
NAVAL POSTGRADUATE SCHOOL
Monterey, California

00

00

DTIC
FECTE0
DEC 0 11989

TIESIS

A PICTURE-DESCRIPTOR EXTRACTION PROGRAM
USING SHIP SILHOUETTES

by

CPT Michael J. Bizer

June 1989

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited

'I

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
I& Report Security Classification lb Restrictive Markings

UNCLASSIFIED
2& Security Classification Authority 3 Distribution Availability of Report

2b Declassificatior]Downgrading Schele Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
(If Applicable)

Naval Postgraduate School 52 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Finding/Spimsoring Organizazic 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Pmogmi E naem Number" Projet No eTak No Wank Una Acemaxrm No

11 Title (Include Security Classification)
A PICTURE-DESCRIPrOR EXTRACTOR PROGRAM USING SHIP SILHOUETTES
12 Personal Author(s)

Bizer, Michael J.
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count

Master's Thesis From To June 1989 167
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

117 Cosati Codes 18 Sub;ect Terms (continue on reverse if necessary and identify by block nwnber)
Field Group Subgroup_. - Artificial Intelligence, Feature Extraction, Boundary Tracing,

Ship Recognition, Prolog, Silhouette Identification

9_\Abstract (continue on reverse if necessary and identify by block number
This research examines the practicality of automatically identifying the features of the major structures of ship

silhouettes using rule-based extraction and identification techniques. The process was broken into three phases:
(a) finding the silhouette boundary, (b) locating the "bumps" (apparent superstructures) on the boundary, and
(c) describing the bump features qualitatively using a multidimensional-feature-space classification. The program
for the first phase is written in C while the programs in the other two phases are written in MPROLOG and run on
a Motorola 68020-based workstation. The programs accurately identified 78% of all bumps examined on six
ships. The lists of bump descriptions showed the key differences between two different ships of the same
ship-class, indicating future programs could identify ships using the output from the programs of this thesis.

2 Distribution/Availability of Abstract 21 Abstract Security Classification

X czssiiedAmlimited - samasrepon [DCusers UNCLASSIFIED
22a Name of Responsible Individual 22b Telephone (include Area code) 22c Office Symbol

Prof. Neil C. Rowe (408) 646-2462 Code 52Rp
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

AlD other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

A Picture-Descriptor Extraction Program using Ship Silhouettes

by

Michael James Bizer
Captain, United States Army

B.S., Western Kentucky University, 1980
M.S., University of Southern California, 1987

Submitted in partial fulfillment of the requirements for

the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author: iCIlJa Bizer

Approved by: ___ _ __(_ _

Neil C. Rowe Thesis Advisor

M 1 J. aa ec od Reader

Robert B. McGhee, Cha , Department of Computer Science

Kneale T. MaiW a f I ratiin and Policy Sciences

ABSTRACT

This research examines the practicality of automatically identifying the features of the

major structures of ship silhouettes using rule-based extraction and identification

techniques. The process was broken into three phases: (a) finding the silhouette

boundary, (b) locating the "bumps" (apparent superstructures) on the boundary, and

(c) describing the bump features qualitatively using a multidimensional-feature-space

classification. The program for the fir,;t phase is written in C while the programs in the

other two phases are written in MPROLOG and run on a Motorola 68020-based

workaicion. 'A, p~us,,a,., ,crateiy identified 18% of all bumps examined on six ship'.

The lists of bump descriptions showed the key differences between two different ships of

the same ship-class, indicating future programs could identify ships using the output from

the programs of this thesis.

[I, I

li

,°.U

ACKNOWLEDGEMENTS

I wish to express my deepest appreciation to my wife, Sally, for her encouragement

and support during the research and writing of this thesis. Thank-you also to my three

daughters for their understanding that "daddy had to go to school a lot."

vi

TABLE OF CONTENTS

1. INTRODUCTION .. I

A. OBJECT RECOGNITION AND IDENTIFICATION 1

B. MILITARY REQUIREMENTS FOR SHIP IDENTIFICATION 1

C. DESCRIPTION OF THESIS ... 2

II. RESEARCH IN COMPUTERIZED OBJECT IDENTIFICATION 3

A . BA CK G ROU N D ... 3

B. RESEARCH USING CONVENTIONAL METHODS 3

1. Shape Recognition Using Binary Images ... 3

2. Pattern Classification from Elemental Shapes 4

3. Identification of Spherical Objects .. 4

4. Parallel Processors and Image Analysis ... 5

C. RESEARCH USING AI TECHNIQUES 5
1. Knowledge-Based Airport Identification .. 5

2. Rule-Based Methods for Image Analysis ... 6

3. Recognizing Man-Made Objects in Aerial Images 7

III. METHOS OF SHIP IDENTIFICATION .. 8

IV. A PICTURE-DESCRIPTOR EXTRACTION PROGRAM 10

A . O V E R V IE W ... 10
B. FINDING THE SILHOUETTE BOUNDARY 11

C. LOCATING THE BUMPS .. 13

D. BUMP FEATURE IDENTIFICATION ... 15

1. Removing the Shape from the Silhouette 15

2. Shape Analysis and Identification ... 18

E. FINAL OUTPUT OF THE PROGRAM .. 18

V. RESULTS OF PICTURE-DESCRIPTOR EXTRACTION PROGRAM 19

A. FINDING THE SILHOUETTE BOUNDARY 19

B. LOCATING THE BUMPS .. 20

C. BUMP FEATURE IDENTIFICATION ... 21

D. PROGRAM LIMITATIONS DUE TO HARDWARE CONSTRAINTS 25

iv

V I. C O N CLU SIO N .. 27

A. SUCCESS OF FEATURE EXTRACTION AND IDENTIFICATION 27

B. AREAS FOR FUTURE WORK ... 27

APPENDIX A - C PROGRAM SOURCE CODE ... 29

APPENDIX B - MPROLOG PROGRAM SOURCE CODE 36

APPENDIX C - OUTPUT FROM GARCIA (LAMPS) 55

LIST OF REFERENCES .. 58

INITIAL DISTRIBUTION LIST .. 59

V

I. INTRODUCTION

A. OBJECT RECOGNITION AND IDENTIFICATION

The process of visually identifying an object can be broken into detection, delineation,

and identification. Detection locates the object, delineation separates the region the object

occupies from the background, and identification determines what the object is. The

identification process is of critical importance in military applications. Human analysts

remain the only means of performing this task accurately and reliably.

Computers can provide assistance in each of these three areas, although they are

weakest in identification. Their processing speed allows for rapid scanning of an area for

detection targets. Once detected, there are many ways of extracting the target's shape.

B. MILITARY REQUIREMENTS FOR SHIP IDENTIFICATION

Rapid detection, analysis, and identification of ships is important in military

operations. Identification is necessary to determine whether the ship is friendly or

potentially hostile. The number of action options available to a commander rapidly

decreases the longer it takes to identify the target.

Training humans in ship identification is time-consuming and expensive. Once

trained, these skills suffer if not practiced frequently. Additionally, the amount of

information to be interpreted can be overwhelming and the time constraints minimal.

Computer-assisted identification promises to alleviate these current shortcomings.

Our approach to computer-assisted ship identification is to break a detected object

down into its elementary pieces and then identify the pieces. A digitized ship silhouette's

boundary is delineated by a threshold comparison. The boundary is converted into a list of

line-segment coordinates of contour turn points. Using artificial-intelligence techniques,

these points are sequentially examined to find and extract the coherent pieces of the ship.

The size, shape, amount of irregularity, and location of each extracted piece are then

examined. Each piece is given an identity of gun-turret/weapons-system, superstruutwe,

weapons-system, mast/support, antenna, radar, or unknown. The list of these pieces and

their identity can be reported to humans or could be supplied to future systems similar to

[Ref. 1] which could identify the ship from its known pieces and a database search.

C. DESCRIPTION OF THESIS

The remaining chapters of this thesis present background information and describe the

identification programs and their results. Chapter II describes some of the current and past

research in computer-assisted imagery and object identification. Chapter III examines the

problems inherent in object identification and describes areas where computer-assisted

systems would improve processing speed and accuracy.

Chapter IV is a discussion of the programs we developed for feature extraction and

identification, the algorithms we used, and the output the final program generates. Chapter

V will examine the results of the program for diffcrcnt ship images, and chapter VI presents

the conclusions and areas for follow-on research.

2

"L RESEARCH IN COMPUTERIZED OBJECT
IDENTIFICATION

A. BACKGROUND

Computer-automated and computer-assisted object recognition and identification has

applications in many different areas, including robotics, imagery interpretation, and

chemistry [Ref. 2: p.II]. For examp!e, imagery analysts need help in processing the

large quantity of digita! imagery data they receive. Much of their work involves detecting

changes in images taken at different times, a time-consuming task well-suited to

computerized scanning [Ref. 3:p. 905]. Programs which enable computers to identify

objects have involved conventional procedural image analysis, artificial intelligence (Al), or

a combination of both.

B. RESEARCH USING CONVENTIONAL METHODS

1. Shape Recognition Using Binary Images

Grogan [Ref. 4] performed a comparative study of shape recognition and

description using binary images. His test objects were six different aircraft arranged in

different views. His analysis concentrated on the use of global shape methods to identify

and analyze the image boundary. The five methods compared were 1) Fourier descriptors

of the boundary, 2) Walsh points of the boundary, 3) the cumulative angular deviant

Fourier descriptors, 4) moments of the silhouette, and 5) moments of the boundary.

The research was conducted in 1982 and 1983, and the speed of the programs was

good. One of their limitations was the resolution capabiiities of the equipment; images

were limited to 256 by 256 pixels, so silhouettes were simplified drawings of the aircraft to

be identified.

3

2. Pattern Classification from Elemental Shapes

Research which involved dissecting silhouetted pictorial patterns into specific

elemental shapes was conducted by Todd [Ref. 5]. His efforts concentrated on pattern

classification. A figure was dissected into subfigures and each subfigure was analyzed

according to multiplicity, orientation, position, size, shape and position. The analysis of

the subfigures generated a Figure Classification Number (FCN) for the whole pattern,

which could be compared against other known FCN's in a database search. A match

would allow the figure to be identified.

The subfigures of an object generated by Todd were not each classified as a named

feature of the object, but the analysis of these pieces led to an object identification. The

program successfully recogniied 22 different aircraft silhouettes as airplanes. Each of the

airplane's differences were written in their FCN. Thus the result was in a form which only

the computer could interpret, unlike the ship image summaries prepared by the ship

analysis program prescnted in this thesis.

3. Identification of Spherical Objects

Computers can rapidly process large amounts of data but have difficulty

identifying objects because of the large number of possibilities. Humans skilled in

photographic interpretation have problems processing large amounts of imagery data, but

are very skilled at identifying an object once it is detected. A more human-like computer

identifier was presented by Cox, et al. [Ref. 3], in a detector for all spherical objects

contained ii an image.

The first step of their detection methodology is parameter extraction, where the

position of the light source and image intensity parameters are gathered. The next step is

feature detection, using either input from a previous program or by conducting a simple

pattern search, which takes about 60 ,cconds for a 512 by 512 image. The third step is

4

segmentation, which uses the gradient angle transform to segment an image, creating a

candidate region to examine. The final step is validation, in which the region is processed

and classified.

Their approach limits the universe of objects the computer must identify to one

type while using several different detection algorithms to ensure detection. The approach

of this thesis also limits its universe significantly.

4. Parallel Processors and Image Analysis

Because of the large amounts of data a single image contains, research using

parallel-processing computers is also being conducted [Ref. 6]. In one example

implemented using a Connection Machine, the operator identifies an object for the machine

to find and gives an example. The program studies the example and builds a database of

knowledge about the object. Using this knowledge, it then examines an image, finding and

highlighting any of those objects present in the image. Using the Connection Machine

reduces processing time from 30 minutes to under one second for pictures ranging in size

from 256 by 256 pixels to 5000 by 5000 pixels [Ref. 7].

This approach works at a lower level of analysis than the approach in this thesis.

It could help the analyst in tV- initial processing stage to highlight areas which should be

examined first.

C. RESEARCH USING AI TECHN!QUES

1. Knowledge-Based Airport Identification

One example of research combining conventional and knowledge-based techniques

is SPAM, system for airport photographic interpretation using MAPS [Ref. 8]. Using

conventional image processing tools, SPAM first detects and labels regions. Then, using

rule-based control and recognition methods, it groups major components of airports.

5

This technique initially suffered from the same limitation mentioned in section B-3,

in that its universe of knowledge was very limited, in this case to airports. Later research

[Ref. 9] focused on ways to improve the knowledge acquisition process for other

universes, resulting in a set of interacti, tools. These applications concentrate on

identifying all occurrences of a structure, whereas this thesis concentrates on the pieces of

an object witthin a structure.

2. Rule-Based Methods for Image Analysis

Recent work attemptec o analyz.e, segment, and interpret inages of printed circuit

boards and satellitz images of ice flows [Ref. 10]. The methods developed used a

combination of procedural -nd rule-based programming. The process was divided into

three levels: low, mid, and high. Low-level processing involved image operations such as

thresholding, computation of gradients and non-maxima suppression etc.

The mid-level processing involved grouping of similar edges and extracting

symboi, entities. The nid-level processing extracted the initial symbolic information.

including the geometric proerties of each linked segment, the forward and backward

neighoor codes, and the codes or labels of edges passing through pixels. Further mid-level

processing joined small segments and edge- together.

The high-level processing attempted to identify the extracted entity, deriving a

symbol that has meaning to either humans or another follow-on process. This step used a

hypothesis generation/reduction/verification model. The goal was to produce a symbolic

description of the input image. For a circuit board, this would be a description of the

length, location, and orientation of segments.

The program works towards the same goal as ours in trying to take a low-level

group of data and bring the description of the object to a symbolic level understood by

humans. The final symbolic outputs of the programs are different. Theirs prints the

6

location and size of an object, while ours goes a step further and identifies what type of

object is being examined.

3. Recognizing Man-Made Objects in Aerial Images

Another system for analyzing aerial imagery was developed entirely with AI

languages, specifically Lisp and ART (the Automated Reasoning Tool) [Ref. 11]. The

ar prci> differed from [Ref. 10] in that it was goal-driven: the system identified all

reqLeS,.J object types in an image.

The application was tested with airport scenes and also as a target-cueing aid for

FLIR (Forward-Looking Infrared) imagery. For low-level processing, the system could

utilize several different image-processing techniques. The program could select the proper

technique based on parameters such as the application area, sensors used, resolution,

weather conditions, and quality of data. The low-level processing concentrated on edge

detection, region segmentation, and other image enhancement functions.

Intermediate-level processing was responsible for creating and filling slots for each

region. These slots included coordinates, area, variance, connectivity, compactness, and

other descriptions.

Knowledge about the area of interest improved the interpretation process. The

system included information on basic terrain features such as power plants, roads,

railroads, rivers, forests, etc. Based on the goal given the system, it would also generate a

dynamic model for the goal objects. Then the high-level processing would classify regions

into goal objects, using the information in the region slots while attempting to make the best

matches possible.

The approach provides larger flexibility than the one presented in this thesis. Also,

instead of identification, it concentrates on detecting and highlighting objects for the human

operator to examine.

7

III. METHODS OF SHIP IDENTIFICATION

For people to develop the necessary expertise in ship identification is a time-

consuming and personnel-intensive task. There are hundreds of types of ships to be

studied, each with its own set of identifying characteristics. Learning these characteristics

requires days of study, as well as frequent refresher training to maintain the acquired skills.

Instruction methods for image interpretation generally follow a rule-based approach.

The student must develop his working knowledge of ships and then memorize key

differences between types of ships. The first step is to teach the student the different

features of a ship. These features usually stand out from a silhouette or image and can be

peeled from the ship and analyzed independently. During this analysis the feature's identity

is further refined to as much detail as possible. This is shown in the table below.

TABLE 3.1. Example Identifications of Ship Structures

Feature Intermediate Identity Exact Identity
I 5-in gun tube, located

gun-turret forward, square turret Mark 54
square launcher,

weapons-system forward, several tubes ASROC Launcher
large, square antenna,

radar probably air-search. Lockheed SPS-40
box-like shape, clear

large structure aft area beside, several antennas Hangar for LAMPS
on box

Let us assume the student is learning about air-search radar. The student must first

learn a series of broad rules for each feature, like that air-search radar usually have large,

squared antennas, rotate 360 degrees, and are located high in the ship superstructure.

Partial classification (such as recognition that the feature is a radar) of a feature can allow

8

the ship identification process to still proceed. The next step is learning to distinguish

between different air-search radar. For example, the Lockheed SPS-40 radar antenna has a

triangular base, a square antenna with tapered ends, and a feed horn that hangs over the top

of the antenna.

Once a particular radar has been accurately identified, the student must learn to

associate it with particular ships. For example, the SPS-40 radar is found on several US

FFG class ships, including the BRONSTEIN and GLOVER classes. The student then tries

to learn every ship-class known to use the SPS-40 radar. Such detailed knowledge

deteriorates rapidly without frequent use or refresher training.

Once the student is capable of identifying the different features, he next learns the rules

for identifying particular ships. This requires learning the differences that the same features

may have on different ships. These differences include the way different features are

combined as well as where on the ship these features are located. The learning process is

again rule-based, as in the GARCIA-class FFG's which have one Mk-54 gun-turrei

forward and one Mk-54 gun-turret aft, an ASROC launcher behind the forward turret, a

Lockheed SPS-40 radar, a single stack, and an SPS-10 radar. The difference between the

SAMPLE and BRADLEY, both GARCIA-class FFG's, is the BRADLEY is fitted for the

LAMPS helicopter and has a hanger on the rear deck. The rules are learned for all classes

of ships, and the skills will rapidly deteriorate without constant use.

9

IV. A PICTURE-DESCRIPTOR EXTRACTION PROGRAM

A. OVERVIEW

Our feature extraction and identification process involves three stages; (1) finding the

silhouette boundary (outline), (2) locating the bumps on the silhouette, and (3) extracting

and identifying the features of the bumps. Stage I is implemented in C and stages 2 and 3

are written in MPROLOG. The program flow is shown in Figure 4.1 below. This chapter

is broken into three corresponding sections.

Ship-

Trace
Proqram

Locate
Bumps
Pro ram

Identify
Bumps
Program

Figure 4.1. Diagram of Program Modules

10

Figure 4.2 contains a labeled ship silhouette, demonstrating some bump identifications

our program attempts to make.

r dar mast/support

weapons-system a ~ tenna
gun- t urct uPerstructure

Figure 4.2. Silhouette with Labeled Bumps

B. FINDING THE SILHOUETTE BOUNDARY

The ship silhouettes are digitized using an Eikonix digitizer and SUN Workstation.

The digitizing program is scanit, written by David S. Hill for a computer graphics class.

The ship must be positioned upright and level with the bow on the left side. The

orientation is important as the second stage exploits the identity of y-coordinates. Using an

integra" n value of about 12,000, the -igitized image is captured into a file as a 1000 by

1000 array of the pixel values. This file is transferred to the VAX 11/785 computer for

boundary processing.

The ship silhouettes used were taken from Jane's All the World's Fighting Ships

[Ref. 12]. Six different ships of the frigate class were used. The selection criteria for the

silhouettes were they have many mutual features in common, with differences in the size

and location of the features. Each digitized silhouette's file is processed separately by the

shiptrace program, with the resulting files of line segments passed on to the next stage.

11

The first problem to be solved when finding the boundary of the digitized image is

selecting a proper threshold. The ship silhouettes were solid black shapes on white paper.

Although black would be indicated by a pixe! value near 0 (0 hex) and white would be near

255 (ff hex), setting the threshold to catch the change from black to white requires some

adjustment for each picture. This was necessary to ensure that any noise captured with the

image was tuned out. Also, a threshold too close to black would tend to fill in many of the

fine details of the superstructure, while a threshold too close to white would allow breaks

in antennas or cracks through the ship to appear in the image. To help in selecting the

proper threshold value, a small program was written which printed out a portion of the

silhouette with asterisks for the dark areas and spaces for the light ones. By running this

program using different values and viewing the results, the threshold value could be fine-

tuned to capture the right amount of detail.

Once the threshold value is selected, the boundary-finding program can be run. This

program was designed to walk along the boundary1 , ef !', silhouette, recording (x.,)

coordinates of points whenever it changed direction. The program uses the four principal

directions, up, down, left, and right. Its goal was to start at the left end and keep moving

toward the right end of the ship. The approach is similar to Pavlidis' contour tracing

algorithm [Ref 13:p. 143]. The program in effect traces the outline of the ship, creating a

file of turn points. Each pair of points denotes a line segment. A long straight antenna

would be converted into two or three points, while a gun turret might create fifty or more

points.

IThe boundary is located along the black cells delineating the top of the ship. In effect,
the program would walk the deck of the ship, recording locations where it changed
direction. The locations were expressed in the coordinates of the black cells.

12

Originally, we intended to trace the outlines using eight directions, the four explained

above as well as the diagonals. But diagonal lines can also be represented by a pattern of

horizontal and vertical moves. Although this creates many more turn points, finding and

recording diagonals requires looking at a larger group of points during each iteration than

our algorithm was designed for.

Turn points found are written to a data file. This data file is then converted to an

acceptable MPROLOG format: a list with each point in the list being represented as

cp(<x-coordinate>,<y-coordinate>).

C. LOCATING THE BUMPS

The extraction algorithm was designed to look for matching pairs of up-turns and

return-to-horizontals. These are the definers of a single "bump", the point where it starts

going up and the point where it returns to the horizontal at a height equal to that of the up-

turn. By detecting those two points, and capturing all the line segments between them, a

bump can be extracted. A modified algorithm is used to find bumps which start and end at

different heights. The program repeatedly examines the point where it currently is, the

previous point, and the next point. From these, it determines if the middle point was

located at an up-turn. If so, it saves the current location coordinates in a list of up-turns.

This is repeated for every successive triple of points.

In order to capture only true comers, an up-turn was required to have at least a three-

pixel vertical movement. This helps ignore parts of the silhouette which were jagged due to

noise. The return-to-horizontal which matched these up-turns was only required to have a

one-pixel movement. By having the up-turn constraint select only well-def~ned corners,

the return-to-horizontal constraint could be looser to make it easier to find the matching

corner of the bump. Figure 4.3 shows examples.

13

3 pixel up-turn * * * Matching returrLto-horizontal

/Noise

Figure 4.3. Example of Normal Bump and Image Noise

Not all bumps on a ship can be caught this way, so two variations of the algorithm are

required. One operates as an inverse of the first. If the return-to-horizontal has a three-

pixel or more vertical movement preceding it, the program turns around and retraces the

bumps until it finds a one-pixel or two-pixel vertical movement where the y coordinates are

.qual to the return-to-horizontal's. An example is shown in Figure 4.4.

*. 3 pixel

Created up_*urn * F returnjto-horizontal

E*************

Figure 4.4. Example of Created Up-turn

14

The final variation is designed to detect and create a bump when a vertical movement

T -ses below a previously labeled up-turn. That terminates all unmatched bumps whose

up-turns were in the vertical-movement height range. An example is shown in Figure 4.5.

\/returntoorizonta1
-X--X)(-- - 1- * *-------)-- --------) * -

Figure 4.5. Example of Created ReturntoHorizontal

The file containing matching pairs of up-turns and return-to-horizontals is kept in

MPROLOG format. When the algorithm reaches the end of the ship, it closes off any

bumps still in the up-turn list and closes the file.

D. BUMP FEATURE IDENTIFICATION

1. Removing the Shape from the Silhouette

The shape analysis program is written in MPROLOG. It iterates through a list of

bumps, finding their size, length-to-width ratio, curviness, and location. Thc.e descriptors

are then assigned categories and rules for classification of bumps from descriptor categories

are applied.

To do this, the program traces the outline of the bump using the list of turn points.

If the bump has other bumps within it, these bumps are stripped off so only the basic shape

15

remains. If a bump within the bump is removed, the program creates a straight line

segment where the bump was. This is shown in Figure 4.6.

peeled bump

**-- inserted line segment

simplified bump

Figure 4.6. Example of Peeling Bump and Creating Line Segment

Next, each bump is analyzed as to curvincss, horizontal location, length-to-width ratio,

orientation, and size. The number of turn points in the bump list roughly indicates the

curviness of the shape (See Figure 4.7). The location of the shape is determined as bow,

forward, mid-ship, aft, or stem; this is useful as gun systems tend to be forward or aft on

ships, while radar systems are usually found in the middle third of the ship, around the

superstructure. The length-to-width ratio of the object is found from the minimum and

maximum x and y values, which create an imaginary box around the object, as exemplified

in Figure 4.8. Particular length-to-width ratios can be described as the shapes square,

pole, rectangle, etc. Box orientation (flat-rectangle, tall-rectangle) can also be described.

The box size in relation to the ship is also used.

16

Actual Curve

Turn Points

~~.V * ***

Pixel Represent at!ion

Figure 4.7. Example of Curve Approximation

(x-r-i n,y-r- ax)

(x-r-ax,y-rax)

(x-r- ir,y-r- in)* (x-m-ax,y-r- in)

Figure 4.8. Example of Box Surrounding a Shape

i 7

2. Shape Analysis and Identification

After all descriptors of a bump have been found, shape rules (for antenna, radar,

gun-turret/weapons- system, weapons- system,mast/support,or superstructure) are applied.

For example, the descriptors [pole, tall-rectangle, medium, mid-ships] indicate an antenna

of some type, and "antenna" is put into the identification list.

Sometimes a bump will match more than one rule. For example, a shape may have

attributes of a radar as well as those of a superstructure. Then both rule descriptions are

added to the list and the word "or" is inserted between them.

Sometimes a bump will not match any of the rules. This may be due to noise

introduced when the image was digitized, or the bump might be an uncommon shape for

these types of ships. In this case, the word "unknown" is inserted in the identity list.

Since the location of the shape and its description list is also kept for future use, a more

irtelligent program might later be able to identify the shape.

E. FINAL OUTPUT OF THE PROGRAM

When the programs have completed all processing, the final file consists of a listing of

all the extracted shapes, their descriptors, and their identity, if known. The shapes are

identified by their starting and ending coordinates, their descriptor list, and their

identification list. This file is then available for processing by a future program which

could match a ship class to the descriptors our program has created.

18

V. RESULTS OF PICTURE-DESCRIPTOR EXTRACTION
PROGRAM

A. FINDING THE SILHOUETTE BOUNDARY

"/'he performance of the first-stage program is shown in Table 5.1 below. The

measurements indicate the size of the MPROLOG file produced, the number of turn points

in the file, and the threshold setting.

TABLE 5.1. Outline Extraction Program Results

Ship Name MPROLOG File Number of Threshold

Size Points

GARCIA (LAMPS) 12.5 Kb 962 60

GLOVER 17.9 Kb 1,380 50

BROOKE 12.4 Kb 952 50

BRONSTEIN 8.1 Kb 634 50

KNOX 10.4 Kb 798 55

GARCIA 11.9 Kb 913 50

As the table shows, the resulting MPROLOG file is not very large, since each of the

original digitized image filts was 990 Kb in size. The only problem encountered involved

the silhouette of the BRONSTEIN: its digitized image had more random noise than the

others, and the program required several runs to find the bow of the ship, the starting

point.

19

B. LOCATING THE BUMPS

The second stage of finding and marking the location of bumps on the silhouettes was

the slowest stage. The program could process any ship except the GLOVER in one run

(the number of turn points in the GLOVER's data file had to be split in half to allow the

program to run, for otherwise the program crashed after reading in the data points and the

required program modules). A listing of the CPU time used is shown in Table 5.2.

TABLE 5.2. Execution Time for Bump Locating Program

Ship Name CPU Time (minutes:seconds)

GARCIA (LAMPS) 31:07

GLOVER 39:11

BROOKE 30:36

BRONSTEIN 13:17

KNOX 21:37

GARCIA 27:47

Table 5.3 summarizes the number of bumps found.

20

TABLE 5.3. Results of the Bump Locating Program

Ship Name Image Length (Pixels) Number of Bumps

GARCIA (LAMPS) 735 37

GLOVER 933 48

BROOKE 769 44

BRONSTEIN 700 34

KNOX 757 37

GARCIA 758 26

To test the program with a different size, the GLOVER silhouette was digitized so that

it completely filled the imaging window, adding more detail to the image than the others,

and this silhouette generated the largest number of bumps. The smallest number of bumps

was generated by the GARCIA-class FFG without a LAMPS silhouette because the rear of

the ship has few.

C. BUMP FEATURE IDENTIFICATION

Table 5.4 summarizes the results of the third program in the identification process. A

successful identification is when a bump is identified either as itself or as a part of an or'd

list. If the bump is classified as unknown, it is not counted as a successful identification.

The use of unknown as a descriptor prevents the program from a wrong identification, i.e.

identifying a radar as a gun-turret.

21

TABLE 5.4. Statistics of Bump Identification Program

Ship Name Number Number Number Percent

Identified Unknown Not Done Successful

GARCIA 32 4 1 86%(LAMPS)

GLOVER 40 8 0 83%

BROOKE 38 6 0 86%

BRONSTEIN 26 8 0 76%

KNOX 27 10 0 73%

GARCIA 14 6 6 53%

TOTALS 177 42 7 78%

As the table shows, the identification program is successful in identifying a bump

about three of four tries. The number of bumps a ship has to extract does not seem to

affect the program's success rate. A bump falling in the unknown category is not

necessarily a failure; it may have an unusual shape, there may be noise in the image that has

distorted its shape, or the detail from the silhouette may not provide enough information to

make a definitive identification. Some features are more helpful in the identification

process than others. For frigate-class ships, the key features are the number, location, and

type of weapons systems, the number of radar and antennas, and the presence or absence

of certain superstructures like helicopter hangars.

To illustrate bump features, the differences between a GA'R.CIA-class FFG and the

GARCIA FFG with LAMPS can be seen in Figure 5.1.

22

GARCIA-class FFG

GARCIA FFG with LAMPS

Figure 5.1. Silhouettes of GARCIA-class FFGs

The ships have the same basic structure and similar weapons systems and radar. The

key differences are the number of antennas and the presence of the helicopter hangar on the

rear deck of the FFG with LAMPS. Table 5.5 describes a GARCIA-class FFG without the

LAMPS helicopter modification. Comparing it and Table 5.6 illustrates the differences our

program detects between two similar ship silhouettes.

23

TABLE 5.5. Features for GARCIA-class FFG (no LAMPS)

Feature on the Ship Feature Identified by Program

gun-turret weapons-system

weapons-system weapons-system

radar radar or superstructure

radar radar or superstructure

radar (program cannot process)

weapons-system weapons-system

antenna antenna

24

TABLE 5.6. Features for GARCIA FFG with LAMPS

Feature on the Ship Feature Identified by Program

gun-turret gun-turret/weapon s- system

weapons-system weapons-system

antenna antenna

antenna antenna

radar and mast mast/support

antenna antenna

mast/support mast/support or superstructure

antenna antenna

antenna antenna

gun-turret gun-turret/weapons-system

antenna antenna

antenna antenna

hangar superstructure superstructure

D. PROGRAM LIMITATIONS DUE TO HARDWARE CONSTRAINTS

A ship's bumps could be identified in two to five runs of the program. The

requirement for multiple runs was due to hardware and software limitations of the ISI

Workstations. The MPROLOG statement table does not use any garbage-collection

techniques to free up memory after it is no longer needed. Because of the large amount of

recursive list processing used in the extraction process, the statement table fills up quickly

and the program halts. After moving the coordinates of bumps that have been processed to

25

the end of the list of bumps, the program can be restarted. It will continue to process the

remaining bumps, adding their descriptions as they are developed.

A similar limitation experienced by the feature extraction and identification program

was its inability to process seven bumps when analyzing the two GARCIA-class frigates.

The error occurs as the program attempts to strip off several bumps mounted on top of the

ships' central superstructure. The number of points to be extracted for the bump and the

number of points being processed to peel off a bump are too many for the system stack.

However, if the feature causing the problem is removed from the list and the program is

restarted 2 , the program operates normally. The effects of this inability to process six

bumps is shown in the shorter length of Table 5.5 and the overall lower identification

success rate for the GARCIA-class FFG without LAMPS. The problem can be solved

either by adding more memory or changing the software.

2 In this case, the ordering of the list of bumps is changed, either moving the problem

bumps behind the end of list flag or by removing them from the list. The program is then
restarted from the beginning, unlike the restarts mentioned earlier where the program picks
up where it left off.

26

VI. CONCLUSION

A. SUCCESS OF FEATURE EXTRACTION AND IDENTIFICATION

We have demonstrated that the key features from a ship silhouette can be extracted,

analyzed, and identified to produce a list describing and naming the features. The results

we have seen are similar to other research using knowledge-based and artificial-intelligence

techniques. The average success rate for six frigate-class ships was 78%, with values

ranging from 53% to 86%.

These programs provide a versatile front-end method for automated ship recognition

and identification. The description and identification information contained in the final

listing could be used by other programs to identify the type of ship or possibly the name of

the ship. Such a program, combined with an intelligent tutor program, would relieve

instructors of the administrative and repetitive tasks of updating silhouette libraries.

The MPROLOG programs suffer from hardware and software limitations. The

amount of information contained in a silhouette is not that large, but the recursive analysis

used by the programs quickly use up available memory and stack space. Many other

Prolog dialects should not have these limitations.

B. AREAS FOR FUTURE WORK

The program could be extended to handle all ships, regardless of nationality or type.

The program could also be improved by adding the ability to detect and analyze objects

with diagonal appendages. Our program converts diagonals into horizontal and vertical

steps. Extending it to interpret diagonals would allow the program to better pick apart

pieces of the superstructure and identify more of the antenna and mast detail.

27

Adding the ability to reason from known bumps would allow the program to go back

and reevaluate bumps previously identified as unknown and make an identification.

Identification is possible by knowing what ship classes partially match the current

silhouette and looking for unknown bumps that could match known ship structures in the

ship classes being examined.

These programs could be put together with an intelligent tutoring program. The

combined system would be a useful tool for developing and maintaining-silhouette

identification skills.

28

APPENDIX A - C PROGRAM SOURCE CODE

SHIP TRACE.C

This program finds the bow and stem of the digitized image and creates a binary file
line.coords is then used by program format.c to create a MPROLOG data file of the
turn points.

#include <stdio.h>
main0{

char PTS [250][1000];
char rowdata[1000];
int num pixels[1000];
int datafile,pfile,pfile 1;
int XCOORD,YCOORD;
char code;
int XY;
int row,i;
int fd[1];
int info[2];
short TYPE,ROWS,COLUMNS;
int max-rows, maxcolumns, maxPTS;
int xstartpoint, ystartpoint;
int xendpoint, yendpoint;
int threshold; /* adjust to picture quality */

/* open datafile */
printf("starting program W');
if ((datafile = open("/scratchi'bizeripic.brooke",0)) < 0)

printf("can't find it \n");
exito;

/* open output file */
if ((pfile = crcat("line.coords",0744)) < 0)

I
printf("can't open output line.coords\n");
exito;I

/* open output file */
if ((pfilel = creat("line.info",0744)) < 0)

I
printf("can't open output line.info \n");
exito;

29

1* pull off header information *

read(d atafile,&T'YPE,2);
read(datafile,&ROWS,2);
read(daac,&COLUMNS,2);
printf("type %d max-rows %d max-columns %d \n",TYPE,ROWS,COLUMNS);
max_rows= 1000;
max_cpolumns, = 1000,

/*clean off empty space above*/
for (row = 0; row < 280; row++)

read(datafile, &row -data[0], max -columns);
printfQ'cleaned off blank space \n");

P~ get a row of information */
for (row = 280; row < 510; row++)

read(datafile, &PTS [row-280] [0], max_columns);

printf(' Array is initialized.\n");

/* Initialize tracing program *
xstartpoint =1000;

xendpoint 0;

for (row = 0; row < 220; row ++)
for (i = 20; i < max_columns; i++)

if (PTS[row][i] < 55 && i < xstartpoint)

xsatoit=i
xstartpoint = rw

if (PTS[rowl[i] < 55 && i > xendpoint)

xendpoint i;
yendpoint =row;

XCOORD = xstartpoint;
YCOORD = ystartpoint;
X = XCOORD;
Y = YCOORD + 280;
ystartpoint =ystartpoint + 280;
yendpoint =yendpoint + 280;

printfQ'XStartpoint = %d XEndpoint = %d\n",xstartpointxendpoint);
printf("YStarrpint = %d YEndpoint = %d\n",ystartpoint,yendpoint);

30

write(pfilel1,&ysu~rpoint,4);
write(pfile 1 ,&xstartpoint,4);
write(pfile 1 ,¥dpoint,4);
write(pfilel1,&xendpoint,4):.
printfC'made it past writing to lineinfo \n");

code = ''
prev - ode = T
threshold = 55;
while (XCOORD < xendpoint)

while (code == 'R')

if (PTS[YCOORD-1IIIXCOORD] <threshold)

printf('entering with code = Rn)
write(pfile,&Y,4);
write(pfile,&X,4);
YCOORD =YCOORD - 1;
Y = Y+ 1;
code = ''

else if (PTS [YCOORD] [XCOORD+l I < threshold)

X = X + 1;
XCOORD = XCOORD + 1;
I

else if (PTS[YCOORD+1]IIXCOORD] < threshold)

wItepie&,)
write(pfile,&X,4);

YCOORD = YCOORD + 1;
Y=Y- 1,
code = ''

else if (PTS[YCOORDJIIXCOORD-1] < threshold)

printf("entering with code = Rn)
wnite(pfile,&Y,4);
write(pf ile,&X,4);
X=X- 1;
XCOORD = XCOORD -1;
code = 'U;

while (code == 'D')

if (PTS[YCOORD][XCOORD+I < threshold)

write(pfile,&Y,4);

31

write(pfile,&X,4);,
XCOORD = XCOORD + 1;
X =X + 1;
code = ''

else if (PTS [YCOORD+ I1I [XCOORDJ < threshold)

YCOORD = YCOORD + 1;
Y=Y- 1;

else if (PTS[YCOORD][XCOORD-1] < threshold)

{rt~fle&,)
write(pfile,&Y,4);

X=X- 1;
XCOORD = XCOORD -1;
code = U

I
write(pfile,&Y,4);
write(pfile,&X,4);
YCOORD = YCOORD -1;
Y=Y+ 1;
code = 'U';

while (code =='L')

if (PTS [YCOORD-t] [XCOORD] < threshold)
I
write(pfile,&Y,4);
write(pfile,&X ,4);
YCOORD = YCOORD + 1;
Y = Y- 1;
code = D-

else if (PTS [YCOORD] [XCOORD-1I < threshold)

X=X- 1;
XCOORD= XCOORD- 1;

else if (VIS[YCOORD-I]rXCOORDI < threshold)

write(pfile,&Y,4);
write(pfile,&X ,4);
YCOORD = YCOORD - 1;
Y = Y+ 1;
code = 'U';

32

else if (PTS[YCOORD][XCOORD+1] < threshold)
I
write(pfile,&Y,4);
write(pfile,&X,4);
X = X + 1;
XCOORD = XCOORD + 1;
code = ''

while (code == 'U')

if (PTS[YCOORD][XCOORD-1] < threshold)

write(pfile,&Y,4);
write(pfile,&X,4);
X = X-1;
XCOORD = XCOORD -1;
code = U';

else if (PTS[YCOORD-1][XCOORD] < threshold)
I
YCOORD = YCOORD - ;
Y=Y+ 1;

else if (PTS [YCOORD] [XCOORD+lI < threshold)

write(pfile,&Y,4);
write(pfile,&X,4);
XCOORD = XCOORD + 1;
X =X + 1;
code = R

else if (PTS[YCOORD+lI[XCOORDI < threshold)

write(pfile,&Y ,4);
write(pfiIe,&X,4);
YCOORD = YCOORD +-1;
Y = Y- 1;
code = ''

I/*k end while X <endpt *

close (datafile);
close(pfile);
close(pfile 1);

j/* end pgm *

33

FORMAT.C

This program reads Iine.coords, converts the turn points to MPROLOG format and
writes the points to file coords.pro.

#include 'zstdio.h>
#include <sys/file.h>

main 0

FILE *datfile, *datafie1, *pfile;
int row;

int xcoord, ycuord;
int max - ows;
int testvalue;
int first;

/* open datafile ~

if ((datafile = fopen("line.info", "r")) =NULL)

printf('can't find it info\n");
exitO;

printfQ'opened line.info\n");

if ((datafilel =fopen("line.coords', "r")) == N1JLL)
printf("can't find it coords \n");
exitO;

printf("opened line.coords\n");

/** open output file **
if ((pfile = fopen('coords.pro","w")) == NULL)

printf("can't open output \n "); exitO;

printf("opened output file\n");

fprintf(pfile,'module coords.\n");
fprintf(pflle,'/*$eject*bn")
fprintf(pfilf" 'body.\n");
fprintf(pfi.-. ,'n ");

/* pull off starting and ending coordinates ~
f* coords are read as Y,X and written as X,Y ~

printf('before fscan \n");
fread(&ycoord, sizeof(int), 1,datafile);
fread(&xcoord, sizeof(int), I ,dataf ile);

34

fprintf(pfile,'"start-pt([%d,%d]).\n ",xcoord,ycoord);
fread(&ycoord, sizeof(int), 1,datafile);
fread(&xcoord, sizeof(int), 1,datafile);
fprintf(pfile,'endpt([%d,%d]).\,n",xcoord,ycoord);

fprintf(pfile,"\npoints([");I
printf("starting to process rows\nD;

/* read a row of data and write back out in MPROLOG format ~
for (first=1;first < 1999;first++)

if (fread(&ycoord, sizeof(int),1,datafile 1) =0)

break;
if (fread(&xcoord, sizeof(int),1,datafile 1) = 0)

break;
if (first !=1)

fprintf(pfile," ,\n");
fprintf(pfile, "cp(%d,%d)", xcoord, ycoord);

fprintf(pfile,'D).\n');
fprintf(pfile,'endmod /* coords.pro */\n");
fclose(datafile);
fclose(datafile 1);
fclose(pfile);

35

APPENDLY B - MPROLOG PROGRAM SOURCE CODE

PROCESS.PRO

This program examines the turn points from coords.pro and locates all bumps on the
silhouette.

module process.
/*$eject*/
body.

iprt(addstatement/i, del_statement/i).

dynamic (coord - ist / 1).
dynamic (cpI2).
dynamic (pts /1).
dynamic (index-counter / 1).
dynamic (up-turn / 1).
dynamic (bump / 4).

total-length(L) -
start-pt([X,Y]), end pt([X 1,Y1]I L is X1I-X.

set-up(L) :-points(L),
asserta(pts(L)),
stars,
write ('START-POINT -->'),start pt([X,Y]),write(X) ,write(' '),write(Y),
write ('ENDPOINT -->'),end-pt([Xl1,Yl1),write(X l),write(Q '),write(YI),
ni, stars,
open (1, ,"bumps.pro"),
tell(1, "bumps.pro"),
write('module bumps.'),nl,
write('I*$eject*f),nl,
write('body. '),nl ,n 1,
write ('bumnp s('),
told(1).

go: state (system-ime, START),
add-statement(up-turn([1)),
stars,
setzup(L),
run(X,Y),
display-stats,
state(systemjime,FINISH),
REAL_-TIME is FINISH - START,
write("Actual Time = "), write (REALTIME),
write(" shown as HHMMSS").

36

run(X,Y) :-points(L),indexl (L,O,PP,P,PN),
get-pts(PP,P,PN,XP,YP,X,Y,XN,YN),
walk(XP,YPX,Y,XN,YN) ,add_statement(indexcounter(O)),
iterate(run 1),
close-bump-jile.

runi points(L),index counter(K),K2 is K4-1, /* Iterates this pred ~
index I (L,K2,PP,P,PN), /* until runs out ~
getpts(PP,P,PN,XP,YP,X,Y,XN,YN), /* of coordinates *
walk(XP,YP,X,Y,XN,YN), /* to process. ~
del-statement(index-counter(K)),
add -statement(indexscounter(K2)),
display..stats,!.

done points(L),length(L,N),indexscounter(K), K>=N-3.

display-stats :-nl,stars,
state(main..stack,[U,C]),
write("main-stack used = "),write(U),nl,
state(statement_table, [U 1,C1])
write("statement -table used ="),
write(U1),write(" "),write(Cl),nl,
state (cpu-ime,TF),
stars, write ('cpu time = "),write (TF),nl,
stars.

get-pts(PP,P,PN,XP,YP,X,Y,XN,YN) /* Get three points to process ~
PP =.. [CP,XP,YP],
P =.. [cp,X,Y],
PN =.. [cp,XN,YNI.

walk(XP,YP,X,Y,XN,YN)
changeup(XP,YP,X,Y,XN,YN).

walk(XP,YP,X,Y,XN,YN) :
below...upturn(XP,YP,X,Y,XN,YN).

walk(XP,YP,X,Y,XN,YN) -
rtn-horizontal(XP,YP,X,Y,XN,YN).

walk (XP,YP,X,Y,XN,YN) :
createuptum(XP,YP,X,Y,XN,YN).

walk(XP,YP,X,Y,XN,YN) :-!1.

change-up(XP,YP,X,Y,XN,YN) :-XPcX, /* record an up-turn.
L is YN- Y,
L>2,
up-tu(UL),append([(X,Y)],UL,UI1),
add -statement(upjtur(ULI)),
del-statement(upjtu(UL)),!.

37

i-tn_horizontal(XP,YP,X,YXN,YN) /* bump rtnto-horiz at same *
YP>Y /* level it started, so ~
Y=YN, /* write coordinates. *
X <XN,
up-tu(UL),
mernber((XU,Y),UL),
delete((XU,Y),UL,UL 1),
del_statement(up..3um(UL)),
add-statement(upturn(ULl)),
stars,
write -to screen (XU,Y,X,Y),
write-to7-file(XU,Y,X,Y),nl,!.

below_upturn(XP,YP,X,Y,XN,YN) /* rtnjto_horiz is below latest*/
up-um(UL),YP>Y,Y=YN, /* up-tsurn, so create the *
member((XU,YU),UL), /* rtn-to-horizontal coord. ~
YU>Y,X>=XU,
add-sratement(bump(XU,YU,X,YU)),
delete((XU,YU) ,UL,UL 1),
add-statement(up~jurn(UL1)),
del-statement(up-tur(UL)),
write-to -screen (XU, YU,X, YU), stars,
repeat,checkduplicate(XP,YP,X,Y,XN,YN),
write-to-file(XU,YU,X,YU),!.

create_uptum(XP,YP,X,Y,XN,YN)
Y +3 <YP 1* i-tn-to-horiz is below latest ~

S= YN, /* up-tsurn, so create
* + 2 <= XN, /* the upturn. *
up..3ur(UL),
find-near-upjturn(UL,Y,FX,FY),
COORD =.. [cp,FX,FY],
points(L),
locate -coords(COORD,L,LL),
find-crossing(LL,Y,XCOORD),
write-to-file(XCOORD,YX,Y),
write-to_screen(XCOORD,Y,X,Y).

check_duplicate(XP,YP,X,Y,XN,YN) :-/* Make sure the i-tn-to_horiz *
belowupturn(XP,YP,X,Y,XN,YN),!. /* doesn't include multiple *

check-duplicate(XP,YP,X,Y,XN,YN). /* bumps. *

find-near -upun((FX,FY)IRL,Y,FX,FY)
FY <Y,!.

find-near -up..sur([AIRL],Y,FXFY):
find-near-upjturn(RL,Y,FX,FY).

38

find-crossing([A,BILL],YXCOORD) -- /* Returns vertical coord *
A [cp,AX,AY], AY < Y, /* where up-turns Y coords *
B [cp,XCOORD,BYI, BY >= Y,!. /* was crossed.

find_crossing([A,BILL],Y,XCOORD) -
find-_crossing([BILLI,Y,XCOORD).

0 locate-coords(COORD,[AILI,[AILI): 1P Find a coordinate from list*/
first...one(COORD,[AIL])!.

locate _coor-ds(COORD,[AIL],LL):
locate--coords(COORD,L,LL).

first-one(X,[XIL]).

write_to _screen(X,YXI,YI)
stars,
write('bump at '),write(X),write(Q '),write(Y),writeQ ',
write(Xl1),write('),write(Yl1),nl.

write_to_flle(X,Y,Xl1,Yl1):
tell (1, "bumps.pro"),
write('b(),
write(X), write(','),
write(Y),write(','),
write(X 1),write(','),
write(Y 1),write(Q,'),nl,
told(l).

close-bumnp-file:
upjturn(UL),
close-upjus(UL),
tell (1, ,"bumps. pro"),
write('b(999,999,999,999)]).'),nl,
write('endmod /*bumps pro*/)
told(l).

close -upjus([]). /* Closes any up-turns left ~
close-up-urns([(X,Y)ILj): 1* in the list.

end-pt([XE,YE]),writetofile(X,Y,XE,Y),
close-up-us(L).

endrnod /* process ~

39

UTILITIES.PRO

This program contains utility predicates and must be loaded as a module with
PROCESS.PRO and BUMPID.PRO.

module utilities.

export (append / 3, add-item / 3, delete / 3, reverse / 2, singlemember / 2,
member / 2, stars / 0, first / 2, index 1 /5,
open / 2, tell / 2, told i i, getjfm fiie / 2, read-file / 0).

/*$eject*/
body.
dynamic (counter/ 1).

These file were written by Dave Hutson, originally in C-prolog. */
/* It has been converted to run on M-prolog by Robert Powell. Other utility predicates */
/* have also been added as needed. */

abs(X,X) X >= 0.

abs(X,Y) Y is 0 - X.

first([XIL],X).

last([X],X).
last([XIL],Y):- last(L,Y).

member(X,[XIL]) :- !.
member(X,[YIL]) :- member(X,L).

delete(X,[],[]).
delete(X,[XIL],M) !, delete(X,L,M).
delete(X,[YIL],[YIM]) :- delete(X,L,M).

append([],L,L).
append([XIL],L2,[X1L3]) :- append(L,L2,L3).

additem(X,L,[XIL]):- !.

reverse(L,R) :- reverse2(L,[],R).
reverse2([],L,L) :- 1.
reverse2([XIL],R,S) :- reverse2(L,[X1R],S).

/* writes 60 stars */

stars

n,0

40

These predicates are from Professor Rowe's book.
/* Iterates repeatedly forward through a predicate until condition *
/* "done", defined by the user, is satisfied.

iter-ate(PRED) :
repeat, iterate2(PRED), done.

iterate2(PRED) -
evaluate(PRED),.

iterate2(PRED) .

1* Written by Mike Bizer for PROCESS.PRO *
/* indexes into a list, returning the previous(PP),item(P), and next(PN) *

index 1 ([PP,P,PNIL],N,PP,P,PN)
N = 0,!.

index 1 ([A IL],N,PP,P,PN)
NC is N-i,
index 1 (L,NC,PP,P,PN),!.

index(X,[XiL],l)

index (X, [Y IL,N)
index(X,L,NMl), N is NM1+1.

/* These utilities were wrtten by Robert Powell.

open(CH,OUTFILE):-
set-channel (ou tfil e(CH), [narne=OUTFILE,mode =create]),
setoutput(outfile(CH)),
told(CH).

tell (CH,OUTFILE): -
set-ch annel (outfi le (CH), [narne=OUTFILE,mode =append]),
set-output(outfile(CH)).

told(CH) :
close output(outfile(C-ID.

get-fmile(CH,NILENAME):
set -channel (infile(CH),name=I NFILENAME),
setjinput(infile(CH)),
read-file,
fail.

get-mjile(CH,INFI LENA ME)
closejinput (in file (CH)).

41

readjfile
read_token(file end),!.

read-file :
read(X),
add-statement(X), /* bottom ~
read_file.

endxnod /* utilities

42

BUMPID.PRO

This program identifies the bumps found by PROCESS.PRO. It uses the
COORDS.PRO and BUMPS.PRO data files.

module bumpid.

/*$eject*/
body.

dynamic (index_counterl / 1).
dynamic (the-bump / 5). /* bump fact to be processed */
dynamic (low / 1).
dynamic (lei L 1).
dynamic (high / 1).
dynamic (right/ 1).
dynamic (bumpcoords / 1) /* coordinates making bump */
dynamic (bumpdescr / 3). /* bump & description list */
dynamic (box / 8). /* box description
dynamic (finishbump /1).
dynamic (bumpsto-process /1).
dynamic (ship-length / 1).

go:- statc(cpu time.TI),
add_statement(index_,ounie"1 (0)),
set-state(global-stack,300(Y,
set-state(mainstack, 1000G,,
system(garbagecollection),
system(compress-stacks),
set-up-bumpid,iterate(go 1),
state(cputime,TF), TOTALTIME is TF - TI,
stars,write("cpu time = "),write(TOTALTIME),
nl.

gol nl,
pbump(B 1),compute-shape(B 1),checknumberid(B 1),
tell(1, "objects"),
bump-descr(B 1,L,O),
write(B 1),nl,
write(' BUMPDESCR -- >'),
write(L),nl,
write(' BUMPID--> '),
write(O),nl,
told(l),
cleancorners,index-counter1 (X),
X2 is X + 1, del_statement(index_counterl(X)),
addstatement(indexcounter 1 (X2)),nl,
checkstatement-table(B 1),
stars.

43

check_statement-table(B I) :- state(statement-table,[U,SJ),U>300000E0,
add_statement(finishbump(b(999,999,999,999))),stars,
write(" Statement table full after bump "),write(B 1),stars,!.

check_statement-table (B 1).

clean_corners:-
low(Y I 7),del_statement(low(Y 17)),
high(Y 1 8),del_statement(high(YI 8)),
right(X I 8),delstatement(right(X 18)),
left(X 1 7),diel-statement(left(X 17)),
bumpsoords(XYZ),ength(XYZ,N),write(' # segments ==>)

write(N),nl,
del-statement(bump-coords(XYZ)),
add-statement(bumpsoords(ID).

done :- finish bump(B),bconvert(B,X,Y,Xl1,Y 1),
X=99§9, x I = 999.

display-stats :-nl,stars,
state (main-stack, [U,C]),
wri te("main-s tack used = "),write(U),nl,
state(statement-table,[U 1 ,CI]),
write(" sttmettable used ='t),wvrite(U.l),write(" "),write(C1),
ni.

pbump(B1) :-get-two_bumps(B1,B2),asserta(finish bump(B2)),
convertit(B 1 ,X,Y,X 1 ,Y 1),convertit(B2,X2,Y2,X3,Y3),
aidd statement(thebump(B 1 X,Y,X 1,Y 1)),
add-statemrntbump-dtacr(B 1J,[])),
create-bump-coords,

set-upbunpid:
open(1, "objects"),
tell(1 ,"objects'),nl,
write('OBJECTS from BUMPID"),nl,
told(1),
bump s(B),add stateme nt(bump stoproce ss (B)),
startpt([X,Y),endpt([X 1 ,Y 1]),
Z is XlI - X, add-statement(ship-length(Z)),nl,
add -statement(finish-bunp(H)),
add-statement(bump~coords([])),!.

getjtwo-bumps(B 1 ,B2) :
bumpsto-process([B,B21B]), write(B 1), write(' write(B2), ni,
del -statement(bumpstoprocess([B 1 ,B21B])),
add-statement(bumpsto-process([B2'B])),!.

44

convertit(B ,X,Y,X 1I, 1)
B=..[b,X,Y,X1,Y1]

cpconvert(B,X,Y):
B=..[cp,X,Y].

bconvert(BX,Y,X1,Yl)
B=..[b,X,Y,X1,Y 1].

create-bump-coords: the-bump(BX,Y,X1,Y1),
points(L),fin-start(X,Y,L,LR),
create - list(X,Y.X 1,Y 1,LR),
del-statement(the..bump(B,X,Y,X 1,Y 1)),!.

create-bumpscoords :-the-bump(BX,Y,X1,Y1),
points(L),reverse(L,RL),
find_rev-start(X 1,Y I,RL,LR),
reverse (LR,RRL),
createjist(X,Y,X 1 ,Y 1 ,RRL),
bump-coords([FIC]),
cpconvert(F,XB ,YB),
cpconvert(D,XB,Y 1),append(C,[D],CC),
add -statement(bumpscoords(CC)),
del -statement(bumpcoords([FIC])),
del -statement(the..bump(B,X,Y,X 1 ,Y 1)),

find_start(X,Y,[AILRJ,LR)
A =..[cp,Xp,YpII,X=Xp,Y=Yp,
bump-coords(LL),append([AI ,LL,LL 1),
add-statement(bump_oords(LLI1)),delstatement(bump-coords(LL)),!.

find_start(X,Y,[AILR],LR) :
cpconvert(A,Xp,Yp),X=Xp,Y<'Yp,cpconvern(B,X,Y),notk'membcr(B, [AlLR])),
bump-coords(LL),
append([B],LL,LL 1),
add -statement(bumpscoords(LL 1)),del-statement(bumpcoords(LL)),!.

find s=r(X,Y,[AILL,LR) :-find_ start(X, Y,LL,LR),!I

find_rev_start(X,Y,[AILR],LR) :
A =..[cp,Xp,Yp],X=Xp,Y=YP,
bump-coords'LL),append(LL,[AI ,LL 1),
add-statement(bump-coords(LLI1)),del statement(bump-coords(LL)),!.

find-rev-start(X,Y,[AILLJ,LR): find-rev start(X,Y,LL,LR),!.

create__list(X,Y,X 1,Y 1,[]):
wriLe(' POSSIBLE ERROR, ran out of coordinate points while"),nl,
write(" processing bump "),write(X),write(" "),write(Y),
write(" "),wri te(X 1), write(" "),write (Y 1),nI,!

create_1ist(X,Y,X1,Yl1L)
A=..[cp,Xf,Yf],Yf < Y1,!.

45

create_list(X,YX1,YI,[AIL)
A=..[cp,Xf,Yf],
XI = Xf, YI >= Yf, bump-coords(LL),append(LL,jA],LL1),
add-statement(bump-coords(LLI1)),del-statemen t(bump-coords(LL)),!.

create_list(X,YXl,Y1,[AIL]) :
/* peeling off upper bumps *

bumps(B),
cpconvert(A,XT,YT),
bconvert(TEST,XT,YT,XX,YY),
member(TEST,B),
locate -coords(TEST,BJ[BUMPCOORDSILLL]),
bconvert(BUMPCOORDS XA,YA,XF,YF),
bconvert(WORKINGBUMP,X,Y,X 1,Y 1),
not(member(BUMP COORDS,[WNORKINGBUMP])), /*ensr not same

bump*/
cpconvert(C,XF,YF),
member(C,(A IL]),
locate -coords(C,[AIL],[ZIRL]),
write(" peeling off bump 1 "),write(BUMPCOORDS),nl,
create-ist(X,Y,X 1,Y 1,RL),!.

create_list(X,Y,X1I,Y1,[AIL]) /* don't compare with bump using added*/
/* peeling off upper bumrps ~

bumps(B), r'~ with created endings *
cpconvert(A,XT,YT).
bconvert(TEST,XT,YTXX,YY),
member(TEST,B),
locate -coords(TEST,B,[BUMP_COORDSILLLJ),
bconvert(BUMPCOORDSXA,YA,XF,YF),
bconvert(WORKING BUMP,X,Y,X 1 ,Y 1),
not(member(BUMPCOORDS,[WORKINGBUMP])), /*ensure not same

cpconvert(C,XF,YF),
bm*

locate -fake coords(X 1,Y I,C,[AIL], [ZIRL]),
write(" peeling off bump2 "),
write(BUMPCOORDS),nI,
createjlist(X,Y,X I ,Y I,RL),!.

create_list(X,Y,X1,YI,[AIL]):
bu mp-coords (LL), append (LL, [AI1,LL 1),
del -statement(bumpscoords(LL)),add-statement(buxnpsoords(LL 1)),
createjlist(X,Y,X I ,Y 1 ,L),!.

46

compute..shape(B 1): bump-coords([LLOWILJ),set -defaults([LLO WIL]),
check -defaults(B 1),
find -corners(L),
make -box(XMIN,YMIN,XMAX,YMAX),
writeQ###4 BOX > "),
write(XMIN),write(YMIN),write(' '),
write(XMIN),write(YMAX),write(''),
write(XMAX),write(YMAX),write('),

describe-shape(B 1 JLLOWIL],XMLN,YMIINXivIAX,YMAX),
identifyshape(BlI,[LLOWIL],XMIfN,YMIN,XMAX,YMA-X),

make_box(XMIN,YMIN,XMAX,YMAX):
low(YMJN),
left(XMIN),
high(YMAkX),
right(XMAX),
add-statement(box(XMIN,YMIN,XMIN,YMAX,XMAX,YMAkX,XM4AX,YMIN)

M,

find - nin(A,B,A): A <= B,!.
find -min(A,B,B).
find -max(A,B,A) :-A >= B,!.
find-max(A,B,B).

set-defaults([LLOWILI): LLOW [. cp,X,YII,
add -statement(low(Y)),
add -statement(left(X)),
getlast([LLOWIL]),!.

getlast([AI[fl): A =..[cp,X,Y],
add -statement(right(X)),
add -statement (high (Y)),!.

getjlast([AIL]) :-get-last(L).

find -cornersfr]):!
find_corners([AIL]):

A =.. [cp,XA,YA],high(Y),
Y <YA,
add -statement(high(YA)),
del-statemcnt(high(Y)),findconers(L),!.

find-corners([AIL]):
A =.. fcp,XA,YA],Ieft(X),
XA <X,
add -statement(left(XA)),
del-statement(left(X)),findconers(L),!.

47

find-corners([AILI)
A =.[cp,XA,YAIJ,right(X),
XA >X,
add -statement(right(XA)),
del-statement(right(X)),findscorers(L),!.

find-comners([AIL]):-
find-corners(L),!.

check-defaults(B 1) :-
bconvert(B 1 ,X,Y,XX,YY).
check_xmin(X),
check-ymiin(Y),
check_xmax(X-X),
checkymax(YY),!.

check-xxnin (X) :-
left(XT),
XT <=X,!

check-xmin(X):
left(XT),
change-left-default(X,XT),!.

check~ymin(Y) :
low(YT),
YT <=Y,!

check~ymnin(Y) :
low(YT),
changejlow-default(Y,YT),!.

check_xxnax(XX)
right(XT),

check_xinax(XX)
right(XT),
change-ighi-dcfault(XX,XT),!.

checkymax(YY)
high(YT),
YT >=YY,!

checkymax(YY)
high(YT),
change-high-default(YY,YT),!.

changejleft-defaultcN'EW,OLD) :
add -statement(left(NE W)),
del-statement(left(OLD)),!.

change-low -default(NEW,OLD):
add -statement(]Jow(NEW)),
del-statement(low(OLD)),!.

change-right-defaul(NEW,OLD) :
add -statement(right(NEW)),
del-statement(right(OLD)),!.

48

change-high -default(NEW,OLD):
add -statement(high(NEW)),
del-statement(high(OLD)),!.

/ * 4~~~ LOCATION descriptors to bump-descr ********

describeshape(Bl1,[LLOWIL],XMlIN,YMIN,XMAX,YMAX):
start-pt([SX,SY),
ship-length(X),
Y is (XMAX + XMIN) /2,
Y - SX < 15,
add-descr(B I ,bow),
describe-shape(B 1,[LLOWIL],XMIN,YMINXMAX,YMAX) ,.

describeshape(B 1 ,[LLOWILI,XMIN,YMINXMAX,YMAX):
start-pt([SX,SY]),
shipjlength(X),
Y is (XMAX +XMIN)1/2,
Y <SX+(X/3),
Y - SX >= 15,
add -descr(B 1 ,forward),
describe-shape(B 1,[LLOWILI.XMIN,YMINXMAX,YMAX),!.

descibeshape(BlI,[LLOWILI,XMIN,YMII,XMAX,YMAX):
start-pt([SX,S Y]),
end-pt([EX,EY]),
ship length (X),
Y is (XMAX + XMIN) / 2,
Y > SX +(2 *X /3),
EX - Y >= 15,
add --descr(B 1 ,aft),
describe-shape(B I ,[LLOWIL] ,XMIN,YMIN,XMAX,YMAX) ,!

describeshape(Bl1,[LLOWIL] ,XMIN,YMLNXMAX,YMAX):
start-pt([S X,SY]),
shiplength(X),
Y is (XMAX + XMIN) / 2,
Y < SX + (2 *X / 3),
Y > SX + (X /3),
add -descr(B I ,mid ship),
describe-shape(B 1 ,[LLOWIL],XMIN,YMIN,XMAX,YMAX) ,!

describe-shape(B 1 ,ILLOWIL,XML4N,YMIN,XMAX,YMAX)
endpt([SX,SY]),
shipjlength(X),
Y is (XMAX +XMIN) /2,
SX - Y < 15,
add -descr(B 1 ,stern),
describe-shape(B I ,[LLOWIL],XMIN,YMIN,XMAX,YMAX),!

49

/***************add size descriptors * * * ~ /

describeshape(B1 ,[LLOWIL], MIN,YMINXMAX,YMAX)-
ship-length(X),
OS is XMAX-XMJN,
OS/X >= 0. 1 OEO,
add -descr(B 1 ,extra -arge),
describe-shape(B1,[LLOWIL],XMIUN,YMINXMAX,YMAX),!.

describe shape(Bl1,[LLOWIL],XMIN,YMINXMAX,YMAX)-
ship-length(X),
OS is XMAX-XMIfN,
OS/X >= O.03E0,
OS/X < 0. 1OEO,
adddescr(B Ijarge),
describe-shape(B 1,IILLOWIL,XMIUN,YNNXMAX,YMAX),!

describe-shape(Bl1,[LLOWIL] ,XMIN,YMIN,XMAX,YMAX)-
ship-length(X),
OS is XMAX-XMIN,
OS/X <O0.03E0,
OS/X > O.015E0,
addjdescr(B 1 ,medium),
describe_shape(BI,[LLOWJL],XMIN,YMINXMAX,YMAX) ,.

describe-shape(Bl1,[LLOWIL],XMIIN,YMIN,XMAX,YMAX):
ship-length (X),
OS is XMAX-XMIN,
OS/X <O0.015E0,
add -descr(B 1 ,small),
describe shape(B1,[LLOWIL],XMIN,YMINXMAX,YMAX),!.

~~~ ~~add CURVINESS to bump**************

describe-shape(B 1 ,[LLOWIL],XMIIN,YMINXMAX,YMAX):
bump-coords(XYZ)JIength(XYZ,N),N>50,
add -descr(B 1 ,high-curviness),
describe-shape(B 1 , LLOWIL],XMJN,YMINXMAX,YMAX) ,!.

describe-shape(B 1 ,[LLOWIL],XCMIIN,YMINXMAX,YMAX):
bumpscoords(XYZ),ength(XYZ,N),N< 15,
add -descr(B I no_curviness),
describe-shape(B I ,[LLOWILI,XMIN,YMINXMAX,YMAX),!.

I~~~"'~' add descriptors to bump-descr *******

describe -shape(Bl1,[LLOWIL],XMIN,YMINXMAX,YMAX):
in - ange(XMAX-XMIN,YMAX-YMIN),
add -descr(B 1 ,square),
describe_shape(B IJ[LLOWIL],XMIN,YMINXMAX,YMAX),.

describeshape(Bl1,[LLOWIL],XMIN,YMIN,XMAX-,YMAX):
XMAX-XMIN > YMAX-YMIN + 5,
add -descr(B 1 ,flat rectangle),
describe-shape(B 1 ,LLOWIL],XMIN,YMJNXMAX,YMAX) ,!

50



describe-shape(Bl1,[LLOWIL],XMIN,YMINXMAX,YMAX):
XMAX-XN41N + 5 < YMAX-YMIN,
add~descr(B 1 ,tall-rectangle),
descnibe-shape(B 1jLLOWIL] ,XMIN,YMINXMAX,YMAX) ,!

describe_shape(B I JLLOWIL],XMI1N,YMINXMAX,YMAX):
XMAX-XMIN <= 5, (XMAX-XMJN)/(YMAX-YMIN)<=O0.5E0,
adddescr(B I ,pole),
describe-..shape(B 1jILLOWIL,XMIIN,YMINXMAX,YMAX) ,!

describe_shape(Bl1,[LLOWIL],XMIN,YMINXMAX,YMAX):
(XMAX-XMIN)/(YMAX-YMIN)<=O. 17E0,
bumpscoords(XYZ),ength(XYZ,N),N<30,
add-descr(B I ,pole),
describe_shape(B1,[LI OWIL],XMIN,YMINIXMAX,YMAX),!.

describe_shape(BIJ[LLOWLj,XMJN,YMIN,XMAX,YMAX) :-!.

add-descr(B1,X) -
bump-descr(B 1 ,DL,O),not(member(X,DL)),
append(IX] ,DL,LL),add_statement(bumpdescr(B 1 ,LL,O)),
del-statement(bumpdescr(B 1 ,DL,O)).

~~ IDENTEFY SHAPE

identify-shape(Bl1,[LLOWIL] ,XMJIN,YMIN,XMAX,YMAX):
bump-descr(B 1 ,DL,O),member(pole,DL),
not(member(bow,DL)),not(member(stern,DL)),
add id(B I ,antenrna),
identify-shape(B 1 JLLOWIL] ,XMTN,YMIN,XMAX,YMAX),!.

identify-shape(Bl1,[LLOWIL] ,XMIN,YMINXMAX ,YMAX):
bump-descr(B 1 ,DL,O),member(pole,DL),
not(member(midship,DL)) ,not(member(forward1 DL)),
not(member(aft,DL)),
add id(B I ,mastlsupport),
identify-shape(Bl1,[LLOWIL],XMIN,YMIN,XMAX,YMAkX),!.

identify-shape(B 1 ,[LLOWILLXMIN,YMINXMAX,YLA-X)
bump-descr(B 1 ,DL,O),member(flat-rectangle,DL),
not (member(small ,DL)),not(member(extralarge,DL)),
member(high_curviness,DL),
not(member(midship,DL)),
add id(B l,gun-turretlweapon- system),
identify-shape(B 1 ,(LLOWILJ,XMIN,YMINXMAX,YMAX),!.

51



identifyshape(B I JLLOWIL],XMIN,YMINXMAX,YMAX):
bump~descr(B 1 ,DL,O),miember(flat-rectangle,DL),
not(member(midship,DL)), not(member(small,DL)),
not(member(extrajlarge,DL)),
not(member(highscurviness,DL)),
not(member(no-curviness,DL)),
add-id(B 1 ,weapon- sy stem),
identify..shape(Bl1,[LLOWIL],XMIN,YMIN,XMAX,YMAX),!.

identifyshape(Bl1,[LLOWIL],XMtIN,YMNXMAX,YMAX):
bumpjescr(B 1,DL,O),member(flat-rectangle,DL),
member(forward,DL), not(member(small,DL)),
(member(no curviness,DL)),
addjid(B 1 ,superstructure),
identifyshape(B 1 ,[LLOWIL] ,XMvIN,YNXAMAX,Yx-MAX),!.

identifyshape(B 1 JLLOWILI,XMIN,YMIN,XMAX,YMAX):
bumpdescr(B 1,DL,O),
member(mid~ship,DL),
not(member(pole,DL)),not(member(small,DL)),
not(member(taH__jectangle,DL)),
(XMAX-XMIN)/(YMAX-YMIN) <c= 2.OEO,
(XMAX-XMIN)/(YMAX-YMIN) >= O.5E0,
addjid(B 1 radar),
idei-itil__shape(B1JILLC WIL] ,XMIN,YMINXMAX,YMAX),!.

identify-shape(Bl1,[LLOWILI,XMIN,YMINIXMAX,YMAX):
bump~descr(B 1,DL,O),
member(mid-ship,DL), not(member(nosurviness,DL)),
not(member(pole,DL)),not(member(square,DL)),
not(member(tal~rectangle,DL)),
(XMAX-XMIN)/(YMAX-YMIN) <= 2.OEO,
(XMAX-XMIN)/(YMAX-YMIN) >= O.5E0,
addjid(B 1,radar),
identify-shape(B1 ,[LLOWIL],XMIN~,YMINXMAX,YMAX),!.

identify-shape(B1, [LLO WIL] ,XMIN,YMIN,XMAX,YMAX):
bump descr(B 1,DL,O),n i-mber(tallrectangle,DL),
not(member(pole,DL)),not(mer-nberoarge,DL)),
(XMAX-XMIN)/(YMAX-YMIN) <= 2.OEO,
add -d(B1l,mast/support),
idenrifyshape(Bl1,[LLOWIL] ,XMIN,YMIN,XMAX,YMAX),!.

identify-shape(Bl1,[LLOWIL] ,XMIN,YMINXMAX,YMAX):
bump-descr(B 1 ,DL,O),not(member(pole,DL)),
not(member(small ,DL)),not(member(high_curviness,DL)),
not(member(forward1 DL)),
add id(B I ,superstructure),
identify-shape(Bl1,[LLOWIL] ,XMIN,YMIN,XMAX,YMAX),!.

52



identify..shape(Bl1,[LLOWIL] ,XMIUN,YMINXMAX,YMAX):
check-if~empty(B1),!.

add-id(B1,X):
bump~descr(B 1,DL,O),not(member(X,O)),
append([XI ,O,OL) ,add_statement(bump..Aescr(B 1 ,DL,OL)),
del_statement(bumpdescr(B 1 ,DL,O)).

*~~*** Change list to OR if multiple identifications made**/

check-number - d(B 1): -
bump-descr(B 1 ,DL,O),length(O,N),write(N),N> 1,
write(O),nl,changeto-or(O,or,OO),
add-statement(bump...escr(B 1 ,DL,OO)),
del_statement(bump~descr(B 1 ,DL,O)),!.

check-numberjid(B 1) :- !.

changetoor([A,B IL] ,OR,LL)
append(IOR] ,[A] ,Y),append([B] ,Y,LL),!.

check-if empty(B1) :
bumpiescr(B 1 ,DL,[]),
add id(B 1 ,unknown),!.

check-if_empty(B 1).

locate-coords(COORD[A IL] ,[A IL]):-
first-one(COORD,[AIL]),!.

locate-coords(COORD,[AIL],[AIL]):
cpconvert(COORD,X,Y),
cpconvert(A,XTr,YT),
X=XT, Y > YT,!.

locate-coords(COORD,[AIL],LL):
locate_coords(COORD,L,LL).

locate-fake-coords(X 1,Y I,COORD,[A IL] ,[A IL]):
cpconvert(COORD,XF, YF),cpconvert(A ,XT, YT),
XT=XF,YT<YF,
bump-coords(BL), append(BL,[COORD] ,BLL),append(BLL, [A] ,LL),
add -statement(bumpscoords(LL)),
del -statement(bumpscoords(BL)),

locatefae_coords(X I,Y 1,COORD,[AIL] ,LL):
locate-fake coords(XlI,Y I,COORD,L,LL).

first-one(X,[XIL]).

53



utliie

injange(VARI1,VAR2):
VARi1 <= VAR2 + 3,
VARI >= VAR2 -3.

endmod /* bumpid ~

54



APPENDIX C - OUTPUT FROM GARCIA (LAMPS)

GAR-OBJ OUTPUT

This is an example of output from the GARCIA (LAMPS) silhouette, showing the
bump locations, description, and identificadon.

OBJECTS from BUMPID
b(34 1,484,36 1,484)

1BIMPDESCR -->[flat-rectangle,high-curviness,large,forward]
BUMPID -- > [gun- turret/weapon- system]

b(340,476,364,476)
BUMP _DESCR -->[flat -rectangle,no-curviness,large,forward]
BUMPJ- D -- > [superstructure]

b(407,485,41 5,485)
BUMPDESCR -->[flat-rectangle,large,forwardI
BUMP-ID -- > [weapon-system]

b(403,478,41 6,478)
BUMPDESCR -->[flat -rectangle,no-curviness,medium,forward]
BUMPJID -- > [superstructure]

b(457,537,459,537)
BUMPDESCR -- >[pole,tall-rectangle,no-curviness ,small,maid-ship]
BUMPID -> [antenna]

b(456,522,457,522)
BUMPDESCR -->[pole,tall -rectangle,noscurviness,small,mid-shipI
BUMPJ1D -- > [antenna]

b(465,564,465,564)
BUMPDESCR -->[pole,tall-rectangle,no-curviness,small,m-id-ship]
BUMP-ID -- > [antenna]

b(465,522,467,522)
BUMPDESCR -->[pole,tall-rectangle,small,midship]
BUMP-ID -- > [antenna]

b(489,526,499,526)
BUMPDESCR -->[square,no-curviness,snall,mi&..ship]
BUMP ID) -- > [unknown]

b(533,543,536,543)
BUMPDESCR -->[flat rectangle,high-curviness,large,mid-ship)
BUMvPJD -- > [radar]

b(536,57 1,541,57 1)
BUMPDESCR -->[pole,tall -rectangle,no-curviness,small,mid-ship]
BUMPID -- > [antenna]

b(559,618,561,61 8)
BUMPDESCR -- >[pole,tall-rec tan gle,no-curviness,small,mid-ship]
BUMPID -- > (antenna]

55



b(565,61 8,569,618)
BUMP _DESCR -->[square,no_, urviness,smalI,mid..ship]
BUMAPJD -- > [unknown]

b(560,601,561 ,601)
BUMP _DESCR -->[tall -rectangle,small,mid-ship]
BUMPJD -- > [mast/support]

b(549,592,563,592)
BUMP _DES CR -->[flat -rectangle,large,micship]
BUMIP-D -- > [superstructure]

b(529,539,553,539)
BUMPf_DESCR -->[flatrectangle,no Curviness,large,mic-ship]
BUMPI.D -- > [superstructure]

b(552,544,553,544)
BUMPDESCR -->[tallbx ectangle,medium,iiship]
BUMPJ- D -- > [mast/support,or,superstructure]

b(55 1,57 1,553,57 1)
BUMP _DESCR -->[square,medium,midship]
BUMP ID -- > [radar,or,superstructure]

b(527,528,554,528)
BUMPDESCR -->[flat -ectangle,large,mid-ship]
BUMP -ID -- > [radar,or,superstructure]

b(485,514,559,5 14)
BUMPDESCR -->[flat -rectangle,extraj-arge,mid-ship]
BUMPmI -- > [superstructure]

b(587,507,589,507)
BUMPDESCR -->[pole,talI rectangle,no-curviness,small,mid-shipI
BUMPID -- > [antenna]

b(602,502,6 17,502)
BUMPDESCR -->[flat -rectangle,no-curviness,medium,mid-ship]
BUMPJ D -- > [superstructure]

b(63 1,516,633,516)
BUMPDES CR -->[pole,tall rectal aigle,small,mid-ship]
BT 'MP _ID -- > [antenna]

b(626,502,6z ,,502)
BUMPDESCR --> ftall-rec tan gle,small,mnidship]
BUMP-ID -- > [mast/support]

b(65 1,494,653,494)
BUMPDESCR -->[pole,tall-rectangle,no-uw-viness,sma11,mid-ship]
BUMP ID -- > [antenna]

b(675,496,699,496)
BUMPDESCR -->[flat-rectangle,high-curviness,large,aft]
BUMPJID -- > [gun-turret/weapon- system]

b(737,515,739,5 15)
BUMPDESCR -->[~pole, tall _rec tan gle,no-curviness,small],aft]
BUMPJID -- > (antenna]

b(745,520,747,520)
BUMPDESCR -->[pole,talI-rec tan gle,no-curviness,small,aft]
BUMP ID -- > (antenna]

b(745,5 15,755,5 15)
BUMPDESCR -->[tal~rectangle,medium,aft]
BUMP-ID -- > [mast/support,or,superstructure]

56



b(788,5 17,798,517)
BUMP_DESCR -->[no-curviness~small,aft]
BUMPID -- > [unknown]

b(763,5 15,802,515)
BUWr_DESCR -->[flat -rectangle,no-curviness,large,aft]
BUMP_ID -- > [superstructure]

b(745,514,803,5 14)
BUMPDESCR -->[square,large,aftl
BUMPID -- > [superstructure]

b(675,494,803,494)
BUMP_DESCR -->[flat rectangle~hg curviness,extrajlarge,aft]
BUMPID -- > [unknown]

b(725,499,803,499)
BUMP _DES CR -->[flatjrectangle,extaj-arge,aft]
BUMPID -- > [superstructure]

b(932,504,933,504)
BUMP _DESCR -->[pole,no -curvine ss, small, stem]
BUMPID -- > [mast/support]

b(93 1,497,931,497)
BUMPDESCR -->[pole-no-curviness,small,stem]
BUMPID -- > [mast/support]

b(929,49 1,934,49 1)
BUMPDESCR -->[pole,tall -rectangle,noscurviness,small, stem]
BUMPID -- > [mast/support]

57



LIST OF REFERENCES

1. Bernier, Denise R., An Intelligent Computer-Aided Instruction System for Naval Ship
Recognition, Master's Thesis, Naval Postgraduate School, Monterey, California, June
1989.

2. Ballard, Dana H. and Brown, Christopher M., Computer Vision, Prentice-Hall, 1982.

3. Cox, K.C., Roman, G., Ball, W.E., and Laine, A. F., "Rapid Search for Spherical
Objects in Aerial Photographs," IEEE Proceedings: Computer Vision and Pattern
Recognition, 1988, 1988.

4. Grogan, Timothy Alan and Mitchell, 0. Robert, Shape Recognition and Description: A
Comparative Study, Purdue University Lafayette in School of Electrical Engineering,
1982.

5. Todd, Henry S., "A Descriptive Pattern Recognition System Applied to Pictorial
Patterns Where the Discriminating Information is Carried in the Object Shape," IEEE
Proceedings: Computer Vision and Pattern Recognition, 1988, pp. 430-436. 1988.

6. Opsahl, Torstein, "Automated Target Detection," Fifth Annual Intelligence

Community A] Symposium, Defense Ttelligence College, 1987.

7. Telephone conversation between Mike Hord, MRJ, Inc., and the author, 8 June 1989.

8. McKeown, D. M., and Harvey, W. A., "kule Based Interpretation of Aerial
Imagery," IEEE Conference on Computer Vision,1985, pp. 570-585, 1985.

9. McKeown, D. M., Harvey, W. A., and Wixson, L. E., "Automating Knowledge
Acquisition for Aerial Image Interpretation," Computer Vision, Graphics, and Image
Processing, 46, pp. 37-81, April 1989.

10. Niblack, W., Petkovic, D., and Damian, D, "Experiments and Evaluations of Rule
Based Methods in Image Analysis," IEEE Proceedings: Computer Vision and Pattern
Recognition, 1988, pp. 123-128, 1988.

11. Smyrniotis, Chuck and Dutta, Kalyan, "A Knowledge-Based System for Recognizing
Man-Made Objects in Aerial Images," IEEE Proceedings: Computer Vision and Pattern
Recognition, 1988, pp. 111-117, 1988.

12, Jane's All the Worlds Fighting Ships 1985-86, Jane's Publishing Inc., pp. 216-217,
1986.

13. Pavlidis, Theo, Algorithms for Graphics and Image Processing, Computer Science
Press, 1987.

58



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5002

3. Chief of Naval Operations 1

Director, Information Systems (OP-945)

Navy Department

Washington, D.C. 20350-2000

4. Department Chairman, Code 52 2

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

5. Curricular Officer, Code 37 1

Computer Technology

Naval Postgraduate School

Monterey, California 93943-5000

6. Associate Professor Neil C. Rowe, Code 52Rp 2

Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5000

7. Associate Professor Michael J. Zyda, Code 52Zk 1

Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5000

59



8. Dr. Hank Smith

Education Coordinator

Patrol Squadron THIRTY-ONE

Naval Air Station

Moffett Field, California 94035

9. CPT Michael J. Bizer 2

1204 Catskill Circle
Huntsville, Alabama 35802

60


