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Study Objectives

The objectives to be pursued under this grant were to conduct analytical

and application oriented (especially to aircraft industry) study of D-optimal

design. The analytical study was aimed, partly, at answering questions such

as:

"How does D-optimal design fare with respect to such properties as the

uniqueness and orthogonality of the design, confounding of effects, interac-

tions between the variables for linear and quadratic responses?"

The purpose of the application oriented effort was to demonstrate the

application of the analytical results obtained to a typical Ground Attack

Mission Profile and, independently, to a three-dimensional design space to

select input conditions for an aircraft sizilg program.

The computer-aided D-optimal Design Program was supplied to the Design

group at Flight Dynamics Laboratory, Wright-Patterson Air Force Base, with

the request to run the program and obtain the simulated values of the various

res;onsas so that further statistical analysis and a sensitivity analysis on

the performance functions in a region of aircraft designs encompassing the

optimum combinations of engine/airframe variables could be carried out and the

validity of the theoretical results could be verified and confirmed.

This application oriented objective of the study including statistical

and sensitivity analysis could not be fulfilled because of the frustrating

noncooperation of the Design group in supplying the requested data. The

requested simulated values have not been received even as of to-day (perhaps

they will never be supplied by the Design group!).
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1. INTRODUCTION

When engine cycles and airframe concepts are analytically integrated

to define an airplane system, the engiaIe and airframe subsystems or ele-

ments interact with one another. Engine physical characteristics affect

the size, shape, weight and balance of the airframe. Airframe charac-

teristics affect the installed performance of the propulsion system. If

engines and airframe are to be properly integrated, element interactions,

as well as iLolated characteristics must be taken into account.

Engine/airframe interactions must be exploitcd in preliminary system

design studies. Proper exploitation of subsystem interactions car only

be accomplished by freeing design variables and allowing them to adjust

to levels whlich satisfy requirements on the system and compatibility de-

mands on one another.

Advanced engine cycle concepts add a new dimension of complexity to

analytical engine/airframe integration. It is inconceivable that inte-

gration could be properly accomplished traditionally, when performance

characteristics of a new, advanced engine cycle are not known completely.

Furthermore, missiun requirements are generally complex, very demanding,

and unfamiliar. The systems which must satisfy these requirements are

equally complex. To be as effective as possible, every advantage must

be taken in the design of an optimum system. Free, interactive subsystem

integration becomes a requirement.

Free design means all important design parameters are free to attain

An optimum, system compatable value. For known airframe concepts this

means at least four or five parameters must be examined. Current engine

cycles have three or four and advanced cycles could add an additional

two or three. So the analytical system integration problem concerns

itself with from nine to twelve design parameters.
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Evaluation of installed and integrated performance of advanced engine

concepts requires estimation of the effects of these independent design

parameters. This is accomplished through parametric perturbation of engine

and airframe design variables such as cycle pressure ratio, turbine tem-

perature, bypass ratio, engine size, wing loading, aspect ratio, thick-

ness-to-chord ratio, etc. Their effects are expressed as values of a set

of airplane performance indicators or response functions, such as range,

take-off gross weight, fuel consumption, etc. If the effects of the

design variables are to be estimated by manually interpolating from the

function values at representative data points in a multi-dimensional

problem, gross simplifications have to be made in the analysis in order

to avoid large expenditures in engineering and computer time.

This usually results in only partial evaluation of the relevant ef-

fects of design variables on installed engine performance in an airplane.

Even at that, the engineering time in both manhours and flowtime, as well

as the computer resources required to develop the necessary data points,

are prohibitive.

Therefore, in order that all the relevant design parameters in an

engine/airframe concept can be analyzed, a very wide scope of engine and

airframe configurations can be evaluated, and that engineering and

computer resources can be cut by as much as 20%, the aircraft designers

have developed a comprehensive airframe/engine screening methodology.

The mathematical elements in the methodology are directed to the efficient

identification of optimal combinations of engine and airframe variables

(design). Optimality is defined as the process of minimizing (or maxi-

mizing) one system performance function, like takeoff gross weight, while

constraining other functions, like takeoff distance, to be below (or above)

a specified value. The methodology is based on advanced statistical and

mathematical optimization procedures which allow maximum information to be
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derived from a minimum amount of data. The procedures include statistical

experimental design, regression surface fitting of engine/airframe design

response function, surface 'it evaluation, optimization and sensitivity

analysis.

The screening process is formulated as an optimum design problem, in

which a cost function (such as takeoff gross weight) is minimized subject

to constraints on other response functions. The choice of algorithms for

minimization with constraints may depend on many factors including whether

or not derivatives,__. , of the performance functions £ with respect to

design variables, A , are available. Gradient-directed search techniques

are generally more efficient than minimization techniques which use

function values only, vith no derivatives (Reference 1). However, gra-

dients may be unavailable except at great expense in terms of computer

run time or the time in manhours required to supply partial derivative

calculations in algorithmic form for the computer, since the ultimate

functional expressions of the performance functions which generate the

function values at each design point are not known in analytical form.

In order that one can save on computer run time and still be able to

use an efficient gradient-directed search method, the complicated unknown

performance measure functions are approximated by simple functions, for

which the derivatives are easy to express analytically for the computer.

These approximating functions are referred to as surface fits, since

thav approximate the n-dimensional surface defined in (n+l) dimensional

space by a function of n variables. These approximating functions are

readily expressed analytically, since they zre chosen to have some ele-

mentary form, such as a polynomial.

Surface fit approximating functions make partial derivatives available

in analytical form. This makes possible the direct use of a gradient-
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based minimization method and results in economical optimization runs on

the computer. This in turn alleviates the problem of approximation er-

ror in a region near the optimum, for this region can be explored by

re-optimizing with the cost function constrained to stay within a

specified cost-increase tolerance.

The coefficients tor the polynomial approximating functions are ob-

tained by using least squares regression. A surface fit approximation

is formed for the hvpersurface representing each response function in

the multi-dimensional space of the n-design variables. Data values for

the performance functions which are to be used in an engine/airframe

screening evaluation are obtained at preselected combinations of design

parameter values.

Additional data are used to further evaluate the validity of the

approximations so obtained. Finally, the surface fit functional equa-

tions are used by the optimization/sensitivity aaalysis program to find a

region in design space which has maximal productivity of good airplane

designs.

Hence the screening methodology consists of four mair steps. These

'n ----- of u.-clirr-re in th. screening procedure:

1. The data selector step

2. The surface fit procedure

3. Evaluation of the surface fit

4. The optimization and sensitivity analysis.

These four steps precede the final evaluation of designs in the

selected optimal region by the engine cycle matching and performance

matching programs. The final evaluation provides direct simulation

results at the design parameter combinations which have been selected in

optimization/sensitivity analysis. Obviously, the validity of the re-

sults of the optimization and sensitivity analysis depends heavily on the
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accuracy of the surface fit approximation procedure. For this reason,

the data which is to be used in the surface fit procedure must be

selected with care.

2 EXTERI !NTAL DESIGN

The search for an effective means of selecting the combinations of

values for the engine/airframe design variables which are to be used for

surface fit data involves the field of experimental design. Design var-

iables are quantities such as BPR or V/S which may be varied indepen-

dently as input to the engine cycle mtching and performance simulation

programs to obtain as output the values of certain response functions

(e.g., TOGW). These functions are a measrp of the performance of a

hypothetical airplane design which is specified hy a particular combina-

tion of values of the design variables.

Experimental design, on the other hand, refers to the design of an

experiment to gather and evaluate data. Here, the data are the values

of the perfor-mance functions corresponding to each of the aircraft designs

which are specified by zhe design selector. The surface fit of approxi-

mating functions to these data involves the evaluation phase of the

experiment. The approximating functions are to be used Lo predict the

perfor=-.nce of airplane designs for which no data has been obtained.

These predicted performance function values, which are used by the

optimizction program, will bp only as valid as the surface fit results.

The experimental design specifies the airplane design combinations to be

used in getting data values for the performance functions. It also

specifies the analytical form which the surface fit approximating func-

tions are to have. Hence, the validity of the surface fit results

depends on choosing a good experimental design. But, what is a "good"

experimental design?
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:n order to answer this question satisfactorily we need now to ir-

troduce the concept of a regression model which will, in turn be used

to explain the concepts leadin- to the desirable properties of a "good"

experimp .i design.
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3. MiODEL AND NOTATION

hle set of points P ( X% , X.1 X) at '.Tich runs can oe made

Ls cal' :d the n-dimensional factor space. .e assume that at a giv, n

?oint of the factor space only one quantity can be measured. Let 

be tie results of observations at the points PI, P"' "''.,P of the

Factor soace. In other .cords, i is the value of the response variable

Ln :ne k trial. We consider the model
/

-'hrich ye exiress in matrix notation as

(3) d2_ " is an N x i vector of observatLion,

(X)__-\/ x .. x(X is an N x K matri-, Y-

/

/'

is a KxI vector of unknown parameters,
/

(6) t_ , is an N x 1 vector of independently and

identically distributed random variables E; with mean . ,, ,

and variance

Y. denotes the value of the n x I vector X = .-

of predictor variables X at the point of the factor space.

j ( ?S is a ,\vector which depends on the form of the response

function assumed.

Based on their past experience with the performance function data,

;erospace corporations have been using quadratic forms for the approxi-

mating functions. Quadratir forms are used as the baseline surface-fit

fuction. In case these fail to provide good approximations to the

perfornance function data values, othur functional forms can be tried.
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.'hese iaig-., include 2-ombinations of higher order polynomials anti

exponential functions. In tne following discussions tb, type of

ipproximatiag functions w-ill be assumed to be a quadratic polynomial
/

so that the transpose (M-o°I the b 3 ivtor 4 -)is given by

2. -

is the value of the independent varial-le "'i in the trial.
/

Substituting for (-i'from (7) in (4) the matrix X be-onesr.A 'A . . X ... X X

2.

L Nk n

Substituting for N from (8), for (S Ti.m (5), for - from (6),

and for>' from (3) in Eq. (2), .;:e obtain -

Y 2. -r f- -.lX × .

tK

-- ~~~~~~~ -- *n- I, r, nmnnn~mIl l m
m

X 2

X 'A

Thiis matrix equation yields a system cf N equations

(10) o ~IL A&. -~L

;qhich is the same as Eq. (1) after substituting for5(V rom (7).

Denot4--g by X the transpose of the matrix X , the YAKsymmetric

maltrix :<is called the information matrix. Using (8) we get
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2.2

t -, b 7 ,, T., .. , '< ' i :

Le*sdno te1 vco of esi.te rersso oefcens .. 2 ..

'A A j2

2. 2 2. . .2 2. x:

2.2.

- -A

, 7 X-.

X 2

' -A) 'A, X X_ X.

Then assuinge-thaathe inmation mar isno-iglrthles

At any point x_ of the experimental region/ , the predicted response is

( ) 1

.... .. . ,,il Hi- ,,, in li illill I I I Id
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with variance

(16) A 2 /2

4. REP ARAMETERI ZATION

Least squares results tend to be sensitive to rounding of data in in-

termediate stages of calculations. When the number of independent vari-

ables is small - say three or less - roundoff effects can be controlled

by carrying a sufficient number of digits in intermediate calculations.

But this expedient becomes increasingly inefficient as the number of in-

dependent variables becomes larger. Roundoff errors tend to enter into

least squares calculations primarily when the inverse of XX is taken.

Of course, any errors in may be magnified when calculating 16

(see Eq. 13) or making other subsequent calculations (see Eqs. 14, 16).

The danger of serious roundoff errors in is particularly great

when the elements of X Kdiffer substantially in order of magnitude. A

solution for this condition is to transform the variables and thereby

reparameterize the regression model. If denotes a natural independent

variable and K ,the corresponding transformed variable, then the trans-

formation -L -( %;.~0  *
(17) - -

where ,max . maximum value ofwhere C1_Cr

min = minimum value of

mTkes the transformed variables to fall between -1 and +1, so that the

calculation of the inverse matrix becomes much less subject to roundoff

errors due to dissimilar orders of magnitudes than with the original

variables. The transformed variables XLare called the normalized form of

the natural variables . Henceforth, we assume that the in-

dependent variables 'x.appearing in this work are all normalized so that

-ik cl



Further, the regression coefficients, even in the reparameterized

model, are affected by the spacing of the independent variables, which

may be quite arbitrary. It is desirable, therefore, to scale the factors

uniformly, and we shall do this by imposing the following restrictions

upon the values of the independent variables:

2.2- -X , , .

(18)

6u2° 2. 2

/

The matrix Xnow takes a convenient form:

F N a a a .. a 0 0.. 0 0 0 .. .

a c+d c c ... c 0 0 0 0 0... 0

a c c+d c ... c 0 0 0 0 0 0

a c c c ... c+d 0 0 0 0 0 0

0 0 0 0 0 a 0 0 0 0 0

(19)
0 0 0 0... 0 0 a . . .0 0 0 0

0 0 0 0 0 0 0. a 0 0 0

0 0 0 0 0 0 0 . 0 c 0 0

0 0 0 0 0 0 0.. 0 0 c 0

0 0 0 0 0 0 . . c
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0/

(20) 0. JA 0 0

0A 0 0
(20)

where I1= (1 1...1) is an n x I vector, _,is a square matrix of order

n w-ith every element 1, and In is a unit matrix of order n.

The inverse when it exists, is a similarly patterned matrix

(21)

0 LL_S-

Taking the product () I1 gives a set of five consistent

equations in the four unknowns \o q A and t

(22) N. -?r- 'A a. = - \

(23) + (n/' - k) = o

(24) + . +Ck) = 0

(25) + + nL A =0

(26) dz -

The last equation gives t = 1/j . Eliminating t from Eqs. (22) and

(24) gives (0 2 - tA C')

and solving Eqs. (21) and (23) gives

- -n 1 -

and =- ./ a)- C. "n

If we now write 0

these solutions become

C. + d , Ac.aL , A C. N ) )~ - I C

Using the form (21) of the inverse matrix X)of the information
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matrix, the variance-covariance matrix (14) becomes

2. C t 0 0

V(b) 1 + t 'L n c0

(27) "

IL00 
2 1CnJhI I

It would be convenient if we could choose the design points in such a way

that coy (b*,h) = 0 for all h, and coy (b h,b..) = 0 for all h, i, h i.

The first condition cannot be satisfied, for we have
2

coy (b ,b ) = - q = - adAd- 2

and a)O, d)O, AO. Hence, q*O and the covariance cannot be made

to vanish. On the other hand,

cov (b,,,bi) = s-= (a 2 - Nc) Ac

and a necessary and sufficient condition for this to vanish is that

a2 - Nc = 0

It is customary to call the property

(28) cov (bhlW,bg) = 0

the orthogonality property for quadratic response surface designs, and

(29) a 2 = Nc

the nrthogonality condition for quadratic response surface designs.

5. DESIRABLE PROPERTIES OF A GOOD EXPERIMENTAL DESIGN

Now we are in a position to answer the question raised in Section 2

as to what characterizes a "good" experimental design. These character-

istics are described below.

(a) Non-singular information matrix. The experimental design should

allow choice of such points in the factor space?. that under the in-

formation matrix non-singular allowing the normal equations to yield

least squares estimates b of the unknown parameters (_ (see Eq. 13).

The number of such points in Y should be kept to a minimum in order

to make the process more cost effective. For a n-dimensional design
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of order d, this minimum number is (a) .A design matrix X(see

Eq. 8) of a n-dimensional design of order d is said to be saturated

if it has exactly )linearly independent rows.

(b) No confounding of the effects of different terms in the surface-

fit equation. Confounding is the degree to which the effects of the

terms in the surface-fit equation are (pairwise) confused with one

another in the measurements of the values obtained from the data.

Suppose, for example, that two independent design variables A. and

S are very highly correlated in the data. This will cause the

value of the linear correlation coefficient A£i to be close to +1 or

-1. This implies that the measured values I are, as far as *, and

are concerned, almost a function of a single variable. It will be

hard to separate the variation in due to X.froz 2_ie variation due
A.

to Y, using the data from the design points specified in the experi-

mental design. Instead, design points should be selected in such

a way that )L% =0 ideally (though it is enough that % lie within a

confidence band of values near 0). This renders the design variables

'A ' "', ) . statistically as well as functionally independent.

When the surface-fit equation is linear in the design variables

Y and if these design variables are functionally in-

dependent, then the matrix K is non-singular and the model coeffi-
/

cients f3, have the smallest variance when X _ is diagonal. Indeed,

consider the regression model for a linear response surface

(29) . ( ± . F7. +-

which we express in matrix notation as

(30)
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where

(31) /\ - '

KNt X.> MrL I

/

The information matrix M= $..X is

[-A-N y x ., X× '

2

(32) [ ; -X

: X:'A2 T-;2.X \ z n

Then it can be shown (see pp. 109-110 of reference [1]) that

(33)- 2

where Q is a positive definite form in the nondiagonal elements of M.

Since ?iC)taMk

iff nondiagonal elements of M are zero; that is,

M is a diagonal matrix.

(34) ' diagonal => Var(= - nmn Var

Adopting the following coding for the design variables

(35) V____

where L denotes the actual value of the gi'level of the 4kvariable, -

is the average of the levels of the L1variable, and

(36)2 Z " _ ,)2

we get

(37) '.

and
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IN 0 a

0 MI 0 "-
(38) M N

N 0 (J"'"

L
Tn this case ( i.e., when M is given by (37))the variance covariance

matrix of

- 2. -(39) %*m :d-

takes the form

r 2

QC-Do'0 0 0
(40)

I - N 6-
2

1. k and Y..are uncorrelated,

A..

2. No confounding effects, and

3. No interactions between the design variables.

When the response surface is approximated by a polynomial of degree

higher than the first, the quantities X X1, )<Z' . Xy; X , .. ,

; ZZ' ... are not all functionally independent and a diagonal moment

matrix is impossible of attainment. Hence even there is no assurance that
/

the matrix X'is non-singular.

(c) Orthogonal design. Experimental designs for which the information
/

matrix ', " can be diagonalized (see Eq. (38))for linear response

surface), and thus, the coefficients in the surface fit equation are

uncorrelated with one another (see Eq. (41)) for the linear response),
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are called orthogonal designs. For the quadratic response

represented by the model in Eq. 10, orthogonality of the design

ies Cc \ eD = o (see Eq. 283 The prediction uncertainty,

whicii is measured by the variance, for function values and derivatives

using surface fit equations can be kept relatively low bv the use of

orthogonai designs. Indeed, there is a certain amount of uncertainty

in the estimation of the vector of model coefficients (see Eqs. 5

and 31). This uncertainty is determined by the choice of experimental

design, as seen from the variance-covariance matrix (14) and the

Eqs. (33) and (40). The uncertainty in the estimation of model co-

efficients causes an uncertainty in the prediction of function values

at any point x in design space. . Indeed, let x be a specified

1 x n vector whose elements are of the same form as a row of the
A

matrixX (see Eq. 8). Then -is the value predicted at xob_ the

regression equation and has variance

A/

This uncertainty can strongly affect the sensitivity analysis at

an optimum x* located by the optimization method applied to the

surface fit functions.

If the design is orthogonal, the prediction uncertainty for

function values of responses described by a linear response surface

can be reduced to a minimum because the variances of estimated model

coefficients, var( 'o , take minimum values in this case (see Eq. 34).

This results in a better curve-fit of the approximated response to

the actual response surface.

In practice, trial values for the design point combinations

X × , , -- %Y) can always be evaluated for the above properties

prior to actually using these points as input to an engine/airframe
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simulator program. Design points can be added and discarded until

the desired number 1 of points satisfying these properties is

achieved. However, this is potentially a time consuming procedure

unless a computer algorithm can be formulated for the process of

adding and deleting large number of data points while testing the

/

correlation coefficient , the matrix XX, etc., which, on the

other hand, may increase the cost factor. Therefore, a reliable

a priori choice of experimental design is needed instead which may

possess the above desired properties, can minimize the cost of the

approximations with actual increase in accuracy, and yields a

flyable aircraft. Recent investigations on experimental designs

show that a considerable enhancement of the screening methodology

based on the number of design points needed and the efficiencies of

the designs involved can be realizcd. As such, '- Optimal designs,

as proposed by Kiefer, become potential candidates for such

a rhoice. In this report we will limit our considerations to

-Optimal designs, known as D-Optimal designs, only.

6. D-OPTIML DESIGNS

Consider the N x N information matrix

where N is the number of unknown parameters, is the design, that is,

in general, a probability measure over experimental region K, and is

the unknown regression function (aix),---, i(o)). Assuming the information

matrix to be non-singular, let\( ,.. ., denote the eigenvalues of

M . Define the functional 4()by

- ', %/ I.%
N.,I

rrOt.
4~ ~ O $LX~
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- optimal design < is one that minimizes 4(]. Thus, a -

oDtimal design minimizes lQt M V', - which is equivalent to saying

that 40- optimal design maximizes det M(."-) For this reason i J o -
0 0

optimal design is called D-Optimal design because it maximizes the

DETER IINANT of the information matrix.

Notation. A normalized design will be denoted by E and its information

matrix bv M(i.

6.1 Some Basic Results

Linear combination of two normalized designs. Let E\and !zbe two

arbitrary normalized designs given on the closed set)C . Let each of

these designs be characterized by the corresponding measure ' ,') and

the measure .). Then by the linear combination of these designs

(Z,2) . c-

is understood the normalized design with measure

Rel.ing directly on the definition of the information matrix, it is

easy to verify the following lemma.

Lemma 1. The information matrix MC-) of the normalized design o-) +E

is given by

(4!4) MCC, + '

It is known from the theory of positive-definite matrices that

If A and B are positive-definite matrices of order m, A * B, and o

then

Using (45) it is trivial to verify the following lemma.

Lemma 2. The function log M(E) of the information matrix M(E) defined

by (44) is a strictly concave function.

That is,

(46)- .\ . II
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Using this lemma it is easy to prove the following theorem.
Theorem I. If - and e are two normalized designs with distinct infor-

mation matrices M (CQ and >I-.2 , for which \N(.Q\=VA( A, then the

design C - o< < c<

!,as the determinant M C ')\ > \ -

Now we are in a position to prove the following important theorem.

T"eorem -. (Uniqueness of D-Optimal designs)

Let C, and (. be two normalized D-(Otimal designs with information

matrices 'I ".), and M((q Then \ EIN), 'I(E2).

Froo . Suppose, on the contrarv, that >1(,)#r(Ez

Ccnstrucr < ' esi'nl . ..C )- " , <

.%nce and " are D-Optimal, (E.) :- '"f4\

hence, by theorem I , > \ r-

7iis contradicts the fact that C is D-Optimal. Hence the theorem

follows.

Tneorem 3. (Diagonal Information Matrix)

For a linear response surface the information matrix of a normalized

D-)ptimal design is diagonal. In other words, the D-Optimal design for

a linear response surface is orthogonal.

Proof. Let E* be a normalized D-Optimal design with informatiun matrix

11 - :-uppose C ) is not diagonal. Then we can construct another

design - from 6* by taking the elements of the mirror image with

respect to zero of the corresponding elements of E*. Clearly M (E N=

M Tt is not difficult to show that M UAiC \--lQi)l Now, consider

the design E + I

By Theorem 1, for C -2

I MCE)\

which contradicts the assumption that -* is D-Optimal. This contradiction

proves the theorem.
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o.2 D-Optimai De.sign for Ouadratic Response,

_ier and hi3 collaborators, and Pesotchiskv lnave consiered -

-)otimal designs for quadratic regression on such exner .mental regions Is

Lhe O,- simplex, - dimensional ball, I,-dimensional cube, etc. because

taese regions turn out to be much more tractable zomputationally and

hence many results can be obtained algebraically. For the reasons

pointed out in section 4 and the area of application of this effort, it

wil be desirable for us to consider the settings in which the design

controllable) variables are restricted to the n-dimensional cube

)Lch of our discussion is phrased in terms of certain simple subsets of

, -.hicn .e now define.

i:,rv.'center of depth i. A barvcenter of depth i (o1: - n) is a -oint

.itn i coordinates equal to 0 and the remaining coordinates equal to -1.

;.:e denote the set of 2 barvcenters of deth iby ind
1A'-

- t . Tus LS consists of the vertices of C,

consists of midpoints of edges, J) consists of the centers of 2-dimen-

sional cubical faces, Jn is the single center point, etc. Cor exampie,

for C) = K2 , we have

Jo = (1,0), (-1,0), (0,-1), (-,-l)

z A

-To
(0,-i), (0,0)1-,)-"(-

for C3] : (xi,:x2 ,×) : x1i <. 1. 1 1 ,2i, , we have
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(0,-,-1), (-1,0,1), (,0,-i), (-1,0,-i),

(1,0,0), (0,1,0), (0,0,1), (-1,0,0),

,., o ,co

j. -IV) • JL, )

The following theorems were proved by Kiefer (1960, 1974, [3], [4])

and by Farrell, Kiefer, and Walbran (1965, [5])which allow the choice

of design (controllable) variables from a simple subset of J and

establish the existence of a symmetric -Optimum design. For the proofs

of these two theorems the reader is referred to references [3], [4), [5].

Theorem 4. Every D-Optimal design is supported by a subset of J.

Theorem 5. There is a D-Optimal design that is symmetric under all per-

mutations of coordinates and multiplication of any xi by -1.

In the light of theore-s 2, 4, and 5 we shall limit our considerations

only to Svmmetric D-Optimal Designs on J. Further characterizations of

symmetric designs are contained in the following two theorems.

Theorem 6. Any symmetric design can be described in terms of a probabil-

ity (n+l) - vector I - that assigns measure

to each point of Ji.

Theorem 7. For a symmetric D-Optimal design, there exists the simplest

probability vector Y? for which only three . are positive.

In the light of Theorem 7, one needs to consider D-Optimal designs

of the following form only:
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( i) Observations with weights o< at each of 2n vertices of the

a-dimensional cube Cn -

(ii) Observations with weights , at each of r 2 mid points of

the edges of Cn, and

(iii) Observations with weights I at each of Y(',-"2 centers of

the two-dimensional faces of Cn,

where x - -I The total number of points in such an

experimental design will be

2 2 4- +

It is easy to verify that the information matrix given by Eqs. (19),

(20) for such a D-Optimal design will have the form

1 uin 0 G

ula G 0 0
(47)

>= 0 0 uI 0

0 0 0 1

where

(48) u v v. . . v
(7 =

V U V • V

V V V. . . V

is a n x n matrix with diagonal elements u and non-diagonal elements
A 2

u = 'A ; k. is equal to one of the three values

(49) n \ -0 +

- (t

C, 2.
- K I t ri (Y- )

2nlQn~



The determinant of the matrix M(- ) in (47) is equal to

(S1) v - L

(52) M(E) A K(s2 , }= [0 B

where

1 U 1

(53) A =
, and

Un 0
(54) n =

(55) \ \\
But

(56) Y, v \

(57) - t V

and the determinant of the (n+l) x (n+l) matrix A is

1 U u u 1 U u u u

u U v v v C u-v 0 0 -(u-v)

u v u v v - 0 0 u-v 0 -(u-v)

u v v . u v 0 0 0 u-v -(u-v)

u v v v u ul v v v u

U U U U

0 1 0 0 -1

.-') 0 0 1 0 -1

0 0 0 1-i

U V V . V U
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*+ (*q U
(,( - V) 0 1 -\

v v u. .. 0 i -

= ( - v) . t ('-,) v + <-f ,2 c-

(58) V (u-v)'' L+ r., )V L_)

Substituting from (57) and (58) into (55) we get (51).

The determinant I1N(E)will attain its maximum value for those values

of u and v in (51) which satisfy the system of equations

2) Mc-) : =C L M(E) = o
(59) and 6v

32 2

2 3 1 2 V 2--)\

and kz + (Y -i2) LkV - - -(n+ )V + ( +4) U. V 0

Solving these equations under the conditionco>o, /37,->0, we obtain

(61) (A__ _ =. - -I~41
[

(61 ~ ~ ( t/--' \)(,n

The variance-covariance matrix (27) for a quadratic response surface for

a D-Optimal design with information matrix given in (47) becomes

2^ /

20 
0 0

(62 - -
-V1

where2.

( : + - _ - T a

I I I I I0

ok T

T -a Lk + -n'
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and A A A

U V VV

A A A A

F v U V ,V\

A AA

V V

The orthogonality property for quadratic response surface designs, as

given by Eq. (28), requires 2
2-(t-v)T =Q

which leads to the orthogonality condition

L~L .V
(63)

because * Oj4:C. But the orthogonality condition (63) does not

hold for u and v given by Eqs. (60) and (61) respectively, as can easily

be verified. Thus we have proved the following important theorem.

Theorem 8. D-Optimal designs for quadratic response are not orthogonal.

7. RECO IENDATIONS FOR FURTHER STUDY AND INVESTIGATIONS

As already noted before, the validity of the results of the optimiza-

cion and sensitivity analysis depends heavily on the accuracy of the

surface fit approximation procedure. Even for a given experimental

design, various estimation procedures for the unknown model coefficients

can play an important role in improving the over all accuracy of the

response surface approximation and the entire methodology.

The regression analysis currently in use for estimating the regression

coefficients in the polynomial approximation of a response surface using

any experimental design is what is called least squares estimation. But

if the design is not orthogonal, as is the case with D-Optimal designs

for quadratic response, the least squares estimates are sensitive to a

number of "errors." Sometimes the results of these errors are critical

and the least squares estimates even do not make sense when put into the
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context of the physics and engineering of the process which is generating

the data.

Estimation based on the matrix t 7+ I, rather than onX X,

has been found to be a procedure that can be used to help circumvent many

of the difficulties associated with the usual least squares estimates.

In particular, the procedure can be used to portray the sensitivity of

the estimates to the particular set of data being used, and it can be

used to obtain a point estimate with a smalie mean square error.

A. E. Hoerl first suggested in 1962 (see reference [6]) that to control

the inflation and general instability associated with the least squares

estimates, one can use

(64) __X

in place of Eq. (13). Estimation and analysis built around (64) has been

labeled "ridge regression."

In the light of Theorem 8, which establishes the non-orthogonality

of D-Optimal designs for quadratic response, it is strongly suggested

that a few case-studies be undertaken to verify the possible superiority

of ridge regression analysis for D-Optimal designs for quadratic

response.

Also, other optimality criteria should be examined for experimental

designs which may lead to orthogonal designs, if possible, for quadratic

response.
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