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ABSTRACT

Several anti-aliasing strategies are proposed,
which generate Monte Carlo discretized estimdtes
of color and intensity at each pixel of a raster
display.
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MONTE CARLO kNTI ALIASING by JOHN H. HALTON

1. We are given a function f: R" R specifying color and intensity at

any point of a soreen area S C R2. The screen S is subdivided into .7 r.zes

2. ( = 1, 2,. .), all disjoint and of equal area and shape.

2. It is intended to approximate the function f on S by a function R -R

which takes the value z. on the pixel P., for h = 1, 2.......

3. One approach is to define, for the pixel Ph centered at C., a :eia:-g
h

f'>rcti n r- c.) =- h(r) and let

dr f(r)ih(r), (I)

where denotes R 2 and fdr denotes xfcy, with = .

4. A very general .'onte CarZo scheme for estimating would selcct an

integer n. and a set of estimator-probability pairs (g.(r), ;h(r)), for

1, 2, ., .; so that one samples points _ E ' with probability density

.. ,) , independently of each-other, and uses the cbcindor

n h

for :.. For example, "crude Monte Carlo" could define oi(r) = /.4, where

A is the area of S (so that A/N is the area of the pixel P), and use the

estimator gh(r) = af(r) in Ph; but this would not work, since we would

want that the estimator be un:-;"sed, i.-., thar

and this reduces, by (1),' too = Ah/N6hnh, w.,cre
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dr r)

and we would need to know both and to get . Anotner approach is

to use 3.. (r) = (r) = - c. in the whole of ( (though, of course,

most of the probability will be in or near 1-), and use the estimator ;..j

2 fr) ; whence the condition (3) reduces to c = l/n>, provided that the

weight function 2. satisfies (as is usual) the normalizing condition*2

dr = 'dr(r- c,= dr w(r) = 1. 1.3)*d2k~ )  . d w*r -,.)

If course, this condition is not at all unreasonable. Note that e may,

yet again, choose, over the whole of Q, ,.h.(r) = wi(r), a different normalized

w.eight function from -. (for instd,1ce, the normal distribution centered atC.

and with standard deviation of the order of the diameter of a pixel), and

then the -estimator would be g.(r) = wh(r)f(r)/w(r)n,, as is readily

verified, and this is again feasible; so we note the pair:

'Wh (r)f (r) r 'II
%~'%i K ~ Wn (6)

3. lAn alternative approach would be to use a form of or,-.. . s > l [

\ote that, in the technique developed above, all nh estimators are identical
r2

and identically distributed. Suppose, instead, that the pixel P, is dis-
YZ

sected into m identical sub-pixels R hj" and that s . identical estimators

-r- sampled with density phi(r) in Q, where ,j(r) - o(r - hi ) and

b.. is the center of ,. We then requiie, by (3) , that
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d r r. r .(r) = dr f(r) w(r). (=)

As an example, we could choose the function o, and then put

9(r) w(r- c )g;. (r) :msj (r- " 8

where we also must have that

. n, (9)

6. Khat we must do to make the method efficient is to minimize (or at least

diminish) the vari'rance of our estimate. Thus, we note that, for the first

technique, given by (b), we have

hi ( r ) f r ) 2
var! . -- var n "r r)

[dr wh(r)f(r) 2 2 (10)

w,(r)n w (r) -( - , (10)n h

[Wh(r)],.f(r)],

where A. = dr (11

w (r)

For the second technique, given by (8), we similarly get that

"? " 'If(r)w(r -c.)

var . = . va = : { dr (r b-

f r f(r)w(r - C) 2

- 7j(r bk.) o (- bhj }

Z =('h 2 (12)
jl m 8

J-
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i r) .2- r .
where dr (13)

. . Q r- b.'.)

7. If we consider the case of (6), (10), and (11), and first assume that

., i' ', and so . and . are all given a .riori; then we ma' ask how to

choose the numbers of function-evaluations n, by pixels, so as to make all

variances the same, given the sum n = 2 =I nt. The answer is evidently
n\. 1,N'

- 2 = (X - 2 (14)

and the common value of the variance at every pixel is then

varr: h = - 2 )/n. (1)

In the case of (8), (12), and (13), with f, w, p, and so h and h given, we

similarly see that we can first optimize over the strata in a single pixel;

Lagrangian theory shows that

s.= n. (' j - 2) / .m , (16
J n / k=l(ljhk - h ) (16)

minimizes the variance at P. to the value

min var-Z* 1 1m u7)

Note that the Cauchy-Schwartz-Bunyakovsky inequality shows that indeed

S 2 )  I = I " n (( uh j - ] 2

2 - - 2 = --j=l 7 Sfi
M Z'Mn J S

2
1 (_ 'hj - "h Z m

-2- j=l s ) k=1 Ski (18)

Ih 'II I
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and the right-hand side of the inequality is the general variance 12), by

(9); so that (16) does indeed minimize (not maximize or point-of-inflexion)

the variance. Now we proceed, as before, to make all the variances (17) the

s?"'-; yielding that

, 2 , J 'Zk=li.l-j= - :. 2) (19"

This makes the common value of the variance

min var[C 1  lj Zh r[ 2j(j (20)

j~ ;j m2n h=l 4=l( hi % jm nE

S. As a specific example, we may suppose that S is a rectangle

o = < x < Z1  0 < < L 2 ); (21)

and that the index h is (hi, h ), with N = N1N2 and 0< h< < _ (< = 1, 2),

so that P. is the rectangle
'2 L 1  L 1  L2  L2

1 < + 1) 2 h 2 + 1)), (22)

r

centered at C, = ) with c (h + ) (t = 1, 2). (23)(2hl' h2 )  ht t t

Similarly, we take j = (Jl' J2) ' m = mlm 2, and 0 < j_ < mt (t = 1, 2), so

that .,..the22) rectangle centered at

b_ (b with bhjt L-t(mtht + Jt ) (= 1, 2). (24)

We may further postulate that both w' and phj take the form of the norzal
h h

is:ribution, with
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.-. r - 1 e p -(( - 2 ) ( - a,2 :/ " ," 5"

where Y = (L 1_ 2 ,)o = ((2/), 26)

and :. ;(r) -iexp(- 7 x 1)2

where = (-/.Tm. 2 )o = (A/:im)u. 28)

Here, is a constant for the system, related to the weight function but

not to -*or to S and its subdivisions.

Then we have that

~~2 r' 22
7:d7 df(x, . wx - C h' - -

- 0 ¥0

V 2 -

2-nd Ix dy [f(x, y) w(x Cl, C
0 jo .12

ex (1m 2 2
-ep { ': 1 ) + (- 2) }/2-). (30)

9. The strategies investigated here so far are adaptive only insofar as

the optimizing numbers of samples (14) and (16) are to be estimated from

'0Tonte Carlo estimates of the 'X. and u, .which can be obtained simultaneously

with the estimates of h generated by the estimators (6) and (8), respectively.

Since only small samples are to be taken, because f is so laborious to get,

the relative sample-sizes (14) and (16) will not be very accurately optimal.



Another approach would attempt to perform imrvrrance sa-inby

sequentially approximating f(x, 4)w x, with Since:. is given and

is experimentally determined (so, also given), we may write 1'(x, ) for

the product. As we accumulate values of C by sampling (initially with an

arbitrary distribution), we can form an increasingly accurate picture of

the functional dependence of - on (x, -,) and model w ' on this.

Alternatively, we may do a sequential 2crre~ave: saz.cin calculation,

in which we fix the sampling density arbitrarily, and then use an estimator

of the form C(x, u) (x, 9)/h(X,) - fdr x, where is the

best approximation to C for which the integral on the right is easily

computable.

10. Yet another approach which should be empirically investigated is to

use an rdzerln- of the sampled values of C to indicate where stratification

should occur. First, we sample C at a small number of points in each pixel

and tabulate ", z, and :,, in order of increasing C. If there is a strong

correlation of C with x or with y, split the pixel accordingly and sample

a few more points. Repeat, if necessary.

: tke s ' iction and szmplinzg are ,ane r ; f

, z. ;hin rw :ixeL. or s,4b-rixel onlu. This is to 2onfor- wih^e

i so tat w may be given the fuZl thecretica f-r", ana

neea not be approximated by a normal distribution itself.


