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COMMUNICATION-EFFICIENT ARBITRATION MODELS
FOR LOW-RESOLUTION DATA FLOW COMPUTING

Abstract

Low-resolution data flow computing offers a practical compromise between

conventional control-flow computing models and the specialized architectures
required for fine-grain data flow processing. We give a formal specification of an

arbitration facility that simultaneously partitions and statically assigns operations to
processors. This general model is based on differences in the processors, diversity
of data links in the network, size of tokens flowing between nodes in the data flow
graph, memory limitations on the processors, and considerations to promote

parallelism. A network model solves the static problem for bipartite and tree
structured data flow graphs. Based on this centralized static allocation scheme,
data tokens are automatically routed to processors, and the run-time scheduling
process is distributed among the processors. Dynamic arbitration implemented as
a centralized facility takes inadequate advantage of network capabilities. A
general decentralized (distributed) dynamic arbitration scheme maps tasks to
processors at run-time, with the association of tasks to processors based on
intertask communication and network data link characteristics. Task migration is

supported by treating both data and code as tokens. No centralized cuntrol or

mass storage are required in this communication-efficient arbitration model. _ '

Keywords: Data flow, Large-grain data flow, Scheduling, and Task allocation.
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1. Introduction

The concept of data flow computing has received considerable attention in

recent years inasmuch as it provides an alternative to the traditional control flow

model of computing. In the data flow model, a computation is scheduled to occur

as soon as all of its necessary inputs are available, thus there is the potential for

the exploitation of concurrency (parallel processing) even in a program designed

for the more conventional, sequential control flow environment.

Data flow considerations have attracted the attention of researchers at

various levels of hardware and software design. Data flow systems may be

characterized by the granularity of their operations and data. Specialized

computer architectures have been developed to implement high-resolution (fine-

grain) data flow. At this level, individual machine instructions are executed as their

operands become available. The assumption underlying efforts at this level is that

sufficient improvement in overall execution time of a program can be made to

outweigh the overhead required by the unconventional hardware supporting such

a data-driven system.

At the other extreme, the concept of executing higher-level functions or

procedures in response to the availability of data is referred to as low-resolution

(coarse-grain) data flow computing. At this level, specialized hardware is not a

critical issue; rather, operating systems must be designed to schedule the

execution of procedures and to manage the flow of data to serve as inputs to the

appropriate procedures at the proper time.

Lower resolution implies greater operation complexity (e.g., operations may

be routines such as sorting or matrix inversion); and the data to be routed from one

node to another may be arbitrarily large data structures (such as lists or matrices).

Low resolution extracts less potential concurrency from a computation.
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Nevertheless, many of the advantages of data flow still accrue and can be

achieved with minimal architectural support and scheduling overhead.

The arbitration facility within a data flow system is that capability which

matches data inputs to the computation requiring them, and places inputs and

instructions on a processor which can perform the computation. Effective

arbitration should include a consideration of the communication pattern among the

tasks that comprise a program and the topology and link characteristics of the

underlying processor network. In this paper, we develop models for efficient

arbitration in a low-resolution data-driven computational environment in which

system performance is sensitive to interprocessor communication overhead.

2. The Development of the Data Flow Concept of Computing

Although recent interest in data flow computing has centered around the use

of multiple processors to effect parallel computation, the most rudimentary data flow

designs were based on single processor architectures in which parallelism was

achieved through instruction pipelining. Such a data flow processor is designed to

recognize which of the instructions in its program memory are "enabled"

(or "ready to fire" or "have their inputs available"), and to select and dispatch an

enabled instruction to an execution unit. Instead of a single locus of control

(maintained as a Program Counter), there is a concurrency (or arbitrary

sequencing) of certain instructions thi m,,4 be exploited, subject to availability of

resources.

In such an environment, it is clear that "concurrent" execution can be

extended to truly "simultaneous" parallel execution of operations if there are

multiple processors in the system. The resulting parallelism has the potential then

to yield greatly reduced program completion times, which is the primary goal of all
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investigation into data flow computing. Consequently, most of the current data flow

work is for data flow multiprocessors.

The program being executed in a data flow computer is represented not as a

traditional sequential computation but rather in the form of a data flow graph

DFG (V, E). Each node in V represents an operator or a computation specified by

one or more instructions; and arcs in E represent data dependencies (and

therefore also precedence constraints) between nodes. Tokens are dealt with

purely as data values rather than as addresses; thus, the model permits no

shared memory, and implementation is most easily accomplished in a message-

passing network of processors. This form of representation has the advantage that

it does not impose sequencing constraints other than those dictated by data

dependencies in the algorithm; thus, all possible parallelism in the algorithm is

exposed.

High level programming languages, such as LUCID [Rasmussen et al], VAL

[Ackerman and Dennis], and FPL [Ercegovac et al, Backus], have been created to

facilitate the development of software for data flow computing. The compilers for

these languages generate a data flow graph which is then executed (or in-

terpreted) by the data flow machine. The concept of a language which deals with

values, rather than variable names and addresses, is the foundation of

functional, or applicative, languages; and the absence of shared memory in this

class of programming languages makes data flow programs free of the "side

effects" which are the source of major difficulties in conventional concurrent

systems. Each data flow operator uses only its own private operand tokens and

produces new operands to be used by other operators.

In a multiprocessor data flow computer, performance is strongly affected by

the way in which operations (tasks) are allocated among the processors. If the

association between operations and processors is made before run-time (as part of
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the compilation of the program), this is referred to as static allocation. Static

allocation avoids the time-consuming assignment process during run-time and

therefore can speed up the execution of the program. If sufficient information is not

available in advance, or if it is desired to take advantage of information about the

program that is revealed only at run-time, then dynamic allocation of operations

takes place when each operation is ready to execute.

General Data Flow

Comprehensive historical perspectives on the development of data flow

computing over the past decade may be found in [Agerwala and Arvind], [Denning],

and [Veen]. We cite here the work which seems to be the most relevant to our

efforts. High-resolution data flow has been thoroughly investigated by [Dennis] at

MIT and at the University of Manchester [Watson and Gurd] using a tagged token

architecture. Low-resolution data flow principles are less clearly defined, but

nevertheless apparently hold an attraction for practical reasons to many of the

researchers mentioned below.

A pure low-resolution data flow system with identical CYBERPLUS

processing nodes [Babb et al] avoids the allocation problem by placing the entire

application program in each processor and broadcasting all results to all

processors. Sequencing is done by a distributed scheduling mechanism at run-

time. The duplication of code and result packet transmission represents an

overhead that would not be tolerated in most data flow systems.

Because the advantages of data flow seem obvious, but universally optimal

methods for managing data flow systems have clearly not emerged, several

researchers have developed hybrid systems with data flow constituents [Broy]. A

combined data flow and control flow model is described in [Carlson and Fortes].

Dynamic allocation in a hybrid data-driven and demand-driven environment is



6

described by [Jagannathan and Ashcroft]. Combined models to be used for real-

time high-speed data gathering are given by [Barkhordarian], but the data flow

elements of this system are somewhat weakly developed, and static allocation of

operations to processors is not done automatically but manually by the

programmer. A combination vector processor and low-resolution data flow

processor as described in [Requa and McGraw] is designed to allow arbitrary forms

of concurrency for a variety of applications on heterogeneous processors.

Some data flow systems have been developed for special applications. A

pragmatic approach for balancing and optimizing large-scale regularly-structured

scientific programs, expressed as data flow programs, in systolic systems of

identical processors is given by [Rong]. Low-resolution static data flow is applied to

signal processing problems in which parameters were known a priori, as described

in [Lee and Messerschmitt].

Performance analysis of static data flow for large array operations is done by

[Levin]; and a model of the maximum degree of parallelism in a static data flow

computer is given in [Gui-zhong et al].

Communication Considerations

Interprocessor communication overhead is an inevitable consequence of the

use of multiprocessors to execute related computations. [Gaudiot and Ercegovac]

make the observation that minimization of communication is still on unsolved issue

in data flow computing just as it is in general multiprocessor systems. In the

absence of analytical tools to measure this performance cost, they use simulation

studies of data flow to calculate the effects of communication in a specialized (ring-

structured) network.

[Dennis, 1979] noted the problem of partitioning instruction sets to avoid the

high cost of routing results, relative to the lower cost of forwarding results locally
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within a processor. The MIT architecture for fine-grain processing treats this

problem at the hardware level so that each instruction is equally accessible to

result packets.

A study of the cost-effectiveness of critical path scheduling [Lloyd] in the MIT

data flow computer is given by [Granski et all. Since in practice there may not be

enough idle processors to execute all fireable instructions, priorities are assigned

to instructions according to a modified critical path algorithm. Allocation is

determined by a centralized scheduler at run-time, and instructions and data

packets are sent in response to requests from idle processors. The algorithm

simplistically assumes a zero-delay in the communication network, and simulations

are based on a fixed delay. (It is concluded that critical path scheduling does not

pay off except in highly regular programs having few conditionals.)

[Ercegovac et al] deal with the communication problem through software in a

static data flow system. DFG partitioning and allocation occurs in three phrases: 1)

coalesce basic blocks of code containing only sequential code; 2) when commun-

ication time delays exceed the gain from parallelism, coalesce adjacent blocks

(precluding parallelism); and 3) assign nodes in the new DFG to a partition based

on critical paths. This is representative of the very few bonafide efforts to manage

communication overhead, but still no consideration of network data link

characteristics is made.

In order to reduce routing delays in a fine-grain data flow multiprocessor,

[Hong et al] perform a static allocation by partitioning the DFG into tree-like

structures, then map communicating computations onto adjacent processors where

possible.

The Hughes Data Flow Machine [Campbell] is a fine-grain machine

intended as an embedded signal and data processor. Automatic static allocation of

nodes is based on a breadth-first ordering of DFG nodes, then graph partitioning
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taking into account communication with upstream nodes. The composite heuristic

allocation scheme aims to locally minimize communication cost and maximize

parallelism, and can be adapted to specific network topologies.

A comprehensive discussion of static allocation criteria and

assumptions (and in particular interprocessor communication issues) is given by

[Ho and Irani]; however, their graph partitioning strategy assumes a uniformly

connected processor network and infinite memory at each processor, and

therefore, cannot be implemented in real systems.

The MAX data flow architecture [Rasmussen et al] is designed to be

implemented in radiation-hard, space qualified technology, to support applications

ranging from simple instrument controllers to signal processors and complex

robotics systems. The technique chosen for these requirements is low-resolution

data flow with traditional von Neumann processing elements as the building

blocks. Not only data but also the code which implements operations are treated

as tokens, thus the migration of code and data can be dealt with by the same

mechanism. Dynamic allocation of large-grain tasks to processors is to be

performed in a distributed manner, using a "token locality" goal, with each

processor having knowledge of the DFG structure. Further details of the MAX

system have not been specified; however, the realism in the requirements and the

feasibility of implementing the hardware with current technology have provided

much of the motivation for the models to be presented in Sections 3 and 4.

Typical assumptions upon which many of the referenced allocation and

scheduling schemes are based include:

- uniform execution times for all operations

- identical processors

• constant number and size of operands (tokens)

- unlimited processor memories
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fully-connected (uniform) processor interconnection network

Clearly these are inappropriate assumptions for general multiprocessor

networks, and particularly so for low-resolution data flow systems in which

instruction code and data tokens are likely to be of arbitrary size, reflecting the

nature of the application. We will develop a more general model that is appropriate

for arbitration in low-resolution data flow multiprocessor systems.

3. CommunIcation-Efficient Arbitration: Static Model

We have seen several static allocation strategies [Ercegovac et al, Hong et

al, Campbell] which first partition a DFG into subsets of nodes, then map the

subsets onto processors which will execute the operations corresponding to the

nodes. When partitioning the DFG, the goal is typically to cluster nodes so as to

minimize communication among nodes belonging to different clusters, giving also

some con-sideration to critical paths in the DFG that govern the degree of

parallelism.

It is indeed a difficult problem to simultaneously minimize interprocessor

communication costs and maximize parallelism. In fact, these are conflicting goals

since total execution length is minimized by dispersing operations among the

processors while total communication costs are minimized by clustering operations

on as few processors as possible.

Furthermore, the simple partitioning schemes seen in the literature do not

consider the disparate distances between pairs of processors in an arbitrary

network. The partition is made on the basis of the inter-node communication in the

DFG. But the fact is that it is not possible to know the real cost of a graph partition

and allocation until we also know the data link cost that applies to each cut in the

partition. By separating the processes of partitioning and allocation, all hope of

achieving an optimal placement of operations on processors is abandoned and
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ignored. We present a mathematical programming model that addresses all of the

goals wh'ch should govern a static allocation. The following notation will be used:

m = number of operation nodes in the DFG

si = size cf operation i (amount of memory required)

ei = expected execution length of operation i (number of

instructions)

Cik = amount of communication units from operation i to

operation k

- weight on arc from i to k in the DFG

n = number of processors, n < m

bj = capacity of memory (buffer) at processor j

R= speed of processor j (average time per instruction)

djr = distance (cost per data unit) for data link from processor j to processor r

The decision variable xi1 = 1 means operation i is assigned to processor j,

and is zero otherwise. The problem is to find a partition of DFG and a mapping of

the operation subsets onto the processors to find

m n m m n ni
min , , e iRjx ij+ 1 , 1 1 CikdjrxijXkr

i=lj-1 i.1 k lj-lr-,

subject to

1) si xi i-< 6 forj=l1,..., n
i-i

n

2) xii =1 fori= 1,...,m

3) xij =0, 1



11

The linear terms in the objective serve to reduce the finish time of the

program by placing the longer tasks on faster processors. The quadratic terms

serve to minimize the cost of the partition of the DFG but more particularly to do so

with regard to the data link costs corresponding to the intercluster communication

amov 'its.

The first constraint realistically recognizes memory limitations at each

processor, and includes in the size of each operation the amount of buffer space

that will be required for its output tokens. This is essential in low-resolution data

flow since there is not necessarily a centralized token queue or shared result

memory.

The second constraint assures that each operation is assigned to only one

processor. (If this equality were relaxed to a > inequality, the resulting multiple

copieb may have the effect of reducing communication costs, but now additional

control mechanisms would be necessitated to select which copy to execute at the

required time. In addition, the linear objective terms would no longer accurately

reflect the execution cost.)

The static arbitration model stated above as a zero-one quadratic

programming problem is NP-complete [Garey and Johnson], and therefore, has no

apparent efficient solution. Methods can be devised to solve small instances of the

problem or special cases optimally, but heuristics will have to be relied upon for

solving general problems of practical size in a reasorable amount of time.

Some observations are in order concerning practical approaches for dcaling

with the conflicting goals of minimizing execution and communication costs and

achieving a high degree of parallelism. Several data flow system designers

[Campbell], [Ercegovac, Chan and Ravi], [Ho and Irani], deal with the arbitration

problem in two phases: 1) first partitioning the DFG to minimize communication
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among the nodes (operations), then 2) allocating subsets of nodes to processors.

The first phase can be formally described as follows:

Graph Partitioning Problem

NP-complete: (Garey & Johnson)

Given graph G = (V, E), weights w (v) for each v e V and L (e) for each

e E E, and positive integers B and J, find a partition of V into disjoint sets

V1, ..... , Vn such that ,, w (v) _< B for 1 _ i __ n and such that if E' contained in
Vre Vi

E is the set of edges that have their two endpoints in two different sets Vi, then

SL (e)_<J.
eEE'

This two-phase approach is valid with respect to our objective function, only

under certain conditions. We must assume identical processors and unit tasks; that

is, si = s and ei = e for all operations i, and bj = b and Ri = R for all processors j. We

must furthermore be willing to specify a priori the number n of subsets for the

partitioning. The value of n may be as large as the number of available processors,

or as small as Fm / Lb/sJ 1, filling a few processors to capacity. Under these

conditions, if we optimally solve the Graph Partitioning Problem and optimally map

the reduced DFG onto the processor network (which can be done since these two

graphs are isomorphic), then we have minimized 1 11: cI k dj r Xij X k r
i k j r

During the second phase, allocating subsets to processors, as we observe

the data link cost values dir, we realize that we might have lower total costs if we

had chosen a different number of subsets or less well balanced subsets. Thus,

partitioning the DFG into a pre-determined number of subsets, without knowledge

of the cost djr of an intercluster communication, may lock us into a sub-optim.l
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result before the mapping phase even begins, as is shown in the following

example.

Consider the DFG in Figure 1 with six unit operations and a network of three

identical processors. In an optimal partition into three subsets, we find that the cost

of the partition is

A

10 2 AB
4

/

-
2 31 

\

D ~/ E

I

F

Figure 1.

2 + 2 + 3 + 3 = 10. If this reduced graph is mapped onto a network such

as the following:

P1

10

P2 12
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the best we can do is to map the graph edge with weight 6 onto the data

link with cost 1, and the graph edge with weight 4 onto the data link

having cost 10. Thus

0-0

and the cost of this mapping is 6 -1 + 4 10 = 46.

The execution length for this configuration is 4, as shown in the

Gantt chart:

P1 C D

P2 E F

P3 A B

0 1 2 3 4 time units

However, since processor 3 is separated from processor 1 and 2

by high-cost data links, it may be beneficial to use only processors 1

and 2. Indeed, partitioning the DFG into two subsets, we obtain the

reduced graph shown in Figure 2, and the cost of the partition is
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A ~-

10 2

I ABD

B C ___ CEF

2 3

D E

3 5

.1 F Figure 2.

2 + 4 + 3 = 9. Mapping these two subsets onto a subnetwork:

® -0

we have a mapping whose cost is 9 1 = 9. Furthermore, the execution

length 4 does not suffer from the reduction in the number of

processors:

P1 A B D

P2 C E F

4
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Due to the computational complexity of both the graph partitioning and

the mapping problems, data flow system designers have relied on

heuristic solutions for these two problems. [Ercegovac et al] use a

partitioning heuristic based solely on DFG structural characteristics,

followed independently by allocation heuristics which take network

structure into account. (Campbell and Ho & Irain] treat partitioning

and allocation simultaneously, but do so by making only one pass

through the DFG and considering only the communication with

predecessor nodes. These designers do not address the optimal

software allocation issue in the full sense expressed by our model

stated earlier.

The static allocation problem can be represented as a Generalized

Network Model, and this model permits efficient solution to the

problem when the DFG is either a bipartite graph or a tree. Suppose DFG

is a bipartite graph, V = V1 u V2, and V1 n V2 =0 . The primary nodes are

of the form representing the assignment of operation i to

processor j. Nodes corresponding to operations in subset V1 are banked

at the left, and nodes for operations in V2 are banked at the right. If

ir V1 and k e V2, then an arc connecting corresponding nodes has a cost

(reflecting linear and quadratic costs), and a flow across this arc

means operation i is assigned to processor j and operation k is

assigned to processor r:

* eIRJ+*kRr+ c l kdjr I:
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Nodes and arcs between the source S and nodes in the left bank,

and between nodes in the right bank and the sink T, serve to enforce the

constraints requiring that each operation be assigned to exactly one

processor.

Since each operation in the left bank may, in a given problem

instance, communicate with any number of operations on the right,

there must be sufficient flow exiting from a left bank node to correctly

measure the cost of such communication. For this we introduce nodes

and arcs, as suggested in [Charnes, ... , Lovegren, . .. , Wolfe et al]. For

any left node , we attach a "hose arc" with a multiplier or

network gain value of gi, where gi = the number of operations with

which operation i communicates, leading to a "gain node" From

gain node, gij, we have exactly gi "communication control arcs", to

carry exactly one unit of flow to each of the operations k with which

operation i communicates. "Nozzle nodes" then lead to "spray arcs"

which discriminate among the n possible assignments of operation k.

This sub-assembly is shown in Figure 3.
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* S ... eRj+% 1 Rn+ cikgi~ln

Figure 3.
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hose arc gain communication nozzle spray arcs
node control arcs nodes
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The full network is shown in Figure 4, with enough detail to allow

an understanding of the model. This network model for a complete

bipartite graph, where IV1 j= IV21 = m/2, has

(mn•mn mm 2n 3rnm )nds

m2n2 m2n 3mn + m) arcs and (2- + 3n + m) nodes.
4+ 2 4 2
A similar network model can be developed for a DFG having tree

structure. Instead of two banks of primary nodes, there is a bank for

each level in the tree. Because of the strict tree structure, flows of

one are preserved for each operation, and network structures on the

right to limit the number of assignments for each operation are not

necessary.

The network model does not extend to arbitrary DFG structures. The

difficulty arises in operations which receive communication from more

than one other operation. Such nodes require an assignment limit

specifying that the operation be assigned to exactly one processor, but as

seen in Figure 5, once the limit is imposed, the unique assignment is lost

and cannot be recovered to measure the correct quadratic cost.
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k I

(1,1)other

k r operations

k n assignment of
operation k
unknown

Figure 5.
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We are able to handle multiple-receiver nodes only because the bipartite

structure provides a means of placing assignment limits on both banks of primary

nodes. (In the case of trees, there are no multiple-receiver nodes.)

In order to impose the constraints on the number of operations which can be

assigned to each processor, additional network structure is applied on top of that

shown in Figure 4. Suppose si = 1 for all operations i. Then for each processor j, j

, 1 ... , n, add the following:

(1,0

Any flow through nodes lj , . . . , mj accumulates and is subject to

the upper bound of bj on processor j. Although this is not a standard

network structure, a computationally efficient preprocessing of the

network allows for the creation of "supplies" of operation weights and

the imposition of the bounds bj [Wolfe].

Such a static allocation is made as a part of the compilation

process, and the code comprising each function is loaded into the

appropriate processor before run-time. Since the mapping process is

complete before any operation executes, the actual physical
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destinations of the outputs produced by all operations are known to the

operations. During execution time, data tokens are automatically

routed by the communication network to the (pre-established)

destination processor as soon as they are produced. Ready tokens then

reside in local queues within each processor.

Operation scheduling is distributed (decentralized) among all the

processors. Whenever a processor becomes idle, the local arbitration

facility must determine for which (if any) resident operation all

required input tokens are in the token queue. Any such operation is

eligible (enabled), but in case there is more than one enabled operation,

ties are broken by choosing the most "critical" operation.

Let us now define the notion of a "critical" operation. Recall that

parallelism is an important goal in data flow computing. Some systems

deal with this goal by balancing (leveling) the computational load

among the processors. However, we note that load balancing may be

counterproductive since it increases communication costs between

operations. In any case, the finish time for the entire program cannot

be less than the length of the critical path (described below) in the

DFG; therefore, it is not cost-effective to do any more than to spread

the load only to the extent necessary to allow the most heavily loaded

processor to finish in an amount of time not exceeding the length of the

critical path. Completely uniform loads would not necessarily serve

this purpose.

The length L of the critical path in an (acyclic) DFG is determined

according to the following algorithm.
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Critical Path Algorithm

Create (if necessary) a single initial node and a single final node

in the DFG. An artificially added node i has ei = 0.

Label the final node with its execution length ej. Any node i is

eligible for a label if all its successors are labelled, and a label is

computed as

label (i) = max {label (j)} + e i

all successors j

of node i

Let L be the label on the initial node. The label on each node is a lower

bound on the amount of time required for the DFG program to complete

once this operation is ready to execute. (The lower bound is tight if

there are no communication costs.) Nodes with larger labels are the

most urgent with respect to program completion time. The DFG may be

pre-processed with the Critical Path Algorithm before any static or

dynamic arbitration algorithm is applied.

Returning to the context of operation scheduling, nodes with

larger labels are executed first. Thus the critical path labels give rise

to a priority list, and the resulting scheduling scheme belongs to the

class of list scheduling algorithms, whose characteristics are

described in [Coffman and Denning]. Schedules produced in this way are

of no more than twice the optimal length with respect to execution

times (Coffman, Polychronopoulous].

The static arbitration model is completely general and applies to any

processor network configuration and arbitrary operations and output tokens. It is

the only model that has been proposed that simultaneously considers node
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communication amounts and the data link costs that apply to these

communications.

4. Communication-Efficient Arbitration: Dynamic Model

Dynamic allocation and scheduling avoids the pre-processing required for

static arbitration, but incurs the expense of substantial decision-making at run-time.

Clearly it is not feasible to optimally solve a large quadratic assignment problem

during application program execution. Instead we resort to heuristic procedures

that make reasonably good decisions quickly. In a sense, the minimization of

scheduling overhead becomes a primary objective if the application program is to

execute efficiently.

We assume that nodes in the DFG are not clustered into subsets; each node

(operation) may be individually assigned to any processor.

Centralized ModelSince operations are not distributed among processors

initially, a centralized instruction memory must be provided in order to store

the code corresponding to all the DFG nodes. There is also a centralized token

queue for data tokens. The centralized arbitration facility matches tokens to

operations and, when all tokens for a particular operation are found in the token

queue, an instruction packet containing data and code is created and routed to an

available processor. (A processor is deemed "available" if it is not currently

executing an operation and its output buffer is empty, indicating the completed

transmission of the data results produced by the previous computation.)

Three cases arise:

1) If there are multiple instruction packets ready for one available

processor, the selection of an operation is made according to critical

path labels.
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2) If there are multiple processors idle and available for a single

instruction packet, the selection of a processor is made according to a

combination of the following criteria, which can be independently

weighted:

a) Choose that processor r with minimum data link distance

dcr from the centralized instruction memory processor c, to

locally optimize communication costs.

b) Choose the fastest processor, i.e., with the smallest Rj (to

minimize the linear terms in the objective function).

3) If there are multiple operations and processors, select the most
"critical" operation, and apply case 2).

This arbitration scheme is reminiscent of arbitration networks in

high-resolution data flow systems where diverse data link char-

acteristics are not considered. Unfortunately, this centralized

arbitration model does not directly take advantage of the

interconnections that exist between pairs of processors, but rather

only those links from the centralized facility to the individual

processors. (This under-utilization of system capabilities could be

corrected by allowing nodes to function in a store-and-forward manner

in an indirect routing scheme, which would also improve fault-

tolerance in the event a direct centralized link fails.)

Greater advantage of network capabilities is obtained through the

following decentralized dynamic arbitration model.
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Decentralized Model

The decentralized model does not require a central memory for code and

data nor a centralized control point for arbitration. Instead the responsibility for

control and storage is distributed among the processors.

Initially all operation code is distributed randomly and uniformly among all

the processors. Each processor possesses a central processing unit for execution

of operations in the application program, and an optional co-processor to handle

management functions. The local memory of each processor is organized into an

Instruction buffer and a token buffer; however, the boundary separating these

areas need not be fixed. The memory capacity bi at processor j must be adequate

to contain the code for its resident operations plus any output tokens produced as a

result of executing these operations. That is, in this case, the size si of an operation

must include the size of output data structures as well as the code for operation i.

Centralized memory is required only for the following information which

must be available to all processors:

1) Table to indicate status of processors: idle/busy

2) Matrix D to describe the current network configuration and

time-varying link characteristics

3) Table to indicate for each processor the currently available

instruction buffer and token buffer space

4) Table to indicate the processor on which each operation is

currently resident, a flag indicating whether "enabled", and a list of

the tokens required by each operation (Let Pi denote the p -ssor

containing operation i)

5) Table indicating the location and size of all ready tokens. Let tik

denote the kth token for the ith operation, Stik denote the size (memory
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space required) for token tik, and Ptik denote the processor on which

the token tik currently resides

The above data structures are to be maintained in fast assoc-iative memory

with controlled shared access and may be referred to respectively as the:

1) Processor directory

2) Network configuration table

3) Buffer directory

4) Operation directory

5) Token directory

The determination of which processor is to execute an enabled operation is

made according to a bidding system, an idea originally suggested by [Salama].

Idle processors bid on enabled operations, and the processor making the low bid

performs the execution of the operation. The value of the bid includes a

consideration of processor speeds, as well as communication costs. Because of

communication costs, the arbitration facility may elect to migrate the operation to

the processor containing the tokens, port the tokens to the site of the operation, or

move data tokens and code to the most suitable processor.

The bidding process is initiated within a processor j whenever the processor

directory entry for processor j indicates an idle status. Idle processor j consults the

operation directory and performs the following bidding algorithm for every enabled

operation i:
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Decentralized Bidding Algorithm

if si - local available buffer space, then no bid, else

T
1) bidi = ei Ri + si dpi + 1 (Stik • dptikJ)

k-1

where Ti denotes the number of tokes needed for operation i

2) transmit bid to Pi

Notice that if Pi = j then dpd = 0, and if Ptik = j then dptik j = 0. Therefore, the

computation of bid i is valid even if operation i or any of its tokens already reside

locally on processor j, and in that case, the reduced communication costs

associated with a local execution are reflected in a low bid value. Notice also that

even if an operation and all its tokens reside locally on processor j, if some other

processor can route code and data to itself and perform the operation cheaper

than processor j can do locally, then that other processor will submit the lower bid.

Bid arbitration is performed periodically by all processors j containing an

enabled operation i.

Decentralized Arbitration Algorithm

Select minimum bid for operation i.

Send code for operation i to the processor submitting the

successful bid.

The low-bidding processor now contains the code for operation i, and must

send requests to all processors containing tokens tik. When all tokens arrive, the

operation is executed and results tokens are placed in the local token buffer for use

by other operation(s).
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The decentralized arbitration system is active whenever there are available

processors and enabled operations; therefore, progress in the application program

is guaranteed.

5. Summary

With low-resolution data flow, we sacrifice some of the potential for low level

concurrency that would be offered by high-resolution data flow. But in this

compromise we require no specialized hardware to create the data-driven

environment, and a low-resolution data flow graph can be created by a

conventional compiler or even by the application software designer. Our arbitration

models can be implemented completely in software for arbitrary programs on

general multiprocessor systems.

We present models for static and dynamic arbitration. Static models require

pre-processing but avoid run-time delays for decision-making. Dynamic models

take advantage of current software and network configurations during run-time.

Our formulations and network models are unique in that they address the problem

of communication overhead in a multiprocessor system as well as the usual data

flow execution issues.

Future work should be done to develop solutions for the quadratic zero-one

problem which can be used to establish a static allocation. Experiments should be

performed to determine the value of minimizing the products Cik djr as opposed to

solving the partitioning and mapping problems separately. In the case of dynamic

decentralized arbitration, computational experiments should be done to determine

whether a "good" initial distribution of operations gives better system performance

than a random initial allocation with subsequent code migration.
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