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Abstract

This paper deals with extending matchings in regular graphs. There art, two main
results. The first presents a sufficient condition in terms of cyclic connectivity for extending
matchings in regular bipartite graphs. This theorem generalizes an earlier result due
to Holton and the author. The second result deals with regular-but not necessarily
bipartite-graphs. In this case, it is known that a result analogous to that obtained in the
bipartite case is impossible, but a new proof is given of a result of Naddef and Pulleyblank
which guarantees that a regular graph with an even number of points which has sufficiently
large cyclic connectivity will be bicritical. , "

1. Introduction and Terminology

* All graphs considered are finite, undirected, connected and simple (i.e., they have no
loops or parallel lines). Let n and p be positive integers with n < (p - 2)/2 and let G be
a graph with p points having a perfect matching. Graph G is said to be n-extendable if
every matching of size n in G extends to a perfect matching. For a discussion of the role of
the concept of n-extendability within the general framework of matching theory in graphs
and for an historical r~sum6 of the development of n-extendability, the reader is referred
to the book [qj and to [10].

In this paper we continue work begun in [3], [4] and [2].
In Section 2 we generalize a result on matching extension in bipartite graphs ob-

tained in [4]. This result-and the present generalization-involve the concept of cyclic
connectivity.

A set L of lines in a connected graph G is called a cyclic cutset if G-L is disconnected
and at least two of the components of G- L contain cycles. If graph G has a cyclic cutset of
lines, we define the cyclic (line) connectivity of G to be the cardinality of any smallest
cyclic cutset in G and denote this number by cA(G). If G has no such set, we shall say that
the cyclic connectivity of G is infinite and write cA(G) = +oo. (The reader is warned that
some authors prefer to say that when no cyclic line cutset is present, the cyclic connectivity
is defined to be 0.)

In addition to cyclic connectivity, we shall refer to other graph parameters such as
regularity, bipartiteness, planarity and both point and line connectivity. When various
combin.tions of these parameters are needed in the statements of a number of theorems
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* and corollaries, for example, it will be convenient to use juxtaposed abbreviations. For
example, "Let graph C be 3-regular, 4-connected, bipartite, planar and have an even
number of points" might be shortened to "Let graph G be 3R4CBPE".

In Section 3, we study possible analogs of the results of Section 2 in the case when the
bipartite property is dropped. Although we can say very little about n-extendability for
n > 2 in this situation, we do obtain a new proof of a theorem of Naddef and Pu!leyblank
[121 which guarantees that certain families of regular graphs are bicritical. A graph G is
bicritical if G - u - v has a perfect matching for every choice of two distinct points u and
v in V(G).

2. The bipartite case

In this section we shall generalize somewhat a result on extending matchings in regular
bipartite graphs first obtained in [4].

Before presenting our main result, we state a lemma the proof of which is trivial and
is left to the reader.

Lemma 2.1. Let F be a forest with no isolated points. Suppose the bipartition of
V(F) is A U B. whero IAI = a, ]BI = b a-d a > b. Then P co,aiia a iree with at IkE't 2
endpoints in A. |

. Now we are prepared to state and prove the main result of this section.

Theorem 2.2. Let n and r be a positive integers with r > n + 1 and suppose graph
G is rRB. Then if cA(G) _ (n - 1)r + 1, G is n-extendable.

Proof. If n = 1, G is 1-extendable by the well-known line coloring theorem of K6nig
[5, 6] and cyclic connectivity does not need to be considered.

So let us assume that n > 2. Suppose graph G satisfies the hypotheses of this theorem
and suppose further that the bipartition of its points is V(G) = A U B. Now suppose that
G is not n-extendable. Then there are n independent lines el - albl,..., en = ab, where
each point ai E A and bi E B andsuchthat G ' = G-al-...-a-b -...- b,
has no perfect matching. Thus by the well-known theorem of Philip Hall on bipartite
matching, we may assume, without loss of generality, that there exists a point set A, C A
with IFG,(AI)I < JAil. (Here rG,(AI) denotes the set of neighbors of set A, in graph
G'.) Moreover, since graph G is r-regular and r > n + 1, set AI contains no isolates in
G'. Let us denote rG'(A1) by B 1. Let G, = G[A 1 U B1] and let Go = G[Ao U Bo] where 4
Ao = A - (A 1 U {al,...,an)) and Bo = B - (B u {bl,...,bn).

Note here at the outset that the pair (A 1 ,Bl) where rc,(Al) - B1 , point set A,
contains no isolates and irc,'(A)l = jBIj < jAIj is certainly not necessarily unique. Let
us call such a pair (A,,BI) a Hall barrier in G'. (For more on the barrier concept in
general, see [91.)

Note that B, 54 0, since deg 3,v > 0 for all points v E A 1 . Thus JBIJ _> 1 and hence

* AI[ _ 2. (Similarly, B 0 #0, A01 > 1 and hence JB0 ! 2.)
For the rest of this proof, let us adopt the following terminology:
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m = the number of lines from A, to {bl,...

no = the number of lines from B to {ua,...,b,},
no = the number of lines from Bo to A0 ,

n2 = the number of lines from B1 to {a,...
n. = the number of lines from {bj,...,b,} to Ao, and

n 4 = the number of lines in G[S],

where S -{a,... ,a,} U {bj,...,bn}. (See Figure 2.1 below. Line cut L shown in that
figure will be discussed later in this proof.)

Figure 2.1.

Now counting lines in G1 , we have jAjjr - m = lBjir - ni - n 2 , or

IAIIr = jBijr - nl - n2 + M. (1)

Also JAIJ > 1Bi1 + 1, so

IAjr > (JBl + 1)r. (2)

Combining (1) and (2), we get ([BI[ + 1)r < lAir = lBljr - ni - n 2 + m, or

n, + n2 _< m - r. (3)

* Claim 1. If Go is a forest, then jAol + Bo < 2n + 1.

Since Go is a forest, IV(Go)l > IE(Go)l + 1, and so
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2(IV(Go)l) - 2(jAoj + jBoj)

_ 2(IE(Go)I + 1)

I : deg G.V + 2
VEV(G,)

= jAoIr - ni - n 3 + IBojr - no + 2

or

(r - 2)(1Aol + IBoI) no + nj + n3 - 2. (4)

Now counting lines out of {a,,... ,an} in G, we also have

rn = no + n2 + n4 >_ no + n2 + n

so

no+ n2 < (r - 1)n

and hence

no _ (r - 1)n - n2, (5)

and similarly, counting lines out of {b 1, .. . bn } in G, we also have

n3 : (r - 1)n - m. (6)

Thus substituting (5), (3) and (6) into (4), we obtain

(r - 2)(IAol + IBoI) < (r - I)n - n 2 + n, + na - 2

=(r - 1)n + nj + n 2 - 2n 2 + n3 - 2
_ (r - 1)n + m - r - 2n2 + n 3 - 2

K (r - 1)n + m - r - 2n2 + (r - 1)n - m - 2

2(r - 1)n - r - 2n 2 - 2

<_2(r - 1)n - r - 2.

Now r> +1>3, sor -2 0. Hence
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IAol + lBol<2(r-1)n (r+2)
S(r - 2) (r - 2)

r-1 r-1
<2n

r-2 r -2

=(2n - 1) r

= (2n - 1) (1 + r 1 2)

2n - 12n - 1- - r-2

2n - 1
<2n-1+

2n - 2 1
=2n-1+ +n-i n-1

1
=2n+1+

But JAol + IBoI is an integer and n > 2. So it follows that JAol + IBo < 2n + 1 and Claim
1 is proved.

Claim 2. n, + n 2 + n 3 + n 4 < r(n - 1).
* For we have

n, + n 2 + n 3 + n4 = nl + n2 + n3 + (rn - rn - n 3 )

< m- r + n 3 + (rn- m- n 3 )

= r(n - 1).

Now among all Hall barriers in G', let (A1 , B1 ) be one with the smallest number of
points. Without loss of generality, we may assume that A 1 _ A, BI C B and AI >
1B11 + 1 > 2. Let G, = G[A U Bl]. We now define Ho = G[AoU Bo {a,,...,ani} and
HI = G(Al U BI U {bl,...,bn}].

Claim 3. Subgraph HI contains a cycle.
Suppose not. Then HI is a forest and hence so is G1 . Since G1 is a Hall barrier, it

contains no isolates. Since IAII > JB11, we may apply Lemma 2.1 to conclude that G1

contains a tree T, with at least 2 endpoints in A,. But since G is r-regular, each of these
endpoints is adjacent to all of {bl,.. . ,b,} and hence, since n > 2, GI-and therefore
HI-must contain a 4-cycle, a contradiction.

Claim 4. IAol = IBI - 1.
We will show that IAII = 1B1 1+ 1, and the claim will follow. Suppose IaI 1> IBI1 +2.
Suppose a e A,. Furthermore, suppose that every neighbor in BI of a is adjacent

to some point in A, - a. Then (A , - a,BI) is a smaller Hall barrier than (A,,BI), a
contradiction.
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So for every a E A, there must exist a 0 E B1 such that a is adjacent to 3, but 03 is
* adjacent to no other point in A,. But then we must have a matching of A 1 into B, and

hence IAiI < jBIj which is again a contradiction.
Claim 5. H 0 contains a cycle.
Let I = IBoI. Then IAo = I - 1 by Claim 4. Now suppose H0 does not contain a

cycle. Then He is a forest (and hence so is Go.) Then

JV(Ho)J = lAol + JBoI + n

= 2t -1 ± n

jE(Ho)I + 1

= (n + I - 1)r - (n, + n 2 + n 3 + n 4 ) + 1

> (n+I-1)r- (n- 1)r+1

=tr+ 1.

So in particular, tr + 1 < 2t +, - 1 and hence

tr < 2t+n-2. (7)

But then again using the fact that r > n + 1 and inequality (7), we have t(n + 1) <
tr < 2t + n - 2 and so

I In < I + n - 2. (8)

Now from Claim 1, we have 2t - 1 < 2n + 1 and hence 2t < 2n + 2 or I < n + 1.
Substituting this into inequality (8), we obtain In < n + 1 + n - 2 = 2n - 1. But I > 2, so
2n < In < 2n - 1, a contradiction, and Claim 5 is proved.

Now by Claims 3 and 5, if L is the set of lines counted by n, + n 2 + n 3 + n 4 (see
Figure 2.1), then L is a cyclic line cut and hence by Claim 2 cA(G) < ILI <_ r(n - 1),
contradicting the hypothesis and completing the proof of the theorem. I

One version of K5nig's Line Coloring Theorem [5, 6] (also see Chapter 1 of 191) can
be phrased as follows: every regular bipartite graph has a perfect matching. It then

immediately follows that every regular bipartite graph decomposes into a union of line-
disjoint perfect matchings. So, in particular, every line of a regular bipartite graph lies
in some perfect matching; i.e., every regular bigraph is 1-extendable. This result can be
compared with the following corollary to the preceding theorem.

Corollary 2.3. If r > 3 and G is an r-regular bipartite graph with cA(G) > r + 1,
then G is 2-extendable.

Proof. Let n = 2 in Theorem 2.2.

The bound cA(G) = r + 1 in the preceding corollary is sharp as may be seen by the
following infinite family.
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Let gi = {Grlr°=3 be the infinite family shown in Figure 2.2. (As usual, the + sign
between two sets of points denotes the join operation; i.e., each point of the left hand set
is joined by a line to each point of the right hand set.)

Figure 2.2. The infinite family ,91

Note that IV(GC)I = 4r - 2 and that iK(G') = cA(G~) = r. Note also that G' is not
02-extendable since fel,e 2} does not extend to a perfect matching.

Corollary 2.4. If n is any positive integer, if graph G is (n+ 1)-regular and bipartite
and if cA(G) > n 2 , then G is n-extendable.

Proof. Let r = n + 1 in Theorem 2.2.

Corollary 2.5. (=Theorem 3.2 of [4]) If n is any positive integer, if graph G is
(n + 1)R(n + i)CB and if cA(G) > n 2 , then G is n-extendable. I

Several remarks are in order here. First note that Corollary 2.4 strengthens the main
theorem of [4] in that the assumption that G be (k + 1)-connected has been dropped from
the hypotheses. Actually, the fact that G is (n + 1)-connected now follows from Theorem
2.2 or Corollary 2.4 by applying Theorem 3.2 of [13].

At this point, however, we hasten to point out that the proof of Theorem 2.2 is
virtually the same as that of Theorem 3.2 of [4] in most respects. The only differences are
that the (n + 1)-connected assumption has been avoided by a simple regularity argument
and a bit more care in counting has been employed. We also wish to point out that if G is
2-regular and bipartite (i.e, if n = 1 in the first hypothesis of Corollary 2.4) then G must
be an even cycle and by definition, the cyclic connectivity is infinite in this case. Of course
even cycles are trivially 1-extendable.

For every n > 2 the bound of n 2 for cA(G) in both Corollaries 2.4 and 2.5 is sharp. This
was demonstrated by Lou and Hlolton [7; Corollary 6.2] who used probabilistic methods
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to show that for every such n there exists a graph G which is (n + 1)R(n + 1)CB, has
&A(G) = n2 - 1 and is not n-extendable.

Next we look at some consequences of Theorem 2.2 for bipartite planar graphs. Of
course r-regular planar graphs only exist for r < 5. Since r = 1 implies G = K 2 and
r = 2 implies G must be an even cycle, we shall concern ourselves only with values r = 3,4
and 5. But it is an easy consequence of Euler's formula that there are no 4-regular or
5-regular bipartite planar graphs. Moreover, if G is 3-regular 'uipartite and planar, again
using Euler's theorem, it is easy to see that G must have a quadrilateral face and hence
cA(G) _ 4. So for regular bipartite planar graphs, Theorem 2.2 tells us only the following.

Corollary 2.6. If graph G is 3RBP and cA(G) = 4, then G is 2-extendable. I

In a note added in proof to [3] it was remarked that the fact that every G which is
3R3CBP is 2-extendable follows as an immediate corollary of Theorem 3.2 of f4]. Corollary
2.6 strengthens this result by dropping the assumption that G be 3-connected from the
list of hypotheses; that is, in just the same way that Corollary 2.4 strengthens Theorem
3.2 of [4].

The requirement that cA(G) = 4 in Corollary 2.6 is sharp in the sense that there are
graphs G which are 3R3CBP with cA(G) = 3, but which are not 2-extendable. Figure 2.3
:hows an infinite family .92 = {G2)1,= of such graphs. (Note that IV(G 2)1 = 6r + 2.)
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Figure 2.3. The infinite family .92

3. The non-bipartite case

If we consider non-bipartite graphs we can expect no nice n-extendability results
analogous to those obtained in the preceding section for bipartite graphs. This is immediate
from another result of Lou and Holton [7; Corollary 6.3] which states that for any integers
M > 0, k > 3 and n > 2, there is a cyclically m-line-connected graph which is k-regular
and k-connected, but not n-extendable.

However, all is not lost as we can obtain a large family of bicritical graphs, provided
the cyclic connectivity is sufficiently large. First, however, we present two simple results
about cyclic line connectivity for graphs in general.

Lemma 3.1. Suppose mindeg G = r > 3 and let L be a minimum line cut in G.
Then either

(a) L is the star of some point in G or
(b) L is a minimum cyclic line cut of G and hence ILl A(G) = cA(G) < r = mindeg G

in this case.

Proof. We need only show that cA(G) < A(G). Suppose L is a minimum line cut in
G and L is not the star of a point. Let C1 and C 2 be the two components of G - L. So
each Ci contains at least two points.

Suppose C1 does not contain a cycle. Then C1 is a tree with at least two endpoints
and hence ILl _> 2r-2. So 2r-2 < ILI = A(G) :_ mindeg G = r. So r < 2, a contradiction.
So C1 must contain a cycle and similarly, so must C 2. Thus L is a cyclic line cutset and
thus cA(G) < ILI = A(G). But A(G) _< cA(G) by definition and the Lemma follows. 3



. We remark that the conc on of this Lemma does not hold if mindeg G 2, for
simply let G be any cycle with at least four points.

Corollary 3.2. If mindeg G = r > 3 and cA(G) > r + 1, then all minimum line cuts
in G are stars and hence A(G) = Y.

Proof. Let L be any minimum line -ut which is not a star. Then ILl = A(G)
cA(G) < r by Lemma 3.1, thus contradicting the hypothesis. Thus all minimum line
cutsets in G are stars and the conclusion follows.

We note that the following theorem was proved i"- an essentially equivalent form by
Naddef and Pulleyblank [12; Theorem 61 and a closely related result appears in Naddef
[11; Theorem 11.3]. However, the Nadd(f-Pulleyblank proof uses results from polyhedral
theory, in particular, Edmonds' characterization of the matching polytope. We include a
different proof here both for the sake of completeness and because it requires no notions
from the theory of polyhedra; only Tutte's classic theorem on perfect matchings.

Theorem 3.3. Let r > 3 be an integer and let G be a graph which is rRE with
cA(G) > r + 1. Then if G is not bipartite, it is bicritical.

Proof. By Corollary 3.2, we have A(G) = r and hence by [1; Thm 13, p 160] (see also
[9; Thm 3.4.3]) G is 1-extendable.

* Suppose now that G' = G - u - v has no perfect matching. Thus by Tutte's theorem
on perfect matchings, there is a set S' C V(G') such that IS'I < co(G'- S'), where
c0 (G' - S') denotes the number of odd components of graph G' - S'. Thus, since G is
even, by parity we have IS'I _ co(G' - S') - 2 = c(G - S) - 2. So if S = S' { u,v}, we
have SI _ co(G - S) and since G contains a perfect matching, 51 = co(G - S).

Moreover, since G is 1-extendable, G - S has no even components and subgraph
G[S] is an independent set. Now if all components of G - S are singletons, G is bipartite,
contrary to hypothesis. So, without loss of generality, assume that C, is an odd component
of G - S with lV(C 1)I > 3. If C1 were a tree, it would have at least two endpoints and
hence there would be at least 2(r - 1) = 2r - 2 lines joining C1 to S. Thus if JSI = s, since
A(G) = r the subgraph C 1 U...UC. sends at least 2r-2+(s-1)r = sr+r-2 > sr+ 1
lines to S, where we have used the fact that r > 3.

On the other hand, since G is r-regular and S is independent, S must send exactly Sr
lines to C, U ... U C,. This is a contradiction.

Thus C1 (and hence all odd components of G - S which contain at least three points)
contain cycles.

We now claim that subgraph H, = G[V(G) - V(C 1 )] also contains a cycle. Suppose
not. Then H 1 is a forest on 2s - 1 points and hence coi tains no more than 2s - 2 lines.
On the other hand, also because H1 is a forest, each of C2,... , C, is a singleton and each
therefore sends exactly r lines to S. In other words, forest H, contains exactly r(s - 1)
lines. Thus r(s - 1) < 2s - 2 and since s > 2 it follows that r < 2, a contradiction.

* Thus graph H, contains a cycle. But then since cA(G) > r+1, viewed from C1 .u .UC,
IE(G)I > (r + 1) + (s - 1)r = sr + 1, whereas viewed from S, G has exactly sr lines. Thus
we have a contradiction and the proof is complete. |
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. Bicritica graphs which are 3-connected are called bricks. Bricks play an important
role in a theory for the decomposition of graphs in terms of their maximum matchings
which has been developed over the past thirty years or so. For a treatment of this theory

in depth, the reader is referred to [9] and [8].

Corollary 3.4. Suppose r > 3 is an integer and G is a graph which is rRE with

cA(G) > r + 1. Then if G is not bipartite, G is a brick.

Proof. Immediate.

The bound on the cyclic connectivity in Corollary 3.4 above is sharp for all r > 3. To
see this, we present an infinite family 93 = {GJ= 3 constructed as follows. First suppose
r is odd. Let S denote a set of r independent points. Then Gr is the graph on r2 + r
points formed by joining each point of r disjoint copies of the complete graph K, to the
set S by a perfect matching. Now suppose r is even (and hence r > 4). Let S be as in the
odd case above. Form a graph Hj as follows. Let Kr - prn denote the complete graph K,
with a perfect matching deleted. Now join a new point )j to each point of K, -pm and
denote the resulting graph on r + 1 points by H,. To form graph G3 , for each j 1,...,

join Hj to S via a near-perfect matching which matches all points of Hi-except v,-to

S. Note that for r even, graph G3 has r2 + 2r points
Clearly, each G3 is r-regular and has cyclic line connectivity exactly r. Furthermore,. it is easy to see that none of these graphs is bicritical, for if one deletes any two points

from S in any of them, the resulting graph cannot have a perfect matching.
It is easy to see that for each r > 3, if one shrinks the odd components of G' - S to

single points, one obtains the complete bipartit- graph Kr,,. Hence all of the graphs in the
family 93 are non-planar. For the applicable values of r (namely, for r = 3,4,5) it then
makes sense to ask if there are planar examples of graphs which are r-regular, have cyclic

line connectivity r, but are not bicritical. The answer is "yes" in each case and we present
an infinite family for each of the three values for r. For r = 3,4 and 5 respectively, form
the infinite families {Gi(A)}°°__2, {G(B)}°'=2 and {Gj(C)}. 2 where A, B and C are the
graph fragments shown in Figure 3.1.

The members of all three families are clearly planar. Moreover, the three families are
respectively 3-regular, 4-regular and 5-regular with cyclic connectivities 3, 4 and 5. None
of these graphs can be bicritical, for note that the removal of any two points in the set
{u 1 ,. . . ,uj,v, .. . ,v i } results in a graph with no perfect matching.

Clearly the member of all three families shown in Figure 3.1 are 3-connected. If G is
rRPE for r = 4 or 5 and G is 4-connected, then G is bicritical (and hence a brick) by
Theorem 2.1 of [14].

Finally, we make one last observation with respect to Corollary 3.4. If one adds to
the hypotheses of this corollary the condition that G has no quadrilateral faces, then in

fact G is not only bicritical, but 2--extexidable. (For a proof of this fact, see [3].)
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Figure 3.1.
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