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SECTION 1
OVERVIEW

1.1 INTRODUCTION

The objective of weapon-target assignment (WTA) in a ballistic missile defense (BMD)
system is to determine how defensive weapons should be assigned to boosters and re-entry
vehicles in order to maximize the survival of assets belonging to the U.S. and allied countries.
The implied optimization problem requires consideration of a large number of potential weapon
target assignments in order to select the most effective combination of assignments. The
resulting WTA optimization problems are among the most complex encountered in
mathematical programming [1,2]. Indeed, simple versions of the WTA problem have been
shown to be NP-complete [3,4], implying that the computations required to achieve optimal
solutions grow exponentially with the numbers of weapons and targets considered in the
solution.

The computational complexity of the WTA problem has motivated the developmcn: of
heuristic algorithms that are not altogether satisfactory for use in Strategic Defense Systems
(SDS). Some special cases of the WTA problem are not NP-complete and can be solved using
standard optimization algorithms such as linear programming [5] and maximum marginal return
algorithms [6,7]; these algorithms enjoy low computational requirements and therefore have
peen adopted as heuristics for solving more general WTA problems. However, experimental
studies [2,8,9,10] have demonstrated that these heuristic algorithms lead to significantly
suboptimal solutions for certain scenarios.

In order to address this deficiency, the Strategic Defense Initiative Oftice initiated
several research efforts to develop efficient, near-optimal boost-phase and midcourse-phase
WTA algorithms for directed energy weapons {11] and kinetic energy weapons

{1,2.9.11,12,13]. These programs developed advanced optimization-based WTA algorithms
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which achieved improved performance over the existing SDS WTA algorithms, but which

required increased computation in order to be implemented as part of a real-time system.
Among the most successful WTA algorithms developed was the ILINE algorithm [8,9] and 1ts
subsequent extensions [2,10] for assignment of kinetic kill interceptors. The mierits of the
ILINE algorithm for Boost and Post-Boost WTA were established in the Air Force's Space-
Based Experimental Version program [10] sponsored by ESD; in this program. various
candidate WTA algorithms were studied, and ILINE was selected and implemented as the
superior algorithm for performance of the WTA function. The ILINE algorithm was made
available to the SDI Battle Management community, and was evaluated in both the Air Force's
(107 and the Army's {14] BM/C3 Experimental Version programs for weapon-target
assignment.

The major limitation of the ILINE algorithm for SDS WTA is the computation time
required for selecting near-optimal weapon-target assignments in scenarios with large numbers
of interceptors and targets. For Boost-Phase WTA, the ILINF algorithm may have to solve
WTA problems with 800-1000 targets in the order of 1-3 seconds in order to fit within a
reasonable fraction of the overall real-time planning cycle. For Midcourse WTA, the ILINE
algorithm imay be imbedded into a dynamic Battle Planning algorithm which requires 10-100
iterative applications of the ILINE algorithm (the extra iterations are required for adaptive
preferential defense and predictive battle planning, as discussed in {2]). Each of these
iterations require the application of ILINE for WTA problems with up to 10,000 targets; the
overall dvnamic Battle Planning algorithin computations must be completed within 2-10
seconds in order to fit within a reasonable fraction of the overall real-time midcourse planning
cycle.

As a point of reference, the results of [2] indicate that the computation time for a single
application of the ILINE algorithm for problems involving up to 4500 targets will require about
300 scconds of CPU time on a .5 MIPS sequential processor, and that the computation time

grows near-linearly with the number of targets. This extrapolates to over 600 seconds of
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computation time for each application of the ILINE algorithm for 10,000 targets. Thus, we
need to achieve up to four orders of magnitude reduction in computation time from the
sequential computation time on a .5 MIPS processor.

These lofty goals appear beyond the scope of single-processor technology in the near-
future. However, the structure of the ILINE algorithm suggested that significant reductions in
computation time could be achieved through parallel processing, so that a combination of
processor technology improvements and parallel processing could be used to achieve the
desired real-time computation goals. The purpose of the phase one research was to
demonstrate the potential reductions in the computation time of the ILINE algorithm which can
be achieved on different multiprocessor architectures by developing and benchmarking
different parallel variations of the ILINE algorithm on commercial multiprocessors. The
resulting parallel WTA algorithms provide the basis for real-time WTA algorithm development
using multiprocessor architectures; furthermore, the benchmarking results can be used to
identify characteristics of desirable computer architectures for efficient execution of WTA

algorithms.

1.2 OVERVIEW OF PHASE 1 RESULTS

The basis of the ILINE WTA algorithm is to solve a sequence of linear assignment
problems {15] using Bertsekas' AUCTION [16,17] olgorithm (as extended by Bertsekas and
Castarion [18]). Each application of ILINE requires the solution of 4-6 assignment problems
using AUCTION Depending on the size of the problem, over 95% of the overall ILINE
computation time is spent in the AUCTION algorithm. Thus, the key to developing parallel
versions of the ILINE algoritnm is to develop parallel versions of the underlying AUCTION
algorithm. The AUCTION algorithm is a recently-developed optimal algorithm for the solution
of classical assignment problems (finding an optimal one-to-one match from n persons to n
objects in order to maximize the sum of the individual benefits associated with each person-

object match). Assignment problems are important in many aspects of SDS besides weapen-
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assignment; these additional applications including single-sensor, multiple frame association
for multiobject tracking and multi-sensor correlation.

The AUCTION algorithm has been shown to be a very effective scquential assignment
algorithm, substantially outperforming its rivals tor sparse problems. The algorithm operates
like an auction, whereby at each iteration, unassigned persons bid simultaneously tor objects
therchy raising their prices. Objects are thew awarded io the highest bidder. The AUCHION
algorithm was also designed with an orientation towards parallel implementation, making it an
tdeal starting point for our investigations.

Through analysis of the structure of the AUCTION algorithm, we identitied two
different levels where parallel processing could be used to speed up the computations: a
medium-grained level and a tine-grained level. The medium-grained level (refered 1o as the
Jacobi level, due to its similarity to the iterative Jacobi algonthm for recursive solution of linear
equations) consisted of parallel processing multiple weapon-target pairs simultancously, while
the fine-grained level (referred to as the Gauss-Seidel level) consisted of processing multiple
targets for a single weapon simultaneously. Ideally, an effective parallel algorithm would
combine the potential speedups achievable at each level in a multiplicative fashion.

In order to explore the potential for parallel implementation on different multiprocessor
architecturcs, we developed and implemented the following versions of the AUCTION
algorithm on different multiprocessor architectures at the Advanced Computing Research

Facility (ACRF) at Argonne National Laboratory!

1. Two versions of Jacobi AUCTION on the Encore Muitimax using sparse data
structures (one synchronous, one asynchronous)

8%}

Gauss-Seidel AUCTION on the Encore Multimax using sparse data structures

3. Three versions of Hybrid AUCTION on the Encore Multimax using sparse data
structures (one synchronous, two asynchronous)

4. Gauss-Seidel AUCTION on the Alliant FX/& using sparse data structures

U Access to the ACRE was arranged through SDIO sponsorship by Capt. S, Johnson of SDIO.

4 T1-457




re

ALPHATECH, INC.

5. Gauv . seidel AUCTION on the Alliant FX/8 using dense data structures

6 auss-Seidel AUCTION on the Connection Machine CM-2 using dense data
structures

7. Gauss-Seidel AUCTION on the DAP 510 using dense data structures

Figure 1-1 illustrates the speedups obtained from medium-grained parallelization
(Jacobi parallelization) for several 800 and 1000 target assignment problems with different
feasible intercept densities (average percentage of total targets which can be attacked by each
weapon), as established by the shared-memory implementation of the Jacobi AUCTION
algorithm on the Encore Multimax. As the results of Fig. 1-1 indicate, the maximum speedup
achicvable by Jacobi parallelization is approximately 4, independent of the density of teasibte
intercepts (and also nearly independent of the number of targets available!). This important

limitation is due to the incremental nature of the AUCTION algorithm (described in greater
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Frcure -1, Speedup of parallel Jacobt ACCTION algorithim over the single-
processor alvorithm on the Encore Multimax as a function of the
density of teasible interceptor asstgnments for probiems with 800 and
1000 targets.
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detiil in Appendix A), whereby a complete assigchment of Interceptors is byl incrcmcnmll_\'

USIng an iterative approach, Evcnumlly. the number of unassigned weapons js smaller than the

number of gvailable processors, which etfectively limigg the potential for Jacobi parallelization.
Figure 1-2 Hlustrates the potential speedups available from fine-grained (Gauss-Seidel,

parallelization for severg] 1000 target assignment problems. In order 1o evalygre speedup tor

SIMD architectures (such g the CM-2 and DAP 510), we compire the performance of the

algorithms implemenred on these architectures with the sequentiy] performance of the
AUCTION algorithm on 3 single processor of the Encore Multimax. Ag Fig. 1.2 Hlustrates,
SIMD architectures are particularly effectiye for exploiting fine-grained parallelism, Ip
particular, the DAP 510's architecture allows for Speedups of over 60 when tompared (0 the
performance of the AUCTION algorithm on 3 single processor of the Encore Multimax.

However, the speedup achievable from Gauss-Seide] parallelization depends explicitly on the

Single Processor, Encore Multimax .0

100

Multiple processors,
Encore Multimax

/ o
10 — Alliant FX/8, Dense

fiant FX/8, Sparse  Data Structures @
Data Structures

-
|- DAP 510

Computation time in seconds

¥ Y T Y T Y Y 4 T A
0.0 0.2 0.4 0.6 0.8 1.0

Density of Feasible Assignments
Figure 1-2, Performance of paralle] Gauss-Seidel AUCTION algorithms on
different parallel processors for 1000 target assignment problems as g
tunction of the fraction of targets which can be assigned to cach
wc;)pon.
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density of feasible interccptor assignments (unlile the speedups obtained from Jacobi
parallelization). Specitically, the speedups increase with the average number of targets which
can be attacked by each :nterceptor. Thus, these speedups will increase as the number of

ar gets grows as well as with increased feasible intercept density for a fixed numbc- of targets.

Figure 1-2 also illustrates an interesting tradeoff between the use of sophisticated data
structures and the speed of computation. For problems where the density of feasible
interceptor-target assignments is less than one (i.e. each interceptor can only reach a fraction of
the available targets), sparse data structures can oe used to keep track only of the feasible
interceprs for each weapon. Howe -er, such a vepresentation hinders efficient computation in
SIMD architectures with limited communications, because of the required data movements
among processors. The most efficient SIMD implementaJons are those which avoid
communications; however, this often requires alignment of the feasible intercept data,
precludiag the use of sparsc data structures. On advanced MIMD processors such as the
Encore Multimax and the Alliant ¥X/8, interprocessor communications are less costly, so that
efficient implementations ot the AVJCTION algorithm using sparse data structures are possibic.
Note in particular the differences in performaice of the Alliant Gauss-Seide! AUCTION
algorithms using sparse and dense data structures.

An important resuit which was established in the research was the potential for
combination of the Jacobi and Gauss-Seidet speedups. The hybrid AUCTION algorithm on
the Encore Multimax was one such implementation, using two processors at a Jacobi level and
a variable number of processors at the Gauss-Seidel level. Note, however, that the speedup of
the hyorid AUCTION algorithm in Fig 1-2 is far less than a multiplicative combination of the
Gauss-Seidel and Jacob: AUCTION algorithm speedups. The principal limittion in this
combination is the time required for synchronization of the various processors. Figure 1-3
illustrates the growth in the synchronization time of the hvbrid AUCTION algorithm as the

number of processors is increased.
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Figure 1-3.  Performance of the synchronous Hybrid AUCTION algorithm as a
function of the number of processors for 1000 target, 20% dense
assignment problem.

In order to reduce the overall synchronization time of the hybrid AUCTION algoritl.m,
we designed a new asynchronous version of the hybrid AUCTION algorithm and proved its
convergence to a correct solution. We also implemented this asynchronous hybrid AUCTION
algorithm and verified that significant performar.ce improvements were possible over the
synchronous hybrid AUCTION algorithm. Figure 1-4 illustrates the performance of the
synchronous and asynchronous Hybrid AUCTION algorithms on the Encore Multimax for
several 1000 target problems. As the results indicate, the asynchronous algorithms permit a
more efficient utilization of large numbers of processors, by reducing the synchronization
overhead. leading to significant reductions (nearly 50%) in computation time.

The results of Figs.1-1, 1-2, 1-3 and 1-4 illustrate the extent to which the research
goals of phase I have been met. In essence, our results establish that significant speedups are

possible for WTA alsorithms using multiprocessor architectures; based on the expected size of
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Figure 1-4. Performance of synchronous Hybrid AUCTION and asynchronous
Hybrid AUCTION I algorithms on 1000 target assignment problems
of varying density.
the scenarios, proper choice of multiprocessor architecture and parallel algorithm
implementation ought to reduce the overall WTA computation requirements to fit as part of real-
time Battle Management processing software.

The results of this research suggest that a superior architecture for assignment problems
using the AUCTION algorithm must be able to exploit both Jacobi and Gauss-Seidel
parallelism. Exploitation of Gauss-Seidel parallelism is best done by SIMD processors capable
of simultaneous associative processing for vectors of significant length (such as the DAP 510).
Exploitation of Jacobi parallelism is best done by MIMD processors with flexible
communications structure, capable of fast interprocessor communication. Our prototype
algorithm benchmarks indicate that architectures which successfully combine these features
should reduce the computation requirements of the AUCTION algorithm by two orders of

magnitude when compared to a Von Neumann architecture for problems involving 100X)
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targets. For larger problems involving 10,000 targets, the potential speedups from Gauss-
Seidc! parallelization should increase by an order of magnitude, leading to reductions of the
computation requirements of the AUCTION algorithm by nearly three orders of magnitude.
These reductions approach the real-time computation requirements (four orders of magnitude
reduction to the .5 MIPS sequential processing time) discussed earlier; coupled with advances
in individual processor technology, the parallel algorithms (implemented in appropriate

multiprocessor architectures) can be projected to meet the required real-time deadlines.

1.3 REVIEW OF RELATED PARALLEL ALGORITHM WORK

Development of parallel WTA algorithms has been recognized as a difficult problem; in
essence, the nature of the WTA problem requires that a global search among many alternatives
be conducted in order to obtain a set of near-optimal assignments. The global nature of this
processing makes efficient distribution among multiple processors a difficult task. Indeed,
several early efforts at developing parallel WTA algorithms (based on the AUCTION
algorithm) conducted at Los Alamos National Laboratory [19] and Argonne National
Laboratory [20] obtained very limited speedups using shared-memory MIMD architectures. A
similar study conducted at the Jet Propulsion Laboratory (JPL) of the California Institute of
Technology [21] using a heuristic WTA algorithm implemented on a message-passing MIMD
multiprocessor achieved no significant speedup.

In addition to SDS-sponsored efforts on parallel algorithms, there has been a set of
recent research results on the development of parallel algorithms for assignment problems.
Kempa, Kennington and Zaki [22] have reported on the parallel performance of the AUCTION
algorithm on dense assignment problems when implemented on the Alliant FX/8. The
particular variation of the AUCTION algorithm which they implemented addressed only fully
dense assignnient problems, and did not include sparse data structures or address the issue of
algorithms for different multiprocessor architectures. In their implementation of the Jacobi

AUCTION algorithm on the Alliant FX/8, they used a synchronous hybrid algorithm which
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uses the vector processing capability of each of the Alliant's processors to scan the admissible
objects for each bid, and uses multiple processors to process several bids in paralicl. This
hybrid algorithm is similar in spirit to the recommended approach of combining the SIMD and
MIMD speedups. However, their hybrid algorithm only achieved a speedup of near 8 for 1000
person assignment problems when compared with the single processor version of the same
algorithm because of the short length of the vector processors on the Alliant FX/8.
Furthermore, they did not compare their parallel algorithm results with an efficient sequential
algorithm implementation, so they may have overestimated the true speedups achieved on the
Alliant FX/8.

Recently, Balas, Miller, Pekny and Toth [23] have developed a synchronous pamllel
assignment algorithm based on a successive shortest path algorithm (rather than the AUCTION
algorithm) and have implemented it successfully on a 14-processor Butterfly Plus computer.
Their algorithm is the extension of Jacobi parallelization for successive shortest path methods,

since it handles the assignment of multiple weapons in parallel. However, the synchronization

required in the algorithm limits the effective speedups of the parallel shortest path algorithm to
under two for problems with 1000 persons. Unlike the AUCTION algorithm theory described
subsequently, a theory of asynchronous assignment algorithms based on successive shortest
paths is not available at this time.

Kennington and Wang [24] have also reported on parallel implementation of a
successive shortest path algorithm (the JV algorithm) for dense assignment problems on the 8-
processor Sequent Symmetry S81. In their implementation, multiple processors are used to
construct shortest paths from a single unassigned person. This is the extension of the Gauss-
Seidel parallelization for successive shortest path methods. For problems with 1000 persons,
Kennington and Wang obtained a speedup factor of 3.7 using 8 processors on the Sequent
Symmetry.

For SIMD architectures, Zenios and Phillips {25] have expenmented with variations of

the Jacobi AUCTION algorithm on the Connection Machine CM-2. By spreading the
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information corresponding to potential individual assignments over large numbers of
processors, they are able to implement a SIMD variation of our Hybrid AUCTION algorithm.
However, the performance of their implementation has been disappointingly slow (even though
it was implemented in the C-Paris assembly language); for problems involving 1000 persons,
their computation ume on the CM-2 achieves a speedup factor of under 3 when compared with
the sequential computation time of our Gauss-Seidel AUCTION algorithm on a single
processor of the Encore Multimax!

The results presented in this report extend and unify a number of the above studies
using the AUCTION algorithm. By studying carefully the structure of the AUCTION
algorithm, we have identified superior designs for parallel algorithms which can be tailored to
each multiprocessor architecture. Our comparative study of different implementations of the
Gauss-Seidel AUCTION on different multiprocessor architectures provides interesting insights
into the specific advantages and disadvantages of each multiprocessor architecture, rather than
reflect on the specifics of any one implementation on a single architecture. Indeed, our results
suggest that many of the speedups obtained in previous results can be attributed to poor
implementation of the sequential algorithms. In contrast, we have used the most efficient
variations of the sequential AUCTION algorithms for our benchmarks; these variations were
developed in cooperation with Prof. D. Bertsekas of MIT, the originator of the AUCTION
algorithm.

Furthermore, the theory and benchmarking results developed for the asynchronous
variation of the Hybrid AUCTION algorithm provides the basis for the design of asynchronous
AUCTION algorithms which will operate efficiently with greatly reduced communications and
synchronization. These asynchronous algorithms should be suitable for implementation in
distributed memory MIMD architectures or in more advanced hybrid architectures which

combine desirable features of SIMD and MIMD architectures.
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1.4 IDEAS FOR FOLLOW-ON RESEARCH

The results obtained under this phase I research study provide ample evidence that,
with a proper combination of parallel WTA algorithm and multiprocessor architecture,
development of real-time Battle Planning software which incorporates advanced WTA
algorithm technology is a feasible goal for realistic problem sizes. However, the phase |
research has focused only on parallel implementation of the core WTA algorithm (ILINE); in
order to develop real-time Battle Planning software, this core WTA must be integrated
successfully with parallel algorithms for other Battle Planning functions (such as computation
of feasible intercepts) or within recursive Battle Planning algorithms such as the adaptive
preferential defense algorithms or the anticipative algorithms discussed in [2].

One potential direction for continuation of this research into Phase II would be to
extend the Phase I results and develop an integrated parallel Battle Planning algorithm on an
advanced multiprocessor architecture which incorporates the various Battic Planning functions
which interact with WTA. This Battle Planning algorithm could be focused either on Boost
and Post-Boost defense (as in [10]) or on Midcourse and Terminal defense (as in [2], [14]).
The choice of problem area will depend on the criticality of parallel processing technology for
achieving real-time performance in this problem; the Boost and Post-Boost problem may have
more modest computation requirements because of its shorter time scale and smalier number of
targets than the corresponding Midcourse and Terminal problems, but the real-time
computation cycle may be shorter. The goal of such a Phase II effort would produce a
prototype Battle Planning algorithm design (based on advanced WTA algorithm technology)
and associated software which could be used as the b.sis for Batile Manager softwa:e und
processor design effort. Part of this effort would involve selection of an appropriate
multiprocessor architecture, as well as development of the appropriate parallel Battle Planning

software.
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A second direction for Phase 1I continuation would involve extension of the Phase |
work on the core parallel ILINE algorithms to produce advanced parallel WTA algorithms
capable of addressing important requirements such as adaptive preferential defense, anticipative
Battle Planning, nuclear interference avoidance and Battle Planning with discrimination
uncertainty. In | 2], 2 theoretical structure was presented for incorporating the ILINE algorithm
into more general recursive WTA algorithms capable of addressing these important SDS
requirements. Furthermore, extensive testing with sequentiai versions of these algorithms
indicated that significant SDS effectiveness improvements would result from the use of these
advanced algorithms. The goal of this Phase II effort would be to extend the Phase I efforts in
parallel designs for the core ILINE algorithm in order to produce working prototypes of these
advanced WTA algorithms which can be executed in real time on commercial parallel
computers. Such prototypes can be incorporated into future Command Center designs for

SDS.

1.5 ORGANIZATION OF 1HIS REPORT

The remaindzr of this report is of a technical nature, and serves to document the
advances accomplished under phase I of this research. In Section 2, we describe the variation
of the WTA problem which is the focus of this study, and discuss the ILINE algorithm. In
Section 3, we describe the design of the various synchronous parallel AUCTION algorithms
which were implemented on different multiprocessors; we also describe the benchmarks
obtained on the different multiprocessors. In Section 4, we overview the theory and design of
the asynchronous parallel AUCTTON algorithms implemented on the Encore Multimax, and
discuss the benchmark results obtained from our implementations. Appendix A contains a
discussion of the theory of the AUCTION algorithm, including some new results concerning
the validity of an asynchronous variation of the algorithm. These results are part of a paper

[26] which will be submitted for publication.
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SECTION 2
THE ILINE ALGORITHM FOR WTA

In this section, we provide a mathematical description of the WTA problem, and

discuss the ILINE algorithm for obtaining a near-optimal solution of this problem.

2.1 MATHEMATICAL DESCRIPTION OF THE WTA PROBLEM

Consider the following target-oriented weapon-target assignment problem. The

objective is to minimize the weighted expected leakage of targets through the defense

T W

1 , Sp ) X
X i ] 1=1 )= 1

where T is the number of targets, W is the number of weapon farms/platforms, xij is the

number of interceptors assigned from weapon farm/platform j to target i, p;; is the probability

of kill of an interceptor assigned from weapon farm/platform j to target i, and V; is the value

associated with failure to destroy target i. The constraints on problem (NP) are

(2-2)

E'tvqﬁ
_><
IN
X

for all weapon farm/platforms j, and to the constraint that interceptors are assigned in integer

quantities; that is,

xij € (0,1,..,Mj} (2-3)

The problem NP subject to the constraints of Egs. 2-2, 2-3 is a nonlinear integer

programming problem; a recent result by Lloyd and Witsciihausen [3] established that this
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problem NP-complete!. A simpler version of this problem introduces the additional constraint
W
2 xij <1 (2-4)
j=1
With this additional constraint, problem (NP) becomes equivalent to the following problem:

T
(LP) max 2 Vi Pij Xij (2-5)

xij 1=1

subject to the constraints of Egs. 2-2, 2-3, 2-4. Problem (LP) is a linear integer programming
problem of network type, for which efficient algorithms exist.

Figure 2-1 illustrates the structure of the resulting linear integer programming problem.
This type of linear program is known as a transportation problem. In essence, a maximizing

set of flows xjj must be found between a set of source nodes (representing the targets in our

Sources Objects

Figure 2-1.  The structure of transportation problems divides the graph into two
sets of nodes (target nodes T; and farm/platform nodes Wj) with arcs
in between.

P This implies that the time required to find an optimal solution is likely to grow exponentially in the numbers
of weapons and targets in the problem.
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set of flows x;j must be found between a set of source nodes (representing the targets in our
problem) and a set of sink nodes (representing the interceptor platforms and farms). The
overall flows must satisfy the conservation ot tlow constraints (cf. Egs. 2-2 to 2-4), so that the
overall flow out of a target source cannot exceed 1, and the overall flow into weapon object )
cannot exceed its available interceptor inventory M;. When all of the available weapon
inventories M; are equal to one, the resulting optimization problem is known as an assignment
problem; in this case, each interceptor is modeled as a separate weapon platform.

The structure of the constraints of transportation problems! is such that the integrality
constraints of Eq. 2-3 can be relaxed to allow for fractional interceptor assignments x;j. That

is, Eq. 2-3 can be replaced by the constraints

0 < xjj £ M;j (2-6)

With this relaxation, an optimal solution can be found for which all of the xj;j are integer. This
allows for the development of efficient algorithms by using the duality theory of linear
programming. One such efficient algorithm is the AUCTION algorithm developed by
Bertsekas [16] for assignment problems and extended Bertsekas and Castaion [18] for
transportation problems. We overview the AUCTION and ILINE algorithms in the next

subsections.

2.2 DESCRIPTION OF THE ILINE ALGORITHM

The basis of ILINE is to soive Problem (NP) by a successive iincarization procedure.
whereby Problem (NP) is approximated at each stage by Problem (LP). The solution of
Problem (LLP) is computed using AUCTION, and a fixed number of the assignments are
implemented. Based on these assignments, a new linearized version of Problem (NP) is
generated (a new Problem LP), and the procedure is repeated until all interceptors have been

assigned.  Figure 2-2 illustrates the structure of the ILINE algorithm. The kev computation-

Y This structure is known as unimodularity [15].
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intensive step is the solution of Problem (LLP), which must be performed several times in the
procedure. The AUCTION algorithm provides a practical approach for repeated solutions of
Problem (LP), by reusing most of the previous solution as an initial point for obtaining a new

solution.

Solve Problem LP
using Auction
Varation
Select k best
Modify target values assignments and fix
to reflect fixed them
assignments

All
nterceptors
allocated?

Figure 2-2. Structure of the ILINE Algorithm

At each iteration of the ILINE algorithm, a subset of interceptor assignments x*jj have
already been fixed. Based on these fixed assignments, the ILINE algorithm computes an
expected probability of survival for each target i, as

W
Pe(i) = [T-pp* ™ -7
j=1

The lingarization of Problem NP is based on using the expected probabilities of survival for

cach target, resulting in the following optimization problem:

-
[eb}
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T
(SLpy  Ma }_, ViPg) pij x; (2-8)
Xij 1=:1
subject to
v
D (x, +x* )< M, (2-9)

[

and the constraints of Eqs. 2-3 and 2-4.

Denote the optimal solution to Problem (SLP) by x9;;. For each pair ij, the ILINE
algorithm ranks the nonzeio assignments (x©j; > 0) in nonincreasing order according to the
marginal return pjj Ps(i) Vj. The top k assignments according to this order are selected and
added to the corresponding permanent assignments x*jj. If additional interceptors remain to be
assigned, then a subsequent iteration of the above procedure is conducted.

The key operation of the ILINE algorithm is the optimal solution of the linearized
Problemis {(SLP). The algorithm used inside of ILINE 15 a variation of the AUCTION

algorithm, discussed next.

2.3 THE AUCTION ALGORITHM

The original AUCTION algorithm was described by Bertsekas [16] for assigning
individual bidders (corresponding to interceptors or targets) to individual objects
(corresponding to targets or interceptors). ‘The theory of the AUCTION algorithm is discussed
in detail in Appendix A. In this subsection. we brietly overview the computations of the
AUCTION algorithm.

The classical assignment problem consists of finding a one-to-one match between a list
of n persons and n objects such that the sum of the benetits of the individual matches is
maximized. Denote the individual benetits of assigning person 1 to object | as djj. Then, the

classical assignment problem can be stated as foliows.
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max 2, u,x;; 210
X, il
subiect to
il
Xij=1lLj=i..m (2-11)

I

xije (O}, i=1.,n =1 ..n (2-13)

Note the similaritv between the objective in the WTA problem of Eq. 2-8 and the objective in
the classical assignment problem: the benefit ajj of assigning interceptor j to target 1is given by
pij ViPs(i). Note also that the constraints in Egs. 2-12 and 2-13 icquire that an equal number
of interceptors and targets be present. This represents no loss in generality, since targets with
value O or interceptors with 0 probability of kill can be introduced to balance an uneven
assignment problem.

Ideally, the maximum benefit is obtained when each person 1 1s assigned to an object §
offering maximal individual benefit ajj. However, such an assignment is likely to violate the
constraints in Eq. 2-12 which require that each target be assigned an interceptor. In order to
resolve such conflicts, the AUCTION algorithm assigns a price pj to each object j which
reflects the degree to which an object is in demand by different persons. The kev observation
in the AUCTION algorithm is that there exists a set of prices pj such that the optimal
assignment has the property that each person 1 1y assigned to ihe object j(1) which offers the
highest net profit aji, - pj(iy = max; (ajj - pj). This is a consequence of the celebrated duality

theorem of hinear programming |5]. The AUCTION algonthm consists ot i search tor the nght
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level of object prices pj; this search takes the form of an auction, where unassigned persons
"bid" for objects and raise the prices of the objects accordingly.

The AUCTION algorithm can be described in terms of a sequence of iterations. During
each iteraticn, the price pj of some object j 15 raised; in addition, tentative assignments of
objects to persons which have offered the highest prices for those objects are made. Each

iteration can be described in terms of two distinct phases:

a. Bid Phase: In this phase, a subset I of persons which do not have a tentative
assignment (unassigned persons) to any objects will offer bids for objects. Each
person i computes his bid as follows, based on the current object prices p;.

1. Person i must determine the object j(i) offering the maximum net profit based on
the current prices; that is,

() = arg max; {ajj - pj}

2. Person 1 must determine the price level b(i) which it will bid for object j(i); this
price level is determined by computing the two highest net profit levels as follows:

v(i) = max; {ajj - pj}
w(i) = maxjzji) {aij - pj}
b(i) = Pji) + v(1) - w(i) + €

where € > 0 is a positive parameter, chosen small enough to guarantee convergence
to an optimal solution.

b. Auction Phase: In this phase, each object j which reccived a bid in the Bid Phase
selects the highest bid and is tentatively assigned to the person i which offered the
highest bid. If the object was previously assigned to a different person 1', this
assignment is deleted, so person i’ will become unassigned for the next iteration.
This auction process is summarized below.

For each object j, define the set I(j) = {i e 11j(1) =) } to be the set of bidders
currently bidding for ObJCCt] If 1(j) = @ (the empty set), leave pj unchanged and
xjjunchanged, i =1, .., n. If I(j) # @, update the price of objcct j as

pj = max; e 1) b(1)
It object j was previously assigned to person i’ (i.e. Xij= D remove that
assignment (1.e. set xjj = 0). /\\wm object j to one of the persons offering the
hlyhut bid for object J: that is,

() = arg maxg ¢ 1y b

Setxyr = |
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The above bid and auction steps are repeated until each person is assigned to an object.
As discussed in Appendix A, proper choice of the constant € is required for this procedure to
converge to an optimal assignment. In particular, if the benefits a;j are all integer, the constant
€ must be chosen to be smaller than 1/n, where n is the total number of persons. For integer
benefits ajj, by scaling all of the benefits by multiplication by (n+1), the AUCTION algorithm
can be conducted using only integer arithmetic. This was the approach used in our
implementations.

An important issue which affects algorithm performance on different multiprocessor
architectures is the selection of data structures for the implementation of the AUCTION
algorithm. Specitically, there are many WTA problems where certain interceptor-target
assignments are known to be infeasible and should not be represented as part of the problem.
In the assignment problem, this is represented by a set A(i) of admissible objects for the
assignment of person i. Thus, the assignment xj; = 0 unless j € A(i). The sets A(i) can be
represented explicitly using sparse data structures, or they can be represented implicitly by
selecting the benefit ajj = -0 for j € A(i) and using dense data structures. For sequential
compuiation, sparse data structures provide a considerable advantage over dense data
structures; for parallel computation, use of sparse data structures may require interprocessor
movement of data which can reduce efficiency.

Note that any nonempty subset I of unassigned persons may submit a bid at each
iteration. This gives rise to a variety of possible implementations, named after their analogs in
relaxation nd coordinate descent methods for solving systems of equations or unconstrained

optimization problems (see e.g.[27,28]):

a. The Jacobi implementation, where I is the set of all unassigned persons at the
beginning of the iteration.

b. The Gauss-Seidel implementation, where [ consists of a single person, who 1s
unassigned at the beginning of the iteration.

¢. The block Gauss-Seidel implementation, where 1is a subset of the set of all
unassigned persons at the beginning of the iteration. (The method for choosing the
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persons in the subset I may vary from one iteration to the next, so this
implementation contains the preceding two as special cases.)

Generally, in a serial computation environment, the Gauss-Seidel implementation tends
to be the fastest, but with a parallel machine, the choice is unclear because all the bids of the
persons in I may be calculated in parallel. It is important to consider all these different versions
because they provide starting points for different synchronous and asynchronous parallel
implementations.

Figure 2-3 illustrates the Gauss-Seidel variation of the AUCTION algorithm. In this
variation; an unassigned bidder is selected from a queue; this bidder selects the most desirable
object (based on the object's perceived value and its price) and selects a bid price for this object
which outbids every other bidder by as much as possible. Thus, if in a previous iteration
another bidder had successfully bid for this object, this bidder is now rejected and joins the

bidders' queue for future iterations. The auction proceeds until the bidders' queue is empty.

Unassigned
Person
Queue

Search Object Award

List to Compute ;

_ ° ——————| Auction& | __ g

Bl | | l l Bid for Person i Update
Object Price

unassigned
person '

Figure 2-3. Structure of the Gauss-Seidel variation of the AUCTION Algorithm

The Jacobi vanation of the AUCTION algorithm is similar, but assumes that all of the
bidders on the bidding queue bid simultaneously; thus, an object may be bid on by more than
one bidder at a time. In contrast with the Gauss-Seidel algorithm, a bidder 1s no longer assured
of winning his bid, since other bidders may bid on the same object at the same time. Similarly,

after all of the bidders have completed their bid. the objects are awarded to the bidder with the
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highest offered price, and a new round of bidding is initiated. Figure 2-4 illustrates the
structure of the Jacobi variation; in this figure, the number of parallel bidders p is equal to the
number of unassigned persons in the unassigned person queue. Figure 2-4 also represents the
block Gauss-Seidel variation when the number of parallel bidders is selected to be a number p
which is smaller than the number of unassigned persons in the queue.

Sequential implementations of the Gauss-Seidel and Jacobi variations have shown that
the Gauss-Seidel variation is 15-20% faster. In both varations, the key computation-intensive
step is the computation of new bids for each bidder. In the Gauss-Seidel variation, this step
encompasses over 95% of the total computation time of the AUCTION algorithm. In the
Jacobi variation, the awarding of new auctions is harder, so the computation of new bids

comprises only 85% of the total computation time.

Select
Person

iy

Compute
Bids

Unassigned
Person
Queue

Process Bids

—_— and Award
™ I I I I Auctions

|

Y

Select Compute
Person Bids
'p
Unassigned
Persons

Figure 2-4.  Structure of the Jacobi variation of the AUCTION algorithm. In this
figure, p is the number of unassigned persons present in the
unassigned persons queue.

2.4  VARIATIONS OF AUCTION FOR WTA PROBLEMS

The original AUCTION algorithm was designed to solve assignment problems, which

correspond to WTA problems when the interceptor platform inventories are all uniformly equal
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to one. For WTA problems, weapon platforms often carry more than one interceptor, so the
platform inventories are larger than 1, and there are fewer weapons W than targets T. This
asymmetry can be exploited to yield more efficient algorithms; the theory of these algorithms is
described in Bertsekas and Castanon [18]. It also creates variations of the AUCTION
algorithm with different structure, depending on whether we assign the targets to be the
persons, or whether we assign the weapons to be the persons. The choice of variation for
parallel processing depends on the level of parallelism which one is interested in exploiting.

For medium-grained parallelism using shared-memory MIMD processors, the structure
of Fig. 2-4 appears more amenable for parallel processing than the structure of Fig. 2-3. In
this structure, bid tasks for separate persons can be executed in parallel; similarly, auction tasks
for separate objects can be executed in parallel. However, an important limit in the amount of
parallelism which can be obtained from this approach is the average length of the unassigned
persons queue. This limits the number of parallel bid tasks, which in turn limits the number of
parallel auction tasks. Figure 2-5 shows a typical histogram of the queue length for a

sequential implementation of the Jacobi AUCTION algorithm as a function of the number of

100 -!T

80

60 -

40

Number of Parallel Tasks

20 4

lteration No.

Figure 2-5.  Length of Unassigned Persons Queue versus iteration number for
Jacobi AUCTION.

25 TR-457




ALPHATECH, INC.

iterations (the test problem involved 100 persons). As Fig. 2-5 indicates, the average speedup

obtainable by this approach is limited to near 3-4, because of the dynamic load imbalance

across iterations.

For medium-grained parallelism using multiple bid tasks, the variation of the
AUCTION algorithm which should be most successful is one which maximizes the length of
the unassigned persons queue across iterations. This is accomplished by selecting the targets
as bidders, since there are more targets than weapons, leading to longer average queue lengths.
Either the block Gauss-Seidel or the Jacobi variation of the AUCTION algorithms would then
be used, depending on the available number of processors and the overhead required for
interprocessor synchronization. When synchronization overhead is high, an asynchronous
implementation of the AUCTION algorithm may be preferred; the theory of such an
asynchronous implementation is described in Appendix A.

For fine-grained parallelism using SIMD architectures, the structure of Fig. 2-3 is
superior to the structure of Fig. 2-4. In the Gauss-Seidel variation, most of the time is spent in
the computation of individual bids. This operation is similar to finding a maximum value and
maximum element of a list of objects. The amount of parallel work increases with the length of
the object lists. Thus, the preferred variation of the AUCTION algorithm for exploiting fine-
grained parallelism is to use a Gauss-Seidel variadon, with weapons as persons. In this
manner, the number of objects (corresponding to targets) is increased, thereby increasing the
size of the bid tasks for fine-grained parallelism.

In the subsequent sections, we describe the design of the various parallel AUCTION

algorithm varnations developed under this contract.
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SECTION 3
SYNCHRONOUS PARALLEL AUCTION ALGORITHMS

3.1 INTRODUCTION

In this Section, we overview the designs of the various synchronous parallel
AUCTION algorithm implementations, and discuss the benchmarking results obtained. We
first discuss the parallel AUCTION algorithms designed for MIMD architectures (the Encore
Multimax and the Alliant FX/8). Several parallel AUCTION algorithms were developed and
benchmarked; these algorithms differ in the degree to which fine-grained and coarse-grained
parallelism is used. In later subsections, we discuss the parallel AUCTION algorithms
designed for SIMD architectures (DAP 510 and CM-2); these algorithms were based on
exploiting fine-grained parallelism, and are similar in design across the different
multiprocessors. The benchmarking results illustrate the differences in performance which can
be achieved on different multiprocessor architectures.

3.2 SYNCHRONOUS AUCTION ALGORITHMS ON THE ENCORE
MULTIMAX

In synchronous shared memory implementations of the AUCTION algorithm, all
bidding and assignment phases are separated by a synchronization point. There are two basic
ways to parallelize the bidding phase for the set of unassigned persons I and a combination of

the two:

a. Parallelization across bids (or Jacobi parallelization): Here the calculations involved
in the bid of each person 1 € I are carried out by a single processor. if the number
of persons in I, call it Ill, exceeds the number of processors p. some processors will
execute the calculations involved in more than one bid. (This will typically happen
in the carly stages of a Jacobi-type algorithm where [ is the set of all unassigned
persons.) If 11 < p, then p - I processors will be 1dle during the bidding phasc.
thereby reducing efticiency. This will typically happen in the late stages of a

Tacobi-type algorithm.
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b. Parallelization within a bid (or Gauss-Seidel parallelization): Here the set I consists
of a single person as in the Gauss-Seidel implementation. The calculations
involved in the bid of each unassigned person 1 are shared by the p processors of
the system. Thus the set of admissible objects A(i) is divided in p groups of objects
Aq(i), A2(d), ..., Ap(i). The best object, best value, and second best value are
calculated within each group in parallel by a separate processor. We call the
calculations within a group a search task. After all the search tasks are completed (a
synchronization of the processors is required to check this) the results are "merged"
by one of the processors who finds the best value over all best group values, while
simultaneously computing the corresponding best object and size of bid. (It is
possible to do the merging in parallel using several processors, but this is inefficient
when the number of processors is small, as it was in our case, because of the extra
synchronization and other overhead involved.) The drawback of this method over
the preceding one is that it typically requires a larger number of iterations, since
each iteration involves a single person. Even though each Gauss-Seidel iteration
may take less time because it is executed by multiple processors in parallel, the
synchronization overhead is roughly proportional to the number of iterations.

c. Hybrid approach (or block Gauss-Seidel parallelization): In this approach, the bid
calculations of each person are parallelized as in the preceding method,but the
number of processors used per bid is k, where 1<k<p. We will assume that k
divides evenly p, so we can compute tne bids of p/k persons in parallel, assuming
enough unassigned persons are available for the iteration (lIl 2 p/k). With proper
choice of k, this method combines the best features and alleviates the drawbacks of
the preceding two.

Once the bidding phase of an iteration is completed (a synchronization point),the
assignment phase is executed. This phase is typically carried out by a single processor in our
synclironous implementations. While it is possible to consider using multiple processors to
execute the assignment phase in parallel, the potential gain from parallelization is modest while
the associated overhead more than offsets this gain in our system.

In the subsequent subsections, we describe the designs and benchmark results obtained

from dirferent parallel AUCTION algorithm designs for the Encore Multimax based on Gauss-
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Gauss-Seidel parallelism, Jacobi parallelism and Block Gauss-Seidel parallelism. All

algorithms were coded in Fortran 77 using the same sparse data structures.

3.2.1 Gauss-Seidel AUCTION Algorithm
The synchronous Gauss-Seidel AUCTION algorithm generates a single bid at a time,

and uses multiple processors to search the possible objects n order to generate that bid. The
premise of the parallel Gauss-Seidel AUCTION algorithm is to use multiple processors to
reduce the computation time associated with computing each bid. The flexibility of a shared-
memory MIMD architecture allows for the efficient use of sparse data structures. The parallel
algorithm design includes synchronization in order to guarantee that the bids generated by the
parallel algorithm are independent of the number of processors used, and thus represent a
faithful replication of the sequential Gauss-Seidel AUCTION algorithm. |

Figure 3-1 illustrates the percentage of the total computation time which is spent in
searching the list of admissible objects A(i) for several 1000 person assignment problems with
varying degrees of sparsity. As Fig. 3-1 illustrates, the sequential Gauss-Seidel AUCTION
algorithm spends between 92 - 99 % of its computation time (depending on the problem size
and the density of feasible assignments) searching the list A(i). This percentage increases with
the average number of elements in the admissible assignments A(i), so that greater speedups
are possible for larger problems.

The design of the synchronous Gauss-Seidel AUCTION algorithm is illustrated in Fig.
3-2. The majority of the AUCTION algorithm is conducted on a single processor (called the
parent processor). Multiple processors are used to assist the parent processor in computing
each bid in parallel using a "divide and conquer” strategy: each processor is assigned to search
a fixed part of the list of objects A(i) which can be assigned to person i. Two synchronization
points are included in each bidding iteration. The first synchronization point is a barrier (based
on the barrier monitor developed at ANL/MCS [29}) which serves to delay the start of the

search of admissible objects until the previous price update is completed. The second
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Figure 3-1.

Average percent of Objects in A(i)

Percentage of total Gauss-Seidel AUCTION computation time spent in

searching the lists of admissible objects for 1000 person assignment
problems, benefit range 1-1000, as a function of the density of
feasible assignments.
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Figure 3-2.

Design of the parallel synchronous Gauss-Seidel AUCTION

algorithm. Multiple processors are used to search the list of
admissible objects for a person; the results of the searches are merged
to compute a person's bid, and the rest of the bid and auction cycles

are conducted by a single processor.
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synchronization point is a monitor which is an extension of the Argonne monitors for portable
parallel programming [29]. The merge search monitor allows each processor, upon completion
of its search of Ag(i), to merge the results of its search (the highest and second highest net
profit levels in the sublist, and the object which provided the highest net profit level) with the
results of other processors which have completed their search, and then proceed to a barrier to
wait for all of the processors to complete their search. The monitor sequences the merging of
the processor searches to guarantee that the results of the merged search are identical with the
one-processor Gauss-Seidel algorithm.

In order to understand the potential performance of the parallel Gauss-Seidel
AUCTION algorithm, we have constructed an empirical model for the computation time per

iteration with p processors per bid. This time is given by

T(P)=S(P)+M(p)+C(p)+V
where
S(p)= Time for completing the search tasks
M(p)= Time for merging the results of search tasks
C(p)= Time for synchronization

V= Constant overhead per iteration.

Let us assume for convenience that each set of admissiblz objects A(i) has the same
number of elements, say n. By counting the number of cperations and by assuming perfect
load balancing between the search tasks (i.e., an equal number of objecis n/p in each of the

groups A1(i), ..., Ap(1), we have estimated roughly that the search time per iteration is

S(p) = Constant * (n/p + log(n/p) + log(log(n/p)) (3-1D

(The logarithmic terms account for the calculations involving the second best value.) The
merging time is proportional to p. while the synchronization time using software barriers is

roughly proportional to p.
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It can be seen that, given n, there is an optimal value of p that minimize the total time
per iteration. For example, if p is large, the increase of the synchronization and merging times
may offset the potential gains from parallelization of the search tasks. Because of various
constants involved in the | receding estimates of the search, merging, and synchronization
times, it 1s difficult to estimate a priori the optiunal value of p required to solve the problem.

Figure 3-3 illustrates the performance of the svnchronous Gauss-Seidel AUCTION
algorithm for a 1000 person, 20% dense assignment problem with benefits in the range
[1,1000]. All of the imes reported in the figure are measured in terms of the parent processor
(the processor which executes the sequential part of the algorithm). The scan time is the time
which the parent processor (processor 1) spends in searching its part of the admissible object
lists A1(i). The predicted relationship between scan time and the number of processors is
derived from Eq. 3-1. The synchronization time for a bid by person i is measured as the time
from which the parent processor finished scanning ...e subset of objects A1(i) until the time the
parent processor is released from the merge search monitor to continue with the auction
process. As the results of Fig. 3-3 indicate, the achievable speedup for this problem is limited
to a factor of nearly 3 because of the increase in synchronization time required to merge the
results of the various searches. This factor will increase as the number of elements in the sets
A(1) increases.

Figure 3-4 illustrates the conjectured theoretical behavior of the total scan,
synchronization and computation times, based on fitting the models described in the previous
section with appropriate constants to match the problem size. Note the close correspondence
between the predictions of Fig. 3-4 and the empirical results of Fig. 3-3. The only minor
discrepancy is that the empirical synchronization time grows superlinearly with the number of
proccssors; this 1s probably due to increased conention for access to critical sections in the
barricr and merge search monitors. Similar phenomena were observed by Dritz and Bovle [30]

in their experiments using the Encore Multimax.,
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Figure 3-5 illustrates the effective speedup achieved by the parallel Gauss-Seidel
AUCTION algorithm as a function of the density of feasible assignments for an 800 person
assignment problem. As the density decreases, the potential for parallel work decreases also.
However, for denser problems, speedups approaching factors of 6 are possible using up to 10
processors. Figure 3-6 illustrates similar results for larger, 1000 person assignment nrohlam.
Note that the sequential computation time for this larger problem has nearly doubled. This
increase in computation time is due to the an increase in the number of feasible assignments
which must be considered in the problem (which has also nearly doubled, from 640,000 1o
1,000,000 for fully dense problems); the empirical computation time grows near-linearly with
the number of feasible assignments to be considered. For the larger 1000 person assignment

problem, a speedup of nearly 6.7 was achieved for the fully dense problem.
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Figure 3.5, Comparnison of best parallel and sequential times for Gauss-Seidel
AUCTION algorithm on Encore Multimax for 800 person asstgnment
problem, benefit range [1,1000] as a function of the density of
feasible assignments. The maximum number of processors used tor
the parallel Gauss-Seidel AUCTION algorithm was 10 processors tor
the fullv-dense problem.
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Figure 3-6.  Comparison of best parallel and sequential times for Gauss-Seidel
AUCTION algorithm on Encore Multimax for 1000 person
assignment problem, benefit range {1,1000] as a function of the
density of feasible assignments. The maximum number of processors
used for the parallel Gauss-Seidel AUCTION algorithm was 10
processors for the fully-dense problem.

As Figs. 3-5 and 3-6 indicate, the potential speedup on MIMD architectures for the
Gauss-Seidel AUCTION algorithm depends critically on the density of the feasible
assignments (the speedup depends on the average number of feasible assignments for each
person, which is the product of the density times the total number of nbjects). For many WTA
problems. we expect the density of feasible assignments to be in the 10-70% range. This limits
the overall speedup for 1000 interceptor assignment problems to tuctors between 2.5 and 5.5.
These factors will increase as the numbers of interceptors and targets increase. since the overall
spatial volume of interest remains constant (thereby preserving the overall density of the
feasible assignments): in essence. the synchronization overhead in Fig, 3-3 will remain

constant (depending only on the number of proc:ssors used). while the parallelizable work tor
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the searches will increase proportionately to the number of objects. For problems with 10,000
objects, the overall speedup should mirror the speedups in the scan time, suggesting that

speedups of over 10 will be possible using 16 processors.

3.2.2 Jacobi AUCTION Algorithm

The second synchronous implementation of the AUCTION algorithm was the
synchronous Jacobi AUCTION algorithm. In this algorithm, multiple processors are used to
generate bids simultaneously for different persons. The number of simultaneous bids
generated is equal to the minimum of the number of processors used and the number of
unassigned persons; in this manner, object prices are updated as soon as possible, leading to an
expected reduction in the overall numkber of bids required to converge to an optimal solution.
Each processor computes the bid associated with a different person. The resulting bids are
then processed sequentially in order to award new auctions and to update the list of unassigned
persons. Sequential processing of the bids guarantees that the number of iterations required for
convergence of the Jacobi AUCTION algorithm is independent of the order in which
processors finish their computations.

The design of the synchronous Jacobi AUCTION algorithm is illustrated in Fig. 3-7.
Again, there are two synchronization points for each iteration of the algorithm, before and after
the compute bids operation. However, both synchronization points are implemented with the
extensions of the barrier monitors discussed previously. In particular, the synchronization
after the compute bids operation is only a barrier monitor because no merging of the individual
computations by each processor is required (unlike the synchronous Gauss-Seidel AUCTION
algorithm). This reduces the overall synchronization overhead by reducing the length of the
critical section in the synchronization monitor. After the bids have been computed, the parent

processor conducts the auction for each bid and places unassigned persons back into the queue.
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Figure 3-7. Design of synchronous Jacobi AUCTION algorithm. Multiple
processors are used to compute bids for multiple persons
simultaneously. The parent processor then processes sequentially the
bids
An important aspect of the synchronous Jacobi AUCTION algorithm is that the amount
of potential parallel work varies across iterations; specifically, it depends on the number of
remaining unassigned bidders. When the number of unassigned bidders is less than the
number of available processors, some of the processors will be idle. Figure 3-8 illustrates the
number of unassigned bidders per bid iteration for a 1000 person, 20% dense assignment
problem, benefit range {1,1000] using 10 processors. In order to prevent idle processors for
competing for shared resources such as synchronization locks, the size of the synchronization
barriers was adaptively modified to match the number of non-idle processors. Idle processors
were diverted to a rest barrier, waiting to rejoin the computation when the number of
unassigned persons grew larger than the number of available processors (at the beginning of a
new € - scaling phase; see Appendix A).
Figure 3-9 illustrates the performance of the Synchronous Jacobi AUCTION algorithm.
Again, scan time is measured in terms of the time required for the parent processor to compute
a bid; scan time is decreased with the number of processors because the parent processor
computes less bids (other processors compute bids simultaneously). Synchronization time is

measured 1n terms of the time spent by the parent processor at the two synchronization
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Figure 3-8. Jacobi AUCTION number of unassigned persons versus iteration
number for 1000 person, 20% dense assignment problem, benefit
range {1,1000] using 10 processors. Curves illustrate the number of
unassigned persons for different values of € corresponding to different
g-scaling cycles. Note the small fraction of iterations for which the
number of unassigned persons exceeds the number of available
processors (10).

barriers. Note that, unlike the synchronous Gauss-Seidel algorithm, scan time cannot be
reduced arbitrarily by increasing the number of processors. In the Jacobi AUCTION
algorithm, increasing the number of processors generally reduces the overall number of
iterations required to converge (by computing multiple bids in parallel); however, for iterations
where the number of unassigned persons is less than the number of processors, increasing the
number of processors has no effect on the number of parallel bids computed, thereby limiting
the reduction possible in scan time.

Note the relatively low level of synchronization required for the Jacobi AUCTION

algorithm when compared to the Gauss-Seidel AUCTION algorithm. This is due to three
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Figure 3-9.  Performance of the synchronous Jacobi AUCTION algorithm for
1000 person, 20% dense assignment problem, benefit range [1,1000]
as a function of number of processors.
factors. First, the synchronization after computing bids is simpler because no merging of the
results of the processors is required. Second, the number of synchronization calls is reduced
because the total number of iterations is reduced by processing multiple bids in parallel.
Finally, the number of processors which contend for a synchronization lock is reduced
adaptively when the numbe- of unassigned persons is less than the number of processors,
leading to simpler synchronization (with reduced contention) at each iteration.

The results in Fig. 3-9 indicate an interesting anomaly which is typical of the
AUCTION algorithm: increasing the number of processors sometimes produces an apparent
increase in computation time, as indicated in the difference between the 10 processor times and
the § processor times. The reason for this increase is that the number of iterations required for
convergence with 10 processors increased significantly over the number of iterations required

for convergence with 8 processors. This is because the computation of bids with 10
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processors is based on a potentially different set of object prices than the computation of bids
with 8 processors. This fluctuation in the number of iterations required for convergence will
become a dominant factor in the performance of the asynchronous AUCTION algorithms
discussed in Section 4.

Figure 3-10 illustrates the speedups achieved by the Jacobi AUCTION algorithm for
several 800 person and 1000 person assignment problems. The curves indicate that the
effective speedup from Jacobi parallelization in the 10% -70% density range is not likely to
vary much with either the number of persons or the density of the problem (although the
potential spcedup will decrease for very sparse assignment problems). This is in contrast with
Gauss-Seidel parallelism, where the speedups possible increased with problem density and

with assignment problem size.
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Figure 3-10.  Speedup of parallel Jacobi AUCTION algorithm over the single-
processor algorithm as a function of the density of feastble assignment
problems for problems with 800 and 1000 persons, benefit range
[ 1,1000].
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3.2.3 Hybrid AUCTION Algorithm

The results obtained with tne previous two synchronous algorithms suggest that an
efficient parallel implementation should combine the speedups available from Gauss-Seidel
parallelization and Jacobi parallelization. In particular, by computing multiple bids
stmullaneoussy, aid vy Using muitipie processors 0 compute each bid, a muliplicauve edioed
may be achievable where the overall speedup is the product of the Gauss-Seidel speedup and
the Jacobi speedup. The synchronous Hybrid AUCTION algorithm is an attempt to
demonstrate this multiplicative speedup; in this algorithm, persons are selected two at a time,
and two bids are computed in parallel (Jacobi parallelization with two processors). For each
person i, the admissible objects A(i) are searched in parallel by multiple processors (Gauss-
Seidel parallelization).

The overall design of the synchronous hybrid AUCTION algorithm is illustrated in Fig.
3-11. There are three synchronization points per iteration. An initial barrier is included to
delay the start of the object searches until all of the object prices are updated from the previous
iteration. A separate merge search monitor is included for each person, and a synchronization
barrier is used to wait until both bids are computed before proceeding to award the auctions.
The size of the barriers and monitors were tailored to the number of processors which
rendezvous at each synchronization point. Thus, the first barrier synchronized 2k processors,
the merge search monitors k processors and the last barrier only two processors, thereby
keeping the synchronization overhead to a minimum. The predicted speedup from the hybrid
approach should be 1.75 for the use of Jacobi parallelization with two bids computed
simultaneously, multiplied times the appropriate speedup (cf. Fig. 3-3) for using k processors
to compute each bid. Thus, when 12 total processors are used, the overall speedup should be

approximately 1.75 x 2.75 (from using 6 processors per bid) = 4.8125.
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Figure 3-11.  Design of the synchronous Hybrid AUCTION algorithm.

Figure 3-12 illustrates the performance of the synchronous Hybrid AUCTION
algorithm as a function of the total number of processors used for the same 1000 person, 20%
dense assignment problem described previously. The single processor time for this algorithm
is 44 seconds. The synchronization time is again measured in terms of the parent processor,
and represents the total time that the parent processor spends at the different synchronization
points. As the curves in Fig. 3-12 indicate, the achieved speedup is much lower than the
anticipated multiplicative speedup from combining the Jacobi and Gauss-Seidel speedups. For
example, the actual speedup using 12 processors is under 4, whereas the predicted speedup is
over 4.8. The explanation for this loss of effectiveness can be seen in the growth of the
synchronization time with the total number of processors used, even though the total number of
iterations has been reduced by a factor of 1.83. This synchronization time represents the
dominant part of the overall computation time for large number of processors, and prevents
effective combination of the speedups possible from Gauss-Seidel and Jacobi parallelization.
This motivated the development of asynchronous Hybrid AUCTION algorithms with reduced
synchronization overhead, using the theory developed in Appendix A. These aigorithms will

be discussed further in Section 4.
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Figure 3-12.  Performance of the synchronous Hybrid AUCTION algorithm on
Encore Multimax as a function of the number of processors for 1000
person, 20% dense assignment problem, benefit range {1,1000].

Figure 3-13 illustrates the performance of the parallel Hybrid AUCTION algorithm and
the parallel Gauss-Seidel AUCTION algorithm as a function of the number of processors. As
expected, the Hybrid AUCTION algorithm can use a larger number of processors in a more
effective manner, since the merge and synchronization time is significantly reduced by having a
smaller number of overall iterations (from computing bids two at a ime) and by merging the
results of only half the number of processors. However, Fig. 3-13 also illustrates the absence
of a multiplicative speedup; the ratio of the best Gauss-Seidel AUCTION time to the best

Hybrid AUCTION time is about 1.35, which is smaller than the 1.75 factor.

43 TR-457




ALPHATECH, INC.

50 -
40 4
(2]
el
[
(e]
8
£
£
i 1 Gauss-Seidel Auction
o
©
3 20+
£ .
Q
o
10 v | v Ll v 1 ¥ 'l A 'I v | S L] ¥ 1
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 3-13. Compansor. ~¢ Hybrid AUCTION and Gauss-Seidel AUCTION
algorithms for similar numbers of processors for 100X} person, 20%
dense assignment problem, benefit range [1,1000].

3.3 SYNCHRONOUS AUCTION ALGORITHMS ON THE ALLIANT FX/8

The parallel algorithms discussed in Section 3.2 were implemented on the Encore
Multimax with no assistance from any automated parallelization tools. Paralle] processing was
implcmented by generating parallel tasks, and having the operating system of the Encore
Muliimax schedule these tasks concurrently on multiple processors. Synchronization of these
tasks was achieved by writing explicit software monitors, using a spinlock mechanism as the
basic synchronization primitive provided by the Multimax.

A different approach for parallel algorithm development is to use a parallelizing
compiler. which searches for work to do in parallel, and automatically distributes parallel work
across processors. The Alliant FX/8 computer has a Fortran compiler with this capability for
automatic parallelization; furthermore, the Alliant FX/8 had other in eresting architectural

features which made it an interesting candidate for investigation. These features are:
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1. The automatic parallelizing Fortran compiler;

2. The Alliant architecture is designed to implement several synchronization primitives
in hardware, thereby reducing the overhead required for interprocessor
synchronization;

3. Each of the Alliant FX/8's processors is a vector processor, which is a particular
type of SIMD architecture. Thus, the Alliant FX/8 is a hybrid architecture. capable
of multiprocessor MIMD and SIMD processing;

4. The Alliant FX/8 has a high-level array language (Fortran 8X) which is similar to
the array languages used on SIMD architectures such as the DAP 510 or the CM-2.

Thus, conducting experiments on the Alliant FX/8 provided a natural transition from MIMD
architectures to SIMD architectures, and allowed us to evaluate the potential effectiveness of
vector-processing and automatic parallel compilation for implementation of paralle]l AUCTION
algorithms.

On the Alliant FX/8, we experimented only with the Gauss-Seidel AUCTION

algorithm. Four different versions of the algorithm were developed:

1. Sequential Gauss-Seidel AUCTION, a Fortran 77 version using sparse data
suuctures which corresponded to the most effective sequential implementation;

2. Parallel Gauss-Seidel AUCTION, a Fortran 77 version using sparse data

structures, which was rewritten to avoid data dependencies which restricted the
parallelization capable of the automated compiler.

H
3. Gauss-Seidel AUCTION 8X, a Fortran 8X version using dense data ... nicturcs

which was written to represent the AUCTION algorithm using array operations.

The sequential Gauss-Seidel AUCTION algorithm was identical to the sequential
version used in the Encore Multimax, and required no further development. There is a key
aspect to the sequential algorithm which must be understood in order to identify the
transformations required for developing the parallel Gauss-Seidel AUCTION algorithm. As
Fig. 3-1 illustrates, the key operation which consumes most of the computation time is the
computation of a bid. Referring to the description of this operation in Section 2.3, the

computations required for a bid from person 1 are:

j(i) = arg maxj {ajj - pj} (32)
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v(i) = max; {4jj - p;} (3-3)
w(i) = maxjx) {ajj - pj} (3-4)
b(i) = pjiy + v(i) - w(i) + € (3-5)

The difficult computations are in Egs. 3-2, 3-3, and 3-4. Each of these computations requires
searching the list of admissible objects for person 1, and is a reduction operation which maps a
long vector of numbers into a single scalar. In the sequential implcmentation of the Gauss-
Seidel AUCTION algorithm, all three quantities (j(i), v(i), w(i)) are computed in a single
search of the object list. However, this computation introduces data dependencies which
prevent the automatic parallelization of these operations on the Alliant FX/8.

In order to achieve maximum speedup and concurrency on the Alliant FX/8, the
quantities j(i), w(i) and b(i) must be computed using three separate searches of the object list (a
fourth array operation is also required, so the total computation is nearly four iimes longer).
Thus, the parallel Gauss-Seidel AUCTION algorithm on the Alliant FX/8 is significantly
slower when executed on a single sequential processor than the sequential Gauss-Seidel
AUCTHION algoritnur. Similarly, the Gauss-Seidel AUCTION 8X algorithm requires three
different array search operations to compute a bid for person i. We defer discussion of the
implementation of the Gauss-Seidel AUCTION 8X algorithm until the next subsection, when
we discuss array language implementations for the SIMD architectures.

Figure 2-14 illustrates the performance of the three algorithms for 800-person
assignment problems with variable feasible assignment density. Note the logarithmic scale of
the vertical axis. Three different compiled versions of the parallel Gauss-Seidel AUCTION
algorithm were used: the version compiled to execute on one sequential processor (AUCTION
1S). the version compiled to execute on one vector processor (AUCTION 1V), and the version

compiled to execute on all § vector processors (AUCTION VC). The other curves correspond
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to the sequential Gauss-Seidel AUCTION algorithm (SAUCTION) and the Gauss-Seidel
AUCTION 8X algorithm (AUCTION &X).

Note the similar behavior in Fig. 3-14 of the AUCTION 1S, AUCTION 1V and
SAUCTION algorithms as a function of feasible assignment density. In essence, the ratios of
computaticn times between these algorithms 1s a constant factor, which reflecis the addivonal
number of searches of the object list required by the parallel Ganss-Seidel AUCTION
algorithm! As\f)’redicted, the AUCTION 1S computation times are nearly four times slower
than the SAUCTION computation times. Surprisingly, the use of vectorization is insufficient
to fully compensate for this difference, so the AUCTION 1V times are about 10% slower than
the SAUCTION times. When both vectorization and concurrency are used, the AUCTION VC
times are faster than the SAUCTION times, but the speedup depends explicitly on the density
of the feasible assignments. The maximum speedup (achieved for the fully dense problem)
was nearly a factor of 4 (significantly smaller than the speedup on the Encore Multimax using

only scalar processors). On the other hand, when referenced with respect to the AUCTION 1S

times, the AUCTION VC times achieve a speedup of over 15 for dense
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Figure 3-14. Performance of the ditterent Gauss-Seidel AUCTION algonithms on
the Alliant FX/8 for 800 person assignment problems with benefit
range | 1.1000], as a tunction ot the density of feasible assignments.
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assignment problems! This emphasizes the importance of using an efficient sequential
implementation of the AUCTION algorithm as a scalar benchmark.

Figure 3-14 also illustrates the relative advantages of using sparse data structures
versus dense data structures. Note the relatively flat AUCTION 8X computation times as a
function of feasibie assignment density, when compared with the curves of the other
algorithms implemented using sparse data structures. Note that, for fully dense problems, a
small efficiency is achieved by using dense data structures (roughly 15% of the overa'!
computation time. However, once the problems become moderately sparse (below §0%
dense), the sparse AUCTION VC implementation is significantly faster than the dense
AUCTION 8X implementation.

Figure 3-15 illustrates the performance of the same 5 algorithms on a set of 1000
person assignment problems. Again, the AUCTION 18 times are nearly four times bigger than
the SAUCTION times, and the use of vectorization in AUCTION 1V is insufficient to
compensate for the loss of efficiency required by scanning the admissible object list an
increased number of times. The larger problem size results in an increased maximum speedup
of the AUCTION VC time (nearly 4.5 for fully dense problems) when compared with the
SAUCTION times. Note the interesting anomaly present for the 5% dense problem. The
vector-concurrent version of the parallel Gauss-Seidel AUCTION algorithm is slower than
both the vector version of the same algorithm running on a single processor and the sequential
Gauss-Seidel AUCTION algorithm. This reflects the compiler's inability to select dynamically
how many parallel processors should be used in the computation. For this problem, the object
lists averaged S0 objects; vectorization of the searches using length 32 vectors is more efficient

than use of multiple processors, given the small number of objects to be searched.
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Figure 3-15.  Performance of the different Gauss-Seidel AUCTION algorithms on
the Alliant FX/8 for 1000 person assignment problems with benefit
range [1,1000], as a function of the density of feasible assignments.

3.4 SIMD AUCTION ALGORITHMS

As discussed previously, the majority of the computation time of the sequential Gauss-
Seidel AUCTION algorithm is spent in the scan ~peration, which consists of searching each
object list A(1) in order to find the object offering the maximal net profit, and the two highest
profit levels. The goal of our single instruction stream, multiple data stream (SIMD)
implementations is to reduce the nverall time associated these searches. An important aspect of
doing this is to minimize movement of data between processors. Thus, the SIMD parallel
algorithms were designed without the use of sparse data structures.

Figure 3-1A illustrates the basic concept of the SIMD Gauss-Seidel AUCTION
aleorithm design. The SIMD archizecture s viewed as a long vector of processors. Figure
316 shows a number of processors which equals the number of persons in the assignment
problem: this was the case tor the benchmark problems and the aleorithms implemented in the

DAP 510 and the Connection Machine CNM-20 Viewing the benetits oy as aomatrix, each
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processor contains the j column of the matrix (that s, {ajj, 1 =1, ..., n}) and the price pj of that
column. In this manner, each processor can form independently the net profit a;j - p;. The
maximum value of the net profit and the location of a maximal argument are obtained by
reductions of the array of net profits into scalar values using the interprocessor communication
network. Since the Gauss-Seidel AUCTION algorithm operates on only a single person i at a

time, the relevant data is spread maximally across processors, thereby maximizing the potential

speedup.
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Figure 3-16. Illustration of the data mapping into processors for parallel SIMD
Gauss-Seidel AUCTION algorithm. Each processor receives a
column of the benefit matrix (corresponding to a single object), as
well as the price of the object corresponding to that column.

With this data-mapping concept, we designed the parallel implementations of the SIMD
Gauss-Seidel AUCTION algorithm on the various architectures by using the appropriate array
language extensions to implement the array arithmetic and reduction operations. On the DAP
510, the array language used was Fortran Plus; on the Connection Machine CM-2, we used the
C* language (its Fortran 8X compiler was still under development). In order to illustrate the
array operations required, we provide Fortran X versions of the key computations required
for a bid by person 1, and discuss the similar operations required for implementation in C* and

FFortruan Plus.
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In the bid phase of the Gauss-Seidel AUCTION algorithm, the critical computations are
associated with computing v(1), j(i) and w(i) as in Egs. 3-Z, 3-3 and 3-4. The calculation of
v(i) in Fortran 8X is programmed as:

MARGINS = AG,:) - P

v(i) = maxval MARGINS)
As may be seen, FORTRAN 8X permits direct calculation to be made on vectors and arrays.
Thus, P and MARGINS are length n vectors, A is an n x n matrix, and v(i) is a scalar. The
construct A(i,:) refers to the ith row of the matrix A. The function maxval is a reduction
operator which returns the value of the largest element contained in its vector or array
argument. Both the C* and Fortran Plus languages contain reduction operators (>?= in C*,
maxv in Fortran Plus) which are equivalent to the above maxval operator.

Computation of j(i) can now be evaluated in Fortran §X as:

MBIDS = MARGINS .eq. v(i)

TEMP = e

where(MBIDS) TEMP = INDICES

j(1) = minval{TEMP)
In this excerpt, MBIDS is a logical vector marking all occurrences of v(i) in MARGINS,
INDICES 1s a vector storing the indices {1, 2, ..., n} and TEMP is set to the integer indices of
these occurrences by the where statement. Thus, j(i) is the index of the first occurrence of v(i)
in MARGINS. Again, both C* and Fortran Plus contain masked assignment operators
corresponding to the Fortran 8X construct.

The remaining parameter required for the computation of a bid is w(i). The Fortran 8X
code for the computation of the remaining parameter is given by:

wi(i)= maxval(MARGINS, mask=INDICES.ne.j(i))
The addional tfeature of the Fortran 8X code to be noted here is that the maximum be taken of
a specified subset of elements of MARGINS. This is accomplished by the kevword argument

mask = <> Sumilar masked redaction operators exist in C* and Fortran Plus.
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Figure 3-17 illustrates the performance of the SIMD Gauss-Seidel AUCTION
algorithms on the DAP 510 and the Connection Machine CM-2 for 800 person assignment
problems as a function of feasible assignment density. For comparison, we have included the
times of the sequential Gauss-Seidel AUCTION algorithm cn the Encore Multimax and Fortran
8X implementation of the Gauss-Seidel AUCTION on the Alliant FX/8 using 8 vector
processors. Note that the use of dense data structures in the SIMD algorithms results in 2
computation time which is effectively constant with feasible assignment density. In essence,
only a fraction of the processors (equal to the feasible assignment density) are doing useful
work in the sparse assignment problems. In contrast, the sequential Gauss-Seidel AUCTION
algorithm uses sparse data structures, and its overall computation time is reduced significantly
for sparse assignment problems. Figure 3-18 illustrates similar results for 1000 person

assignment problems.
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Figure 3-17.  Computation times of SIMD Gauss Seidel AUCTION algorithms for
800 person assignment problems (benefit range | 1.1000]) as a
function of feasible assignment density.
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Figure 3-18. Computation times of SIMD Gauss Seide] AUCTION algorithms for
Person assignment problems (benefit range [1,1000]) as a
function of feasible assignment density.

currently undersoing major revisions. In order to achieve optimal performance, Thinkin g
Machines fecommended the use of the C-PARIS assembly language: due 1o time limitations,
Wriling such assembly code was beyond the scope of this effort and TeMains a topic for future
investigation, However, we point out that similyr times were reported by Phillips and Zenios

[25] in their implementation of the Jacobi AUCTION algorithm (using both Gauss-Seidel and
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Jacobi parallelization) in the C-PARIS language for assignment problems with comparable
numbers of persons and similar benefit range.

The second observation is aimed at explaining the exceptionally fast performance of the
DAP 510 on this class of algorithms. In essence, the DAP 510 communications architecture
allows it to execute reduction operations such as minval in a time which is independent of the
number of processors used for the reduction operation. Furthermore, these reductions use a
specific bit-level algorithm across all processors which allows the computation of the minimum
of 1024 32 bit numbers in about 12 microseconds.

To illustrate this algorithm, consider taking the minimum of the following list of 4

numbers: (6, 2, 10, 2). The binary representation of these numbers is

Decimal Binary
6 0110
2 0010
10 1010
2 0010

The minval routine on the DAP 510 employs only logical bit operations and succeeds in

locating all occurrences of the smallest value. Specifically, this routine computes a vector of
bits (of length equal to the number of elements) whose 0-bits locate the minima present in the
list. Note that, in the list of binary numbers above, the column of most-significant bits 0010

contains the information that the third number in the list cannot be the smallest. Therefore,

0010 locates the minimum as being among the first, second and fourth numbers in the list. Ina
second application of the same reasoning, note that a Boolean OR combination of the first
column with the second column (0010 OR 1000 = 1010) further narrows the choices for
minimum to the second and fourth numbers.

The complete algorithm for minval on the DAP 510 is essentially equivalent to OR
together all of the bit columns of the analogous binary representation of a list of numbers,

starting at the most significant end. Some care must be taken in order to avoid obtaining a

54 TR-457




ALPHATECH, INC.

vector of all 1's. Whenever the running result comes up all ones, its previous value must be

used to continue the algorithm. That would be necessary, for example, in the next step of the
sample calculation above. Detecting such a condition can be done efficiently in the DAP 510

because of its ability to efficiently test bits across all processors.

A similar approach is used for implementing the maxval reduction operation which is
used in the AUCTION algorithm. Thus, as long as the number of processors is larger than the
number of objects, the DAP architecture provides a near-optimal match to the computation
requirements of the Gauss-Seidel AUCTION algorithm for dense assignment problems.

There are several unresolved issues associated with the use of SIMD architectures for
implementation of the AUCTION algorithm. The first issue involves the potential use of
sparse data structures. For large sparse assignment problems, a lot of the available memory is
wasted in each processor when using dense data structures. However, using sparse data
structures will require data movements, which will reduce the efficiency of the SIMD
architectures. For applications using sparse data structures, the more flexible communication
network structure of the CM-2 (versus the grid structure of the DAP 510) may offer some
advantazes.

The second issue concemns whether a combination of the specdups possible from
Gauss-Seidel and Jacobi parallelism on a SIMD architecture is possible. This requires the
ability to compute bids for multiple persons simultaneously. Although such an arrangement is
possible on the Connection Machine CM-2 by careful arrangement of the data across different
processors (see [25] for a discussion), the persons which will be unassigned at any one
iteration are not known apriori, so that, in practice, data movements among processors may be
required to achieve this combination. Again, this would lead to a decrease in the overall
efficiency of the parallel SIMD AUCTION algorithm.

[n spite of these unresolved issues, SIMD architectures offer the promise of significant
computation reduction for large assignment problems. Figures 3-17 and 3- 1% illustrate that the

Gauss-Seidel AUCTION algorithm was nearly two orders of magnitude faster on the DAP 510
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than on a sequential processor. Figures 3-19 and 3-20 illustrate the relative performance of the
DAP 510 algorithm when compared with the fastest MIMD algorithms on the Alliant FX/8 and
the Encore Mulumax. Even for very sparse problems (density 5%), the computation time on

the DAP 510 using dense data structures was comparable to the computation times achieved by

the fastest parallel MIMD algorithms.
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Figure 3-19.  Performance of best MIMD and SIMD Gauss-Seidel AUCTION
algorithms for 800 person assignment problems, benefit range
[1,1000]
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Figure 3-20. Performance of best MIMD and SIMD Gauss-Seidel AUCTION
algorithms for 1000 person assignment problems, benefit range
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SECTION 4
ASYNCHRONOUS PARALLEL AUCTION ALGORITHMS

4.1 INTRODUCTION

In the previous Section, we discussed our designs of parallel AUCTION algorithms for
implementation on MIMD and SIMD machines. The design of these parallel algorithms
included sufficient synchronization in order to guarantee that the bids generated by the parallel
and sequential algorithms were identical. However, this synchronization often prevents
efficient distribution of the computational load across processors, thereby reducing the
efficiency of the paraliel AUCTIGN algorithms.

The AUCTION algorithm is a natural candidate for asynchronous implementation, as
discussed in Appendix A. In an asynchronous implementation, bid calculations may be done
with out-of-date object price information and the highest bidder awards and subsequent price
adjustments may be done with out-of-date bid information. The potential advantage of an
asynchronous implementation is a reduction of the, so-called, synchronization overhead. This
is the delay incurred when several processors synchronize to calculate in parallel a single
person bid, when several processors calculating separate person bids in parallel, wait to make
sure that up-to-date price information is available, and when the processors calculating in
parallel the highest biddcr awards wait for ali bids to come in. Asynchronous algorithms are
discussed in detail in [28], which gives many other references.

In this section we explore the merits of various asynchronous implementations of the
AUCTION algorithm in a shared memory MIMD multiprocessor: the Encore Multimax. The
validity of such an asynchronous implementation is established in Appendix A. We compare
the performance of the synchronous and asynchronous implementations of the AUCTION
algorithm, in an effort to quantify the tradeoffs between " cobi and Gauss-Seidel

parallelization, as well as the effects of asynchronism. To our knowledge, this is the first work
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to report on the practical performance of asynchronous versions of the AUCTION algorithm in

a real parallel machine.

4.2 ASYNCHRONOUS IMPLEMENTATION OF THE AUCTION
ALGORITHM

In this subsection, we describe the asynchronous implementations of the AUCTION
algorithm using the model for asynchronous computation described in Appendix A. As in the
synchronous AUCTION algorithms, we describe the asynchronous algorithms in terms of the
bid phase and the auction phase of each iteration. The difference between the synchronous and
asynchronous algorithms is that the information used in the bid and auction phases may be out
of date, as discussed in Appendix A.

In our asynchronous implementations, the bid calculations for a person i are divided
into two types of tasks: search tasks, corresponding to searching a subset of the feasible
objects A(i), and bid tasks, corresponding to merging the results generated by the various
search tasks corresponding to person i and generating a bid for person i. These tasks are
organized in a first in -- first out queue. When a processor becomes free it starts executing the
top task of the queue if the queue is ncnempty and otherwise it checks whether a termination
condition is satisfied. The algorithm stops when all processors encounter the termination
condition. Similarly to the synchronous Gauss-Seidel implementation, each set of admissible
objects A(i) 1s divided in k groups of objects A(i), ..., Ax(i). The calculation of the bid of a
person i is divided into k tasks, where each task involves a different group of objects. To
performi one of these tasks, a processor must calculate and store in memory the best value,
second best value, and best object within the corresponding object group.

In addition to the search tasks, a bid task 1s created for each unassigned person 1. This
bid task reads the results of the individual searches stored in memory and completes the bid of
person 1 by merging the individual group scarch results, thatis, by finding the best object and

bid for person 1 based on the currently stored group results. The bid task also includes raising
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the price of the best object and changing the assignment of the object (assuming the calculated
bid 1s larger than the best object's price by at least €).

There are two sources of asynchronism in this implementation. First, it is possible for
some prices to be changed between the time a search task is completed and the time the results
of that task are used to calculate a person bid. Second, it is possible that the bid task of a
person is carried out before some of the search tasks associated with that bid are completed.
In both cases the bid may reflect out-of-date price information and may prove ineffective in that
it yields a bid that does not exceed the corresponding best object's price by at least €. The
advantage of the asynchronous implementation is that processors do not remain idle waiting to
get synchronized with other processors or waiting for merging tasks to be completed.

The above implementation can be specialized to implement asynchronous algorithms
which are equivalent to the Gauss Seidel, Jacobi and Hybrid AUCTION algorithms by
controlling the number of search tasks gencrated for each unassigned person and the
distribution of tasks among processors. If a single search task is generated per unassigned
person, and this search task and its correspondirg bid task are assigned to a single processor,
the resulting algorithm corresponds to an asynchronous implementation of the Jacobi
AUCTION algorithm. If the number of search tasks per unassigned bidder is equal to the
number of processors, the resulting algorithm is an asynchronous implementation cf the
Gauss-Seidel AUCTICN algorithm. Asynchronous hybrid variations are obtained by
modifying the ratio of the number of processors used to the number of search tasks generated
per unassigned bidder. In the following subsections, we discuss the results obtained from our
implementations of the asynchronous Jacobi AUCTION algorithm and two asynchronous

Hybrid AUCTION algorithms.

4.3 ASYNCHRONOUS JACOBI AUCTION ALGORITHM
The asynchronous Jacobt AUCTION algorithm design is aimed at reducing the overall

synchronization overhead by allowing bids to be computed based on older values of the object
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prices. Specifically, processors start computing new bids without waiting for other processors
to complete their price updates. Some synchronization is still required to guarantee that the
prices of each object are changed in an appropriate order, and to guarantee that each processor
computes the bid of a different person. This synchronization is implemented using locks on
each object and a lock on the queue of unassigned persons; these locks allow only one
processor at a time to modify the price of a given object, and only one processor at a ime to
update the queue of unassigned persons. Figure 4-1 illustrates the design of the asynchronous
Jacobi AUCTION algorithm. In order to reduce contention for the locks, when the number of
persons in the unassigned persons queue is lower than the number of processors, excess

processors are diverted to a barrier to wait for a new g-scaling cycle.
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Figure 4-1.  Design of Asynchronous Jacobt AUCTION algorithm. Locks on each
object and on the unassigned perscns Gueue are used to guarantee data
integrity and preserve complementary slackness.

The performance of the asynchronous Jacobt AUCTION algorithm 1s illustrated in Fig.
4-2. T'he numbers shown represent an average of three runs; the actual running time of the
algorithm varies from run to run because the order in which diftferent processors complete their

bids and acquire the focks affects the order in which objects are inserted into the unassigned
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persons queue. A different ordering of persons produces a different auction process, which
affects the total computation time. The curves in Fig. 4-2 represent the total computation time,
and the number of bidding iterations performed by the parent process. Note the close
correlation between these two curves, indicating a minimal amount of synchronization
overhead. Note furthermore that the computation times are reduced to nearly 7.4 seconds,
which represents a 28% improvement over the minimum times achieved by the synchronous
Jacobi AUCTION algorithm in Section 3.2.2. This improvement is achieved because of the
improved load balance among processors, as processors do not wait idly for other processors
to complete their bidding process. Note that there is no apparent slowdown of the achievable
processor efficiency with increased number of processors, unlike the performance of the

synchronous Jacobi AUCTION algorithm.
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Figure 4-2. Performance of the asynchronous Jacobi AUCTION algorithm for
1000 person. 20% dense assignment problem, benefit range | 1,1000).
The number of iterations by the parent processor are also indicated.
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4.4 ASYNCHRONOUS HYBRID AUCTION ALGORITHMS

The results obtained using the asynchronous Jacobi AUCTION algorithm indicate that
reducing the synchronization per iteration can improve the nerformance of the parallel
AUCTION algorithms. The designs of the asynchronous Hybrid AUCTION algorithms were
aimed at developing asynchronous algorithms which effectively combined the speedups of
Jacobi and Gauss-Seidel parallelization. The designs of the two asynchronous algorithms
differ slightly, and follow closely the theory of the asynchronous AUCTION algorithm
presented in Appendix A.

Figure 4-3 illustrates the design of the asynchronous Hybrid A" ICTION algorithms.
Instead of an unassigned person queue, there is a queuc of unassigned search tasks and bid
tasks. Each unassigned person is represented by S search tasks and one bid task in this queue,
ordered consecutively in the queue, so that the bid task tollows the S search tasks. Different
types of asynchronous algerithms can be generated by controlling the numbe; of search tasks
gencrated for each unassigned person. As before, a synchronization lock is required to allow
tasks o be read and gencrated one at a time.

Figure 4-3 illustrates the processing of a single processor. After reading a task from
the task queue, the processor determines whether it 1s a search task or a bid task. Ifitis a
search task for hidder 1, the processor searches the appropriate segment of the objects A(i) and
writes a message in shared memory with the resuits of 1ts search (the two highest net profit
levels and the objecet offering the highest net profit). The message is protected by a lock
indexed by the processor index and the person index, which guarantees that the message must
be read s entirety by the bid sk, After writing the message. the processor releases the
ock and atempis to acgnire another task,

If the tnk aequired s g bid sk the processor must read the messazes Beft by the
search tisks for this persons Some of these scarch tisks may sl be i process, so the bid

processor miy be reading old messaces, The processor tocks cach messace reads the
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contents, releases the lock and merges the results of the individual search tasks into an overall

search result. This is then used to compute a bid (from person i to object j). The processor

then locks object j, updates the price and assignment of object J and releases the object. If an

unassigned person results from this operation, the processor then locks the unassigned task

queue, inserts S search tasks and one bid task at the end of the queue for the unassigned

person, and releases the queue.
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Design of the asynchronous Hybrid AUCTION algorithm.

The aigorithm described above is the asynchronous Hybrid AUCTION 11 algorithm.

The difticulty with thy - algorithm is that a bid s often computed based on outdated messages.

leading to a large increase in the number of losing bids (and therefore the number of iterations

required tor convergence ). Ideally, the bid task for person 1 would wait for the search tasks for

person 1to be completed: however, this requires synchronization. In the Hybrid AUCTION 1

aleorithm, the processor that acquires the last search task corresponding to a person also

acquites the bid task corresponding to that person. This processor executes the search task

firsts then the bid task. In this manner, the likelthood that the other vearch tasks corresponding

toinat person are complete by the time the bid sk is executed 1s substantially mereased.
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Figure 4-4 illustrates the performance of one vanation of the asynchronous Hybrid
AUCTION I algorithm for the same 1000 person, 20% dense assignment problem. In this
variation, the number of search tasks generated per person is equal to half the total number of
processors used. In this manner, the results are comparable to the results obtained using the
synchronous Hybrid AUCTION =nigorithm with two computed bids simultaneously. As
before, the number of iterations required for convergence depends on the order in which the
processors complete their tasks, and varies between different executions of the algorithm. The
times shown are the average times of three runs. Contrasting the results of Fig. 4-4 with those
of Fig. 3-12, we see that the asynchronous Hybrid AUCTION [ algorithm achieves nearly a
30% reduction in computation time over the corresponding synchronous Hybrid AUCTION
algorithm. Notice that the minimal times of both curves occur around 10 processors; adding
additional processors increases the overhead for merging the results of additional searches,
thereby detracting from overall performance in both the synchronous and asynchronous cases.
The computation reduction of the asynchronous algorithm is due to improvements in load-
balancing and reduced synchronization overhead. Load balance among processors is improved
by having search tasks conducted in parallel with bid tasks, thercby keeping the majority of the
processors performing useful computations. Reduced synchronization is accomplished by
removing global synchrorization primitives such as ba:riers and monitors, instead replacing
these by locks on the specific data items (such as messages) for which integrity must be
maintained.

Figure 4-5 illustrates the performance of the asynchronous Hybrid AUCTION |
algorithm using 16 total processors as the numbers of bid and scarch tusks are varied. The
coal of the Hybrid AUCTION I algorithm is to obtain a multiplicative combination of Jacobi
and Gauss-Seidel speedups: the results of Frg. 4-5 indicate that the asvnchronous Hybrid
AUCTION Talgorithm has approached close to a muluplicative combinauon for the optimal

chotces of numbers of processors and scarch tasks. There 18 @ noticeable dropott in the
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Average Computation Time in Seconds

Figure 4-4.
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Average computation time of asynchronous Hybrid AUCTION I for

1000 person, 20% dense assignment problem, benefit range [1,1000].
The times shown are the average of three different runs on the Encore

Multimax. In these problems, the number of search tasks per bid was
equal to 1/2 the number of processors.

combined effectiveness when large numbers of search tasks are generated for each bid. The
reason for this dropoft is that the total synchronization overhead associated with each iteration
increases because the overall length of the task queue increases; this length 1s equal to the
number of search tasks per bid times the number of bids required for the algorithm to
converge. and thus grows linearly with the number of search tasks. Since svnchronization
(using locks) is usc 1 to maintain the integrity of the task queue. the synchronization overhead

imcreases as the number of search tasks per bid increases for a fixed number ot processors.

As the results of Fig. 4-5 indicate, the asynchronous Hybrid AUCTION T algorithm

approached a successful combination of the speedups possible from Jacobi and Gauss-Seidel

parailelism through a careful management of the order in which tasks are selected for

~rocessing. In order to stlustrate the ettects of more general asynchronous implementations,
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we designed the asynchronous Hybrid AUCTION II algorithm, which was identical to the
Hybrid AUCTION I algorithm except that the bid tasks would be assigned to the first available
processor after all the corresponding search tasks for that bid had been assigned (as opposed
to assignment to the same processor which selected the last search task). Figure 4-6 illustrates
the relative performance (averaged across three runs) of the asynchronous Hybrid AUCTION 1
and II algorithms for the same 1000 person assignment problem. In these experiments, the
two search tasks per bid are generated. Clearly, the asynchronous Hybrid AUCTION II
algorithm is nearly twice as slow as the asynchronous Hybrid AUCTION I algorithm. The
reason for this behavior is illustrated in Fig. 4-7, which describes the number of bids generated
by each algorithm for convergence to an optimal solution. In essence, the number of bids
required more than doubles for the asynchronous Hybrid AUCTION 1I algorithm! This is

because the bid task is generating the bids before the search tasks have completed their scans;
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Figure 4-5. Comparison of predicted and actual speedups achieved by the
asynchronous Hybrid AUCTTON T algorithm for 1000 person, 2047
dense assignment problem, benetit range [ 1.1000].
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these bids based on old information are often rejected, so that adustional bids are required. The
results illustrate the importance of careful management of asynchronous tasks in order to
gnarantee that the processors are doing useful work (i.e. work that will not become irrelevant
when new information is acquired.)

Figure 4-8 compares the performance of the synchronous Hybrid AUCTION algorithm
with the performance of the asynchronous Hybrid AUCTION I algorithm for 1000 person
assignment problems with varying feasible assignment density. In these experiments, the
number of search tasks generated per unassigned bidder was equal to half the number of
processors selected; on the average, only two simultaneous bids were computed by the
asynchronous algorithm, making it comparable to the synchronous Hybrid AUCTION
algorithm. The computation times of the asynchronous algorithm are averaged across 3 runs.
Note the significant reduction in computation time achieved by the asynchronous algorithm;
this improvement reflects the improvement in load balancing across the multiple processors

used.
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Figure 4-8.  Performance of synchronous Hy brid AUCTION and asvnchroncus
Hybrid AUCTION T algorithms on 1000 person assignment problems
of varving density, bencefit range [ 1,1000].
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APPENDIX A
THE AUCTION ALGORITHM

In this Appendix, we overview the theory of the AUCTION algorithm, desciive a
model for an asynchronous variation of the algorithm, and establish that this asynchronous

variation obtains an optimal solution to the assignment problem.

A.1 THE AUCTION ALGORITHM FOR ASSIGNMENT PROBLEMS

In the assignment problem, n persons wish to allocate among themselves n objects, on
a one-to-one basis. Each person i must select his object from a given subset A(i). There is a
given benefit ajj that i associates with each object jin A(i). An assignment is a setof k
person-object pairs (i1,j1), - . - » (ik,jk)> such that 0 <k < n, j;m € A(ip) for all k, and the
persons iy, ..., ix 2nd obiects jy, ..., Jx are all distinct. The total benefit B of the assignment is

the sum of the benefits of the assigned pairs.
k
B= D ai,
m=1

An assignment with is called complete (or incomplete ) if it contains k =n (or k<n,
respectively) person-object pairs. We want to find a complete assignment with maximum total
benefit, assuming that there exists at least one complete assignment. This is the classical
assignment problem, studied algorithmically by many authors [A.1, A2, A3, A4, A5 A6,
AT7.A8 A9, A0 ATl A12, A13, A.14, A 15], beginning with Kuhn's Hungarian
method [A.16].

In the AUCTION algorithm, each object j has a price pj with the initial prices being
arbitrary. Prices are adjusted upwards as persons "bid" for their "best” object. that is, the
abject for which the corresponding benefit minus the price is maximal. Only persons without
an object submit a bid, and objects are awarded to their highest bidder. In particular, the prices

py are adjusted at the end of "bidding™ iterations. At the beginning of cach iteration, we have a
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set of object prices and an incomplete assignment, and the algorithm terminates when a
complete assignment is obtained. Each iteration involves of subset I of the persons that are

unassigned at the beginning of the iteration. It has two phases:

Bidding Phase: Each personie Idetermines an object ji € A(i) for which ajj - p;
is maximized over j, i.e.

ji = arg maxje A(i) (&ij - pj)

and submits a bid pj; + gj for this object, where g; is a positive bidding increment to
be specified shortly.

Assignment Phase: Each object j that receives one or more bids. determines the
highest of these bids, increases pj to the highest bid, and gets assigned to the
person who submitted the hlghest bid. The person that was assigned to j at the
beginning of the iteration (if any) is now left without an object (and becomes

eligible to bid at the next iteration). If an object does not receive any bid during an
itcration, its price and assignment status are left unchanged.

It can be shown that if the bidding increments g; are bounded from below by some € >
0, this auction process terminates in a finite number of iterations with all persons having an
object. To get a sense of this, note that if an object receives a bid in m iterations, its price must
exceed its initial price by at least me, while if an object is unassigned, its price has not yet
changed from its ininal value. Thus, for sufficiently large m, the object will become
"expensive” enough to be judged "inferior" to some unassigned object by each person. It
tollows that there is a bounded number of iterations at which an object can be considered best
and thus be preferred to all unassigned objects by some person. (This argument as stated,
assumes that it is feasible to assign any person to any object but it can be generalized for the
case where the set of feasible person-object pairs is limited, as long as there exists at least one
teasible assignment; see e.g.[A.17, A.18].)

Whether the complete assignment obtained upon termination of the auction process is
optimal depends strongly on the method for choosing the bidding increments gj. In a real
auction, a prudent bidder would not place an excessively high bid for fear the object might be

won at an unnecessarily high price. Consistent with this intuition, one can show that it the
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bidding increment g; is small enough to ensure that even after the bid is accepted, the object
will be "almost best" for the bidder, then the final assignment will be "almost optimal”. In

particular, we can show that if upon termination, we have
max; (ajj - pj - €) < ajj; - pj; for all assigned pairs (i,j;) (A-1)

(a property known as &-complementary slackness or €-CS for short), then the total benefit of
the final assignment is within n¢ of being optimal. For a first principles derivation of this, note

that the total benefit of any complete assignment {(i,j;),i=1, ..., n } satisfies
n n n
DIETHEDISIED IR - SVACHE 2
i=1 j=1 i=1
for any set of prices pj, j =1, ..., n, since

n Tt
2, maxje agy @;5- ) 2 2, @;5,- pj;)
i=1

1=1

i n
'2 Pj; = 2. P,
i=1 j=1

Therefore, the optimal total assignment benefit cannot exceed the quantity

n

3 n
AF = mmpj.le.....n { 2 p_l + z InZL\'jéA(i)(iliJ’- p‘) }
) 1=1 1=1

(A-2)
On the other hand, if the €-CS property (A-1) holds upon termination of the auction process,
then by adding Eq. (A-1) over all 1, we see that
n n nﬂ
Z Py * Z MaX;e oy (@5;- p) < >_‘ a;j, +ne
i=1

11 1= ]

(A-3
Since the left side above cannot be less than A% which as argued carlier. cannot be less tha

the opumal total assignmient benefit, we see that the final total assignment benefit is within ne
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of being optimal. We note parenthetically that the preceding derivation is guided by duality
theory; the assignment problem can be formulated as a linear programming problem, and the
minimization problem in the right side of Eq. (A-2) is a dual problem (see e.g. [A.18, A.19]).

Suppose now that the benefits ajj are all integer, which is the typical practical case (if aj
are rational, they can be scaled up to integer by multiplication with a suitable common positive
integer). Then, the total benefit of any assignment is integer, so if ne < 1, a complete
assignment that is within ne of being optimal must be optimal. It follows, that if € < 1/n, the
benefits aj; are all integer, and the €-CS condition (A-1) is satisfied upon terminaiion, then the
assignment obtained is optimal.

There is a standard method for choosing the bidding increments g; so as to maintain the
€-CS condition (A-1) throughout the auction process, assuming this condition is satisfied by
the initial prices and the initial assignment (as i trivially the case when no objects are assigned

initially). In this methad, € i< a fx~d masitive number, and the bidding increment g; is given by
gi= €+ Vi-wy (A-4)
where v is the best object value,
Vi = maxje A) (& - py) (A-5)
and wj is the "second best” object value
Wi = MaXje A®), j#); (ajj - pp) {A-O)

wherce jj is a best object for which the maximum in Eq. (A-5) is attained. We will assume for
convenience throughout that A(i) contains at least two objects, so the maximum in Eq. (A-6) is

well defined.

A.2 COMPUTATIONAL ASPECTS -- e-SCALING
The AUCTION algorithm exhibits interesting computationat behavior and it is essential

to understand this behavior in order to implement th2 algorithm etticiently. We tirst note that
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the amount of work to solve the problem can depend strongly on the value of € and on the

maximum absolute chiect value

C = max; ajj (A-7)
Basically, for many types of problems, the number of bidding iterations up to termination tends
to be proportional to C/e. We note also that there is a dependence on the initial prices; if these
prices are "near optimal”, it can be expected that the number of iterations to solve the problem
will be relatively small. This suggests the idea of e-scaling, which consists of applying the
algorithm several times, starting with a large value of € and successively reducing € up to an
ultimate valae which is less than the critical value 1/n. Each application of the algorithm
provides good 1nitial prices for the next application.

In practice, it is a good idea to at least consider scaling. For sparse assignment
problems, that is, proticms where the set of feasible assignment pairs is severely restricted,
scaling seems almost universally helpful. This was established experimentally at the time of
the original proposal of the AUCTION algorithm [A.20]. There is also a related polynom.ial
complexity analysis [A.18] that uses some of the earlier ideas of an e-scaling analysis [A.9],
tor the e-relaxation method of |A.21].

Our implementation of e-scaling is as follows: the integer benetits a; are first
multiplied by n+1 and the AUCTION algorithm is applied with progressively lower value of €,
up to the point where € becomes 1 or smaller (because ajj have been scaled by n+1. it is

sufticient tfor optimality of the final assignment to have € < 1), The sequence of € values used is

k) = max(l, A/98 k=0, 1. ..

where A >0 and 0 > 1 are parameters set by the user. Typical values that we used for sparse

problems are A =C/Aor A =C/2.and <0 <8
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A.3 THE TOTALLY ASYNCHRONOQUS VERSION OF THE AUCTION
ALGORITHM

One may view a synchronous parallel algorithm as a sequence of consecutive
conmtputation segments called phases. The computatiors within each phase are divided in some
way among the processors of a parallel computing system. The computations of any two
processors within each phase are independent, so the algorithm is mathematically equivalent to
some serial algorithm. Phascs are separaied by synchronization points, which are times at
which all processors have completed the computations of a given phase but no processor has
yet started the compuiations of the next phase. In asynchronous parallel a_gorithms, the
coordination of the computations of the piucessors is less strict. Processors are allowed to
proceed wih compritations of a phase with data which may be out-of-date because the
computations of the previous phase are incomplete. An asynchronous algorithm may contain
;ome svnchronization points but these are generally fewer rhan the ones of the corresnonding
svnchronous version.

1o geta firstidea of the totally asynchronous implementation of the AUCTION
aleorithm, 1tis useful to tnink o a person as an autonomous decision maker thui obrins at
unpredictable tmes information about the prices of tiie objects. Each unassigned person makes
a bid at arbitrar: - times on the basis of its cusrent object price infesmation (thai may be outdated
hecause of communication delays). Furthermore, assignment of objecis mayv be decided even
it some potential bidders have not ocen heard from There aie basically two conditions that
must be observed i order tor this piocess to termimate pronerly. We state roughfy these
condigons beiow and we will give @ more precise formulation shortlv,

o Anunassigns dperson will bid for some object within nite tme, and cannot bid
twace tueccannot bid tor aosecond obiect whtle waiting tor wreply recandimg the
disposinon of an e rhier brd foranether obieet),

Whenever one or more budare received that raise the price of s object, then.
wathin tinte unces that price niast be updated. and ts value muoss be comminmcared

(ot ceessariy simutianeoustyy w all nersons, Tarthermore. o persos hat has ot
Bosdeostened obectmaost be mdormed within fisite trne ot the cranse e pearnaen:
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We now formulate the iotally asynchronous model of the AUCTION algorithm, and we
prove its validity. We denote
pj(t) = Price of object j at time t
fj{t) = Perso.i assigned to object j at ime t [rj(t) = 0 if object j is unassigned]
U(t) = Set of unassigned persons at time t[1 € U(t) if rj(t) # i for all objects jj
We assume that U(1), (1) and rj(t) can change only at integer times t; this involves no
loss of generality, since t may be viewed as the index of a sequence of physical times. In
addition to U(v), pj(t) and rj(t), the algorithm maintains at each time t, a subset R(t) < U(t) of
unassigned persons that may be viewed as having a "ready bid" at time t. We assume that by
time t, a person i € R(t) has used prices pj(tij(t)) from some earlier times ij(t) <t to compute

the best value

vi(t) = maxje Ay (dij - pi(ti()) (A-8)

a best object jj(t) attaining the above maximum,

Jitt) = arg maxje A¢) (@, - pj(t(0 N (A-9)
the second best value
wi(t) = MANj= A®D), j#),(0 i = P (A-1)
and has determuned a bid
h, 0= P (0) Vil - wn + € (A-11

The .mplication bere 1s that unassigned persons 1 will enter the sct Ro and become eligible o
bud atter some computations. which update 100 and b, However, o maamize the generahn
aod tHexabibity of our mode L the precie mechanism by which these compranons are done s
Ereecanspeciicd sabject to the tollow g two assumptions:

Assamption Ut 2 0 nmplics Koty 2 ror soine © 0

Assumption 20 Forall o and ooy, L e
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Clearly an asynchronous AUCTION algorithm cannot solv= the problem if unassigned
persons stop submitting bids and if old information is not eventually discarded. This is the
motivation for the preceding two assumptions. Initially, each person is assigned to at most
one object, that is, rj(0) # ry(0) for all assigned objects j and j, and it wiil be seen that the
algorithm preserves this property throughout (s course. Furthermare qaitially €-CS liolds. that
1s,

maxg (ajk - bk(0) - €) < ajj- pj(0) if i =1;(0)

It will be shown shortly that this property is also preserved during the algorithm.
Ateach time t, if all persons are assigned [U(t)=®], the algorithm terminates.
Otherwise, if R(t) = @, nothing happens. If R(t) is nonempty the following occur:

1. A nonempty sucset I(t) < R(1) of persons that have a bid ready is selected.

2. Each object j for which the corresponding bidder set
Bjy=t{ie I() 1] =j(0)} (A-12)
1s nonempty, determines the highest bid
Dj(t) = maxie Bjiy hi(1) (A-13)
and a person 1j(t) tor which the above maximum 1s attained:
(1) = arg maxj. Bjit bi(t) (A—H)

Then, the pair [pyto. ryet] is changed according to

oD = IO o] it bjto 2 ppo + ¢
~Ipn, rto} otherwise tA-1)
NSoccethat gt d Uen Renctor adb tothon the asynchronous alpornem s equivalent to

e wonctronons version decnood i Secnion AL
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The asynchronous model becomes relevant in a parallel computation context where
some processors compute bids for some unassigned persons, while other processors
simultaneously update some of the object prices and corresponding assigned persons.
Suppose that a single processor calculates a bid of person i by using the values ajj - p;(t;j(1))
prevailing at times t;;(:) and then calculates the maximum value at time t. Then, if the price of
an object j € A(i) is updated between times t;j(t) and t by some other processor, the maximum
value will be based on cut-of-date information. The asynchronous algorithm models this
possibility by allowing tjj(t) <t. A similar situation arises when the bid of person i is
calculated cooperatively by several processors rather than by a single processor.

The following proposition establishes the vaiidity of the asynchronous AUCTION

algorithm of this section.

Proposition 1: Let Assumptions 1 and 2 hold and as: unie that there exists at least one
complete assignment. Then for all t:ind all j for which ri(t) # 0, the pair
[pj(1).1j(V)] satisfies the £-CS condition )

maxk (ajk - pk(D) - €) < ajj - pj(V) ifi= Iyt (A-16)

FFurthermore, there 1s a finite time at which the algorithm termirates. The
complete assignment obtained upon termination is within ne of being
optimal, and is optim. i if € <I/n and the benefits ajj are integer.

proof: Let [p;(0,rj(t)] be a pair with rj(t) # 0. To simplify notation, let i =rj(t). We first

consider times t at which pj was just updated, 1.c., pj(t) > pj(t-1) and 1 = r;(t- 1), and person i

submitted a highest bid for object j at time t-1. Then we have by construction

1

Q- pyl) = ajj - bi(t-1) = ajj - pilti(t-1)) - vitd ey e

= \\'i([“l) -2 MaXke Ay, bz (k- DrOGroy - ¢

where the Jast inequality follows using the fact ppon = pre for all K and @ Cwith e 0

Theretore the £-CS condition tA-T0) holds for all cat which ppwas st ey duaed.

R IERI AT




ALPHATECH, INC.

Next we consider times t for which pj was not just updated. Let t' be the largest time
which is less than t and for which pj(t') >- pj(t'-1); this 1s the largest time prior to t that object j

was assigned to person i. By the preceding argument, we have

ajj - pj(t) = maxge Aq) (aik - px(1)) - €

and since pj(t)=pj(1), and pk(t) 2 pk(t') for all k, _the €-CS condition (A-16) again follows.

We next show that the algorithm terminates in finite time. We first note the following:

a. Once an object is assigned, it remains assigned for the remainder of the algorithm.
Furthermore, an unassigned object has a price equal to its initial price. Using Egs.
(A-8) and (A-10), we have wi(t) < vi(t), so from Eq. (A-11) we see that b;(t) >
Pji(tiji(t)) + €. It follows from Eq.(A-13) that if person 1 bids for object j at time t,

we must have
bj(t) = pj(tij(t)) + € (A-17)

b. Each time an object j receives a bid by(t) at time t, there are two possibilities: either
bj(t) < pj()+¢, in which case pj(t+1)=pj(1), or else bj(t) = pj{t)+€, in which cuse
pj(t+1) 2 pj(D+€ and pj(t) increases by at least g[cf. Eq. (A-15)]. In the later case
we call the bid substantive. Suppose that an object receives an infinite number of
bids during the algorithm. Then, an infinite subset of these bids must be
substantive; otherwise pj(tywould stay constant for t sufficiently large, we would
have pj(tij(t)) = pj(v) for t sutficiently large because old price information is
eventually purged trom the system (cf. Assumption 2), and in view of Eqs.(A-13)
and (A-17) we would have pj(t+1) 2 p;(0) + € for all times t at which jrecerves a

bid, arriving at a contradiction.

Assume now. in order to obtain a contradiction, that the algorithm does not terminate
tinitelyv. Then, because of Assumption 1, there is an infinite number of times t at which R0 is
nonempty and at cach of these times. at least one object receives a bid. Thus, there is a
noncmipty subset ol objects J - which receive anantinite number of bids, and a nonempty
subsetof persons I which submit anifinite number of bids. In view of ivy above, the prices

ol aif objeces i ] 7 increase e and moview of Ga above all objects in b are assizned tort
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sufficiently large. Furthermore, the prices of all objects j & J*= stay constant for t sufficiently
large and since old information is purged from the system (cf. Assumption 2), we also have
pj(ti(1)) = pj(v) for all i,j € J*°, and t sufficiently large. These facts imply that for sufficiently
large t, every object j € A(i) which is not in J= would be prefe:zYle for person i to every object
J€ A1) ni=. Since the e-CS condition (1) holds throughout the algorithm, we see that for
each person i € I*° we must have A(i) € J*; otherwise such a person would bid for an object
not in J* for sufficiently large t.

We now note that for sufficiently large t, the only bids taking place will be by persons
in I** bidding for objects in J*, so each object in J*° will be assigned to some person from I°,
while at least one person in I°> will be unassigned (otherwise the algorithm would terminate).
We conclude that the number of persons in I°° is larger than the number of objects in J=. This,
together with the earlier shown fact A(i) < J*, for all i = I*°, implies that there is no complete
assignment, contradicting our assumptions.

The optimality properties of the assignment obtained upon termination follow from the
€-CS property shown and our earlier discussion on the synchronous version of the algorithm.

g.e.d.
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