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PREFACE

This technical report summarizes a studv effort performed at Air Force
Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, under a
Mini-Grant AFOSR~78-3615 from the Air Force Office of Scientific Research.

Dr. Joseph Bram, Directorate of Mathematical and Information Sciences
was the Air Force Program Manager.

The Research Foundation ol the 3Jtate University of New York through the
Tocar Cffice of Cuaats Adiluistiail.o.. a2t the State University Jullege, Jneuvnca,

monitored the administrative details of the grant.




SUMMARY

Study Objectives

The objectives to be pursued under this grant were to conduct analytical
and application oriented (especially to aircraft industry) study of D-optimal
design. The analytical study was aimed, partly, at answering questions such
as:

"How does D-optimal design fare with respect to such properties as the
uniqueness and orthogonality of the design, confounding of effects, interac-
tions between the variables for linear and quadratic responses?'

The purpose of the application oriented effort was to demonstrate the
application of the analytical results obtained to a typical Ground Attack
Mission Profile and, independently, to a three-dimensional design space to
select input conditions for an aircraft siziug program.

The computer—aided D-optimal Design Program was supplied to the Design
group at Flight Dvnamics Laboratory, Wright-Patterson Air Force Base, with
the request to run the program and obtain the simulated values of the various
res>onsas so that further statistical analysis and a sensitivity analysis on
the performance functions in a region of aircraft designs encompassing the
optimum combinations of engine/airframe variables could be carried out and the
validity of the theoretical results could be verified and confirmed.

This application oriented objective of the study including statistical
and sensitivity analysis could not be fulfilled because of the frustrating
noncooperation of the Design group in supplying the requested data. The
requested simulated values have not been received even as of to~day (perhaps

they will never be supplied by the Design group!).




INTRODUCTION

When engine cycles and airframe concepts are analytically integrated
to define an airplane system, the engine and airframe subsvstems or ele-
ments interact with one another. Engine physical characteristics affect
the size, shape, weight and balance of the airframe. Airframe charac-
teristics affect the installed performance of the propulsion system. 1If
engines and airframe are to be properly integrated, element interactions,
as well as icolated characteristics must be taken into account.

Engine/airframe interactions must be exploited in preliminary system
design studies. Proper exploitation of subsystem interactions car ouly
be accomplished by freeing design variables and allowing them to adjust
to levels wiuich satisfy requirements on the system and compatibility de-
mands on one another.

Advanced engine cycle concepts add a new dimension of complexity to
analytical engine/airframe integration. It is inconceivable that inte-
gration could be properly accomplished traditionallv, when performance
characteristics of a new, advanced engine cycle are not known completelv,
Furthermore, mission requirements are generally complex, very demanding,
and untamiliar. The systems which must satisfy these requirements are
equally complex. To be as effective as possible, every advantage must
be taken in the design of an optimum system. Free, interactive subsystem
integration becomes a requirement.

Free design means all important design parameters are free to attain
an optimum, system compatable value. For known airframe concepts this
means at least four or five parameters must be examined. Current engine
cycles have three or four and advanced cycles could add an additional
two or three. So the analytical system integration problem concerns

itself with from nine to twelve design parameters.




2.

Evaluation of installed and integrated performance of advanced engine
concepts requires estimation of the effects of these independent design
parameters. This is accomplished through parametric perturbation of engine
and airframe design variables such as cycle pressure ratio, turbine tem
perature, bypass ratio, engine size, wing loading, aspect ratio, thick-
ness—to~chord ratio, etc. Their effects are expressed as values of a set
of airplane performance indicators or response functions, such as range,
take-off gross weight, fuel consumption, etc. If the effects of the
design variables are to be estimated by manually interpolating from the
function values at representative data points in a multi-dimensional
problem, gross simplifications have to be made in the analysis in order
to avoid large expenditures in engineering and computer time.

This usually results in only partial evaluation of the relevant ef-
fects of design varizhles on installed engine performance in an airplane.
Even at that, the engineering time in both manhours and flowtime, as well
as the computer resources required to develop the necessary data points,
are prohibitive.

Therefore, in order that all the relevant design parameters in an
engine/airframe concept can be analyzed, a very wide scope of engine and
airframe configurations can be evaluated, and that engineering and
computer resources can be cut by as much as 20%, the aircraft designers
have developed a comprehensive airframe/engine screening methodology.

The mathematical elements In the methodology are directed to the efficient
identification of optimal combinations of engine and airframe variables
(design). Optimality is defined as the process of minimizing (or maxi-
mizing) one system performance function, like takeoff gross weight, while
constraining other functions, like takeoff distance, to be below (or above)
a specified value. The methodology is based on advanced statistical and

mathematical optimization procedures which allow maximum information to be




derived from a minimum amount of data. The procedures include statistical
experimental design, regression surface fitting of engine/airframe design
response function, surface fit evaluation, optimization and sensitivity
analvsis.

The screening process is formulated as an optimum design problem, in
which a cost function (such as takeoff gross weight) is minimized subject
to constraints on other response functions. The choice of algorithms for
minimization with constraints may depend on manv factors including whether

or not derivatives, asé, of the performance functions {L with respect to

Ix;
design variables, X& , gre available. Gradient-directed search techniques
are generally mcre efficient than minimizztion techniques which use
function values onlv, with no derivatives (Reference 1). However, gra-
dients may be unavailable except at great expense in terms of computer
run time or the time in manhours required to supply partial derivative
calculations in algorithmic form for the computer, since the ultimate
functional expressions of the performance functions which generate the
function values at each design point are not known in analytical form.

In order that one can save on computer run time and still be able to
use an efficient gradient-directed search method, the complicated unknuwn
performance measure functions are approximated by simple functions, for
which the derivatives are easy to express analytically for the computer.
These approximating functions are referred to as surface fits, since
thov approximate the n-dimensional surface defined in (n+l) dimensional
space by a function of n variables. These approximating functions are
readily expressed analytically, since they ure chosen to have some ele-
mentary form, such as a polynomial.

Surface fit approximating functions make partial derivatives available

in analytical form. This makes possible the direct use of a gradient-




4.

based minimization method and results in economical optimization runs on
the computer. This in turn alleviates the problem of approximation er-
ror in a region near the optimum, for this region can be explored by
re-optimizing with the cost function constrained to stay within a
specified cost-increase tolerance.

The coefficients tor the polynomial approximating functions are ob-
tained by using least squares regression. A surface fit approximation
is formed for the hypersurface representing each response function in
the multi-dimensional space of the n-design variables. Data values for
the performance functions which are to be used in an engine/airframe
screening evaluation are obtained at preselected combinations of design
parameter values.

Additional data are used to further evaluate the validity of the
approximations so obtained. Finally, the surface fit functional equa-
ticns are used by the optimizationkﬁnsmivity analysis program to find a
region in design snace which has maximal productivity of good airplane
designs.

Hence the screening methodology consists of four mair steps. These
re, in arder of yecurrence in the screening procedure:

1. The data selector step

2. The surface fit procedure

3. Evaluation of the surface fit

4, The optimization and sensitivitv analysis.

These four steps precede the final evaluation of designs in the
selected optimal region by the engine cycle matching and performance
matching programs. The final evaluation provides direct simulation
results at the design parameter combinations which have been selected in
optimization/sensitivity analysis. Obviously, the validity of the re-

sults of the optimization and sensitivity analvsis depends heavily on the

B —




accuracy of the surface fit approximation procedure. For this reason,
the data which 1s to be used in the surface fit procedure must be

selected with care.

2. EXPERIMENTAL DESIGN
The search for an effective means of selecting the combinations of
values for the engine/airframe design variables which are to be used for

surface fit data involves the field of experimental design. Design var-

iables are quantities such as BPR or W/S which may be varied inaepen-
dentlv as input to the engine cycle matching and performance simulation
programs to obtain as output the values of certain response functions
(e.g., TOGW). These functions are a measure of the performance of a
nvpothetical airplane design which is specified bv a particular combina-
tion of values of the design variables.

Experimental design, on the other hand, refers to the design of an
experiment to gather and evaluate data. Here, the data are the values
of the performance functions corresponding to each of the aircraft designs
which are specified by the design selector. The surface fit of approxi-
mating functions to these data involves the evaluation phase of the
experiment. The approximating functions are to be used Lo predict the
perform~nce of airplane designs for which no data has been obtained.

These predicted performance function values, which are used bv the
optimizotion program, will be only as valid as the surface fit results.
The experimental design specifies the airplane design combinations to be
used in getting data values for the performance functions. It also
specifies the analytical form which the surface fit approximating func-
tions are to have. Hence, the validity of the surface fit results
depends on choosing a good experimental design. But, what is a "good"

experimental design?
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In order to answer this question satisfactorilv we nced now to in-
troduce the concept of a regression model which will, in turn be used
to explain the concepts leading to the desirable properties of a "good"

experime .t desien.

=




7.
MODEL AND NOTATION
[he set of points D = (Xy, X5, ... X, ) at which runs can be made
is cal':d the n-dimensional factor space. e assume that at a given
point of the factor space only one quantity can be measured. Let 4 p! o
1y 42 M

ve the results of observatiouns at the points Pl’ Py, ..., D of the
2 ™

ractor space, In other words, u'*(i is the value of the response variable
bt

in the +<*h trial. We consider the model
’

(1) \}5:§<§§)@_+i}, FE1,00N
which we express in matrix notation as

n _

) N =XE e
whare

, ’
- y
(3) \_{__ - \l}l'd;_ ,"'}N\, is an N x 1 vector of observations,
/

IR ANIA LD !

/ / /
(&(5&).&(_)1&) ,§<>—<_N~‘\\>13 an N x K matrix, K-_—.—o——-—

I

(4) X

- . e N ; . - N
(5) (é' <f3°’ ﬁ“’ﬁzl’ )P;““’ ‘*n’"”"‘?b“ > P’\l)""ﬁm;a@zl,:'-v-ll,_l_\,\)
/
is a ¥\ vector of unknown parameters,
(6) é :(f'l)“'IEN) is an N x 1 vector of independentlv and

identically distributed random variables £: with mean € (E;\} =0
d‘ x
z "

and variance V(tk) = ¢,

Y%, denotes the value of the n x 1 vector X = ("l, o em, xh‘)/
7
of predictor variables XL at the point Pa_ of the factor space.
§< 5}\ is a px\ vector which depends on the form of the response
function assumed.
Based on their past experience with the performance function data,
aerospace corporations have been using quadratic forms for the approxi-
mating functions. Quadratic forms are used as the baseline surface-fit

function. In case these fail to provide good approximations to the

performance function data values, other functional forms can be tried.




“hese mizi.. include :ombinations of higher order polynomials and

exponential functions. In tne following discussions tbc type of

approximating functions will be assumed to be a quadratic polynomial

/
so that the cransposeg(!;‘,of the prlvector ‘S(’_‘.'A)is given by

‘ 2
GIEICNEITRS

Ly bn s Xt B K Ry K X

‘
g

X-B,‘L is the value of the independent variacle X in the y'™ trial.
7/

Substituting for-g(’ﬁ'é\frorn (7) in (4) the matrix X be.ores
T
; Tt T A Xy XX m Xa¥y '
{
i 1 b3 .

(8) X'—'! L%y %o X2 Xam TRyt Ry Xon K ¥yt X
| 2 . N X % Rgw XX VR R
L‘. Ty Xan N Mn OTRAR  § A TR L) NLTNY

Substituting for X from (8), for I’é ‘rom (5), for é_ from (6

and for Y from (3) in Eq. {2), we obtain
: " 2 n N-y n X . E_
“&\.\ Bot T Rii%i v T PiXp L L Pai Xt ¥
Lo . &= . LY W=y L=2
. . n - 2 n [ -
- YU S 2. R L C R
‘3.‘! = fso‘\' Z'_" Ll x Z.-I L7k 3 T (},h.&x}h 3L *
) [ s = hat £=22
(9) ' " 2 N hei y
4. AP SRR S TR U (3.)( NL
P % PL‘_ ™A /R S o WS Z 2__ Wi N
- NJ L foo £ L=t hay T2
This matrix equation yields a system cf N equations
. ny n
n 2 s Y f”i' T
= AL & B x L L Pl gk
(10) % - \30 T 2. Pu. sL z ‘ St h=t L=22
1 ey = ) )
d hék %—.\)2

’
which is the same as Eq. (1) after substituting for'S(’l")from (7.

/
Denoting be the transpose of the matrix X , the Kx¥ symmetric

’
matrix [, { Yis called the information matrix. Using (8) we get

—

\

N4

. 7->
é“-‘ }"\

),

£
k‘.
T

'
9

5t




9.
r'N ZN x;\ Z";“ ZX;_,\ TH Tx, o L A Yin
3=
P2 e pich o T 10 Db T
z -21 2"«21"3\ Z"?z' z"jz"\zn L L 252 M Tin
1 12 " z ZXL:\ A ?n X ¥ x 7 %
‘wa 27(3':« i L ®im 32 3

2 A wud .
/ 2. ?’ . X; K; ..»Lg.\x. .X n
(ll) X_X_—; ZX}\ 2)(\::\ ZXE\XE:" . z xé(xén ‘z_ 3\ Y 3\ QY\ 3 LAY

2 2 . x’: LI X% %y
ZX;\XQ Tx, %y L0 0 ST L S 200, L%
¢ PRI

3 2 LY XX X
2 R ;! % . X. X- ’d .
Zx}\ “in L "?\ SRS TRa P! "3,{'2“3\"3n L %50 Min LR

. 2 % " % ..2x. % . X.Z zx X Xe sz x‘i"ZY-IKJS‘]r.
‘Lxu"}s PRTRS TRt NP IR PRSI 12733 Tin UL ARERE

ra
TP
2

3 N
2 . . T LY X . E"' ."‘n"‘&."'“-. ALY
2 %5 ma ¥in z X ina im0 Z ¥y Min M0 Lxgma ¥in BT Tin 8T

S

Let us dentoe the K*l vector of estimated regression coefficients b, by, b

22’...,
\D'r\h ) b\ PR Y b’n ) \3\1_ | B ] \3‘“ 3 blB y - N Bh-\ "

as E: ,

(12) é :/\bo ‘Dl\ \°vm by bv\ bu oo by \’25"" bn-\ ‘n\)

Then assuming that the information matrix is non-singular, the least

squares estimates of the unknown parameters % 1in the regression

model (2) are given by ,
(13) =& Z&) DA
The variance-covariance matrix of \g

(14) VIk)= 52 (-X—/}—(-)“\

At any point X of the experimental regionx , the predicted response is

(15)

N (x)= §(x)e
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with variance
-\

(16) vIT )= e i (xx ) s

REPARAMETERIZATION

Least squares results tend to be sensitive to rounding of data in in-
termediate stages of calculations. When the number of independent vari-
ables is small - say three or less - roundoff effects can be controlled
by carrving a sufficient number of digits in intermediate calculations.
But this expedient becomes increasingly inefficient as the number of in-
dependent variables becomes larger. Roundoff errors tend to enter into
least squares calculations primarily when the inverse of 5,)5__ is taken.
Of course, any errors in ?__(/?iy‘may be magnified when calculating \3
(see Eq. 13) or making other subsequent calculations (see Eqs. 14, 16).
The danger of serious roundoff errors ing’)i_)qis particularly great
when the elements of )_Sf}_gdiffer substantially in order of magnitude. A
solution for this condition is to transform the variables and thereby
reparameterize the regression model. If g‘.. denotes a natural independent

variable and X, the corresponding transformed variable, then the trans-

formation g.‘. _Li(gi_’ mox ¥ %3,;, rrin ) ,
Moo=
(7 a“ .’-i (‘;;_,max - ‘:,{,,‘N\ih)

where Q%L , max maximum value of %q_' s
A

i;_, min = minimum value of i-‘l. ,
mrkes the transformed variables to fall between -1 and +1, so that the
calculation of the inverse matrix becomes much less subject to roundoff
errors due to dissimilar orders of magnitudes than with the original
variables. The transformed variables X;are called the normalized form of
the natural variables ‘%‘: » is\,...,n - Henceforth, we assume that the in-
dependent variables X; appearing in this work are all normalized so that

-l¢e > <1

‘_




I
1<
i

(19)

b
e

Further, the regression coefficients, even in the reparameterized
model, are affected by the spacing of the independent variables, which
may be quite arbitrary. It is desirable, therefore, to scale the factors
uniformly, and we shall do this by imposing the following restrictions

upon the values of the independent variables:

N 3 pa
- 3 2 < =Y %,
- 5 - LK. = S OR. XL = oy X %= .
Lo = 2% = 200 %50 = 2 %, 0T & N M h
1= 4 4 ki
= 5 ¥%. . . -5 X. K.. X“. X:
R TR TRV R TN T F BFE N
(18) 3
< _ 2 2 - &
o : 3
The matrix X_I)_Snow takes a convenient form: 7
r N a a a a 0 0 0 0 4] 0
a ctd c cC .. . cC 0 0 0 0 0. .. 0
a c c+d c ... c 0 4] 0 0 0 0
\a c c ¢ . . . cHd 0 0 0 0 0 0
0 0 0 0 . 0 a 0 o\ 0 0 0
0 0 0 0 0 0 a 0 0 0 0
0 0 0 0 0 \O 0 a} 0 0 0
0 0 0 0 0 0 0 0 c 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 c




(x

(21)

(22)
(23)
(24)
(25)

(26)

12.

- / ]
N aln ° 0
i al cJdn+din 0 ¢}
0 o] o Ln 9

] 0 S © CL@[

where 1n= (1 1...1) dis ann x 1 vector,lnis a square matrix of order
n with every element 1, and I, is a unit matrix of order n.

7=\

The inverse(x x) , when it exists, is a similarly patterned matrix
[~ /
Ly

o o ]

4| P 9
/29:. a i

¥ =N Azy‘*' tg“ 9 2
0 Q d In e
-\
0 0 el SR APEN

L. % ARG H
Taking the product (}_g )_(_)(}S _)_@\) = IK gives a set of five consistent

equations in the four unknowne {? 4 A and ¢ .
L)

Np+ nagq =1\
Ng + a(nprrk)=0O
ap + 4 (nc+d) =0
aq *+ dnrsckt ¥ ncA =0
at =\
The last equation gives t = 1/d. . Eliminating t from Egs. (22) and
(24) gives Ae M

ad
and solving Eqs. (21) and (23) gives
ab :-('*‘C"'d‘)%
..*naz.k
and q,'-‘—-q/Y_NC“C""d‘)

If we now write [d{N(nwm\)—no}SYl = A

these solutions become ) ‘
b= dimct+td)A, 9= -ad A, A= (a@=N)A | and *=7g -

-\
Using the form (21) of the inverse matrix Q_(_’X> of the information




(28)

(29)

13.
matrix, the variance—-covariance matrix (l4) becomes
r R
2 2 /
G 9 ©
P 4 Ln o o
2 4 2 2
vip) = 17T 4 =n 3-/3_3_“‘*5‘1;1_“ 6} 0
. O 2 -\
Po= o 7o T O
2 -\
L2 2 eI
2/

It would be convenient if we could choose the design points ian such a way
that cov (bo,t%h) = 0 for all h, and cov (Rh,g;) = 0 for all h, i, h # 1i.
The first condition cannot be satisfied, for we have
2
= = - A
cov (bo ’bkk) g q adA s
and a)0, d)0, A#0. Hence, q#0 and the covariance cannot be made

to vanish. On the other hand,

e

cov (by,sb;) = s+ (a2 - Nc¢) At?l

and a necessary and sufficient condition for this to vanish is that
a2 - Nc =0

It is customary to call the property
cov (b

hw}%L) =0

the orthogonalityv property for quadratic response surface designs, and

a2 = Nc

the orthogonality condition for quadratic response surface designs.

DESIRABLE PROPERTIES OF A GOOD EXPERIMENTAL DESIGN

Now we are in a position to answer the question raised in Section 2
as to what characterizes a '"'good" experimental design. These character-
istics are described below.

(a) Non-singular information matrix. The experimental design should

allow choice of such points in the factor space)ﬁ that under the in-
formation matrix non-singular allowing the normal equations to yield
least squares estimates b of the unknown parameters {} (see Eq. 13).
The number of such points in X, should be kept to a minimum in order

to make the process more cost effective. For a n~dimensional design




(29)

(30)

14,

. e d
of order d, this minimum number is A . A design matrix X (see
Eq. 8) of a n-—dimensional design of order d is said to be saturated
n+d

if it has exactly ( a )linearly independent rows.

(b) No_confounding of the effects of different terms in the surface-

fit equation. Confounding is the degree to which the effects of the
terms in the surface~fit equation are (pairwise) confused with one
another in the measurements of the values %k obtained from the data.
Suppose, for example, that two independent design variables X. and
Xi (i#}) are very highly correlated in the data. This will cause the
value of the linear correlation coefficient )L;,% to be close to +1 or
~1. This implies that the measured values "}kare, as far as X, and
Xé are concerned, almost a function of a single variable. It will be
hard to separate the variation in \&k due to X.frcm .he variation due
to X} using the data from the design points specified in the experi-
mental design. Instead, design points % i should be selected in such
a way that )'—,:é_ =0 ideally (though it is enough that )LQA" lie within a
confidence band of values near 0). This renders the design variables
X, 7(7_’ .., Xy, statistically as well as functionally independent.
When the surface-fit equation is linear in the design variables
Ko Ky s eees X, and if these design variables are functionally in-

\

/7
dependent, then the matrix E)S is non-singular and the model coeffi-
s
cients (3., have the smallest variance when ?_(_ X is diagonal. 1Indeed,
A —

consider the regression model for a linear response surface

n
‘&j = e+ 2 [y f . g

which we express in matrix notation as

Y =X B +T

—
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where -
~ a y ] EN € 1
l A X‘“ 1 A
3 A Y
o Wo=|t mean | Y= R Bl E
1 % cee X
L NI Nﬂl \-‘}NJ L, [Snj _EN_
/
The information matrix M=>_S>_S_ is -
N ™ I Y
-
N Z Xy Z Xy Z o
3=y ¢ 3=V 4= ¢
2
(32) M= T X; X . X. Ria ees %
PAN Z }\ Z N 32. Zx}\ Xa'n
2
+ - . . e . x.
Zo%yy LAnX I %, Z %5 Nin |
. - e e E— Xl
| 2 %n T *An Xy Llin*h in

Then it can be shown (see pp. 109-110 of reference [1l]) that
2
(33) _ o G }
Vi(eg) = — (H- ,

where ) is a positive definite form in the nondiagonal elements of M.

Since My >0, Q. 7 O
(™M

O {ff nondiagonal elements of M are zero; that is,

\& -
—_—— =

P ™M
M is a diagonal matrix.
G52
(3¢) ™M diagonal = Var(bp§= T mn Var (b‘a\

Adopting the following coding for the design variables

(35) .. = S %y
AL -"'—"-———-'S _

2] .
A .
where %;‘L denotes the actual value of the 3“‘1evel of the (thvariable, ““sL
9

is the average of the levels of the L*variable, and

~ - 2
(36) ¢ _ Ly (5%
A
N
we get
\__N xl = N
(37) [_3:‘ :BL'. -
and
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N o o o
o} N 0 o)
(38) M = . . . ' l
o N 0 g - ™
L J
Tn this case ( i.e., when M is given by (37))the variance covariance
matrix of
. 2 -\
(39) Viiel = ot
takes the form
r r ( b \\ 1 t \-I r G"z ]
(40 I vV iboy  covlbe,o)  ocoulbe,bpn)| = o O o0
1 ! 2
. cov (by, o) N, wocov(lys) = g S 6 o
) | N
: i ) A . 2
' i B . . o
L cov (Bnabs)  Covllbyn,b) o V(by) J L ¢ o 0 R
(41) = covl o, 5 Yz0 | hzi
=)
1. xk and Xéare uncorrelated,
2. No confounding effects, and
3. No interactions between the design variables.

When the response surface is approximated by a polynomial of degree

2
Kir Ray vuvs Xps X2 4 wue, X2

higher than the first, the quantities X ni %i

o’

; x\yz, ... are not all functionally independent and a diagonal moment

matrix is impossible of attainment. Hence even there is no assurance that
7/
the matrix X)ﬁis non-singular.

(¢) Orthogonal design. Experimental designs for which the information

/
matrix 4 % can be diagonalized (see Eq. (38)) for linear response

surface), and thus, the coefficients in the surface fit equation are

uncorrelated with one another (see Eq. (41)) for the linear response),




17.

are called orthogonal designs. For the quadratic response
represented by the model in Eq. 10, orthogonality of the design
ir,.ies Zov QbLL ,bhhj = ¢ (see Eq. 28) The prediction uncertainty,
which is measured by the variance, for function values and derivatives
using surface fit equations can be kept relatively low bv the use of
srthogonal designs. Indeed, there is a certain amount of uncertainty
in the estimation of the wvector %_of model coefficients (see Eqs. 5
and 31). This uncertaintyv is determined by the choice of experimental
design, as seen from the variance-covariance matrix (14) and the
Eqs. (33) and (40). The wicertainty in the estimation of model co-
efficients causes an uncertainty in the prediction of function values
at any point x in design spacetx_. Indeed, let x be a specified
1 x n vector whose elements are of the same form as a row of the
Fay

matrixzﬁ_(see Eq. 8). Then }bis the value predicted at x,by the
regression equation and has variance

V(9 )= %oV ()X,

This uncertainty can stromgly affect the sensitivity analysis at
an optimum X* located by the optimization method applied to the
surface fit functions.

If the design is orthogonal, the prediction uncertainty for
function values of responses described by a linear response surface
can be reduced to a minimum because the variances of estimated model
coefficients, var(bv), take minimum values in this case (see Eq. 34).
This results in a better curve-fit of the approximated response to

the actual response surface.

In practice, trial values for the design point combinations

N

/ . . . + 1
{0 Xgll“‘ XE“\ can always be evaluated for *he above properties

prior to actually using these points as input to an engine/airframe
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simulator program. Design points can be added and discarded until
the desired number N of points satisfving these properties is
achieved. However, this is potentially a time consuming procedure
unless a computer algorithm can be formulated for the process of
adding and deleting large number of data points while testing the
correlation coefficient &;? the matrix.ZS%S, etc., which, on the
other hand, may increase the cost factor. Therefore, a reliable

a priori choice of experimental design is needed instead which may
possess the above desired properties, can minimize the cost of the
approximations with actual increase in accuracy, and yields a
flyable aircraft. Recent investigations on experimental designs
show that a considerable enhancement of the screening methodology
based on the number of design points needed and the efficiencies of
the designs involved can be realized. As such, <§b- Optimal designs,
c<wews as proposed by Kiefer, become potential caadidates for such
a rhoice. In this report we will limit our conciderations to ¢Q—

-Optimal designs, known as D-Optimal designs, only.

D-OPTIMAL DESIGNS

Consider the N x N information matrix

’/
M) = O 50§00 g ldx)
X

where N is the number of unknown parameters,%; is the design, that is,
in general, a probability measure over experimental region X;, and § is
the unknown regression function.(‘ﬁ(x),~"> Svsiﬁ' Assuming the information
matrix to be non-singular, let>\$§\,...,}r§§§denote the eigenvalues of

M (%;). Define the functional #;(;hby
iy P -
MBIV
o= VN
085 Lim (%) = [dex M“(iﬂ
¢ Pyor P

~\
P (%)= lim q,P(e.;, = max A (%)

P> & o 1&LeN

oabp<

]

\/P
ép(\g,\ =\_T\{\ tr WP(E)X R

i1




(42)

(46)

19,

49!
:\¢%— optimal design ¥  is one that minimizes #gﬁj. Thus, a <%, -

\
optimal design minimizes qut V&\Ti)k/ﬁ which is equivalent to saving
that ¢L‘ optimal design maximizes det M(%). For this reason . #% -
optimal design is called D-Optimal design because it maximizes the
DETERMINANT of the information matrix.
Notation. \ normalized design will be denoted by € and its information

matrix bv M(e).

o.1 Some Basic Results
Linear combination of two normalized designs. Let E\and Gzlae two
arbitrarv normalized desisns given on the closed set ¥. . Let each of

. . ; . . © .
these designs be characterized by the corresponding measure %, %) and

N

the measureséfij. Then by the linear combination of these designs
(—_:’,—&)E\ﬁ-“@-l s o<« x <«

15 understood the normalized design with measure

B (e & ) B8
Rel ing directly on the definition of the information matrix, it is
easy to verify the following lemma.
Lemma 1. The information matrix M (&) of the normalized design & = U-x)e v €,
is given byv

MCE) = Ti-a) MCED) + K MCEL)
[t is known from the theory of positive-definite matrices that

[f A and B are positive-definite matrices of order m, A ¥ B, and ‘<ot ¢\,

then
-

e A+ Q=) B\ > LAt V8

Using (45) it is trivial to verify the following lemma.
Lemma 2. The function log {M(%)| of the information matrix M(€) defined
by (44) is a strictly concave function.

That is,
103; My > [\-=) Yo%_\Mf.e\)\ + & looa_\M(_eﬂ\
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Using this lemma 1t 1s easyv to prove the following theorem.

Theorem 1. If G‘ and éz.are two normalized designs with distinct infor-
mation matrices M (€) and M{E€;) , for which IMEN = 1M\, then the
design € = mx)&e + &y o<t <l
has the determinant KV\(QE\ P \WWCEWW\

Now we are in a positicn to prove the following important theorem.
Theorem 2. (Uniqueness of D-Optimal designs)

Let €, and G‘z. be two normalized D-0Optimal designs with information

matrices M 7€) and ¥ (&) . Then M€Y = M(E,).

*roof. Suppose, on the contrarv, that M€ ) F#1(ey) .
. , c o & K <L)
Ccnstruct o design T = - S RN S €, ’
. - . r eyt _trv\/ﬂ‘)\
Since =z, and “; are D-Optimal, fMmcep] = TMO&,
\
fence, by Theorem 1, imeedt Yy im (e

This contradicts the fact that EW is D-Optimal. Hence the theorem

follows.
Theorem 3. (Diagonal Information Matrix)

For a linear response surface the information matrix of a normalized
D-Optimal design is diagonal. In other words, the D-Optimal design for
a linear response surface is orthogonal.

Proof. Let ¢* be a normalized D-Optimal desi with information matrix
3 gn

- »
HOE ) suppose M(& ) is not diagonal. Then we can construct another

design € from g* by taking the elements of & the mirror image with
respect to zero of the corresponding elements of ¢*. Clearly M(e)F

», ~ *
MCE& ' It is not difficult to show that \ P\(E;)\:\P4(E n‘ Now, consider

*

the design € 4+ 1 g
= 2

— A
€ =3
Bv Theorem 1, for o« =2

bl

|\ M) > ‘.MCE*)\ )

which contradicts the assumption that ¢* 1is D-Optimal. This contradiction

proves the theorem.




D=0Optimal Desilgn for Ouadratic Response

Kiefer and his collaborators, and Pesotchisks have considered

b,

—ptimal designs for quadratic regression on such experimental rezions as

the

these regions turn

1

3 - simplex, 4 - dimensional ball, 3 -dimensional cube, etc.

out to be much more tractable computationallv and

hence manyv results can be obtained algebraically. For the reasons

because

pointed out in section 4 and the area of application of this effort, it

will be desirable for us to consider the settings in which the desig

{controllable) variables are restricted to the n-dimensional cube

darw

SLacn

] ( \ Nt t \ s - '11
A\_ = <: = ﬂ(x\a a5 ooy Am H X Lozt 2, R

which we now define.

with 1 coordinates equal to 0 and the remaining coordinates equal to =l.

. (™ A ; s T
~a denote the set of Lol barvcenters of depth I bv ¢,
4
n
. T o_v T T ) - . c -
rite o =N Ak, Thus, e consists of the vertices of o J
(=i &) : -

consists of midpoints of edges, Jy consists of the centers of 2-dimen-

sion

tor

for

center of depth i. A barycenter of depth L (o444 M) is a point

oL our discussion is phrased in terms of certain simple subscts of

al cubical faces, J, is the single center point, etc. For example,

I

A loa
X Cry, Xad s VX sl g , we have

Jo = {11, (1,1, (1,-D), (-1,-1)]

c2

—
o
li

(Ik(l,o)) (-lv0)9 (O)l>9 (Oa_l>3

1, = {(0,0)& ,
2 - s X,
I = \v_./’:o Ji = {l(l’l)’ (_l§l)a (\]—a-l)’ ( \)O\) (O?O) (lo) k
(-19 '1-), (1,0), (—1,0), (O,l),
(0,-1), (0,0)) (-1,4) & . (1,
J ) (o,-) ’

Ly = %(XL’XZ’XB) odxgl gl 1= 1, 2, 3L , we have
Jo = %(1, 1, 1), (-1, 1, 1), (1, =1, 1), (1. 1. -1)

(_lv _17 l)y (—ly ly _1)y (l, _ly ‘l), (_l»v -1\ _L)}
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J1 = %(0,1,1), (1,0,1), (1,7.05, (0,-1,1), (0,1,-1),

0,-1,- _-1-90,1 ’ l, ' = > TdyVe T ’
(0,-1,-1), ( ), (1,0,-1), (-1,0,-1) (-1,0,1)  (-4,0,0)

(-1,1,0), (1,-1,0), (_1,_l,o)§ (-1,~}, 1)
| O) )
Jq = a(l,o,o)’ (O’l’o)’ (0,0,l), ("l,0,0), (O, ‘,‘) ( '0‘1)’\?\ y"
2 .\'_\) ‘/(o)\)l)
(O,—l,O), <070a“l)} (| .‘)\) , o .(")O)O) (‘\)ll
)
(
Ty = 3\(0,0,0)§
3 .
J=\U J: - L0
L0

The following theorems were proved by Kiefer (1960, 1974, [3], [4))
and by Farrell, Kiefer, and Walbran (1965, [5])which allow the choice
of design (controllable) variables from a simple subset of J and
establish the existence of a symmetric ¢F-0ptimum design. For the proofs
of these two theorems the reader is referred to references [31, [4], [5].
Theorem 4. Every D-Optimal design is supported by a subset of J.
Theorem 5. Tihere is a D-Optimal design that is symmetric under all per-
mutations of coordinates and multiplication of anv x{ by -1.

In the light of theorews 2, 4, and 5 we shall limit our considerations

onlv to Svmmetric D-Optimal Designs on J. Further characterizations of

symmetric designs are contained in the following two theorems.

Theorem 6. Any symmetric design can be described in terms of a probabil-
7

. 1 = In SR .

ity (n+l) - vector 1 = 4 g -0 nJ that assigns measure

*IL /(‘?\) 2“-L to each point of Jj.

Theorem 7. For a symmetric D~Optimal design, there exists the simplest

>

™ .
|. » are positive.
A

probability vector '\ for which only three

In the light of Theorem 7, one needs to consider D—Optimal designs

of the following form only:
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( i) Observations with weights o at each of 2% vertices of the

a-dimensional cube Cn'

n-\
~

( 1i) Observations with weights ® at each of W 2 mid points of
the edges of C,, and

"3
(iii) Observations with weights 1 at each of M{(r-\;2 centers of

the two—dimensional faces of Ch>

where 7 % % 2 .’5‘\'7.“{:\ . The total number of points in such an

experimental design will be

. - n-3 n -ty
Zﬂ-‘r‘f\Zlh\-\-Y\(Y\-\‘)?“s :2 \-%.‘.L*Y\-\- )_\‘

t is easv to verify that the information matrix given by Egs. (19),

4

(20) for such a D-Optimal design will have the form

i 1 ul” 0 G ]
S = =
uly G 0 Y
(47)
Mg )=l O 0 u_I_n 0
9 0 9 Iiny
L 2/]
where
(48) u v Ve ..oV
E =
v u v v
v v V.. . u t
L -~
is a n x n matrix with diagonal elements u and non-diagonal elements |,
N 2
u = Z X;\ b , \'{. is equal to one of the three values
=1 ¢ 4 ¢ X o~ “‘i
. 2 2 m Ln : i
(49) - &Q“) 2“°(+\) _\_fgi_o-Z + (1)) i&\jg - R A
0 - I 2‘\
2 -2 n-1 M2 (40
+ 7 6 My -\—%&(.‘“2\) 2 -in\) 2 lﬂ( ) ]

= D w A () 20 B A () (ne2) 27 o

= g+ am0B RIS R

H
R

n- n & &4
) 2“'0(1\)7" () rpl2 3(w-z)ﬂ+ 412 (n2)(n-3) 2\.\




s

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(>
1

n-1

The

N S WP L B IF AR TR IS R

o™ (6% + &in-2)P (“~1\(ﬂ-3)'(]

determinant of the matrix M{&) in (47) is equal to

n nin-\}/2
v

\M(Q)\ = W (LL~\I)“-\ Lu+(n-\)v— ~nu.z.s

as shown below. Writing

M(e) = A 0
- - b
O B
where
1 ul n
é- =
uln G , and
W 0
Z = ’
0 VI n
- —(zj

But

and

| B) = \uln\\vlm\

" nin-1)/2
= V

the determinant of the (n+l) x (n+l) matrix A is
u u . . . u u 1 u u
u v . . . v \Y C u-v O
\Y% u . . . v v - 0 0 u-v
v v u v 0 0 0
v v v u u vV v
u u u u
1 0 0o -1
0 1 0 -1
0 0 1 -1
v v . v u

24.
u u !
0 —(u—v)§
0 -(u-v)




1 \ o - o =t ‘ t ! ' i 95,
o) ! 0 - ;1 1 ) o) -
n-t | SV 0
=lu-v) | 1 -\
‘ (e} [w) \ -1 ‘, i
v v v o e o© P

n-\ -
(u-v) {_ Ut (n-) v+ N uz (-\)'ﬁ 3n]

(58) -
(w-vy™ LW (nyv -2 U.Z._\

1]

Substituting from (57) and (58) into (55) we get (51).
The determinant \M(&)|will attain its maximum value for those values

of u and v in (51) which satisfy the system of equations

0 < = .@. € = 0O
(59) ﬁ\M(O\ o g & M)
) 2 NN
or ZUZ + 2(n-2)uv — (Zn+ U+ (n¥2)u v-(m-) v =0
2 2 _
and uz + (n-2) uv - Y\kk.3 - (M4+)V & (n+)w v =0

Solving these equations under the condition«sco, 270,¥>0> We obtain

v/
A= _n_t_é_-——-—-——ZLZ Y\l+3v\ '\‘7+(Y\-\)(4-Y’\1+\}_y\+\‘1> 23
(60) = L*(“*\)(Y\ﬁl) 9
n 3 2 2 p 2 V2
(61) 3 L/-Mn + N4 N -5 40207 ens3) an s 2net]) J
= 3

2 (n+a)(nad)
The variance—covariance matrix (27) for a quadratic response surface for

a D-Optimal design with information matrix given in (47) becomes

-

bo? «? af l/n S 0
62y Vi) = &? F’I\<6)= ‘rqun “'1_‘3 o 0
? Qe &t ~\Ln 0
[ ) cEG'T

- =(2)]

where
L ul + (N=-2) uv - an—wv"} T

I

-\

Y
-\) Ty

= lurnav oy

<» € 2> 5>
1t

= (u-v)T

\(u—v) S‘ WA )V = noul 73‘5-‘

—
(1




(63)

26.
and A A A A
{u Y v N
I
A A A A
E = Vv w v v 'S nox N
: R . A
v v N *

The orthogonality property for quadratic response surface designs, as

given by Eq. (28), requires )

rl(u—V)T =0

which leads to the orthogonality condition

u.lz\/

2
because & =# O, V#0. But the orthogonality condition (63) does not
hold for u and v given by Egqs. (60) and (61) respectively, as can easily
be verified. Thus we have proved the following important theorem.

Theorem 8. D-Optimal designs for quadratic response are not orthogonal.

RECOMMENDATIONS FOR FURTHER STUDY AND INVESTIGATIONS

As already noted before, the validity of the results of the optimiza-
tion and sensitivity analysis depends heavily on the accuracy of the
surface fit approximation procedure. Even for a given experimental
design, various estimation procedures for the unknown model coefficients
can play an important role in improving the over all accuracy of the
response surface approximation and the entire methodology.

The regression amalysis currently in use for estimating the regression
coefficients in the polynomial approximation of a response surface using
any experimental design is what is called least squares estimation. But
if the design is not orthogonal, as is the case with D-Optimal designs
for quadratic response, the least squares estimates are sensitive to a
number of "errors.'" Sometimes the results of these errors are critical

and the least squares estimates even do not make sense when put into the
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context of the physics and engineering of the process which is generating
the data.

Estimation based on the matrix '\)_(_'/Zﬂ_*-h'_[_)’k),o‘rather than on X,K )
has been found to be a procedure that can be used to help circumvent many
of the difficulties associated with the usual least squares estimates.

In particular, the procedure can be used to portray the sensitivitv of
the estimates to the particular set of data being used, and it can be
used to obtain a point estimate with a smalle. mean square error.

A. E. Hoerl first suggested in 1962 (see reference [6]) that to control
the inflation and general instability associated with the least squares

estimates, one can use

o = (X% m)—\ XY

in place of Eq. (13). Estimation and analysis built around (64) has been
labeled '"ridge regression.”

In the light of Theorem 8, which establishes the non-orthogonality
of D-Optimal designs for quadratic response, it is strongly suggested
that a few case-studies be undertaken to verify the possible superiority
of ridge regression analysis for D-Optimal designs for quadratic
response.

Also, other optimality criteria should be examined for experimental

designs which may lead to orthogonal designs, if possible, for quadratic

response.
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