discussed our designs of parallel AUCTION algorithms for

implementation on MIMD and SIMD machines. The design of these parallel algorithms

included sufficient synchronization in order to guarantee that the bids generated by the parallel

and sequential algorithms were identical. However, this synchronization often prevents

3 efficient distribution of the computational load across processors, thereby reducing the

efficiency of the parallel AUCTION algorithms.

5The AUCTION algorithm is a natural candidate for asynchronous implementation, as

discussed in Appendix A. In an asynchronous implementation, bid calculations may be done

with out-of-date object price information and the highest bidder awards and subsequent price

adjustments may be done with out-of-date bid information. The potential advantage of an

asynchronous implementation is a reduction of the, so-called, syichronization overhead. This

3 is the delay incurred when several processors synchronize to calculate in parallel a single

person bid, when several processors calculating separate person bids in parallel, wait to make

3 sure that up-to-date price information is available, and when the processors calculating in

parallel the highest bidder awards wait for all bids to come in. Asynchronous algorithms are

I discussed in detail in 1281, which gives many other references.

3 In this section we explore the merits of various asynchronous implementations of th,_

AUCTION algorithm in a shared memory MIMD multiprocessor: the Encore Multimax. The

validity of such an asynchronous implementation is established in Appendix A. We compare

the performance of the synchronous and asynchronous implementations of the AUCTION

U algorithm, in an effort to quantify the tradeoffs between 'cobi and Gauss-Seidel

paralelization. as well as the effects of asynchronism. To our knowledge, this is the first w ork

1 59 R-_'

I

ALPHATECH, INC.

to report on the practical performance of asynchronous versions of the AUCTION algorithm in

a real parallel machine.

4.2 ASYNCHRONOUS IMPLEMENTATION OF THE AUCTION

ALGORITHM

In this subsection, we describe the asynchronous implementations of the AUCTION

algorithm using the model for asynchronous computation described in Appendix A. As in the

synchronous AUCTION algorithms, we describe the asynchronous algorithms in terms of the

bid phase and the auction phase of each iteration. The difference between the synchronous and

asynchronous algorithms is that the information used in the bid and auction phases may be out

of date, as discussed in Appendix A.

In our asynchronous implementations, the bid calculations for a person i are divided

into two types of tasks: search tasks, corresponding to searching a subset of the feasible

objects A(i), and bid tasks, corresponding to merging the results generated by the various

search tasks corresponding to person i and generating a bid for person i. These tasks are

organized in a first in -- first out queue. When a processor becomes free it starts executing the

top task of the queue if the queue is nonempty and otherwise it checks whether a termination

condition is satisfied. The algorithm stops when all processors encounter the termination

condition. Similarly to the synchronous Gauss-Seidel implementation, each set of admissible

objects A(i) is divided in k groups of objects Al(i), ..., Ak(i). The calculation of the bid of a

person i is divided into k tasks, where each task involves a different group of objects. To

perform one of these tasks, a processor must calculate and store in memory the best value.

second best value, and best object within the corresponding object group.

In addition to the search tasks, a bid task is created for each unassigned person i. This

bid task reads the results of the individual searches stored in memory and completes the bid of

peron i b merging the individual group search results, that is, by finding the best object and

bid for person i based on the currently stored group results. The bid task also includes raising

60 R-, .

ALPHATECH, INC.

I the price of the best object and changing the assignment of the object (assuming the calculated

bid is larger than the best object's price by at least E).

There are two sources of asynchronism in this implementation. First, it is possible for

some prices to be changed between the time a search task is completed and the time the results

of that task are used to calculate a person bid. Second, it is possible that the bid task of a

person is carried out before some of the search tasks associated with that bid are completed.

In both cases the bid may reflect out-of-date price information and may prove ineffective in that

it yields a bid that does not exceed the corresponding best object's price by at least -. The

3 advantage of the asynchronous implementation is that processors do not remain idle waiting to

get synchronized with other processors or waiting for merging tasks to be completed.

SThe above implementation can be specialized to implement asynchronous algorithms

which are equivalent to the Gauss Seidel, Jacobi and Hybrid AUCTION algorithms by

I controlling the number of search tasks gencrated for each unassigned person and the

distribution of tasks among processors. If a single search task is generated per unassigned

person, and this search task and its corresponding bid task are assigned to a single processor,

3 the resulting algorithm corresponds to an asynchronous implementation of the Jacobi

AUCTION algorithm. If the number of search tasks per unassigned bidder is equal to the

3 number of processors, the resulting algorithm is an asynchronous implementation ef the

Gauss-Seidel AUCTION algorithm. Asynchronous hybrid variations are obtained by

Imodifying the ratio of the number of processors used to the number of search tasks Lenerated

3 per unassigned bidder. In the following subsections, we discuss the results obtained from our

implementations of the asynchronous Jacobi AUCTION algorithm and two asynchronous

I Ilvhrid A[UC'TION algorithms.

4.3 ASYNCIlRONOIUS JA(;OBI AUCTION AL;ORITILM

Thc asvnchronous Jacobi AUCTION algorithm desigen is aimed at red ucing the overall

vnchronizaion overhead by allowing bids to be computed based on older \al tcs of the obIect

61 11 -157

ALPHATECH, INC.

prices. Specifically, processors start computing new bids without waiting for other processors

to complete their price updates. Some synchronization is still required to guarantee that the

prices of each object are changed in an appropriate order, and to guarantee that each processor

computes the bid of a different person. This synchronization is implemented using locks on

each object and a lock on the queue of unassigned persons; these locks allow only one

processor at a time to modify the price of a given object, and only one processor at a time to

update the queue of unassigned persons. Figure 4-1 illustrates the design of the asynchronous

Jacobi AUCTION algorithm. In order to reduce contention for the locks, when the number of

persons in the unassigned persons queue is lower than the number of processors, excess

processors are diverted to a barrier to wait for a new e-scaling cycle.

Select Uo ck ompute Lo,-ck Updat P ic Unlock Lock Update UlcLocklerso Bid: andecta1 nmen Object (Que .~Unasig ned ueueck

Unassigned
Person
Queue

-- -I - - - - - -

Ii'IEll- ---- ---- ---- ---- 1

Select Comnpu~te Lok rie Unlock- Lock Update
Lock Pesn Unlock g :d: and asinmn ocja unasaigned Ulc

Queue O~c~Prsons QueueQu

Fitzure 4- 1 Design of Asynchronous Jacobi AUCTION algorithm. Locks on each
object and on the unassigned perscns queue are used to guarantee data
integrity and preserve complementary slackness.

The performance of the asynchronous Jacobi AUCION algorithm is illustrated in FiLn.

4-2. The numbeirs shown represent an average of three runs, the actual running time of the

algorithmi varies fr-om run to run11 bcauILse the order inI which different processors complete their'

hids ,,nd acquirec the locks affect,, the ordler InI wh L!- ob,;ects are inse-rtcd into tie unaMSSIgned~k

62 IR --A57

U ALPHATECH, INC.

I persons queue. A different ordering of persons produces a different auction process, which

affects the total computation time. The curves in Fig. 4-2 represent the total computation time,

and the number of bidding iterations performed by the parent process. Note the close

correlation between these two curves, indicating a minimal amount of synchronization

overhead. Note furthermore that the computation times are reduced to nearly 7.4 seconds,

which represents a 28% improvement over the minimum times achieved by the synchronous

Jacobi AUCTION algorithm in Section 3.2.2. This improvement is achieved because of the

improved load balance among processors, as processors do not wait idly for other processors

to complete their bidding process. Note that there is no apparent slowdown of the achievable

gprocessor efficiency with increased number of processors, unlike the performance of the

syvchronous Jacobi AUCTION algorithm.

40]

30

I Time, seconds
20 Bidding iterations, thousands

* 20

10

I ! ! I.I

0 2 4 6 8 10 12 14 16

Number of Processors

Figure 4-2. Pcrmnce of the asvnchronous Jacobi AUCTION alg-orithm for
1000 person, 20% dense assignment problem, benefit range 11, 1000).
'I he nunmber of iterations b' the parent processor arc also indicated.

I

I

ALPHATECH, INC.

4.4 ASYNCIIRONOUS HYBRID AUCTION ALGORI'IIN1S

The results obtained usingz the asynchronous Jacobi AUC'lION algorithm indicate that

reducing the synchronization per iteration can improve tie performance of the parallel

AUCTION algorithms. The designs of the asynchronous Hybrid AUCTION algorithms \,ere

aimed at developing asynchronous algorithms which effectively combined the speedups of

Jacobi and Gauss-Seidel paralletization. The designs of the two asynchronous algorithms

differ slightly, and follow closely the theory of the asynchronous AUCTION algorithm

presented in Appendix A.

Figure 4-3 illustrates the design of the asynchionous Hybrid A' ICTION algorithms.

Instead of an unassigned person queue, there is a queue of unassigned search tasks and bid

tasks. Each unassigned person is represented by S search tasks and one bid task in this queue,

ordered consecutively in thc queue, so that the bid task follows the S search tasks. Different

types of asynchronous algorithms can be generated by controlling the numbe, of search tasks

cenerated for each unassigned person. As before, a synchronization lock is required to allow

tasks to hc read and generated one at a time.

Figure 4-3 illustrates the processing of a single processor. After reading a task from

the task queue, the processor determines whether it is a search task or a bid task. If it is a

search task for hdder i, the processor searches the appropriate segment of the objects A(i and

,ri tcs a m IsIa i; shared memory with the results of its search (the two highest net profit

lcvcls1 ant :he ohbect offering the highest net prolit). The message is protected hv a lock

itIc x,'c! b t he- process(i index ',nd the person index, which e narantees that the message lclw t

he rcad in it, cti rcty hy tne hid task. After writing the message, the prcessor releases the

tld' l I tidattempv to aI irc rn i tsk,

If thc i ik ic pired 1, , HI:J taik, tlie prcssor ut rcadt he i C , 11C 1t h th.

t..\ 14-, 1 his pt 1u. S ' ie tlhc:,c seirc'h t ,k' naV sill he in prhw .II thc hid

P- r" a) ' he r' irie ol(! , \ .-c\' l l, c \or iock c; cl II l'',1ce. I 1'1the

I

ALPHATECH, INC.

contents, releases the lock and merges the results of the individual search tasks into an overall

search result. This is then used to compute a bid (from person i to object j). The processor

then locks object j, updates the price and assignment of object j and releases the object. If an

unassigned person results from this operation, the processor then locks the unassigned task

queue, inserts S search tasks and one bid task at the end of the queue for the unassigned

person, and releases the queue.

SLMs Generate Ta n Mse
for Unassigned UpaePrc

Unlock Person ard Q Object j JnPen, iock

-. Update Task Queue H A I aloi

hc diffit wh th Lord of pdg Cu me oouurdated messuce.

1:e u 1 er e e a chC oiZ o.Me o' ,',,o c J

itk rs gt te son i 1 1roc re rou1ts Ohe s h

rstir eu fthe c kid task for t ae r t l l o dtat Sohe weart A, the s e Ls fowi e

tflaFtge -o c Dmplete bowhe ti tsynchronud brid AUCT algoith. II

lliThl he algorithc ribeda aboeirs he asynechronosk Hbrrpodin AUTON 11ero alotm

requirc ed 1hid task eric,,). da,n the bidask f~lor.T pro cwoldwtor lC the search tasksf-

I O wl tl n the !d tJsk. i this rI annll er, the likclih o od that th e o ther .' earch ta,ks, corresp m ic- g1

to) ilill p t;I ll m ;r," ' C 0tllp ic t et hV t hle i nie [lc h d t'i k i " e c c u e d is xu s n I~i l n c re a se d .

ALPHATECH, INC.

Figure 4-4 illustrates the performance of one variation of the asynchronous Hybrid

AUCTION I algorithm for the same 1000 person, 20% dense assignment problem. In this

variation, the number of search tasks generated per person is equal to half the total number of

processors used. In this manner, the results are comparable to the results obtained using the

synchronous Hybrid AUCTION a'Jgorithm with two computed bids simultaneously. As

before, the number of iterations required for convergence depends on the order in which the

processors complete their tasks, and varies between different executions of the algorithm. The

times shown are the average times of three runs. Contrasting the results of Fig. 4-4 with those

of Fig. 3-12, we see that the asynchronous Hybrid AUCTION I algorithm achieves nearly a

30% reduction in computation time over the corresponding synchronous Hybrid AUCTION

algorithm. Notice that the minimal times of both curves occur around 10 processors; adding

additional processors increases the overhead for merging the results of additional searches,

thereby detracting from overall performance in both the synchronous and asynchronous cases.

The computation reduction of the asynchronous algorithm is due to improvements in load-

balancing and reduced synchronization overhead. Load balance among processors is improved

by having search tasks conducted in parallel with bid tasks, thereby keeping the majority of the

processors performing Laseful computations. Reduced synchronization is accomplished by

removing global synchronization primitives such as bariers and monitors, instead replacing

these by locks on the specific data items (such as messages) for which integrity must be

maintained.

Figure 4-5 illustrates the performance of the asynchronous H-vhrid AUCTION I

algorithm using 16 total processors as the numbers of bid and search titsks are varied. The

moal of the Hybrid AUCTION I algorithm is to obtain a miultiplicative combination of Jacobi

and Gauss-SCidCl speed tIps: the results ot Fin. 4-5 indicate that the a vnchronous lvbrid

.\ (71ION I algorithnl has approached clos to a inltiplicative c nibintion for the optimal

Cin icCs o1 nntlber\ of pr()ccsm, rs and search iThks 'lcrc i" a noticeahle dl-opoff inI the

I I

ALPHATECH, INC.

30

-0
C:

80 2o

.E
b-
c

.0
E

0 10-

0)

o 10

Q
C)

(0

2 4 6 8 10 12 14 16

Number of Processors

Figure 4-4. Average computation time of asynchronous Hybrid AUCTION I for
1000 person, 20% dense assignment problem, benefit range [1,1000].
The times shown are the average of three different runs on the Encore
Multimax. In these problems, the number of search tasks per bid was
equal to 1/2 the number of processors.

combined effectiveness when large numbers of search tasks are generated for each bid. The

reason for this dropoff is that the total synchronization overhead associated with each iteration

increases because the overall length of the task queue increases; this length is equal to the

number of search tasks per bid times the number of bids required for the algorithm to

converg, and thus grows li-earlv with the number of search tasks. Since synchronization

(using locks) is usc i to maintain the integrity of the task queue, the synchronization overhead

increases as the number of search tasks per bid increases for a fixed number of p-ocessors.

As the rCsult of Fig. 4-5 indicate, the asynchronous I-lybrid AtUCTION I algorithm

approached a succcssfIl combination of the speedups possible from Jacobi and Gauss-SeidCl

parnleli iMl thr-uMit'l a earCefl1 mn ,1'.CenlCnt of the order in which tasks are celectcd for

5r we sYinV,,,. Inl order to IIlustrate the effecis of more ,cncral asvnchron o implementations.

S ,7li'.'

ALPHATECH, INC.

we designed the asynchronous Hybrid AUCTION II algorithm, which was identical to the

Hybrid AUCTION I algorithm except that the bid tasks would be assigned to the first available

processor after all the corresponding search tasks for that bid had been assigned (as opposed

to assignment to the same processor which selected the last search task). Figure 4-6 illustrates

the relative performance (averaged across three runs) of the asynchronous Hybrid AUCTION 1

and II algorithms for the same 1000 person assignment problem. In these experiments, the

two search tasks per bid are generated. Clearly, the asynchronous Hybrid AUCTION II

algorithm is nearly twice as slow as the asynchronous Hybrid AUCTION I algorithm. The

reason for this behavior is illustrated in Fig. 4-7, which describes the number of bids generated

by each algorithm for convergence to an optimal solution. In essence, the number of bids

required more than doubles for the asynchronous Hybrid AUCTION II algorithm! This is

because the bid task is generating the bids before the search tasks have completed their scans;

Predicted Combined Speedup

x 6
0)

a, '6 Actual Speedupu \
, 5 of Asynchronous

Hybrid Auction I<,

(a
4 4

Speedup of synchronous
Jacobi Auction

0Y
OD
) 3 .

E

2
(D

Speedup of synchronousU)

Gauss-Seidel Auction

2 48

Number of Search Tasks per Bd

Figure 4-5. Comparison of predicted aid aIctual SpCedlnpN ,chiCCd bv the
asynchronou, I lvhrid A UCT'ON I algorithm for 1l(0(person, 2(V';
dense assign mernt probletm, beneft range I1 l()J.

P3 T9 4 ,"

I ALPHATECH, INC.

* 40-

30-

-0
C

u)o 20- Asynchronous Hybrid
a) Auction 11E
F-

.0

3 Asynchronous Hybrid
Auction I

I 0 2 4 6 8 10 12 14 1

Number of Processors

Figure 4-6. Performance of different asynchronous Hybrid AUCTION algorithms
for 1000 person, 20% dense assignment problems, benefit range

1 60

0

C7

0I C-

- 0

(T 3 Asynchronous Hybrid
AuctionI

...........

I2 4 G 8 10 12 14 16
Number of P-ocessors

n-'rc 1 7. Nu iher of h1s, rcqjuirc(1 for conver-eelce to op)timlal assignmllents byI ~(il tecrnt awa'vci rolnots Illbrid A[VC'H(N aloorithmis for 1000

Jkr(~ (1KtI,'C a .SeSsignml1ent pr1oblemls, bear fit rnnge I1 '10001.

69 TH 15T

ALPHATECH, INC.

these bids based on old information are often rejected, so that aduitional bids are required. The

results illustrate the importance of careful management of asynchronous tasks in order to

guarantee that the processors are doing useful work (i.e. work that will not become irrelevant

when new information is acquired.)

Figure 4-8 compares the performance of the synchronous Hybrid AUCTION algorithm

with the performance of the asynchronous Hybrid AUCTION I algorithm for 1000 person

assignment problems with varying feasible assignment density. In these experiments, the

number of search tasks generated per unassigned bidder was equal to half the number of

processors selected; on the average, only two simultaneous bids were computed by the

asynchronous algorithm, making it comparable to the synchronous Hybrid AUCTION

algorithm. The computation times of the asynchronous algorithm are averaged across 3 runs.

Note the significant reduction in computation time achieved by the asynchronous algorithm

this improvement reflects the improvement in load balancing across the multiple processors

used.
60

50

40 Synchronous Hybrid AUCTION

CO)

30

E

0
CL

E

10

0
* I I I

0.0 02 0.4 0.6 0.8 1.0

Density of -easible Assignments

Figure 4-8. PIcrfornance of synchronous I-IN brid AUCTION and asvnchron,us
lHybrid AUCTION I algorithms on 1W(X) pcrson assiginment problC1s
of varvi ng density, benefit range 11,10001.

70 T .,K-

ALPHATECH, INC.

REFERENCES

1. Castafion, D., N. R. Sandell, W. M. Stonestreet, M. Athans, J. G. Eoll and K. A.
Hatch, Advanced Weapon Target Assignment Algorithms Program: Systems Analysis
Report, ALPHATECH report TR-427 on Army Strategic Defense Command Contract
DASG60-86-C-0050, March 1989.

2. Castafion, D. et. al., Advanced Weapon Target Assignment Algorithms Program: Final
Report, ALPHATECH report on Army Strategic Defense Command Contract
DASG60-86-C-0050, July, 1989.

3. Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory_
of NP-Completeness, W.H. Freeman, New York, 1979.

4. Lloyd, S.P., and H.S. Witsenhausep, "Weanons Allocation is NP-Complete," Proc. of
1986 Summer Conference on Simulation, Reno, Nevada, July 1986.

5. Dantzig, G.B., Linear programming and Extensions, Princeton University Press,
Princeton, New Jersey, 1963.

6. denBroder, G. G., R. E. Ellison and L. Emerling, "On Optimum Target Assignment."
Operations Research, Vol. 7, 1959.

7. Kattar, J.D. (1986). Solution of the KKV Multi-Weapon, Multi-Target Assignment
Problem, working paper WP-26597, the MITRE Corporation (Bedford Operations).
Bedford, Massachusetts.

8. Chang, S.C., R. M. James and J. J. Shaw, "Assignment Algorithms for Kinetic
Energy Weapons in Boost Phase Defense," Proceedings of the 26th IEEE Conf. on
Decision and Control, Los Angeles, California, Dec. 1987.

9. Shaw, J.J., et al., "Battle Management Structures, Kinetic Energy,, Weapon, Weapon
Target Assignment Algorithms - Final Report,", Volume 11, TR-360, ALPHATECH.
Inc., Burlington, MA, January 1988.

10. "Sixth Month Demo Weapon Target Pairing (U)," Contract TP19628-88-C-0(X)7,
Sparta, Inc., Laguna Hills, California, June 1988, SECRET.

11. James, R.M., S. C. Chang and J. J. Shaw, "Weapon-Target Assignment for Boost
Phase Defense," Proceedings of the Joint Director of Laboratories Command and
Control Research Symposium, Washington, D. C. June 1987.

2. "Weapons Allocation and RF Spectrum Management: Algorithm Specification," AT&T
Technologies, submitted to Naval Research Laboratory, conmract N0(X)14-87-C-2035,
Greensboro, North Carolina August 1987.

13. Prcston, F. L. and W. A. Metier, "An Algoritfhmic Solution to thc \\capons Allocation
Problem." AT&T Bell laboratories. submitted to Naval Research I.aboratorv, contract
N0()014-87-C-2035, \Vhippany, New Jersey, Dccembcr 1 9S8.

!1. "!V- Integration and Irnpletlent;1tin, l'xperitment Proeram. Soitiare Dctailed
Design)ocument, Levels 1 & 2 Battle Management CSCI," contrict l)A SG(0-87-C-
)()68, 1RW)cfcnse Systems Group, I hntsvillc, A labanla, Juine 1 9 8.

71 iF1 ,11-

ALPHATECH, INC.

15. Papadimitriou, C.H., and K. Steiglitz, Comhinatorial Optimization: Algorithms and
Complexity, Prentice Hall, Englewood Cliffs, New Jersey, 1982.

16. Bertsekas, D. P., "A Distributed Algorithm for the Assignment Problem", Lab. for
Information and Decision Systems Working Paper, M.I.T., March 1979.

17. Bertsekas, D.P., "The Auction Algorithm: a Distributed Relaxation Method for the
Assignment Problem," Annals of Operations Research, 1988.

18. Bertsekas, D. P., and D. A. Castafion, "The Auction Algorithm for T ansportation
Problems", LIDS Report P-1850, M.I.T., Feb. 1989, to appear in P nnals of
Operations Research.

19. Sanderson, J., private communication.

20. Geyer, H. K., "Parallelization of ALPHATECH's Auction Algorithm," Argonne
National Laboratory, 1987.

21. Payne, D. G. and J. C. Horvath, "Battle Management on the Hypercube: Concurrent
Engagement Management," March, 1988.

22. Kempa, D. N., J. L. Kennington, and H. A. Zaki, "Performance Characteristics of the
Jacobi and Gauss-Seidel Versions of the Auction Algorithm on the Alliant FX/8",
Report OR-89-008, Dept. of Mech. & Ind. Eng., Univ. of Illinois, Champaign-
Urbana, 1989.

23. Balas, E., D. Miller, J. Pekny and P. Toth, "A Parallel Shortest Path Algorithm for the
Assignment Problem," Management Science Research Repi,;-, MSRk 552, Carnegie
Mellon University, Pittsburgh, PA, April, ',.

24. Kennington, J. and Z. Wang, "Solving Dense Assignment Problems on a Shared
Memory Multiprocessor," Technical Report 88-OR-16, Dept. of Operations Research
& App. Science, Southern Methodist University, October 1988.

25. Phillips, C., and S. A. Zenios, "Experiences with Large Scale Network Optimization
on the Connection Machine", Report 88-11-05, Dept.of Decision Sciences, The
Wharton School, Univ. of Pennsylvania, Phil., Penn., Nov. 1988.

26. Bertsekas, D. P. and D. A. Castafion, "Parallel Synchronous and Asynchronous
Implementations of the AUCTION Algorithm," in preparation.

27. Ortega, J. M., and Rheinboldt, W. C., "Iterative Solution of Nonlinear Equations in
Several Variables", Academic Press, N. Y., 1970.

2,X. Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation:
Numerical Methods, Prentice-11all, Englewood Cliffs, N. J., 1989.

29. Boyle, J., Butler, R., Disz, T., Glickfield, B., Lusk, E., Overbeek, R.. Patterson. J.,
and Stevens, R., Portable Programs for Parallel Processors, I tolt. Rinehart &
Winston, New York, 1987.

30. i)ritz. K. W., and Boyle. J. I., "leyond "Spcedtup": lerfonnace Analysis of l'aralll
Progirams". Argonne National Lab. Report ANL-87-7. Feb.19S7.

72 1 R -

ALPHATECH, INC.

APPENDIX A

THE AUCTION ALGORITHM

In this Appendix, we overview the theory of the AUCTION algorithm, descijbe a

model for an asynchronous variation of the algorithm, and establish that this asynchronous

variation obtains an optimal solution to the assignment problem.

A. 1 THE AUCTION ALGORITHM FOR ASSIGNMENT PROBLEMS

In the assignment problem, n persons wish to allocate among themselves n objects, on

a one-to-one basis. Each person i must select his object from a given subset A(i). There is a

given benefit aij that i associates with each object j in A(i). An assignment is a set of k

person-object pairs (i 1,JI)..., (ik,jk), such that 0 -< k < n, jm E A(im) for all k, and the

persons iI ik and objects e j e all distinct. The total benefit B of the assignment is

the sum of the benefits of the assigned pairs.

kB = L, ai mi m

m=l

An assignment with is called complete (or incomplete) if it contains k = n (or k<n,

respectively) person-object pairs. We want to find a complete assignment with maximum total

benefit, assuming that there exists at least one complete assignment. This is the classical
assignment problem, studied algorithmically by many authors IA. 1, A.2, A.3, A.4, A.5, A.6.

A,7. A.8, A.9, A.10, A,1 1, A.12, A.13, A.14, A.151, beginning with Kuhn's Hungarian

method IA.161.

In the AUCTION algorithm, each objectj has a price pj with the initial prices being

arbitrary. prices are adjusted upwards as persons "bid" for their "best" object, that is, the

ohcct for which the corresponding benefit minus the price is maximal. Only persons without

aln object submlit a bid, and objects are awarded to their highest bidder. In particular, the prices

P, irc adjusted at the end of "biddine iterations. At the beginning, ri ,f Cech iterationi we have a

3 73 l .5

ALPHATECH, INC.

set of object prices and an incomplete assignment, and the algorithm terminates when a

complete assignment is obtained. Each iteration involves of subset I of the persons that are

unassigned at the beginning of the iteration. It has two phases:

Bidding Phase: Each person i - I determines an object ji e A(i) for which aij - pj
is maximized overj, i.e.

ji = arg maxje A(i) (aij - pj)

and submits a bid pii + gi for this object, where gi is a positive bidding increment to
be specified shortly.

Assignment Phase: Each object j that receives one or more bids. determines the
highest of these bids, increases pj to the highest bid, and gets assigned to the
person who submitted the highest bid. The person that was assigned to j at the
beginning of the iteration (if any) is now left without an object (and becomes
eligible to bid at the next iteration). If an object does not receive any bid during an
iteration, its price and assignment status are left unchanged.

It ca., be shown that if the bidding increments gi are bounded from below by some E >

0, this auction process terminates in a finite number of iterations with all persons having an

object. To get a sense of this, note that if an object receives a bid in m iterations, its price must

exceed its initial price by at least me, while if an object is unassigned, its price has not yet

changed from its initial value. Thus, for sufficiently large m, the object will become

expensive" enough to be judged "inferior" to some unassigned object by each person. It

tollows that there is a bounded number of iterations at which an object can be considered best

and thus be preferred to all unassigned objects by some person. (This argument as stated,

assumes that it is feasible to assign any person to any object but it can be generalized for the

case where the set of feasible person-object pairs is limited, as long as there exists at least one

feasible assig nent; see e.g.tA.17, A.181.)

Whether the complete assignment obtained upon termination of tie auction plmkess is
optimal depends strongly on the method for choosing the bidding increments gi In a real

811Ctifli a prudent bidder would not place an excessively high bid for fear the object might x.e

won at an unnecessarily high price. Consistent with this intuition, one can show that if the

74

ALPHATECH, INC.

bidding increment gi is small enough to ensure that even after the bid is accepted, the object

will be "almost best" for the bidder, then the final assignment will be "almost optimal". In

particular, we can show that if upon termination, we have

maxj (ajj - Pj - P-<! aiji - pji for all assigned pairs (i~Jj) (A-I)

(a property known as e-complementary slackness or £--CS for short), then the total benefit of

the final assignment is within ne of being optimal. For a first principles derivation of this, note

that the total benefit of any complete assignment {(ijj), i = 1, ... , n }satisfies

n n

ai, 5 p, + maXjEA(i) (aij- pj)
j= 1

for any set of prices pj'J j ... n, since

n n

1matXjEA(i)(aij- pj) >7 , -an. -

n n

pj = IJ

There fore, the optimal total assignment benefit cannot exceed the quantity
Z n

n

A* =mn-inpj. t1 I p1 + I rna-xleA0)(aij- p)}
i = I i = I(A -2)

On the other hand, if the s-CS property (A-I1) holds upon termination Of the aulction process,

then by addingl FKj. (Al-1) over all i, we sce that

±1 1 iaXC\l(l p n

I -I (A -

Since the left sidC above Can not he less than A*, which as argued earlier. clinnot he lesst

the: (pt il al to tal assignment benefit, we see that the final total assignment henefit is withinl 1C

75 TB? 4-7

ALPHATECH, INC.

of being optimal. We note parenthetically that the preceding derivation is guided by duality

theory; the assignment problem can be formulated as a linear programnming problem, and the

minimization problem in the right side of Eq. (A-2) is a dual problem (see e.g. IA. 18, A.191).

Suppose now that the benefits aij are all integer, which is the typical practical case (if aij

are rational, they can be scaled up to integer by multiplication with a suitable common positive

integer). Then, the total benefit of any assignment is integer, so if ne < 1, a complete

assignment that is within ne of being optimal must be optimal. It follows, that if e < l/n, the

benefits aij are all integer, and the E-CS condition (A-1) is satisfied upon termination, then the

assig-nment obtained is optimal.

There is a standard method for choosing the bidding increments gi so as to maintain the

s-CS condition (A-1) throughout the auction process, assuming this condition is satisfied by

the initial prices and the initial assignment (as i' trivially the case when no objects are assigned

initially). In this methad, e is a f-'-- -,sitiv' . .. ,-!d .. bidding increment g, is giN --- by

gi = C+v i -w i (A-4)

where vi is the best object value,

vi = maxjE A(i) (aij - pj) (A-5)

and wi is the "second best" object value

wi = maxjc A(i), jtji (aij - pj) (A-0)

where ji is a best object for which the maximum in Eq. (A-5) i,1 attained. We will assume for

convenience throughout that A(i) contains at least two objects, so the maximnum in Eq. (A-6) is

well defined.

A.2 COMPUTATIONAL ASPECTS -- c-SCALIN(;

The AUCiION algorithm exhibits interesting ctmputati nai bch. x or and it is essential

to understand this behavior in order to implement th. algorithm cficicntl'. We first note that

A, TR 4

ALPHATECH, INC.

the amount of work to solve the problem can depend strongly on the value of F and on the

maximum ab.olute object value

I C = maxij aij (A-7)

Basically, for many types of problems, the number of bidding iterations up to termination tends

to be proportional to C/c. We note also that there is a dependence on the initial prices; if these

prices are "near optimal", it can be expected that the number of iterations to solve the problem

will be relatively small. This suggests the idea of E-scaling, which consists of applying the

algorithm several times, starting with a large value of c and successively reducing e up to an

ultimate val:ie which is less than the critical value 1/n. Each application of the algorithm

provides good initial prices for the next application.

In practice, it is a good idea to at least consider scaling. For sparse assignment

problems, that is, prob'ems where the set of feasible assignment pairs is severely restricted,

scaling seems almost universally helpful. This was established experimentally at the time o!

the original proposal of the AUCTION algorithm I A.20]. There is also a related polynomial

complexity analysis IA. 181 that uses some of the earlier ideas ofan e-scaling analysis I A.9],

for the e-relaxation method of IA.21 1.

Our implementation of c-scaling is as follows: the integer benefits aii are first

multiplied by n+l and the AUCTION algorithm is applied with progressively lower value of c.

up to the point where v becomes I or smaller (because aij have been scaled by n+l. it is

sufficient for optimality of the final assi gnmen t to hVe 1' < I) The seu1 ce, of C values Used is

i(k) -- rr x(l, A/()k). k = (), I.

where A > 0 and (3 > I are parameters set by tze user. Typical vailu es ihIt c used for sparse

pt+blcnis, are A or/i\ r - ('12. and .1 ') S.

Tt

ALPHATECH, INC.

Ax.3 'UHE TOTALLY ASY'NCHIRONOUJS VERSION 012TiE AUCTION
ALGORITHIM

One may view a synchronous parallel algorithm as a sequence of conseCutive

computation segments called phases . Tho computarions within e-ach ph.ase are divided in somec

way amiong the processors of a pairallel Computing system. The computations of any two

processors within each phase are independent, so the algorithm is mathematically equivalent to

some serial algorithm. Phascs are separaed by synzchronization points, which are times at

which all processors have completed the computations of a given phase but no processor has

yet started the computations of the next phase. In asynchronous parallel a .gorithms, the

coordination of the computations of the(piocessors is less strict. Processors are allowed to

pro ceed w,-h comnp'i*ations of a phase with data which may be out-of-date because thle

com~putations ot the previous phase are incomplete. An asynchronous algorithm may contain

xmine svrnchronization points but these are generally fewer than the ones of the corresnonidine1-

V fCh rotio us kersion .

'I(-et a first idea of the tcotal 1- asvnchronous Implementation of the AUCTION

H e~r thn.it is Us(fll to tnink oi a pcrson as an autonom-Nis decision inakcr thatt 'brI ut

unpred)Iictable timeCs if-forniation Ihbout thle prices Of tace Objects. Each unassigned person miake-s

a bid at arbitrir, timives on the ba~sis of its cur-rent object price infc-.ma.tion (thai may be outdated

he~ti_ ofCM11lninCatin deClays). FUrthermnore, assitznient of objec-.s mayi be decided even

ie p utcut ii idders have not xccn heard from. 'Ii i re basically" tw"o Conditions that

IIl't he2 o)h"ervd InI O)rdcr tor tis p)1 CCSS to terminnate pronerl .W Stalte 1-11-7i! I

V BpI .. ann I % 1 1 hid. t(j (h I t h I w ai i n '11t t p1 '- rIl ;I ' hi d i

'h . ic~ i' 1 !w NJ; 1()I- 11(ehlk~ Pttt61ileprc -oh t

ALPHATECH, INC.

We now formulate tle totally asynchronous model of the AUCTION algorithm, and we

prove its validity. We denote

pj(t) = Price of object j at time t

fj(t) = Persoi assigned to objectj at time t [j(t) = 0 if objectj is unassigned]

U(t) = Set of unassigned persons at time t[i e U(t) if rj(t) # i for all objects j]

We assume that U(t), 7j(t) and rj(t) can change only at integer times t; this involves no

loss of generality, since t may be viewed as the index of a sequence of physical times. In

addition to U(t), pj(t) and rj(t), the algorithm maintains at each time t, a subset R(t) C U(t) of

unassigned persons that may be viewed as having a "ready bid" at time t. We assume that by

time t, a person i e R(t) has used prices pj(tij(t)) from some earlier times tij(t) -< t to compute

the best value

vi(t) = maxjc A(i) (aii - Pi(tii(t))) (A-8)

a best object ji(t) attaining the above maximum,

ji(t) = arg maXjc A(i) (a.j - pj(tij(t)) (A-9)

th ,ccoid b.st value

wit -- inax>jo A(i),. jit -.t j it n j' A-IW)

anl(d iuis determi ned a bid

h,) p, (t I I(t)) + vI(I ,l(t)4 E A I I

CIT . -tplic 1ti41 ICre I l that (ii isrI ncd persons i ,ill enter the set h c.h t 2i i.: c c1i. iIIIC t

h1 C r somic C I t ; III (II.t io I. \ ,)h lp1.11C J:4I) a d i(t . 1 c I, lowev'er \',T i/C the uenc r-lIt\

(,IrtI n u. ,t ir lo .t hc p Ill th\p.. e tOl lh IIiec . 7: 4tl>on t lm: don": I,,

l' (il oll I I f (i m p;Il lc 1 1 Wel I , t.

\ s' m l p ll~l o 2 . .-()1 All 1, j. ,!:l'i 1. 1: ! 1 1 1(11[

ALPHATECH, INC.

Clearly an asynchronous AUCTION algorithm cannot solve the problem if unassigned

persons stop submitting bids and if old information is not eventually discarded. This is the

motivation for the preceding two assumptions. Initially, each person is assigned to at most

one object, that is, rj(O) # rj,(O) for all assigned objects j and j', and it will be seen that the

algorithm preserves this property throughout >s course. Furthe,-h.... iWitiaily c-CS holds, that

is,

maxk (aik - Pk(O) - c) - aij- pj(O) if i = rj(O)

It will be shown shortly that this property is also preserved during the algorithm.

At each time t, if all persons are assigned I U(t)=(D], the algorithm terminates.

Otherwise, if R(t) = 0, nothing happens. If R(t) is nonempty the following occur:

1. A nonempty ,,,set I(t) c R(t) of persons that have a bid ready is selected.

2. Each objectj for which the corresponding bidder set

Bj(t) = i e I(t) Ij =ji(t)} (A- 12)

is nonempty, dtemines the highest bid

bJ(t) = 11 a1xi1_ Bj- (Lt)'(t) (A - 13,)

and a person i(t) tor which the above maximum is attained:

ij(t) -are xi fl,'ax,1Xi B h t (A- 14)

'hCn, the pair i(1) p r uf is changed according to

I 4- V, 1+1)+ -] U). iT(t+J itb'r) I I -t

I,, ,' I t I I tri l I .t t 11 J 11P,, a t , t. 1 t 11 1 4 , \ -11 D M W 1i ' . c u v l' '

t'.+'~~~ ~~~~~ ~~~~~ . 1]rq ,l. ,l.~ ! t -. : ']il v. iH \

ALPHATECH, INC.

The asynchronous model becomes relevant in a parallel computation context where

some processors compute bids for some unassigned persons, while other processors

simultaneously update some of the object p-ices and corresponding assigned persons.

Suppose that a single processor calculates a bid of person i by using the values aij - pj(tij(t))

prevailing at times tij(t) and then calculates the maximum value at time t. Then, if the price Of

an object j c A(i) is updated between times tij(t) and t by some other processor, the maximum

value will be based on out-of-date information. The asynchronous algoithm models this

possibility by allowing tij(t) < t. A similar situation arises when the bid of person i is

calculated cooperatively by several processors rather than by a single processor.

The following proposition establishes the validity of the asynchronous AUCTION

algorithm of this section.

Proposition 1: Let Assumptions 1 and 2 hold and as, ume that there exists at least one
complete assignment. Then for all t :1nd all j for which r,(t) # 0, the pair
Ipj(t),rj(t)] satisfies the -CS condition

maxk (aik - pk(t) - C) -< aij - pj(t) if i = rj(t) (A- 16)

Furthermore, there is a finite time at which the algorithnm terminates. The
complete assignment obtained upon ternmination is within n of being
optimal, and is optim. i if e <1/n and the benefits aij are integer.

proof: Let lpj(t),rj(t) be a pair with rj(t) # 0. To simplify notation, let i = rj(t). We first

consider times t at which pj was just updated. i.e., pj(t) > pi(t- 1) and i ;- rj(t- 1), and person i

submitted a highest bid for object j at time t- 1. Then we have by constructio,,

hp1(t) -ai (- 1) = aij - pj(tij(t- I)) - v, (t -I C

\,i(t-l I - I l1otXkri , A i, i k P ,lik()

where the ,ast i[tlcquality follows using the fact pkY - Pk(t o' 1,ii k ,I'l I vh

'IeIel hC,,:1, , 1he u-(US cundilion (!\-l) hl ds 10r a ., t i h p \1\l

ALPHATECH, INC.

Next we consider times t for which Pj was not just updated. Let t' be the largest timne

which is less than t and for which pj(t') pj(t'-1); this is the largest time prior to t that ohject j

was assigned to person i. By the preceding argument, we have

aij - pj(t') ! maxkc A(i) (aik - Pk(t')) - C

and since pj(t')=pj(t), and Pk(t) ! Pk(t') for all k, the e--CS condition (A- 16) again follows.

We next show that the algorithm terminates in finite time. We first note the following:

a. Once an object is assigned, it remains assigned for the remainder of the algorithm.

Furthermore, an unassigned object has a price equal to its initial price. Using Eqs.

(A-8) and (A-10), we have wi(t)!! vi(t), so from Eq. (A-1il) we see that bi(t) !
pji(tij1(t)) + e. It follows from Eq.(A- 13) that if person 1 bids for object j at time t,

we must have

bj(t) l: pj(tij(t)) + E (A- 17)

b . Each time an object j receives a bid bj(t) at time t, there are two possibilities: either

bj(t) < pj(t)+v, in which case pj(t+1)=pj(t), or else bj(t) pj(tO±C, in which case

pj(t+1) ! pj(t)+c- and pj(t) increases by at least Qcf. Eq. (A-15)]. In the later case

we call the bid substantive. Suppose that an object receives an infinite number of

bids during the algorithmn. Then, an infinite subset of these bids must be

substantive; otherwise pj(t)would stay constant for t sufficiently large, we would

have pj,(tij(t)) =pj(t) for t sufficiently large because old price information is

eventually purgecd from thle system (cf. Assumption 2), and in view of Eqs.(A-1 5)
aind (A- 17) we wvould have p. (t+l pj(t) + F for all times t at w.hich r rcei sa

hid, arrivyingn at a contradlictionl

Assume now, in order to obtain a contradiction, that thle algorithm does riot tenlninate

initlck. Then, because of A ssunlti 1, there is an infinite number of timies t at whiich RMt is

nonlelijity and at each of tliec tlime>. ait least one object receives a bid. Thus. there is a1

norieint sbst of objcts J1 ' which recie a n tinilte number off-bids, aiid a nonempltv

sib~t pr Fns' which Submlit an! inliInite nlumber ()f lik)I vie\\('j ii l aove, tile vreesC

" ll~si J , iuiied (,Iii aon, Id ill view () (a) il[WJvC all objcts inl J1 arev aN'Sigfd forI

ALPHATECH, INC.

.ufficiently large. Furthermore, the prices of all objects j e J- stay constant for t sufficiently

large and since old information is purged from the system (cf. Assumption 2), we also have

pj(tij(t)) = pj(t) for all ij i J-, and t sufficiently large. These facts imply that for sufficiently

large t, every object j E A(i) which is not in J- would be prefe. O'le for person i to every object

jE A(i) n J":. Since the -CS condition (1) holds throughout the algorithm, we see that for

each person i (I- we must have A(i) (J-; otherwise such a person would bid for an object

not in J- for sufficiently large t.

We now note that for sufficiently large t, the only bids taking place will be by persons

in I-' bidding for objects in J-, so each object in J- will be assigned to some person from I-',

while at least one person in I- will be unassigned (otherwise the algorithm would terminate).

We conclude that the number of persons in I- is larger than the number of objects in J-. This,

together with the earlier shown fact A(i) c J-, for all i _ I-, implies that there is no complete

assignment, contradicting our assumptions.

The optimality properties of the assignment obtained upon termination follow from the

c-CS property shown and our earlier discussion on the synchronous version of the algorithm.

q. e. d.

i

ALPHATECH, INC.

A.4 REFERENCES

A. 1 Balinski, M. L., "Signature Methods for the Assignment Problem', Operations
Research J., Vol. 33, 1985, pp. 527-537.

A.2 Balinski. M. L., "A Competitive (Dual) Simplex Method for the Assignment Problem",
Math. Programming, Voi. 34, 1986 pp 125-141.

A.3 Barr, R., Glover, F., and Klingman, D., "The Alternating Basis Algorithm for
Assignment Problems", Math. Programming, Vol. 13, 1977, pp. 1- 1 3 .

A.4 Bertsekas, D. P., "A New Algorithm for the Assignment Problem", Math.
Programming, Vol. 21, 1981, pp. 152-171.

A.5 Carpaneto, G., Martello, S., and Toth, P., "Algorithms and Codes for the Assignment
Problem", Annals of Operations Research, Vol. 13, 1988,pp. 193-223.

A.6 Derigs, U., "The Shortest Augmenting Path Method for Solving Assignment Problems
-- Motivation and Computational Experience", Annals of Operations Research, Vol. 4,
1985, pp. 57-102.

A.7 Engquist, M., "A Successive Shortest Path algorithm for the Assignment Problem",
INFOR,Vol. 20, 1982, pp. 370-384.

A.8 Glover, F., R. Glover, and D. Klingman, "Threshold Assignment Algorithm", Center
for Business Decision Analysis Report CBDA 107, Graduate School of Business,
Univ. of Texas at Austin, Sept. 1982.

A.9 Goldberg, A. V., "Efficient Graph Algorithms for Sequential and Parallel Computers",
Tech. Report TR-374, Laboratory for Computer Science, M.I.T., Feb. 1987.

A. l0 Hall, M., Jr., "An Algorithm for Distinct Representatives", Amer. Math. Monthly,
Vol. 51, 1956, pp. 716-717.

A. 11 Hung, M., "A Polynomial Simplex Method for the Assignment Problem", Operations
Research, Vol. 31, 1983, pp.595-600.

A. 12 Jonker, R., and A. Volgenant, "A Shortest Augmenting Path Algorithm for Dense and
Sparse Linear Assignment Problems", Computing, Vol. 38, 1987, pp. 325-340.

A. 13 McGinnis, L. F.,"Implementation and Testing of a Primal-Dual Algorithm for the
Assignment Prohlem", Operations Research J., Vol. 31, 19XI, pp. 277-291.

A. 14 Munkres, J., "Algorithms for the Assignment arid Transportation Problems", SIAM J.,
1956.

15 I5 lhinpson, G. L ., "A IRccursiv.. Mcthnd for Solving Assignment Problems", in
Studies on (;r,!phs and I)iscrele Po- jrmaining, P. 1 lansen (ed).Nonuh-llolland Publ.

o. 1981, pp. 319-3413.

A 0 Kuh in, I1. W., 'Ie l uintrian Method [,, the Assignmcnt Problem", Naval Research
logistics Quarterly, Vol.2, 1955, pp. 83-')7.

£4 TR 45'

I ALPHATECH, INC.

A. 17 Bertsekas, D.P., "The Auction Algorithm: a Distributed Relaxation Method for the
Assignment Problem," Annals of Operations Research, 1988.

A. 18 Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, Englewood Cliffs, N. J., 1989.

A. 19 Papadimitriou, C. H., and K. Steiglitz, Combinatorial Ontimization: Algorithms and
Complexity, Prenticc-Hall,Englewood Cliffs, iN. J., 1982.

A.20 Bertsekas, D. P., A Distributed Algorithm for the Assignment Problem", Lab. for
Information and Decision Systems Working Paper, M.I.T., March 1979.

A.21 Bertsekas, D. P., "Distributed Asynchronous Relaxation Methods for Linear Network
Flow Problems", LIDS Report P-1606, M.I.T., revision of Nov. 1986.

A.22 Bertsekas, D. P., and D. A. Castafion, "The Auction Algorithm for the Minimum Cost
Network Flow Problem", May 1989, submitted for publication.

A.23 Bertsekas, D. P., and J. Eckstein, "Dual Coordinate Step Methods for Linear Network
Flow Problems", Laboratory for Information and Decision Systems Report LIDS-P-
1768, M.I.T., Cambridge, MA, 1988, also in Math. Progr.,Series B, Vol. 42, 1988,
pp. 203-243.

T

I
U
I
I
U
U
I

II

