NAVAL POSTGRADUATE SCHOOL (@

.+ Monterey, California

o0

O

o0

< N

< DTIC

< FLECTE |

| DEC 011989
a)
< D <%
THESIS
\
A PICTURE-DESCRIPTOR EXTRACTION PROGRAM

. USING SHIP SILHOUETTES

by
CPT Michael J. Bizer
June 1989

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited

Unclassified

Security Classification of this page

REPORT DOCUMENTATION PAGE

la Repon Security Classification Ib Restrictive Markings

UNCLASSIFIED
2a Security Classification Authority 3 Distribution Availability of Report
2 Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization

(If Applicable)
Naval Postgraduate School 52 Naval Postgraduate School
6c Address (city, state, and ZIP code) T Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Spansoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number
(If Applicable)
8¢ Address (city, tate, and ZIP code) 10 Source of Funding Numbers
Program Elemeam Number Project No Task No Work Unut Accessior: No

11 Tide (Include Security Classification)
A PICTURE-DESCRIPTOR EXTRACTOR PROGRAM USING SHIP SILHOUETTES

12 Personal Author(s)
Bizer, Michael J.

132 Type of Report 13b Time Covered 14 Date of Report (year, month.day) 15 Page Count
Master's Thesis From To June 1989 67

16 Supplementary Notation The views expressed 1n this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 Cosat Codes 18 Subiect Terms (continue on reverse if necessary and ideruify by block number)
Field | Group Subgroup .. |-, Artificial Intelligence, Feature Extraction, Boundary Tracing,
Ship Recognition, Prolog, Silhouette Identification | v— .-~

19SLAbsu'act (continue on reverse if necessary and identify by block number

“This research examines the practicality of automatically identifying the features of the major structures of ship
silhouettes using rule-based extraction and identification techniques. The process was broken into three phases:
(a) finding the silhouette boundary, (b) locating the "bumps" (apparent superstructures) on the boundary, and
(c) describing the bump features qualitatively using a multidimensional-feature-space classification. The program
for the first phase is written in C while the programs in the other two phases are written in MPROLOG and run on
a Motorola 68020-based workstation. The programs accurately identified 78% of all bumps examined on six
ships. The lists of bump descriptions showed the key differences between two different ships of the same
ship-class, indicating future programs could identify ships using the output from the programs of this thesis. .

2 Distribution/Availability of Abstract 21 Abstract Security Classification
unclassifiedamlimied [| sameasrepon | | DTICusers UNCLASSIFIED
22a Name of Responsible Individual 22b Telephone (Include Area code) 22¢ Office Symbol
Prof. Neil C. Rowe (408) 646-2462 Code 52Rp
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

A Picture-Descriptor Extraction Program using Ship Silhouettes

Approved by:

by

Michael James Bizer
Captain, United States Army
B.S., Western Kentucky University , 1980
M.S., Umvers1ty of Southern Cahfomla 1987

Submitted in partial fulfiliment of the requirements for
the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Dthei e

I\/hchael Jarffes Bizer

Neil C. Rowe, Thesis Advisor

1]. Eyﬁa eccﬁd Reader
ko\ JT k\/’ L 2K

Robert B. McGhee Department of Computer Science
XT.M ::Ij)\

Kneale T. MW and Policy Sciences

ABSTRACT

This research examines the practicality of automatically identifying the features of the
major structures of ship silhouettes using rule-based extraction and identification
techniques. The process was broken into three phases: (a) finding the silhouette
boundary, (b) locating the "bumps" (apparent superstructures) on the boundary, and
(c) describing the bump features qualitatively using a multidimensional-feature-space
classification. The program for the first phase is written in C while the programs in the
other two phases are written in MPROLOG and run on a Motorola 68020-based
worksiaton. The prugiaius accurately identified 78% of all bumps examined on six ship..
The lists of bump descriptions showed the key differences between two different ships of

the same ship-class, indicating future programs could identify ships using the output from

the programs of this thesis.

ACKNOWLEDGEMENTS

1 wish to express my deepest appreciation to my wife, Sally, for her encouragement
and support during the research and writing of this thesis. Thank-you also to my three

daughters for their understanding that "daddy had to go to school a lot.”

IL.

I11.
IV.

INTRODUCGTION ...ttt ettt ettt st e e b e e e aaeas 1
A. OBJECT RECOGNITION AND IDENTIFICATION.......ccoociviiiiiinnn. 1
B. MILITARY REQUIREMENTS FOR SHIP IDENTIFICATION................... 1
C. DESCRIPTION OF THESIScutiuiiitiiiiiiii it ceeaerea e 2
RESEARCH IN COMPUTERIZED OBJECT IDENTIFICATION..................... 3
A. BACKGROUNDottt ettt e ettt e e eteae e 3
B. RESEARCH USING CONVENTIONAL METHODS......c.cccccccvieiinnneen. 3
1. Shape Recognition Using Binary Images................cccoiviiiiciiiinn 3
2. Pattern Classification from Elemental Shapesc.cccceiiiiiaen. e d
3. Identification of Spherical ObJectsccoiuiiiiiiiiiiiiiiiiiiic i, 4
4. Parallel Processors and Image AnalysiS.........coovviiiiiiiiiiiiiiiinininnn. 5
C. RESEARCH USING AI TECHNIQUES............coiiiiiiiiine. C o8
1. Knowledge-Based Airport Identification.............coocoiiiiiiiiiiiinin . 5
2. Rule-Based Methods for Image Analysiscooviuiiiiiiiiiiieiiininaennannn, 6
3. Recognizing Man-Made Objects in Aerial Images......ccccccceviviinciannnnnn. 7
METHOLD'S OF SHIP IDENTIFICATION ...ttt 8
A PICTURE-DESCRIPTOR EXTRACTION PROGRAMcovviviiiiiiiiiann, 10
A OVERVIEW i e e e e 10
B. FINDING THE SILHOUETTE BOUNDARYcccoiiiiiiiiciiiineieienee 11
C. LOCATING THE BUMPS ... i e 13
D. BUMPFEATURE IDENTIFICATION ..ot 15
1. Removing the Shape from the Silhouette..............ooooiiiiiiiiiiiiiini 15
2. Shape Ana'ysis and Identification..........oooiviiiiiiiiiiiii i 18
E. FINAL OUTPUT OF THE PROGRAMc.cooiiiiiiiiiiiiiiin e 18
RESULTS OF PICTURE-DESCRIPTOR EXTRACTION PROGRAM............. 19
A. FINDING THE SILHOUETTE BOUNDARYcccoiiiiiiiiiiiiiiiiieeeeaene, 19
B. LOCATING THE BUMPS ...t e 20
C. BUMP FEATURE IDENTIFICATIONoiiiiiiiii it 21
D. PROGRAM LIMITATIONS DUE TO HARDWARE CONSTRAINTS........ 25

v

VI. CONCLUSION ...t e et an e 27

A. SUCCESS OF FEATURE EXTRACTION AND IDENTIFICATION 27

B. AREAS FOR FUTURE WORK......ccoooiiiiiiiiiiii e, 27
APPENDIX A - CPROGRAM SOURCE CODE.........cccoiiiiiiiiiiiiiiiiiiiiiciieeins 29
APPENDIX B - MPROLOG PROGRAM SOURCE CODE........c.ccccovviiiivirnnnnnn. 36
APPENDIX C - OUTPUT FROM GARCIA (LAMPS).....oiiiiiiiiiiiiiiiiiiieneenee 55
LISTOFREFERENCES. ... 58
INTTIAL DISTRIBUTION LIST ...ttt e 59

I. INTRODUCTION

A. OBJECT RECOGNITION AND IDENTIFICATION

The process of visually identifying an object can be broken into detection, delineation,
and identification. Detection locates the object, delineation separates the region the object
occupies from the background, and identification determines what the object is. The
identification process is of critical importance in military applications. Human analysts
remain the only means of performing this task accurately and reliably.

Computers can provide assistance in each of these three areas, although they are
weakest in identification. Their processing speed allows for rapid scanning of an area for

detection targets. Once detected, there are many ways of extracting the target's shape.

B. MILITARY REQUIREMENTS FOR SHIP IDENTIFICATION

Rapid detection, analysis, and identification of ships is important in military
operations. Identification is necessary to determine whether the ship is friendly or
potentially hostile. The number of action options available to a commander rapidly
decreases the longer it takes to identify the target.

Training humans in ship identification is time-consuming and expensive. Once
trained, these skills suffer if not practiced frequently. Additionally, the amount of
information to be interpreted can be overwhelming and the time constraints minimal.
Computer-assisted identification promises to alleviate these current shortcomings.

vur approach to computer-assisted ship identification is to break a detected object
down into its elementary pieces and then identify the pieces. A digitized ship silhouette's
boundary is delineated by a threshold comparison. The boundary is converted into a list of

line-segment coordinates of contour turn points. Using artificial-intelligence techniques,

these points are sequentially examined to find and extract the coherent pieces of the ship.
The size, shape, amount of irregularity, and location of each extracted piece are then
examined. Each piece is given an identity of gun-turret/weapons-system, supersuucture,
weapons-system, mast/support, antenna, radar, or unknown. The list of these pieces and
their identity can be reported to humans or could be supplied to future systems similar to

[Ref. 1] which could identify the ship from its known pieces and a database search.

C. DESCRIPTION OF THESIS

The remaining chapters of this thesis present background information and describe the
identification programs and their results. Chapter II describes some of the current and past
research in computer-assisted imagery and object identification. Chapter IIl examines the
problems inherent in object identification and describes areas where computer-assisted
systems would improve processing speed and accuracy.

Chapter IV is a discussion of the programs we developed for feature extraction and
identification, the algorithms we used, and the output the final program generates. Chapter
V will examine the results of the program for diffcrent ship images, and chapter VI presents

the conclusions and areas for follow-on research.

ii. RESEARCH IN COMPUTERIZED OBJECT
IDENTIFICATION

A. BACKGROUND

Computer-automated and computer-assisted object recognition and identification has
applications in many different areas, including robotics, imagery interpretation, and
chemistry [Ref. 2: p.11]. For example, imagery analysts need help in processing the
large quantity of digita! imagery data they receive. Much of their work involves detecting
changes in images taken at different times, a time-consuming task well-suited to
computerized scanning [Ref. 3:p. 905]. Programs which enable computers to identify
objects have involved conventional procedural image analysis, artificial intelligence (Al), or

a combination of both.

B. RESEARCH USING CONVENTIONAL METHODS
1. Shape Recognition Using Binary Images

Grogan [Ref. 4] performed a comparative study of shape recognition and
description using binary images. His test objects were six different aircraft arranged in
different views. His analysis concentrated on the use of global shape methods to idenify
and analyze the image boundary. The five methods compared were 1) Fourier descriptors
of the boundary, 2) Walsh points of the boundary, 3) the cumulative angular deviant
Fourier descriptors, 4) moments of the silhouette, and 5) moments of the boundary.

The research was conducted in 1982 and 1983, and the speed of the programs was
good. One of their limitations was the resolution capabiiities of the equipment; images
were limited to 256 by 256 pixels, so silhouettes were simplified drawings of the aircraft to

be identified.

2. Pattern Classification from Elemental Shapes

Research which involved dissecting silhouetted pictorial patterns into specific
elemental shapes was conducted by Todd [Ref. S]. His efforts concentrated on pattern
classification. A figure was dissected into subfigures and each subfigure was analyzed
according to multiplicity, orientation, position, size, shape and position. The analysis of
the subfigures generated a Figure Classification Number (FCN) for the whole pattern,
which could be compared against other known FCN's in a database search. A match
wouid allow the figure to be identified.

The subfigures of an object generated by Todd were not each classified as a named
feature of the object, but the analysis of these pieces led to an object identification. The
program successfully recognized 22 different aircraft silhouettes as airplanes. Each of the
airplane’s differences were written in their FCN. Thus the result was in a form which only
the computer could interpret, unlike the ship image summaries prepared by the ship
analysis program prescited in this thesis.

3. Identification of Spherical Objects

Computers can rapidly process large amounts of data but have difficulty
identifying objects because of the large number of possibilities. Humans skilled in
photographic interpretation have problems processing large amounts of imagery data. but
are very skilled at identifying an object once it is detected. A more human-like computer
identifier was presented by Cox, et al. [Ref. 3], in a detector for all spherical objects
contained in an image.

The first step of their detection methodology is parameter extraction, where the
position of the light source and image intensity parameters are gathered. The next step is
feature detection, using either input from a previous program or by conducting a simple

pattern search, which takes about 6C scconds for a 512 by 512 image. The third step is

segmentation, which uses the gradient angle wransform to segment an image, creating a
candidate region to examine. The final step is validation, in which the region is processed
and classified.

Their approach limits the universe of objects the computer must identify to one
type while using several different detection algorithms to ensure detection. The approach
of this thesis also limits its universe significantly.

4. Parallel Processors and Image Analysis

Because of the large amounts of data a single image contains, research using
parallel-processing computers is also being conducted [Ref. 6]. In one example
implemented using a Connection Machine, the operator identifies an object for the machine
to find and gives an example. The program studies the example and builds a database of
knowledge about the object. Using this knowledge, it then examines an image, finding and
highlighting any of those objects present in the image. Using the Connection Machine
reduces processing time from 30 minutes to under one second for pictures ranging in size
from 256 by 256 pixels to 5000 by 5000 pixels [Ref. 7].

This approach works at a lower level of analysis than the approach in this thesis.
It could help the analyst in th~ initial processing stage to highlight areas which should be

examined first.

C. RESEARCH USING AI TECHNIQUES
1. Knowledge-Based Airport Identification
One example of research combining conventional and knowledge-based techniques
is SPAM, system for airport photographic interpretation using MAPS [Ref. 8]. Using
conventional image processing tools, SPAM first detects and labels regions. Then, using

rule-based control and recognition methods, it groups major components of airports.

This teciinique initially suffered fror the same limitation mentioned in section B-3,
in that its universe of knowledge was very limited, in this case to airports. Later research
[Ref. 9] focused on ways to improve the knowledge acquisition process for other
universes, resulting in a set of interacti*« tools. These applications concentrate on
identifying all occurrences of a structure, whereas this thesis concentrates on the pieces of
an object witl.in a structure.

2. Rule-Based Methods for Jmage Analysis

Recent work attemptec 0 analyze, segment, and interpret images of printed circuit
boards and satellitz images of ice flows [Ref. 10]. The methods developed used a
combination of procedural ond rule-based programming. The process was divided into
three levels: low, mid, and high. Low-level processing involved image operations such as
thresholding, computation of gradients and non-maxima suppression. eic.

The mid-level processing involved grouping of similar edges and extracting
symboiic enuues. The mid-level processing extracted the initial symbolic information.
including the geometric progperties of each linked segment, the forward and backward
neighpor codes, and the codes or labels of edges passing through pixels. Further mid-level
processing joined small segments and edger- together.

The high-level processing attempted to identify the extracted entity, deriving a
symbol that has meaning to either humans or another follow-on process. This step used a
hypothesis generation/reduction/verification model. The goal was to produce a symbolic
description of the input image. For a circuit board, this would be a description of the
length, location, and orientation of segments.

The program works towards the same goal as ours in trying to take a low-level
group of data and bring the description of the object to a symbolic level understood by

humans. The final symbolic outputs of the programs are different. Theirs prints the

location and size of an object, while ours goes a step further and identifies what type of
object is being examined.
3. Recognizing Man-Made Objects in Aerial Images

Another system for analyzing aerial imagery was developed entirely with Al
languages, specifically Lisp and ART (the Automated Reasoning Tool) [Ref. 11]). The
arprcash differed from [Ref. 10] in that it was goal-driven: the system identified all
reques... ohject types in an image.

The application was tested with airport scenes and also as a target-cueing aid for
FLIR (Forward-Looking Infrared) imagery. For low-level processing, the system could
utilize several different image-processing techniques. The program could select the proper
technique based on parameters such as the application area, sensors used, resolution,
weather conditions, and quality of data. The low-level processing concentrated on edge
detection, region segmentation, and other image enhancement functions.

Intermediate-level processing was responsible for creating and filling slots for each
region. These slots included coordinates, area, variance, connectivity, compactness, and
other descriptions.

Knowledge about the area of interest improved the interpretation process. The
system included information on basic terrain features such as power plants, roads,
railroads, rivers, forests, etc. Based on the goal given the system, it would also generate a
dynamic model for the goal objects. Then the high-level processing would classify regions
into goal objects, using the information in the region slots while attempting to make the best
matches possible.

The approach provides larger flexibility than the one presented in this thesis. Also,
instead of identification, it concentrates on detecting and highlighting objects for the human

operator to examine.

II1.

For people to develop the necessary expertise in ship identification is a time-
consuming and personnel-intensive task. There are hundreds of types of ships to be
studied, each with its own set of identifying characteristics. Learning these characteristics
requires days of study, as well as frequent refresher training to maintain the acquired skills.

Instruction methods for image interpretation generally follow a rule-based approach.
The student must develop his working knowledge of ships and then memorize kev
differences between types of ships. The first step is to teach the student the different
features of a ship. These features usually stand out from a silhouette or image and can be

peeled from the ship and analyzed independently. During this analysis the feature's identity

METHODS OF SHIP IDENTIFICATION

is further refined to as much detail as possible. This is shown in the table below.

TABLE 3.1. Example Identifications of Ship Structures
Feature Intermediate Identity Exact Identity
1 5-1n gun tube, located
gun-turret forward, square turret Mark 54
square launcher,
weapons-svstem forward, several tubes ASROC Launcher

radar

large, square antenna,
probably air-search.

Lockheed SPS-40

large structure aft

box-like shape, clear
area beside, several antennas
on box

Hangar for LAMPS

Let us assume the student is learning about air-search radar. The student must first
learn a series of broad rules for each feature, like that air-search radar usually have large,
squared antennas, rotate 360 degrees, and are located high in the ship superstructure.

Partial classification (such as recognition that the feature is a radar) of a feature can allow

the ship identification process to still proceed. The next step is learning to distinguish
between different air-search radar. For example, the Lockheed SPS-40 radar antenna has a
triangular base, a square antenna with tapered ends, and a feed homn that hangs over the top
of the antenna.

Once a particular radar has been accurately identified, the student must learn to
associate it with particular ships. For example, the SPS-40 radar is found on several US
FFG class ships, including the BRONSTEIN and GLOVER classes. The student then tries
to learn every ship-class known to use the SPS-40 radar. Such detailed knowledge
deteriorates rapidly without frequent use or refresher training.

Once the student is capable of identifying the different features, he next learns the rules
for identifying particular ships. This requires learning the differences that the same features
may have on different ships. These differences include the way different features are
combined as well as where on the ship these features are located. The learning process is
again rule-based, as in the GARCIA-class FFG's which have one Mk-54 gun-turrei
forward and one Mk-54 gun-turret aft, an ASROC launcher behind the forward turret, a
Lockheed SPS-40 radar, a single stack, and an SPS-10 radar. The difference between the
SAMPLE and BRADLEY, both GARCIA-class FFG's, is the BRADLEY is fitted for the
LAMPS helicopter and has a hanger on the rear deck. The rules are learned for all classes

of ships, and the skills will rapidly deteriorate without constant use.

I1V. A PICTURE-DESCRIPTOR EXTRACTION PROGRAM

A. OVERVIEW

Our feature extraction and identification process involves three stages; (1) finding the
silhouette boundary (outline), (2) locating the bumps on the silhouette, and (3) extracting
and identifying the features of the bumps. Stage 1 is implemented in C and stages 2 and 3
are written in MPROLOG. The program flow is shown in Figure 4.1 below. This chapter

is broken into three corresponding sections.

Ship_
Trace
Program

Y

Locate
Bumps

Program

!

Identify
Bumps
Program

Figure 4.1. Diagram of Program Modules

10

¢

Figure 4.2 contains a labeied ship silhouette, demonstrating some bump identifications

our program attempts to make.

radar mﬁt/ Support
weapons-syster& 9tenna

gun-turrget /uperstructure

Figure 4.2. Silhouette with Labeled Bumps

B. FINDING THE SILHOUETTE BOUNDARY

The ship silhouettes are digitized using an Eikonix digitizer and SUN Workstation.
The digitizing program is scanit, written by David S. Hill for a computer graphics class.
The ship must be positioned upright and level with the bow on the left side. The
orientation is important as the second stage exploits the identity of y-coordinates. Using an
integra‘ .n value of about 12,000, the gitized image is captured into a file as a 1000 by
1000 array of the pixel values. This file is transferred to the VAX 11/785 computer for
boundary processing.

The ship silhouettes used were taken from Jane's All the World's Fightin
[Ref. 12]. Six different ships of the frigate class were used. The selection criteria for the
silhouettes were they have many mutual features in common, with differences in the size
and location of the features. Each digitized silhouette's file is processed separately by the

ship_trace program, with the resulting files of line segments passed on to the next stage.

11

The first problem to be solved when finding the boundary of the digitized image is
selecting a proper threshold. The ship silhouettes were solid black shapes on white paper.
Although black would be indicated by a pixe! value near O (0 hex) and white would be near
255 (ff hex), setting the threshold to catch the change from black to white requires some
adjustment for each picture. This was necessary to ensure that any noise captured with the
image was tuned out. Also, a threshold too close to black would tend to fill in many of the
fine details of the superstructure, while a threshold too close to white would allow breaks
in antennas or cracks through the ship to appear in the image. To help in selecting the
proper threshold value, a small program was written which printed out a portion of the
silhouette with asterisks for the dark areas and spaces for the light ones. By running this
program using different values and viewing the results, the threshold value could be fine-
tuned to capture the right amount of detail.

Once the threshold value is selected, the boundary-finding program can be run. This
program was designed to walk along the boundary!, of the silhouette, recording (x,;)
coordinates of points whenever it changed direction. The program uses the four principal
directions, up, down, left, and right. Its goal was to start at the left end and keep moving
toward the right end of the ship. The approach is similar to Pavlidis' contour tracing
algorithm [Ref 13:p. 143]. The program in effect traces the outline of the ship, creating a
file of turn points. Each pair of points denotes a line segment. A long straight antenna
would be converted into two or three points, while a gun turret might create fifty or more

points.

1The boundary is located along the black cells delineating the top of the ship. In effect,
the program would walk the deck of the ship, recording locations where it changed
direction. The locations were expressed in the coordinates of the black cells.

12

Originally, we intended to trace the outlines using eight directions, the four explained
above as well as the diagonals. Rut diagonal lines can also be represented by a pattern of
horizontal and vertical moves. Although this creates many more turn points, finding and
recording diagonals requires looking at a larger group of points during each iteration than
our algorithm was designed for.

Turn points found are written to a data file. This data file is then converted to an
acceptable MPROLOG format: a list with each point in the list being represented as

cp(<x-coordinate>,<y-coordinate>).

C. LOCATING THE BUMPS

The extraction algorithm was designed to look for matching pairs of up-turns and
return-to-horizontals. These are the definers of a single "bump”, the point where it starts
going up and the point where it returns to the horizontal at a height equal to that of the up-
turn. By detecting those two points, and capturing all the line segments between them, a
bump can be extracted. A modified algorithm is used to find bumps which start and end at
different heighis. The program recpeatedly examines the point where it currently is, the
previous point, and the next point. From these, it determines if the middle point was
located at an up-turn. If so, it saves the current location coordinates in a list of up-turns.
This is repeated for every successive triple of points.

In order to capture only true comers, an up-turn was required to have at least a three-
pixel vertical movement. This helps ignore parts of the silhouette which were jagged due to
noise. The return-to-horizontal which matched these up-turns was only required to have a
one-pixel movement. By having the up-turn constraint select only well-defined corners,
the return-to-horizontal constraint could be looser to make it easier to find the matching

corner of the bump. Figure 4.3 shows examples.

13

3 pixel up_turn Matching return_to_horizontal

* % Noise
3 I X ¥ X * 3% 2 3 3% 73 |3 3

I I K K H M I FH I I I FH HK K HK FH H K K ¥ X
I I K K HK K I FH K I K HK K K K K HK K K K

Figure 4.3. Example of Normal Bump and Image Noise

Not all bumps on a ship can be caught this way, so two variations of the algorithm are
required. One operates as an inverse of the first. If the return-to-horizontal has a three-
pixel or more vertical movement preceding it, the program turns around and retraces the
bumps until it finds a one-pixel or two-pixel vertical movement where the y coordinates are

cgual to the retumn-to-horizontal's. An example is shown in Figure 4.4.

3 pixel
return_to_horizontal

Created up_turn /

»* K WK FK K HK H K K X

I ;K A HK K K FH K M I H K I K I MK H K I K X

I K HK K H H A FK H K K H I KK K K FK K K

Figure 4.4. Example of Created Up-turn

14

The final variation is designed to detect and create a bump when a vertical movement
1 “ses below a previously labeled up-turn. That terminates all unmatched bumps whose

up-turns were in the vertical-movement height range. An example is shown in Figure 4.5.

3 pixel up_turn Created

\ * ¥ return_to_horizontal
¥ ¥ ¥

K K I K K K ')(-*

K K I HK K HK K K K I X I} HK HK K XK K K

K K K K K I HK HK I I HK K I K K I K KK K X

Figure 4.5. Example of Created Return_to_Horizontal

The file containing matching pairs of up-turns and return-to-horizontals is kept in
MPROLOG format. When the algorithm reaches the end of the ship, it closes off any

bumps still in the up-turn list and closes the file.

D. BUMP FEATURE IDENTIFICATION
1. Removing the Shape from the Silhouette
The shape analysis program is written in MPROLOG. I iterates through a list of
bumgs, finding their size, length-to-width ratio, curviness, and location. Thcse descriptors
are then assigned categories and rules for classification of bumps from descriptor categories
are applied.
To do this, the program traces the outline of the bump using the list of turn points.

If the bump has other bumps within it, these bumps are stripped off so only the basic shape

15

remains. If a bump within the bump is removed, the program creates a straight line

segment where the bump was. This is shown in Figure 4.6.

L
peeled bump
»* XK
¥ FK ¥ K K
¥ K HK K K M
% K 3
%* vempempeny | —— inserted line segment
* ¥ KK K K K HK FK K K

K H HK HK K K K K K K K K
K A HK H K K K K K K K x

X

X

X

X

X
X X X X X
X X X X X

KK MK K K K K I X ¥ KK

L simplified bump

Figure 4.6. Example of Peeling Bump and Creating Line Segment

Next, each bump is analyzed as to curviness, horizontal location, length-to-width ratio,
orientation, and size. The number of turn points in the bump list roughly indicates the
curviness of the shape (See Figure 4.7). The location of the shape is determined as bow,
forward, mid_ship, aft, or stern; this is useful as gun systems tend to be forward or aft on
ships, while radar systems are usually found in the middle third of the ship, around the
superstructure. The length-to-width ratio of the object is found from the minimum and
maximum x and y values, which create an imaginary box around the object, as exemplified
in Figure 4.8. Particular length-to-width ratios can be described as the shapes square,
pole, rectangle, etc. Box orientation (flat_rectangle, tall_rectangle) can also be described.

The box size in relation to the ship is also used.

16

Actual Curve

Turn Points

T

ALY
\\~~
(SN
.

L

ol X K K K XK

H K FK K K K XK

”e
E
*
¥ X
¥
¥*
¥

»e
*
»*
*
*
*
*
*

K K FH K K HK N

Figure 4.7. Example

“
4
3
H

7 96 96 96 B0 96 6 D6 B6 8
¥ K M K K K K K X

¥ FK K K K HK K K K

Pixel Representation

of Curve Approximation

_ L R
(x-r~in,y-rax) (x-rax,y-max)
% X
¥ O o K X
¥ N K K K
(X-rin,y-r-n) (x-max,y-rmin)
* I ¥
N I H I W K K K
I I MK HK O H KK M O K M I
I I R I I K I A K I I M K XK K I MK K

Figure 4.8. Example of Box Surrounding a Shape

2. Shape Analysis and Identification

After all descriptors of a bump have been found, shape rules (for antenna, radar,
gun-turret/weapons-system, weapons-system,mast/support,or superstructure) are applied.
For example, the descriptors [pole, tall_rectangle, medium, mid_ships] indicate an antenna
of some type, and "antenna" is put into the identification list.

Sometimes a bump will match more than one rule. For example, a shape may have
attributes of a radar as well as those of a superstructure. Then both rule descriptions are
added to the list and the word "or" is inserted between them.

Sometimes a bump will not match any of the rules. This may be due to noise
introduced when the image was digitized, or the bump might be an uncommon shape for
these types of ships. In this case, the word "unknown" is inserted in the identity list.
Since the location of the shape and its description list is also kept for future use, a more

irtelligent program might later be able to identify the shape.

E. FINAL OUTPUT OF THE PROGRAM

When the programs have completed all processing, the final file consists of a listing of
all the extracted shapes, their descriptors, and their identity, if known. The shapes are
identified by their starting and ending coordinates, their descriptor list, and their
identification list. This file is then available for processing by a future program which

could match a ship class to the descriptors our program has created.

18

V. RESULTS OF PICTURE-DESCRIPTOR EXTRACTION
PROGRAM

A. FINDING THE SILHOUETTE BOUNDARY

The performance of the first-stage program is shown in Table 5.1 below. The
measurements indicate the size of the MPROLOG file produced, the number of turn points
in the file, and the threshold setting.

TABLE 5.1. Outline Extraction Program Results
Ship Name MPROLOG File Number of Threshold
Size Points
GARCIA (LAMPS) 12.5 Kb 962 60
GLOVER 17.9 Kb 1,380 50
BROOKE 12.4 Kb 952 50
BRONSTEIN 8.1 Kb 634 50
KNOX 10.4 Kb 798 55
GARCIA 11.9 Kb 913 S0

As the table shows, the resulting MPROLOG file is not very large, since each of the
original digitized image files was 990 Kb in size. The only problem encountered involved
the silhouette of the BRONSTEIN: its digitized image had more random noise than the

others, and the program required several runs to find the bow of the ship. the starting

point.

19

B. LOCATING THE BUMPS

The second stage of finding and marking the location of bumps on the silhouettes was
the slowest stage. The program could process any ship except the GLOVER in one run
(the number of turn points in the GLCVER's data file had to be split in half to allow the
program to run, for otherwise the program crashed after reading in the data points and the

required program modules). A listing of the CPU time used is shown in Table £.2.

TABLE 5.2. Execution Time for Bump Locating Program
Ship Name CPU Time (minutes:seconds)
GARCIA (LAMPS) 31:07
GLOVER 39:11
BROOKE 30:36
BRONSTEIN 13:17
KNOX 21:37
GARCIA 27:47

Table 5.3 summarizes the number of bumps found.

20

TABLE 5.3. Results of the Bump Locating Program
Ship Name Image Length (Pixels) Number of Bumps
GARCIA (LAMPS) 735 37
GLOVER 933 48
- BROOKE 769 44
BRONSTEIN 700 34
KNOX 757 37
GARCIA 758 26

the ship has few.

C. BUMP FEATURE IDENTIFICATION

Table 5.4 summarizes the results of the third program in the identification process. A
successful identification is when a bump is identified either as itself or as a part of an or'd
list. If the bump is classified as unknown, it is not counted as a successful identification.

The use of unknown as a descriptor prevents the program from a wrong identification, i.e.

identifying a radar as a gun-turret.

2]

To test the program with a different size, the GLOVER silhouette was digitized so that
it completely filled the imaging window, adding more detail to the image than the others,
and this sithouette generated the largest number of bumps. The smallest number of bumps

was generated by the GARCIA-class FFG without a LAMPS silhouette because the rear of

TABLE 5.4. Statistics of Bump Identification Program

Ship Name Number Number Number Percent
Identified Unknown Not Done Successful
GARCIA 32 4 1 86%
(LAMPS)
GLOVER 40 8 0 83%
BROOKE 38 6 0 86%
BRONSTEIN 26 8 0 76%
KNOX 27 10 0 73%
GARCIA 14 6 6 53%
TOTALS 177 42 7 78 %

As the table shows, the identification program is successful in identifying a bump
about three of four tries. The number of bumps a ship has to extract does not seem to
affect the program's success rate. A bump falling in the unknown category is not
necessarily a failure; it may have an unusual shape, there may be noise in the image that has
distorted its shape, or the detail from the silhouette may not provide enough information to
make a definitive identification. Some features are more helpful in the identification
process than others. For frigate-class ships, the key features are the number, location, and

-
type of weapons systems, the number of radar and antennas, and the presence or absence

of certain superstructures like helicopter hangars.

To illustrate bump features, the differences between a GA™.CIA-class FFG and the

GARCIA FFG with LAMPS can be seen in Figure 5.1.

22

GARCIA-class FFG

GARCIA FFG with LAMPS

Figure 5.1. Silhouettes of GARCIA-class FFGs

The ships have the same basic structure and similar weapons systems and radar. The
key differences are the number of antennas and the presence of the helicopter hangar on the
rear deck of the FFG with LAMPS. Table 5.5 describes a GARCIA-class FFG without the
LAMPS helicopter modification. Comparing it and Table 5.6 illustrates the differences our

program detects between two similar ship silhouettes.

23

TABLE 5.5. Features for GARCIA-class FFG (no LAMPS)

Feature on the Ship

Feature Identified by Program

gun-turret weapons-system
weapons-system weapons-system

radar radar or superstructure
radar radar or superstructure
radar (program cannot process)

weapons-system

weapons-system

antenna

antenna

24

TABLE $5.6. Features for GARCIA FFG with LAMPS

Feature on the Ship

Feature Identified by Program

gun-turret

gun-turret/weapons-system

weapons-system

weapons-system

antenna antenna

antenna antenna

radar and mast mast/support

antenna antenna

mast/support mast/support Or superstructure
antenna antenna

antenna antenna

gun-turret gun-turret/weapons-system
antenna antenna

antenna antenna

hangar superstructure superstructure

D. PROGRAM LIMITATIONS DUE TO HARDWARE CONSTRAINTS

A ship's bumps could be identified in two to five runs of the program. The
requirement for multiple runs was due to hardware and software limitations of the ISI
Workstations. The MPROLOG statement table does not use any garbage-collection
techniques to free up memory after it is no longer needed. Because of the large amount of
recursive list processing used in the extraction process, the statement table fills up quickly

and the program halts. After moving the coordinates of bumps that have been processed to

25

the end of the list of bumps, the program can be restarted. It will continue to process the
remaining bumps, adding their descriptions as they are developed.

A similar limitation experienced by the feature extraction and identification program
was its inability to process seven bumps when analyzing the two GARCIA-class frigates.
The error occurs as the program attempts to strip off several bumps mounted on top of the
ships' central superstructure. The number of points to be extracted for the bump and the
number of points being processed to peel off a bump are too many for the system stack.
However, if the feature causing the problem is removed from the list and the program is
restarted? , the program operates normally. The effects of this inability to process six
bumps is shown in the shorter length of Table 5.5 and the overall lower identification
success rate for the GARCIA-class FFG without LAMPS. The problem can be solved

either by adding more memory or changing the software.

2 In this case, the ordering of the list of bumps is changed, either moving the problem
bumps behind the end of list flag or by removing them from the list. The program is then
restarted from the beginning, unlike the restarts mentioned earlier where the program picks
up where it left off.

26

VI. CONCLUSION

A. SUCCESS OF FEATURE EXTRACTION AND IDENTIFICATION

We have demonstrated that the key features from a ship silhouette can be extracted,
analyzed, and identified to produce a list describing and naming the features. The results
we have seen are similar to other research using knowledge-based and artificial-intelligence
techniques. The average success rate for six frigate-class ships was 78%, with values
ranging from 53% to 86%.

These programs provide a versatile front-end method for automated ship recognition
and identification. The description and identification information contained in the final
listing could be used by other programs to identify the type of ship or possibly the name of
the ship. Such a program, combined with an intelligent tutor program, would relieve
instructors of the administrative and repetitive tasks of updating silhouette libraries.

The MPROLOG programs suffer from hardware and software limitations. The
amount of information contained in a silhouette is not that large, but the recursive analysis
used by the programs quickly use up available memory and stack space. Many other

Prolog dialects should not have these limitations.

B. AREAS FOR FUTURE WORK

The program could be extended to handle all ships, regardless of nationality or type.
The program could also be improved by adding the ability to detect and analyze objects
with diagonal appendages. Our program converts diagonals into horizontal and vertical
steps. Extending it to interpret diagonals would allow the program to better pick apart

pieces of the superstructure and identify more of the antenna and mast detail.

27

Adding the ability to reason from known bumps would allow the program to go back
and reevaluate bumps previously identified as unknown and make an identification.
Identification is possible by knowing what ship classes partially match the current
silhouette and looking for unknown bumps that could match known ship structures in the
ship classes being examined.

These programs could be put together with an intelligent tutoring program. The
combined system would be a useful tool for developing and maintaining-silhouette

identification skills.

28

APPENDIX A - C PROGRAM SOURCE CODE

SHIP_TRACE.C

This program finds the bow and stern of the digitized image and creates a binary file
line.coords is then used by program format.c to create a MPROLOG data file of the
turn points.

#inpludc <stdio.h>
main()

{
char PTS {2501{1000];
char row_data[1000];

int num_pixels[1000];

int datafile,pfile,pfilel;

int XCOORD,YCOORD;

char code;

int X,Y;

int row,1;

int fd[1;

int info[2];

short TYPE,ROWS,COLUMNS;

int max_rows, max_columns, max_PTS;
int Xxstartpoint, ystartpoint;

int xendpoint, yendpoint;

int threshold; /* adjust to picture quality */

/* open datafile */

printf("'starting program \n");

if ((datafile = open("/scratch/bizer/pic.brooke”,0)) < 0)
{

printf("can't find it\n");
exit();
/* open output file */
if ((pfile = crecat("line.coords",0744)) <0)
{
printf("can't open output line.coords\n");
exit();
/* open output file */
if ((pfilel = creat("line.info",0744)) <0)
{

printf("can't open output line.info \n");
exit();

29

/* pull off header information */

read(datafile,&TYPE,2);

read(datafile, &ROWS,2);

read(daiaiiic,&COLUMNS,2);

printf("type %d max_rows %d max_columns %d \n",TYPE,ROWS,COLUMNS);
max_rows=1000;

max_columns = 1000;

[*clean off empty space above*/
for (row = 0; row < 280; row++)

read(datafile, &row_data[0], max_columns);
printf("cleaned off blank space \n");

/* get arow of information */
for (row = 280; row < 510; row++)

read(datafile, &PTS[row-280][0], max_columns);
printf(" Array is initialized.\n"),

/**/

/* Initalize tracing program */
xstartpoint = 1000;
xendpoint = 0;

for (row = 0; row < 220; row ++)
for (i = 20; i < max_columns; i++)

{
i{f (PTS[row][i] < 55 && i < xstartpoint)

xstartpoint = i;
ystartpoint = row;

if (PTS[row][i] < 55 && i > xendpoint)
{

xendpoint = i;
yendpoint = row;

}

XCOORD = xstartpoint;
YCOORD = ystartpoint;

X =XCOORD;

Y = YCOORD + 280;
ystartpoint = ystartpoint + 280;
yendpoint = yendpoint + 280;

printf("XStartpoint = %d XEndpoint = %d\n" xstartpoint,xendpoint);
printf("Y Startpoint = %d YEndpoint = %d\n",ystartpoint,yendpoint);

30

write(pfile1,&ystartpoint,4);
write(pfile1l,&xstartpoint,4);
write(pfile1,¥dpoint,4);
write(pfile1,&xendpoint,4);
printf("made it past writing to line.info \n");

code = 'R';

prev_code = 'Z',

threshold = 55;

while XCOORD < xendpoint)

{
while (code == R’)

{
if ({P’T S[YCOORD-1][XCOORD)] < threshold)

printf("entering with code = R\n");
write(pfile,& Y ,4);
write(pfile,&X,4);
YCOORD = YCOORD - 1;
Y=Y+1;
code = 'Uj;

)
else if (PTS[YCOORD][XCOORD+1] < threshold)

{
X=X+1;
XCOORD = XCOORD +1;

)
else if (PTS[YCOORD+1}[XCOORD)] < threshold)

{
write(pfile,&Y ,4);
write(pfile,&X,4);
YCOORD = YCOORD + 1;
Y=Y-1;
code = 'D’;
)
else if (PTS[YCOORD)][XCOORD-1] < threshold)

printf("entering with code = R\n");
write(pfile,& Y ,4);
write(pfile,&X,4);
X=X-1;
XCOORD = XCOORD - 1;
code = 'L,

)
b
while (code =='D")
{
if (PTS[YCOORD][XCOORD+1] < threshold)
write{pfile, &Y ,4);

31

write(pfile,&X,4);
XCOORD = XCOORD + 1;
X=X+1;

code = 'R";

)
else if (PTS[YCOORD+1][XCOORD)] < threshold)

{
YCOORD = YCOORD + 1;
Y=Y-1;

)
else if (PTS[YCOORD]{XCOORD-1] < threshold)

{

write(pfile,& Y ,4);
write(pfile,&X,4);
X=X-1;

XCOORD = XCOORD - 1;
code = 'L";

)
else if (PTS[YCOORD-1][XCOORD)] < threshold)

{

write(pfile,& Y ,4);
write(pfile,&X,4);
YCOORD = YCOORD - 1;
Y=Y+1;

code = 'U"

)
)
while (code =="L")
{
if (PTS[YCOORD+1][XCOORD] < threshold)

{

write(pfile,& Y ,4);
write(pfile,& X,4);
YCOORD = YCOORD + 1;
Y=Y-1;

code = 'D";

)

cls{e if (PTS[YCOORD][XCOORD-1] < threshold)
X=X-1;
XCOORD = XCOORD - 1;

}
else if (PTS[YCOORD-1][XCOORD] < threshold)

write(pfile,& Y ,4);
write(pfile,& X,4),
YCOORD = YCOORD - 1;
Y=Y+1;

code = 'U",

}

32

else if (PTS[YCOORD]{XCOORD+1] < threshold)

write(pfile,& Y ,4);
write(pfile,&X,4);
X=X+1;

XCOORD = XCOORD +1;
code = 'R';

}

)
while (code == 'U")
{
if PTS[YCOORD]}[XCOORD-1] < threshold)

write(pfile,& Y,4);
write(pfile,&X,4);
X=X-1;

XCOORD = XCOORD - 1;
code = 'L’

)
else if (PTS[YCOORD-1)[XCOORD)] < threshold)

{
YCOORD = YCOORD - 1;
Y=Y+1;

)
else if (PTS[YCOORD][XCOORD+1] < threshold)

write(pfile,& Y ,4);
write(pfile,& X ,4);
XCOORD = XCOORD + 1;
X=X+1;

code = 'R';

}
else if (PTS[YCOORD+1][XCOORD] < threshold)

{

write(pfile. &Y ,4);
write(pfile,& X,4);
YCOORD = YCOORD + 1;
Y=Y-1;

code = 'D’;

}

}
} /* end while X <endpt */
close(datafile);
close(pfile);
close(pfilel);

}/* end pgm */

33

FORMAT.C

This program reads line.coords, converts the turn points to MPROLOG format and
writes the points to file coords.pro.

#include <stdio.h>
#include <sys/file.h>

main()
{
FILE *datafile, *datafilel, *pfile;

nt row;

int L

int xcoord, ycoord;
int max_rows,

int testvalue;

int first;

/* open datafile */

if ((datafile = fopen("line.info". "r")) == NULL) {
printf("can't find it info\n");
exit();

printf("opened line.info\n");
if ((datafile1 = fopen("line.coords", "r")) == NULL) {

printf(“can't find it coords \n");
exit();

}
printf("opened line.coords\n");
/** open output file **/

if ((pfile = fopen("coords.pro”,"w")) == NULL) {
printf("can't open output \n"); exit();

printf("opened output file\n");

fprintf(pfile,"module coords.\n");
fprintf(pfile,"/*$eject*An ");
fprintf(pfil* "body.\n");
fprintf(pfi..,\n ");

/* pull off starting and ending coordinates */
/* coords are read as Y,X and written as X,Y */

printf("before fscan \n");

fread(&ycoord, sizeof(int), 1,datafile);
fread(&xcoord, sizeof(int),1,datafile);

34

fprintf(pfile,"start_pt([%d,%d]).\n" ,xcoord,ycoord);
fread(&ycoord, sizeof(int),1,datafile);
fread(&xcoord, sizeof(int),1,datafile);
fprintf(pfile,"end_pt([%d,%d]).\n",xcoord,ycoord),
fprintf(pfile, \npoints([");
printf("starting to process rows\n");

/* read a row of data and write back out in MPROLOG format */
for (first=1;first < 1999;first++) {
if (fread(&ycoord, sizeof(int),1,datafilel) == 0)
break;

if (fread(&xcoord, sizeof(int),1,datafile1) == 0)

break;
if (first != 1)
fprintf(pfile," \n");
fprintf(pfile, "cp(%d,%d)", xcoord, ycoord);

fprintf(pfile,"})\n");

fprintf(pfile,"endmod /* coords.pro */\n");
fclose(datafile);

fclose(datafilel);

fclose(pfile);

APPENDI¥ B - MPROLOG PROGRAM SOURCE CODE

PROCESS.PRO

This program examines the turn points from coords.pro and locates all bumps on the
silhouette.

module process.

[*3eject*/

body.

import(add_statement/1, del_statement/1).

dynamic (coord_list / 1).
dynamic (cp / 2).

dynamic (pts/ 1).

dynamic (index_counter / 1).
dynamic (up_tumn / 1).
dynamic (bump / 4).

total_length(L) :-
start_pt([X,Y]), end_pt([X1,Y1]), L is X1-X .

set_up(L) :- points(L),
asserta(pts(L)),
stars,
write(START_POINT -->")start_pt([X,Y]),write(X),write('),write(Y),
write(END_POINT -->"),end_pt([X1,Y1]),write(X1),write('),write(Y1),
nl, stars,
open(l,"bumps.pro”),
tell(1,"bumps.pro"),
write('module bumps."),nl,
write('/*$eject*/),nl,
write(‘body."),nl,nl,
write('bumps([’),
told(1).

go :- state(system_time,START),
add_statement(up_turn([])),
stars,
set_up(L),
run(X,Y),
display_stats,
state(system_time, FINISH),
REAL_TIME is FINISH - START,
write("Actual Time = "), write(REAL_TIME),
write(" shown as HHMMSS").

36

run(X,Y) :- points(L),index1(L,0,PP,P,PN),
get_pts(PP,P,PN.XP,YP X, Y, XN,YN),
walk(XP,YP,X,Y,XN,YN),add_statement(index_counter(0)),
iterate(runl),
close_bump_file.

runl :- points(L),index_counter(K),K2 is K+1, /* Iterates this pred */

index1(L,K2,PP,P,PN), /¥ until runs out */
get_pts(PP,P,PN.XP,YP. X, Y, XN, YN), /* of coordinates */
walk(XP,YP,X,Y,XN,YN), /* toprocess. */

del_statement(index_counter(K)),
add_statement(index_counter(K2)),
display_stats,!.

done :- points(L),length(L,N),index_counter(K), K>=N-3.

display_stats :- nl,stars,
state(main_stack,[U,C)),
write("main_stack used = "),write(U),nl,
state(statement_table,[U1,C1]),
write("'statement_table used ="),
write(U1),write(" "),write(C1),nl,
state(cpu_time,TF),
stars,write("cpu time = "),write(TF),nl,

stars.
get_pts(PP,P,PN,XP,YP,X,Y,XN,YN) :- /* Get three points to process */
PP =.. [cp,XP,YP],
P =. [cp,X,Y],

PN =.. [cp,.XN,YN].

walk(XP,YP,X,Y,XN,YN) :-
change_up(XP,YP,X,Y,XN,YN).
walk(XP,YP,X,Y,XN,YN) :-
below_upturn(XP,YP,X,Y,XN,YN).
walk(XP,YP,X,Y,XN,YN) :-
rtn_horizontal(XP,YP,X,Y,XN,YN).
walk(XP,YP,X,Y,XN,YN) :-
create_upturn(XP,YP,X,Y,XN,YN).
walk(XP,YP, X, Y, XN,YN) :- .

change_up(XP,YP,X,Y,XN,YN) :- XP<X, /* record an up_turn. */
LisYN-Y,
L>2,
up_turn(UL),append([(X,Y)],UL,UL1),
add_statement(up_turn(UL1)),
del_statement(up_turn(UL)),!.

37

rtn_horizontal(XP,YP,X,Y ,XN,YN) :-
YP>Y
Y=YN,
X < XN,
up_turn(UL),
member((XU,Y),UL),
delete((XU,Y),UL,UL1),
del_statement(up_turn(UL)),
add_statement(up_turn(UL1)),
stars,
write_to_screen(XU,Y,X)Y),
write_to_file(XU,Y,X,Y),nl,!.

below_upturn(XP,YP,X,Y,XN,YN) :-
up_turn(UL),YP>Y,Y=YN,
member((XU,YU),UL),
YU>Y, X>=XU,
add_statement(bump(XU,YU,X,YU)),
delete((XU,YU),UL,UL1),
add_statement(up_turn(UL1)),
del_statement(up_turn(UL)),
write_to_screen(XU,YU,X,YU),stars,

/* bump rtn_to_horiz at same */
/* levelitstarted, so */
/* write coordinates. */

/* rtn_to_horiz is below latest*/
/* up_tumn, so create the */
/* nn_to_horizontal coord. */

repeat,check_duplicate(XP,YP,X,Y,XN,YN),

write_to_file(XU,YU,X,YU),!.

create_upturn(XP,YP.X,Y,XN,YN) :-
Y+3<YP
Y = YN,
X + 2 <= XN,
up_turn(UL),
find_near_up_turn(UL,Y ,FX,FY),
COORD =.. [cp,FX,FY],
points(L),
locate_coords(COORD,L,LL),
find_crossing(LL,Y,XCOOQORD),
write_to_file(XCOORD,Y X,Y),
write_to_screen(XCOORD, Y, X,Y).

check_duplicate(XP,YP,>Y,Y,XN,YN) :-
below_upturn(XP,YP,X,Y ,XN,YN),!.
check_duplicate(XP,YP,X,Y,XN,YN).

find_near_up_turmn([(FX,FY)IRL],Y ,FX,FY) :-
FY<Y,!.

find_near_up_turn([AIRL], Y, FX,FY) :-
find_near_up_turn(RL,Y,FX,FY).

38

/* rtn_to_horiz is below latest */
/* up_tumn, so create */
/* the upturn. */

/* Make sure the rtin_to_horiz */
/* doesn't include multiple */
/* bumps. */

find_crossing([A,BILL},Y,XCOORD) :- /* Returns vertical coord */
A =. [cp,AX,AY], AY <Y, /* where up_turns Y coords */
B =.. [cp,XCOORD,BY], BY >=Y,!. /* was crossed. */
find_crossing([A,BILL],Y. XCOORD) :-
find_crossing([BILL],Y,XCOORD).

locate_coords(COORD,[AIL],[AIL]) :- /* Find a coordinate from list*/
first_one{COORD,[AIL]),!.

locate_coords(COORD,[AIL],LL) :-
locate_coords(COORD,L,LL).

first_one(X,[XIiL]).

write_to_screen(X,Y,X1,Y1) :-
stars,
write('bump at "),write(X),write(' '),write(Y),write(' "),
write(X1),write(' "),write(Y1),nl.

write_to_file(X,Y . X1,Y1) :-
tell(1,"bumps.pro”),
write('b("),
write(X),write(’,"),
write(Y),write(',"),
write(X1),write(,),
write(Y1),write('),"),nl,
told(1).

close_bump_file :-
up_turn(UL),
close_up_turns(UL),
tell(1,"bumps.pro"),
write('b(999,999,999,999)])."),nl,
write(‘'endmod /*bumps.pro */'),

told(1).
close_up_tumns([]). /* Closes any up_turns left */
close_up_tums([(X,Y)IL]) :- /* in the list. */

end_pt([XE,YE]),write_to_file(X,Y,XE,Y),
close_up_turns(L).

endmod /* process */ .

39

UTILITIES.PRO

This program contains utility predicates and must be loaded as a module with
PROCESS.PRO and BUMPID.PRO.

module utilities.

export (append / 3, add_item / 3, delete / 3, reverse / 2, singlemember / 2,
member / 2, stars / 0, first / 2, index1/ 5,
open/ 2, tell /2, 10id / 1, ger_{m_rue /2, read_file / 0).

/*$eject*/

body.

dynamic (counter / 1).

/* These file were written by Dave Hutson, originally in C-prolog. */

/* It has been converted to run on M-prolog by Robert Powell. Other utility predicates */

/* have also been added as needed. */

abs(X,X) :- X >=0.
abs(X,Y):-Yis0- X.

first([XIL],X).

last([X],X).
last([XIL],Y) :- last{L,Y).

member(X,[XIL]) :- !
member(X,[YIL]) :- member(X,L).

delete(X,[].[]).
delete(X,[XIL],M) :- !, delete(X,LM).
delete(X,[YIL],[YIM]) :- delete(X,L,M).

append({].L,L).
append([XIL],L2,[XIL3]) :- append(L,L2,L3).

add_item(X,L,[XIL]):- !.

reverse(L,R) :- reverse2(L,[],R).
reverse2(f],L,L) :- !.

reverse2([XIL],R,S) :- reverse2(L,[XIR],S).
/* writes 60 stars */

stars :-

write("***")
nl,!.

40

/* These predicates are from Professor Rowe's book. */
/* Tterates repeatedly forward through a predicate until conditon */
/* "done", defined by the user, is satisfied. */

iterate(PRED) :-
repeat, iterate2(PRED), done .

iterate2(PRED) :-
evaluate(PRED), ! .
iterate2(PRED) .

r* Written by Mike Bizer for PROCESS.PRO

*/

/* indexes into a list, returning the previous(PP),item(P), and next(PN) */

index1([PP,P,PNIL],N,PP,P,PN) :-
N =0,.
index1([AIL],N,PP,P,PN) :-
NC is N-1,
index1(L,NC,PP,P,PN),!.

index(X,[XIL],1) :-
!

index(X,[YIL],N) :-
index(X,L,NM1), N is NM1+1 .

/* These utilities were wrtten by Robert Powell. */

open(CH,OUTFILE):-
set_channel(outfile(CH),[name=OUTFILE,mode=create}),
set_output(outfile(CH)),
told(CH).

tell(CH,OUTFILE):-
set_channel(outfile(CH),[name=OUTFILE,mode=append]),
set_output(outfile(CH)).

told(CH) :-
close_output(outfile(CH)).

get_fm_file(CH,INFILENAME) :-
set_channel(infile(CH),name=INFILENAME),
set_input(infile(CH)),
read_file,
fail.

get_fm_file(CH,INFILENAME) :-
close_input(infile(CH)).

41

read_file :-
read_token(file end),!.
read_file :-
read(X),
add_statement(X), /* bottom */
read_file.

endmod /* utilities */ .

42

BUMPID.PRO

This program identifies the bumps found by PROCESS.PRO. It uses the
COORDS.PRO and BUMPS.PRO data files.

module bumpid.

[*$eject*/
body.

dynamic (index_counterl / 1).

dynamic (the_bump / 5). /* bump fact to be processed */
dynamic (low / 1).

dynamic (lefi/ 1).

dynamic (high / 1).

dynamic (right / 1).

dynamic (bump_coords /1) /* coordinates making bump */
dynamic (bump_descr/3). /* bump & description list */
dynamic (box / 8). /* box description */
dynamic (finish_bump / 1).

dynamic (bumps_to_process / 1).

dynamic (ship_length/ 1).

go :- statc{cpu_time.TI),
add_statement(index_.ounicr1(0)),
set_state(global _stack,3000M,
set_state(main_stack,1000G,,
system(garbage_collection),
system(compress_stacks),
set_up_bumpid,iterate(gol),
state(cpu_time, TF), TOTAL_TIME is TF - TI,
stars,write("cpu time = "),write(TOTAL_TIME),
nl.

gol :- nl,
pbump(B1),compute_shape(B1),check_number_id(B1),
tell(1,"objects"),
bump_descr(B1,L,0),
write(B1),nl,
write(BUMP_DESCR -->'),
write(L),nl,
write(BUMP_ID --> "),
write(O),nl,
told(1),
clean_corners,index_counter1(X),
X2 is X + 1, del_statement(index_counter1(X)),
add_statement(index_counter1(X2)),nl,
check_statement_table(B1),
stars.

43

check_statement_table(B1) :- state(statement_table,[U,S]),U>300000EOQ,
add_statement(finish_bump(b(999,999,999,999))),stars,
write("'Statement table full after bump "),write(B1),stars,!.
check_statement_table(B1).

clean_comners:-
low(Y17),del_statement(low(Y17)),
high(Y 18),del_statement(high(Y18)),
right(X18),del_statement(right(X18)),
leftX17),del_statement(left(X17)),
bump_coords(XYZ),length(XYZ,N),write(" # segments ==> "),
write(N),nl,
del_statement(bump_coords(XYZ)),
add_statement(bump_coords([])).

done :- finish_bump(B),bconvert(B,X,Y,X1,Y1),
X=999, X1 = 999,

display_stats :- nl,stars,
state(main_stack,[U,C)),
write("main_stack used = "),write(U),n],
state(statement_table,[U1,C1]),
write("statement_table used ="),write(U1),write(" "),write(C1),
nl.

pbump(B1) :- get_two_bumps(B1,B2),asserta(finish_bump(B2)),
convertit(B1,X,Y,X1,Y1),convertit(B2,X2,Y2,X3,Y3),
add statement(the_bump(B1,X,Y,X1,Y1)),
add_statement(bump_descr{B1,[1.[1)),
create_bump_coords,
1

set_up_bumpid :-
open(1,"objects"),
tell(1,"objects"),nl,
write("OBJECTS from BUMPID"),nl,
told(1),
bumps(B),add_statement(bumps_to_process(B)),
start_pt([X,Y]),end_pt({X1,Y1]),
Zis X1 - X, add_statement(ship_length(Z)),nl,
add_statement(finish_bump([])),
add_statement(bump_coords({])),!.

get_two_bumps(B1,B2) :-
bumps_to_process([B1,B2IB]), write(B1), write('), write(B2), nl,
del_statement(bumps_to_process([B1,B2IB])),
add_statement(bumps_to_process([B2/B])),!.

convertit(B, X,Y,X1,Y1) :-
B=.[b,X,Y ,X1,Y1] .

cpconvert(B,X,Y) :-
B=..[cp,X,Y].

beconvert(B,X,Y,X1,Y1) :-
B=..[b,X,Y,X1,Y1].

create_bump_coords :- the_bump(B,X,Y,X1,Y1),
points(L),find_start(X,Y,L,LR),
create_list(X,Y.X1,Y1,LR),
del_statement(the_bump(B,X,Y,X1,Y1)),!.

create_bump_coords :- the_bump(B,X,Y,X1,Y1),
points(L),reverse(L,RL),
find_rev_start(X1,Y1,RL,LR),
reverse(LR,RRL),
create_list(X,Y,X1,Y1,RRL),
bump_coords([FIC}),
cpconvert(F,XB,YB),
cpconvert(D,XB,Y1),append(C,[D],CC),
add_statement(bump_coords(CC)),
del_statement(bump_coords([FIC])),
de!_statement(the_bump(B,X,Y,X1,Y1)),
'

find_start(X,Y,[AILR],LR) :-
A =.[cp,Xp,Ypl.X=Xp,Y=Yp,
bump_coords(LL),append({A],LL,LL1),
add_statement(bump_coords(LL1)),del_statement(bump_coords(LLL)),!.
find_start(X,Y,[AILR],LR) :-
cpeonvert(A,Xp,Yp),X=Xp,Y<Vp,cpconvert(B,X,Y),not{member{B,[AILR])),
bump_coords(LL),
append({B],LL,LL1),
add_statement(bump_coords(LL1)),del_statement(bump_coords(LL)),!.
find start(X,Y,[AILL],LR) :- find_start(X,Y,LL,LR),!.

find_rev_start(X,Y,[AILR],LR) :-
A =.[cp.Xp,Yp],X=Xp,Y=YP,
bump_coords{(LL),append(LL,[A],LL1),
add_statement(bump_coords(LL1)),del_statement(bump_coords(LL)),!.
find_rev_start(X,Y,[AILL],LR) :- find_rev_start(X,Y,LL,LR),!.

create_list(X,Y,X1,Y1,[]) :-
wriie(" POSSIBLE ERROR, ran out of coordinate points while"),nl,
write(" processing bump "),write(X),write(" "), write(Y),
write(" "),wrnte(X1),write(" "),write(Y1),nl,!.
create_list(X,Y,X1,Y1,[AIL}) :-
A=_[cp,Xf Yf],Yf < Y1,

45

create_list(X,Y,X1,Y1,[AIL)) :-
A=..[cp,Xf,Yf],
X1 = Xf, Y1 >= Yf, bump_coords(LL),append(LL,[A],LL1),
add_statement(bump_coords(LL1)),del_statement(bump_coords(LL})),!.
create_list(X,Y,X1,Y1,[AIL]) :-
/* peeling off upper bumps */
bumps(B),
cpconvert(A,XT,YT),
bconvert(TEST XT,YT.XX,YY),
member(TEST,B),
locate_coords(TEST,B,[BUMP_COORDSILLLY),
bconvert(BUMP_COORDS XA, YA, XFE,YF),
bconvert(WORKING_BUMP,X,Y,X1,Y1),
not(member(BUMP_COORDS,[WORKING_BUMP])), /";cnsurc not same
bump*/
cpconvert(C,XF,YF),
member(C,[AIL}]),
locate_coords(C,[AIL],[ZIRL)),
write(" peeling off bump1 "),write(BUMP_COORDS),nl,
create_list(X,Y,X1,Y1,RL),!.

create_list(X,Y,X1,Y1,[AIL]) :- /* don't compare with bump using added*/
/* peeling off upper bumps */
bumps(B), /* with created endings */
cpeconvert(A,XT,YT).
beconvert(TEST XT, YT, XX,YY),
member(TEST,B),

locate_coords(TEST,B,[BUMP_COORDSILLLY)),

bconvert(tBUMP_COORDS, XA,YA ,XF,YF),

bconvert(WORKING_BUMP,X,Y,X1,Y1),

not(member(BUMP_COORDS,[WORKING_BUMPY))), /*ensure not same
bump*/

cpconvert(C,XF,YF),

locate_fake_coords(X1,Y1,C,[AIL],[ZIRL]),

write(" peeling off bump2 "),

write(BUMP_COQORDS),nl,

create_list(X,Y,X1,Y1,RL),!.

create_list(X,Y,X1,Y1,[AIL)) :-
bump_coords(LL),append(LLL,[A],LL1),
del_statement(bump_coords(LL)),add_statement(bump_coords(LL1)).
create_list(X,Y,X1,Y1,L),!.

46

compute_shape(B1) :- bump_coords([LLOWIL]),
set_defaults((LLOWILY)),
check_defaults(B1),
find_corners(L),
make_box(XMIN,YMIN,XMAX,YMAX),
write("#HHH BOX > "),
write(XMIN),write(YMIN),write(" "),
write(XMIN),write(YMAX),write(' '),
write(XMAX),write(YMAX),write(" '),
write(XMAX),write(YMIN),nl,
describe_shape(B1,[LLOWIL],XMIN,YMIN XMAX,YMAX),
identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAYX),
'

make_box(XMIN,YMIN,XMAX,YMAX) :-
low(YMIN),
left(XMIN),
high(YMAX),
right(XMAX),
add_statement(box(XMIN, YMIN , XMIN,YMAX, XMAX, YMAX , XMAX,YMIN)
).

find_min(A,B,A) :- A <= B,!.
find_min(A,B,B).
find_max(A,B,A) .- A>=B, !.
find_max(A,B,B).

set_defaults(([LLOWIL]) :- LLOW =.. [cp,X,Y],
add_statement(low(Y)),
add_statement(left(X)),
get_last((LLOWIL])),!.

get_last([AI[]]) :- A =..[cp.X,Y],
add_statement(right(X)),
add_statement(high(Y)),!.

get_last([AIL]) :- get_last(L).

find_comers([]) :- .
find_comers([AIL)) :-
A =.. [cp,XA,YA]high(Y),
Y < YA,
add_statement(high(YA)),
del_statemcnt(high(Y)),find_comers(L),!.

find_comers([AIL)) :-
A =. [cp, XA, YA] left(X),
XA <X,
add_statement(left(XA)),
del_statement(left(X)),find_comers(L),!.

47

find_comers([AIL])) :-
A =. [cp,XA,YA],nght(X),
XA > X,
add_statement(right(XA)),
del_statement(right(X)),find_corners(L),!.
find_corners([AIL]):-
find_comers(L),!.

check_defaults(B1) :-
bconvert(B1,X,Y,XX,YY},
check_xmin(X),
check_ymin(Y),
check_xmax(XX),
check_ymax(YY),!.

check_xmin(X) :-

left(XT),

XT<=X, .
check_xmin(X) :-

left(XT),

change_left_default(X,XT),!.
check_ymin(Y) :-

low(YT),

YT<=Y,!
check_ymin(Y) :-

low(YT),

change_low_default(Y,YT),!.
check_xmax(XX) :-

right(XT),

XT >= XX, !.
check_xmax(XX) :-

right(XT),

change_righi_default(XX,XT),!.
check_ymax(YY) :-

high(YT),

YT>=YY,!.
check_ymax(YY) :-

high(YT),

change_high_default(YY,YT),!.

change_ieft_defaultNEW,OLD) :-
add_statement(left(NEW)),
del_statement(left(OLD)),!.

change_low_default(NEW,OLD) :-
add_statement(low(NEW)),
del_statement(low(OLD)),!.

change_right_defauliNEW,0OLD) :-
add_statement(right(NEW)),
del_statement(right(OLD)),!.

48

change_high_default(NEW,OLD) :-
add_statement(high(NEW)),
del_statement(high(OLD)),!.

/****#************ LOCATION deSCfiptorS to bump—dcscr ***************/

describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-

start_pt([SX,SY]),

ship_length(X),

Y is (XMAX + XMIN)/ 2,

Y - SX <15,

add_descr(B1,bow),

describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) , !.
describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX, YMAX) :-

start_pt([SX,SY]),

ship_length(X),

Y is (XMAX + XMIN)/ 2,

Y <SX +(X/3),

Y - S$X >= 15,

add_descr(B1,forward),

describe_shape(B1,[LLOWILY XMIN,YMIN, XMAX,YMAX) , !.
describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-

start_pt([SX,SY]),

end_pt([EX,EYY)),

ship_length(X),

Y is (XMAX + XMIN)/ 2,

Y >SX+(2*X/3),

EX-Y >=15,

add_descr(B1,aft),

describe_shape(B1,[LLOWIL],XMIN,YMIN XMAX,YMAX) , !.
describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-

start_pt([SX,SY]),

ship_length(X),

Y 1s (XMAX + XMIN)/ 2,

Y<SX+2*X/3),

Y >SX +(X/3),

add_descr(B1,mid_ship),

describe_shape(B1,[LLOWIL],XMIN,YMIN XMAX,YMAX) , !.
describe_shape(B1,[LLOWIL]L,XMIN, YMIN XMAX , YMAX) :-

end_pt([SX,SY)),

ship_length(X),

Y is (XMAX + XMIN)/ 2,

SX-Y«<15,

add_descr(B1,stern),

describe_shape(B1,[LLOWIL],XMIN,YMIN XMAX,YMAX), !.

49

/*****#************ add SiZC deSCfiplorS ********lk************/

describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-

ship_length(X),

OS is XMAX-XMIN,

OS/X >= 0.10EQ0,

add_descr(B1,extra_large),

describe_shape(B1,[LLOWIL], XMIN,YMIN. XMAX,YMAX) , !.
describe_shape(B1,[LLOWIL], XMIN,YMIN,XMAX,YMAX) :-

ship_length(X),

OS is XMAX-XMIN,

OS/X >= 0.03E0,

0S/X < 0.10EO0,

add_descr(B1,large),

describe_shape(B1,[LLOWIL], XMIN,YMIN . XMAX,YMAX), !.
describe_shape(B1,[LLOWIL],XMIN,YMIN XMAX,YMAX) :-

ship_length(X),

OS is XMAX-XMIN,

0OS/X < 0.03EO0,

OS/X > 0.015E0,

add_descr(B1,medium),

describe_shape(B1,[LLOWIL],XMIN,YMIN XMAX,YMAX), !.
describe_shape(B1,[LLOWIL],XMIN,YMIN,XMAX YMAX) :-

ship_length(X),

OS is XMAX-XMIN,

OS/X < 0.015E0Q,

add_descr(B1,small),

describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX), !.

/***************** add CURVINESS to bump—dcscr ***************/

describe_shape(B1,[LLOWIL],XMIN, YMIN, XMAX,YMAX) :-
bump_coords(XYZ).length(XYZ,N),N>50,
add_descr(B1,high_curviness),
describe_shape(B1,|LLOWIL],XMIN,YMIN XMAX,YMAX), !.

describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_coords(XYZ),length(XYZ,N),N<15,
add_descr(B1,no_curviness),
describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX), !.

/***************** add dcscriptors to bump dCSCf ***************/

describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
in_range(XMAX-XMIN,YMAX-YMIN),
add_descr(B1,square),
describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX), !.

describe_shape(B1,[LLOWIL],XMIN,YMIN,XMAX , YMAX) :-
XMAX-XMIN > YMAX-YMIN + 3,
add_descr(B1,flat_rectangle),
describe_shape(B1,[LLOWIL],XMIN,YMIN.XMAX,YMAX), !.

50

describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX , YMAX) :-
XMAX-XMIN + 5§ < YMAX-YMIN,
add_descr(B1,tall_rectangle),
describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) , !.
describe_shape(B1,[LLOWILL,XMIN,YMIN. XMAX,YMAX) :-
XMAX-XMIN <= 5, XMAX-XMIN)/(YMAX-YMIN)<=0.5EQ,
add_descr(B1,pole),
describe_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX), .
describe_shape(B1,[LLOWIL]L,XMIN, YMIN, XMAX,YMAX) :-
XMAX-XMIN)/(YMAX-YMIN)<=0.17EQ,
bump_coords(XYZ),length(XYZ,N),N<30,
add_descr(B1,pole),
describe_shape(B1,(LI OWIL], XMIN,YMIN XMAX,YMAX), !.
describe_shape(B1,[LLOWIL , XMIN,YMIN, XMAX , YMAX) :- !.

add_descr(B1,X) :-
bump_descr(B1,DL,0),not(member(X,DL)),
append([X],DL,LL),add_statement(bump_descr(B1,LL,0)),
del_statement(bump_descr(B1,DL,0)).

/******t**************** IDENTIFY SHAPE *****************#***********/

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_descr(B1,DL,0),member(pole,DL),
not(member(bow,DL)),not(member(stern,DL)),
add_id(B1,antenna),
identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX),!.

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_descr(B1,DL,0),member(pole,DL),
not(member(mid_ship,DL)),not(member(forward,DL)),
not(member(aft,DL)),
add_id(B I,mast/support),
identify_shape(B1,[LLOWIL],XMIN,YMIN,XMAX,YMAX),!.

identify_shape(B1,[LLOWIL],XMIN,YMIN,XMAX,YMAX) :-
bump_descr(B1,DL,0),member(flat_rectangle,DL),
not(member(small,DL)),not(member(extra_large,DL)),
member(high_curviness,DL),
not(member(mid_ship,DL)),
add_id(B1,gun-turret/weapon-system),
identify_shape(B1,[LLOWIL], XMIN,YMIN,XMAX,YMAX),!.

51

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_descr(B1,DL,0),member(flat_rectangle,DL),
not(member(mid_ship,DL)), not(member(small,DL)),
not(member(extra_large,DL)),
not(member(high_curviness,DL)),
not(member(no_curviness,DL)),
add_id(B1,weapon-system),
identfy_shape(B1,[LLOWIL],XMIN,YMIN,XMAX,YMAX),!.

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_descr(B1,DL,0),member(flat_rectangle,DL),
member(forward,DL), not(member(small,DL})),
(member(no_curviness,DL)),
add_id(B 1,superstructure),
identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX),!.

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_descr(B1,DL,0),
member(mid_ship,DL),
not(member(pole,DL)),not(member(small,DL)),
not(member(tall_rectangle,DL)),
XMAX-XMIN)/(YMAX-YMIN) <= 2.0EQ,
XMAX-XMIN)/(YMAX-YMIN) >= 0.5EQ,
add_id(B1,radar),
identil, _shape(B1,[LLCWIL],XMIN,YMIN XMAX,YMAX),!.

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_descr(B1,DL,0),
member(mid_ship,DL), not(member(no_curviness,DL)),
not(member(pole,DL)),not(member(square,DL)),
not(member(tall_rectangle,DL)),
XMAX-XMIN)/(YMAX-YMIN) <= 2.0EQ,
XMAX-XMIN)/(YMAX-YMIN) >= 0.5EOQ,
add_id(B1,radar),
identify_shape(B1,[LLOWIL],XMIN,YMIN,XMAX,YMAX),!.

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
bump_descr(B1,DL,0),n ~mber(tall_rectangle,DL),
not(member(pole,DL)),not(member(large,DL)),
XMAX-XMIN)/(YMAX-YMIN) <= 2.0EQ,
add_id(B 1,mast/support),
identify_shape(B1,[LLOWIL]),XMIN,YMIN, XMAX,YMAX),!.

identify_shape(B1,[LLOWIL],XMIN,YMIN,XMAX,YMAX) :-
bump_descr(B1,DL,0),not(member(pole,DL)),
not(member(small,DL)),not(member(high_curviness,DL)),
not(member(forward,DL)),
add_id(B1,superstructure),
identify_shape(B1,[LLOWIL], XMIN,YMIN,XMAX,YMAX),!.

52

identify_shape(B1,[LLOWIL],XMIN,YMIN, XMAX,YMAX) :-
check_if_empty(B1),!.

add_id(B1,X) :-
bump_descr(B1,DL,0),not(member(X,0)),
append([X],0,0L),add_statement(bump_descr(B1,DL.,0OL)),
del_statement(bump_descr(B1,DL,0)).

[ersreknikkkk Change list to OR if multiple identifications made ****/

check_number_id(B1) :-
bump_descr(B1,DL,0),length(O,N),write(N),N>1,
write(O),nl,change_to_or(O,0r,00),
add_statement(bump_descr(B1,DL,00)),
del_statement(bump_descr(B1,DL,0)),!.
check_number_id(B1) :- !.

change_to_or([A,BIL],OR,LL) :-
append([OR],[A],Y),append([B],Y,LL),!.

check_if_empty(B1) :-
bump_descr(B1,DL,[]),
add_id(B1,unknown),!.

check_if_empty(B1).

/**/

locate_coords(COORD,[AIL],[AIL]) :-
first_one(COORD,[AIL]),!.

locate_coords(COORD,[AIL],[AIL]) :-
cpconvert(COORD,X,Y),
cpconvert(A,XT,YT),
X=XT,Y> YT,

locate_coords(COORD,[AIL],LL) :-
locate_coords(COORD,L,LL).

locate_fake_coords(X1,Y1,COORD,[AIL],[AIL]) :-
cpconvert(COORD,XF,YF),cpconvert(A,XT,YT),
XT=XF,YT<YF,
bump_coords(BL), append(BL,[COORD],BLL),append(BLL,[A],LL),
add_statement(bump_coords(LL)),
del_statement(bump_coords(BL)),
1

locatc_f.a.ke_coords(x 1,Y1,COORD,[AIL],LL) :-
locate_fake_coords(X1,Y1,COORD,L,LL).

first_one(X,[XIL]).

53

/**************##********* Utﬂitics **#*##***#**********************/

in_range(VAR1,VAR2) :-
VARI <= VAR2 + 3,
VARI1 >= VAR2 - 3.

endmod /* bumpid */ .

54

APPENDIX C - OUTPUT FROM GARCIA (LAMPS)

GAR-OBJ OUTPUT

This is an example of output from the GARCIA (LAMPS) silhouette, showing the
bump locations, description, and identifica.ion.

OBIJECTS from BUMPID

b(341,484,361,484)
BUMP_DESCR -->{flat_rectangle,high_curviness,large,forward]
BUMP_ID --> [gun-turret/weapon-system]

b(340,476,364,476)
BUMP_DESCR -->[flat_rectangle,no_curviness,large forward]
BUMP_ID --> [superstructure]

b(407,485,415,485)
BUMP_DESCR -->[flat_rectangle,large,forward]
BUMP_ID --> [weapon-system]

b(403,478,416,478)
BUMP_DESCR -->[flat_rectangle,no_curviness,medium,forward]
BUMP_ID --> [superstructure]

b(457,537,459,537)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,mid_ship]
BUMP_ID -> [antenna]

b(456,522,457,522)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,mid_ship}
BUMP_ID --> [antenna]

b(465,564,465,564)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,mid_ship]
BUMP_ID --> [antenna]

b(465,522,467,522)
BUMP_DESCR -->[pole,tall_rectangle,small,mid_ship]
BUMP_ID --> [antenna]

b(489,526,499,526)
BUMP_DESCR -->[square,no_curviness,small,mid_ship]
BUMP_ID --> [unknown]

b(533,543,536,543)
BUMP_DESCR -->[flat_rectangle,high_curviness,large,mid_ship]
BUMP_ID --> [radar]

b(536,571,541,571)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,mid_ship]
BUMP_ID --> [antenna]

v(559,618,561,618)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,mid_ship]
BUMP_ID --> [antenna]

55

- /" "« «++

b(565,618,569,618)
BUMP_DESCR -->[square,no_curviness,small,mid_ship]
BUMP_ID --> [unknown]
b(560,601,561,601)
BUMP_DESCR -->[tall_rectangle,small,mid_ship]
BUMP_ID --> [mast/support]
b(549,592,563,592)
BUMP_DESCR -->[flat_rectangle,large,mid_ship]
BUMP_ID --> [superstructure]
b(529,539,553,539)
BUMP_DESCR -->[flat_rectangle,no_curviness,large,mid_ship])
BUMP_ID --> [superstructure]
b(552,544,553,544)
BUMP_DESCR -->[tall_rectangle,medium,mid_ship]
BUMP_ID --> [mast/support,or,superstructure]
b(551,571,553,571)
BUMP_DESCR -->[square,medium,mid_ship]
BUMP_ID --> [radar,or,superstructure]
b(527,528,554,528)
BUMP_DESCR -->[flat_rectangle,large,mid_ship]
BUMP_ID --> [radar,or,superstructure]
b(485,514,559,514)
BUMP_DESCR -->[flat_rectangle,extra_large,mid_ship]
BUMP_ID --> [superstructure]
b(587,507,589,507)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,mid_ship]
BUMP_ID --> [antenna]
b(602,502,617,502)
BUMP_DESCR -->[flat_rectangle,no_curviness,medium,mid_ship]
BUMP_ID --> {superstructure]
b(631,516,633,516)
BUMP_DESCR -->[pole,tall_rectaigle,small,mid_ship]
B"™{_ID --> [antenna]
b(626,502,629,502)
BUMP_DESCR -->{tall_rectangle,small,mid_ship]
BUMP_ID --> [mast/support]
b(651,494,653,494)
BUMP_DESCR -->[pole,tall_rectangle,no_cuiviness,small,mid_ship]
BUMP_ID --> [antenna]
b(675,496,699,496)
BUMP_DESCR -->[flat_rectangle,high_curviness,large,aft]
BUMP_ID --> [gun-turret/weapon-system]
b(737,515,739,515)
BUMP_DESCR -->{pole,tall_rectangle,no_curviness,small,aft]
BUMP_ID --> [antenna]
b(745,520,747,520)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,aft]
BUMP_ID --> [antenna]
b(745,515,755,515)
BUMP_DESCR -->[tall_rectangle,medium,aft]
BUMP_ID --> [mast/support,or,superstructure]

56

b(788,517,798,517)
BUMP_DESCR -->[no_curviness,small,aft]
BUMP_ID --> [unknown]

b(763,515,802,515)
BUMr_DESCR -->[flat_rectangle,no_curviness,large,aft]
BUMP_ID --> [superstructure]

b(745,514,803,514)
BUMP_DESCR -->[square,large,aft]
BUMP_ID --> [superstructure]

b(675,494,803,494)
BUMP_DESCR -->[flat_rectangie,high_curviness,extra_large,aft]
BUMP_ID --> [unknown]

b(725,499,803,499)
BUMP_DESCR -->[flat_rectangle,extra_large,aft]
BUMP_ID --> [superstructure]

b(932,504,933,504)
BUMP_DESCR -->[pole,no_curviness,small,stern]
BUMP_ID --> [mast/support]

b(931,497,931,497)
BUMP_DESCR -->[pole.no_curviness,small,stern]
BUMP_ID --> [mast/support]

b(929,491,934,491)
BUMP_DESCR -->[pole,tall_rectangle,no_curviness,small,stern]
BUMP_ID --> [mast/support]

57

LIST OF REFERENCES

1. Bernier, Denise R., An Intelligent Computer-Aided Instruction System for Naval Ship
Recognition, Master's Thesis, Naval Postgraduate School, Monterey, California, June
1989.

2. Ballard, Dana H. and Brown, Christopher M., Computer Vision, Prentice-Hall, 1982.

3. Cox, K.C,, Roman, G., Ball, W.E,, and Laine, A. F., "Rapid Search for Spherical
Objects in Aerial Photographs," IEEE Proceedings: Computer Vision and Pattern
Recognition, 1988, 1988.

4. Grogan, Timothy Alan and Mitchell, O. Robert, Shape Recognition and Description: A
Comparative Study, Purdue University Lafayette in School of Electrical Engineering,
1982.

5. Todd, Henry S., "A Descriptive Pattern Recognition System Applied to Pictorial
Patterns Where the Discriminating Information is Carried in the Object Shape," JEEE
Proceedings: Computer Vision and Pattern Recognition, 1988, pp. 430-436, 1988.

6. Opsahl, Torstein, "Automated Target Detection,” Fifth Annual Intelligence
Community Al Symposium, Defense Tntelligence College, 1987.

7. Telephone conversation between Mike Hord, MRJ, Inc., and the author, 8 June 1989.

8. McKkeown, D. M., and Harvey, W. A., "Kule Based Interpretation of Aerial
Imagery," IEEE Conference on Computer Vision,1985, pp. 570-585, 1985.

9. McKeown, D. M., Harvey, W. A., and Wixson, L. E., "Automating Knowledge
Acquisition for Aerial Image Interpretation,” Computer Vision, Graphics, and Image
Processing, 46, pp. 37-81, April 1989.

10. Niblack, W., Petkovic, D., and Damian, D, "Experiments and Evaluations of Rule
Based Methods in Image Analysis," IEEE Proceedings: Computer Vision and Pattern
Recognition, 1988, pp. 123-128, 1988.

11. Smymniotis, Chuck and Dutta, Kalyan, "A Knowledge-Based System for Recognizing
Man-Made Objects in Aerial Images," IEEE Proceedings: Computer Vision and Pattern
Recognition, 1988, pp. 111-117, 1988.

1 38 Jane's All the Worlds Fighting Ships 1985-86, Jane's Publishing Inc., pp. 216-217,
1986.

13. Pavlidis, Theo, Algorithms for Graphics and Image Processing, Computer Science
Press, 1987.

58

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Chief of Naval Operations

Director, Information Systems (OP-945)
Navy Department

Washington, D.C. 20350-2000

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-35000

Curricular Officer, Code 37
Computer Technology

Naval Postgraduate School
Monterey, California 95943-5000

Associate Professor Neil C. Rowe, Code 52Rp
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5000

Associate Professor Michael J. Zyda, Code 52Zk
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5000

59

r---

8. Dr. Hank Smith
Education Coordinator
Patrol Squadron THIRTY-ONE
Naval Air Station
Moffett Field, California 94035

9. CPT Michael J. Bizer
1204 Catskill Circle
Huntsville, Alabama 35802

