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ABSTRACT

This annual report briefly describes progress on research in algorithms for
optimal control problems. The principal research focus has been on a new approach
to the parallel implementation of iterative algorithms for optimal control based on a
two level parametrization of optimality conditions, and a secondary research focus has
been the investigation of fault detection in the type of computational networks used
for optimal control computations. Publications describing the results in detail are

listed.
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1. RESEARCH OBJECTIVES AND STATUS

The principal focus of our research is a new systematic approach to design
optimal control algorithms that may be implemented on parallel machines. This
approach is based on a two-level parametrization of first-order optimality conditions.
The first level of parametrization is concerned with the decrease of the overall amount
of operatious. and the second level is concerned with parallelism. By introducing
parametrization matrices in the first level and then factoring those matrices to exhibit
the amount of parallelism desired in the second level as a function of the number of
processing elements to be used, the resulting optimality conditions may be tailored to
the computing network on which the computations are to be performed. The results
have been published in the Journal of Parallel and Distributed Computing [1], and
have been presented at the 1987 Annual International Conference on Parallel Process-
ing [5], the 1987 Allerton Conference on Communication, Control and Computing [6].
the Third SIAM Conference on Parallel Processing for Scientific Computing [7], and
are also the subject of L. J. Podrazik’s Ph. D. dissertation [8]. The research results
concerning the convergence properties of relaxation algorithms that are used in paral-

lel schemes have been publisted in Mathematical Programming [2].

The second research focus has been the investigation of fault detection in compu-
tational networks of the type analyzed in the course of our investigation of parallelism
for optimal control. We have concentrated our effort in the study of system level fault
models,and the results have been accepted for publication in the IEEE Transactions

on Computers [4], and are also the subject of M. A. Kennedy’s Ph. D. dissertation [3].
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2. PH.D. COMPLETED: M. A. KENNEDY, MAY 1987
A STRUCTURAL APPROACH TO A SYSTEM LEVEL FAUL'T MODEL
ABSTRACT

The widespread use of computers, both large and small, has lead to an increase in
the fault problem. This problem is most acute while the system is operating, because
testing and fault diagnosis may not be possible during operation. One method of
addressing this problem is to use the processing power of the system itself to enhance
its ability to diagnose faults. System level fault models provide a framework for
addressing this problem. These models represent a system in terms of its constituent
processing elements, its faults, the tests to identify the faults, and the relationship
between the faults and the test outcomes. This work considers the system level fault
model of Preparata, Metze, and Chien which envisions a multiple computer system as
a collection of processing elements and test links. The focus of the work is the rela-
tionship between the test link structure and the system diagnosis properties. Results
include a test-link based method for partitioning the processing elements that provides
both a new measure for comparing systems and an indication of the complexity of
identifying the maximum diagnosability number of a system. This partitioning concept
leads to new diagnosability conditions that fill in the gap between existing diagnosabil-
ity conditions and their relationship to properties of the test link structure. The parti-
tion is also used to synthesize improved algorithms for identifying the maximum diag-
nosability number of a system. Turning to implied faulty set properties useful in diag-
nosis, results for both constrained and unconstrained system structures are presented.

Finally, these properties are incorporated into diagnosis algorithms.
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3. Ph.D. COMPLETED: L. J. PODRAZIK, DECEMBER 1987

PARALLEL IMPLEMENTATIONS OF GRADIENT BASED ITERATIVE ALGORITH IS
FOR OPTIMAL CONTROL PROBLEMS

ABSTRACT

The primary objective of this research is to develop new parallel techniques for
solving optimal control problems that occur in online real-time applications. In view
of the availability of inexpensive yet powerful hardware, the use of parallel processing
techniques is proposed to satisfy both the speed constraints imposed by a real-time
setting as well as the reliability requirements of an online system. Unlike previous
parallel approaches to the solution of optimal control problems, the goal is to obtain
an efficient solution by structuring the control algorithms to exhibit parallelism which
match the given machine architecture. In order to achieve the goal, this work reexam-
ines optimal control problems from the perspective of their first-order optimality con-
ditions so that the issues of parallelism and machine architecture may be considered in
the forefront of the algorithm synthesis. Results include the development of an
efficient parallel procedure for gradient evaluation. Embedded in the parallel gra-
dient evaluation procedure is a new technique for solving first-order linear recurrence
systems which is synthesized as a function of the number of available computers. The
synthesis approach for parallel recurrence solvers is also new and uses matrix factori-
zation techniques to organize the computations for the given parallel environment.
The results for parallel gradient evaluation are then exploited to produce efficient
parallel implementations of iterative gradient based techniques to solve the linear qua-
dratic regulator optimal control problem with hard control bounds. Finally, a practical
multi-computer architecture is presented to provide an integrated parallel environ-

ment for the solution of time critical optimal control problems.
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6. APPENDIX I

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING &4, [{7-[32([987)

A Parallel First-Order Linear Recurrence Solver”

GERARD G. L. MEYER AND LoOUIS J. PODRAZIK

Electrical Engineering and Computer Science Department. The Jorns Hopkins Universuy
Baltimore, Manvland 21218

Recerved March 17, 1986

In this paper we present a parallel procedure for the solution of first-order hnear
recurrence systems of size .V when the number of processors p is small in relation to
N. We show that when | < p~ < .V, a first-order linear recurrence system of size .\ can
be solved 10 3(N - 1y/(p ~ 1) steps on a p processor SIMD machine and at most
SN - Hap - 3‘) steps en 2 p poolcessor MIMD machine. As g special case, we turther
show that our approach precisely achieves the lower bound 2(N - 1y(p ~ 1) for
solving the parailel preiix problem on a p processor machine. ¢ 1987 academuc Press. Inc

I. INTRODUCTION

In this paper we present a parallel algorithm to solve the well-known first-
order linear recurrence system R{.V, |, when the number of processors p is
small in relation to N, and where R(.V. 1 1s defined as follows:

R{N, 1y Given N, given b = (b, bs, . ... by
and givena = (a>. d;3. . . .. as).
compute x = (X, X2, .....Xy)

such that x, = b, and

it

x,=ax_, +hfori=23..... V.

We present boih SIMD and MIMD versions of the algonthm. We analvze
the SIMD version by first considering a simplified shared memory model of
parallel computation that facilitates comparison with previous work. In that

* This work was supported by the Air Force Office of Scientific Research nnder Contract
AFOSR-85-0097
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Copynght « 1987 by Academic Press, Inc
All nghts of reproduction in any form reserved




18 MEYEF AND POGRAZIK

model the parallelism exhibited by the proposed algorithm is examined in
terms of data dependencies only, therefore ailowing us to determine the ide-
al'zed performance of the procedure. We tnen consider a second model of
computation which consists of @ SIMD p processor ning configuration with
a broadcas‘'ing capability. In that model interprocessor communication is
taken into account. and a mors realistic analysis of the algornthm is per-
formed. The MIMD version of the algontkm is analyzed by considering the
same simplihed model as in the SIMD case. with the exception that the same
operation need not be performed by all processors at the same time. Finally.
we  bserve that the algorithm can be mapped ethiciently to a MIMD p proces-
sor ring -onfiguration with g broadcasting capabilits .

Many algorithms have been proposed to solve linear recurrences in paral-
lel. each with different objectivas. Earlier resuits assumed the availability of
an unlimited number of processing elements and were concerned with deter-
mining the number of processors necessary to achieve minimal computa-
tional uime {3, 6. 8. {0]. Later. limited processor solutions were considered.
Chen et a/ (4] presented a SIMD algorithm that soived Afth-order svstems in
(N/pX2.M* + 381) = O[ M loga( p/ M)] steps. but did not discuss any specific
parallel implementation. Gajski [3] improved upon this result by performing
the SIMD computation in less than (N/p)X2.3* + 3V) steps using p < V' °
processors in a shared memory architecture. In this paper we show that by
using a SIMD p processor ring network modified to support giobal broadcast-
ing. the number of steps required to solve a nrst-order linear recurrence of
size V= p’is S(N — 1)/(p + 1). This improves upon the results of {4, 5] for
the first-order case when N > p°. Our approach is a generalization of the
matrix factorization technique presented in [9], and it reduces to the SIMD
procedure presented in [} when NV = p~.

Moreover, when g, = |, forall ian [1.2...... V], RN, 1) reduces to a
particular form of the parallel prefix problem. For N > p, Kruskal e /. [}
present an algorithm which solves the parallel prefix problem in 2\V'p
+ 2 log:p — 2 steps. Snir [11] improves upon this approach when .V = p~ by
solving the problem in 2N/(p + 1) + O(1) steps. which is within a constan®
additive term of the lower bound. In the case oi parallel prefix. we show that
our algorithm precisely achicves the lower bound 2(V — l¥y/(p + 1} estab-
lished by Snir {11] when NV = p*.

Carlson and Sugla [2] considered mapping the computation of first-aorder
linear recurrence systems to perfect shuffle and cube-connected svstems. A
common feature of Carlson’s algorithm and our algorithm is that the compu-
tation 1s organized so that the transfer of input and output data can be per-
formed ccncurrently with the execution of the algorithm, thus providing a
balance between /O and processing loads.

An important problem related to the parallel solution of R{ N, 1" is the
parallel evaluation of general arithmetic expressions [1}. In the case of first-
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order linear recurrences of size .V, the problem is to etficiently evaluate x. in
parallel using p processors. In that case. we observe that when applied to
computing x\ only, a straightforward application of our approach does not
improve upon existing results 1. 4].

In order to specify the parallelism exhibited by our algorithms. we aug-
ment those statements which can be executed in parallel. We use the syntax

FORALL ;& SDOIN PARALLEL
BODY /* Comments */

END FORALL.

which indicates that the BODY may be executed concurrently for each 7 in
the set S.

The SIMD procedure to solve RN, 15 1s presented in Section 11: in Section
I1I we discuss a parallel implementation of the algorithm, and tn Section IV
we present a MIMD version of our algorithm to solve R(.Y, 1. Finally. Sec-
tion V comprises our conclusions.

II. THE SIMD ALGORITHEM

The abstract model of SIMD parallel computation (Fig. 1) considered in
this section consists of a global parallel memorv. p paraliel processors. and an
interconnection network. where all processors perform the same operation
at each time step. We further simplify the model by making the following
assumptions:

Al. Each arithmetic operation (addition or multiplication) is per-
formed in unit time, referred to as a step.

A2. There are no accessing conflicts in global memory: furthermore. all
data are assumed to reside in global memory inttially.

A3, There is no time required to access global memory.

This simplistic modeli allows the parallelism of the proposed algorithm to
be analyzed without introducing the added complexity of the implementa-
tion. In Section III we map the algorithm to a specific computational net-
work and we analyze the corresponding implementation.

Given NV and p. our approach to solving R({.V, 1 consists of partitioning
R(N. 1, into a sequence of [(N — DAy~ — 1) reduced recurrence systems
R/n. 1) each of size n = p*. except for the Jast recurrence system, which may
be of size less than p*. Each R(n, 1) is then solved in parallel with its initial
value taken as the final value obtained from the previously solved reduced
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FiG. 1. The abstract parallel computational model.

recurrence system, except for the first recurrence that uses x; = b,. The first
R{n, 1 is solved as follows: (i) Each of the p processors concurrently com-
putes a partial solution for a different x,: (ii) after p parallel iterations p*
partial solutions have been computed, one for each x,. i in [1. 2. ....p].
where the partial solutions for x,, iin[1. 2, . . ., p]. are precisely the solutions
for R(N, 1); (iii) based upon x, the next p partial solutions x,, i in [p + I.
p+ 2.....2p) are then updated in paralilel to their correct values. After
p — 1 parallel update iterations R(n, 1) is solved. The next reduced recur-
rence system of size p? is then solved with x,2 as its initial value. We continue
in this manner until the last R(n, 1) is solved. Since the initial and final
values of each R(n, 1) overlap, the complete solution of R(N, 1) requires
solving [(N — 1)/(p° — 1)1 reduced recurrence systems.

We now describe the SIMD algorithm to solve R(V, 1) when (N — D/(p°
— tyisaninteger. Forwin [0, 1,..., (N — D/p* — 1)—~1]. let the index sets
S. and T, be defined as
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and
T.='l+mp+wlp—1y:m=0.1...., p—1,.

- [

. PROCEDURE R(.V. p, a. b}

i

2 x=h

3. FORWw=0TO(N-W(p"-1~1DO *Solveeach R n. 1 %/
4 FORALL:€ S _DOINPARALLEL /* Begin Coetlicient Computation Phase */

5 Al )= a:
6. END FORALL
7 FOR(:= 1 TO(p—- 1) DO

8. FORALL ;€S DOINPARALLEL

9. Afi+ = ac Afe~y - 10

10. END FORALL

i, END FOR /* End Coethcient Computation Phase */
12 FORALL:€ S, DOIN PARALLEL /* Begin Partial Solution Phase */
13, x=bh:

14. END FORALL
15, FOR::=1TO(p- 1) DO

16. FORALL ;€ T, DO INPARALLEL

17, Nie) i = Qe Xyayoy = b

18. END FORALL

19. END FOR /* End Partial Solution Phase */
20. FOR:i& S,DO /* Begin Solution Update Phase */
21, FORALL;:=0TO(p - 1hDOIN PARALLEL

22, Xee o= Al pa) X+ L

23, ENDFORALL

24, END FOR /* End Solution Update Phase */
25, ENDFOR

26. END PROCEDURE

The preceding algorithm sequentially solves (N — 1)/(p* — 1) reduced re-
currence systems of size p~, each in parallel. Each reduced system is solved
in three phases: the coefficient computation phase consists of the execution
of loops 4 and 7 and computes all coethicients of the form a,.,q,.,-1- - -q,
which are needed later during the solution updates; the partial solution phase
consists of the execution of loops 12 and |5 and computes p° partial solu-
tions, in which the first p partial solutions are the actual solutions: and finally.
the solution update phase consists of the execution of loop 20 in which the
coetficients computed in the first phase are used to update the next p esti-
mates at each iteration. The complete solution to R(.NV, 1} is therefore ob-
tained after executing (N — 1)/(p” — 1) iterations of loop 3. An example
illustrating the computations performed by the algorithm is given in Fig. 2
for the case ¥ = 17 and p = 3, where the notation ., is used to indicate a
correct value for the solution. Note that each computational level may be
performed in parallel using at most three processors.

Our model assumptions imply that we need only consider computational
operations when determining the number of steps required by the algorithm.
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Therefore we must examine those computations performed in loops 7. 135.
and 20. The execution of loop 7 is performed p — 1 times, each iteration
requiring p — | processors to perform a single multiplication concurrently:
thus loop 7 requires p — 1 steps. Both loops 15 and 20 are iterated p — | times.
each iteration requiring p processors to concurrently perform a multiplica-
tion followed by an addition. Thus. loops 15 and 20 each require 2(p — 1)
steps. The total number of steps required to solve each reduced recurrence
system R{ p*, 1) using p processors is therefore 5(p — 1), and hence the resuit-
ing theorem follows.

THEOREM 1. Given N and p such that (N — D)/(p* — 1) is an integer. the
number of steps required to solve the linear recurrence system R(N. | using
a SIMD parallel computer with p processors is 5(N — 1)/(p + 1).

If (M — 1)/(p* — 1) is not an integer, our approach to solving R(N. | re-
quires that we solve the reduced recurrence system R{n,, !, where n, < p°.
One approach to solving R(n,, 1) is to use a technique which is known to
be efficient whenever n, < pj Applicable techniques include the algorithms
presented by Chen er al. (4] and Kogge and Stone {6]; however. these tech-
niques are not desirable because they require the machine to store and exe-
cute multiple algorithms based upon the size of the recurrence system. A less
efficient but more practical approach to solving R{n., 1) consists of using
the proposed technique to solve the augmented system R( 72, 1) and simply
terminate the computation when the last x, is computed. In that case the
number of steps required by the algorithm is at most [(N — 1)/(p* — 1)15(p
- 1.

Finally, we make the observation that the above SIMD algorithm most
notably differs from the approaches presented in [4, 5] in that our approach
partitions the problem and solves a series of reduced recurrences of size p°
sequentially. However, when N = p*, our approach reduces to that of [5].
except that Gajski presents the coefficient computation and partial solution
phases as a single computational phase. Moreover, when N > g, the algo-
rithm of Chen et al. [4] is less efficient than Gajski’s as a result of implement-
ing an extra computational phase in which a separate first-order recurrence
of size p is solved using p processors, requiring an additional 2 log. p steps.

When N and p are powers of two, the algorithm of Chen er al. requires
5N/p + 2 log,p — 5 steps [4] and when N/p” is an integer. Gajski's SIMD
algorithm requires (N/p*)(5p — 3) — 2 steps [S]. whereas when (¥ — 1)/(p° —
1) is an integer, our SIMD algorithm requires only 5(N — [)/(p + 1) steps.
For example, when V = 2'8 and p = 2°, the numbers of steps required by the
SIMD algorithms presented in {4, 5] and this paper are 163.841. 151.5350.
and 145,635, respectively.

Finally, whena, = 1. forall iin[1. 2, ..., N), R(N, 1) isa particular form
of the parallel prefix problem and reduces to computing the cascade sums
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{hy ~ by (b, + b+ by .. .. (b, + by + ... + by)in parallel using p proces-

sors. The following corollary is a direct consequence of Theorem 1.

COROLLARY 1. Given N and p such that (N ~ 1)/(p* — 1) is an integer rhe
number of steps required to solve the parallel prefix problem using a SIMD
parallel computer with p processors is AN = 1)/(p + 1).

Thus, when (.V — 1)/(p° — 1) is an integer. our SIMD algorithm precisely
achieves the parallel prefix computational lower bound 2(N¥ — )/{p + 1)
established by Snir [{1]. This result improves upon existing approaches to
solving the parallel prefix problem when N > p°. [n that case the parallel
prefix problem is solved in 2N/(p + 1) + O(1) steps by Snir’s algorithm {11],
2{N/p) + logap — 2 steps by the data-independent algorithm presented by
Kruskal e al. [7].and (N/p")(2p — 1) — | steps by Gajski's algorithm {3].

Iil. THE SIMD PARALLEL IMPLEMENT..TITN

The abstract model of SIMD parallel computation presented in Section I[
neglected the issues of data organization and alignment as well as communi-
cation overhead, all of which are highly machine dependent. We now present
a parallel implementation of the proposed algorithm that takes these issues
into account. The SIMD model of computation considered in this section
{Fig. 3) consists of p processors executing the same operation in lock step,
with each processor containing its own local storage. The processors are in-
terconnected by a unidirectional ring network in which processor i transfers

fipat Data <a, b >

L

T
Beovd-ast Bus (

T
|
|

oo
fe——o

0 Nl Bl

Quiput Data <1, »

FiG. 3. The practical parallel computational model.
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data to processor [ + 1. iin {1, 2. ..., p — 1], and processor p transfers
data to processor 1. Furthermore, we assume that the network possesses a
broadcasting capability that allows any processor to broadcast data to all
other processors. The time required by the algorithm will be determined un-
acr the foliowing assumptions.

Al. Each anthmetic operation (addition or multiplication) is per-
formed in unit time, referred to as a step.

A2. Interprocessor transfers require one step.
A3. Data broadcasts require one step.

A4. Each g, and b, required by a processor is assumed to reside in the
local memory of that processor initially.

In order to determine an efficient processor assignment, we first make the
observation that the p consecutive partial solutions updated at each iteration
of the update phase of the algorithm must reside in a different processor.
Furthermore, both the coefficient computation phase and the partial solu-
tion phase of the algorithm exhibit explicit data dependencies which must
be preserved. These constraints can be satisfied if we rotate the processor
assignment at each parallel iteration of the algorithm, and in that case, the
algonthm can be directly mapped to a SIMD p processor unidirectional ring
network with broadcasting capability. Figure 4 illustrates such a processor
assignment and the corresponding communication requirements for the case
N=17andp=3.

We now present the algorithm to soive R{N. 1) as executed by processor

k,forallkin({l1.2..... ol
1. PROCEDURE RV, p.a. &)

2. x:=b
3. FORw:=0TO(N- 1) ~1)-1DO /* Solve each R(n, 1) %/
4. Al i):=a, /* Begin Coefficient Computation Phase */
fPi=l+tk-Dp+wip-1?Y
s, FOR:i:=1TO(p-1)DO
6. Ali+ s i=a.Ali+) - L )
/1= +tk=i~p)mod 7 + w(p’ = 1)*/
7. END FOR /* End Coefhcient Computation Phase %/
8. IFk=1THENx, := x,ELSE x,:= b,: /™ Begin Partial Solution Phase */

iz l+tk-Dp+u(pp = 1)
9, FORi:=1 TO(p- 1)DO

10. Xio) 1= oy Xeoyoy + bisys

=0 +tk=-i-pmodpF + wl(pt - 1)%
11. END FOR /* End Partial Solution Phase */
2. FORm:= 1 TO(p- DO /* Begin Solution Update Phase */
13. Xo=mdAle+ x4 xLs

Ai=lempra(pP - =(p-m+k—1modp*/
14, END FOR /* End Solution Update Phase */
t5. ENDFOR

16. END PROCEDURE
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Our model assumptions imply that we must consider interprocessor com-
munication in addition to operational count when determining the number
of steps required by the algorithm. Therefore. we must examine the compu-
tations and interprocessor transfers performed in loops 5. 9. and 12. Each
iteration of loop 5 requires an interprocessor transter of 4{i + ; — 1. /] fol-
lowed by a single multiplication. Thus. loop 5 requires 2(p — 1) steps. Loop
9 is iterated p — | times. each iteration requiring an interprocessor transfer
of x,.,-, followed by a multiplication and an addition. Thus. loop 9 requires
3(p — 1) steps. Loop 12 is also iterated p — | times, each iteration requiring
a data broadcast of x,-, followed by a multiplication and an addition. Thus.
loop 12 also requires 3(p — 1) steps. The total number of steps required to
solve each reduced recurrence R p’. 1) using p processors is therefore
8(p — 1), and hence, the resulting theorem follows.

THEORFM 2. Given N and p such that (N — D/(p> — 1) is an integer. the
number of steps required to solve a linear recurrence system RON. | using a
SIMD parallel computer with p processors is 8(N — 1)/(p + 1).

Among the existing SIMD algonthms to solve R(.V, 1. the SIMD algo-
rithm presented by Gajski [5] can be most efficiently mapped to a unidirec-
tional ring network with broadcasting capability. Based upon the assump-
tions made in this section. when N/p" is an integer the number of steps re-
quired by Gajski's approach to solve R(N, 1) is (N/p*X8p — 5) — 3. and
therefore when N > p our approach is more efficient than Gajski's when
implemented upon a ring network capable of broadcasting.

Finally. we make the observation that the algorithm does not require all
of the inputs g, and b, in order for the processing to begin. Specifically. the
algorithm requires p* — 1 @,and p° b, forevery 5 (p — 1) computational steps.
corresponding to solving each R<p3. 1) in sequence. Similarly, the outputs
x, are produced in blocks of p* — 1 at a time. This suggests that I/O could
be overlapped with the computation. providing a balance between [/O and
processing loads, and therefore the deletion of assumption A4 has a negligible
effect if one assumes that I/O and processing can be done concurrently.

IV. THE MIMD ALGORITHM

In this section we again consider the simplistic model of computation
given in Section [I with the exception that we no longer require all processors
to execute the same operation at each step: that is, we now consider a MIMD
implementation in which we neglect the issues of data organization and
alignment as well as communication overhead.

The MIMD approach for solving R(N, 1) is based upon the observation
that only p ~ | processors are needed at each iteration of the coefficient com-




- 21 -

128 MEYER AND PODRAZIK

putation phase. Assuming (N — 1)/(p” — 1) to be an integer. the total number
of multiplications required to compute all necessary coefficients is (N — 1)}(p
- D/{p + D.p — 1 of which may be performed concurrently at each
step. Therefore, all of the required coefficients can be cornputed in
(N = 1)/(p + 1) steps using p — | processors. This leaves one processor free
for (V¥ = 1)/(p + 1) steps, allowing us 10 expand the size of the recurrence by
atmost 1y = [(.V — 1)/2(p + 1)]and use the free processor to solve the reduced
system R{ny. 1) concurrently. Thus. using a MIMD approach we can solve
the entire system R(V + ng, 15 1n S(NV = 1)/(p + 1) steps.

Given a recurrence system of size N and the number of processors p the
following lemma expresses ng in terms of & and p only.

LEMMA 1. Given Nand p, ny =TIN = (p + 2)]/(2p + ).

Given N and p, our MIMD approach to solving &7V, { . consists of parti-
tioning R(N, 1) into a sequence of (N — n, — D/tp" — 1) + | reduced
recurrences. The first recurrence is of size 1y + | and all others are of size p~.
except for the last recurrence, which may be of size iess than p*. The coeth-
clent computation phase of the algorithm uses p — | processors to compute
all needed coefficients for all of the reduced svstems. Concurrent with this
computation, the free processor computes the solution to R{ng + 1. 1 ). Each
subsequent R(n. 1) is then solved in the same manner as in the SIMD algo-
nithm by executing a partial solution phase followed by a solution update
phase. The complete solution is obtained after solving all (N — ng — VAP
— 1)1+ | reduced recurrences.

We now present the MIMD algorithm to solve R(N. 1) when (N - ng
— 1)/(p* — 1) is an integer. As in the SIMD case. it is not difficult to modify
the algorithm if the above assumption is not satisfied by simply terminating
the computation at the point when the last x, is updated. Forwin [0, 1, .. ..
(N — ny — /(P — 1D~1], we now define the index sets U, and V, as

and

Ves{l+m+mp+a(p—D:im=0.1.... p-1}.

. PROCEDURE R(N, p. a. b)

I

2. xi=h

3 FORi:=2ton, + | DO /* Solve Ring, 1%/
4, X, =ax.- +b,

s. ENDFOR /*End r(ng. 1" Solution */
6. FORw:=0TO(N - ny— (p* - 1) = | DO/* Begin Coefficient Computation Phase */
7 FORALL € L, DO IN PARALLEL

8 Ali. )= a

9 END FORALL
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10. FOR::=1TO(p- 1 DO
Ll FORALL,€ U _DOINPARALLEL

12 At~ b=an i~y -4

13 END FORALL

4. END FOR

15, ENDFOR -* End Coethicient Computation Phase ¢
16, FORw« =0TO(N-—n,— Ity ~11-1DO *Solvecach R n. i *
17 FORALL:€ U DO INPARALLEL /* Begin Partial Solution Phase *
138. vo=h

19, END FORALL
20 FOR::=1TOtp- 1HDO

21 FORALL,;< I DOINPARALLFL

2 C.oo=d. Ve =h

23 END FORALL

24 FND FOR /* End Partial Solution Phase */
25 FOR:€ U, DO /* Begin Solution Update Phase *
26. FORALL;:=0TO(p - 1) DOINPARALLEL

27. ISR I | FIE A I VR U

28. END FORALL

29 ENDFOR

30. ENDFOR /* End Solunion Update Phase *!

31. ENDPROCEDURE

Note that (i) the coefficient computation phase of the SIMD algorithm has
been modified so as to compute the necessary coefhcients for all R'n. |
before the first reduced recurrence is solved in parallel: and (i1) the processor
that is idle during the SIMD coefhcient computation phase is now used to
concurrently compute the solution to R(n, + 1. | ;. An example illustrating
the computations performed by the MIMD algorithm is given in Fig. 5 for
thecase N =19andp = 3.

Based upon the MIMD model considered in this section. we conclude that
the time required by the MIMD algorithm 1s determined by the computa-
tivnal operations performed in loops 3. 6. and 16. Loops 3 and 6 are executed
concurrently, using 1 and p — | processors. respectively. Loop 6 requires
(N = ny = 1)/(p + 1) steps. and the quantity n, has been defined so that loop
3 requires at most the same number of steps as loop 6. All p processors are
used in executing loop 16. and thus loop 16 requires 4N ~ 1o — 1)/(p + 1)
steps. The number of steps required by the MIMD algcrithm is theretore
S(N — ng — 1)/{p + 1)steps. Thus, the resulting theorem follows.

THEOREM 3. Given N and p such that N = p° + sp — 1. the number of steps
required to solve a linear recurrence system R(N. 5 using a MIMD parailel
computer with p processors is at most{{N ~4)/(p + 3/2)p — 5(p - 1).

When N = p* + ip — 1, our approach reduces to the MIMD algorithm
presented in [5], in which the number of steps required to solve R‘N, [ is
atmost (N — 1)/(p" +ip—-215(p— 1). When N> p~ + ip — 1. our MIMD
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approach differs from [5] by organizing a single coefficient computation
phase to compute the necessary coefficients for all RZn. | - before the first
reduced recurrence is solved in parallel, rather than including a coetficient
computation phase as part of solving each reduced recurrence.

Finally, we note that. like the SIMD algorithm. the MIMD algonthm can
also be mapped directly to a p processor unidirectional ring network with
broadcasting capability. Figure 6 illustrates such a processor assignment and
the corresponding commuumnication requirements for the case V' = 19 and
p=13.

V. CONCLUSIONS

The algorithm presented in this paper exploits the fact that for a fixed
number of processors p. the parallel approach presented in [9] to solve
R{N, 1) attains maximum speedup $(p + 1) when.V = p". When V' > p°. the
structure of R(N, 1) allows the solution to be obtained by sequentially solv-
ing a series of reduced recurrences, each of size p~. except for the last recur-
rence system. which may be of size less than p*. As a result. we are able to
linprove upon existing approaches for solving R(.V. 1 whenever ¥ > p°.
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7. APPENDIX II

PARALLEL IMPLEMENTATIONS OF GRADIENT BASED ITERATIVE ALGORITHMS
FOR A CLASS OF DISCRETE OPTIMAL CONTROL PROBLEMS

Gerard G. L. Meyer
Electrical and Computer Engineering Depaniment
The Johns Hopkins University
Baltimore, Maryland 21218

ABSTRACT

[a this paper we preseat the parallel implementations of two
iterative gradient based algorithms to soive the unconstraned linear
quadrauc regulator optimal control problem. We show that parallel
evaluation of the step length and gradient of the quadratic cost func-
tion can be efficieatly performed as a function of the aumber of pro-
cessors. We thea embed our parallel step length and gradieat pro-
cedures to produce parallel impiementations of the gradient and con-
jugate gradient methods that may be exscuted on an SIMD machine.

L INTRODUCTION

Previous parallel approaches (o the solution of >ptimal coatrol
problems [4], (6], [9], bave been devised without explicitly taking wato
consideration the computational caviroament. [n particular, whea the
aumber of available processors is small in relation (o the probiem size,
the above techmiques simply fold the computations to fit the aumber
of processors. More efficient parallel algonthms may be devised by
considering the computational eaviroament throughout the aigorithm
synthesis. Toward that end, we presest in this paper a paraliel pro-
cedure for gradient evaluation which is formulated as a function of the
aumber of available processors. Although presented in the context of
unconstrained optimal coatrol, our resuits foe gradieat computation
are also applicable to coustrained problems. Furthermore, we show
that the step size obtained as a result of the line search performed at
cach iteration may also be efficiently computed in parallel We then
combine the techniques for parallel gradient evaluation and step size
determination to produce parsllel implementations of the best-step
steepest descent method and the Fletcher-Reeves copjugate gradieat
method 10 solve the linear quadratic regulator control problem [S].

It is well known that a closed loop feedback form solution exists
for the linear quadratic regulator control problem (LQR). Our
motivation for solving that problem using iterative gradient based
techniques is that our basic parallel approach can be applied to more
complex coatrol problems in which the system dynamics can be linear-
zed and the cost approximated quadratically. Furthermore, efficient
parallel implementations of gradieat methods such as best-step
steepest desceat and coojugate gradieat suggests that similar parallel
impiementations of peaaity function and gradiest projection methods
may be used to soive coastrained coatrol problems.

Our approach to the parailel evaluation of the step and gradient
reduces the total aumber of operations required by sharing commoa
terms when possible and thea introduces parallelism. The degree of
parallelism exhibited by the step and gradieat computation techniques
presented in this paper varies as a functioa of the number of proces-
sors (o be used. We cosstrain the number of available processors, p,
to lie in the rangs 1 $p S ANV, where n is the size of the system state
vector, NV is the aumber of stages in the coatrol process and we
assume A 2 m, where m i the size of the costrol. Oue of the feacuces
of the proposed parailel iterative algorithms is that their scructure is
completely specified by the aumber of processors whenever the
aumber of stages ¥ > (p /.

An efficieat techaique for gradient evaluation using a single pro-
cessor has beea discussed by Polak (14, pp.6669]. A direat impiemea-
tatioa of this technique 08 p processors achieves linear speedup for p
up to n; bowever, for p > n, the speedup is significantly reduced. In
this paper, e present aa spproech (0 gradient computstion which

This work was supported by the Air Porce Office of Scieatific
Research under Contract AFOSR-85-0097.

Louis J. Podrazk
Bendix Enviroamental Systems Division
Allied-Signal Inc.
Baitimore, Maryland 21284-9840

reduces 10 a direct parallel implementation of the technique gven in
(8] when 1<p<n and achieves speedup greater than 1,2(p « n)
whean < p <aNV?,

A cnitical step in our approach invoives the paralle} computation
of the state and costate vectors. When n = 1, the computauons
reduce to soiving forward and reverse linear recurrence systems, both
of size N. The paralle! evaluation of m-th order linear recurrence sys-
tems has been extensively studied [1]-(3], (7]. To solve first-order
lisear block recurreace systems in parallel, we use a blocked formuia-
tion of the approach presented in (7).

The organization of this paper is as follows : in Section ([, we
state the unconstraised discrete linear quadratic optimal control prob-
lem, examine the gradieat of the cost function and give the steepest
descent algorithm we shall consider. Section III presents the step
length and gradient computations required at each iteration. In Sec-
uos [V we pve a parallel procedure to solve the lincar recusreace svs-
tems required by Sectios {II. Based upon the results of Sectons (I
and [V, Section V preseats parailel implementations of the best-step
stecpest descent method to soive the LQR problem and the
corresponding performance analysis. Finally, in Section V1 conclu-
sions are presented.

(L PRELIMINARIES

We consider the LQR discrete optimal control problem:
Problem 1: Given an m-input, discyete, time-varying linear system in
which we are given the initial state, 7o, and

L= ALy + By, i=L2.N, (1)
where for i = 0,1V, % in E® is the state of the system at time i and

fori » 1.2, N, u in £™ is the conwrol at time i, find the mN control
vector 4 = (u}, u}, ..., uly) that minimizes the performance index

J(u) —;- (#0s + wru),

where z is the nN vector 2 = (24, 24, ..., ), Q = Diag(Q1, Q1.
Q,)uthenNmNbbckmmummdNnmsmemcpw
tive semi-definite blocks Q; and R = Diag(R,, R;,... Ry) s the
mN>onN block matrix that consists of ¥ mxn symmetnc positive
definite blocks R;.

The hypotheses on the matrices Q and R insure that Problem 1
posscises a unique solution 4 and that (d/ /du)y .,* = 0.

We now introducs a formulation for d/ /du that is used in our
parallel implementation of pradient algovithms.

A direct application of the chain nie for differentiation yields

where the z's are determined in accordance with Eq. (1), &/ /% aad
d/ /& are the DonN and LoV Jacobian matrices u'R and z*Q respec-
tively, and dz/du is the aAN>onN block lower triangular Jacobisa
matrix that consists of N? nxem blocks (dz /du)y = dz,/du, obtawed
by the chain rule for all i and j ia (1.2....V] by

0 dic<j
= . i 2
@, |2 diw) @
AAy A8y i > )
()mmmmnnnmmma satisfies
F, (d:/dl) = F,, where F, is the aN>nN block lower bidiagoaal




]

matrix that consists of N? nxn blocks [FJ and F, is the ANxmN
L ]
block diagonal matrix that consists of N nxm blocks [F‘) defined
13
for all i and j in (12....V] by

f o ifi= B, i
LFJ.,' A Wiegel [F'},'{o otherwise.
0 otherwise
Let £, be the aAN>n block matrix that coasists of N nx blocks
{fa] defined for all i in [1,2.....V] by
A, fi=1
othermise,
(74, = {0
letg = &/ 'du’ be the the mN'x1 gradieat of J (u) with respect to u and
let A be the AN costate vector A = (A%, A%, ..., A4 ), A io £*, defined
by A = F}Qz. Then, given u and z,, the gradient g may be obrained by
using the three equations

Fg = Fou + Fozo, (3)
FA = Qz, 4
g§=Ru+FA )]

With the aotation g* = (4/ /du)i..r, the version of the best-
step steepest descent method that we use is the following:

Algorithm 1: Letu'® be given.

Step 0: Setk = 1 and compute g'.

Step 1: If [|g* |2 < ¢ stop; else go to Step 2.
Step 22 CBmpute o® to minimize / (u* - o*g").
Step 3: Compute g**!.

Step 4 Letu®*! w u* . ogh

Step 5: Setk = k + 1and goto Step 1.

In Section I we present our approach to the computation of
g} o, and g**! and we show that the computation of o* and g***
shares common terms.

{II. GRADIENT AND BEST STEP COMPUTATION

We first consider the computation of g', which is performed
only once in Step 0 of Algorithm 1. As a consequence of Eqgs. (3), (4)
and (5) we obtain the gradienr evaluation techmique proposed by
Polak (8}:

Algonithm 2 Given u® and z4.

Step 1: Compute 1' such that Fig! = Foul + Fozq.
Step 22 Compute A' such that FUA! = O,

Step 3: Computeg’ » Ru' + Fa\.

Due to the lower n>a block bidiagonal structure of F,, Steps 1
and 2 of Algorithm 2 require the solution of N stage forward and
reverse Mo block first-order linear recurrences, respectively. Parallel
procedures for linear recurresces are presented in aext section. Given
Al, Step 3 computes g' by computing each of the N uncoupled com-
pooents g} = (d/ /diy)} . ; thus, Step 3 exhibits linear speedup when
executed in parallel

We now consider the computation of the optimal step iength
o*. The cost functioa is quadratic and therefore a closed form solu-
tion for o® exists. It is clear that

Jw) = 3 4R « FFIOF P

« APVEIQFFus + 3 ARVFIQFIF oy

J(u® -og*) mad? +Ba e,

'—— :

a= %<g‘.d'>,b gt g > ¢ St

d* = Re* « FUFIQFIF g,
and it follows that the optimal step leagth o is

AN RN of st d

2 <P dh>
Once d* is known, the gradiens ¢ *! is easy to evaluate using
PG Y ol o

Our approach to computing the quanuty d* coasists of using
Algorithm 3 below, where we note that instead of requnng £,' and
F}, we solve linear systems corresponding (o F, and F3.

Algonthm 3: Givea g*.

Step L: Compute * = Re".

Step 2 Compute & = F gt.

Step 3: Compute w” such that Fow® = &4
Step 4: Compute r* = Qw?.

Step 5: Compute v* such that Fiv® = #*.
Step 6: Compute * = Fiv*.

Step 7: Compute d* = 4 + .

With the exception of Stepe 3 and 5, Algorithm 3 computes
d* by executing a series of matrix-vector products followed by a vector
sum. Each of the matrix-vector products consuists of ¥V uncoupied
block matrix-vector products, thus exhibiting lincar speedup whea
implemented in parallel. However, due to the strucrure of 7, Steps 3
and S require the solution of N stage forward and reverse nxn block
firt-order linear recurrences, respectively. As in the case of Algo-
rithm 2, this again suggests the need for parallel procedures to solve
linear recurrences. Note that the sate z**!' and costate A*°!
corresponding to u**' can be obtained easily from the quaatities w*
and v* computed in Steps 3 and § of Algorithm 3, that is,

vl m b afw? and At a b .ot

IV. PARALLEL PROCEDURES FOR LINEAR RECURRENCES

The mod+l of ST M parailel computation that we use cogsists
of & global parallel memory, p parallel processors, aad & coatrol unit.
where all processors perform the same operation at cach time step.
We further simplify the model by making the following assumptions:
(i) each computationsl operation takes the same amount of time,
referred to as 8 step, (ii) there are 0o accessing conflicts in global
memory, (iii) all initial data resides in global memory, and (iv) there is
0o time required to access giobal memory.

We now preseat a blocked version of the parallel scalar
approsch given in (7] to solve forward A stage nxr block first-order
linear recurrence systems that we use to implement Algorithms 2 and
3.

The forward recurrence problem is: givea nxn matrices A4,, |
= 2,3.... N and givea vectors % ¢ £°, 1 = 1.2,..V, find the n vectors g,
suchthatz; = v andz » 4.2, + %, i = 3. .N. Let

N ifp>n
a @ /ny-1) p/n ifp>n
"IN otherwise, ‘.{1 othermise.

For w ia (0,1,..{31}, define the index sets
fo(w) = (i + AxF-1):i = Rl re2,.,1}
and
fi(w) = (W + M&Z(w+L{P1)):i » &1}

Thus, givea 7 = (W, 4, ..., 7%, % ¢ £* and precomputed A [i +/./}
- A(.A oy A,,} lf.(ld),i a [0.1....&-1]. the fm ptocedure
solves the forward block recurrence system, where for presentation
umplicity, we assume that ( and x are integers.
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FORALL j ¢ fo(w) DO IN PARALLEL 7, := 7,;

4.

S. FORi:=} TONMax(Lx1)DO

6.  FORALL; «f(w) DO IN PARALLEL
7. LeyimAioiogt * Yeps

8. END FORALL

9. ENDFOR

10. FORALL; ¢ fo(w) DO

11 FOR i:= 0 TO x-1 DO IN PARALLEL
12 ""’::-‘4[‘ ‘/"ll‘)-l " hep

13. END FOR

14, END FORALL

15. END FOR

16. END PROCEDURE

When 1 <p <n, the index set fo(w) is empty and procedure
FORWARD reduces to sequentially executing step 7 NV -1 times, each
execution using p processors. Whea A < p <aN'?, procedure FOR.-
WARD sequentially soives 0 reduced block recurreace systems in 2, of
size (p/n), cach in paraliel Each reduced system is solved in two
phases: the first phase coasists of the execution of steps 4 and S and
computes (p/n)* partial solutions, in which the first p/n are the
actual solutions and the second phase consists of the execution of loop
10 in which the precomputed nxn block matnices 4 (i +/,; | are used to
update the next p /n partial solutions at each iteration. We assign n
processors to perform each of the p /n concurreat executions of steps
7 and 12. The compiete solutica to the block recurrence system i
obtained after executing 3 iterations of loop 3. If f] is not an integer,
thea we replace (1 by | (1] and simply terminate the computation whea
2y is computed and if = is not an integer, we replace x by {p /nj.

A similar procedure REVERSE used 1o solve reverse
recurreaces ia may be obtained by a straightforward
modification of procedure FORWARD and heace will not be given.

We now give the aumber of steps required to soive cither an
N stage forward oc reverse first-order 2>m block linear recurrence sys-
tem.

Theorern I: Given N, n and p such that p =1 or p /n is an integer, the
aumber of paralle] steps required to solve a block nxn first-order
hnwrecumnasyueno(lcnghNunuppfoceaonu

1
(N-l)—p' fi<p<n
o=V imap-n)  ifn <pgane.

It is clear from Theorem 1 thas the speedup S, = 7,/7, exhi-
bited by the procedures FORWARD aad REVERSE is p when
1<p<n and y2(p + n) whea n <p SANY and p/n and (1 are
integers. The correspoading efficiency £, = S,/p is therefore 1 whea
1<p<n and /2 +n /% whes n <p SAN'® and p/n and (1 are
integers. Ia Figs. 1, 2, 3 and 4 we plot X, for the values of n = §, 16,
32 and 64 respectively, where the cfficieacy corresponding to the pro-
cedures FORWARD and REVERSE is denoted bv the solid line in
cach plot. Thus, we sce that the cficiency increases with increasing
values of » aad p and s indepeadent of N.

V. PARALLEL BEST STEP STEEPEST DESCENT

We now use the parallel procedures for the solution of linear
recurrences discussed in the previous sectioa to obtaia parailel imple-
mentations of Algorithms 2 and 3 give the corresponding number of
steps required for their executios whea p processors are used.

We first give the parallel implemeantation of Algorithm 2.

1. PROCEDURE GRADIENT (z4,4')

2 FORALLe¢(12..N} DO IN PARALLEL ~f := 8.u};
3 ) im ol s a2y

4. 2! = FORWARD(Nap,7);

5. FORALL ¢ (L2..N} DO INPARALLEL ¢} := Q!:

6. Al = REVERSE(N.np,¢);

7. FORAU.H(LZ, &} DO IN PARALLEL ¢} .=
8. RETURNg!;

9. END PROCEDURE

Lemma I: Givenzo,u', Non.masdpsuchthatp = lorp/nisan
wteger, e sumber of stcps reqlured by e procequre GRKALIENT
to compute g* using p processors, 1 < p <nN"‘.i.|

”f«. +Ima) [l"'—’(h omel)-

P
[%@ *m-q) ¢ [ﬂﬂl *2m-1) ¢ [MB(Pa) » 20 Un <p SaN?

We pext give the parallel implementation of Algorithm 3.

1. PROCEDURE DIRECTION(g")
2. FORALLi ¢ {1,2.. N} DO IN PARALLEL .} :« Rg":
3. FORALL«¢{L2,..N} DOIN PARALLEL §*:= 84"
4. w' « FORWARD(N,np.8);
]
6
7
8.

R\“v‘ * B”\‘;

d1<p<n

. FORALLi¢{1,2,..N} DOINPARALLEL n} :» Q,w*

. v* « REVERSE(Nap,7);

. FORALL ¢ (1,2,..N)}) DO IN PARALLEL y* := 8%,
FORALLi ¢ (12...N} DO INPARALLEL & := u! + i
RETURN ¢%;

10 ENDPROCEDURE

Lemma 2 Given g*, N, a, m and p such that p = 1 or p.n s an

integer, the number of steps required by procedure DIRECTION to

compute d* using p processons, 1 Sp ANV, is

Na Nm i
—Gnemd) oom-l) . ——
¢ ) [’ (20 )=

T, =
! [ﬁ:—]o- sm e [%-}fa sdmel) ¢ [N8pa) dn <p NS

We now embed the parailel procedures GRADIENT and
DIRECTION to obtain a parallel implementation of Algonthm 1 and
we then give the correspoading aumber of steps requured for one
iteration.

1. PROCEDURE PSDM(z4,4")
?.. k -]
8! = GRADIENT(zq.u');
4 WHILE jig* )’ > ¢ DO
S. d*= DIRECHON([').
6. o e <prgt>/<gtd*>:;
7
8.

0 d

dl<pLa

FORALL ¢ {1.2,...N) DO[NPARA.LLEL;,‘" WY o
FORALL i ¢ {(12.. N} DO IN PARALLEL u**! := u? - ogl;
k=k+1

Theorem 2 Giveazy, 4!, N,n,m and p such thatp = 1 orp/n is an
integer, the number of steps required by ooe iteration of procedure
PSDMunqpml<p<nN"' u

[—1(& *Im-3) + [—-](b *ImeTy. L Uog

[—}(ﬁ‘h-]) . [—1(}! sImeT) + [OKpa) + Uogyp dn <p ANV

d1€p<n

As » cousequence of Theorem 2, it may be shown that the
speedup S, and efficency E, for procedure PSDM are bounded from
below by

Tl Tl
Sy = T'ZO.@. E, = ;T—’ZO-ﬁ

In Figs. 1, 2, 3 snd 4, we plot E, for the procedure PSDM for the
values n @ §, 16, 32 and 64 respectively, and in each case use the
values m = 1, 4 and 8. It is thea casy to soe that £, increases with m,
and that the efficiency of the procedure PSDM is bounded from below
by the efficiency of the procedures PORWARD and REVERSE.




V1. CONCLUSIONS

Tn this paper a parallel implementation of the best-step steepest
descent method has beea preseated to soive the LQR optimal control
problem. The procedure exhibits the desirable property that its struc-
ture, and hence parallelism, is determined by the aumber of avalable
processors. Thus, unlike approaches in which the structure of the pro-
cedure changes with problem size, the procedure presented in tus
paper mantains the same computational and interprocessor commun-
icauon requirements, indepeandently of the aumber of stages in the
control problem. Furthermore, the procedure bas beea shows to
exhubit an efficency £, always greater than 0.6.

The paper's basic approach caa be used to produce parallel
implementauons of more complex gradient based methods. For
example, the procedure PSDM may be easily modified to produce the
following parallel version of the Fletcher-Reeves conjugate gradient
method.

1. PROCEDURE PCGM(z¢,u4 ')
L ok=

3. » = g! =« GRADIENT(zq,4');
3. WHILE |Ig*}i* > ¢ DO

s. d. = DIRECTION(#*);
6. - <g? > /cab >,
7. FORALLII(LL ..... N} DO IN PARALLEL g*°!: -g" a*dr,
8. FORALLA((LL N} DOINPARALLEL u?*f .= u} . o*n%;
5 e <g P <
10. FORALLA ¢{L2..N} DO INPARALLEL
LRRELY AR
11. kwk+ 1,
2. ENC~WHILE

13. END PROCEDURE

Finally, we note that the procedures presented in this paper
may be used to solve discrete optimal control problems which iavoive
aonquadratic cost, nonlinear dynamics and constraints on the states
and/or controis. [n that case, one oeeds to use penaity function and
gradient projection methods and suitable approximatioas to cost func-
tion and system dynamics.
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8. APDENDIX III

PARALLEL GRADIENT PROJECTION ALGORITHMS TO SOLVE THE DISCRETE LQR OPTIMAL
CONTROL PROBLEM WITH HARD CONTROL BOUNDS

GERARD G. L. MEYER LOUIS J. PODRAZIK

Electrical and Computer Engineering Department Beandix Eavironmental Systems Division

The Johns Hopkins University Allied-Signal Inc.

Baltimore, Maryland 21218 Baltimore, Maryland 21284-9840
ABSTRACT

In this paper we present two parallel gradient based iterative algorithms to solve the linear quadratic
regulator (LQR) optimal control problem with hard control bounds. In the first part of the paper, we
introduce the algorithms in the context of the general class of problems to which they are applicable. The
first algorithm is a parametrized gradient projection method and can be used to solve any convex program-
ming roblem. The second algorithm is a combination of the first algorithm with a constrained version of
the Fletcher-Reeves conjugate gradient method and can be used to solve linear inequality constrained
problems. We then use the two algorithms to solve the LQR optimal coatrol problem with hard control
bounds. In the second part of the paper, we show that at each iteration parallel evaluation of the step
length and projected gradient of the quadratic cost function can be efficiently performed as a function of
the number of processors. We then embed our parallel step length and gradient projection procedures to
produce two parallel algorithms which are suitable for real-time online implementation on a SIMD
machine.

L. INTRODUCTION

Practical iterative methods to solve optimal control problems must exhibit fast convergence coupled
with low computational overhead per iteration so that they may be implemented in a real-time online
environment. Furthermore, they must be interior descent methods since infeasible approximations to the
solution are unacceptable for most applications. In this paper we present two gradient based iterative inte-
rior methods for the parallel solution of the discrete LQR optimal coatrol problem with hard control
bounds. The algorithms are synthesized so that each iteration may be efficiently executed on a parallel
computer. Uanlike previous parallel approaches to the solution of optimal control problems which simply
fold the computations to fit the number of processors [MEY73], [SCHS81], [TRAS0], our approach has
been devised by explicitly considering the given computational environment. Consequently, one of the
features of the parallel algorithms presented in this paper is that their structure, and hence their parallel-
ism, is determined by the number of available processors, resulting in algorithms which are matched to the
given parallel environment.

We introduce the algorithms in the context of the general class of problems to which they are appli-
cable. The first aigorithm is a parametrized gradient projection method and can be used to solve any con-
vex programming problem. We parametrize the algorithm for two purposes: first, the algorithm contains
a so called e-procedure for determining the active constraints in order to prevent the possibility of jam-
ming and to ensure convergence; unlike approaches which generate a sequence of ¢s, our approach uses a
constant ¢ for all iterations. Secondly, we investigate the performance of the algorithm for various param-
eter choices with the goal of obtaining improved convergence. The second algorithm is a combination of
the first algorithm with a constrained version of the Fletcher-Reeves conjugate gradient method and can
be used to solve any problem with linear inequality constraints. Furthermore, we show that a slight
modification of our second algorithm results in the algorithm exhibiting finite convergence on problems

Supported dy the Air Force Office of Scientific Research under Contract APOSR-25-0097.
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We then use ¢  algorithms to solve the LQR optimal cont. problem with hard control bounds
which we rewrite as a bounded variable quadratic programming problem with specal structure. There
exist many interior methods applicable to this class of problems, including feasible directions, gradient pro-
jection, reduced gradient, variable metric and numerous quadratic programming methods. Our motivation
for devising a gradient projection method is due to the simple projection computation that occurs with
respect to the control problem of interest as well as avoiding large matrix computations involving the exact
or approximated Hessian.

We give two parallel implementations of our algorithms to solve the LQR optimal control problem
with hard control bounds. In both implementations the step length and gradient is obtained by using the
parallel procedures preseated in [MEY87b]. The procedures share common terms and exhibit varying
degrees of parallelism as a function of the number of processors. We constrain the number of available
processors, p, to lie in the range 1 <p <nN'?, where n is the size of the system state vector, N is the
number of stages in the control process and we assume n > m, where m is the size of the control.

By employing a blocked formulation of the approach for first-order linear recurrences given in
[MEY87aj, we embed in our algorithms the approach for gradient computation given in [MEY87b} whick
reduces to a direct parallel implementation of the technique givea in [POL71, pp.66-69] when 1 <p <n
and achieves speedup greater than 1/2(p + n) whenn < p <aN*?. In addition, one of the features of our
proposed parallel iterative algorithms is that their structure is completely specified by the number of pro-
cessors whenever the number of stages N > (p /n)?.

The organization of this paper is as follows : Section II introduces the convex problem and associ-
ated optimality conditions. Section III presents the parametrized gradient projection algorithm and
corresponding implementation for the bounded variable quadratic programming problem. In Section [V
we combine the algorithm given in Section IIT with a linearly constrained version of the Fletcher-Reeves
conjugate gradient method. We then rewrite the LQR problem with hard coatrol bounds as a bounded
variable quadratic programming problem in Section V. Section VI presents the parallel algorithms to
solve the LQR problem with hard control bounds and the correspoading performance analysis. Finally, in
Section VII conclusions are presented.

II. THE CONVEX PROBLEM AND PRELIMINARIES

We consider the following problem:
Problem 1: Givenm +1 maps f°(.), f(.), ..., f"(.) : E® — E and a subset 12 of E® defined by

N={x|f(x)<0 fori =1,2..,m},
find a point x" in 02 such that for everyx in
PRI}

Definition 1: Let C be the class of all problems of the form of Problem 1 in which the maps
20, £10), -, f*(.) are such that
(i) f°(.) is continuously differentiable, convex and radially unbounded; that is, f°(.) is such that given any
x €11, to every scalar a corresponds a scalar p > 0 such that f°(x) > a whenever ||x|| > p,
(i) £(),i = 1,2, .., m, are continuously differentiable, convex and define a nonempty constraint set 0}
and
(iii) the set  satisfies the Kuhn-Tucker constraint qualification at every solutionx”.

It is known that the following necessary conditions of optimality are also sufficient for any problem
in C.
Optimality Conditions: A pointx’ € is an optimal solution to a problem in C if and only if there exists a
vector p € E® with components 4 2 0,i = 1, 2, ..., m, such that
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VOEY + B wIFE) =0
i=l

wfx’) =0, fori = 1,2, .., m.

I11. THE PARAMETRIZED GRADIENT PROJECTION ALGORITHM

Given a point x € (3 and the parameter ¢ > 0, define the s-active constraints index set / (x, ) as
Ixe)={i | fix)2 )},
given a subset I of the set {1, 2, ..., m}, define the subset (1) of E® as
1 Ffoy<oforalliery if1#¢

and given a point x € (1 and an index set /, let w (x,/) be the projection of x - Vf°(x)* onto the set f/), that
is. w (x,/) satisfies

e -9@)) -wnll = min{ || ( -9 -yl |y eUD}.

We only consider problems in C, and thus ()(/) is non-empty and convex, and the quantity w (x,/) is
well defined. Using the aotation just defined, we may rewrite the optimality conditions as:

Lemma 1: If a point x” €1 is optimal for a problem in C then w(x',l(x',z)) = x’ for all €>0. Con-
versely, if x* and ¢ satisfy w (x",/ (x",)) = x”, thenx’ is optimal.

We now g e the parametrized gradient projection algorithm to solve a Problem in the class C.
Algorithm 2: Letx' €f) and ¢> 0 be given.

Step0: Setk = 1.
Compute Vf(x!), I(x' &) = {i | f/(x")> <} andp' = w(x' I(x},e)) -x'.
Step 1: if p* = O stop; eise go 0 Stey .
Step 2: Setd* = p*.
Step 3: Compute o* > 0 to minimize fO(x* + o*d*) subject to (x* + o*d*) e
Step 4: Letx**! = x* + o*d*.
Step 5: Compute Vfo(x**1).
Step 6: Compute I(x**',¢) = {i | fi(x**!)> ).
Step 7: Computep**! = w(x**1 I(x**!5)) - x**1 .
Step 8: Setk = k + 1and go to Step 1.
Remark 1: Althcugh not cxplicitly requiied in the presentation of Algorithm 2, we introduce the quantity
p* in order to facilitate a later modification which results in our second algorithm.

At cach iteration, Algorithm 2 generates a search direction d* which is computed by projecting
the negative gradient onto the set (7 (x*,¢)). The parameter ¢ defines the “sufficiently-active” constraint
region. If a point x* is in that region, then /(x*s) #¢ and the corresponding search direction d* is
obtaiped by projecting x* - Vf°(x*)* onto the set {y | f(y) <O for all i €/(x*¢)}; otherwise, d* =
-Vf%x*). For ¢ large enough, (X/(x*,6)) = 01 for all k. Thus, by choosing ¢ large, Algorithm 2 reduces to
projecting x* - Vf(x*Y* onto the entire set 2 at each iteration. For ¢ = 0, (I(x*¢)) = E® whenever
x* € interior(fl). Thus, when ¢ = 0, Algorithm 2 reduces to a projected version of best-step steepest des-
cent in which the direction chosen at an interior point is the negative gradient.

We now show that using any ¢ > 0 in Algorithm 2 will always produce a solution to a problem in
C, even though the direction finding map used to compute d* is not closed.
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Lemma 2: [fre€Qis - “t a solution to a given problem in C and e ~ " then there exists an «(x) > 0 and
§(x) > 0 such that

Py + ad) < f(y) - 8(x) for ally € B (x,e(x)) N Q2.

Theorem 1: If {x*} is a sequence constructed by Algorithm 2 to solve a problem in C then either {x*} is
finite and the last point is optimal or {x*} is infinite and contains cluster points, cach of which is optimal.
Furthermore, when a problem in C is suck that f°() is strictly convex, then that problem has a unique
optimal solutionx”, and in that case {x*} converges tox".

In order to present the parallel implementation of Algorithm 2 used to. solve the LQR problem,
we first use it to solve a particular case of Problem 1, specifically the bounded variable quadratic program-
ming problem given below.

Problem 2: Find x € E* with componentsx;, i = 1,2, .., n, that minimjzes the performance index f(r) =
1/2x*Hx + b'x + c subject to x €(}, where H is an n x n symmetric positive definite matrix, b is an n x 1
vector and (1 is the unit hypercube definedasQ = {x| |x| <L fori=1,2..,n}.

Since H is positive definite, the cost function f°(.) is strictly convex. The nonempty constraint set
0 is the intersection of the 27 linear inequalities ff(x) = x;-1<0and f**(x) = - -1<0fori = 1,2, ..,
n. Therefore, Problem 2 lies in C and by Theorem 1, Algorithm 2 will generate a sequence which con-
verges to the unique solutionx”.

We now give some propertics of implementing Algorithm 2 to solve Problem 2.

Lemma 3: Given x* and V/%(x¥), let p* = w (x*J (x* ¢)) - x* for the case of Problem 2. Then each com-
ponent p¥ of p* can be computed as

+1-2* if iel(@*e) andx? -V >1
pr= -lv}ox(?*)' ifi +n €I (x*€) andx¥ - V¥ < -1 (3.1)
Vi (x otherwise,

where we denote Vf?(x*) to be the i-th component of Vf°(x*).
Remark 2: If ¢>2 then I(x*,¢) = {1, 2, .., 21} for all k. Consequently, w(x*,I (x*,¢)) = SAT(x* -
Vf°(x*)*) and Algorithm 2 reduces to projecting onto the entire set {2 at each iteration.
Lemma 4: Given x* and V/°(x*), let o* minimize fO(x* + o*d*) subject to (x* + o*a*) €1 for the case of
Problem 2. Then o® can be computed as o* = min{ay,a, }, where

ay = -<d* VOx*)> / <d* Hd*>, (3.2)

sgn (af) - x
1]

a =minf{a | a = for all i such that d* #0}. (3.3)

Remark 3: Since the cost function is quadratic and we are using the update x**! = x* + o*d*, the quan-
tity Vf°(x**!)* can be updated using VfO(x**!)* = VfO(x*)* + o*Hd*. Consequently, we need only com-
pute the gradient directly in Step 0 of Algorithm 2, and then use the gradient update at each subsequent
iteration.

We now give the following implementation of Algorithm 2 to solve Problem 2.
Algorithm 3: Letx® and ¢ > 0 be given.
StepO: Setk = 1.

Compute Vfo(x')t = Hx'+b,1(x',6) = (i |x}-1> €} U (i +n | -x}-1> <} and p® using Eq. (3.1).
Step 1: If ||p* |2 < ¢, then stop; else go to Step 2.
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Step 2: Setd* =p*. - 3 -
Step 3: Computer  min {4, }, according to Eqs. (3.2) and (3._,.
Step 4: Letx**! = c* + o*q*.
Step 5: Let V%(x** 1)t = V() + o*Hd".
Step 6: Compute I(x**'¢) = {i | 2*'-12<€}Ufi+n | 1 -1> <}
Step 7: Compute p**! using Eq. (3.1).
Step 8: Setk = k + 1 and go to Step 1.
In Section IV we modify Algorithm 3 to obtain improved convergence properties when a problem

in C is linearly constrained.

IV. FLETCHER-REEVES MODIFICATION FOR LINEARLY CONSTRAINED PROBLEMS

We now consider the following linearly constrained class of problems.

Definition 2: Let L be the class of all problems of the form of Problem 1 in which the maps
£ £10), s f™(.) are such that

(i) f°(.) is continuously differentiable, convex and radially unbounded,

(i) fi(x) = <g', x> -h, fori = 1,2, .., m define a nonempty constraint set {3 and

(iii) for anyx €2, g* for i € (x, 0) are linearly independent.

Givenx! €0, let I (x*,0) be the index set defined by 7 (x*,0) = {i | <g*, x> -h; = 0} and let G,

be the corresponding matrix whose rows are (g*)* for all i € I (x*,0). The projection matrix P, associated
with the point x* is P = I - G}(G,GL) G,. Let M(I (x*,0)) be the linear manifold defined by

; - . . . .
M (*0)) = { {,;:.: <gh x> -h; =0 foralli el(x*0)} gjg‘s:g; : :'

Then we may compute the projection of Vf°(x*) onto the set M(I (x*,0)) as ﬁ. = PV (x*).

Our approach to solving a problem in L is to approximate f°(.) as a quadratic and generate a new
direction d**! which is conjugate with respect to the previous direction d* whenever possible. We com-
pute the initia! direction d! = p! and subsequent directions d* using d* = p* + F*d*!, where & =
tp® 112/ Ilp** }*. However, rather thaa projecting x* - Vf°(x*)¢ onto the active contstraint set M (I (x*,0)),
we project onto the approximation set (I (x*,¢)), that is, we compute p* = w (x*,/ (x* ¢)) - x*. Conse-
quently, we may produce a d**! which is conjugate to d* whenever Py ,; = Py andp**! = p**", otherwise
we restart the algorithm with d**! = p**!, Furthermore, if f%(.) is not quadratic, the algorithm should be
restarted at least everyn - | I(x**1,0) | steps as a spacer step to ensure global convergence.

We now give the parametrized gradient projection algorithm with tae Fletcher-Reeves
modification to solve a problem in the class L.

Algorithm 4: Letx! and ¢ > 0 be given.
Step0: Setk = k = 1and d® = 0.

Compute Vi), Ix'e) = {i | fx')2 ¢}, 11,0) = (i | fc") = 0} and

p = wixl I )t
Step 1: If p* = 0 then stop; else go to Step 2.

Step2: Ifd*! = 0 thenletd® = p* and go to Step 5; else go to Step 3.

a2
Step3: Letp* = _uLu_ILD"" i
Step4: Letd® = p* + goq*!,
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- j) -
Step S: Compute o* > 0 to minimize f°(x* + o*d*) subject to (x* + ~d*) eq.

Step6: Letx**! =x  ofd*

. Step 7: Compute Vf2(x**Y).

Step 8: Compute I (x**'e) = {i | f(x**!) > ).

Step9: Compute p**! = w(x**1 I (x**1,e)) - x**1.

Step 10: Compute /(x**1,0) = {i | f/(x**') = 0}.

Siep 11: Compue p**1 = -P, VA1),

Step 12: IE7(x**1,0) #7(*,0) orp**! #5" " orke > 1 - [1(**1,0)| then set
d* =k =0.

Step 13: Setk =k + l,l'c\ =k+ 1 and go to Step 1.

When f°(.) is a quadratic, Algorithm 4 generates a new direction d* ** which is conjugate to d*
whenever the point x**! is in the same active constraint set M (7 (*,0) as x* and p**! = 5**". However,
since p**! is obtained by projecting onto the set X7 (x**!,s)) rather than M (I (x*,0)), Algorithm 4 is not a
pure active set method. Thus, Algorithm 4 may change constraint sets before the minimizer on the current

constraint set is found and consequently does not exhibit finite convergence in the case of quadratic cost.
Theorem 3: If {x*} is a sequence constructed by Algorithm 4 to solve a problem in L, then either {x*} is
finite and the last point is optimal or {x*} is infinite and contains cluster points, each of which is optimal.
Furthermore, when a problem in L is such that f°(.) is strictly convex, then that problem has a unique
optimal solution x*, and in that case {x*}convergestox".
We now give a slight modification to Algorithm 4 which allows the resulting algorithm to achieve
finite convegenice when used to solve problems with quadratic cost.
Algorithm $: Letx! and ¢ > 0 be given.
Step 1: Use a conjugate gradient method to find the minimizer x, for the unconstrained version of the
problem.

Step 2: Ifx, € () then stop; else go to Step 3.

Step 3: Compute x} to be the projection of x, onto the set fL
Step 4 Use Algorithm 4 with x} as the starting point to compute the solution of the problem.
Corollary 1: If {x*} is a sequence constructed by Algorithm S to solve a problem in L with f°(.) a qua-
dratic in x with postitive definite Hessian, then {x*} is finite and the last point is optimal.
V. DISCRETE LQR CONTROL PROBLEM WITH HARD CONTROL BOUNDS

In this section we rewrite the discrete LQR optimal control problem with hard control bounds as
a bounded variable quadratic programming problem and then show how the gradient and step length com-
putations may be organized to share common terms.

Problem 3: Given an m-input, discrete, time-varying linear system in which we are given the initial state,

2y EE-, and

L4 = A-izi-l + Biu!" i = 1, 27 ey N1 (51)
where fori = 0, 1, .., N, z; € E® is the state of the system at time i and fori = 1,2, .., N, u; €E™ is the
control at time i with components & ;, j = 1, 2, .., m, find the mN control vector u = (uf, ul, ..., uy)'

that minimizes the performance index

1w = L 5 (404 + wRa),

swl

and satisfies
u€en,

_
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- where fori = 1,2,. VN, Q, are n x n symmetric positive semi-defi * * matrices, R, are m xm symmetric
positive definite mat..cs and the convex compact set 2 is defined as

- O={u] luyl <y fori=12. . ,N,j=12.,m}

Using the notatioa introduced in (MEY86], Probiem 3 may be rewritten as a bounded variable
quadratic programming problem in u:
Problem 4: Find the control vector u € E™ that minimizes the performance indexJ (u) = 1/2 u*Hu + b'u
+ ¢ subject to u €0, where H is the mN xmN block symmernc positive definite matrix with block size
mxmgivenby H = (R + FLF}QFIF,), b is the mN x 1 vector given by b* = Z4F4FIQF;F,, and c is the
scalar given by ¢ = 1/224F4FfQF;!Fzq, and the matrices R, Q, F,, F, and F, are defined as: Q =
Diag (@1, Q3,.-» @n), is the AN x nN block matrix that consists of N n x n symmetric positive semi-definite
blocks Q;, R = Diue(Ry, R,,..., Ry) is the mN xmN block matrix that consists of N m xm symmetric
positive definite blocks R;, F, is the nN x nN block lower bidiagonal matrix that consists of N? n x n blocks

[F.) _and F, is the AN x mN block diagonal matrix ihat consists of N2 n x m blocks [F,} ~ defined for all i
3] Y
and j in [1,2,...N¥] by

CIR P, {0 b
owne

and F, is the nN x n block matrix that consists of N n x n blocks [F,,] _defined for all i in [1,2,....N] by

[Fo}.' :.{gI g(i'n:r;isc.

Since Problem 4 is of the form of Problem 2, Algorithms 3 and 4 car be used to solve Problem 4.
We now use the approach for the evaluation ~€g(u?), o* and g (u**') given in [MEY87b] in which o* and
g(u**") are computed by sharing common terms, where we use the notation g (u*) = (d//du)t ...

We first consider the computation of g (u'), which is performed only once in Step 0 of Algorithms
3 and 4. The matrix F, is non-singular and thus we may write the gradient as g (u!) = Ru'! + FLF{Qz!,
where z* satisfies Eq. (5.1). Let A€ E™ be the costate vector A = (A%, A%, ..., %), A € E®, defined by A
= F#Qz. Then, given u' and z,, the gradient g (u') may be obtained by using the three equations

Fz' = Fu! + Fyz,, (5.2)
Fb = Ozt (5-3)
g?) = Ru! + Fal, (5.4)

As a consequence of Eqs. (52), (53) and (5.4) we obtain the gradient evaluation technique pro-

posed by Polak [POL71});

Algorithm 6: Given 1! and z,.

Step 1: Compute z* such that F,z! = Fou' + Fyz.
Step 2: Compute ' such that FA! = Q2.

Step 3: Compute g(u') = Ru'! + Fial.

Due to the lower n x n block bidiagonal structure of F,, Steps 1 and 2 of Algorithm 6 require pro-
cedures for the solution of N stage forward and reverse n x n block first-order linear recurrences, respec-
tively. Such procedures ace discussed in Section VI. Given !, Step 3 computes g (u!) by computing each
of the N uncoupled components g} = (& /di;)% .o1; thus, Step 3 exhibits linear speedup when executed in
parallel.
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Algorithms 3 and 4 both use the common term »* = Hd* in *he computation of the step length #*
and the next gradien. 4**!). We now show that »* can be efficien. . computed by writing #* as

« = Rd* + FLF{QFF.d",
and using Algorithm 7 below, where we note that instead of requiring F;! and F}, we solve linear systems
corresponding to F, and F%.

Algorithm 7: Given d*.

Step 1: Compute * = RZ™.

Step 2: Compute §* = F, d*.

Step 3: Compute w such that F,w* = 6*.
Step 4: Compute * = Qw?*.

Step 5: Compute v* such that Fiv* = .
Step 6: Compute x* = Fiv*.

Step 7: Compute ¥* = ;& + x*.

With the exception of Steps 3 and S, Algorithm 7 computes #* by executing a series of matrix-
vector products followed by a vector sum. Each of the matrix-vector products consists of N uncoupled
block matrix-vector products, thus exhibiting linear speedup when implemented in parallel. However, due
to the structure of F,, Steps 3 and 5 require the solution of N stage forward and reverse n x n block first-
order linear recurrences, respectively. As in the case of Algorithm 6, this again suggests the need for
parallel procedures to solve lincar recurrences.

V1. PARALLEL ALGORITHMS FOR OPTIMAL CONTROL PROBLEMS

The model of SIMD parallel computation that we use consists of a global parailel memory, p
parallel processors, and a control unit, where all processors perform the same operation at each time step.
We further simplify the model by making the foilowing assumpiions:

Each computational operation requires the same amount of time, referr=d to as a step.

All initial data resides in global memory.
There is no time required to access global memory.

We use the parallel procedures FORWARD and REVERSE given in [MEY87b] to solve the for-
ward and reverse N stage # x n block first-order linear recurrence systems that are required by Algorithms
6 and 7. The procedures are blocked versions of the parallel scalar approach given in [MEY87a) and are
formulated as a function of the aumber p of proucssors so that the algorithm structure is fixed whenever
the number of stages N > (p /n)*. We then use the parallel procedures GRADIENT and DIRECTION
also given in [MEY87b] to obtain paraile] implementations of Algorithms 6 and 7.

We next give the following parallel implementation of computing the quanities p* =
w @ I (u*e)) - u andp* = -Pog(u®).

1. PROCEDURE PROJECTION1(u*, g (u*))

2. FORALL € {12,...N},j € {1,2..,m} DO IN PARALLEL p{; : = - g (u*);

3. FORALLi €{1,2,..N},j € {L,2...,m} DO IN PARALLEL
4. IFulj-1>«ANDuf;-g (u") > 1THENp! := +1-ul;
s
6

Al
A2.  There are no accessing conflicts in global memory.
A3
Ad

IF ul;-1>«ANDu?;-g (u*) < -1 THEN p¥, := -1 -u};
. END FORALL
7. RETURN p*;
8. END PROCEDURE




1. PROCEDURE PROJECTION2(u*, g (u*))
2. FORALLi€{ ..N}je{1,2.,m}DOINPARALLEL, .=g (u*);
3. [(@%0):= ¢
4. FORALL € {1,2,.,N},j€{1,2,...,m} DO IN PARALLEL
5. IFul;-1=0THENpP :=0,1(u*0):= 1@*0)u(j);
6. IFwul-1=0THENp" :=0,7(u*0):= I@*0)U(ij);
7. END FORALL
8. RETURNp", I(u* 0);
9. END PROCEDURE
We now embed the parallel procedures GRADIENT, DIRECTION, and PROJECTIONI to
obtain a paralle] implementation of Algorithm 3 to solve Problem 4 and we then give the corresponding
number of steps required for one iteration using p processors.

1. PROCEDURE PGPM(z,,u')

2. k:=1;

3. g(u?'):= GRADIENT(z,,4');

4. p!':= PROJECTION1(u!, g(u'));

5. WHILE ||p*||* > ¢, DO

6. d":=p"

7. #*:= DIRECTION(d*);

8. o :=min {o a};

9. FORALLi€{12,..N} DO INPARALLEL u*!:= u}* + o*a¥,
10. FORALLi € {1,2,..,N} DO IN PARALLEL g**!:= g} + o«
11. p**!.= PROJECTION1(u**!, g(u**1));

12 k:=k+1;

14. END WHILE

15. END PROCEDURE

Theorem 4: Givenzp, u', N, n,m and p such that p = 1 or p /n is an integer, the aumber of steps required
by one iteration of procedure PGPM using p processors, 1 <p <aNY, is

2
Nn (6n+bn-2)+“"' (21:+?Jn+22)-4—;—+4log;o f1<p<n

T(Namp) = Nn

p (2n+2m-2)+h”' (Zn#?mm)*{ ML tapn) + dogyp ifn <p <N,

@ /n)¥1

We next embed the parallel procedures GRADIENT, DIRECTION, PROJECTIONI1 and PRO-
JECTION?2 to obtain the following parallel implementation of Algorithm 4 to solve Problem 4 and we then
give the corresponding number of steps required for one iteration.

1. PROCEDURE PGPFRM(z,u?)
2. k:=1;
3. g(u') := GRADIENT(zo,u');
4. p':= PROJECTION1(u}, g(u"));
5. WHILE ||p*||? > ¢, DO
6. IFd*' = 0 THENd*:=p*
7. ELSES = ()p*II*/ Ilp**?
FORALLi € {1,2,..,.N} DO IN PARALLEL d* : = p} + g*d*?!;
8. ENDIF
9. #*:= DIRECTION(d*);
10. o := min {ay, a,};
FORALL € {1,2,..,N} DO IN PARALLEL u}*! : = u} + o*d¥;
FORALL € {1,2,..,N} DO IN PARALLEL g ‘! := g* + o*x?,
p**! = PROJECTIONI(u**!, g(u*) +1);

4___”

CRE




===

14, p = PROJECTION2(* !, gu* * 1))

1. [FI@**',0). 4*0)ORp**' #p"" THENG*:=0;
16. k:ak +1;

17. END WHILE

18. END PROCEDURE

Theorem 5: Givenzg, ul, N,n, m and p such thatp = 1 or p /n is an integer, the number of steps required
by one iteratioa of procedure PGPFRM using p processors, 1 <p <aN*, is

2
N | on +2m-2) + ’:"‘ (2n+2m m)-i;— + Tlogp if1<p<n
T(N -
(nme) Nn (2n +2m-2) + Nm (2n +2m +34) + N 8(pn) + Tlogp Hn < p <aNY.
2 P @ /n)

The speedup S, and effidency E, for procedures PGPM and PGPFRM can be obtained directly
from Theorems 4 and 5. A straightforward computation shows that S, and £, are bounded from below by
S, >0.6pand E, 206.

VII. CONCLUSIONS

In this paper two parallel algorithms have been presented to solve the discrete LQR optimal con-
trol problem with hard control bounds. The algorithms exhibit fast coavergence coupled with a high
degree of parallelism at each iteration, making them suitable for real-time online implemenation on an
SIMD machine, Moreover, the algorithms possess the desirable property that their structure, and hence
parallelism, is determined by the number of available pro.essors. Thus, unlike approaches in which the
structure of the procedure changes with problem size, the procedures presented in this paper maintain the
same computational and interprocessor communication requirements independently of the number of
stages in the control problem. Although not considered in this paper, interprocessor communication
requirements should not be a critical performance factor in view of the implementation resuits for parallel
linear recurrence solvers presented in [MEY87a].

Finally, we note that the parallel procedures presented in this paper may be used to solve con-
strained discrete optimal control problems which wavolve nonquadratic cost and nonlinear dynamics. In
that case one uses suitable approximations in which the system dynamics are linearized and the cost is
approximated quadratically.
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