
Liclnssited _ _

A REORT DOCUMENTATION PAbc

I REPORT SECURITY CASS;C:.ATON ID RESTRICTivE MARKINGS

Unclassified
3 DISTRIBUTONAVAILABILITY OF REPORT

)uLEAD-A214 786 EO......

6a NAME O PERFORMING ORGANiZATION 160 OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATIONI (If applicable)

The Johns Hopkins University Air Force Office of Scientific Research 'NM

6<. ADDRESS (Gry, State, and fIP Code) 70 ADDRESS (Cry, State, ano ZIP Code)

Charles and 34th Streets
Baltimore, Maryland 2L218 Bolling AFB, Washington DC 20332

aa. NAME OF FUNDING /SPONSORING 8t OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTiFICATION NUMBER
ORGANIZATION (if applicable)

AFOSR AFOSR-85-0097-B

. ADDRESS (City, State, and ZIP Cooe) 10 SOURCE 0; ,JNDING NUjM1BERS

Building 410 PROGRAM I PROJECT TASK WORK uNIT

Bolling AFB - DC 20332-6448 ELEMENT NO NO NO ACCESSION NO

71 TITLE (include Security CJass3tication)
FAULT TOLERANT PARALLEL IMPLEMENTATIONS OF ITERATIVE ALGORITHMS FOR OPTIMAL
CONTROL PROBLEMS

12. PERSONAL AUTHOR(S)
Gerard G. L. Meyer and Howard L. Weinert

13a. TYPE OF REPORT 13b. TIME COVEP;:D 14 DATE OF REPORT (Year, Month, Day) 5 AGE COUNT
Final I FROM 1/1/8 5 TO12/31/8 1988 January 21 39

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Algorithm, parallelism, optimal control,

fault tolerant. m--

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This final report briefly describes progress on research in algorithms for

optimal control problems. The principal research focus has been on a new approach
to the parallel implementation of iterative algorithms for optimal control based on
a two level parametrization of optimality conditions, and a secondary research focus
has been the investigation of fault detection in the type of computational networks
used for optimal control computations. Publications describing the results in detail
are listed. a K i

SI ELECTF
NOV28 1989

SB
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

rIUNCLASSIFIED/UNLIMITED r: SAME AS PV T DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Coae) I22c OFFICE SYMBOL

Major James M. Crowley.p 202)-767-5025

DD FORM 1473,84 MAR 83 APR edition may oe used urti exnaustedi SECURI'r" CLASSIFICATiON OP -HS PAGE
All other editions are oosolete.

Unclassified
L7 o _t ,--' Y .!

DISCLAIMER NOTICE
C-~~ Lk-- m0

THIS DOCUMENT BEST
QUALITY AVAILABLE, T7E COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

qg ~~APr'-Tft" P 9- . 1" :4872

FAULT TOLERANT PARALLEL IMPLEMENTATIONS

OF ITERATIVE ALGORITIMS FOR OPTIMAL CONTROL PROBLEMS

Gerard G.L. Meyer and Howard L. Weinert

Electrical and Computer Engineering Department

The Johns Hopkins University

Baltimore, Maryland 21218

FINAL SCIENTIFIC REPORT

under

Contract Number AFOSR-85-0097-B

for the period

January 1, 198 5to December 31, 1987

p

-2-

TABLE OF CONTENTS

A B ST R A C T .. 3

1. RESEARCH OBJECTIVES AND STATUS 4

2. PH.D. COMPLETED: M. A- KENNEDY 5

3. PH.D. COMPLETED: L J. PO)RAZIK ..

4. PUBLICATIONS: JANUARY 1985 - DECEMBER 1987 7

5. PER SO N N E L .. 9

6. APPENDIX I: A PARALLEL FIRST-ORDER LINEAR

RECURRENCE SOLVER .. 10

7. APPENDIX fl: PAR.ALLEL IMPLEMENTATIONS OF

GRADIENT BASED ITERATIVE ALGORITHMS FOR A

CLASS OF DISCRETE OPTIMAL CONTROL PROBLEMS 26

8. APPENDIX III: PARALLEL GRAD ',.., PROJECTION

ALGORITHMS TO SOLVE THE DISCI.zTE LQR OPTIMAL

CONTROL PROBLEM WITH HARD CONTROL BOUNDS 30

Accesion For

NTIS G1A&I
DTIC TkB C]
Una to u:jCced C]
Just V f. iat I n

By
D-_t -t ribut ! on/

Avt b idlatY Codes
Avali and/or

ulfI So C &

-3-

ABSTRACT

This annual report briefly describes progress on research in algorithms for

optimal control problems. The principal research focus has been on a new approach

to the parallel implementation of iterative algorithms for optimal control based on a

two level parametrization of optimality conditions, and a secondary research focus has

been the investigation of fault detection in the type of computational networks used

for optimal control computations. Publications describing the results in detail are

listed.

-4-

1. RESEARCH OBJECTIVES AND STATUS

The principal focus of our research is a new systematic approach to design

optimal control algorithms that may be implemented on parallel machines. This

approach is based on a two-level parametrization of first-order optimality conditions.

The first level of parametrization is concerned with the decrease of the overall amount

of operatioL,, and the second level is concerned -with parallelism. By introducing

parametrization matrices in the first level and then factoring those matrices to exhibit

the amount of parallelism desired in the second level as a function of the number of

processing elements to be used, the resulting optimality conditions may be tailored to

the computing network on which the computations are to be performed. The results

have been published in the Journal of Parallel and Distributed Computing [1], and

have been presented at the 1987 Annual International Conference on Parallel Process-

ing [5], the 1987 Allerton Conference on Communication, Control and Computing (61.

the Third SIAM Conference on Parallel Processing for Scientific Computing [71, and

are also the subject of L. J. Podrazik's Ph. D. dissertation [8]. The research results

concerning the convergence properties of relaxation algorithms that are used in paral-

lel schemes have been publisled in Mathematical Programming [2].

The second research focus has been the investigation of fault detection in compu-

tational networks of the type analyzed in the course of our investigation of parallelism

for optimal control. We have concentrated our effort in the study of system level fault

models,and the results have been accepted for publication in the IEEE Transactions

on Computers [4], and are also the subject of M. A. Kennedy's Ph. D. dissertation [3].

-5-

2. PH.D. COMPLETED: M.A. KENNEDY, MAY 1987

A STRUCTURAL APPROACH TO A SYSTEM LEVEL FAULT MODEL

ABSTRACT

The widespread use of computers, both large and small, has lead to an increase in

the fault problem. This problem is most acute while the system is operating, because

testing and fault diagnosis may not be possible during operation. One method of

addressing this problem is to use the processing power of the system itself to enhance

its ability to diagnose faults. System level fault models provide a framework for

addressing this problem. These models represent a system in terms of its constituent

processing elements, its faults, the tests to identify the faults, and the relationship

between the faults and the test outcomes. This work considers the system level fault

model of Preparata, Metze, and Chien which envisions a multiple computer system as

a collection of processing elements and test links. The focus of the work is the rela-

tionship between the test link structure and the system diagnosis properties. Results

include a test-link based method for partitioning the processing elements that provides

both a new measure for comparing systems and an indication of the complexity of

identifying the maximum diagnosability number of a system. This partitioning concept

leads to new diagnosability conditions that fill in the gap between existing diagnosabil-

ity conditions and their relationship to properties of the test link structure. The parti-

tion is also used to synthesize improved algorithms for identifying the maximum diag-

nosability number of a system. Turning to implied faulty set properties useful in diag-

nosis, results for both constrained and unconstrained system structures are presented.

Finally, these properties are incorporated into diagnosis algorithms.

-6-

3. Ph.D. COMPLETED: L J. PODRAZIK, DECEMBER 1987

PARALLEL IMPLEMENTATIONS OF GRADIENT BASED ITERATIVE ALGORITH \IS
FOR OPTIMAL CONTROL PROBLEMS

ABSTRACT

The primary objective of this research is to develop new parallel techniques for

solving optimal control problems that occur in online real-time applications. In view

of the availability of inexpensive yet powerful hardware, the use of parallel processing

techniques is proposed to satisfy both the speed constraints imposed by a real-time

setting as well as the reliability requirements of an online system. Unlike previous

parallel approaches to the solution of optimal control problems, the goal is to obtain

an efficient solutioni by structuring the control algorithms to exhibit parallelism which

match the given machine architecture. In order to achieve the goal, this work reexam-

ines optimal control problems from the perspective of their first-order optimality con-

ditions so that the issues of parallelism and machine architecture may be considered in

the forefront of the algorithm synthesis. Results include the development of an

efficient parallel procedure for gradient evaluation. Embedded in the parallel gra-

dient evaluation procedure is a new technique for solving first-order linear recurrence

systems which is synthesized as a function of the number of available computers. The

synthesis approach for parallel recurrence solvers is also new and uses matrix factori-

zation techniques to organize the computations for the given parallel environment.

The results for parallel gradient evaluation are then exploited to produce efficient

parallel implementations of iterative gradient based techniques to solve the linear qua-

dratic regulator optimal control problem with hard control bounds. Finally, a practical

multi-computer architecture is presented to provide an integrated parallel environ-

ment for the solution of time critical optimal control problems.

-7-

4. PUBLICATIONS: JANUARY 1987- DECEMBER 1987

[1] G G. L Meyer and L J. Podrazik, A Parallel First-Order Linear

Recurrence Solver, J. Parallel and Distributed Computing vol. 4, 1987, pp.

117-132.

[21 G. G. L Meyer, Convergence of Relaxation Algorithms by Averaging,

Mathematical Programming, vol. 40, no. 1, 1988.

[3] M. A. Kennedy, A Structural Approach to a System Level Fault Model, a

dissertation submitted the Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy, May 1987.

[4] G. G. L Meyer and M. A. Kennedy, The PMC System Level Fault Model:

Cardinality Properties of the Implied Faulty Sets, IEEE Trans. on Comput-

ers, accepted for publication August 1987.

[5] G. G. L Meyer and L. J. Podrazik, Parallel Implementations of Gradient

Based Iterative Algorithms for a Class of Discrete Optimal Control Prob-

lems, Proc. 1987 International Conference on Parallel Processing St. Charles,

Illinois, August 17-21, 1987.

161 U. i. L Meyer and L J. Podrazii, i'arallei Giradient Projection Algorithms

to Solve the Discrete LQR Optimal Control Problem with Hard Control

Bounds, Proc. Twenty-Fifth Annual Allerton Conference on Communication,

Control and Computing, Allerton House, Monticeilo, Illinois, September 30-

October 2, 1987.

[7] G. G. L Meyer and L J. Podrazik, Parallel Iterative Algorithms to Solve the

Discrete LQR Optimal Control Problem with Hard Control Bounds, Third

SIAM Conference on Parallel Processing for Scientific Computing Los

-8-

Angeles, California, December 1-4, 1987.

[81 L J. Podrazik, Parallel Implementations of Gradient Based Iterative Algo-

rithms for Optimal Control Problems, a dissertation submitted the Johns

Hopkins University in conformity with the requirements for the degree of

Doctor of Philosophy, December 1987.

-9-

5. PERSONNEL

Principp! -.ivestigators: G. G. L vfeyer and H. L Weinert

R.. search Assistants (Ph.D. Graduate Students)

A- Balogh

.A- Harrington

M. A. Kennedy

L. J. Podrazik

V. K Marianov

- 10-

6. APPENDIX I

JOLRNA L OF PRALLEL AND DISTRIBUTED COMPUTING 4 [[1 7-132 1 97

A Parallel First-Order Linear Recurrence Solver*

GERARD G. L. M EYER AND LoLis J. PODRAZIK

-.!ectraal Eniginecring and Computer.Sc;ente Department ['heJohns Hopkins t ntvirsttv
Baltnore. Afarland 21218

Recei'.ed March 1-. 1986

In this paper we present a paralel procedure for the solution of first-order linear
recurrence s.stems of size N when the number of processors p is small in relation to
.V We show that when I < tr < .\. a first-order linear recurrence system of size .\ can
be solked in 5i. - I /(p - II steps on a p processor SIMD machine and at most
sI. -),'ip I step.: on ap p..3-cssor MIMD machine. Asa special case, we further
show that our approach precisel% achieses the lower bound 2(, - I .(p - Il for
sol.ing the parallel preiix problem on a p processor machine. ¢ i87 Academic Pres. lnc

1. INTRODUCTION

In this paper we present a parallel algorithm to solve the well-known first-
order linear recurrence system R,N. I) when the number of processors p is
small in relation to N, and where R(N. 1 is defined as follows:

R, N, I): Given .V, given b = (bi. b b,)

and given a = (a,. a3. a,,).

compute x = (xi, x X.N

such that x, = b and

x, = a,x,_I + b, for i = 2.3. V.

We present iboth SIMD and MIMD versions of the algorithm. We analyze
the SIMD version by first considering a simplified shared memory model of
parallel computation that facilitates comparison with previous work. In that

" This work was supported by the Air Force Office of Scientific Research ,,nder Contract
-NFOSR-85-0J97

0743-7315/97 S3,0o
Copynrig - 1997 bs Aademic Pre, Inc

di nights of reproducion i an', form rr' sred

- ii -

S \ MEYEi \ND PODRAZIK

model the parallelism exhibited b the proposed algorithm is examined in
terms of data dependencies onl., nherefore atloing us to determine the ide-
alIzed performance of the procedure. We then consider a second model of
computation which consists of a SIMD p processur ring configuration \ithi

a broadcas'ing capability. In that model interprocessor communication is
taken into account, and a more realistic analysis of the algorithm is per-
formed. The MIMD version of the algorithm is anal.zed bN considering the
same simpified model as in the SIMD case. with the exception that the same
operation need not be performed by all processors at the same time. Finally.
we bserve that the algorithm can be mapped ethcienth to a MI.NDp proces-
sor ring -onfiguration with a broadcasting cavabilit .
Manv algorithms have be-en proposed to solve linear recurrences in paral-

lel. each with different objectives. Earlier results assumed the availability of
an unlimited number of processing elements and were concerned with deter-
mining the number of processors necessary to achieve minimal computa-
tional time 3, 6. 8, 10]. Later. limited processor solutions were considereo.
Chen et al. 141 presented a SIMD algorithm that solved Mth-order systems in
(N/p)(21 + 3M) - Q[.1f2log(p/.V)] steps, but did not discuss any specific
parallel implementation. Gajski [51 improved upon this result by performing
the SIMD computation in less than (,V/n)(2AP- + 3 Vf) steps using p < N' 2
processors in a shared memory architecture. In this paper we show that by
using a SIMD p processor ring network modified to support global broadcast-
ing. the number of steps required to solve a nrst-order linear recurrence of
size N > p is 5(N - I)/(p + 1). This improves upon the results of [4, 51 for
the first-order case when AN > p. Our approach is a generalization of the
matrix factorization technique presented in [9], and it reduces to the SIMD
procedure presented in [51 when N = p .

Moreover, when a, = 1. for all i in [1. 2......]. R.V. I') reduces to a
particular form of the parallel prefix problem. For.N\> p. Kruskal et al. ["J
present an algorithm which solves the parallel prefix problem in 2.\'p
+ 2 log~p - 2 steps. Snir [I I] improves upon this approach when N_> p , by
solving the problem in 2N/7(p + 1) + 0(1) steps, which is within a constan'
additive term of the lower bound. In the case oi parallel prefix. we show that
our algorithm precisely achieves the lower bound 2(N - I 1/p + I estab-
lished by Snir [I 1I when N > p-,.

Carlson and Sugla [21 considered mapping the computation of first-order
linear recurrence systems to perfect shuffle and cube-connected systems. A
common feature of Carlson's algorithm and our algorithm is that the compu-
tation is organized so that the transfer of input and output data can be per-
formed ccncurrently with the execution of the algorithm, thus providing a
balance between I/O and processing loads.

An important problem related to the parallel solution of R,\, 1' is the
parallel evaluation of general arithmetic expressions [11. In the case of first-

-12-

FIRST-ORDER LINEAR RECURRENCE SOLVER 119

order linear recurrences of size NV, the problem is to etficiently evaluate .v, in
parallel using p processors. In that case. we observe that when applied to
computing x\ only, a straightforward application of our approach does not
improve upon existing results [1, 4].

In order to specify the parallelism exhibited by our algorithms, we aug-
ment those statements which can be executed in parallel. We use the s. ntax

FORALL i F S DO IN PARALLEL

BODY /* Comments */

END FORALL,

\khich indicates that the BODY may be executed concurrently for each i in
the set S.

The SIMD procedure to solve R(N, l, is presented in Section I: in Section
III we discuss a parallel implementation of the algorithm, and in Section IV
we present a MIMD version of our algorithm to solve R(.V, 1'>. Finally, Sec-
tion V comprises our conclusions.

II. THE SIMD ALGORIl HM

The abstract model of SIMD parallel computation (Fig. 1) considered in
this section consists of a global parallel memory. p parallel processors. and an
interconnection network, where all processors perform the same operation
at each time step. We further simplify the model by making the following
assumptions:

Al. Each arithmetic operation (addition or multiplication) is per-

formed in unit time. referred to as a step.

A2. There are no accessing conflicts in global memory: furthermore, all
data are assumed to reside in global memory initially.

A3. There is no time required to access global memory.

This simplistic model allows the parallelism of the proposed algorithm to
be analyzed without introducing the added complexity of the implementa-
tion. In Section III we map the algorithm to a specific computational net-
work and we analyze the corresponding implementation.

Given N and p, our approach to solving R(N. I) consists of partitioning
R(,N. 1> into a sequence of f(N - I)/(p - I)] reduced recurrence systems
RI n, I ', each of size n = p-,. except for the last recurrence system, which may
be of size less than p. Each R(n, 1' is then solved in parallel with its initial
value taken as the final value obtained from the previously solved reduced

- 13 -

120 MEYER AND PODR.AZIK

4 4

FIG. I. The abstract parallel computational model.

recurrence system, except for the first recurrence that uses ic, b,. The first
R~n. I > is solved as follows: (i) Each of the p processors concurrently com-
putes a partial solution for a different x,; (ii) after p parallel iterations p
partial solutions have been computed, one for each x., i in [1.2 p].
where the partial solutions forx , i in 11,2 p), are precisely the solutions
for R(N, 1); (iii) based upon x, the next p partial solutions x,. i in [p + 1.
p + 2 ... , 2p], are then updated in parallel to their correct values. After
p - I parallel update iterations R(n, 1) is solved. The next reduced recur-
rence system of size p2 is then solved with x as its initial value. We continue
in this manner until the last R~n, 1) is solved. Since the initial and final
values of each R(n, I) overlap, the complete solution of R(N, I) requires
solving R(N - I)1(p2 - 1)1 reduced recurrence systems.

We now describe the SIMD algorithm to solve RKN. 1) when (N - 1)/(p
- 1) is an integer. For w in [0, 1 (N - 1)/(p-2 - 1)-l1, let the index sets
S. and T. be defined as

S,= II +mp+ w(p- l):m= 1, 2. p-

- 14 -

FIRST-ORDER LINEAR RECURRENCE SOLVER 121

and

T=I +mp+W(P-'-): =0, 1..... p- I<.

I. PROCEDURE RB.V. p, a. h)
2.
3. FOR =OTO (.V- 1)1lp- - I)- I DO *Sol'.eeach R ,. I
4. FORALL E S_ DO IN PARALLEL * Begin Coefficient Computation Phase *'
5. .4(1, I] := a,:
6. END FORALL
7. FORi:= I TO(p- I)DO
8. FORALLj E S+ DO IN PARALLEL
9. A i'j'Jl:=a,-.4lz]- I./]:

10. END FORALL
I1. END FOR End Coefficient Computation Phase *,
12. FORALL i E S_ DO IN PARALLEL i Begin Partial Solution Phase ,'
13. X,: = b,:
14. END FORALL
15. FORi:= I TO(p- IiDO
16. FORALLj F T DO IN PARALLEL
17. c.,-;:= a: x _,- - h;.,

18. END FORALL
19. END FOR t* End Partial Solution Phase /
20. FOR i E S+ DO /* Begin Solution Update Phase /
21. FORALLj:=OTO(p- I)DOINPARALLEL
22. x,; := .4(i --. J] .x,,+ +.
23. END FOR-ALL
24. END FOR /* End Solution Update Phase 'f
25. END FOR
26. END PROCEDURE

The preceding algorithm sequentially solves (N - 1)/(p 2 - 1) reduced re-
currence systems of size p,, each in parallel. Each reduced system is solved
in three phases: the ;oefficient computation phase consists of the execution
of loops 4 and 7 and computes all coefficients of the form a,,,a,-,_ -.. a,
which are needed later during the solution updates: the partial solution phase
consists of the execution of loops 12 and 15 and computes p partial solu-
tions, in which the first p partial solutions are the actual solutions: and finally,
the solution update phase consists of the execution of loop 20 in which the
coefficients computed in the first phase are used to update the next p esti-
mates at each iteration. The complete solution to R(N, I) is therefore ob-
tained after executing (N - 1)/(p 2 - 1) iterations of loop 3. An example
illustrating the computations performed by the algorithm is given in Fig. 2
for the case N = 17 and p = 3, where the notation x, is used to indicate a
correct value for the solution. Note that each computational level may be
performed in parallel using at most three processors.

Our model assumptions imply that we need only consider computational
operations when determining the number of steps required by the algorithm.

- 15 -

122 MEYER AND PODRAZIK

I~ --

--: Co

a;

C ~ C

C -C.

o i Cd C4 C6 q

-- N

X1 .I C4

XNI ?0: -

-I o Io 0

CC"

.C 0.
cc m

,c C

C CL a

00
u

C-) U C

- 16

FIRST-ORDER LINEAR RECURRENCE SOLVER 123

Therefore we must examine those computations performed in loops 7. 15.
and 20. The execution of loop 7 is performed p - I times, each iteration
rcquiring p - I processors to perform a single multiplication concurrently:
thus loop 7 requires p - I steps. Both loops 15 and 20 are iterated p - I times.
each iteration requiring p processors to concurrently perform a multiplica-
tion followed by an addition. Thus, loops 15 and 20 each require 2(p - 1)
steps. The total number of steps required to solve each reduced recurrence
system R<p 2 , I) usingp processors is therefore 5(p - 1), and hence the result-
ing theorem follows.

THEOREM 1. Given N and p such that (N - l)/(p2 - 1) is an integer, the
number of'steps required to solve the linear recurrence system R(.V, I using
a SIMVD parallel computer with p processors is 5(,v - 1)/(p +).

If(N - 1)/(p 2 - 1) is not an integer, our approach to solving R<N, 1'; re-
quires that we solve the reduced recurrence system Rn,, !I, where n, < p2.

One approach to solving R n,, I) is to use a technique which is known to
be efficient whenever n, <P'. Applicable techniques include the algorithms
presented by Chen et al. [4] and Kogge and Stone [61; however, these tech-
niques are not desirable because they require the machine to store and exe-
cute multiple algorithms based upon the size of the recurrence system. A less
efficient but more practical approach to solving R(n, I> consists of using
the proposed technique to solve the augmented system R(p2, 1\ and simply
terminate the computation when the last x, is computed. In that case the
number of steps required by the algorithm is at most [(N - l)/(p - 1)15(p
- 1).

Finally, we make the observation that the above SIMD algorithm most
notably differs from the approaches presented in [4, 5] in that our approach
partitions the problem and solves a series of reduced recurrences of size p2

sequentially. However, when N = p2. our approach reduces to that of [51,
except that Gajski presents the coefficient computation and partial solution
phases as a single computational phase. Moreover, when N > p2. the algo-
rithm of Chen et al. [4] is less efficient than Gajski's as a result of implement-
ing an extra computational phase in which a separate first-order recurrence
of size p is solved using p processors. requiring an additional 2 log2p steps.

When N and p are powers of two, the algorithm of Chen et al. requires
5N/p + 2 1og 2p - 5 steps [4] and when NIp2 is an integer. Gajski's SIMD
algorithm requires (N/p2)(5p - 3) - 2 steps [51, whereas when (N - 1)/(p -
1) is an integer, our SIMD algorithm requires only 5(N - 1)/(p + I) steps.
For example, when N = 2' 8 and p = 2 , the numbers of steps required by the
SIMD algorithms presented in [4, 51 and this paper are 163.841, 15 1,550.
and 145,635, respectively.

Finally, when a, = 1, for all i in [1.2 . N, R(N, I) is a particular form
of the parallel prefix problem and reduces to computing the cascade sums

-17 -

124 MEYER AND PODRAZIK

(, ,(b, + b- b+ (b, + b- + .. - b) in parallel usingpproces-
sors. The following corollary is a direct consequence of Theorem 1.

COROLLARY I. Given .V and p such that (N - 1)/(p - 1) is an nteler the
number of'steps required w, solve the parallel prefix problem using a Sf. ID
parallel computer with p processors is 2(N - 1)/(p + 1).

Thus, when (N - 1)1(p2 - 1) is an integer, our SIMD algorithm precisely
achieves the parallel prefix computational lower bound 2(N - 1)/(p + I)
established by Snir [1]. This result improves upon existing approaches to
solving the parallel prefix problem when N > p2. In that case the parallel
prefix problem is solved in 2N/(p + 1) + 0(1) steps by Snir's algorithm (11,]
2(Nip) + log2p - 2 steps by the data-independent algorithm presented by
Kruskal et al. [7], and (N/p')(2p - 1) - I steps by Gajski's algorithm [5].

IN. THE SIMD PARALLEL IMPLEMENT.'T'VN

The abstract model of SIMD parallel computation presented in Section If
neglected the issues of data organization and alignment as well as communi-
cation overhead, all of which are highly machine dependent. We now present
a parallel implementation of the proposed algorithm that takes these issues
into account. The SIMD model of computation considered in this section
(Fig. 3) consists of p processors executing the same operation in lock step,
with each processor containing its own local storage. The processors are in-
terconnected by a unidirectional ring network in which processor i transfers

i; ,,;t ,, 13-a, a ,

P, r

O ,4(> Data < i, >

FIG. 3. The practical parallel computational model.

-18 -

FIRST-ORDER LINEAR RECURRENCE SOLVER 125

d,,:a to processor i + 1. i in [1, 2 p - I], and processor p transfers
data to processor I. Furthermore, we assume that the network possesses a
broadcasting capability that allows any processor to broadcast data to all
other processors. The time required by the algorithm will be determined un-
acr the following assumptions

Al. Each arithmetic operation (addition or multiplication) is per-
formed in unit time, referred to as a step.

A2, Interprocessor transfers require one step.

A3. Data broadcasts require one step.

A4. Each a, and b, required by a processor is assumed to reside in the
local memory of that processor initially.

In order to determine an efficient processor assignment, we first make the
observation that the p consecutive partial solutions updated at each iteration
of the update phase of the algorithm must reside in a different processor.
Furthermore, both the coefficient computation phase and the partial solu-
tion phase of the algorithm exhibit explicit data dependencies which must
be preserved. These constraints can be satisfied if we rotate the processor
assignment at each parallel iteration of the algorithm, and in that case, the
algorithm can be directly mapped to a SIMD p processor unidirectional ring
network with broadcasting capability. Figure 4 illustrates such a processor
assignment and the corresponding communication requirements for the case
N= 17andp=3.

We now present the algorithm to solve RKN, I) as executed by processor
k, for all k in [1. 2 .. , pl.

I. PROCEDURE R(.Vp, a. b
2. x,:= b,
3. FORw:= 0TO(N- 1)/(p - 1) - I DO /*SolveeachR(n, I1
4. .4 i]:= a,; /* Begin Coefficient Computation Phase */

/0i = I +(k- I)p +(p2 - 1)/
5. FORt:= I TO(p- 1)DO
6. 4[i +1,j]:= a_,.A[i +t - l.j];

/' = (I +(k - i- l)p) modpi +,4,p2
- 1) 0/

7. END FOR /* End Coefficient Computation Phase /
8. IF k = I THEN x,: x, ELSE x,: b,: /I Begin Partial Solution Phase 1

/* - I +(k- l)p +u4p 2 - 1)/
9. FORi:= I TO(p- 1)DO

10. x,., : a, x,.,- + b,
/- (-(k- i- l)p) modp; + p2

- 1)
1I. END FOR /* End Partial Solution Phase /
12. FORm:= I TO(p- IIDO /* Begin Solution Update Phase*/
13. =r,:: 41t + 1. 11 t,, + x_,.:

l* I = I - mp + W(p - 1).j = (p- m + k- 1) rodpl/
14. END FOR /* End Solution Update Phase */
15. END FOR
16. END PROCEDURE

- 19 -

126 MEYER AND PODRAZIK

6 In

x x

: M

0 0

c (36C CJ ~)-

~ N ~ ~ - - C5

-~~R T.~

C5C
C a)~

vi w. 0 o(4

('CO) C7

a ca

.C 2 Ca

c CL zE
10 E Q

c C2

~0 0ma

0- 0 (/ A . C ~ 0

- 20

FIRST-ORDER LINEAR RECURRENCE SOLVER 127

Our model assumptions imply that we must consider interprocessor com-
munication in addition to operational count when determining the number
of steps required by the algorithm. Therefore. we must examine the compu-
tations and interprocessor transfers performed in loops 5. 9, and 12. Each
iteration of loop 5 requires an interprocessor transfer ofA.[i + j - 1.] fol-
lowed by a single multiplication. Thus. loop 5 requires 2(p - I) steps. Loop
9 is iterated p - I times, each iteration requiring an interprocessor transfer
of x,., followed by a multiplication and an addition. Thus. loop 9 requires
3(p- 1) steps. Loop 12 is also iterated p - I times, each iteration requiring
a data broadcast of,- followed by a multiplication and an addition. Thus.
loop 12 also requires 3(p - I) ,teps. The total number of steps required to
solve each reduced recurrence R p,p. 1> using p processors is therefore
8(p - 1), and hence, the resulting theorem follows.

TH EOPFM 2. Given V and p su-h that (N - l)/(p- - I) is an integer the
number ojsteps required to solve a linear recurrence system R N. I/, using a
SIMD parallel computer with p processors is 8(N - I)/(p + I).

Among the existing SIMD algorithms to solve R(N, 1'>. the SIMD algo-
rithm presented by Gajski [5] can be most efficiently mapped to a unidirec-
tional ring network with broadcasting capability. Based upon the assump-
tions made in this section. when N/p2 is an integer the number of steps re-
quired by Gajski's approach to solve ReN, 1) is (.\'/p2)(8p - 5) - 3. and
therefore when N > p2 our approach is more efficient than Gajski's when
implemented upon a ring network capable of broadcasting.

Finally, we make the observation that the algorithm does not require all
of the inputs a, and b, in order for the processing to begin. Specifically, the
algorithm requires p2 - I a, and p2 b, for every 5 (p - I) computational steps,
corresponding to solving each RKp, I) in sequence. Fimilarly, the outputs
x, are produced in blocks of p2 - I at a time. This suggests that 1/O could
be overlapped with the computation, providing a balance between I/O and
processing loads, and therefore the deletion of assumption A4 has a negligible
effect if one assumes that 1/0 and processing can be done concurrently.

IV. THE MIMD ALGORITHM

In this section we again consider the simplistic model of computation
given in Section II with the exception that we no longer require all processors
to execute the same operation at each step: that is, we now consider a MIMD
implementation in which we neglect the issues of data organization and
alignment as well as communication overhead.

The MIMD approach for solving R N, I is based upon the observation
that only p - I processors are needed at each iteration of the coefficient com-

21 -

128 MEYER AND PODRAZIK

putation phase. Assuming(N- 1)/(pr - 1) to bean integer, the total number
of multiplications required to compute all necessary coefficients is (N - 1Xp
- l)/(p + 1), p - I of which may be performed concurrently at each
step. Therefore, all of the required coefficients can be computed in
(N - I)/(p + I) steps using p - I processors. This leaves one processor free
for (N - 1)(p + 1) steps, allowing us to expand the size of the recurrence by
at most no = L(. - 1)/2(p + 1)i and use the free processor to solve the reduced
system R~no, I) concurrently. Thus, using a MIMD approach we can solve
the entire system RN + no, I) in 5(N - 1)/(p + 1) steps.

Given a recurrence system of size N and the number of processors p the
following lemma expresses no in terms of N and p only.

LEMMA 1. Given Vandp. no = FIN - (p + 2)1/2p - 3.

Given Nandp, our MIMD approach to solving /.V. I consists of parti-
tioning R(N, I> into a sequence of f(N - nA - n '(r r - 1)1 + I reduced
recurrences. The first recurrence is of size no + I and all others are of size p2,
except for the last recurrence, which may be of size iess than p. The coeffi-
cient computation phase of the algorithm uses p - I processors to compute
all needed coefficients for all of the reduced systems. Concurrent with this
computation, the free processor computes the solution to R(no + 1. 1). Each
subsequent R~n. 1) is then solved in the same manner as in the SIMD algo-
rithm by executing a partial solution phase followed by a solution update
phase. The complete solution is obtained after solving all (A' - no - 1)/(p 2

- 1)1 + I reduced recurrences.
We now present the MIMD algorithm to solve RKN. 1) when (N - no

- 1)/(p 2 - 1) is an integer. As in the SIMD case, it is not difficult to modify
the algorithm if the above assumption is not satisfied by simply terminating
the computation at the point when the last x, is updated. For w in [01, .
(N - no - I))/(p - 1)-1], we now define the index sets U, and V, as

- o +n +mp + (p2 - 1):m= 1,2..... p-

and

V,= {l+no+rmp+W(p2 - l):m=Ol'. . p l

I. PROCEDURE R(N, p, a. b)
2. x,:= b
3. FOR := 2 to no + I DO /* Solve R fno, I,,
4. x, = a,x,-, + b,
5. END FOR / End r(no. I, Solution /
6. FOR:= 0 TO(N - - 1)1(p2- 1) - I DO/* BeginCoefficientComputation Phase /
7. FORALL i E U_ DO IN PARALLEL
8. Al[i. := a,:
9. END FORALL

- 22 -

FIRST-ORDER LINEAR RECURRENCE SOLVER 129

0. FOR I TO(p- 1)DO
It. FORALL i G U_ DO IN PARALLEL
12. 4[t - 1., " = az.. I -j - I./
13. END FORALL
14. ENDFOR
15. END FOR End Coeicient Computation Phase'
16. FOR, =OTOI-n- 0i[r- Ii- I DO SoIkeeachR r.l

17 - FORALL i E L" DO IN PARALLEL / Begin Partial Solution Phase
i. , := h ,*

19. END FORALL
20 FORz:=ITO p-1)DO
21 FORI L1 V DOIN PARALLEL
22. t. .=a. .. .,

23. END FOR.ALL
24. FND FOR /* End Partial Solution Phase
25. FOR t E L" DO /" Begin Solution Update Phase
16. FORALLj: 0 TO (p - 1) DO IN PARALLEL
27. _ : =-,[i 1j. i x, -N.

28. END FORALL
29 END FOR
30. END FOR / End Solution Update Phase*
31. END PROCEDURE

Note that (i) the coefficient computation phase of the SIMD algorithm has
been modified so as to compute the necessary coefficients for all R n. I
before the first reduced recurrence is solved in parallel- and (ii) the processor
that is idle during the SIMD coefficient computation phase is now used to
concurrently compute the solution to R~no + 1, 1'). An example illustrating
the computations performed by the MIMD algorithm is given in Fig. 5 for
the case N = 19 and p = 3.

Based upon the MIMD model considered in this section. we conclude that
the time required by the MIMD algorithm is determined by the computa-
tiunal operations performed in loops 3, 6. and 16. Loops 3 and 6 are executed
concurrently, using I and p - I processors, respectively. Loop 6 requires
(N - n. - I)/(p + I) steps, and the quantity n, has been defined so that loop
3 requires at most the same number of steps as loop 6. All p processors are
used in executing loop 16. and thus loop 16 requires 4(N - no -)/(p - 1)
steps. The number of steps required by the MIMD algorithm is theretbre
5(N - no - I)/(p + 1) steps. Thus, the resulting theorem follows.

THEOREM 3. Given ,V andp such that N p2 + p - I. the number oqltep5
required to wve a linear recurrence system R<.V, I) using a W,.UID parallel
computer with p processors is at most f(,V -)/(p + 3/2)(p - I1)5(p - I).

When N = p - p - 1, our approach reduces to the MIMD algorithm

presented in (51, in which the number of steps required to solve RN, I', is
at mostf(N- l)/(p + p - 2)15(p- I). When N>pf + p- 1. our MIMD

- 23 -

I 30MEYER AND PODRAZ[K

N- N x

-T Ka ,

'n co

3Z -Z.

CL-

K X X I

4 X

-~ 44

ra c V

(:E,~

241

FIRST-ORDER LINEAR RECURRENCE SOLVER 131

Cj

C.,Ca

(L ~

cd 0 -

(M(0

- .n

C 00

0 -0

a. a. (nNCN

- 25 -

132 MEYER AND PODRAZIK

approach differs from [5] by organizing a single coefficient computation
phase to compute the necessary coefficients for all R'n. I before the first
reduced recurrence is solved in parallel, rather than including a coefficient
computation phase as part of solving each reduced recurrence.

Finally, we note that, like the SIMD algorithm, the MIMD algorithm can
also be mapped directly to a p processor unidirectional ring network with
broadcasting capability. Figure 6 illustrates such a processor assignment and
the corresponding communication requirements for the case V = 19 and
p = 3.

V. CONCLUSIONS

The algorithm presented in this paper exploits the fact that for a fixed
number of processors p, the parallel approach presented in (9] to solve
RKN, 1) attains maximum speedup ,(p + 1) when N = p'. When ,%' p-, the
structure of R(N, 1') allows the solution to be obtained by sequentially solv-
ing a series of reduced recurrences, each of size p2, except for the last recur-
rence system, which may be of size less than p,. As a result, we are able to
improve upon existing approaches for solving R(.V, I whenever N.> p2.

REFERENCES

I. Brent, R. P. The parallel evaluation of general arithmetic expressions. J .45-, C,,mput
Mfach. 21, 2 (Apr. 1974). 201-206.

2. Carlson, D. A., and Sugla. B, Time and processor efficient parallel algonthms for recurrence
equations and related problems. Proc 1984 International Conterence on Parallel Pro(es-
ing Aug.21-24, 1984 ,pp.3 10-314.

3. Chen, S. C., and Kuck. D. J. Time and parallel processor bounds for linear recurrence
systems. IEEE Trans. Comput. C-24, 7 (July 1975). 701- '1

4. Chen. S. C., Kuck. D. J.. and Sameh, A. H. Practical parallcl band triangular s.stem solv ers
ACM Trans. fath. Software 4, 3 (Sept. 1978). 270-277.

5. Gajski. D. J. An algorithm for solving linear recurrence systems on parallel and pipelined
machines. IEEE Trans. Comput C-30, 3 (Mar. 1981 . 190-206.

6. Kogge, P. M., and Stone, H. S. A parallel algorithm for the etficient solution of a general
class of recurrence equations. IEEE Trans Comput. C-22. 8 (Aug. 19731. "86-793.

7. Kruskal. C. P.. Rudolph, L., and Snir, M. The power of parallel prefix. IEEE Tran C, w-
put. C-34, 10 (Oct. 19851 965-968.

8. Kuck. D. J. Parallel processing of ordinary programs. In Advances in (rpiputer. 1. I
Academic Press. New York, 1976, pp. 119-179.

9. Meyer. G. G. L., and Podrazik. L. J. A matmx factonzation approach to the porallel solution
of first-order linear recurrences. Proc ird.nnua.4llerton Cw)cr'nce ,) (.') pi1(aw,.
Control and Computing. Oct. 2-4. 1985. pp. 243-250.

10. Sameh. A. H.. and Brent. R. P. Solving tmangular systems on a parallel computer S4.It J
,Vumrer Anal 14.6(Dec. 1977). 1101-1113

If. Snir, M. Depth-size trade-offs for parallel prefix computation. J .l/oruhp, 7, 2 June
1986). 185-201

4 ..26-

7. APPENDIX 11

PARALLEL IMPLEMENTATIONS OF GRADIENT BASED ITERATIVE ALGORITHMNS
FOR A CLASS OF DISCRETE OPTIMAL CONTROL PROBLEMS

Gerard G. L Meyer LouisJ1 Podraznk
Electrical and Computer Eagineetng Department Bendix Envmironimental Systems Division

The John Hopkins University Alled-Sipoai Inc.
Balitim, Maryland 21218 Baltimore, Marylaind 21284-9W4

ARSTRACr reduces to a direct Parallel implementation of the technique given in

[81 when I~S P Sn and achieves speedup pielter than t, 2p*)
In this paper we present the parallel implementations of two when Rt < P niNIA.

iterative gradient based algorithms to solve the unconstrained Linear A aseical step in our approach involves the parallel computation
quadratic regulator optimal control problem. We show that parallel Of the state and costAteC vecors When Rt - 1. the computAtions
evaluation of the step length and gradient of the quadratic cost func- reduce to solving forward and reverse Linear recurrence svstems. both
tion can be efficiently performed as a function of the number of pro- of~ sin N. The pa"eal uation of m-th order Linear recurrence ss
cessors. We then embed our parallel step length and gradient pro- tems haa been extensively studied [11-[31, (71. To solve l'rsc-order
cedures to produce parallel implementations of the gradient and con- Lineair block recurrence systems in parallel we use a blocked formlas-
jugate gradient methods that may be executed on an S[MD machine. Lion of the approach presented in [7].

1. INTRODUCT70N The organization of this paper is as follow :i Section It. we

Prevousparlle aproahes o te sluton f ~state the unconstraned discrete Linear quadratic optimal control prob-Prevousparalelappoachs t thesoltio of ptial cntrl cm. examine the gradient of the cost function and give the steepestproblems 1, [61, [91, have been devised without explicitly taking into descent algorithm we shall consider. Section III presents the step
consideration the computational environment. In particular, when the length and gradient computations required at each iteration. In Sec-
number of available processors is small in relation to the problem 1= tion IV we give a parallel procedure to solve the Linear recurrence sys-
the above techniques simply fold the computations to fit the number tmn required by Section MI. Based upon the results of Sections III
of processors. More efficient parallel algonthms may be devised by and [V. Section V presents parallel implementations of the best-step
considering the computational environment throughout the algorithm steepest descent method to solvoe the LQR problem and the
synthesis. Toward that end, we present in this paper a parallel pro- corresponding performansce analysis Finally, in Section VI conclu-
cedure for gradient evaluation which is formulated as a function of the sosaePeetd
number of -available processoms Although presented in the context of osaePeetd
unconstrained optimal control. our results for gradient computation IL PUELLMINABIE
are also applicable to constained problems. Furthermore we show
that the step size obtained as a result of the Line search performed at We consider the LOR discrete optimial control problem:
each iteration may also be efficiently computed in pairalliel. We then Probia,, 1: Given an mi-input discrete, time-varying Linear systcm, in
combine the techniques for parallel gradient evaluation and step size which we are gien the initial staite, zo, and
determination to produce parallel implementations of the best-stepz,-A .+ ii
steepest descent method and the Fletcher-Reeves conjugate gradient ~8uI=l2.Y 1
method to solve the Linamquadratic regullator control problem [5. where for i - OI.2, A in Eis te state of the system at time i and

It is well known that a closed loop feedback form solution exits fo a U._..N, u, in E' is the control at time i. rwd the mN control
for the Linear quadratic regulator control problem (LOR). Our vectoru U (iii, ul,. u[,t,)' that minim izes the performance index
motivation for solving that problem tusing iterative gradient based 1(u) - 'Q +~ U'
techniques is that our basic parallel approach can be applied to more uR)
complex control problems in which the syutm dynamics can be linear- where rt is the AIN veotor Z (A I A4.4A Q - Diq(Ql, Qz..-
red and the cost approximated quadraticaly. Furthermore, efficient Qjr) is the in~es block matra that consists of N n m symmetric posw-
parallel implementations Of gradient methods ssuch a best-step tive sex i-definite blocks Q~ and R - Diag(R1 , R2... Rl) is the
steepest descent and conjugate gradst sugess that smlrparalle mNmN block matrm that conests; of N mvn symmetnc positive
implementalsons of penalty functiomi and jradie- projectiou methods deiie blocks X4.may be used to soilve coustrained coaal problems. r yoba ntemtie n nu h rbe

Our approach to the parallel, evaluamn of th ste sadgadient pose hoses qeslon uhe mandce Qw ad& - -inuetht. obe
reduces the total number of oeainrequaired by sharing commaonm nqesouinu5dtat(faa.--0
terms when possible and then introducnes parallelsm The degree of We now intiroduce a formauio for d/ law that is used tn our
parallelim exhibited by the step and gradisma computatio techniques paraWs impkemnatio at gradiet algorithms.
presented in this paper varies at a fuctio of thes number of proces- A direct application of the chain rule for dilferentiation yields
sors to be used We eoiain the number of availble processoms p,.i c rd
to lie nthe ruangsSP 5nN0 wbueriashe n of thesytem state
vector, N is the anmber of saps in the control process and wedu k atu

assume n t m"i, wher m i the size of thes 9,ua One of the features where the ,'s are determined in accordance with Eq. (1), V43ii and
of the proposed pArale iterative algairihm a thea their structure is al/a ame the bmnN and LWsN Jacobia matnosias i'R and z'Q respee-
completel specilfsd by the number of processors whenever the tively, and dtuds a the ,sNminH block low trangular Jacobin
number ofstAocs>?!(p/n ?. matrint that consists of NV nt,., blocks (d /dwv -r d/du, obtained

An effien technique for gradient evaluation using a single pro. byr the chain rule for all i and j in (1,2_M..N by
hato b been discussed by Polak (14, ppA.69j. A direct imiplemen-0

tatioe of this technique as p processors achieves linear speedu for p . .a
up to ov; howeaver, for p :i n the speedup is significantly reduced. In u(2
this paper, we present an approach to gradient comsputisio. which IA . . l.8 fi>j

This work was supported by the Air Force Office of scientific Eq. (2) showi thait the influen matrix dfr /du satisfies
Research under Contract AFOSR-gS-009. F, (1h /Iu) - F., whent F. is the nN,.,N block lower bidiagonal

Matn that consists of N
2 'sos blacks [F and F. is the ,IN)QN 4 -ced> b .(* , c1u)

block diagonal ma=n that consists of N' nV"i blocks [F.) defined d 6 - Re-* P f-Ie
for All iand in I 1, Vljby and it follows that the optima step lengt or' is

-A i fB - fI, (,q , - ., * e~A

ifiI ionce d" is known, the gradientr se sy to evauat using
We Fo be the ,,N)ay block mains that consists of Nr nxe blocks - c'~

[F d e i n d f r l~ i n 1 % b j j f - Io u r a p p 'r o c h t o c o m p u t in g t h e q u a n t i t y d " c o n s is t s o f u s in g

(F4 d M,.1 Algorithm 3 below, wher wet note that instead of reoquirig F,' and
[F~{Q F-, wve solve lineAr syssema corresponding to F, and P,

le g- d/ 'du be the the mNx I gradient of J(u) with respect to u and Alkwushm 31 Given?.
let Abe (be nN cm e vector A - (AllA_., Atit A,in E defused Step 1: Compute, j? Re5.
by A -FQz. Them. gven itand zo,the grdient gmay be ocsied by Step.~ Compute' =Feg.
using the thre equations Step 3: Compute w" such that Ftw' 6

F,z - F~u + Foza, (3) Step 4: Compute j? - Qwh.

'A - z (4) StepS5: Computev V Asc hat F~y' '

g * "+ . (5) Step 6: Compuste X - F~b

Wit te ntaione W/u)..., he erionofthebet- Step 7: Compute dA - t?+ *

Wtth ste dent to tha we useis the folrsin fthbetWith the extceptioni of Steps 3 and 5. Algorithm 3 comiputes
stepstepestdesentmethd tat w us isthe o~oin~d" by executing a series of matrix-vecor products followed by a ecor

Algonthm 1: Let u 1 be given. sum. Each of the matrix-vector products consists of N uncoupled
Step 0: Set k - I and compute S' block -atri-vecor products. thus exhibitn linear speedup hhen

Step 1: UIlie 112 < e .stp eleg toStep 2. implemented in parallel. However, due to the uictsre of F, Steps 3
and 3 require the solution of IV stage forward and reverse '"ci block

Step 2. C~mputeaz' to minimaize A,(u -a . first-rer linar recurrence&. respecivel. As in the case of Alga-
Step 3: comnputeg. r ithas 2. thinspi gm ogsts the need for parallel procedures to solve

Step 4: Le&'*' . u -aw lintew rectirrensae. Note that the same z** "A an o~steA1.
corresponding to u6"can be obttained easily from the quantites w'

StepS5: Set k - k + I and go to Step 1. and Y"eomputed in Steps3amid 5of Algorithm 3,that is.
In Section [U we present our approach to the computation of h'1 . .

91, a#, and e " and we show that the computation of es and g**Lz z ~ adA i ~'
shares common terms. IV. PARAULE PROCEDURES FOR INEAR RECURRENCES

Ill. GRADIENT AN4D BEST STEP COMPUTATION
The modl of S! fn parale computation thai we use consists

We first consider the computation oig1, which is performed of a global paralle memory, p parallel processors, and a control unit.
only once in Step 0 of Algorithm 1. As a consequence of Eqs. (3). (4) where all processors perfoirm the same operation at each uime step.
and (5) we obitain the gradtient evaluaio technique proposed by We fuather simplify the model by makring the following assumptions:
Polak f~j: (i) eadh computational operation takes the sme amount of time,
AlganLAm 2- Given u I aadze referred to a a step, (bi) ther are no accessin conficts in global

Step 1: Compute z such that Fxz Fu + Fots. memory, (iii) all iniitiall data resides in global memory, and (iv) there is
StepZ. Cmpm , soh tht J"Al Q 1.no timse requared to acces global memory.

Step2: ompte ' suh tat W -We now presnt a blocked version of the parallel scalar
Step 3: Compute Si ' ".' approach Omve in (71 to solve forward N stage: '"c block rirst-order

Due to the lower nlat block bidiagomal stucture of F,, Steps I linear recurrencie systems that we use to implement Algorithms 2 and
and 2 of Algorithm 2 require the sohilm of N stag forward and 3.
reverse nioi block first-order howea recarwecs, respectively. Parallel Tbe forward recurrenc problem is: given nitm matricesA i4.
procedures for linear recurreces. are presefted in nes sectin. Given - Z.3,.... N and Sims vectors -w # E", - L2,....V, find the m vectors A,
A', Step 3 computes S' by compuW*n a& of the N uncoupled com- such thatr z 71 an z, A.. + 4 - 2 3.., N. We

pooents e~ - (d/ /&4)' ..,; thus. Step 3 cihbus linear speedup when Vol ip > xexecuted in paralleL flJ (P/n)?-) rP,/a ifp > n
We now conider the computation o(the optimal step length -4N4 NK otwes. 'iiheut

a"e. The cost funion a quadrat i nd therefore a closed form solu-
tion for temzs It is clear thast For w in (OLl,..4.1 defune the indes sets

1(u) -- uR4F QFF.Jf(w) - f Ad + 1) : i - a2..,1

and
z4 W FQ'Fu + I. z4P1QF.'7.z. sw a ww ,.~-) z*aa1.)

therefore Thu, Sime -f H A,- -- . r)'-aE*andpro puted A (i -lI
iw- a)- ecax * + c, -A.A ... A0, j eff(w), i inOl..s-~ the following procedure

solves the forward block recarreane system,. where for presentation
where simplicity, we assume that 11 and x are integers

- 28 -

I. PROCEDURE FORWARD(Nn,p,) 6. A' - REVERSE Nni);
2. Zl:7t 7. FORALL It 2...,V)}DOINPARALE t.
3. FORw 0TO n-IDO 8. RETURNSg;
4- FORALLj ef 0o(w) DO IN PARALLE Z, - = 9. END PROEDURE
5. FORi - I TO Mar(Lc1) DO

6. FORALLja #f(w) DO IN PARALLEL Lenma : Givenz, u , N, n, mandpsuchthatp lorp/n hsan
integer, tbe aumoer ot steps required Ety ee procedure U(A L4'd7. z, :A,,, ,.; to computes' Mugp processors. :5p:5 < , isA

8. END FORALL - -

10. FORALL j af(a) DO
I I

11. FOR i01TO r, 1 Do-IN PARALLE[* frmsp.) -. AN f<
12. ;. : A~i z,, -z-) -. 2A r. 5j;

13. END FOR
14. END FORALL We ne gim the parallei implementation of Algonthm 3.
15. END FOR I. PROCEDURE DIRECTION(W)
16. END PROCEDURE 2. FORALL i # (Il,...l NDO IN PARALEL4 '.R ,;

When 1:<p:5n, the index set Ao) is empty and procedure 3. FORALLjir (L2,....,Nj DO IN PARALLEL 6* := B ;
FORWARD reduccs to scquend y eucutin step 7 N-1 time& each 4. wh - FORWARD(Nn,p, ");
executionusingp Procesor Whenn < pSnN", procedure FOR. 5. FORALLi a {(,2...N) DOINPARALLELvs :- Q,w : .
WARD sequentially solves () reduced block recurrence systems inz, of 6. v' - REVERSE(N,,p,ne);
size (p/n)2 , each in parallel Each reduced system is solved in two 7. FORALLi (L2,...N} DO IN PARALLELr . Bv!;
phasest the first phase consists of the execution of steps 4 and 5 a d 8. FORALL i (1,2,...,N) DO IN PARALLEL d :
computes (p /n)' partial solutions. in wih the first p In ae tbe 9 RETURN d6;
actual solutions and the second phase consists of the execution of loop 10. END PROCEDURE
1Oinwhichtheprecompuednlablock matricesA(i-/,1lareusedt° Lensm 2: GzvengN~nn' andp such thatp = I op n is an
update the nex pn partial solutions at each iteration. We asstign mtege, the number steps requred by procedue DthEcTO n o

processors to perform each of the p in concurrent executions of steps in pte th numbe procesor, i p <INn !o

7 and L2. The complete solution to the block recurrence system 1s
obtained after executing n iteration, of loop 3. Lf nl is not an integer, t-(6. b-,I)- -2-1 - _<p _1<P

then we replam f by ff1 and simply terminate the computation when r,. R ,. r ns() ,,a < ,, ,
zis compsie and if a is nam an integer. we replace At by Lu /to. { 3 *b.2 + ns. f' p.

A aiia procedure REVERSE used to solve reverse I 1 i
recurrences in parale may be obtained by a straightforward
modd/katiou of procedoze FORWARD and hence will not be gien. We no embed the paralW procedures GRADIENT and

DIRECTION to obtain a parllel implementation of Algonthm 1 and
We now gie the number of step required to solve either an we then Sie the corresponding number of steps requred for one

N stap forward or reverse firms-order nma block linear recurrence sys- iteration.
tm. 1. PROCEDURE PSDM(z,mt)
Theorem 1: GivenN, n and p such tha p - I of p/In i a integer, the 2. k - 1;
number of parallel steps requred to solve a block nmn first-order 3. g - GRADI (z t~u').

liuea recurrence system of lengh N uzugp processors is 4. WHIL it 1 ' > a DO

(NIV)- if 1:5p <, S. d' - DIRECrION(IA);
P 6. a". - <e gh,/qj*,d6 >;T fl'14(p -n) ifn cp_<nN v'1. 7. FORALLia(L2,.....N) DO IN PARALLEL g," -.- ? 'dh;

8. FORALL ia (1,2....N) DO IN PARALLEL u,' u -ae,9. k-k+1;

It s ce froma Theorem thu the speedupS, - T,/T, exhi- 10. END WHnE
bited by the procedures FORWARD ad REVERSE is p when IL END PROCEDURE
1 !p !" and t/2(p * n) when n <p! mVP and p /n and f are TWus 2. Givenze, u1, N, n, m and p such that p - I or p /n is an
integr. The correspding ecancy E , S,/p is therefore I we integer, the nub a steps required by one iteration of procedure
1:5 p!5 n and 1/2 + n /2P who* a n<p AN'A and p/n tand (are PSDMangpprocessora1:p!nNA.is
integers. In FLLZ3an4 wpkx , for thvaluaes otn -8,16, r~ ~ ~
32 and 64 respectvely, where the ertiacy crpoaing to the pro- (..1) . CA, * ba * 2lAsi 1! 5P! 5.
cedures FORWARD md REVERSE is demoted bv the solid line in T, o
each plot. Than, e Mn do the effiisacy increases with Iasig(.j(b *h"4) . f (2x .bu 7). rfl1&.,) -21oga do pSN
values ofn aadp and is iadepemdeat N.

V. PARALM MM P STELPS DESCENT As a consequence of Theorem 2, it may be shown that the

We now me the parae procedum for the solution of linear speedup S, and efin ey E, for procedure PSDM ar bounded from

recurnes discussed in the pev Sectioa to obtain parallel imple- below by

mentations o(Algorithms 2 mad 3 giv the corresponding number of S, >
steps required for theireemasioe wbeap processon are used. T, - -r 04

We ri give the paraMl implementation of Algorithm 2. In Fp. 1. 2 3 and 4, we plot E, for the procedure PSDM for the

1. PROCEDURE GRADIENT(z,,u 1) values o - , 16, 32 and 64 rpeatily, and in each case use the
2. FORALLI e (L2,..N) DO INPARALLEL,/ :8.,1; valuesm - 1,4 end L It isthaemyto in that E, mceases with m,
3. 'j :" "- A+* Az; and tha the dasancy of the procedure PSDM a bounded from below
,. z - FORWA MD(N,p,9); by th e kieacy of the procedures PORWARD and REVERSE.
5. FORALLi (L,..,N}DOINPARALLEL4,:.Q,;

V1. CONCLUSIONS rvI[tw I Uttiel.. Of P .Cdat" FOiIA R rVIRSi .1 -JV

In this paper a parael implenaiOf othe best-step steepest now 2.4 Of-$

descent method has been presented to solv the LOR optitmal control PION..-..
problem. The procedure exhibits the desirable property that its struc-
ture, and beame parallelism is determined by the number of av"aible
processors. Thus, unlikeo approwAhe in wich the strctre of the pro- 4
cedure change with problem aim the procedure presented in this0
paper maintain the same computasional and interproceasor commun-
icatoon requiremenus. independently of the number of stages in the t0 .
control problem. Furthermore, the procedure haa been shown to
exhibit an efficiency E. always greater than 0.6.

The paper's baskc approach can be used to produce parallel
implementations of more complex gradient based methods. For0.
example, the procedure PSDN(may be easily modified to produce the ________________________
following parallel version of the Fletcher-Reeves conjugate gradient 0 50 10 L$G 206 250 300 0 *2 .5 :

method. '4be OfP- -

1. PROCEDURE PCGm(zo,iu') Pl 8 * -iS... .1 P,..dup Pas5.55 RZ .. 4 Miwl

I. k - 1; of.. aPi0 &-t 1
3. gL - g - GRADIENT(z,us'); PIN -s -

4. w .1n lgfl_ eX aae DOOM .4
5. dh - DIRECTTON(r'); ~-________
6. off - <gJ*ih,/<dwA>. ______

7. FORALL i e(1 2..VN)DOIN PARALLEL e, g. ~ Q Go

8. FORALL e {l,2...,N)DO IN PARALLEL u" :., - a?*-.; o 30
9.5 <el*,,gh*1./<eljh>; 11-I _________

10. FORALL i (L 2,.N) DOIN PARALLEL

11. k -k~l - 1;h ,0A
1.2. E!NP4AfHlM

1.3. END PROCEDURE
Finsally, we note that the procedures presented in this paper 0 s 0'G o m " n 0 6

may be used to solve discrete optimnal control problem which involve
nonquadratic cask. nomlnwi dynamscs and constaints on the saes -
and/or controls. In tha case. oa needs to use penalty function and sfnVW? ' Proodurw ?ORIA. aSvTM .44 PID.

gradient projection methods and suita"l approximations to cost tun- 03 -
tion and system dynamiac. 0 0 PM63M6

REFERENCES 0.0 M -2 .

(1) Clsen S.C. and Lad. DJ, 'ime and Pan"~e Procmor Bounds for '___________

Linear Recirrne Systaoif IEEE r~ms Carwpuiers. VoL C-2, No.7, 8
July 19175. pp. 701-717. 0.5~

[21 Chens. S.C. Lick DI. ad SiaaL A. Tratial PaiasW Ranid Ths- 0 .0~\~ ~
angular Sywem SOhM. ACM Tron. a hMannai Sofiwart.. VoL 4, I
No. 3. September 1M73 pp. Z70477 0 3

(31 Gajit 0.. T'An Algorithm for SoMM igL-w Raturrance Syms on 0i
Panrs aid ?P"lined NMacbe, IEE T~utm pem VoL. C-30.0
No. 3. Marob 1961. pp. 190-20L.

[41 Larson. R.E. and Eima. T. ?iftati Vr Alger~omis for the 6 so L" to me no5004 .0 IN

Optial Coisrot of Noaer Dyno Systme, LEEE T~m Comput onb f v* - P
em, Vol. C.ZL No. & AnmsE 1973, ppL 77-745P16 tteaf V a4 afleeef 4eu! PONYA. aSYSUS "d PON~

151 LeAwu P. L. Owmna C~wai John W.. and So", New York. N.Y.. Flow a."' 0-4
1966. MINk a.6' in.4

(61 Maer. G.G.L. A SapsemshiAlpgmkl for So" ma CLm of State .1 PD .'.

Constained Discree Opekad Coint Ponbim Dnm and Cowo 71

Theoy Ccuujbwwo, San Dimp6 Ca~erass. 19"., Mp 73-79.
171 M.yW, G . and Po~ U, 'A Parall Firs-Ordew Linear

Recurance S~lr nwundnV o At Mm. Afnuad Conjlewmce In 0 rivaiuma a

am L~fomAne Syies Prnasoo.. Nw Jese. March 19-21. 196k. also to 50.4 4OWM/CMWa4

appe in cit .u wns 4P*%f1 and Diarhund Cap2. .

(81 PoWLa E.. CoPMO Muiboeti in A (fourivol Approsah
Acadotuc P"r Now Yort and L40d.. 1971.

(91 Sdwusi C. and Mclnma I, ?wwla Poessing o(Optimai controi Prob-
I-ms by Dynastic Programaimui', [infmiam Sanice Vol Its No. a. m0 ".4 6 o
NombW 1961L pp. &S5-114.

-30-

8. ArENDIX I!

PARALLEL GRADIENT PROJECTION ALGORITHMS TO SOLVE THE DISCRETE LQR OPTIMAL
CONTROL PROBLEM WITH HARD CONTROL BOUNDS

GERARD G. L. MEYER LOUIS J. PODRAZ7K
Electrical and Computer Engineering Department Bendix Environmental Systems Division
The Johns Hopkins University Allied-Signal Inc.
Baltimo-e, Maryland 21218 Baltimore, Maryland 21284-9840

ABSTRACT

In this paper we present two parallel gradient based itera- '- algorithms to solve the linear quadratic
regulator (LOR) optimal control problem with hard control bounds. In the first part of the paper, we
introduce the algorithms in the context of the general class of problems to which they are applicable. The
first algorithm is a parametrized gradient projection method and can be used to solve any convex program-
ming ,*roblem. The second algorithm is a combination of the first algorithm with a constrained version of
the Fletcher-Reeves conjugate gradient method and can be used to solve linear iLequaity constrained
problems. We then use the two algorithms to solve the LOR optimal control problem with hard control
bounds. In the second part of the paper, we show that at each iteration parallel evaluation of the step
length and projected gradient of the quadratic cost function can be efficiently performed as a function of
the number of processors. We then embed our parallel step length and gradient projection procedures to
produce two parallel algorithms which are suitable for real-time online implementation on a SIMD
machine.

I. INTRODUCTION

Practical iterative methods to solve optimal control problems must exhibit fast convergence coupled
with low computational overhead per iteration so that they may be implemented in a real-time online
environment. Furthermore, they must be interior descent methods since infeasible approximations to the
solution are unacceptable for most applications. In this paper we present two gradient based iterative inte-
rior methods for the parallel solution of the discrete LOR optimal control problem with hard control
bounds. The algorithms are synthesized so that each iteration may be efficiently executed on a parallel
computer. Unlike previous parallel approaches to the solution of optimal control problems which simply
fold the computations to fit the number of processrs [MEY73], [SCH81], [TRA80], our approach has
been devised by explicitly considering the given computational environment. Consequently, one of the
features of the parallel algorithms presented in this paper is that their structure, and hence their parallel-
ism, is determined by the number of available processors, resulting in algorithms which are matched to the
given parallel environment.

We introduce the algorithms in the context of the general class of problems to which they are appli-
cable. The rst algorithm is a parametrized gradient projection method and can be used to solve any con-
vex programming problem. We parametrize the algorithm for two purposes: first, the algorithm contains
a so called i-procedure for determining the active constraints in order to prevent the possibility of jam-
ming and to ensure convergence; unlike approaches which generate a sequence of a's, our approach uses a
constant e for all iterations. Secondly, we investigate the performance of the algorithm for various param-
eter choices with the goal of ob(aining improved convergence. The second algorithm is a combination of
the first algorithm with a constrained version of the Fletcher-Reeves conjugate gradient method and can
be used to solve any problem with linear inequality constraintL Furthermore, we show that a slight
modification of our second algorithm results in the algorithm exhibiting finite convergence on problems

Suppomd by de Air Form, Ofe. oE Scieni Research under Coniiii AFiRJS- .

with quadratic cost. - 31 -

We then use . algorithms to solve the LOR optimal cont. problem with hard control bounds

which we rewrite as a bounded variable quadratic programming problem with special structure. There
exist many interior methods applicable to this class of problems, including feasible directions, gradient pro-
jection, reduced gradient, variable metric and numerous quadratic programming methods. Our motivation
for devising a gradient projection method is due to the simple projection computation that occurs with
respect to the control problem of interest as well as avoiding large matrix computations involving the exact
or approximated Hessian.

We give two parallel implementations of our algorithms to solve the LOR optimal control problem
with hard control bounds. In both implementations the step length and gradient is obtained by using the
parallel procedures presented in (MEY87bI. The procedures share common terms and exhibit varying
degrees of parallelism as a function of the number of processors. We constrain the number of available
processors, p, to lie in the range 1 p <nN"' , where n is the size of the system state vector, N is the
number of stages in the control process and we assume n > m, where m is the size of the control.

By employing a blocked formulation of the approach for first-order linear recurrences given in
(MEY87a], we embed in our algorithms the approach for gradient computation given in [MEY8Th] which
reduces to a direct parallel implementation of the technique given in [POL71, pp.66-6 9] when 1 <p _< n
and achieves speedup greater than 1/2(p + n) when n < p _< nNld. In addition, one of the features of our
proposed parallel iterative algorithms is that their structure is completely specified by the number of pro-
cessors whenever the number of stages N 2_ (p In)2.

The organization of this paper is as follows : Section I introduces the convex problem and associ-
ated optimality conditions. Section lII presents the parametrized gradient projection algorithm and
corresponding implementation for the bounded variable quadratic programming problem. In Section IV
we combine: the algorithm given in Section fII with a linearly constrained version of the Fletcher-Reeves
conjugate gradient method. We then rewrite the LOR problem with hard control bounds as a bounded
variable quadratic programming problem in Section V. Section VI presents the parallel algorithms to
solve the LOR problem with hard control bounds and the corresponding performance analysis. Finally, in
Section VII conclusions are presented.

I. THE CONVEX PROBLEM AND PRELIMINARIES

We consider the following problem:

Problem 1: Given m +1 mapsft°(.), f'(.), ..., J,'(.) : E" - E' and a subset 0 of E' defined by

0l -, x I i(x) :50 for i -, 1, 2,,...,rnm

find a pointx" in n such that for everyx in in

Deflnltloa 1: Let C be the class of all problems of the form of Problem 1 in which the maps

fo(.), f(.), ... , f/(.) are such that
(i) f(.) is continuously differentiable, convex and radially unbounded; that is, o(.) is such that given any
x E R to every scalar corresponds a scalar p > 0 such thatf(x) > awhenever jjxj1 > p,

(ii) I(.), i - 1, 2 ..., m, are continuously differentiable, convex and define a nonempty constraint set f0
and
(iii) the set (I satisfies the Kuhn-Tucker constraint qualification at every solutionx.

It is known that the following necessary conditions of optimality are also sufficient for any problem
inC.

Opdmalty Conditloms: A point x" E fl is an optimal solution to a problem in C if and only if there exists a
vector lA E E* with components A 2> 0, i - 1, 2, ..., m, such that

- 32 -

Vf~*,+ A~(X 0

AP(x*) = 0, fori - 1,2,..., m.

III. THE PARAMETRIZED GRADIENT PROJECTION ALGORITHM

Given a point x C fl and the parameter e > 0, define the c-active constraints index set I (x, e) as

f(x,) = {i I f(x) !-.4),

given a subset I of the set {1, 2, ..., m 1, define the subset fX() of E* as

fr(/)f. Iy I f(y)<:50 for all iElI if I=

Es if I=

and given a point x E fl and an index set 1, let w (x,l) be the projection of x - Vf°(x)' onto the set fQ(l), that
is. w (x,I) satisfies

11(r- Vfo(x)') - w(x,f)I1 = min(11(x- Vf0 (x)') -yII 1 y E f()}.
It

We only consider problems in C, and thus fl(f) is non-empty and convex, and the quantity w (x,I) is
well defined. Using the notation just defined, we may rewrite the optimality conditions as:

Lemma 1: If a point x' en is optimal for a problem in C then w(xl(x*,e)) = x° for all e>0. Con-
versely, if x and e satisfy w (x*,I(x',e)) = x', thenx" is optimal.

We now g ie the parametrized gradient projection algorithm to solve a Problem in the class C.

Algorithm 2: Letx t I fi and e > 0 be given.

Step 0- Set k = 1.
Compute Vf(x'),I(x' ,e) = {i I f(x') > -e} and p' = w(xt,I(x',e)) -x'.

Step 1: i1p4 = 0 stop; else go to Sttp 2.

Step 2: Set dh =ph.

Step 3: Compute ri > 0 to minimize f(xh + a/dk) subject to (x" + xdk) E ft

Step 4: Let xk * = xh + chdh.

Step 5: Compute VfO(xk t).

Step 6: ComputeI(rb t,e) = {i I P(x t)>.}.

Step 7: Computep h+ = w(XA 1 J,I(xh+l,)) xh+ t

Step 8: Set k - k + I and go to Step 1.

Remark 1: Althcugh not =qlicify re,"uii in the presentation of Algorithm 2, we introduce the quantity

p *in order to facilitate a later modification which results in our second algorithm.
At each iteration, Algorithm 2 generates a search direction d' which is computed by projecting

the negative gradient onto the set (l(xhc)). The parameter e defines the "sufficiently-active" constraint
region. If a point x is in that region, then I (x,#) #€ and the corresponding search direction dh is
obtaived by projecting x.-Vfr(xY onto the set {y I f(y)_<0 for all iEl(x,e)); otherwise, dh =
-Vf0(x)Y. For . large enough, fXI(xh,e)) - fl for all k. Thus, by choosing e large, Algorithm 2 reduces to
projecting xt -VJo(x*)Y onto the entire set n at each iteration. For e - 0, fl(l(xh,e)) - E* whenever
Xh E interior(0). Thus, when c - 0, Algorithm 2 reduces to a projected version of best-step steepest des-
cent in which the direction choen at an interior point is the negative gradient.

We now show that using any # > 0 in Algorithm 2 will always produce a solution to a problem in
C, even though the direction finding map used to compute dh is not closed.

- 33-
Lemma 2: lfx E A is --t a solution to a given problem in C and e then there exists an c(x) > 0 and
6(x) > 0 such that

fO(y + cal):< f(y) -6(x) for ally E B (xe(x)) n fl.

Theorem 1: If {x} is a sequence constructed by Algorithm 2 to solve a problem in C then either {xk } is
f'iite and the last point is optimal or {x) is infinite and contains duster points, each of which is optimal.

Furthermore, when a problem in C is such that fo(.) is strictly convex, then that problem has a unique
optimal solutionx*, and in that case {xh} converges tox ° .

In order to present the parallel implementation of Algorithm 2 used to. solve the LQR problem,
we first use it to solve a particular case of Problem 1, specifically the bounded variable quadratic program-

mirg problem given below.

Problem 2: Findx E E' with components x, i = 1, 2, ..., n, that minimizes the performance index f0 (x) =

i/2 xHx + btx + c subject to x E R where H is an n x n symmetric positive definite matrix, b is an n xl
vector and fl is the unit hypercube defimed as fl = (xl Ix' I < 1, for i = 1, 2, ..., n }.

Since H is positive definite, the cost function fo(.) is strictly convex. The nonempty constraint set

fl is the intersection of the 2n linear inequalities f(x) = x -1!5 0 and t **(x) = -x -1 < 0 for i = 1, 2 ...,
n. Therefore, Problem 2 lies in C and by Theorem 1, Algorithm 2 will generate a sequence which con-
verges to the unique solution x'.

We now give some properties of implementing Algorithm 2 to solve Problem 2.

Lemma 3: Given xk and VfI(x), let pk = w (xhI(x",&)) -x" for the case of Problem 2. Then each com-
ponentp* ofpk can be computed as

+1- X if i E I (xh,e) and 4 -I(xb)a > 1
-- -- ifi +nCI(,s and. - (X) < -1 (3.1)

-VJ,(xh)t otherwise,

where we denote Vg(x*) to be the i-th component of VJO(?h).

Remark 2: If e >2 then I(x#,e) = (1, 2, ..., 2n } for all k. Consequently, w(xk,I(xh,C)) SAT(xk -

Vfo(xh)t) and Algorithm 2 reduces to projecting onto the entire set fl at each iteration.

Lemma 4: Given x and Vro(xh), let ao' minimize f1(xh + aodk) subject to (xk + aIdh) E 0 for the case of
Problem 2. Then ao can be computed as d = min{o,o, }, where

N= -,cdh, Vfo(xh)l > / <dk, Hdb>, (3.2)

a, = min {(I a aS(,d)-X for al i such that d* : 0). (3.3)a d.b

Remark 3: Since the cost function is quadratic and we are using the update xk +1 = xk + c~dk, the quan-

tity VfO(xh)S can be updated using VJ4(xb4)' = v7o(xh)d + cPHdh. Consequently, we need only com-
pute the gradient directly in Step 0 of Algorithm 2, and then use the gradient update at each subsequent
iteration.

We now give the foilowing implementation of Algorithm 2 to solve Problem 2.

Algorithm 3: Let xI and e > 0 be given.

Step 0- Set k - 1.
Compute Vfr)t) - Hx' +b, I(x',') - {i li-1 - U {i +n I -x.-1 > -e} andp' using Eq. (3.1).

Step 1: If li1p 11' < . then stop; else go to Step 2.

k k- 34 -
Step 2: Setdh = p-

Step 3: Compute oa rmin a,, according to Eqs. (3.2) and (3..,.

Step 4: Letx k "l =xh + zdh.

Step 5: Let VJ (xk4)+ V (x)* + x 1 + dakd.

Step 6: Computel(xhs) {i I (z' -- l U {i +n I .-x 1 > -}.

Step 7: Computeph l using Eq. (3.1).

Step 8: Set k = k + I and go to Step 1.

In Section IV we modify Algorithm 3 to obtain improved convergence properties when a problem
in C is linearly constrained.

IV. FLETCHER-REEVES MODIFICATION FOR LINEARLY CONSTRAINED PROBLEMS

We now consider the following linearly constrained class of problems.

Definition 2: Let L be the class of all problems of the form of Problem 1 in which the maps
J(.), f'(.), ..., f'(.) are such that

(i) fJ(.) is continuously differentiable, convex and radially unbounded,
(ii)J (x) = <g, x > - hi, for i = 1, 2, ..., m defme a nonempty constraint set fl and
(iii) for any x E , g' for i E I (x, 0) are linearly independent.

Given xI Ef , let l(xk,O) be the index set defined by l(xh,0) i I <g, x > -h, = 0} and let Go
be the corresponding matrix whose rows are (g,)' for all i E I (k,0). The projection matrix Ph associated
with the point xh is Ph = I - G~h(GhG%)1 Gh. Let M(i(x,0)) be the linear manifold defined by

f(x : <gi, x> -hi = 0 foralli El(xk,0)) if l(xk,O)
mv~rhm)- E if l(x',O)

A hThen we may compute the projection of VIO(xh) onto the set M(I(xh,0)) as = _P Vfo(x).

Our approach to solving a problem in L is to approximate fo(.) as a quadratic and generate a new
direction dh 1 which is conjugate with respect to the previous direction db whenever possible. We com-
pute the initial direction d' - pI and subsequent directions dh using dk = p + 0d.l, where 0 =

S[pkl11/jp l112. However, rather then projectingxh - Vf(xk) onto the active contstraint set M(l(x,O)),
we project onto the approximation set fn(J(xk,s)), that is, we compute ph = w (Xk,(xh,,)) -X. Conse-

^k+1
quently, we may produce a db" which is conjugate to dh whenever Ph+ = Ph andphl p ; otherwise
we restart the algorithm with dhl _ ph* . Furthermore, if fo(.) is not quadratic, the algorithm should be
restarted at least every n - I I(x *,0) 1 steps as a spacer step to ensure global convergence.

We now give the parametrized gradient projection algorithm with the Fletcher-Reeves
modification to solve a problem in the class L.

Algorithm 4: Letx1 andc > 0 be given.

Step O: Set k = k = land do = 0.
Compute Vfe(x), I(x',a) = (i If(x') >-}, (x,0) = {i If (xl) = 0} and
p1 is w(x',f(1

1 ,)).x'.

Step 1: Ifph - 0 then stop; else go to Step 2.

Step 2: If dh' t - 0 then let dh - ph and go to Step 5; else go to Step 3.

Step3: Lete' . IIp1I12

pi -p III"
Step 4: Let dh - ph + ptd"."

Step 5: Compute ci* > 0 to minimize f0(?h + addk) subject to (xk -dk) E n.

Step 6: Let x *t = x o~d".

Step 7: Compute Vfo(x* ").

Step8: ComputeI(xh*l,e) = {i I f(x" 1) > ' .

Step 9: Computeph +'' w (xI + I'l (xh + 1,e)) - xh + t .

Step 10: Compute I(+l,0) ({i I P(xh ') = 01.

11: COm.U t p -ph wo(h+l I

Step 12: f I(xk+to) ,I(xh,0) orp Ap or k > n - If(x+,0) I then set
A

d =k =0.

Step 13: Set k = k + 1, k = k + 1 and go to Step 1.

When fo(.) is a quadratic, Algorithm 4 generates a new direction dk + 1 which is conjugate to dh

whenever the point xh+1 is in the same active constraint set M(I(xh,O) asxh andph + = A , However,
since ph is obtained by projecting onto the set fXI (xb" ,e)) rather than M (I (xh,O)), Algorithm 4 is not a
pure active set method. Thus, Algorithm 4 may change constraint sets before the minimizer on the current
constraint set is found and consequently does not exhibit finite convergence in the case of quadratic cost.

Theorem 3: If {x") is a sequence constructed by Algorithm 4 to solve a problem in L, then either {xk} is
finite and the last point is optimal or {xh} is infinite and contains duster points, each of which is optimal.
Furthermore, when a problem in L is such that f0 (.) is strictly convex, then that problem has a unique
optimal solutionx, and in that case {x"}converges tox'.

We now give a slight modification to Algorithm 4 which allows the resulting algorithm to achieve
finite convegence when used to solve problems with quadratic cost.

Algorithm 5: Letx 1 ande > 0 be given.

Step 1: Use a conjugate gradient method to find the minimizer x: for the unconstrained version of the
problem.

Step 2: Ifx Efl then stop; else go to Step 3.

Step 3: Compute 4 to be the projection of x onto the set II

Step 4: Use Algorithm 4 with x as the starting point to compute the solution of the problem.

Corollary 1: If {x} is a sequence constructed by Algorithm 5 to solve a problem in L with f0(.) a qua-
d.xtic inx with postitive definite Hessian, then {xh} is finite and the last point is optimal.

V. DISCRETE LQR CONTROL PROBLEM WITH HARD CONTROL BOUNDS

In this section we rewrite the discrete LOR optimal control problem with hard control bounds as

a bounded variable quadratic programming problem and then show how the gradient and step length com-

putations may be organized to share common terms.

Problem 3: Given an m-input, discrete, time-varying linear system in which we are given the initial state,
zo E E, and

z. -A~., + Biu., i = 1,2,...,N, (5.1)

where for i - 0, 1, ..., N, z E E' is the state of the system at time i and for i 12, ... N, u E E" is the
control at time i with components u, j = 1, 2, .., m, find the mN control vector u = (u', u'2.... uiN)'
that minimizes the performance index

I(u)= 4 j (?.Qiz + 4Riu.).

and satisfies

UER

- 36 -

where for i = 1, 2,. V, Q, are n x n symmetric positive semi-def-" matrices, R, are in x rn svmmetric

positive definite mat .-. s and the convex compact set f0 is defined as

(fl={uj I uj 1, fori=,2,...,N, j=1, 2,...,m}.

Using the notatiou introduced in rMEY86], Problem 3 may be rewritten as a bounded variable
quadratic programming problem in u:

Problem 4: Find the control vector u E E"" v that minimizes the performance index 1(u) = 1/2 Ut I-lu + btu
+ c subject to u E P where H is the mN x mN block symmetric positive definite matrix with block size
m x m given by H = (R + F'sF QF 1 F,), b is the mN x I vector given by b' = zoAFo4QF-'F,, and c is the
scalar given by c = 1/2zWoFQF:IFozo, and the matrices R, Q, F,, F. and F0 are defimed as: Q =
Diag(Q1 , Q2,.... QN), is thenN xnNblock matrixthat consists of Nin xn symmetric positive semi-definite
blocks Qi, R = Diaq(RI, R 2,..., Rv) is tht. mN xmN block matrix that consists of N m xm symmetric
positive definite blocks fl, F, is the nN x nN block lower bidiagonal matrix that consists of N2 n x n blocks

rF and F. is the nN xmN block diagonal matrix hat consists of N2 n xm blocks (F) defined for a~li
k I,

and I in [1,Z...,NI by

(F -, f =j 1,N 0 otherwiseS 0 o r '0 otherwise

and F0 is the nN, blockmatrix that consists of N n x n blocks (F defed for a]i in 1,2,...,N]by

0 otherwise

Since Problem 4 is of the form of Problem 2, Algorithms 3 and 4 car be used to solve Problem 4.
We now use the approach for the evaluation fg(u), c' and g(uh -l) given in [M]EY87b] in which a* and
g (uh+i) are computed by sharing common terms, where we use the notation g (u ") = (d//du).

We first consider the computation of g (u), which is performed only once in Step 0 of Algorithms
3 and 4. The matrix F, is non-singular and thus we may write the gradient asg(ui) = Ru' + FF1

4 Qz1 ,
where zI satisfies Eq. (5.1). Let AEE be the costate vector A - (A', A,... ,A')', EE, defined by A
= T Qz. Then, given u t and z0, the gradient g (u 1) may be obtained by using the three equations

Fz' = FuI + FOzO, (5.2)

F.Ak = Qz h, (5.3)

g(u') - Rut + PIA'. (5.4)

As a consequence of Eqs. (5.2), (5.3) and (5.4) we obtain the gradient evaluation technique pro-
posed by Polak [POL71J:

Algorithm 6: Given u 1 and zo.

Step 1: ComputezI such thatFz' = F.u' + FOzO.

Step 2: Compute A' such that FA' = Qz'.

Step 3: Computeg(u1) - Ru' FI.
Due to the lower n x n block bidiagonal structure of F,, Steps 1 and 2 of Algorithm 6 require pro-

cedures for the solution of N stage forward and reverse n x n block first-order linear recurrences, respec-
tively. Such procedures az-. discussed in Section VI. Given A', Step 3 computes g(u1) by computing each
of the N uncoupled components gi - (dl//iuJ)I. .. it; thus, Step 3 exhibits linear speedup when executed in
paralleL

Algorithms 3 and 4 both use the common term x-' = Hd" iD 'e computation of the step length 1
£ and the next gradien. X. * 1). We now show that x' can be efficien,. computed by writing * as

x* = Rdh + F.F:QF'F.d,

and using Algorithm 7 below, where we note that instead of requiring F.1 and F,, we solve linear systems
corresponding to F, andF.

Algorithm 7: Given dh.

Step 1: Compute ? - Rdh.

Step 2 Compute 6* = Fdh.

Step 3: Compute wh such that F,wh = S.

Step 4: Computer? = Qw .

Step 5: Compute vh such that vh = .

Step 6: Compute Xh = P.O.

Step 7: Compute xb = j? + xA.

With the exception of Steps 3 and 5, Algorithm 7 computes *& by executing a series of matrix-
vector products followed by a vector sum. Each of the matrix-vector products consists of N uncoupled
block matrix-vector products, thus exhibiting linear speedup when implemented in parallel. However, due
to the structure of F,, Steps 3 and 5 require the solution of N stage forward and reverse n x n block first-
order linear recurrences, respectively. As in the case of Algorithm 6, this again suggests the need for
parallel procedures to solve linear recurrences.

VI. PARALLEL ALGORITHMS FOR OPTIMAL CONTROL PROBLEMS

The model of SIMD parallel computation that we use consists of a global parallel memory, p
parallel processors, and a control unit, where all processors perform the same operation at each time step.

We further simplify the model by making the following assumpzons:

Al. Each computational operation requires the same amount of time, referr:d to as a step.

A2. There are no accessing conflicts in global memory.

A3. All initial data resides in global memory.

A4. There is no time required to access global memory.

We use the parallel procedures FORWARD and REVERSE given in [MEY87b] to solve the for-
ward and reverse N stage n x n block first-order linear recurrence systems that are required by Algorithms
6 and 7. The procedures are blocked versions of the parallel scalar approach given in [MEY87a] and are

formulated as a function of the number p of prutxssors so that the algorithm structure is flied whknever
the number of stages N > (pIn2 . We then use the parallel procedures GRADIENT and DIRECTION

also given in [MEY87b] to obtain parallel implementations of Algorithms 6 and 7.

We net give the following parallel implementation of computing the quanities p* =

w (u,,I(uh,e))- u andP =-P,,g(uh).

1. PROCEDURE PROJECTIONI(u', g (u))
2. FO RALL i e 1, 2,...,N), j E 1, 2,...,m } DO IN PARALL.EL pO.: -gjju);

3. FORALL i E {,2,...,N}, e{2,...,m DO IN PARALLEL

6. END FORALL
7. RETURN ph ;

8. END PROCEDURE

1. PROCEDURE PROJECTION2(uh, g (uh))

2. FORALLiE{....N},jE{1,1 ...,. }DOINPARALLELI, .=g,(uh);
3. J(ujO):=4 ,;

4. FORALL i E (1,2,...,N},j E 1,2,...,m }DO IN PARALLEL

5. IF u.- I = 0 THENp : 0, 1(u ,0) : t(uh,0)u(i,j);

6. I1F-Uj--=0THENp :=0,f(u*,0):=I(uh,0)u(ij);
7. END FORALL
8. RETURNp I(u ,0);

9. END PROCEDURE

We now embed the parallel procedures GRADIENT, DIRECTION, and PROJECTIONI to

obtain a parallel implementation of Algorithm 3 to solve Problem 4 and we then give the corresponding

number of steps required for one iteration using p processors.

1. PROCEDURE PGPM(zo,u 1)
2. k:-1;
3. g(u) := GRADIENT(zo,u 1);

4. p1 : PROJECTION(u , g(u'));
5. WHILE itp h112 > e. DO

6. dhv:= ph;
7. %*:= DIRECTION(d*);
8. a:= min{ c,, a,};

9. FORALLiE{1,2,...,N} DO IN PARALLELu ' u+ + a~d*;
10. FORALLiE{1,2,...,N}DOINPARALLELg~ik:=. +0o',;
11. p+1 := PROIECTIONI(uk+t,g(uh+l));

12. k:=k + 1;
14. END WHILE
15. END PROCEDURE

Theorem 4: Given zo, u 1, N, n, m and p such that p = 1 orp /m is an integer, the number of steps required
by one iteration of procedure PGPM usingp processors, 1 <p < nNVI, is

(6 m-2 2 +Zm + 22) - -+ 4og 7 if I P !5n

T(nm (2n +Zm -2) Non

)+F m(2n+2m+)2.1

We next embed the parallel procedures GRADIENT, DIRECTION, PROJECTION1 and PRO-

JECTION2 to obtain the following parallel implementation of Algorithm 4 to solve Problem 4 and we then

give the corresponding number of steps required for one iteration.

1. PROCEDURE PGPFRM(zo,u 1)

2. k:=1;
3. g(u) :- GRADIENT(zo,u t);

4. p 1 := PROJECTIONI(u1, g(u1));

5. WHILE IIh II2 > e DO
6. IF d"' - 0 THEN dA: = pb

7. ELSEe' pO ILp IIa / Ij" 112

FORALLi e (12,...,N} DO IN PARALLEL dt: tp, +. #adi;
8. ENDIF
9. z': D EMCTION(db);
10. o/ =min {oN' q.);

11. FORALLi E (1,2,...,N} DO IN PARALLELu,+t := u + aih;

12. FORALLiE{1,2,...,N} DO IN PARALLEL g:--g + okr*;

13. pht := PROJECTIONI(uM ',g(uU)+);

A 14. p := PROJECTION2(u"'t,g(u); -

r + 15. IF I (u 1, 0) . ,0) ORphI #P THENdk: 0;

- 40 16. k:=k + 1;

17. END WHILE
18. END PROCEDURE

Theorem 5: Given zo, u 1, N, n, m and p such that p I or p In is an integer, the number of steps required
by one iteration of procedure PGPFRM usingp processors, 1 <p < nN ld', is

(rN +2m-2) + (2 +2p.+34).--!- + 7og~p ifl<p:5.n

T(NN (2,p + 2..2). +- -- (2, +Z 2.34 + 'pi'? 8(pai) + 71ogap -in <p:n'3

The speedup S. and efficiency Ep for procedures PGPM and PGPFRM can be obtained directly
from Theorems 4 and 5. A straightforward computation shows that S. and E. are bounded from below by

Sp > 0.4p and E, _ 0.6.

VII. CONCLUSIONS

In this paper two parallel algorithms have been presented to solve the discrete LOR optimal con-
trol problem with hard control bounds. The algorithms exhibit fast convergence coupled with a high
degree of parallelism at each iteration, making them suitable for real-time online implemenation on an
SIMD machine. Moreover, the algorithms possess the desirable property that their structure, and hence
parallelism, is determined by the number of available pro.zsrs. Thus, unlike approaches in which the
structure of the procedure changes with problem size, the procedures presented in this paper maintain the
same computational and interprocessor communication requirements independently of the number of
stages in the control problem. Although not considered in this paper, interprocessor communication
requirements should not be a critical performance factor in view of the implementation results for parallel
linear recurrence solvers presented in [MEY87a].

Finally, we note that the parallel procedures presented in this paper may be used to solve con-
strained discrete optimal control problems which involve nonquadratic cost and nonlinear dynamics. In
that case one uses suitable approximations in which the system dynamics are linearized and the cost is
approximated quadratically.

REFERENCES

[MEY73) Meyer, G.G.L, A Segmented Algorithm for Solving a Class of State Constrained Discrete
Optimal Control Problems, Decision and Control Theory Conference, San Diego, California,
1973, pp. 73-79.

(MEY87a] Podrazik, 14. and Meyer, G.G.L, A Parallel Frst-Order Linear Recurrence Solver, Journal of

Pamlel and Distributed Computing, Vol. 4, No. 2, April, 1987, pp. 117-132.

[MEY87b] Podrazik, 14. and Meyer, G.G.L, Parallel Implementations of Gradient Based Iterative Algo-
rithms for a Class of Discrete Optimal Control Problems, 1987 International Conference on

Parallel Pfcein~g, August, 1987, pp. 491-494.

[POL71] Polak, EJ., Computational Methods in Opdmization: A Unified Ap, ,ach, Academic Press,
New York, New York, 1971.

[SCH81] Scheel, C. and Mclnnis, B, Parallel Processing of Optimal Control Problems by Dynamic Pro-
grammng, Infor'maton Sciences, VoL 25, No. 2, November 1981, pp. 85-114.

FTRAS01 Travassos, R. and Kaufman, H., Parallel Algorithms for Solving Nonlinear Two-Point
Boundary-Value Problems Which Arise in Optimal Control, Journal of Optimization Theory
and Applications, VoL 30, No. 1, January 1980, pp. 53-71.

