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1 Overvie and Summary

The objective of this Phase I research is to demonstrate the feasibility of using state
space Markov process models and canonical variate analysis (CVA) to obtain optimal
nonlinear procedures for system identification and stochastic filtering. The emphasis in
the study is to develop the major aspects of the theory and associated computational
algorithms and to demonstrate the algorithras on simulated nonlinear data. Since this is
an initial study in the feasibility of such methods, there are a number of further details
and issues that need further study and are proposed for research in Phase II.

The results obtained in this study are very encouraging. The problems of system
identification and stochastic filtering are of considerable importance in a number of
aerospace systems as well as industrial processes. These problems are of long standing
difficulty. The CVA approach is a new approach which is shown to generalize to very
general nonlinear processes. The theory involves the use of operators on Hilbert spaces
of nonlinear functions, and optimal solutions are shown to exist. The computational
methods are a generalization of the singular value decomposition to Hilbert function
spaces. The computations involve SVD type methods that are shown to work very well
on the simulation data for the Lorenz chaotic attractor.

This section provides an overview and summary of the work. The topic is first
introduced including a statement of the aspects of the problem that are of primary
importance in this study. The technical objectives of this Phase I study are described,
and the major results are briefly summarized. The activities of presenting results at
technical conferences and submitting and publishing papers are discussed. Work pro-
posed for Phase II is described, and finally the potential applications in DoD as well as
in commercial processes are elaborated. In the rest of this report, the various topics are
developed in sufficient detail to allow for the detailed evaluation of the feasibility of the
CVA approach for system identification and stochastic filtering of nonlinear processes.

1.1 Introduction and Stotement of the Problem

In recent years there has been considerable development of the field of nonlinear dy-
namical systems. Such systems include atmospheric dynamics, aerodynamic vehicle
dynamics at high angles of attack, dynamics of rotating machinery and propellers, rota-
tional dynamics of space craft, dynamics of robotic systems, and physiological dynamics
of the heart and neurons of the brain (Marmarelis, 1989) to mention only a few. These
recent developments have been primarily from the approach of deterministic nonlinear
differential equations and simulation studies. The presently : vailable methods for iden-
tification and filtering of stochastic nonlinear systems are very restrictive in the face of
the rich class of nonlinear systems under current study using deterministic methods. A

detailed review of the currently available methods for stochastic nonlinear systems is
discussed in Section 2.

The problem addressed in this Phase 1 SBIR study is the development of system
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identification and filtering method for stochastic nonlinear systems. A dominant feature
of such nonlinear systems is that the system dynamics or filter of such a system are often
infinite dimersional so that exact solution of the problem is not feasible. Even in the
case where the process is finite state order, measurement noise results in an infinite
dimensional filtering problem. Indeed, the problem is fundamentally an approximation
problem, and useful solutions to the problem ar~ basically efficient approximations to
the infinite dimensional problem. Many of the previous approaches to the problem have
been straight forward extensions of linear methods or nonlinear deterministic methods
and have encountered formidable obstacles. Also, most of these previous approaches
have dealt with the system state only indirectly or implicitly.

One of the fundarmental aspects of many physical systems is the existence of a state
which is a set of variables containing the memory of the system such as energy storing el-
ements, i.e. position, velocity, rotational velocity, deflection of a structure, temperature
of a fluid, etc. As will be seen, the fundamental difficulty is that a good approximation
of the problem requires a good selection of an approximate state of the system. Given
a good approximate state, the determination of 2 good identified model or stochastic
filter becomes direct and simple. However, a poor choire of the state leads to poor
results. The difliculty in previous approaches is the reliance on implicit methods that
usually lead to open ended iteration involving nonlincar search using a prespecified
model structure. Such a procedure usually has poor convergence properties with no
known bound on the required computation. The procedure must be repeated for each
candidate model structure, and for the nonlinear problem there are many more if not
an infinite number of potential structures.

In the CVA approach, the approximation problem is formulated directly in terms
of finding an optimal approximation of a specified state order. The states are to be
determined as linear combinations of basis functions expressed as nonlinear functions of
the past observations of the process. The states are computed in a CVA that determines
the linear combinations of the nonlinear functions of the past that have predictive value
for the future evolution of the process. The computation is fundamentally a lincar
procedure. Even in the Hilbert space of all possible nonlinear functions of the past, the
solution to the CVA problem is shown to be the result of an iteration of projections
on subspaces of nonlinear functions - a linear procedure for each iteration. It is shown
that the optimal selection of states for a given order k, has the same first k — | states
as the solution for the case of finding only k — 1 states. Thus the problem solution
for state order k contains in canonical form the solution for all lower orders and the
determination of the k-th state given the solution for the k& - 1 states can efficiently
proceed in an iterative fashion. Since there is no a priori model structure imposed on
the problem, the procedure will detect any significant model structure contained in the
observed data.

More detailed background on the problem and approach to its solution are contained
in Sections 2-4.




1.2 Phase I Objectives

The objectives originally proposed for the Phase I study were more narrowly defined
in terms of state affine Markov processes. The results achieved are much more general
and apply to general nonlinear Markov processes.

The objective of the Phas- : study was to demonstrate the technical feasibility of
using state affine Markov processes and canonical variate analysis for obtaining approx-
imations to optimal nonlinear filters and for systein identification. In particular, the
objectives of the research ~re to demonstrate the feasibility to:

(1) Develop a general and complete theory of approximation of nonlinear Markov
processes using state affine Markov processes

2} Develop a general theory for canonical variate analysis of nonlinear processes
p

(3) Develop computational algorithms for canonical variate analysis of nonlinear pro-
cesses aild determine state affine Markov approximations

(4) Demonstrate prototype algorithms on simulation data of nonlinear processes.

1.3 Summary of Phase I Research Results

l Not only were all of the objectives of the Phase 1 research accomplished, but the re-
sults were extended to general nonlinear systems including multiple equilibria systems

l that cannot be approximated by finite order state affine systems. This extension is
a major accomplishment and considerably extends the applicability of the methods.
Many important aerospace applications are multiple equilibria systems including rota-

. tional dynamics of spacecraft, rotational and buckling dynamics of shafts, and nonlinear
aeroelastic dynamics of high performance aircraft and missiles.

In particular, the Phase I accomplishments are:

¢ Development of a general theory for represen.ation of nonlinear Markov processes
in a state space innovations form involving the canonical states. The predictive
ability of the truncated state is related to the corresponding canonical correlations.

¢ The general theory of nonlinear canonical variate analysis is developed for non-
linear Markov processes on Hilbert spaces. The theory of maximal correlation is
used to prove the existence of solutions to the problem.

e Computational algorithms and software are developed with particular attention
to insuring numerical accuracy and stability.

e The software is demonstrated on the Lorenz chaotic attractor waich is a multiple
equilibria system. Reconstruction of the full state space from observation of only
one of the three state coordinates is demonstrated even for the case of substantial

process excita‘ion noise. The identified system dynamics have the same character
as the true nonlinear system.

e ——————————




A detailed discussion of the technical accomplishments is contained in Section 12.

In this Phase I study, the theory and computational algorithms are developed in
outline form to demonstrate the feasibility of a comprehensive development in Phase II.
The computational simulation and demonstration involved simplified med-~!s which will
be replaced with more complex nonlinear systems in Phase II.

1.4 Paper and Conference Activities

During Phase I, several presentations were made at professional conferences and several
papers prepared.

The paper “Generalized Canonical Variate Analysis of Nonlinear Systems” was pub-
lished in the Proceedings of the 27th IEEE Conference on Decision and Control, Vol.
3, pp. 1720-5, and presented at the conference held December 7-9, 1988, Austin, TX.
The paper was presented in the session Nonlinear Dynamics and Control of Aerospace
Systems.

The presentation “Generalized Canonical Variate Analysis of Nonlinear Time Series”™
was made at the CBMS Regional Conference on Modern Computer Intensive Methods
for Exploring and Modeling Multivariate Data held June 12-16, 1989, at George Wash-
ington University and jointly sponsored with the National Science Foundation. The
conference discussed recent nonlinear regression methods for high dimensional spaces
featuring Prof. Jerome Friedman of Stanford University as lecturer. The use of these
methods for the identification of nonlinear Markov processes using CVA will be inves-
tigated in depth in the proposed Phase II research.

A paper is in preparation summarizing the theory developed in the Phase I study.
This paper will be submitted to the Annals of Statistics. Also, an additional paper is
in preparation summarizing the time series analysis procedure and the computational
results of the simulation studies. This paper will be submitted to the Journal of Time
Sertes Analysts.

1.5 Proposed Phase Il Research

Work is proposed for Phase Il research on system identification and stochastic filtering
of nonlinear Markov processes using the method of canonical variate analysis. Previous
work using other approaches has encountered substantial difficulties in achieving efficient
and robust approximate solutions to these problems. The results of the Phase I research
demonstrates the feasibility of obtaining accurate and computationally robust solutions
to these problems using the CVA method.

The objective of the proposed Phase II research is to investigate in detail the theo-
retical, statistical, algorithmic, and computational aspects of the problem, and to im-
plement prototype software for demonstrating the procedures on several types of data
including rotating mechanical systems. This proposed work is an in depth investigation




into the aspects of the problem that have a direct bearing on the design and implemen-
tation of theoretically sound, statistically accurate and computational robust software.
Further the computational and simulation studies will appraise the performance of the
methods and algorithms.

The proposed Phase 1l research is a major collaborative effort involving as consul-
tants some of the preeminent researchers in their respective fields. Prof. Jan C. Willems
has made innovative contributions to the fundamental theory of dynamical systems in-
cluding system identification. He will consult on the theoretical development of CVA on
Hilbert spaces which is a major focus of the proposed study. Prof. Jerome H. Friedman
has made major contributions in the field of nonlinear regression in high dimensional
spaces. He will consult on the development of statistically efficient methods for fitting
nonlinear dynamical models which is a central issue of the proposed work. Prof. John
Baillieul has done extensive analysis of nonlinear systems particularly robotic and ro-
tating mechanical systems, and has developed an extensive experimental facility in the
Boston University Robotics Laboratory for data collection and comparison of theoretical
models and experimental behavior. He will consult on the use of various models, simu-
lated data, and experimental data in demonstrating the performance and interpreting
the resulting identified nonlinear systems.

In addition, Dr. J. Doyne Farmer of Los Alamos National Laboratories has been one
of the principal contributors to the development of the state reconstruction approach to
modeling chaotic deterministic systems which is complementary to the CVA approach
to identification and filtering of nonlinear stochastic systems. He heads a group of four
people doing contract work from several agencies on the topic. There will be an infor-
mal collaboration between CEI and Los Alamos in exchanging data and computational
methods as well as discussing the theoretical relationships between the two approaches.

The proposed Phase II work using CVA is a comprehensive program for the system-
atic and in-depth development of the dynamical systems theory, statistical estimation
and computational methods, and demonstration on simulated and experimental data.
The research will receive review and consulting by preeminent researchers in these fields.
Further, the proposed study will involve experimental and computing facilities capable
of demonstrating the performance of the developed methods and software on significant
real systems and data sets.

The technical objectives proposed in Phase II for the modeling of nonlinear dynam-
ical systems are:

(1) Further development of the theory of nonlinear canonical variables using operators
on Hilbert spaces as was sketched in this Phase [ study. Also further development
of independent canunical variables to provide a solution to the problem of select-
ing states of minimal rank. Continue development of the optimal normalizing
transformations and the entropy measure of approximate normality.

(2) Continue the development of the theory of approximation of nonlinear Markov
processes including use of the prediction error of the future as measured by the




entropy. Also approximation measures appropriate for recursively defined Markov
processes will be considered.

(3) Develop statistical inference theory and methods for the CVA procedure. This
includes the development of adaptive nonlinear regression methods for high di-
mensional multivariate data and the development of related theory for assessing
the accuracy of the resulting nonlinear Markov process models.

(4) Development of computational algorithms and prototype software for computa-
tional study. Particular attention will be given to the numerical accuracy and
stability as well as the computational efficiency.

(5) Computational study using simulated and real data. Real data from robotic and
rotating mechanical systems will be analyzed and compared to theoretical models
of the dynamics. The behavior and performance of the developed methods and
algorithms will be assessed.

The anticipated results cf the proposed research is the deveiopmeni of system iden-
tification and stochastic filtering using canonical variate analysis. This will include a
rigorous development of the mathematical theory of approximation in a Hilbert space
setting for a general class of nonlinear controlled Markov processes. Markov processes
in state space innovations form will be determined for approximation of optimal filters
and nonlinear stochastic models. Near optimal choice of the state will be obtained us-
ing CVA on covariance data of the past and future. Computational methods will be
developed and demonstrated on nonlinear data from computer simulation as well as
laboratory experiments.

1.6 Potential Applications and Phase III Commercialization

1.6.1 Potential Commercial Applications

The chemical and industrial process industries as well as power systems involve a num-
ber of highly nonlinear processes that are difficult to identify, filter and control using
methods of linear systems. These processes could benefit considerably from a general
and automatic procedure for system identification and filtering of nonlinear systems.

Based upon CVA of linear systems, CEl is currently developing on-line system identi-
ficatior and adaptive control software for industrial processes. In a Yhase I SBIR funded
by NSF, linear system identification methods were applied for the local identification of
several nonlinear processes. These included a stirred tank reactor and an autothermal
reactor both of which are very nonlinear with the autothermal reactor having multiple
equilibria. Present methods use local linearization for control system design because
good identification of nonlinear models are not available.

Monitoring and signal enhancement of brain waves is of great importance in clini-
cal analysis as well as neurosurgery. Many of these neural processes are known to be




nonlinear and exhibit chaotic behavior. This field could greatly benefit from nonlinear
system identification and filtering methods. The development of accurate models of
neural process dynamics has been greatly limited by the lack of good methods and com-
putational algorithms for identifying nonlinear systems. CEI has been involved in the
research and development of signal processing methods for a neurosurgery monitoring
system using linear system identification and filtering methods.

Power generating plants have nonlinear dynamics of considerable importance to the
control and safety of the systems (Zaborszky et al, 1988; Chiang et al, 1988). These
dynamics are difficult to study accurately due to lack of available nonlinear system
identification methods, and rely primarily upon simulation models constructed from
first principles. One of the Phase III Funding Commitments on the NSF SBIR is for
use of the linear CVA method for identification of locally linear models for control of a
reboiler process in an electric power cogeneration plant. These reboilers are known to
be highly nonlinear and will provide CEI with an opportunity to apply nonlinear CVA
procedures following the completion of the proposed Phase 1I work.

1.6.2 Potential Federal Government Applications

A number of DoD systems involve nonlinear processes that require system identification
or stochastic filtering. These include aircraft at high angles of attack, slewing dynamics
of large space structures, adaptive control of robots, on-line reconfiguration of control
systems for failed or battle damaged aircraft or space structures, and the dynamics
of physiological neural networks. Accurate system identification and filtering of these
processes would have considerable impact on the modeling, control, and understanding
of these processes.

The advance of aircraft to greater maneuverability and higher angles of attack while
minimizing weight requires a greater understanding of the nonlinear aeroelastic dynam-
ics of the vehicle. While physical modeling of the dynamics are of great value, it is also
necessary to verify that the physical models are accurate through wind tunnel and flight
testing. Current methods for wind tunnel and flight testing involve primarily the de-
termination of linearized models or simple nonlinear models. The inference of complex
nonlinear models from transient or dynamic maneuvers is beyond the current state of
the art. The CVA method for nonlinear system identification would be of considerable
value in determine the complex aeroelastic dynamics of vehicles.

A notable area of nonlinear modeling is in spacecraft dynamics. The explorer satellite
was initially spin stabilized about the desired axis that turned out to be unstable. As a
result of constant momantum energy dissipation, the spacecraft settled into an end-over-
end stable equilibrium (Kaplan, 1976). In the future, nonlinear system identification
can play a major role in reconciling the theoretical models derived from first principles
with the observed dynamics of experiments.

Another area of long standing difficulty is the dynamics of rotating machinery. The
buckling of shafts of screw propellers on ships goes back a century. This is also a problem




for propeller aircraft and helicopters. Other problems arise in the nonlinear dynamics
of turbine engines which can be very sensitive to stall in certain operating modes.




2 Background: Related Literature

This section describes previous work related to the problems of system identification
and filtering of norlinear stochastic processes. This related literature provides a context
for the discussion of the CVA approach to these problems.

Fields related to the identification and filtering of nonlinear systems include:
e Volterra-Wiener kernels
e Quasi-linearization

Nonlinear filtering methods

e Time-series using nonlinear difference equations

State space reconstruction methods

Nonlinear regression in high dimensions.

Below, these approaches to solving the nonlinear system identification and filtering
problems are discussed along with the nature of the difliculties that have arisen.

2.1 Volterra-Wiener Kernel Methods

Descriptions and representations of nonlinear systems have been studied intensively
in the past decade (Rugh, 1981). The approaches include Volterra-Wiener kernels,
Laplace transforms, state space equations, and nonlinear difference equations in the
inputs and outputs. While there are a number of equivalences among these different
representations, some of them are much more difficult to use than others. A major
issue that enters many of the problems of identification and filtering is the lack of a
finite dimensional representation in most situations. This issue is fundamental to these
problems, and the approach to the issue in this Phase I study is to develop efficient
finite dimensional approximations to nonlinear systems that allow efficient computation
of the solution to appropriate approximation problems.

Volterra- Wiener methods have been used extensively for modeling and identification
of nonlinear systems (see the reviews Marmarelis and Marmarelis, 1978; Marmarelis,
1987). The identification approach primarily in use requires the stimulation of the
system with white noise or a random impulse train which is not feasible for many
nonlinear systems particularly in the presence of a control feedback. Averaging over
a large number of samples is required to obtain a good approximation to the system
dynamics. The resulting system description in terms of kernels can be of very high state
dimension and is not easily used in many analyses. The resulting accuracy in identifying
the nonlinear dynamics is very low as compared to parametric statistical procedures.
Thus the possible input functions are very restricted, and considerable data is often
required. Also the associated computation in using Volterra-Wiener methods is very
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large. As a result of the low accuracy and large computational and data requirements,
Volterra-Wiener methods have been largely restricted to low order kernels providing

only low order approximations in cases where the system may be of high polynomial
order.

2.2 Quasi-Linearization Methods

Many of the developments in the identification of nonlinear systems have treated the
quasi-linear case where the system is represented as a time varying linear system lin-
earized about the best state estimate at a given time. This approach has been pur-
sued especially in the engineering community using the Kalman filter for evaluation
of the likelihood function with the dynamics linearized about each state (Ljung, 1979;
Schweppe, 1973; Larimoie, 1981). Such quasi-linearization does not work well for sys-
tems that depart considerably from linearity. What is required is an approach that will
capture the full nonlinear behavior of nonlinear systems.

2.3 Nonlinear Stochastic Filtering

l One approach to generalization of the quasi-linearization method is to consider general
nonlinear filtering of the observations. The topic of nonlinear stochastic filtering has
received considerable attention during the last decade. The major difficulty encountered
I is that for nonlinear systems, the nonlinear filter is usually infinite dimensional even
if the nonlinear system is finite dimensional. Finite computational methods are not
available for solving the infinite dimensional filtering problem. Thus it is necessary
I to solve such problems only approximately. The current literature does not offer good
approximation procedures for solution of the approximation problem. A major objective
of this Phase I study is to provide a sound theoretical basis for efficient approximation

I in solving the nonlinear filtering problem.

A major implication of nonlinear stochastic filtering is that even if the original pro-
cess is deterministic and finite state order, the addition of white noise in the mea-
surements results in an infinite dimensional filter except in special cases. Specifically,
suppose that y, is the output of a deterministic nonlinear discrete time process of finite
state order and the observations z; are

2 =Yty (2-1)

with n; white noise. The first issue is to determine the state of the process - what
functions of the past have information for prediction of the future. If the “true” process
y: could be observed, then the state would be finite dimensional. However, for a simple
processes involving a cubic nonlinearity, the state of the measurement process is infinite
dimensional (Sussman, 1981; Hazewinkel and Marcus, 1981; Marcus, 1979, 1981; also
see Section 7). This means no matter how many nonlinear functions of the past are
considered, there is still additional information in the past data. Thus nonlinear filtering
is fundamentally an approximation problem.
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A closely related topic to the nonlinear filtering problem is the representation of a
Markov process in terms of an innovations representation. An innovations representation
directly provides an optimal nonlinear filter for a process. In light of the generally
infinite dimensional nature of the nonlinear filter, the central issue is approximation
of an innovations representation by a finite dimensional representation. As will be
developed in this Phase I study, the CVA method will provide an optimal procedure
for approximation of an innovations model and corresponding filter of a specified state
order.

2.4 Time Series Analysis

Linear time series analysis methods have been used on nonlinear time series. These
methods are not very successful because they do not consider the nonlinear terms. This
becomes especially important in the forecasting problem. Nonlinear processes can be
completely deterministic chaos which is very predictable far into the future, but appear
as very noisy and unpredictable when analyzed using linear time series analysis. Thus
it is necessary to generalize the time series procedure to include nonlinear models.

Nonlinear time series methods have developed considerably in the last decade. Much
of the work has followed the development of linear time series making use of a nonlinear
difference equation representation. One of the simplest nonlinear models is the bilinear
ARMA form which has been widely studied (Granger and Andersen, 1978; Rao, 1981;
Priestley, 1978). Models have been fitted to investigate the limit cycle behavior of
nonlinear systems by Haggan and Ozaki (1980) using amplitude dependent AR models
and by Tong and Lim (1980) using state dependent AR models.

More recent developments in nonlinear time series analysis include state dependent
models (Haggan, Heravi, and Priestley, 1984; Priestley, 1980, 1987). Such models have
the form of an ARMA model with the ARMA coefficients depending on the state of the
process. The state is represented by delays in the observations which may be a very
inefficient representation of the state as discussed in the next subsection. To allow for
general nonlinear structures, many lags of the outputs must be included in the state
leading to over parameterization of the ARMA model. As a result the model identifi-
cation is statistically of lower accuracy and the computations may become numerically
illconditioned (Gevers and Wertz, 1982). The state dependent ARMA coefficients are
considered as time varying functions and estimated by ad hoc smoothing methods. The
fundamental difficulty is the efficient choice of a state for representation of the past
of the process. This is the embedding problem discussed in the next subsection and
Section 7. The main point of departure of the CVA approach is that the efficient rep-
resentation of that past of the process by a low dimensional state is addressed directly.
This then permits statistically efficient and numerically well conditioned computation
of the state space model.

The nonlinear autoregressive moving average with exogenous inputs (NARMAX)
models are general polynomial difference equations in the past inputs and outputs of
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the system (Leontaritis and Billings, 1985a, 1985b). These developments are primarily
aimed toward modeling of a time series in the region of a single stability point, and the
presence of multiple equilibria are not discussed. A related paper considers specifically
the output affine model which can have only a single equilibrium point (Chen and
Billings, 1988). Approximate likelihood functions for these models are expressed in
terms of the difference equations, and nonlinear optimization methods are used. The
optimization problems have all of the problems encountered in the linear case including
illconditioning and lack of a global parameterization, and it often fails to converge in
practice on moderately complex systems.

In special cases, however, nonlinear time series analysis methods have been very
successful in giving considerably improved models and forecasts as compared to linear
time series analysis. This usually requires that the parametric model structure used
in the identification be sufficiently rich to capture the structure of the true process,
and yet be economical in the use of parameters so that model accuracy is not lost in
the estimation of unnecessary parameters. In fact, much of the problem in nonlinear
system identification and filtering is the determination of low order, parametrically
efficient model structures to obtain accurate models.

2.5 State Space Reconstruction Methods

A different approach growing out of the chaos literature is the state space reconstruction
method (Crutchfield and McNamara, 1987; Crutchfield et al, 1982; Packard et al, 1980;
Farmer and Sidorowich, 1987, 1988; Farmer et al, 1980, 1983). The method involves

e Embedding in a space of variables that are nonlinear functions of the observations

e Study of the resulting point cloud to determine a !ow dimensional manifold con-
taining the trajectories and transition dynamics describing the time evolution of
the process.

e Measurement of the approximation of the fitted process to the measured process.
Entropy measures have been used.

The determination of the manifold of state space motion for determination of a min-
imal order state is difficult and closely related to the problem of nonlinear regression in
high dimensional spaces discussed below. This has been applied primarily to determin-
istic processes or such processes with moderate measurement noise added. The case of
noise excitation of the process so that the process is a Markov process appears to had
little study from this point of view. The embedding space is chosen more or less by
trial and error or by use of search methods which can have great difficulty in actually
finding useful coordinates for the state space. If the choice of variables for embedding
is poor, then the resulting model will be a poor predictor. The most advanced mea-
sure of model fit appears to be an entropy measure. Such entropy measures can be
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extended to measures in a statistical inference setting as discussed in Section 9. The
state reconstruction approach is perhaps closest in spirit to that taken in this study.

In a recent paper by Broomhead and King (1987), statistical methods of principal
component analysis also known as Karhunen-Loeve expansion are applied to the delay
coordinates to determine if the state space manifold is contained in a subspace of the
delay coordinates. This gives some reduction of the dimensionality of the embedding
coordinates particularly if there is substantial measurement noise. The principal com-
ponent analysis is a selection of particular linear combinations of the delay coordinated
to represent the state of the system.

For low noise, less reduction of the dimension of the embedding space results because
there is generally curvature of the state manifold. Further reduction of the embedding
requires methods for determining nonlinear transformations of the delay coordinates - a
problem that apparently has not been systematically studied in the previous literature.
This is a major point of departure of the present study which systematically investigates
the determination of an efficient or even minimal state space for embedding of the state
manifold. The nonlinear CVA method of the present study will be seen in Section 3
as a generalization of the principal components analysis used by Broomhead and King
(1987). The nonlinear CVA generalization uses a predictive measure of fit error and
represents states as nonlinear transformations of the delay coordinates.

Recent comparisons between the state reconstruction approach and linear time se-
ries analysis have beer given in Farmer and Sidorowich (1988) comparing methods for
forecasting and smoothing for deterministic chaotic processes observed in little or no ob-
servation noise. As would be expected, the nonlinear state reconstruction method does
orders of magnitude better. A much more interesting comparison would be with nonlin-
ear time series methods which can accurately identify and predict nonlinear processes.
Making such a direct comparison is not straight forward since both of the methods in-

volve a high degree of art in making the numerous arbitrary choices required in applying
the methods.

A major weakness of the state reconstruction approach is the lack of any stochastic
component in the dynamical process. If there is little noise or a large amount of obser-
vation data, then a simplistic approach to the noise will suffice. However, as discussed
in Section 7, even if the nonlinear process is of finite state order, the addition of addi-
tive measurement noise will make the resulting process an infinite state order Markov
process. The objective of the state reconstruction approach is obvious in that we wish
to determine the most predictable “deterministic” components or states and describe
the dynamics. However, all that is available are noisy data from an observation process
that is infinite dimensional. The finite dimensional deterministic process cannot be re-
constructed from the noisy measurements exactly, so that the approximation problem
is to know when a good approximation has been obtained.

Actually the problem is fundamentally more difficult than this. As discussed in
Section 7, the addition of additive measurement noise results in a stochastic process
that fundamentally involves the propagation of the noise in the system dynamics. Fur-
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thermore, the only way to obtain white prediction errors is to determine the state of
the system and implement the optimal nonlinear filter. But solution in a simple way
for the system dynamics and model of the process requires knowledge of the state that
produces the white prediction errors.

The simple and attractive approach of the state reconstruction approach in the
deterministic case becomes very complex and difficult in the stochastic case even for the
elementary case of additive white observation noise. A fundamentally different approach
is required in the stochastic case that considers the effect of random processes.

A statistical treatment of unpredictable components of a process also leads to a
somewhat different philosophical view. In the deterministic chaos approach, it is con-
ceptually attractive to view the world as fundamentally deterministic with the apparent
random effects being only low dimensional projections of high order chaos. This is not a
useful empirical approach to modeling stochastic processes since it presumes “hidden”
variables, i.e., unobservable variables. If consideration is restricted to observable vari-
ables, then the best that is possible is the construction of states of processes from the
observations and determination of the resulting dynamics as accurately as possible. The
resulting error in prediction is then most usefully described as a purely unpredictable
innovations random process.

A closely related problem is when one or only a few functions of the states are
observed. If the nonlinear system is of high dimension, then some of the states will
be so indirectly related to the observations that more error is introduced in trying to
model them rather than replacing their effect with an excitation noise component in
the medel. Again, we are faced with an approximation problem.

2.6 Nonlinear Regression in High Dimensions

The topic of nonlinear regression cannot be avoided if the process has excitation noise,
i.e., is a Markov process in a high dimensional space. There has been considerable work
in the last decade in the area of nonlinear regression for static models as opposed to
dynamic time series models (Brieman and Friedman, 1985; Buja, Hastie and Tibshirani,
1989; Koyak, 1987; Friedman and Stuetzle, 1981).

A very general procedure was developed by Brieman and Friedman (1985) for esti-
mating optimal transformations for multiple regression using nonlinear functions. The
alternating conditional expectation (ACE) algorithm is used for determining near op-
timal nonlinear transformations in a semiparametric way so that it is not necessary
to specify the parametric form of the function to be fitted. The ACE algorithm in-
volves the same projection operators as used in the Hilbert space theory of nonlinear
canonical correlation. The CVA method extended to the nonlinear case in this Phase I
study is much more general than the additive functional forms that are used in ACE,
but the same basic theory applies to both procedures. ACE appears to be the present
state-of-the-art in semiparametric nonlinear regression.

A related approach to fitting nonlinear regression models is the multivariate adap-
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tive regression splines (MARS) algorithm (Friedman, 1989). In this approach, the
multidimensional space is recursively partitioned and spline functions are fitted on each
partition to construct a nonlinear function. The fit of the spline function to the obser-
vations is determined for each partition, and the best partition is determined. This is

a statistical version of some of the methods currently used in the state reconstruction
method.

The above methods appear to offer considerable advantage in developing statistically
optimal methods for fitting nonlinear regression functions to obtain state space models.
In Phase I, simple polynomial regression methods were used to demonstrate the feasibil-
ity of the CVA approach to nonlinear system identification and filtering. Computational
aspects of adaptive nonlinear regression methods are discussed in some detail in Section

10, and in Phase II the use of these more advanced and optimal statistical methods is
proposed.
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3 CVA of Linear Systems

In this section, the results of CVA for linear systems is reviewed to provide the nec-
essary background for extension to nonlinear Markov processes. The problem of the
determination of the rank or state order of a linear Markov process is solved including
the determination of the minimal rank siate and a state space model of the system. The
approach determines the linear functions of the past inputs and outputs that have linear
predictive power for the future, and in particular the rank of such a predictive function.
The analysis and computational method used to solve this problem is a canonical vari-
ate analysis (CVA) which is equivalent to a generalized singular value decomposition
(SVD). The elegant solution to the problem in the linear case involves finite dimensional
spaces and provides a prototype for the nonlinear case treated in the rest of the report
where the spaces are fundamentally infinite dimensional.

3.1 Determination of Canonical States

In this section, the background to the canonical variate analysis method is presented,
and a recent generalization is given that provides a completely general solution to the
reduced rank stochastic prediction problem which is well defined statistically and com-
putationally even when some or all of the various covariance matrices are singular (La-
rimore, 1989). Previous methods in the statistical literature do not address the general
problem. The application of CVA to linear systems is contained in Larimore {1983b).

The analysis of canonical correlations and variates is a method of mathematical
statistics developed by Hotelling (1936; also see Anderson, 1958). Concepts of canoni-
cal variables for representing random processes were explored by Gelfand and Yaglom
(1959), Yaglom (1970), and Kailath (1974). The initial application of the canonical
correlation analysis method to stochastic realization theory and system identificaticn
was done in the pioneering work of Akaike (1976, 1975, 1974a).

Consider the problem of choosing an optimal system or model of specified state order

for use in predicting the future evolution of the process. Consider the past vector p,

consisting of past vector outputs y, and vector inputs u, before time ¢t and the future
vector f; of vector outputs at time t or later so
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For ease of development in this section, the vector processes y, and u, are assumed to be

jointly stationary, and the covariance matrices among f and p are denoted as Yrp Loy,
and 2/!"

For a specified numbert &, the major interest is in determining k linear combinations
of the past p, which allow the optimal prediction of the future f,. The set of k linear
combinations of the past p; is denoted as a k x 1 vector m, and is considered as k-order
memory of the past. The optimal linear prediction f, of the future f,, which is a function




of a reduced order memory m,, is measured in terms of the prediction error

E{|l fi — e llRe} = E{(fs = J)"AY (S = 1)) (3-2)

where F is the expectation operation and A is an arbitrary positive semidefinite sym-
metric matrix so that the pseudoinverse A' is an arbitrary quadratic weighting that is
possibly singular. The optimal prediction problem is to determine an optimal k-order
1nemory

my = Jips (3-3)

by choosing the k rows of Ji such that the optimal linear predictor f,(m,) based on m;
minimizes the prediction error (3-2).

As derived in Larimore (1986), the solution to this problem in the completely general
case where the matrices Y;;, ¥,,, and A may be cingular is given by the generalized
singular value decomposition as stated in the following theorem (see Van Loan, 1976,
for a closely related generalized SVD).

Theorem 3-1: Consider the problem of choosing k linear combinations m;, = J,p,
of p; for predicting f;, such that (3-2) is minimized where ¥,,, and A are possibly
singular positive semidefinite symmetric matrices with ranks m and n respectively. Then
the existence and uniqueness of solutions are completely characterized by the (X,,, A)-
generalized singular value decomposition which guarantees the existence of matrices J,
L, and generalized singular values v;,---,v, such that

JEJT =1, LALT = I,
JE, LT = Diag{y, > --- >, >0,---,0) (3-4)

The solution is given by choosing the rows of J; as the first k rows of J if the k-th
singular value satisfies v > vi,,. If there are r repeated singular values equal to v,

then there is an arbitrary selection from among the corresponding singular vectors, 1.e.
rows of J. The minimum value is

min EXN £~ f. (3¢} =trA'Sy —Af — o4t (3-5)
rank(J,5,,J7) = k g ‘ ¢

This result not only gives a complete characterization of the solutions in selecting
optimal predictors m; from the past p, for prediction of the future f;, but the reduction
in prediction error for all possible selections of order k is given simply in terms of the
generalized singular values. This is of great importance since it avoids having to do a
considerable amount of computation to determine what selection of order is appropriate
in a given problem.

Different selections of the weighting matrix A can be used for different purposes.
A number of classical reduced rank statistical analysis problems of static variables, i.e.
with independence from ‘time’ to ‘time’, can be formulated and solved by the generalized
CVA of Theorem 3-1. In the classical canonical correlation analysis problem, A = ¥;.
In the principal components analysis problem, the ‘past’ and ‘future’ are the same space
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and in addition A = I. A generalization of this with the ‘past’ and ‘future’ different is
the principai component analysis of instrumental variables where A = I (Rao, 1965).
The cnly consideration of the case of singular covariance matrices for the canonical
correlation analysis problem is by Khatri (1976). The solution is considerably more
complicated and is not related to a computational procedure such as the SVD. Also it
does not address the general CVA problem with A an arbitrary positive semidefinite
matrix. For system identification, the use of the weighting matrix A == Xy, results in
a near maximum likelihood system identification procedure (Larimore, Mahmood and
Mehra, 1984).

In the computational problem given finite data, the past and future of the process
are taken to be finite of length d lags so

PtT = (yz‘_l,~'-,yf_d,utT_l,---,uz;d)T ’ ftT = (y;r""’yz’;d—l)r (3-6)

Akaike (1976) proposed choosing the number d of lags by least squares autoregressive
modeling using recursive least squares algorithms and choosing the number of lags
as that minimizing the AIC criterion discussed below. This insures that a sufficient
number of lags are used to capture all of the statistically significant behavior in the
data. This procedure is easily generalized to include the case with inputs u. In the
model identification problem, by using the weighting matrix A = X;; the identified
system is close to the maximum likelihood estimation solution (Larimore, Mahmood,
and Mehra, 1984). The generalized SV of Theorem 3-1 determines a transformation
J of the past that puts the state in a canonical form so that the memory m, = Jp,
contains the states ordered in terms of their importance in modeling the process. The
optimal memory for a given order k then corresponds to selection of the first k states.

Computational aspects of the SVD are discussed in Golub (1969), and the problem
of canonical variate analysis is discussed in Bjorck and Golub (1973). Algorithms for
computation of the SVD on systolic arrays are developed in Brent and Luk (1985), and
extensions to the generalized SVD is given in Larimore and Luk (1988).

3.2 State Space Model Fitting

The CVA method in conjunction with entropy based multiple decision procedures allows
the determination of the fit of the various state space models, and the selection of the
best model state order.

Consider the general case of the reduced order filtering and modeling problem: given
the past of the related random processes u; and y;, we wish to model and predict the
future of y, by a k-order state z, and state-space structure of the form

Ty = @Ig + Gu, +- uy (3'-7)

y‘ = III: Jr Au‘ + ng ‘* v (3—8)

where z; is the state and w, and v, are white noise processes that are independent with
covariance matrices @ and R respectively. A special case of the reduced-order filtering
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problem is the transfer function approximation problem where u, and y, are the input
and output processes and an approximate state-space model is desired.

To decide on the model state order or model structure, recent developments based
upon entropy or information measures are used. Such methods were originally developed
by Akaike (1973) and involve the use of the Akaike Information Criterion (AIC) for
deciding the appropriate order of a statistical model. The AIC for each order k is
defined by

AICk) = —2log p(Y™, U, 6)) + 2M, (3-9)

where p is the likelihood function, based on the observations (YN, UM) at N time
points, with the maximum likelihood parameter estimates 4, using a k-order model
with M, parameters. The model order k is chosen corresponding to the minimum value
of AIC(k). A predictive inference justification of the use of an information or entropy
based criterion such as AIC is given in Larimore (1983a) based upon the fundamental
statistical principles of sufficiency and repeated sampling. The number of parameters
M; in the state space model (3-7) and (3-8) is determined by the general state space
canonical form as in Candy et al (1979) and is far less than the number of elements in
the various state space matrices.

Once the optimal k-order memory m; is determined, state-space equations of the
form (3-7) and (3-8) for approximating the process evolution are easily computed by a
simple multiple regression procedure (Larimore, 1983b). Since the CVA system identi-
fication procedure involves the state space model form, it has the major advantage that
the model is globally identifiable so that the method is statistically well-conditioned in
contrast to ARMA modeling methods (Gevers and Wertz, 1982). Furthermore, since
the computations are primarily a SVD, the computations are numerically stable and
accurate with an upper bound on the required computations. Thus the method is com-
pletely reliable, and has been demonstrated as such in tests involving reidentification of
the system dynamics tens of thousands of times. From the theory of the CVA method
(Larimore, Mahmood and Mehra, 1984), it can be shown that there are no difficulties
such as biased estimates caused by the presence of a correlated feedback signal.
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4 Technical Approach: CVA of Nonlinear Systems

The CVA approach taken in this study is the extension of the linear CVA method
to nonlinear systems. In this section the technical approach of this study is outlined
and the relationships between the various topics and the previous literature discussed.
Subsequent sections treat these various topics in considerable detail.

The approach is to use CVA to determine best selection for a given order k of the
states of the nonlinear system as nonlinear functions of the past inputs and outputs of
the system that minimize a measure of prediction error. For much of this initial Phase I
study, the functions used are linear combinations of powers and products of the past
inputs and outputs. For a given choice of the state order, CVA determines the linear
combinations to select as states that give the best least squares linear prediction of the
future outputs. The same computational structure is used for the identification of a
nonlinear system as for a linear system. The major change is the addition of the powers
and products to the ‘past’ of the process. The nonlinear CVA procedure determines
an optimal selection of nonlinear coordinates for the states of the process which are
orthogonal where the prediction accuracy due to each state is additive. A much more
general formulation of the nonlinear CVA problem is also developed in terms of optimal
normalizing transformations and minimal order realizations. Computation methods

using the ACE algorithm and demonstration on nonlinear process data is proposed for
Phase I study.

Once the choice of state order is determined, the state space model is given by
nonlinear regression. This approach has a number of advantages over other system
identification methods even in the case of linear systems. The state order is determined
first including the actual states as functions of the past observations of the process.
This involves primarily a singular value decomposition which is numerically accurate
and stable. The nonlinear procedure is also well conditioned so that the resulting
algorithm for system identification is computationally well conditioned.

The state space Markov model is in innovations form so that the corresponding
optimal nonlinear filter for the approximating state space model is immediate and ex-
act. The degree of approximation of the nonlinear filter corresponds to the degree of
approximation of the process by the state space Markov model.

4.1 Nonlinear Markov Processes

A central aspect of the approach to nonlinear system identification and filtering is the
use of a nonlinear Markov process model, and in particular the concept of the process
state. For many physical systems, it is known from the physics of the problem that the
process approximately satisfies a finite set of dynamical system equations. The variables
of these equations involve the memory or encrgy storing variables of the system. If the
states of a system can be determined, then all of the information from the past about
the future evolution of the process is available.
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In a general nonlinear process, the evolution of the state as well as the observations
are nonlinearly related and in general the noise disturbances of the process are nongaus-
sian. This is the fundamental complication that has foiled past attempts to extend to
nonlinear processes the current methods that have been so successful on linear processes.
The most successful nonlinear method to date is that of state reconstruction. However,
state reconstruction appears to have a major shortcomings if there is significant noise
in the measurements or process itself. Also these methods may have great difficulty
on high or infinite dimensional processes since the state is not chosen economically in
terms of dimension.

The approach taken in this study considers the ccmpletely general case where the
process may be nonlinear with possibly substantial measurement or process excitation
noise. Also the process may in fact be infinite dimensional. Thus this study address a
very general class of nonlinear processes that have not been successfully treated in the
past. The main restriction appears to relate to the smoothness of the process dynamics
relative to the observed data - if abrupt jumps in the dynamics occur and relativcly
little data is present, then it may not be possible to resolve such abrupt changes in
the dynamics. The theory is completely general, but the identification of the process
dynamics may require substantial data.

The model form determined is the state space innovations representation. This form
has been much discussed in the literatvre and appears to be the most robust description
of a system from a numerical roint of view. Also the innovations representation pro-
vides explicitly the optimal nonlinear filter for estimating the system state and future
evolution of the nLserved process. Many of the methods for system analysis, control,
estimation and filtering are available for the state space form.

4.2 Nonlinear Canonical Variables

The major problem to be addressed is the approximation of state space innovations
models and filters of nonlinear systems. This has been a very difficult problem because
of the implicit nature of the state which is not directly observable. That it is usually
infinite dimensional for nonlinear processes is a major complication in other approaches.

The CVA approach gives a direct method for determination of an optimal state of a
specified dimension for approximation of the system. This is optimal whether the system
is deterministic or stochastic, or whether the system is finite or infinite dimensional.

The canonical variables or canonical state of the system give the states in order of
their ability to use past information for prediction of the future. The canonical states are
mutually orthogenal so that the prediction error due to each is additive. Furthermore,
the best k + 1 canonical states are obtained by adding the k + 1-st state to the first k
canonical states which are themselves optimal. Thus efficient iterative computation is
possible.

The theory of CVA for nonlinear processes is developed on the Hilbert space of
nonlinear functions of the past and future of a process. The selection of an optimal
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state of a given finite order is intrinsically an infinite dimensional problem, even if only
a finite set of past observations are considered. This problem is first reduced to a
sequential selection problem where the canonical states are selected sequentially one at
a time.

The problem of selecting just one additional state is the maximal correlation problem
that has been studied in the Hilbert space setting in detail. As a result, the nonlinear
CVA problem is shown to have a solution for a general class of nonlinear processes. The
existence of the solution involves certain projection or conditional expectation operators.
These operators are involved in implementing the alternating conditional expectation
(ACE) algorithm. In the most general formulation of the nonlinear CVA problem, pairs
of canonical variables are computed using ACE.

4.3 Minimal State Rank

For linear gaussian processes, orthogonality of the state is all that is required to guar-
antee that the canonical states are minimal order, i.e. that attempting to fit more than
the true process state order will detect no further information in the past of the pro-
cess. This is not true for nonlinear processes. Mutually orthogonal or uncorrelated
random variables may be functionally or statistically dependent if the random variables
are not Gaussian. The question of choosing a state of minimal rank or order is in-
vestigated. Although orthogonality is a useful and computationally convenient way to
reduce redundancy among variables, it is only partially useful in nonlinear processes.

First the concept of local minimal rank is defined rigorously in terms of the concepts
of differential topology. If the past/future map is constant rank, then a minimal rank
state exists at least locally. The global minimal realization problem for deterministic
systems is also discussed. Unfortunately these approachs do not provide computational
or constructive methods for determining such a minimal rank state.

The theory of maximal correlation gives the result that two vector random variables
X and Y are independent if and only if the maximal correlation p*(X,Y) is zero, i.e. for
any nonlinear function g and h the correlation p(g(X),h(Y)) is zero. Thus the condition
that the random variables be independent rather than uncorrelated is equivalent to the
random variables having zero maximal correlation.

An independent CVA is defined where the requirement of orthogonality of the canon-
ical variables or states is replaced by the requirement of statistical independence. This
insures that the states are not functionally or statistically dependent. Approaches to
computation of such an independent CVA are discussed.

4.4 Optimal Normalizing Transformations

At first glance, maximizing correlation appears to be an arbitrary criterion particularly
in the context of nonlinear estimation and prediction. Some optimal properties of
canonical variables as approximate normalizing transformations are studied in some

22




detail.

In the univariate Gaussian case, the nonlinear functions maximizing the correlation
are in fact linear functions. This result does not generalize to the multivariate case
with the requirement that canonical variables be orthogonal, but it does generalize if
the canonical variables are tndependent. This suggests yet another reason for requiring
independence of the canonical variables.

The interpretation of the CVA as an optimal normalizing transformation is devel-
oped. An entropy measure of approximate normality of random variables is developed,
and it is shown that an independent CVA produces optimal normalizing transforma-
tions.

4.5 Computational Methods

Computational methods are developed for implementing the nonlinear CVA. For ease of
demonstration in this Phase I study, detailed implementation is restricted to polynomial
basis functions for the Hilbert space. Polynomials up to a particular degree in past lags
of the inputs and outputs are used as basis functions. The CVA is then implemented
in terms of these basis functions. The nonlinear regressions for determination of the
state transition function and the state/measurement transformation are computed using
polynomial basis functions. These computations are direct and are used to demonstrate
the feasibility of developing workable computational solutions to the nonlinear system
identification and filtering problems.

More statistically optimal computational methods of adaptive nonlinear regression
for implementing the nonlinear CVA are also considered and are proposed for detailed
development in the proposed Phase II work. One of the most successful methods for
adaptive nonlinear regression in high dimensional spaces is the ACE algorithm. The
theory of the ACE algorithm is very closely related to the theory of maximal correla-
tion. The algorithm actually implements the projection operators used in the proof of
existence of nonlinear functions maximizing the correlation. A related approach using
multivariate adaptive regression splines (MARS) is also discussed.

4.6 Computational Demonstration

To demonstrate the feasibility of the CVA approach, the developed computational algo-
rithms are applied to the Lorenz chaotic attractor with process excitation noise included.
The presence of process noise of significant magnitude presents a much more difficult
identification problem than the cases of no process noise and low additive white mea-
surement noise considered in most previous studies. The observation process is taken
as one of the states of the Lorenz attractor.

The canonical variables are shown to contain all of the state information of the
original three states of the Lorenz attractor. This is demonstrated by transforming the
canonical states to the states of the Lorcnz attractor. Based upon the identified canon-
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ical states, the state transition and output transformations are computed by nonlinear
regression. This provides an innovations representation for the observation process.

The identified nonlinear system is used to simulate states and outputs for the canon-

ical states and measurements. The trajectories of the simulated process have the same
character as the original ‘true’ process.
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5 Noniinear CVA Problem on Hilbert Spaces

The extension of CVA to nonlinear systems requires a more general setting such as a
Hilbert space of nonlinear functions. In this section, the general problem is posed in a
Hilbert space setting and reduced to a sequence of scalar maximal correlation problems.

5.1 Hilbert Space of Nonlinear Functions

Let X = (z1,...,7m)T and Y = (y1,...,9.)T be two sets of random variables defined
on a probability space {1 with respect to the probability measure x and let P denote
the induced probability measure on RM™ and R”Y respectively. The random variables X
and Y will play the role of the past p; and future f; of previous sections while offering
a simplicity in the notation where the notion of time t is not required in the present
section.

For a given positive integer r, consider the space 7y and 7 of all Borel measurable r-
dimensional vector functions f(X) = (f1(X),..., f/,(X))T and g(Y) = (6:(Y),...,g,(Y))
satisfying

Ef(X)=0, Eg(Y)=0 (5-1)

The space is a linear vector space on which we define the inner product
< f,9>=trEf(X)g"(Y) = E}_ fi(X)g] (V) = trZy, (5-2)
=1

where for zero mean random functions as in (5-1) the covariance matrix notation £, =
Ef(X)g(Y)T is used. The pseudonorm is given by

< fof >l=< 1,0 > (5-3)

The spaces 7y and 7 are separable Hilbert spaces under the inner product.

5.2 Projection and Conditional Expectation

In this section, projection operators on the Hilbert space are expressed in terms of
conditional expectations and are shown to be the solution of an optimal prediction
problem. Such a prediction problem is central to the nonlinear CVA problem discussed
in the following subsections.

Consider two random variables u and v defined on a probability space with respect
to a probability measure P. Then the conditional expectation E(v|u) of v with respect
to u is a random variable for each value of u and satisfies

/ E{v|u)dP = / vdP for every A € 4, (5-4)
A A

where 4, is the least sigma algebra of measurable sets of {1 for which u is measurable.
In particular

FE(F(vlu)) = Ev (5-5)
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and for any Borel measurable function g(u),
E(g(u)v|u) = g(u)E(v|u) (5-6)

The concept of projection on a subspace provides the optimal solution to lincar
problems. Let Px denote the operator of orthogonal projection on a subspace K. Then
for any h € ¥

o hy = P¢h if and only if for some hy € K and for all g€ K, < h,g >=< h;,g >.
e hy = Pyh if and only if for some hy € K
. =l . 7
min | A —g|=] A — ke | (5-7)

The conditional expectation has optimal properties as a projection operator in the
Hilbert space ¥.
Theorem 5-1 (Optimal Projection): The optimal projcction Pz v of the random
variable v on the Hilbert subspace ¥, of nonlinear functions of the vector of random
variables u is the conditional expectation

Pr,v = E(v|u) {5-8)

Proof: From the definition of projection, E(v|u) is the projection of v on F, if for
all g € #,, <v,g >=< E(v|u),g >. But this last expression is equivalent to
Elvg(u)] — E[E(v|u)g(v)] = E[E(vg(u)|u)] — E[E(v|u)g(u)] = 0 (5-9)
using (5-5) and (5-6).

5.3 Multivariate Nonlinear CVA Problem

First consider the problem where f and g are fixed functions and we wish to find the
nonlinear function §(f(X)) such the relative prediction error

19(¥) = g(£(X)) llge, = E{lg(Y) — §(F (X)L 9(Y) - §(£ (X))} (5-10)

is minimum where () denotes the pseudoinverse operation. As shown in the previous
section, the solution is given by the conditional expectation projection operator

§=E(glf). (5-11)

Now with the optimal prediction § given by (5-11), consider the r-rank nonlinear
prediction problem of finding an r-dimensional nonlinear function f(X) of X and r-
dimensional nonlinear function g(Y) of Y so as to minimize (5-10). Specifically consider
the following minimization problem.

Rank r Nonlinear Prediction Problem: For a given positive integer r, find r-
dimensional vector functions f(X) and ¢(Y) minimizing the relative prediction error

e L a(F) = 300 Iy, (5-12)

' g

where § = E(g]f).
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5.4 Reduction to Sequential Selection Problem

In this section, the multivariate nonlinear CVA problem is reduced to a sequence of

scalar problems each involving maximizing the correlation between a pair of nonlinear
functions.

Since f(X) enters the problem only through g(f(X)), it is sufficient to include the

nonlinearity of § in the function f(X). In this case for a particular g(Y), the optimal
prediction is given by

§(J(X)) = Zys5),f(X) (5-13)

and the prediction error is
| g(Y) - g(f(X)) ”z;,: trElg[(E” - 29!2'/]2!:7] (5-14)

The above measure is invariant to linear transformations of both f and g. Thus we
are free to impose the constraints

Eff = EM =1 (5-15)
so that f and g are each orthonormal sets of functions. Then the prediction error
reduces to

tr(l, — EgsEyg) =1 —tr(ZgsTpg) =7 — > < fi(X),9;(Y) >* (5-16)
i,5=1
' which is the sum of the squares of the elements of the covariance matrix ¥,.

The optimal prediction problem then reduces to finding f and g to solve the maxi-
mization problem

max tr(¥,, 2 5-17
5, T (ZorZyg) (5-17)

Note thzt in the univariate case of r = 1, the problem is precisely the maximal correla-
tion problem to be discussed in the next section.

gg — Ir

One further simplification occurs by doing a SVD on the covariance matrix X,
S, =UDVT, D= Diag(dy,>...>dy >0,...,0) (5-18)

Then the prediction error reduces to

k
r—>. d (5-19)
=1

which is the sum of the squared canonical correlations d;. The optimal prediction
problem is then given by the solution of

,
max > o d (5-20)
By = g =1, i=

E/, = I)iag
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For a given fixed R, let f® and g® denote the R-dimensional functions maximizing
(5-20) for r = R. Then it is easily shown that the maximum of (5-20) is achieved for
all r < R with f" and ¢" the first r components of f® and g% respectively and with
D" the first r components of DF (Larimore, 1989). Thus the problem is transformed
to the sequence of R one dimensional problems for r = 1,..., R. In particular, this is
summarized in the following theorem

Theorem 5-2 (Sequential Selection): The vector functions f and ¢ giving an
optimal solution to the nonlinear prediction problem (5-12) are given sequentially by
the following procedure: For each r, find the pair of functions (f,,g,) such that they
are orthogonal to the previously selected functions f™~! = (fy,...,f,_;)T and ¢""! =
(91,---,9--1)7 respectively and maximize the correlation, i.e. such that

d, = max s (5-21)

Efv—lf' = Egr—lg' - 0
E/rf' = Egrﬂr = 1
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6 Maximal Correlation and Projection Operators

The solution to the nonlinear CVA problem was reduced in Section 5 to the problem
of finding scalar functions f(X) and g(Y) of the respective sets X and Y of random
variables such that ihe correlation is maximized. In this section, properties of the
maximal correlation are investigated and related to projection operators on Hilbert

spaces. We follow primarily the development of Renyi (1959; see also Csaki and Fischer,
1960, 1963).

6.1 Maximal Correlation

Consider random vectors X = (z;,...,z,) and Y = (y;,...,v,)

The mazimal correlation of X and Y is defined as

P (X,Y) =supp(f(X),g(Y))= sup E[f(X)g(Y)] (6-1)
[, I,
| fll=1
lgll=1

where f and g run over all Borel measurable functions with zero mean, i.e. Ef = Eg =0,
and p(f,g) is the correlation coefficient given in this case by E(f(X)g(Y)].

The maximal correlation satisfies the following properties:

e p(X,Y) is defined for any pair of random vectors X and Y, neither of them being
a constant with probability 1.

e p*(X,Y) =p*(V, X).
e 0<p'(X,Y) < 1.
e p°(X,Y) =0if and only if X and Y are stochastically independent.

e p'(X,Y) = 1if there is a strict dependence between X and Y, i.e. f(X) = g(Y)
for some nonzero Borel measurable functions f or g. The converse requires some
additional conditions.

e Invariance. Under 1-1 onto Borel-measurable transformations f and ¢,

p(f(X),9(Y)) = p*(X,Y).

o If the joint distribution of X and Y is normal, then p*(X,Y) is the maximum
canonical correlation, i.e. the sup is achieved by considering only incar functions

f and g.
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6.2 Projection Operators and the Maximum

When the maximum is attained for some pair of functions f and g, then certain operator
equations involving projections are satisfied. These operator equations are used in the
next subsection to establish the existence of functions f and ¢ attaining the maximum.

Now consider the situation when the optimal solution exists to the CVA problem
(5-17). Then there exist fo(X) and go(Y) such that

E(go(Y)|X) = Egos5 fo( X) (6-2)

recalling the normalization (5-15), and similarly

E(fo(X)IY) = Z1oga90(Y) (6-3)

Furthermore by taking the conditional expectation of (6-3) with respect to X and ex-
pressing the result in terms of projections operators we have

Py, Ps, fo = E(E(fo(X)IY)|X) = X450 D00 fo( X) (6-4)

and similarly

P7YP7xg0 = E(E(QO(Y)IX)IY) = Eﬂnfozfnﬂngo(y) (6_5)
Thus the optimal solutions fo and go are eigenvectors of a successive projection operator.
The function f, is projected successively on the function space 7y and Fx and similarly

for go. The eigenvectors fo have the common eigenvalue E:nfn which is equal to the
squared maximal correlation.

To determine the existence of an optimal solutions f, and go to (6-4) and (6-5), we
study the pair of operator equations

Af = D*f (6-6)

Bg = Dg (6-7)

where A and B are the operators defined on the left hand side of (6-4) and (6-5)
respectively. We wish to determine under what conditions there exist solutions f, and
go to these operator equations with 1) equal to the maximal correlation.

6.3 Existence of the Maximum

The existence of the maximum is insured by results from the theory of operators on
Hilbert spaces. We will show that the operators A and B are bounded, selfadjoint and
continuous under the assumption that the distributions are regular as defined helow.
Such operators must then have eigenfunction solutions f and ¢ attaining the maximum
cigenvalue D?.

First we prove the following.
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Theorem 6-1: The operators A and B are bounded selfadjoint linear operators such
that the maximum eigenvalue is (p*{X,Y))?, the squared maximal correlation.

Proof: We deal primarily with the operator A with the result applying also to B.
To show boundedness of the operator A, consider

el = Ev’ = EE(v - E(vlu) + E(v]u)]*|u)
= EE(lv - E(vlu)lu) + E{E(lv  E(v]u)[u) E(v]u)} + E[E(v]u)]?
E[E([u)]? =|| Prv | (6-8)

from which it follows thet || Af ||<|| f || so A is bounded.
Now if fy and f, are in Pz, then from (5-5) and (5-6)

A\

(5-
M(X)Y)X) f2(X

<Afi,f»> = E[E(E(fi(X) )]
= ElE(f(X)E(f1(X)IV)|X)] = E[f2(X)E(f(X)1Y)]
= E[E(f(X)E(f((X)|Y)IY)]
= E[E(f(X)IV)E(Lh(X)|Y)] =< fi,Af2 > (6-9)

where the last equality follows by the symmetry in f; and f;. Thus A is <ciradjoint.

To determine the maximum eigenvalue of A, consider for any f € P;_ and g € Ps,
with || f {|=ll g |=1

E*(f(X)g(Y)) = EX(E(f(X)|Y)g(Y)) < E(E*(f(X)|YV)) =< A[,f > (6-10)
using (5-6) and the Schwarz inequality. Thus with X the maximum eigenvalue of A we
have (p*(X,Y))? < A.

Now if f € Fx and || f ||= 1 and letting g(Y) = E(/(X)|Y) gives E*(g(Y)) =
E(f(X)g(Y)) < DE?*(g(Y)) which implies E*(g)Y)) < D so that

< Af,f >= E(g(X)E(/(X)IY)) = E(f{(X)g(Y)) < DE*(g(Y)) < D* (6-11)
Thus (p*(X,Y))? > A, and from the above we have (p*(X,Y))? = A which proves the
theorem.

To show that A and B are completely continuous, some restrictions on the distribu-
tion of the random variables are required.

Definition 6-2: The dependence between the vector random variables X and Y is
regular if the joint distribution P(X,Y) is absolutely continuous with respect to the

direct product Px.y of the marginal distributions Px and Py where the direct product
distribution is defined by

PX y(J:GXandyGY) PX(TGX)P}(yG},) (6-12)
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If the dependence between X and Y is regular, then the probability density k(z,y)

of the joint distribution P(X,Y’) relative to the product distribution P(X)P(Y) exists
as a Radon-Nikodyn derivative satisfying

Prw(C) = [ [ K(z,9)dPx(s)dPy(y) (6-13)

for every Borel set C in the product space X Y.

If X and Y are regular, then the conditional expectation operator has a useful
expression as an integral operator with kernel k(z,y) (Csaki and Fischer, 1963)

E(f(X)|¥) = [ f(z)k(z,y)dP(z) (6-14)
The continuity of the operators A and B is shown in the following theorem.

Theorem 6-3: If the dependence between X and Y is regular and Ek?*(z,y) is finite,
then the operators A and B are completely continuous.

Proof: In proving this theorem, the operators A and B are expressed as integral
operators involving k(z,y). The respective kernals of the integral operators are then
shown to be square integrable and hence completely continuous.

From (6-4) and (6-14), the operator A has the expression
Af(z) = /f(u) /k(u,v)k(z,v)dPy(v)dPx(u) (6-15)
which is an integral operator with kernel given by the inner integral
h(u,z) = /k(u,v)k(x,v)dPy(v) (6-16)

Now the integral operator (6-15) is completely continuous if the kernei h(u, z) is square
integrable, i.e. if

/ / h?(u, z)dPx (1)dPx(z) < oo (6-17)
Using the Schwarz inequality

h(u,z) = [/k(u,v)k(x,v)d[’y(v)]2 < /k’(u,v)d[’y(v)/kz(a:,v)d}’,,(v) (6-18)

so that from the square integrability of k(z,y) we have

[ [ W z)aPx (wdPx(2) < ([ [ K*(z,0)dPx(2)dPy () = [ER*(z,9)]* < oo (6-19)

32




7 Nonlinear Markov Processes

In this section, various aspects and representations of Markov processes are developed.
First some major distinctions between deterministic and stochastic processes are dis-
cussed. The fundamental properties of the state of a Markov process are reviewed. The
selection of coordinates for the state are developed in terms of the canonical variate
analysis. Given a state for a Markov process, the development of the state space inno-
vations representation is immediate. The special case of a state affine representation is

described.

7.1 Representations of Deterministic and Stochastic Processes

There are a number of distinctions required in going from representations of determinis-
tic nonlinear systems or stochastic linear systems to nonlinear stochastic systems. The
finite dimensionality of the problem is lost except in special cases as described in this
section.

There has been considerable interest and work in recent years on identification and
modeling of deterministic nonlinear processes particularly chaotic processes. The ap-
proach has involved primarily delay coordinates

(ye-15-- s Ve-s) (7-1)

of the observations y,. It is shown in Takens (1981) that the if r is the state dimension
of the process, then it is sufficient to choose the number of delays k = 2r 4+ 1 to insure
that all of the state information is contained in the k delays (7-1). Most of the work
in the field has been done from this point of view with some consideration given to
numerical conditioning. The choice of the time delay 7 involved in sampling and the use
of principal components to improve the conditioning has been considered by Broomhead
and King (1987). Also the use of mutual information for choice of the delay coordinates
is discussed in Fraser and Swinney (1986).

Major difficulties appear when the process is not deterministic but involves noise.
Consider what is perhaps the simplest case of a linear system of autoregressive type
(AR) of the form

Vi=a1Y1+ - apep + e = G + e (7-2)
where e, is white noise. If y, is observed directly, then the problem of determining the
coeflicients a; is a linear regression problem in the y;-; with independent noise ¢,. The
optimal linear least squares prediction g, of the observation y, as a function of the past
is a linear function

G = f(Ye-1,- - Yi-p) (7-3)
of only p delay coordinates.

Consider the case where white noise n, is added to y, itself in (7-2) so that the
observed process is

2t = Y + n,. (7-4)
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Since the variables y, are not observable in this case, to express the model strictly in
terms of the observable variables z; requires use of an ARMA structure of the form

Zr=aq124_y + -+ Ap2i—p + Ctbleg_l + -+ bqeg_q + € (7~5)

with ¢ = p and where ¢, is a white noise process (Box and Jenkins, 1976). The optimal
linear least squares estimate 2, is still a linear function of the past z,_;, but it involves
the infinite past observations z;_;,2,_s,.... Thus a finite number of delay coordinates
are no longer sufficient. In addition, the prediction error

dy = 2 — %, (7-6)

is now correlated in time. Furthermore, fitting the coefficients a; and b; of this ARMA
model from the observations z; is no longer a linear problem.

The ARMA model can be represented in state space form by p states, but the
states are not expressible as a function of the finite past. Thus even in the case of a
linear autoregression observed in additive measurement noise, the state is not exactly
expressible in terms of a finite number of delay coordinates. Thus we are fundamentally
stuck with an approximation problem.

In the general case of a nonlinear stochastic system, the finite dimensionality of
the state is lost with the addition of white measurement noise except in special cases
(Sussman, 1981; Hazewinkel and Marcus, 1981; Marcus, 1979, 1981). Consider for
example the one state nonlinear process

Ty =T + T_‘.'C? + v, (7-7)

Ye = Te (7-8)

with the state observed directly and where v, is white noise and 7 is the sampling time
interval. If white measurement noise n; is added

Zt =Y + 147 (7-9)

where 2, is the noisy measurement, then the process z, is no longer a process with
a finite dimensional state. By this we mean that there is no finite dimensional state
Z, expressible as a function of the past outputs z,_;,2,_4,... that contains all of the
information for prediction of the future 2, 2;;4,.... A central issue is thus how to choose
a good approximation to the process when a finite number of delays in the measured
output does not capture the state information.

The problem of representation of a nonlinear process by a state space model is very
closely related to the nonlinear stochastic filtering problem. There was a lot of activity in
nonlinear stochastic filtering around 1980 exploring the possibility of finite dimensional
filtcrs for nonlinear processes (Hazewinkel and Willems, 1981). The consensus of that
work was that finite dimensional filters only exist in special cases. The effect of this
negative result has been a relatively low level of activity in the field. Effective finite
dimensional approximation methods have not been developed for nonlinear filtering.
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Thus it is seen that the identification and filtering problems for nonlinear Markov
processes are fundamentally more difficult than 1or either linear Markov processes or
nonlinear deterministic processes. Except in special cases, for nonlinear Markov pro-
cesses a finite number of delay coordinates or even a finite number of states does not
capture all of the information in the past for prediction of the future. In the sections
below, approximate representations are developed using CVA which have an optimality
property in terms of finding an optimal state of a prescribed order. In addition, the
canonical states can be computed recursively in order, or for a given order the optimal
choice for all lower orders is also given.

7.2 Past/Future Markov Property

In this section, the fundamental property of the state of a Markov processes is reviewed.

For simplicity, consider first purely stochastic processes with no observed determin-
istic input to the system. A fundamental property of a nonlinear, strict sense Markov
process of finite state order is the existence of a finite dimensional state z; which is a
nonlinear function of the past p;

z, = Ci(p:) (7-10)

with Cy(:) a nonlinear function. The state z, has the property that the conditional
probability of the future f; conditioned on the past p, is identical to that of the future
fi conditioned on the finite dimensional state z; so

P{fi|p:} = P{fi|z:} (7-11)

Thus, only a finite amount of information from the past is relevant to the future evolution
of the process.

To extend this concept to processes involving deterministic controls or inputs, the
effects of future inputs must first be removed from the future outputs. Let v; denote the
future inputs v = (u],u},,,...,) and consider the conditional random variable f,|v,.
Then the process is a controlled Markov processes of order k if there exists a k-order
state such that the conditional distribution of fi|v; given the past p; is identical to the
conditional distribution of f;|v; given the state z; so

P{(felve)lpe} = P{(fe|ve)|z:} (7-12)
This is equivalent of the statement that
P{filve,pe} = P{ft|vt,$:} (7-13)

7.3 Selecting Nonlinear Coordinates for the Past

The canonical variables give optimal selection of nonlinear coordinates of the past for
embedding the state of a nonlinear Markov process. Two approaches to the determi-
nation of canonical variables are discussed in this report. The first approach is the use
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of polynomial functions as basis functions to approximate the Hilbert space with the
canonical variables determined as linear combinations of the polynomials. The second
approach involves the implicit determination of the canonical variables using projection
operators and is discussed in detail in Section 10.

The first approach, discussed in this section, proceeds in two stages. First a set
of polynomial basis functions are selected for representation of the past, and second
the canonical variables are determined as linear combinations of the polynomial basis
functions.

The selection of polynomial basis functions can be done conveniently using a pro-
cedure for modeling a nonlinear autoregression with exogenous input (NARX) process.
What is to be determined are the polynomial terms to use for the basis functions. This
involves both the variables of the past including time lag and the associated powers
to be used. By contrast, the basis used in the state reconstruction method is just the
variables of the past back so many lags which may not be a very economical choice. The
use of the NARX modeling gives a computationally inexpensive procedure for a good if
not nearly optimal way for selecting a finite basis of a given order for the past.

The use of the NARX modeling has the interpretation of fitting a NARX model
using least squares, or if the one step prediction error were assumed to be gaussian then
the procedure is maximum likelihood. The process is assumed to be generated by a

NARX model of the form

ye=) ap;+mn (7-14)
el

where a, are coefficients and n, is white gaussian noise with covariance matrix . I is
a set of indices ¢ denoting the powers corresponding to the components of the past p,
as defined in (7-25).

For efficiently comparing the various possible terms to include in the NARX model,
a subset regression procedure can be used. A given maximum degree of the polynomial
can be selected along with the maximum number of lags in the past variables. The leaps
and bounds algorithm efficiently determines which of the terms need to be included in
the polynomial basis functions (Furnival and Wilson, 1974). For comparing among
models, the Akaike information crite ion is useful and is an optimal order selection
procedure in the case that the process is gaussian (see Section 3).

The selected polynomial basis functions provide a basis for describing the canonical
variables as linear functions of polynomials in the past. These nonlinear canonical
variables given the optimal selection of nonlinear coordinates of the past for embedding
the state space manifold. This is optimal in terms of the prediction error of the future
for a given selection of state order requiring orthogonality of the state variables. As
discussed in Section 8, orthogonality of the canonical variables leads to functional and
statistical redundancy in the selection of the canonical variables. The requirement of
statistical independence in place of orthogonality solves this problem and leads to a
minimal order realization of the nonlinear Markov process if such exists.

Following sections of the report discuss in detail the theory and computational pro-
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cedures for selecting the state of a process as the canonical variables. In the next sub-
section, the construction of a state space model for the process is developed assuming
that the state has been determined by CVA.

7.4 State Space Innovation Representation

Now suppose that the state z,; is given from CVA as in the previous subsection, and
we wish to obtain the generally nonlinear state equations describing the state evolution
and observed output from the observed inputs and unobserved disturbances. First we
define, for a given selection for the state z; of the process, the innovations process which
is the error in the optimal nonlinear prediction E(y,|z:) of the process y, from the state
z; given by

ve = ye — E(y]z:) (7-15)

Then the following shows that the vector (v, u;, z:) is a state at time ¢ + 1 and thus the
state evolution can be obtained as a nonlinear function of these variables.

Theorem 7-1. Suppose that the joint and marginal densities among p;, f;, ve, us,
and y, are nonzero. Then the state at time ¢ + 1 is a function of z,, u,, and y,, and the
state evolves as

Terr = G(ze, ue, 1) (7-16)

where the innovation process v, is an orthogonal increment process orthogonal to (p, u,)[°°]

defined by
Ye = pe(ze,ue) + v (7-17)

where p(z, 1) is the projection of y, on Fze,me)-

Proof: From the Hilbert space projection theorem, the present output y, decomposes
as in (7-17) where the innovation v, is orthogonal to the subspace Fzeue)- Thus from
this, functions of (y;, ;) can be replaced by functions of (v, u;,7;). The conditional
probability at time ¢ + 1 can be expressed as

P(featlvert, o) = p(fer1|vert, ve, ue, pi) (7-18)
_ p(f!-{-l)yt’ptlvt) :
B p(ye, pr) (7-19)
_ p(fern welve, pe)p(pe)
= T (e (7-20)
_ P(ft+1,ytlvta17t)P(9«'t) .
Pyl )pla) (r-21)
= p(fes1|Ves1, Yo, e, 7o) (7-22)
= p(fesrvesr, v, e, 74) (7-23)

where (7-21) follows from (7-13), (7-22) from (7-19) through (7-21) with p, replaced by
zy, and (7-23) from (7-17). Thus the variables (v, u,, ;) provide a state for the process
at time ¢ and the state evolves functionally in the form (7-16).
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The importance of this is in the evolution of the state equations. Let z,,, be a
minimal order state. Then from the above, the variables (v, u., z;) generate the subspace
Fir ue,ze) containing the state z,,y so that 4,y can be found by projection

Terr = E(zen|(ve, we, 21)) = do(ve, ue, ) (7-24)

using the conditional expectation operator E{:|-}. The structures of the nonlinear
stochastic model and filters are illustrated respectively in Figures 7-1 and 7-2.

v, CONTROL INPUT

A

INNOVATION | STATE STATE
4+ ve | TRANS- | Te4s v |MEASURE-| 4,
ITION DELAY » MENT —-
v FUNCTION FUNCTION
OBSERVATION - ¢(z, v, u) p(z, )
[
STATE

ONE STEP PREDICTION

Figure 7-1: State Space Innovations Filter
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vt TRANS- Teg1 Ty MEASURE- + Ye
» ITION DELAY » MENT
FUNCTION FUNCTION
¢(z,v,u) u(z, u) o
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UNCORRELATED INCREMENTS PROCESS

Figure 7-2: State Space Innovations Process Model

7.5 State Affine Representation

In this subsection, state afline models for nonlinear processes are discussed. The work
originally proposed for study in Phase I was based to a significant degree on state affine
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models because the theory is fairly well developed at this point. In the course of this
Phase I study, the methods developed were shown to apply to very general nonlinear
processes so that the focus has shifted to the much more general case which of course
includes the state affine process as a special case.

State affine processes are processes such that there exists a state space representation
with the output a linear function of the state and the state transition function also
a linear function of the state. This implies that the entire future f, outputs of the
process as a function of the affine state z, is a linear function. As a consequence, the
state affine structure of the processes affords a number of very nice essential linear
properties. Unfortunately, this linearity is also the problem with state affine system
- they are essentially linear systems and cannot exhibit the very rich phenomena of
nonlinear systems such as chaos and multiple equilibria.

The direct extension of deterministic state affine processes to state affine Markov pro-
cesses is problematic for several reasons. First, approximation of deterministic processes
by state affine processes utilizes the approximation of a bounded nonlinear functions on
a finite interval by polynomial functions. This is made precise in the following theorem
suggested by Sontag (1979) and stated by Fliess and Normand-Cyrot (1982) with a
modified proof given in Diaz (1986).

Theorem 7-2: On a finite time interval and with bounded inputs, any input-output
map in which the output depends continuously on the past inputs can be approximated
arbitrarily well by state affine systems.

A second difficulty is that random processes in general do not have bounded inputs
but are often of bounded variance. The general Hilbert space setting of CVA provides a
simple solution to the problem. An affine state is any state that is linearly related to the
future of the process. Thus if a process is affine and if a CVA between the nonlinear past
and linear future is done, an affine state will be obtained. However, for more general
nonlinear Markov processes, such a CVA will not in general produce an affine state as
demonstrated in the simulation study of the Lorenz attractor in Section 11.

To be more specific, consider the two function space £, and 7, of linear functions
of the future f; and nonlinear functions of the past p; respectively. Then the theory
of maximal correlation guarantees that the canonical variables for such a CVA exist
and minimize the prediction error of the future. Now if the state affine process is finite
dimensional, then the canonical variables will be a function of the affine state and so
the canonical variables will also be finite dimensional. From the state space innovations
representation, the process has the state space form (7-16) and (7-17) were in addition
the functions ¢, and u, are linear in the affine state z,. In particular, the state affine
process can be written explicitly in terms of polynomial functions.

First some notation is developed. Consider a process with vector inputs u, =

(v1e ... ume)T and vector outputs ye = (yie,...,Yne)” indexed by time t. The nota-
tion (yi, ue)* is defined as the product of powers of components of y; and u,

(e me)* = vt -+ vty - i (7-25)
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where the vector index ¢ = (1y,...,%,,71,...,Jn) denotes the powers of the product and
ranges over some set I of powers. The degree of such a power product term is defined
as

dit) =6+ -+t i+t Im (7-26)

Define the past p, as the past inputs u, and outputs y; and the future f, as present and
future outputs

P;r = (yt-—lyyt—Zs-"1ul—laut~2"'-)T’ ftT - (yh yH—l"")T (7-27)

[r

and let p,] be the vector of powers and products of the components of past inputs and
outputs with degree d(¢) no greater than r so

Py] = (Yrje=1)s Yafe=2]s - - - > Uafe—1)s Y2fe—1s - - - » (P)"s - - )T (7-28)
The nonlinear past p£°°] is the infinite vector including product terms of all orders. In
practice only finite approximations of various orders are considered.

Suppose that the affine functions ¢, and p, have continuous derivatives up to the
order ¢ so that they can be expanded to that order in a taylor series. Then the affine
Markov process 7, can be expressed in innovations form for approximating the true
process y; as

Typ = Az + Bvec{(ut,u,)l"]:c,T} + C'(uq, u,)["] (7-29)

¥y, = Hz + Dvec(uiq]x;r) + Ed? + 7, (7-30)

where Uy = y; — ¥, is an approximation to the innovations process v, and vecM denotes
the vector (mT, ..., mf) with m; the ith column of the matrix M. The direct feed through
terms D and F in the output equations involve only u; and not v, from the definition
of v;. These terms are present only when there is an instantaneous affect of u; on y;.

The corresponding approximate nonlinear innovations filter representation is

e =Hz + Dvec(ulq]:r,T) + Eull (7-31)
l;t = Yt — !7: (7-32)
Ty = Az + Bvee{(u,, ﬁ,)IQJth} + C(uy, &,)[q] (7-33)

The output §, of the state affine filter is considered as an approximation to the optimal
filter output ¢, = E(y,[ﬁ£°°]), and the variable &4 = y; — §; is an approximation to the
innovations processes v;.

The structure of the stochastic model and filter are also illustrated in Figures 7-1
and 7-2. The right hand sides of equations (7-29) and (7-30) are represented by the
state affine functions g(z,v,u) and h(z,u), respectively, which are linear in z but may
be nonlinear in v and v. For linear systems, these functions are linear in v and v as well.
The stochastic model and filter have the same structure as in the linear case except that
these functions may be nonlinear.
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8 Minimal State Rank

In this section, the fundamental problem of minimal realization of a nonlinear system
is discussed. This problem is to construct a state space realization where the order of
the state vector is minimal. First this topic is explored in terms of the rank of the
past/future map using results from differential topology. These results only apply to
local mappings whereas what is needed in the case of nonlinear systems is a global
mapping involving a state of minimal order.

By restricting consideration to nonlinear systems that are globally observable, the
problem can be approached via canonical variate analysis. Results on existence and
uniqueness of minimal realizations for deterministic nonlinear systems are reviewed. A
modification of the CVA procedure gives a global approach to determining a state of
minimal order. Replacing the requirement for orthogonality of the canonical variables

with mutual independence avoids any functional or statistical dependence among the
canonical variables.

8.1 Local Rank of the State Manifold

In this section, the notion of the local rank of a system is discussed for a deterministic
system. The notion of the local rank of the state space of a nonlinear system can
be defined in terms of the rank of a mapping from past to future. First the various
mappings are defined, then the definition of the rank of a function is reviewed.

Define the tnput/output map f, = a(py,q:) as the future outputs f, as a function of
the past inputs and outputs p, and future inputs ¢; = (u¢41,%s42,...). Next define the
past/future map b : p, — f; as the input/output map with future inputs ¢, fixed

fe= b(Pt) = a(Ptth) (8")

The Rank of a function is the maximum of the rank of the derivative maximized
over the domain p;.

ap:

Now consider a neighborhood of a point and suppose that the past/future map has
constant rank in the neighborhood. The construction of such mappings locally is a
central issue in differential topology considered in the rank theorem. A differentiable
map with a differentiable inverse is called a diffeomorphism. A diffeomorphism defined
on some open neighborhood U of a given point z is called a local diffeomorphism at .
Local diffeomorphisms at z can be regarded simply as invertible nonlinear changes of
local coordinates near z.

Rank(b) = max Rank (ab(”‘)) (8-2)

The rank theorem of differential topology is a generalization of the inverse function
theorem that states conditions under which a differentiable map can be transformed

locally into a linear map by a smooth change of coordinates of the domain and range
variables.
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Rank Theorem: Let F and F be finite dimensional vector spaces and let W be
an open subset of E that contains the point zy. Let f be a continuously differentiable
map from W to F. Let the derivative of f at a point s € W be Df(z). If the derivative
D f(z) has constant rank for all z € W then

(a) There exists a set V, an open subset of E, such that V ¢ W and another set V*
an open subset of F, such that f(V) C V*. There also exist two diffeomorphisms
dy and dy where d; : V — Eand d,: V* — F.

(b) The restriction of f|V of the mapping f to the set V is equal to

fIV =d;' o Df(zo) 0 dy, (8-3)

A consequence of the rank theorem is that for any past/future function b : p, — f;
of rank n, there exists a past/state map ¢ : p, — z, of rank n and a state/future 1-1
nonsingular map d : z; — f; such that for a local neighborhood

b=d'oec (8-4)

that is, f; = b(p:) = d"*(z,) = d"'(¢(p.)). The variables z, have all of the properties of
a state.

The rank theorem gives a local result, that is, for a given point it guarantees the
existence of a mapping from the past to a set of variables equal in number to the rank of
the past/future function and that agrees with the state in a neighborhood of the given
point. Unfortunately, in general this state cannot be extended to a global state. Under
additional restrictions, the global minimal realization has the same rank as the local
realizations, but not in general.

8.2 Minimal Realization of Deterministic Systems

The fundamental problem of minimal realization of nonlinear systems is to construct
a minimal state space realization where the order of the state is minimal. For a gen-
eral nonlinear system, the order of a minimal state may not equal the rank of the
input/output function. This may be the case if the process state is imbedded in a
manifold that locally has a lower dimension than it has globally such as is true for a
sphere.

The form of (8-4) is closely related to the CVA problem of finding transformations of
the past p, and future f; such that the transformed variables are maximally correlated.
The transformations ¢ and d respectively play analogous roles. To generalize this notion
requires a condition on the observability of the state of a system. In particular we are
interested in considering the global problem of minimal realization.

The state space realization of a process is globally observable if distinct states x; imply
distinct future outputs f, with the future inputs ¢ fixed. If a state space representation
is not globally observable, then some states that are distinct in the representation are
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not observably distinct in terms of the system outputs. In such a case, the inverse
function from the future to the state is not defined as a single valued function. Thus
global observability is equivalent to the existence of an inverse function from the future
to the state.

The problem of existence and uniqueness of minimal realizations of nonlinear systems
has been investigated extensively for deterministic nonlinear systems. Under suitable
conditions that the state space system has various analytic properties (Sussmann, 1977;
Jakubczyk, 1980; Gauthier and Bornard, 1982), there exists a minimal realization that
is globally observable and controllable and is unique up to isomorphism. While such
results are of great theoretical value, they give little guidance for construction of minimal
realizations in practice.

In the following section, the use of CVA for the determination of the transformations
c and d is discussed. This extends to the case of a stochastic process.

8.3 Minimal Rank and Independent CVA

CVA provides a very useful procedure for construction of states for a nonlinear process.
Such a state vector however is not of minimal order. Orthogonality is not sufficient
to exclude redundancy among the canonical variables. What is required is indepen-
dence rather than orthogonality. The construction of independent canonical variables
is discussed.

For nonlinear processes, the number of canonical variables with nonzero canonical
correlations is not equal to the order of the minimal order state as it is for linear pro-
cesses. The problem is that although a nonlinear function e(g,) of the first canonical
variable g, is exactly predictable by a nonlinear function of gy, e(g;) may not be orthog-
onal to g;. Thus there is considerable redundancy in the canonical variables, i.e. some
nonlinear functions of different canonical variables will be highly correlated.

On the other hand the concept of minimal rank in the choice of the state involves
functional independence between the different state components. The functional inde-
pendence is expressed in the linear independence of the rows of the partial derivative
matrix of the functions. CVA does not require functional independence of the canonical
variables, but only orthogonality.

Suppose that two canonical variables g, and g, were such that there was no functional
redundancy between them in the sense that for any functions e and f, e(g,) and f(g:)
were uncorrelated. This is equivalent to the statement that the maximal correlation is
zero, i.e. p'(g1,92) = 0, which from Section 6 is the case if and only if g, and g, are
stochastically independent random variables. Thus we seek a stochastically independent
canonical variate analysis (ICVA), i.e. replace the requirement of orthogonality with that
of stochastic independence.

This would require that the canonical variables are mutually independent rather
than just orthogonal. In particular, in the notation of Section 6, the two sets X and V
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of random variables are independent if and only if p*(X,Y) = 0. Thus for an indepen-
dent C'VA, in the Sequential Selection Theorem of Section 5 replace the orthogonality
condition < ¢g{"~Y) g, >= 0 with the mutual independence condition p*(¢" M, 9) =0

Further work is needed to establish conditions under which such a development will
lead to a solution. In particular, some regularity conditions are required so that at each
step after the choice of g;, there exist M — ¢ independent generators so that nonlinear
functions of them span the subspace orthogonal to F,i-1n. Then the canonical variables
will be minimal with rank equal to that of the state space.

In the CVA approach developed in the rest of this report, the canonical variables
are constructed sequentially by orthogonalization of a set of variables with respect to
the canonical variables already constructed. What is needed is an analogous procedure
for the construction of a set of random variables that are independent of a given set.
The theorem below is such a procedure. In Phase II, the construction of independent
canonical variables is proposed for study.

In particular, we wish to show that for any sets X and Y of random variables, there
exists a set Z(X,Y) of random variables such that X and Z are mutually independent
and span the same space as X and Y. One version of such a theorem is given as follows:

Theorem 8-1: If the density k(z,y) of the joint distribution Py y(z,y) with respect to
the product Px(z)Py(y) of the marginals exists, is continuous and nonzero, then there
exists a transformation Z(X,Y) such that the map: (X,Y) — (X, Z) is 1-1 and X and
Z are mutually independent.

Proof: From the hypothesis of the theorem, the probability densities exist and are
nonzero. Since p(z, z) = p(z|z)p(z) and z and 2 are independent if and only if p(z,2) =
p(2)p(z), it follows that « and 2 are independent if and only if p(z|z) = p(z2), i.e. if and
only if the conditional density is equal to the marginal density. Thus we construct a
transformation of y to a variable z such that this is true. Let Fw (w) = P(W < w) be the
cumulative distribution function for the random variable W. Consider the conditional
density p(Y |r) which can be transformed to the uniform random variable u by

u(z,y) = Fyp(y) (8-5)

and transformed back to the random variable z with the same density as the marginal
p(y) by
2(z,y) = Fy'(u(z,y)) (8-6)

The cumulative distribution of Z|z of Z for fixed z is

Fz.(2) = Fy(2), (8-7)

the marginal density of ¥ which does not depend upon z. The marginal density of Z is

p2(2) = [ prx(z,a)dz = [ pox(ela)px(z)dz (3-8)
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= [ pr(@px(@)dz = py (2) = pae(2l2) (8-9)
By construction, the map: (X,Y) — (X, Z) is 1-1 which proves the theorem.

For the construction of independent canonical variables, at each step of the CVA
procedure, the subspace independent of the previous canonical variables would need to

be constructed. In fact this is given simply by the variables Z above as stated in the
following theorem:

Theorem 8-2: The random variables Z independent of X generate the subspace
M of the function space Fx y) that is independent of the variables X, i.e. M = 7.

Proof of the following Lemma is sufficient to prove the theorem.

Lemma 8-3: Let X, Y, and Z be sets of random variables such that Z is inde-
pendent of X and X,Y is a 1-1 function of X, Z, then any random variables in Fxy
independent of X is a function only of Z and not X.

Proof: Since the map: (X,Y) — (X,Z) is 1-1, any function in Fxy) can be
considered as a functiun of (X, Z). We will show that any function g(X, Z) is a function
of only Z. Define the function g(X, Z) = E(g|X), i.e. the conditional expectation of ¢
given X, and define

0 otherwise (8-10)

52{ 1if g -g(X,Z) #0

The sct of point S = {X,Z : §(X, Z) = 1} is tle set of points for which ¢(X, Z) is not
equal to the conditional expectation g, i.e. where ¢g(X, Z) as a function of X is not a
constant.

Now suppose that the probability of S is strictly positive, and let S' be the projection
of Son X so §'={X:§(X.Z) = 1for some Z}. Now since by assumption P(S) > 0,
we also have P(S') > 0. If P(S') = 1 then redefine S as a subset such that P(S") < 1
and redefine g{X,7) =0 for X, Z not in S. Define the function of X

1/P(S")if X € §'

—1/(1 — P(S")) otherwisc (8-11)

p(X)={

so that Ep(X) = 0. Also note that Eg(X, 7Z) = Eg(X,Z) — E[E(g|X)! = 0. Now since
S’ is the projection of S we have that

E[p(X)i(X, 2)] = P(S)/P(S') >0 (8-12)

Since p(X) is strictly a function of X and g(g) is strictly a function of g, this contradicts
that the maximal correlation of X and g is zero. Thus the assumption that P(S) > 0
is false so that

9(X, 2) = E(glX) (8-13)
with probability 1 and hence g is a function only of 7.

Thus the use of conditional and marginal distributions provides a means of con-
structing independent random variables. From the equivalence of mutual independence
and zero maxirmal correlation, it may be possible to use the orthogonality of all functions
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of the two sets to define implicit algorithms such as the ACE algorithm for constructing
mutually independent random variables.

A further issue to be addressed in future work is the minimal rank issue. Conditions
under which the transformation to mutually independent random variables is a 1-1
transformation need to be established. The minimal rank of the state space will be
guaranteed if any transformation to a set of mutually independent random variables
has an inverse transformation to the original variables which holds except on a set of
probability zero. This condition also enters into the discussion in the next section.
These topics are proposed for detailed study in detail in Phase II.
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9 Optimal Normalizing Transformations

The canonical variables have a more general optimality property than maximal correla-
tion. It is shown that the canonical variables are the result of transforming the original
variables to variables that are closest to normality. The measure of closeness to normal-
ity involves an entropy measure. Thus a first order approximation of the distribution
of the canonical variables would be the normal distribution.

9.1 Nonlinear CVA of Normalizable Variables

In this section, the independent nonlinear CVA is shown to give the same result on
jointly normal random variables as the linear orthogonal CVA. This gives a natural
generalization of maximal correlation to the multivariate case when the distribution is
normal.

A starting point that suggests a much more basic relationship is the following (Lan-
caster, 1966).

Theorem 9-1: If X and Y are jointly normal variables, then the maximal correlation
occurs for [inear transformations g(X) and h(Y), and if the maximal correlation is
positive then strictly nonlinear transformations will strictly decrease the correlation.

The result does not generalize to the multivariate case for the reasons discussed in the
previous section - statistically or functionally dependent variables may be orthogonal
in the case of nonlinear transformations of the variables. In this section, the term linear
canonical variables and linear CVA will mean the usual CVA considering only linear
functions of the random variables. The strongest multivariate result appears to be that
given in Lancaster (1966)

Theorem 9-2: Let X and Y be jointly normal random vectors, and let the nonlinear
transformations ¢;(X) and h;(Y) be recursively defined so that E(gig;) = E(h;h;) =0
for + < j. Then g; and hy; have maximal correlation if they are respectively the first
pair of linear canonical variables; and if for £ > 1 we have p; > p?, then the maximal
correlation of g; and h; are given respectively by the sth pair of linear canonical variables.

The condition p; > p? is sufficient to insure that nonlinear functions that are or-
thogonal to the previously defined canonical variables will not have large enough corre-
lation. If however the condition of orthogonality is replaced by that of independence or

equivalently zero maximal correlation, then the following multivariate generalization is
obtained.

Theorem 9-3: Let X and Y be jointly normal random vectors of dimensions k and
€ respectively, and let the nonlinear transformations ¢;(X) and h;(Y) be recursively
defined such that p*(g;,9;) = p*(hi, h;) = Ofor ¢ < j. Then the functions g; and h; have
maximal correlation if they are respectively the jth pair of linear canonical variables ¢;
and d;. For p; > 0, g; and h; are strictly linear functions respectively of ¢;,...,c; and

dy,. .. dy.
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Proof: The theorem is proven by induction. From Theorem 9-1 the first pair g,, by
coincides with the usual first pair of canonical variables. We show that if it is true for
7 — 1 then it is also true for j. For j > 1, the condition p*(gi,g;) = p*(hi, hj) = O for
¢t < j is equivalent to that of independence of g; and h; with previously chosen variables
g; and h;. By hypothesis, for ¢ < j we have g; = ¢; and h; = d; so that g; is independent
of ¢; and h; is independent or d;.

From Lemma 8-3, the above implies that g;(C) is a function of only ¢;,...,¢; and
similarly h; is a function of only dy,...,d,. The maximal correlation of g; and h; can be
determined by restriction to nonlinear functions of ¢;,...,c;x and d;,...,d, respectively.
From Theorem 9-1, the maximal correlation of the normal random variables c;, ..., ¢
and d;, ..., d, is attained by the linear canonical variables ¢; and d; respectively. From
Theorem 9-1 it is apparent that for p; > 0, g; and h; are strictly linear functions
respectively of the linear canonical variables e1,...,cx and dy,...,d,. This proves the
induction from 7 — 1 to 7, and the theorem is proven.

From this theorem, the canonical variables from a linear CVA on jointly normal
variables will also satisfy an independent nonlinear CVA. Also the independent canonical
variables with positive canonical correlations have the same uniqueness properties as the
linear CVA. However nonlinear canonical variables with zero canonical correlation may
be nonlinear functions of the normal variables since only independence is required. For
prediction of one set X of variables by another set Y of variables, only the variables with
positive canonical correlation are involved. If a set of random variables are normalizable,
that is if there exists a 1-1 transformation to a set of normal random variables, then the
nonlinear canonical variables needed for prediction of X from Y are normally distributed
as stated in the following theorem.

Theorem 9-4: Let X and Y be vector random variables such that there exists a 1-1
transformation to jointly normal random vectors. Then the sets of canonical variables
g1, .-.,g, and hy, ..., h, respectively with positive canonical correlations p; > ... > p, > 0
are jointly normally distributed, and the optimal prediction of X from Y is expressible
in terms of the linear prediction of hy, ..., h, from g4, ..., g,.

Thus in the case of joint normality, of all possible transformations the canonical vari-
ables relevant to prediction are normally distributed and the corresponding prediction
problem among the canonical variables is linear.

9.2 Mutual Information and Approximation

In this section, a breoader interpretation of canonical variables is obtained. This is
important since the correlation coeflicient as a measure of dependence appears to be
very simplistic and to miss much of the complexity of arbitrary distributions.

The previous section addresses the case where there exists a 1-1 transformation
to a set of jointly normal random variables. But what about the more general case
where there may not exist such a transformation. The correlation coefficient has an
interpretation in terms of mutual information and approximating normal distributions.
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As noted by Gelfand and Yaglom (1959), the mutual information between two Gaussian
random variables ¢ and d is
1

En(PEd) ) -

p(c)p(d)

so that maximizing the correlation is tantamount to maximizing the mutual information.

In(1 - pl,) (9-1)

To generalize this procedure to nonlinear processes requires a number of new con-
cepts and results. The linear case depends completely on the Gaussian assumption
which is violated in the nonlinear case. Also, in the nongaussian case the expression
for the mutual information no longer holds. However, the basic computational proce-
dure of the CVA method is minimizing the function (9-1) of the correlation coefficient
based upon second moments of the variables which is computationally direct and effi-
cient. Thus it is an attractive computational procedure if reasons for its use in nonlinear
processes are developed.

Consider arbitrary random variables ¢ and d with some arbitrary joint density func-
tion p(c,d). Consider the normal densities n(c,d), n(c), and n(d) using the first and
second order moments u,, pq, and o,., 044, 0.4 respectively of the true distribution of ¢
and d. For simplicity of notation, the means y, and p4 will be assumed to be zero which
will not affect the results below. Now consider the expected mutual information of the
normal densities with expectation E, taken with respect to the true density p(c,d)

n(c,d) n(d|c)
el Sk Bt 2 — [
Ep{ln(n(c)n(d))} EP{ n’( n(d) )}
= —%Ep{anﬂ(odd — odca;locd)
_ -1.\2 2
+ (d = oacor, :) —n2moq4q ~ LS
(Udd — 04,0, Ucd) 044
1 o2, 1 )
= —gin(l- m) = —5in(l = pz) (9-2)

Thus the function (9-2) of p.; has the interpretation as the average over the true
density of the mutual information of the hypothesized normal densities n{e,d), n(c),
and n(d) based upon the true covariances. The presence of the true density p in the
expectation may at first appear to be a problem since it is often not encountered in
information arguments, however in terms of the statistical inference problem it will
play the role of the “truth” or data. As with relative or Kullback information (see
Kullback, pp. 6, 1959; Larimore, 1983a), consider a relative measure of approximation
in terms of the ezpected relative mutual information between the true density p(c,d)
and an approximating normal density n(e¢,d) expressed as

p(c,d) n(c,d)
/p(c,d){lnp(c)p(d) - lnn(c)n(d) }dedd (9-3)

Now suppose that ¢(z) and d(y) are transformations of the random variables £ and y
respectively. The first term in the integrand is the expected mutual information which

49

———




is invariant if ¢ and d are 1-1 transformations. Thus (9-3) is a function only of the
second term. From (9-2), minimizing the measure (9-3) in the case that ¢ and d are 1-1
is equivalent to maximizing the correlation coefficient p_q4.

Now we consider the case where the transformations ¢ and d are multivariate trans-
formations of the random vectors z and y respectively. For the first term in (9-3) to
be constant, the transformations ¢ and d must be 1-1. This suggests yet another gen-
eralization of CVA under the additional constraint that the transformations ¢ and d be
1-1. Suppose that in addition the transformations ¢ and d are required to produce pairs
of random variables (c;,d;) that are independent of (c;,d;) for i # j. Then the first
term of (9-3) would be a constant and the second term would decompose into the sum

of terms (9-2) involving each of the pairs of components ¢; and d; of the transformed
variables, i.e.

Bylin( o)) = =3 Bt = (e ) (04

This is very close to the construction of mdependent canonical variables as described in
Section 8.

9.3 Generality of Independent CVA

In the literature of maximal correlation and nonlinear canonical variables (see Section 6),
there appears to be no consideration of the multivariate case were orthogonality is
replaced by independence or equivalently zero maximal correlation. From several points
of view, this appears to be the natural nonlinear generalization for the multivariate case:

e In the case of the multivariate normal distribution where orthogonality is equiva-
lent to independence, it is independence that generalizes to the nonlinear case not
orthogonality (see Theorem 9-3).

¢ Independence removes the functional and statistical redundancy present in the

nonlinear case as discussed in Section 8. This provides the basis for studying the
selection of a minimal order state.

e The mutual information measure generalizes to the multivariate case if the canon-
ical variables are independent.

The computational aspects of the independent CVA appears to be significantly
greater since it involves the construction of independent random variables rather than

orthogonal ones. Further study on this topic is nceded as in the proposed Phase II
research.
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10 Computational Methods

In this section, several implementations of the CVA computations are discussed. The
general nature of the computational problems are first described. An implementation
using polynomial basis functions is developed and was programmed and applied to
simulated data from the Lorenz chaotic attractor in the next section. Computational
methods of nonlinear regression in high dimensional spaces are discussed and proposed
for implementation in the proposed Phase II research. Such methods are likely to be
more statistically efficient and adaptive. For completeness, computations specific to the
state affine model are developed.

10.1 Computational Problems

The major computational problems to be solved are the computation of the CVA be-
tween past and future and the determination of the state transition and state output
functions of the state space innovations model. These problems are discussed in gen-
eral in this section, and their solutions using polynomial basis functions or adaptive
nonlinear methods are described in following sections.

The Hilbert space theory and the theory of maximal correlation provide a very
general structure for nonlinear CVA of nonlinear Markov processes. In this context the
canonical variables can be determined sequentially as pairs of variables achieving the
maximal correlation. For any pair of Borel measurable functions g(f) and h(p) of the
past p and future f where both functions have finite variance, the covariance function
y(1)h(p) i uniquely defined. This sequence of canonical variables is uniquely defined
by such a covariance function up to uniqueness of the canonical correlations. Thus if
the covariance function was known exactly, we would only need to find a computational
procedure for computing such a sequence of canonical variables. Note that there is no
requirement that the canonical variables even be continuous functions.

The other major computation required is the fitting of the state space innovations
model

Terr = (T, e, 1) (10-1)
Yt = pe(ze, we) + vy (10-2)
provided by Theorem 10-1 which is a very useful model for a nonlinear Markov process.
With the state given as a nonlinear function of the past observations by CVA, the
state transition function ¢ and state measurement transformation g can be determined

by nonlinear regression. There are numerous ways of fitting such nonlinear regression
models.

The major difficulty in solving the above computational problems is that only a finite
sample of observations are available. As a result, the covariance function and second
moments of arbitrary nonlinear functions are not exactly known. The major issue is
then the approximate determination of the canonical variables and nonlinear regression
functions from a finite sample of observations.
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For ease of computation, in this Phase I study a polynomial regression procedure was
used. In the proposed Phase Il research, more adaptive nonlinear regression methods
for high dimensional spaces will be investigated.

10.2 Polynomial Basis Functions

The Hilbert space is approximated as being generated by a finite number of polynomial
functions in a given number of lags of the past inputs and outputs of the process. The
required computation increases rapidly as the number of polynomial terms increases as
shown in Table 10-1. The growth is much more rapid in the polynomial degree than in
the number of lag variables.

A first issue is the selection of the number of lags and the polynomial degree to
use in the CVA. In the state reconstruction method, the state is usually represented
as simply some number of past observations. Representation of the Hilbert space as a
polynomial in the past inputs and outputs can be viewed as representing the states as
polynomials in the past. An upper bound on the number of polynomial terms required
is obtained by fitting nonlinear autoregressive process (NAR) models to the process

ve=)_ ap;+mn (10-3)
el
where the index ¢ = (ty,...,1:) prescribes the powers of the respective components of

the first k elements of the past vector p; {see (7-25) and (7-26) for notation). The NAR
model structure I is the set of indices ¢ for which the coefficients of the NAR model
are nonzero. The set I specifies the model structure of a particular NAR model by the
number of lags in the past of p; and the particular polynomial terms in the model.

The number of lags in the past and the degrees of the polynomial terms that ade-
quately describe the past of the process for prediction of the future can be determined
adaptively by subset selection methods of nonlinear regression. For each model struc-
ture I up to some degree d and number of lags £ in the past, the computation of a
measure of fit is desired. The measure of fit could be an entropy type measure such
as the Akaike AIC which in many cases reduces to a sum of squares criterion. The
problem is that the number of model structures I grows exponentially with k and ¢£.
To avoid this problem the Leaps and Bounds algorithm of Furnival and Wilson (1974)
can be used. This algorithm searches the tree of model structures starting from the
most general including all terms up to some degree d and number of lags £. Most of
the branches will be “pruned” very soon because deletion of a product term in the sum
(10-3) will give a drastic increase in the prediction error. For nonlinear models, it is also
necessary to include all lower order terms of a power term to insure that the model is
invariant to linear transformation of the data (Peixoto, 1987). Such a subset selection
procedure determines an adequate set of lags of the past and polynomial terms in these
variables which contain all of the statistically useful information in the data. This pro-
cedure using the AIC trades off the bias in using too low an order NAR model against
the additional variability introduced in using too high an order.
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The above procedure determines a NAR model (10-3) for optimal or near optimal
modeling of the present observations y, by a sum of monomial terms in the past. What
is needed is the information in the past for prediction of the future

ft = (Y6, Ye41,-..) (10-4)

If only £ lags in the past are needed for optimal prediction, then only outputs up to y.,
are affected by the past p,. The prediction of y,,; from the past p,,, is given by

Jej = Z @.Pey; (10-5)
(134
Thus prediction of y,; as a function of p; involves only the factors in the terms Piys of
(10-5) that are a function only of p,, i.e. expressed as

p:+j = g(yt+j’ ey yl)p: (10_6)

All such terms p] for j < € and ¢ € I need to be included as basis functions for the
function space %, of nonlinear functions of the past p; for prediction of the future f,.

The above procedure is very useful when only prediction of the future f, is of interest
rather than the more general case of nonlinear function of the future f;. In any case, we
suppose that a basis for the nonlinear past has been chosen or determined. Similarly,
suppose that a basis for the future has been chosen. In the simulation example, the
future itself is chosen. Then a CVA is done between the functions of the past and the
functions of the future. This is simply a linear CVA involving the nonlinear functions of
the past and future. First the nonlinear functions of the past and future are evaluated
for each time t and treated as the data in a linear CVA. The canonical variables are
expressed as linear combinations of the nonlinear functions of the past and future.

The canonical variables of the past are the candidate state of the nonlinear Markov
process. The canonical correlations can be inspected to determine if there is an obvious
choice of model state order. An example of this is given in the simulation example
in Section 11. For each selection of model state order, the state transition function ¢
(7-16) and state output function p (7-17) are fitted by polynomial regression. Here again
an adaptive polynomial regression procedure would be very useful. The polynomial
regressions for different degree polynomial terms can be fitted by a Leaps and Bounds
algorithm. The resulting model gives a state space innovations model for the nonlinear
Markov process.

10.3 Adaptive Nonlinear Methods

In this subsection, the use of adaptive nonlinear computational methods is discussed.
These methods directly address issues of fitting nonlinear models in high dimensional
spaces for observational data. Computational algorithms and software for adaptive
nonlinear procedures were not implemented in this Phase I study, but have consider-

able potential and are proposed for detailed study and implementation in the Phase II
research.
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While nonlinear polynomial regression is useful in low dimensional spaces or where
the structure of the functions is low order polynomial in form, for general functions in
high dimensional spaces the results are generally poor. There has been considerable
development of adaptive nonlinear methods in the past decade. These methods have
produced spectacular improvements over traditional nonadaptive methods. The theo-
retical basis for some of these methods is very closely related to the theory of maximal
correlation and nonlinear CVA on Hilbert spaces. Some of these methods can be di-
rectly applied to the CVA problem, while others will require some further research and
development for successful extension to CVA of nonlinear Markov processes. In this
section, various methods and approaches of adaptive nonlinear regression in high di-
mensional spaces are discussed in the context of the nonlinear CVA problem, and areas
of particular promise for the extension to the nonlinear CVA problem are indicated.

The problem considered by adaptive nonlinear methods is the determination of non-
linear stochastic models for finite, i.e. incomplete, samples of a random process. While
virtually all of the literature concentrates on static problems as opposed to dynamic
systems involving time evolution, the same fundamental issues must also be addressed
in the time series case. In fact the introduction of the time variable only increases the
severity of the problem.

The fundamental problem stated simply is that in high dimensional spaces the num-
ber of parameters required for an accurate model grow exponentially with the space
dimension whereas the available sample size in most practical problems does not in-
crease proportionately. As a result the error in the model due to statistical variability
increases dramatically and often is so large as to render the model useless in practice.
The remedies developed in the past decade are to adaptively determine the parameters
that are really necessary in the model and to exclude the others so that errors in their
estimation do not corrupt the model.

Two approaches that have particular potential for nonlinear CVA are additive model-
ing with adaptive regression splines and multivariate adaptive regression splines (MARS).
An additive model has the form

v=f(z1,...,2,) = i:f,-(a:;) (10-7)

where the i-th function fi(x;) is a function of the single variable z;. This is a generaliza-
tion of linear functions which permits nonlinearity in a single variables but not nonlinear
functions jointly of two or more variables. The additive models have been studied much
more than other methods of nonlinear adaptive regression and much more theory is
available.

For additive models, adaptive regression splines have been very successful in adap-
tively determining spline models for the functions fi(z;). The basic approach is to
adaptively fit splines for each of the univariate functions. For each of the functions
fi(z:), knot locations are adaptively added and deleted until a near optimal cubic spline

is determined. The criterion for goodness of fit is based upon a generalized cross vali-
dation (GCV) measure.
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The functions 2z; = fi(z;) can be considered as nonlinear transformations of the
variables z; respectively that best produces a linear model in the transformed variables z;
in a least squares sense. More generally the problem can be considered of simultaneously
transforming the variable y by ¢g(y) so that the function

Bla(y) - 3. @) fvaro(y) (10:9)

is minimized. That is we seek to find optimal transformations [g*(y), {f/(z:)}}] that
minimize the fraction of the variance varg(y) of g(y).

Tne alternating conditional expectation (ACE) algorithm (Breiman and Friedman,
1985) is used to determine the functions (g°(y),{f;(z:)}?]. ACE effectively does the
minimization by alternating between the two minimization problems:

e Given ¢(y), find functions {f;(z:)}} minimizing (10-8)

¢ Given functions {f;(z;)}}, find ¢(y) minimizing (10-8)

In actual computation, only a sample are available so that the expectation of (10-8)
is replaced by the sample average. The optimization is done using adaptive regression
splines to obtain a smooth function.

The theory of the ACE algorithm is closely related to the theory of maximal corre-
lation (Breiman and Friedman, 1985). Let X = (z;,...,z,) and Y = y and consider
the function space Ax of additive functions of X of the form (10-7) and the function
space Fy. Then the problem of finding the optimal transformations minimizing (10-8)
is equivalent to the maximal correlation problem

ge I Ay p(f(X),9(Y)) (10-9)

This is a special case of the maximal correlation problem where Y is a single variable
and the function f(X) is restricted to be of additive foria in the variables X.

The ACE algorithm works in general for finding the maximal correlation no matter
what function spaces are involved. Thus it can be used in general for finding optimal
transformations for CVA by sequentially maximizing the correlation. The difficult part
of the problem is in replacing the expectation with the sample average. The problem
of too many parameters and too few data require the use of adaptive methods that are
extended to more general nonlinear models than additive models, e.g. including inter-
actions between the variables involving simultaneous functions of several variables that
are not additive. Such generalizations have been developed in the MARS algorithms.

The inclusion of higher order interactions in the functional form requires a funda-
mentally different approach than that of additive models. The n-dimensional space
involving the independent variables X is recursively partitioned into pieces specifying
knots of a spline function on the space. If the function changes rapidly in a region, then
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the algorithm will partition the space more finely in the region. The same strategy is
used in determining the inclusion of higher order interactions of the variables.

The above methods have the elements of adaptive nonlinear regression needed for
solving the CVA problem. The ACE algorithm is an implementation involving alternat-
ing between the projection operators (6-4) and (6-5). This will work in the general CVA
context for finding the function maximizing the correlation. Only an orthonormalization
is required at each step before finding the next pair of canonical variables using the ACE
algorithm. In the case of independent CVA, a computational procedure is required to
construct random variables independent of the preceding canonical variables. Further
study of this case is needed.

10.4 Computation of Affine Models from Covariances

In the originally proposed research, the state affine model was central to the develop-
ment. Subsequent Phase I research resulted in very general procedures discussed in the
subsections above. In this subsection, the modeling of state affine models is discussed
in particular.

The state affine representation provides an economical representation as compared
to other methods. Note that the state affine representation involves only powers and
products among the state and inputs at a fized time. An alternative approach is the use
of nonlinear difference equations (Billings and Leontaritis, 1982; Diaz and Desrochers,
1987) which equate the output at y, to a polynomial in the past involving powers and
products among the components at many different times. For multi-input multi-output
systems, the state affine form accounts for a corsiderable economy in the use of param-
eters for the representation of nonlinear processes and a corresponding improvement in
statistical accuracy of the identified process. In Diaz and Desrochers (1987), a model is
identified in difference equation form and then converted to state affine form which is
of much simpler form.

In terms of the formulation of CVA analysis of the previous section, the state or
memory m, of the system of order k is chosen from linear combinations of p&'], the
powers and products of the past of degree no greater than r, as given by

me = Jpl! (10-10)
where Jy is rank k. The degree of r is chosen sufficiently large so that no information
for predicting f; is lost. CVA gives the k statistically significant linear combinations m,
of p,'] for linear prediction of the future f,. Thus CVA is computed on the covariance
matrices among p£'] and the future f;.

From the affine Markov innovation representation (7-29) and (7-30), the resulting
state space model will have the form

my, = Amy + Bvec{(u,,t/,)[q]mtr} + C(uy, 1/,)[”] (10-11)
y=Hm Dvec(u{q’m;r) + Eul" 4 (10-12)
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where v; is an uncorrelated increments process and vec(:) is defined in (7-29). Following
the methods outlined in Larimore (1983b), the matrices A, B, C, D, E, and H can be
determined by linear regression in the power product terms in (10-11) and (10-12). Error
in the regression gives an estimate of the covariance R, of the innovations process v,
and higher order moments can be estimated. For nonlinear processes, the innovations
covariance I, is not necessarily stationary since the noise processes may be involved
in the process in a nonlinear manner in the feedback of y; in the state equation. A
regression of the innovations covariance R; on magnitudes of the terms {(x,,v,)dmT}
would provide a useful parameterization.

For the determination of model state order, recent developments in the selection
of model order and structure based upon entropy or information can be used. Such
methods were originally developed by Akaike (1973, 1974b) and involve use of the
Akaike Information Criterion (AIC) for deciding the appropriate order of a statistical
model. The AIC for each state order k is defined by

AIC(k) = —2logp(YY,UV;6,) + 2M, (10-13)

where p is the likelihood function, based on the observations (Y¥,U") at N time points,
with the maximum likelihood parameter estimates 6, using a k-order model with M,
parameters. The model order k is chosen with the minimum value of AIC(k). A
predictive inference justification of the use of an information or entropy based criterion
such as AIC is given in Larimore (1983a) based upon the fundamental principles of
sufficiency and repeated sampling. In choosing model order, the risks of introducing
bias into the model in choosing too low an order must be weighed against introducing
additional variability in choosing too high an order (Larimore and Mehra, 1985).

The number of parameters M, in the state space model (22) and (23) is determined
by the general state space canonical form as in Candy et al (1979) as

M, =2kn+km+nl+n(n+1)/2 (10-14)

where k and n are the dimensions of the state and output vectors m, and y, respec-
tively as in the case of linear systems; however for the nonlinear case the number of
inputs m becomes (k + 1) Dim{(u., 1)1}, the total number of elements in the vectors
vee{(uy, V,)["]m,T} and (u,, u,)f"]. If the direct feed through term is present, then the term
nl is present where [ is (k + I)Dim(u{"]). If higher order moments of v, are estimated,

then the term n(n + 1)/2 is modified appropriately to reflect the number of parameters
estimated.

The interpretation of the criterion is different since the process is no longer gaussian.
The AIC measure is still a quadratic measure of the multi-step prediction error in terms
of the measured second moment of the variable being predicted. The usual expression for
the AIC assumes that the innovations noise v, is distributed as a gaussian process. More
exact computation of the AIC is possible using higher order moments of the innovations
process vy. An AIC optimal model can be determined for the set of models indexed by
(k,q), where k and q are the state order and the polynomial degree respectively.
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The stochastic filtering problem is solved efficiently by approximation using CVA as
follows. The covariance matrices among f, and pl'l are calculated for a finite number of
lags in f; and p; using any method that is available such as propagating moments using
a difference or state equation model of the process. These covariance matrices are then
used in the CVA. For any given order of approximation, the one-step prediction error for
the corresponding state affine CVA model is computed to determine the desired state
order k and polynomial degree ¢ depending on the desired filtering accuracy.
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Number of B maximum degree
Variables | 1] 2 | 3 | 4 | 5
1 2] 3 4 5 6 |
2 3 6 10 15 21
3 4 10 20 35 56
4 5 15 35 70 126
5 6| 21 56 126 252
6 71 28 84 210 462
7 8 36 120 330 792
8 91 45 165 495 1287
9 10| b5 220 715 2002
10 11| 661 286 1001 3003
11 12| 78| 364 1365 4368
12 13| 91 455 1820 6188
13 14 | 105 560 | 2380 8568
i 15120 ] 680 3060 | 11628
15 16 | 136 | 816 | 3876 | 15504
16 17 | 153 | 9691 4845 20349
17 18 { 171 { 1140 | 5985 ( 26334
18 19190 | 1330} 7315 33649
19 20} 210 { 1540 | 8855 42504
20 21| 2311771 | 10626 | 53130
21 22 | 253 | 2024 { 12650 | 65780
22 23} 276 | 2300 14950 | 80730
23 24 | 300 | 2600 | 17550 | 98280
24 25| 325 | 2925 | 20475 | 118755
25 26 | 351 | 3276 | 23751 | 142506
26 27 | 378 | 3654 | 27405 | 169911
27 28 | 406 | 4060 | 31465 | 201376
28 29 | 435 | 4495 | 35960 | 237336
29 30 | 465 | 4960 | 40920 | 278256
30 31 496J 5456 | 46376 | 324632

Table 10-1: Number of Polynomtial Terms
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11 Simulation Results

In this section, the CVA procedure is demonstrated on the Lorenz attractor with pro-
cess excitation noise. The full 3-dimensional dynamics of the Lorenz system is obtained
by observing only one component of the 3-dimensional state. The canonical variables
are computed and displayed, and a state space innovations model identified. The ade-
quacy of the canonical variables are demonstrated by transforming to the original state
variables of the Lorenz attractor and comparing the estimated states with the true
states. Finally the state space equations governing the canonical states are determined
by nonlinear regression and used to simulate trajectories for the identified system. These
simulated trajectories have a similar character to that of the true process demonstrating
the feasibility of using CVA for accurate identification of nonlinear state space models
for multiple equilibria nonlinear Markov processes.

11.1 Lorenz Attractor

The Markov process considered is the Lorenz attractor {(Lorenz, 1963) with process
excitation noise. The state equations of the Lorenz attractor are of the form

iV = g(e® - )

2 pz(]) — 20 (1) ,03)
3 — ~‘[}:1:(3) W3 (11-1)

The values of the parameters used in the simulation are 0 = 10, p = 28 and § = 8/3
which results in the much studied chaos of the system. The differential equations are
discretized with At = 0.01, and white process noise is added to the state equations so
that the discreie time equations used for simulation become

xﬁ‘,’, = " 4 Ato (2P - If”) + n{Y (11-2)
1'52;)1 = 152) -+ At[mrf') - 152) — :rf”::ﬁz)J -+ nf” (11_3)
o = P apal 4 22 4 ol (11-4)

. . . . . I . ) _(2) OB\
I'he noise covariance matrix of the white process excitation noise (ns ),ng ),n$ ))7 used

in the simulation is 10°* x I3 with /3 the 3 dimensional identity matrix. The presence
of process excitation noise provides a much more difficult identification problem since
the process no longer is exactly predictable given exact arithmetic. Most studies of
identification of chaos consider only the presence of additive white noise which can be
reduced by simple averaging of the observations. The time correlation introduced by the
nonlinear process dynamics presents a much more difficult problem for identification.

For system identification, the measurement observation data is y, — rfl), the first
component of the discretized Lorenz process, which is shown in Figure 11-1. The sections
below show that the entire 3-dimensional dynamics of the process can be reconstricted
from the measured first component.
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11.2 Canonical Variate Analysis

The measurements y consisting of only the first component z(!) of the Lorenz attractor
are used to compute nonlinear functions of the past as basis functions for canonical
variate analysis. The past p, consists of functions that are powers and products of up
to degree three in the first three lags (yi—1,Yyt-2,¥i-3) of the measurements y so that
functions of the form

Sivings (Ye-1,Ye-2,Ye-3) = YLy, for iy 1 +145<3 (11-5)

are considered. There are 20 such basis functions. The future f; is the vector of outputs
up to 20 lags into the futu: e so

fo=(fo. o feao)T (11-6)

A canonical variate analysis of sample covariances of the past and future is given
in Table 11-1. Note that the canonical correlations drop until a floor is hit at 0.078,
and from this point on the canonical correlations fall off slowly. This is typical behavior
of sample canonical correlations and most likely the canonical correlations less than or
equal to 0.078 are not statistically significant. This suggests that there are 7 signifi-
cant canonical variables. In the discussion below, the canonscal state is chosen as the
first 5 canonical variables to reduce the computation since the contribution of the two
additional canonical variables is small.

In terms of the chaos literature on state reconstruction, the canonical states provide
a set of variables for embedding the process. The CVA provides a systematic procedure
for selecting the embedding variables so that nothing is missed. The canonical variables
have the property that they are orthogonal so that the information in the different
variables is uncorrelated and the predictive improvement in the future is additive. Also
from Section 5, the canonical variables are optimal in the sense that for any k the first
k canonical variables provide the best prediction of the future of any possible choice.

11.3 State Reconstruction of the Lorenz Attractor

While the canonical states have optimal properties for embedding the dynamics of the
observations, they in general do not directly relate to the states of a process that may
be of interest. In the present case, it is important to assess the ability of the canonical
states ¢ to predict the full 3-dimensional motion of the Lorenz attractor state z.

To obtain an estimate of the original state z of the Lorenz attractor, an approximate
nonlinear transformation is constructed from the canonical states ¢ to . The trans-
formation g(c) is constructed by polynomial regression on polynomials in the states ¢
up to degree 6. The estimated state Z in the original 3-dimensional coordinates of the
Lorenz attractor is

7 g(e) (11-7)




Phase plane plots of pairs of the components of the Lorenz attractor state z are shown
in Figure 11-2 for original “true” states (solid line) and the reconstructed state estimates
% (dashed line). Note that components z{!) and z(?} are estimated very accurately in
that the reconstructed trajectories based upon CVA provided by the regression of the
canonical states on the Lorenz states is very accurate. The estimate of the component
£(® is much noisier, but on the average provides a good estimate of the true value of z(3),
The exception is for values of z(3) below about 20 that appear to have been distorted.
There are several reasons for this distortion:

e From equation (11-2), the variable z® is not directly observed by y, = :z:fl) but
only indirectly through zsz_),.

e From equation (11-3), the variable z(®) is related to z{?) through the term zfl)lzss_'),
so the effect of z(3) is proportional to the magnitude of z(1).

The distortion in Figure 11-2 is seen to be most severe for z(!) and z(® small and for z(?
and z(® small. Either of these conditions will cause poor identifiability in those regions
of the trajectory from the discussion above. More precise state reconstruction will
require more data. Another alternative is to measure more components of the process.
Apart form this, however, the state estimate provides a very faithful reconstruction of
the process although it is somewhat noisy. The noisy estimate is to be expected since
only one of the components of the process was used for measurement data.

The accurate state reconstruction demonstrates that the canonical variables contain
a great deal of the state information in the measurements. In theory, CVA provides
an automatic selection of variables for embedding the process that will loose the least
information using a given number of canonical variables. The ability of the canonical
variables to reconstruct the full 3-dimensional dynamics cf the Lorenz attractor based
upon measuring only one component is illustrated very graphically in Figure 11-2.

To demonstrate the CVA method on the Lorenz attractor the choice of basis func-
tions for the CVA was somewhat arbitrary. Several improvements are possible to avoid
the arbitrary choice and to increase the accuracy. The accuracy includes bias, which is
systematic error resulting in an inadequate number of basis functions, and variability
in the sample. Stepwise regression methods can be employed to determine a sufficient
number of basis functions, and that there are no significant improvements with the
addition of more functions.

Another approach to improved accuracy in the selection of the canonical variables
is the direct construction of the nonlinear functions that define the transformation to
canonical variables. This approach has been developed in the literature of nonlinear
regression in high dimensional spaces and is solved in particular by the alternating
conditional expectation (ACE) algorithm (see Brieman and Friedman, 1985). The ACE
algorithm constructs a spline function for the transformation that adaptively determines
the knot locations so as to minimize the statistical error of the solution. This approach
appears to be one of the most promising and is proposed in Phase II.
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11.4 State Space Model Identification

In the above paragraphs, the canonical variables are shown to determine an adequate
state for the process. In following paragraphs, a state space model is identified by
nonlinear regression using the canonical state.

Theorem 7-1 in Section 7 provides a state space innovations model of a Markov
process. If the state for the process is given, then it is only necessary to determine the
nonlinear output function y, innovations process v, and the staie transition function ¢
by nonlinear regression.

The function p is considered as a 6th degree polynomial in the canonical state ¢,.
The error is the innovation process v,. Then the transition function ¢ is considered
as a 6th degree polynomial in the canonical state and innovations. The polynomial
coefficients are found by nonlinear regression of the canonical state ¢, one step ahead
on power product terms in ¢; and v;.

To investigate the dynamics of the resulting identified state space model, data was
simulated using the model with no process excitation noise. Phase plane plots of pairs
of the components of the canonical state variables ¢, are shown in Figure 11-3 for the
reconstructed states (dashed line) and for states simulated from the identified model
(solid lines). Note that the trajectories constructed from the observed data have the
same dynamical character as those simulated from the identified model. Only the first
three components are shown here since they contain nearly all of the energy.

The two trajectories are interleaved until the jump to the second equilibrium where
the simulated trajectory becomes a stable limit cycle. It is known (Manneville and
Pomeau, 1980) for the Lorenz attractor (11-1), that a change in the value of the p pa-
rameter can result in a change from chaotic motion to a stable limit cycle. Thus a stable
limit cycle is qualitatively consistent with the Lorenz attractor (11-1). Some inaccuracy
of the identified model is to be expected since the data length is very short relative to
the total number of parameters estimated in the model fitting. Each component of the
state transition function is a polynomial in 84 terms so that for the 5 canonical states
c there are a total of 420 parameters as compared with 1000 obscrvations.

The phase plane trajectories shown in Figure 11-3 of the canonical states determined
by CVA are very similar to the principal components obtained by Broomhead and King
(1986) for the same Lorenz attractor model. This is not surprising since principal
components analysis is a special case of CVA. In the present case, CVA weighting of
the future is a sum of squares of the prediction error for each future lag which is closely
related to the principal component weighting of the sum of squares of regression error of
the past outputs. Also, apparently the nonlinear terms do not play a large role for the
Lorenz attractor in terms of the embedding coordinates, i.e. the states can be chosen
reasonably efficiently using linear functions of the past. The CVA approach however is
much more general in this respect and can be expected to perform much better in cases
requiring nonlinear embedding to obtain efficient state realizations.
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11.5 High Noise Case

To demonstrate the performance of the CVA method with much greater noise, the
Lorenz process (11-1) was simulated with the process noise covariance matrix for (n,, n,,
n,)T as 1072 x I3, i.e. with the process noise variance larger by two order of magnitude.
The same procedure for computational analysis of the data was use as in the case of

lower noise described above.

The first component of the state zsl) used for the measurement in the system iden-

tification is shown in Figure 11-4. Note that the presence of the noise on the process is
very noticeable unlike the case of lower noise in Figure 11-1.

A canonical variate analysis of sample covariances of the past and future are given
in Table 11-2. Note that the canonical correlations drop until a floor is hit at 0.1782,
and from this point on the canonical correlations fall off slowly. This is typical behavior
of sample canonical correlations and most likely the canonical correlations less than or
equal to 0.1782 are not statistically significant. This suggests that there are 5 statis-
tically significant canonical variables. In the discussion below, the canonical state is
chosen as the first 5 canonical variables. Note that, as compared with the low noise
case, there are two fewer statistically significant canonical correlations due to the higher
noise.

Phase plane plots of pairs of the components of the Lorenz attractor state z are
shown in Figure 11-5 for original “true” state (solid line) and the reconstructed state
estimate % (dashed line). Note that the estimated state Z has the same character as in
the low noise case but the estimation error is greater. The true state (solid line) has
clearly discernable perturbations due to the process noise which was not the situation
in the low noise case. By observing the behavior on sections of the trajectories that are
nearly perpendicular to an axis, it is apparent how variable each of the reconstructed
states are. From such an observation, the errors in the reconstructed states increase in
the order z(V, (3 (3,

For illustration, phase plane plots of pairs of all five of the canonical states are plot-
ted in Figure 11-6. Note that the canonical states are much more noisy than for the
case of lower noise in Figure 11-3. The phase plane plots in Figure 11-6 confirm the
canonical correlation analysis that the canonical states have successively less and less
information. A state space model was identified and used to simulate phase plane tra-
jectories. Because of the high noise, the identified model had much less of the character
of the Lorenz model and settled to a single stability point. Due to the high noise, much
more data would be needed to obtain an accurately identified model with phase plane
trajectories of the same character as the true model.

The results of applying CVA to the high noise case confirm that CVA can indeed
reconstruct good estimates of the Lorenz process states. These estimates are much
more noisy, but still contain the information for the three dimensional Lorenz process.
The first three canonical states for the high noise case in Figure 11-6 have the same
dynamical character as for the low noise case of Figure 11-3.
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Figure 11-1: Data used in State Reconstruction and Model Identification

“Canonical
Index | Correlation
1 0.999998
2 0.999463
3 0.989650
4 0.959988
5 0.712619
6 0.372002
7 0.260169
8 0.078201
9 0.070837
10 0.057570
11 0.030183
12 0.027724
13 0.022471
14 0.016929
15 0.002708
16 0.002070
17 0.000632
18 0.000338

Table 11-1: Canonical Correlations
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Figure 11-3: Phase Space of Observed vs. Identified Process (continued)
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Canonical
Index | Correlation
1 0.9999
2 0.9746
3 0.9043
4 0.6062
5 0.3022
6 0.1782
7 0.1626
8 0.1539
9 0.1309
10 0.0969
11 0.0940
12 0.0827
13 0.0686
14 0.0581
15 0.0461
16 0.0149
17 0.0102
18 0.0041
19 0.0011

Table 11-2: Canonical Correlations for High Noise Case
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12 Technical Results and Conclusions

In this section, the results and conclusions of the Phase I study are discussed.

12.1 Literature Review

In the course of this study, a number of related fields are investigated to determine
if the methods and concepts are relevant to the topic and approach of this study. A
number of valuable relationships are found. These concern primarily the topics of non-
linear stochastic filtering, nonlinear time series analysis, the state space reconstruction
method, and nonlinear regression in high dimensions.

The literature of nonlinear stochastic filtering has investigated in detail the problem
of nonlinear filtering using finite dimensional state space filters. This problem is also
central to the identification of finite dimensional state space models for nonlinear Markov
processes. The literature has a sizable number of papers that come to the following
conclusions:

e Except for special cases there do not exist finite dimensional filters for optimal
estimation and prediction.

o In general it requires an infinite number of states to optimally filter or predict.

e For the case of a simple cubic nonlinearity, the addition of additive white noise
results in the optimal nonlinear filter being infinite dimensional.

e The one case where finite dimensional filters do exist is for affine systems. However,
such systems do not allow multiple equilibria which considerably restricts the type
of nonlinear behavior that can be considered.

¢ Substantial work has been done on minimal order realization of nonlinear deter-
ministic systems which is primarily concerned with existence proofs.

Since the publication of these somewhat negative results about a decade ago, there
has been little activity on the topic of finite dimensional approximation of nonlinear
stochastic systems.

Nonlinear time series analysis and nonlinear system identification has had some
success with the use of nonlinear difference equations, primarily of polynomial form.

e Nonlinear difference equations of AR, ARMA and state space forms have been
fitted to observational data with some success.

e The problem of identifiability and numerical conditioning present difficulties in
addition to those present in the linea- case.

e The main results concern higher order approximation of the dynamics in a neigh-
horhood of a single equilibrium point.
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e Much of the problem of nonlinear time series analysis involves the determination of
parametrically efficient nonlinear structures for modeling which is closely related
to nonlinear regression in high dimensions.

State space reconstruction methods have been successful in fitting state space models
from deterministic nonlinear systems including chaotic systems with multiple equilibria.

o If the state order of a deterministic system is order r, then an embedding of the
state space requires at most 2r 4 1 lags of the outputs.

e For deterministic systems with small additive white noise, good fits have been
reported for large samples.

e From the nonlinear stochastic filtering literature, it is known that for additive
white measurement noise, the optimal filter is no longer finite dimensional.

e The problem of process noise that excites the nonlinear system dynamics appears
not to have been addressed

e More optimal nonlinear embeddings and formulation of the selection of the state

space as an approximation problem for the stochastic problem have not been
addressed.

The spirit of the state reconstruction method is close to the CVA approach. Much of
this study can be viewed as a means of extending the state reconstruction method to
nonlinear stochastic processes.

Nonlinear regression in high dimensional spaces has been a field of considerable
activity in the last decade. There have been a number of notable success in devising

methods for adaptively fitting nonlinear models that are static, i.e. with no dynamical
aspect.

e The major problem is that the number of possible parameters grows much faster
than the sample size so that parametrically efficient methods are required.

o Methods for the adaptive selection of the model structure have been developed
that are much more eflicient parametrically than nonadaptive procedures.

e Recursive partitioning inethods have heen used to d-° . locally the regions
where more parameters are required for modeling the function

e The alternating conditional expectation (ACE) algorithm for fitting nonlinear
functions in a semiparametric or adaptive nonparametric wa: involves projection
operators of the theory of maximal correlation central to CVA

The methods of nonlinear regression in high dimensional spaces has much to offer the
further development and computational impiementation of CVA of nonlinear processes
and is proposed for Phase Il research.
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In addition to the above topics, the literature of maximal correlation was studied in
depth and used in the development of a general theory of CVA on Hilbert spaces. This
theory includes processes much more general than the state affine processes originally
proposed for study. The above connections between CVA of nonlinear processes and
the related literature provide a number of very useful ideas that are investigated in this
Phase I study or are proposed for further research in Phase II.

12.2 Theory of CVA for Nonlinear Markov Processes

A general theory of CVA for nonlinear Markov processes is developed. This includes the
development of nonlinear CVA on a Hilbert space of nonlinear functions involving the
theory of maximal correlation between two nonlinear functions. The Markov structure
of the problem is studied, and a number of Markov structures are discussed including
the state space innovations representation. Minimal rank of the state is investigated
and found to require the condition of independence in place of orthogonality. The
relationship with normalizing transformations is discussed.

In the development of the a general theory for CVA:

e The CVA problem is formulated as a nonlinear prediction problem on a Hilbert
space of nonlinear functions.

e The solution is reduced to a sequential selection problem requiring solution of a
maximal correlation problem at each step.

e The solution for a given order D contains the solutions for any lower order r which
is obtained by restriction to the first r canonical variables.

e The theory of maximal correlation gives the optimal nonlinear functions in terms
of projection operators with the existence of the solution based upon the theory
of operators on Hilbert spaces.

e The projection operators are precisely those involved in the alternating conditional
expectation (ACE) algorithm for nonlinear regression in high dimensions.

The theory provides a successive approximation procedure for prediction depending on
the number of canonical variables to be used. The procedure is rigorously developed
on the Hilbert space of nonlinear functions, and computation is related to the ACE
algorithm.

Nonlinear controlled Markov processes were developed:

e The approach of deterministic systems using a finite number of lags of the past
does not work for nonlinear stochastic processes which are infinite dimensional
except in special cases.
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e The selection of a finite number of nonlinear polynomial functions of the past
as a basis for approximation of a nonlinear Markov process is related to fitting
nonlinear autoregressive (NAR) processes.

e The problem of optimal embedding by choosing states as nonlinear transforma-
tions of the past is precisely the CVA problem. Minimal embedding requires use
of the independent CVA.

o The existence of a state space innovations representation is proved where the state
trarsition and state output transformations can be determined by regression.

¢ The special case of a state affine Markov process where the state transition and
state output transformations are affine in structure is developed.

The relationship between minimal rank of the state, independence, and approximate
normality are developed:

¢ A local approach to rank of the state does not appear to be useful for fitting giubal
nonlinear models.

¢ Global observability guarantees that unique states produce unique sequences of
future outputs of the process.

e As a result of nonlinearities, the canonical variables generally do not provide a
minimal rank state for a nonlinear Markov process due to redundancies present
in spite of the orthogonality of canonical variables.

e Replacing orthogonality of canonical variables by independence of canonical vari-
ables rules out deterministic or stochastic redundancies.

e A procedure analogous to orthonormalization is developed to transform one set
of random variables so that the resulting random variables are independent of a
given set of random variables.

An independent CVA| i.e. CVA under the constraint of mutual independence of the

canonical variables replacing orthogonality, is shown to optimally transform variables
to approximate normality:

¢ In the case of the multivariate normal distribution where orthogonality is equiva-

lent to independence, it is independence that generalizes to the nonlinear case not
orthogonality.

e The mutual information measure generalizes to the multivariate case if the canon-
ical variables are independent.

In the literature of maximal correlation and nonlinear canonical variables there appears
to be no consideration of the multivariate case were orthogonality is replaced by inde-
prndence or equivalently zero maximal correlation. From several points of view, this
appears to be the natural nonlinear generalization for the multivariate case.
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12.3 Computational Methods and Simulation Results

Computational methods are developed and applied to simulated data of a nonlinear
Markov process to demonstrate the feasibility of system identification and stochastic
filtering. The major computational problem is the computation of the nonlinear CVA
to determine state variables and the computation of the nonlinear regressions to obtain
the state transition and the state output transformations. The approach of polynomial
basis functions is implemented because of the simplicity of the method. The more
statistically accurate and adaptive method of nonlinear regression in high dimensional
spaces is discussed and proposed for dectailed in Phase II. Data are simulated using the
Lorenz attractor chaotic systermi. Canonical variate analysis gives canonical variables for
the process states which are compared with the true states. The identified state space
model is used to simulate trajectories of the process and compared with the behavior of
the true process trajectories.

Computational algorithms are developed and implemented based upon the polyno-
mial basis function approach:

e To determine the nonlinear polynomial functions to use for representing the past,
algorithms for fitting nonlinear autoregressive (NAR) models are developed.

e For data analysis, a fixed NAR structure is used

s Nonlinear CVA is done by implementing linear CVA on the nonlinear functions of

the NAR model

e The state transition and state output functions are computed by polynomial re-
gression.

The use of methods for nonlinear regression in high dimensions is discussed for study
in the proposed Phase Il research:

e The ACE algorithm provides a means of computing functions with maximal cor-
relation in a semiparametric way.

e The recursive partitioning method can be used to recursively fit splines so that
refinement of the algorithm occurs only locally where it is needed.

o These nonlinear regression methods are expected to be much more adaptive and
to achieve higher accuracy through greater parametric efficiency.

Computer simulation of observational data is used for system identification and
stochastic filtering:

e The Lorenz chaotic attractor which has two equilibrium points provides an excel-
lent test for the nonlinear CVA method.
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e Process noise is included in the simulation of the Lorenz dynamics which in-
troduces correlated noise in the measurements and considerably complicates the
identification problem:.

e Systemn identification and stochastic filtering is done using only one component of
the 3-dimensional Lorenz process.

Nonlinear CVA is computed:

e The past is represented as polynomial basis functions and the future is taken as
future observations.

e The canonical variables exhibit a noise floor typical of the case for linear CVA.
The Lorenz states are constructed from the canonical states:

e A transformation from the canonical states to the Lorenz states is determined by
nonlinear regression.

e The first two canonical variables have nonlinear dynamics qualitatively very sim-
ilar to the first two states of the Lorenz attractor, but higher canonical variables
are related to the l.orenz states in a vary nonlinear way.

e There is distortion of the dynamics of z(®) for small values possibly due to the
marginal observability of (3.

e The use of the more adaptive methods of nonlinear regression in high dimensions
is expected to significantly reduce the distortion.

State space innovations models are fitted for the canonical states:

e The state transition function ¢ and state output function p are determined by
polynomial regression.

e The identified state space model is used to simulate trajectories that are very
similar to the trajectories of the truth model.

12.4 Comparison with Other Methods

In this section, the CVA approach is compared primarily with the state reconstruction
method which has raised a number of important issues and provided some valuable
insights.

The CVA approach directly addresses the issue of determination of a state for a
nonlinear process directly from the observational data without making assumptions
about the functional form of the nonlincar dynamics. From a review of the literature,
such an approach appears to be taken only by the state reconstruction method and
applies only to deterministic systems with little or no observation noise. For such
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deterministic systems including chaotic systems, the state reconstruction method has
been very successful. However, there appear to be a number of difficulties to the direct
extension of the state reconstruction method to nonlinear Markov processes:

¢ Nonlinear Markov processes involve infinite dimensional filter states in all but very
special cases.

e The use of lagged past observations is probably quite inefficient for representing
the past of some nonlinear processes.

o Large inefficiencies will result if the statistically significant states are not deter-
mined as in the CVA procedure.

e Computation of the state transition function would require the use of statistical
regression methods.

In comparison, the CVA approach address a number of issues that have been recently
raised in the state reconstruction literature:

o How can optimal embeddings, i.e. nonlinear functions of the past,
be chosen to represent the past of a stochastic process?

e Given such an embedding, how can a low dimensional state and associated transi-
tion function be chosen to approximate the memory and dynamics of the process?

e What are appropriate measures of approximation of a stochastic system?
The CVA approach gives a general solution to these problems:

e An optimal nonlinear embedding of a chosen order is obtained by CVA.

¢ The optimal selection of the states of a given dimension are given by the canonical
variables.

e The measure of approximation is given by the relative mutual information which
gives a measure of error between the mutual information for the true and the
approximating normal distribution for the canonical variables.

¢ The canonical variable transformations are optimnal normalizing transformations.

The theory for CVA is developed rigorously on Hilbert spaces of nonlinear functions and
the projection operators provide powerful computational methods for implementation.
The related fields of nonlinear stochastic filtering and nonlinear time series analysis do
not appear to have directly addressed these issues.

The approach of CVA to system identification and stochastic filtering appears to
provide a unique and powerful approach te the solution in both theory and computation
of these difficult problems. In the proposed Phase Il research, these problems will be
developed in detail and the success of the resulting methods will be fully evaluated.
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