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1. Introduction

In [1] an adaptive constant false alarm rate (CFAR) detection algorithm is

developed from the generalized maximum likelihood ratio (MLR) test by using the

experimentally obtained result in [3], that most optical images can be modeled as a

whitened Gaussian random process with a rapidly space-varying mean and a more

slowly varying covariance. Such a CFAR test is closely related to the test developed

by E. J. Kelley in [4] for detecting radar targets. The probability of false alarm

(PFA) of the CFAR test in [11 -is a function onlv of N. the number of samples, and

K, the number of reference image scenes used. The CFAR detection algorithm in [1]

allows one to find a detection threshold which achieves a fixed PFA over the entire

set of image scenes which is invariant to intensity changes in the noise background.

The CFAR detection algorithm considered in [1] is suitable only for detecting a

target pattern in one main image scene and a number of other noise-only reference

image scenes which contain negligible signal energy. However, in many applications,

one needs to test for the presence of a signal pattern which has nonnegligible unk-

nown relative intensities in several optical bands. As a consequence it is of impor-

tance to generalize the previous CFAR detection algorithm [1] to a test which is able

to detect the presence of an optical signal pattern with non-zero intensity in several

signal-plus-noise bands or channels. A effort was made in [2] to find and compute

the statistics of this generalized CFAR test, but the results were incomplete.

In this paper the approach first ,.sjdred in [2] to find this new CFAR test is

improved and solved. In Section II tw., general hypothesis test is formulated and

found in terms of the generalized maximum likelihood ratio principle. The result is a
r

CFAR test for a signal with unknown relative intensities in J channels. If J = 1, the

resulting test reduces to the standard normalized matched filter test for finding a sig-

nal in clutter of unknown and varying intensity. The detection statistic found for this

new test is similar to the adaptive array test for spread spectrum communications

obtained by Brennan and Reed in [5] except that their test was not obtained from a. ...F Coles

Avail and/or
,lti J
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hypothesis test. The test in [51 for automatic synchronization was derived as a least

mean square criterion.

In order to analyze the performance of this new CFAR test, the probability den-

sity function of the MLR test for both hypotheses is found exactly in Section III.

These probability densities are used then to calculate the probability of a false alarm

(PFA) and the probability of detection (PD) as a function of the detection threshold

in a manner similar to that utilized in [1. The PFA of the test is computed in a

closed formula which is independent of the covariance matrix of the actual residual

clutter noise encountered. The probability density obtained here for a real optical sig-

nal in residual clutter noise is similar to that found in [5] for complex communication

channels. However, the method of derivation is different and can be extended to

other more complex detection problems.

II. Formulation Of The Problem

The present detection problem is formulated in a manner to that used in [1].

First let the column vector, { x(n) = Ix 1 (n), x2(n), ..., xj(n)IT, for n = 1,2,..., N) be

the J correlated image scenes which contain an optical signal with known shape and

unknown position. Let S =[ s(1), s(2), ..., s(N) IT be the signal pattern N- vector,

and / = [ b I. b 2 ... , b, IT be a J-vector of signal intensities corresponding to the J

scenes or channels, respectively. The two hypotheses which the adaptive detector

must distinguish are given by

H0 : x(n)=x°(n)
(1)

H 1 (n) =e s(n) + s (n)

for n = 1, 2, • ,N where so is the vector of residual clitter noise-only processes.
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Thus, under hypothesis H0 defined in Eq. (1), the joint probability density func-

tion of the Gaussian clutter vector x(n) is given by

1 - x n)M- Ix(n)

pGx(n) I H0)= (2.%)(J + K)/21M 11/2e forn = 1,2 .. , N (2)

where

M = E [(_(n) - E x)( )-E x(n)) T ] (3)

is the unknown covariance matrix of 1(n) and IM I * 0 is its determinant.

It was demonstrated previously [3] that the subtraction of a bpace- varying local

mean from the image can yield an approximate zero-mean, near-white, Gaussian pr,,-

cess with a slowly space-varying covariance matrix. Thus for N sufficiently small

me subimage size, N, can be chosen so that matrix M is approximately a constant.

Experiments ir dicate that such residual clutter noise is also approximately indepen-

dent and Gaussian from pixel to pixel [3]. Therefore, it is reasonable to assume that

the residual clutter is independent from spatial sample to sample ( see appendix A

[3]).

Next define J xN matrix of subimage data as follows:

X = [x(1) ....... X (N)l. (4)

The j-th row of matrix Y" is xj = [xj(1), x, (2) ..., xj (N)l for j = 1, 2 ..., J. These are

the N observation samples of the j -th image scene or channel. All of these J scenes

or channels may be obtained either from different frequency bands of the same image

or from sequential observations of the same scene. Hence, for N J the rows of

matrix X are assumed to be linearly independent. Then because of the mutual

independence of the components of X in Eq. (4), the joint probability density of X

under H0 is given by

N

po(X) =p a(l), x(2), .. x(N) I H0) = I p(.(n) I H o)
nt=1
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1N

=. e 2 (5)
(2nt)NJ'2 IM INe(5.

In terms of the trace fan tinon, which consists of the sum of the diagonal entries

of a square matrix, the exponent in Eq. (5) can be re-expressed as

N N
,x rT(n)M-x(n) = Tr(M 'x(n)Z T (nN (6)

n=fi n-1

Hence, in terms of (6), po(X) in (5) becomes
-1N

Tr(M-Ya(n)aT(n))
p o( X = 2 t r I N 12 e  2l=

(2lrJ'IM N

--N Tr(M_1 AI)

=- 1 e 2 (7)(27r)N' 2I M 1N'2

where

N T X

S=~ J " (n)xr(n)= NX T (8)

For the signal-plus-noise hypothesis H1, described in Eq. (1), one computes the

conditional mean value of x(n), given hypothesis H1, as follows

E C x(n) I H1 ] = E [1°(n) + t s(n)J

=b s(n) (9)

for n = 1, 2, N. Hence, the joint probability density function of the residual

signal-plus-Gaussian clutter noise vectors, X(n) for n=1, 2, N under hypothesis

H1, is found similarly to be

pl(Y) = pX(1),xA(2) .... (N) I H1 )

N 2 jTr(M-'Mb)
= I p(t(n) I HI)= e (10)

n=1 (2x)NJr21M I
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where

x k(n)=[x(n)- Ls(n)I and (11-1)
1I _ _1_ (X  _ r)T

Mt = E- x t(n)x. tT(n) = -X- . II2

Note that A and A4 are nonsingular if N 2! J, ( e.g. see [51 ).

The generalized maximum likelihood ratio test (e.g. see [1]) is shown readily to

be

A= I N2 >k, thenH, (12)Min Na < k ,then Ho
b 4

Clearly, thc Les: in Eq. (12) is equivalent to

IA I >c ,thenH(

min - <c ,thenH o
b I1P4I

where c = kl'N

I I= I XXT I (14-1)

and

I ?4b I = (X - S)(X - ST)T 1 (14-2)

Next a substitution of Eqs. (14) into Eq. (13) yields

1=I XXT I _>c ,thenH 1

min I (X-b S)(X- T)T I <c ,thenH ob

or

: XXT I > c then H,

min Ft I <c ,thenHo 
(15)

b

where
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F A(X - L ST)(X -_ _ ST)T (16)

To find min I F, I one can start by expanding Ft as follows:

Fit = XXT _2 STXr - X(2 ST)T + b ST(b sT)T

= XXT _ L srxT _ XS bT + b fT(rSTS). (17)

Then by adding and subtracting the term (XS)(XS)T simultaneously in Eq. (17), one(UrS)

can decompose the J xJ matrix Fk into the sum of three matrices in such a manner

that only one of them contains the unknown vector /. This is accomplished by first

expressing Eq. (17) as follows:

F = (UT ) r tb T _ SX XSb + (X)X) _ (X)X) " X )(8

L S S (STs)2 Ts)2 STS

Hence, by a" completion of squares " operation Eq. (18) becomes

X T (XXT) (XS)(XS)]
Fk=(STS) -- - + - ] (19)SSSTS ($Ts)2

It is proved in Theorem A. 2 of Appendix A that F, in Eq. (19) is positive

definite matrix for any vector b , including the special vector S = . Hence bySTS "v55

setting b = " in Eq. (19), one obtamisSTS

XX f  (XS)(Xs)T (20)
r_ (.5T)2

where B is positive definite. Thus B-1 and the square roots B "  exist. Note that B is

by Eq. (20) independent of the magnitude of vector b.

To calculate the determinant I Fb I one can establish from Eqs.(19) and (20)

the following relationship:

F~ (STS)Z/2 [i B4/2( SX)(b_ XS )TBi] B " (1
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T'nu the the deterinitiant of Ft is

I I = (STS )JiB I I + B -'2( - X5)(b X5)TB-I2 I  (22)

Hence finally, the denominator of Eq. (15) is given in a new form by

mi mi ) +T (23)

I F t JIB mc -Ij +-

Since B 1
12b-- S) is a Jxl-column vector, by a matrix identity proved in

Appendix of [3], one obtains

Ij + B-'r2(]- XS -_S-- =T B 1i + )T2 B- 1 ( - X5 (24)

where B-1 is positive definite. Therefore, the minimum in Eq. (23) is obtained when

the second term in the right side of Eq. (24) vanishes. But this happens if and only

if,

b = X5 (25)
STS

Thus, a substitution of Eq. (24) into Eq. (23) yields finally,

n nFI (STS)J IB I

T S ) AX _ (XS)(XS)T
ST (r5 T S )2

XXT (XS)(XS)T  (26)

It is proved in Theorem A. 2 of Appendix A for b = 0 that the J xJ matrix XXT

is positive definite, so that the square roots (XX T)!' exist. Hence, the denominator of

Eq. (15) can be expressed further as

m (XXT)- V2(Xsx)(XS)T (XXT(22min IFI X= IXXT I - (27)

b|
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Thus, since (XXT)-1 2 (XS) is a Jxl -column vector, Eq. (27) becomes

ain IFk I = IXXT I (1- S)(28)

Finally, a substitution of Eq. (28) into Eq. (15) yields

1 2!> ro , then H I
T 0 ,=eH 1 (29)

1 (X')T (xxT)I(X5) < rO ,then Ho
fSTS)

as the likelihood ratio test function. Clearly by Eq. (15) the test in Eq.( 29) is

equivalent to

r = (XS)T(XXT)-(XS) - r° ,then H1  (30)( 5) < ro , then H0

where r is related to I by l= ,1 and r 0 = 1 ---. In the case J = the test r
I-r C

reduces to the normalized matched filter test,

r = (,Ts)2  ! ro , then HlT T r 0 ,tenH0 (31)
A X)(STS) < ro , then Ho

a well-known CFAR test for one frequency band or channel.

III. Detection and False Alarm Probabilities of Test

In order to find the probability density function of the test r in Eq. (30) on both

hypotheses H0 and H 1. one partitions matrix X as follows:

X = X(1) (2) 1 .. I ,(N)l (32)

where X(n)-- [xj(n),x2(n), xi(n)] is the Jxl-column vector as defined in Eq. (1).

By (1) and (3) one has

Cov [tX(n) I H, l=M for 1 -,1
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Also

E[x(n) I Ho ]=E [ x °(n) ] = O  and

E [ x(n) I H 1 ] = E [ x°(n) + bs(n) I = bs(n)

or in terms of X as defined in Eq. (32),

E[X I H0]=O and E[X I H, l= S (33)

Next perform a whitening procedure on x(n) by defining

z(n) = M - 1 2 x(n), for n = 1, 2.... N, (34-1)

e let

Z =L (1) I z(2) I ... I z(N)J = M-1" X . (34-2)

The whitening procedure in Eq. (34) and the assumption, that the residual clutter

samples in the spatial coordinates are mutually independent, produces the result,

Coy [ zi(m)z 1(n) I = 8 (i-j ,m-n) (35)

for i, j = 1,2,. .. J and m, n = 1,. . . N. Here 6 (nm) is the Kronecker delta

function defined by

I ifn=O and m=O
8(n a ) = (36)

0 otherwise

and zi(m) is the i-th element of vector z(m). Then by Eqs. (33) to (36),

E[ZIHoI=0 , (37)

E [Z I H1 I = M-"2 b ST  and (38)

Cov [ z(n)IH i I=/j for i =0, 1 . (39)

Evidently by the transformation in the Eq. (34) the test function in Eq. (30)

becomes in terms of Z in Eq. (34-2) the expression,

(ZS)T(ZZT)-y(ZS) rthcnH (40)
(STS) < r0 , then Ho
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Now let

S= (41)

(STs)Ut2

Then the test function in Fq. (40) becomes, using Eqs (40) and (41) ,

r = (Z_)T (ZZTy I (Z t) (43)

Also by Eq. (41) the sum-of-squares norm of£ is given by lit1ii = I so that t is a unit

vector in the "direction" of vector S.

Now consider the N x N orthonormal matrix U I, which carries out rotations in

N -dimensional space, in such a manner that unit vector I is transformed into the new

unit vector,

UL =[1, 0,.. o] (44)

Also, let

V =Z UT1 = [v(1), v(2), . _(N) j (45)

Then the test function r in Eq. (43) reduces to

r = V (I)T (VV T)-IV (1) .(46:

The covariance matrix of v(n), for n = 1, 2, ... N is similar to that of z(n), the

only change of the statistics of the _y(n) from that of the z(n) is their mean values

under hypothesis H This mean is derived as follows:

E [ VIH E[ E uTI

= m - 2  T uT (sTs)IZ

=M - 112  b [ 1, 0 .... 0 ]( .TS ) t a2

= [M - 112 b (STS)11 , Q .... Q (47)

From Eqs. (44) and (47) a figure of merit or what might be termed, the generalized

signal-to-noise ratio (GSNR ) of the test, is derived as follows:



(GSNR) = E [ vT(1)IHI I E [v(1)H I I

(=TM-b) 11 a (48)

Now consider a further simplification of the test function r in Eq. (46). First

separate matrix V into two parts in such a manner that

N
VV T = V()vT ( 1) + (n n (l)YT(j) QT (49-1)

Q = =v(n2).v (N)] (2) . (N)]T (49-2)

n=--2

is a non-singular J x N matrix.

A well-known matrix inversion identity applied to Eq. (49-1) produces the

result,

(WV)-i = rv(l)vT(1) + Q 1-1 = [I Q-l--(1)- (1 ) IQ-, (50)

I + VT(1)Q-lv(1)

A substitution of Eq. (50) into the test function r in Eq. (46) yields the test functio

r as the new expression,

vT(1)Q-Xv(1) rl51r = Y T()-y = r, (51)
1 + vT( 1)Q-I(I) I+r'

where

r, = vT( 1)Q-v( 1 ). (52)

It is desired now to find the probability density, f(r I IH 1) , of rI in Eq. ( 52).

First by Eq. (49-2), define D = L(2) . v(N) and re-express Eq. (52) in the form,

r,= IIv(1)112 ( _Y (1) (DDT)I Y (1) ) (54)
S II v(n)II II v(1) a l

Then normalize the 1-component vector _v(l) as follows•
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=v(1) (55)

Hence by Eq. (55) one obtains r in Eq. (54) in the form,

r, = IIv(1)II2 (e(DDT)-I ) = IIv(1)Il2 e , (56-1)

where

e = ((DD)y). (56-2)

Now one can further process the term e in Eq. (56) by conditioning on the ele-

ments of v(1) so that t can be treated as a normalized constant vector. Then since

has unity magnitude, there exists a J xJ orthonormal matrix U2 such that,

U, t = [ 1, 0, . ... 0 IT . (57)

Next apply this transformation to matrix D, defined before Eq. (54), by letting

H = U2 D = U2 [y(2) .... v(N)]. (58)

Then the term e in Eq. (56) has the simple form,

e = T(DDT)-I = [ 1, 0, .. O(HHTy l [ 1 . 0 r . (59)

Clearly H in Eq. (58) has the exactly the same statistical properties as D, under the

assumption that _v(l) is given.

Now partition H as follows:

H = , (60-1)
1H1

where hA is the N--column vector and H8 is the (J-1)xN-1) matrix. Then by Eq.

(59),

(HHh H -  RBA R (60
T(HH1r)[ R= 1 (60-2)

[HB hi H8 Hk. LRBA Ra8
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According to the Frobenius relations, e.g. see [8] or [91, for a partitioned matrix,

Rm= [/ - lHk(HBH)-'HB I-' =hI( - Hk(HBHBT)-'HB),4 I-

1 I
tj(1 - HJB(HBHF)-'HB)A =hAPhA (61)

A substitution of Eqs. (60) and (61) into Eq. (59) yields

e = h__1(62)
!JP I/IAA 2

where P1 = I- - HI(H HB)-JHB is a projection operator such that P1 = P1 and

Tr (P,) = N-J. In the same manner used for the projection matrix P in [1] it is not

difficult to show that P1 has N-J unity eigenvalues and J-I zero eigenvalues. Thus

P can be diagonalized to the form,

IN_1 0
UT _U = A, 0 , (63)UJPU3 =0= 01-_]

where IN- J is the (N-J)x(N-J) identity matrix. By arguments similar to those used

previously in [1], one finds also, under the assumption that X(1) and P, are given,

that

N-J
hTpJlhA = nT = 2  (64-1)

i=l

where

SA h--ATu3 A 1/ 2  (64-2)

is a I x (N-J)-column vector. The conditional joint probability density function of n
is subject to the normal density function, N (Q IN ), i.e.

pn(rl,, . . (N-J) I v(1),P,) = N(Q,IN.J) . (65)

Since pn(r.., 1 (N-I) I v(l),P,) in Eq. (65) does not depend on v(1) and P ,

the vector v() and matrix P, must be statistically independent of vector !1. Also by
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Eq. (62) one obtains the ratio rI in the form,

j

r, = IIV(1)112 _ j1 (66)T' N-I

i-I

in term of the magnitudes of these two vectors only. Thus by the independence of

vectors 31 and v(1) and a use of the Corollary 2 in [7, pp 52], one has the probability

density function,

J-2 -
rt  e2 N 1 ar,

f (r "H) JN 2(1 +-J ) ' (67)

B(N -J  2 2 2(l++rr)
2 '2

of r, in Eq. (51) under hypothesis H I.

Finally by using the relationship of r, to r in Eq. (51) the probability density

function of the test function r under hypothesis HI is given by

F(N) N-J-2 1-2 -a

S2 •2 e 2  N J arf (r I I - t) r FT; 2; T )  (68)

r(2 2r-,

for 0< r 1 where a is the generalized SNR in Eq. (48) and F1(a ;b ;x) is the

confluent hypergeomitric function. Clearly, if no signal is present, then a = 0 . Thus

Eq. (67) reduces in the H0 hypothesis to a Beta-function probability density of form,Nf
r(-) N-/-Z J-2

f(r I Ho)= ( - r) 2 r 2  for 0 r < 1. (69)
TN-I Ir(J

2 2

Finally in terms of the above probability density functions in Eqs. (69) and (68)

the probability of a false alarm is found by

PFa = Jf (r IHO)dr (70)
ro
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and the probability of detection by

PD = ff(r IH1)dr , (71)
r0

IV. Performance Analysis

Performance curves of the probability of detection in Eq. (71) versus SNR for a

given false alarm probability with respect to various values of N and J are computed

in this section. First, in Fig. 1 the probability of detection is calculated as a function

of the generalized signal-to-noise ratio (GSNR) a in Eq. (48) for several different

values of parameter N. These curves demonstrate that, for a fixed GSNR, a, the

CFAR detector has a higher detection probability if more samples are used.

In order to compare the detection performance improvement for different

numbers of signal-plus-noise bands, the probability of detection in the single scene of

maximum SNR is compared with the probability of detection in two correlated

scenes, i.e. for J = 2. To accomplish this, the GSNR in J correlated scenes is related

to the maximum SNR of the J scenes. Consider first the case of J = 2.

For J = 2 let the maximum signal-to-noise ratio in the 2 correlated scenes be

given by

a'= b2 US (72)

Then the GSNR in Eq. (48) for J = 2 is

a tb I b21M
-'[b I b 2 IT jjA i 2  (73)

where

2 (74)

CY2 02
M 'Y"2III I



-16-

Hence,

M- 2 =U-22 20'2 (75)
012-012 21 01

and as a consequence one has

=[bb,]M -'[b b2] nII 2= (b2,2 + b 2(- 2bb2 )11S2 21(76)

112 12

_ _ _ _ _ 2 _ 2j +1 2I b 1 5 2 b lb 2  1 2 11 5 11

2 ( 2 2 2 2

a12 2 02 010C2

12
a b0 bL-2L2-L

- i2 (1+ -2 - ) (77)
02 b? 1a2 b, 02

o2 2

In terms of the normalized correlation coefficient,

P y12
01(2 (78)

and the ratio,

X2 A (SNR) 2 - b 2  II 2

(SNR) 1  b 2 UIS 112/a2?'

of SNR in the second scene to SNR in the primary scene of maximum SNR, Eq. (77)

can be re-expressed as follows:

a = Ga' (80-1

where

G = (I + 2 _2Xp) (80-2)

1 - p2

is the gain in signal-to-noise ratio of a detector which uses J = 2 scenes over a single

detector which uses that scene with the maximum SNR. The following lemma is now
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proved.

Lemma 1:

*--(I + X2 - 2Xp) 1

i - p
2

for all X and p with 0 < X, p < 1 such that condition X = 1 and p = 1 is not true.

Prf: Start with inequality (X - p )2 > 0, with equality if and only if X - p. This

implies X2 - 2Xp > -p 2 which in term yields I + X2 2Xp > 1 - p2. Thus if X p,

then by above inequality, G = (I1 + 2 - 2X0) _> 1 and Lemma is true. However if
1 - p2

X=p and 05p< 1, G = (1+p 2 -2 2 ) = 1 and again Lemma is true. Finally if

I - p 2

X = p and p = 1. Clearly for this final case G is indeterminate. Thus Lemma I is

proved. The above Lemma is generalized to any positive integer J in Appendix B.

The above Lemma shows that the new CFAR detector algorithm of a target in

two correlated scenes is always better than a CFAR detector in the scene with max-

imum SNR. Fig. 2 illustrates the probability of detection for a false alarm probability

of PFA = 10- 5 as a function of a' for J = 1. 2, N = 49, X = 0.2 and p = 0.95, i.e. for

G = 6.77. This shows that this detector using 2 scenes with (SNR) 2 = -(SNR) 1 has an
5

approximate 8.5 dB SNR improvement over a detector which uses the single scene

with maximum SNR.

A comparison of the SNR in Eq. (80-1) is now made with Eq. (46) in [1] for

K = I the single noise-only reference scene case in [1]. By Eq. (46) in [1] the SNR

for a scene with signal, using one reference without signal, is given by

a = (ay/a ix)a' o - p2) = Ga' (81)

in terms of p and a', the SNR in the scene with signal. By Eq. (80-1) the GSNR

depends on p, the correlation coefficient, but also on X, the ratio of SNR'" in both
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scenes. It is evident from Eqs. (80-1) and (81), that as long as the inequality

S< p < 1 holds, the gain in SNR in Eq. (80-1) is always less than or equal to the
2

gain in the SNR given in Eq. (81).

Using the correlation coefficient p = 0.81, a computational comparison is made

in Fig. 3 with the results given in [1] for K = 1. These curves in Fig. 3 illustrate that

for the same p the probability of detection curves for the new CFAR detector are

limited to the probability of detection curves given in [1) for K = 1. The leftmost

curve in Fig. 3 is as derived under the assumption that there is no signal in the refer-

ence scene.

Figs. 4(a) and (b) show typical 32 x 32 subimages in two different optical bands

( the green and red bands ) of the San Diego area. A 5 x 5 signal with the pattern,

given in Fig. 5, is implanted in both of these green and red images with

(SNR)t = 0.37 and (SNR)2 = 0.2 x 0.37. A local mean is subtracted from both of these

subimages. The resulting residual images are approximately zero-mean Gaussian

processes. The CFAR test given in Eq. (30) is calculated for each pixel. The test

statistic of this CFAR test is plotted pixel by pixel in Fig. 4(c). A target is detected

with a threshold determined by a PFA = 10-5 The results of this test are illustrated in

Fig. 4(d) which shows that the target was, in fact, detected.

0 1 1 1
0110
001000 0 110 0

.1 0 100.

Fig. 5 Target signal template
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In order to demonstrate the theoretical SNR improvement in Eq. (80-1), a com-

puter simulation was performed to determine the required SNR in the primary scene

of maximum SNR needed to detect a target in single primary scene and in J = 2

scenes. A computer simulation was made similar to that developed in [1]. The results

of this new CFAR test are shown in Table 1, where X = 0.2. Using 5 different subim-

ages the average improvement of a detector using J = 2 scenes over the single pri-

mary scene is 6.21 dB.

V. Conclusions:

Under the same assumptions for optical noise clutter used in [1], a generalized

constant-false-alarm-rate (CFAR) algorithm is developed for detecting the presence of

an optical signal of non-zero intensity in J signal-plus-noise bands or channels. For

many applications this new algorithm is more flexible and practical than the one

given in [1]. If J = I , the resulting test reduces to the standard normalized matched

filter test for finding a signal in clutter of unknown and varying intensity.

Both theoretical and computer simulation results show that the SNR improve-

ment gain of this new algorithm using multiple band scenes over the single scene of

maximum SNR is always greater than one and in some 2ases it can be substantial. A

comparison of SNR gain between this new detection algorithm and the one given in

[1] illustrates, that for the same correlation coefficient p of related scenes the proba-

bility of detection curves for the new CFAR detector are limited to the probability of

detection curves given in [1].

.... .. .. ........... . . . . . m ,,, tor - nnE ndI
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Fig. I Probability of detction versus GSNR. J=2, PEA =10-5
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Fig. 3 Probability of detection versus SNR. p = 0.81, P FA = 10-5
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Fig. (4a) Fig. (4b)

Fig. (4c) Fig. (4d)

1
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CFAR Algorithm Simulation Results for the Optical Color Image with
N =49 Samples for Covariance Estimation

Subimage J=1 J = 2
Location (dB) (dB)

(100, 10) 6.67 0.96

(234, 30) 9.34 2.04

( 50, 310) 7.32 5.18

(200, 200) 2.30 -4.32

( 65, 1) 3.80 -4.20

Average 5.88 -0.33

Improvement - 6.21
Factor

Table I
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Appendix A

Theorem A. 1:

A is nonnegative definite if and only if there exist a matrix W, such that

A = WWT . For a proof, see [5, pp 257].

Theorem A. 2:

The J xJ matrix F. = (X -_ S)(X -b S )T in Eq. (16) is positive definite for

any arbitrary vector b

PrQO. :Since

Fb = (X -sr)(X - b ST)T (A-2)

= WWT

where W = (X -b 5 2). By using Theorem A. I matrix Ft is nonnegative definite,

and all the eigenvalues of Ft satisfy X, > 0 ,for j = 1, 2, ... J. But by previously

showing that At were nonsingular, F is also nonsingular by Eq. (14-2). This means

that

det (Fb) = XIX2. * 0,

or .j > 0 for j = 1, 2, J. Hence Fb is a positive definite matrix. In particular if

one chooses b = -i, then by Eq. (26)

A FXXT (X)(XS) (A-3)
B 4Fbgt A3

sr S

is a positive definite matrix,
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Appendix B

In this Appendix, Lemma 1 of Sec. IV is generalized to an arbitrary positive

number J. By Eq. (48) the generalized signal-to-noise ratio (GSNR) for J bands is

given by

a [b, b 2 , .. bj IM - 1 [bI b 2 .... b IT IIS I 2  (B.1)

where

M=E Ix - Ex ]T}= [.;; K, (B.2)

and

X Ix2 x 3,.. xj

In terms of the above notation the inverse of M in Eq. (B.2) can be put in the form,

= K . (B.3)

By the Frobenius relations in [81 or [9], one has the results

- K-K ' (B.4-1)
B =-(Kt K-I= -I 1

B = -(Kx -KxjK K ) K --- -K=KEKxK= , (B.4-2)

C ='BT = -(KX -- KKK.,K (B.4-3)
~~ ~ , Ix - K xlK 1-XI (B4-

D = Ka-K + K (B.4-4)
K.xl -Kx1&K 'K ,

for the submatrices defined in Eq. (B.3). Hence, one can rewrite Eq. (B.3) as

l -K_--'KXX

M = A11 (B.5)
A5 _Kx Kx" Kj'A + K'K Kx NK;-

• " l l I I I
1

i a
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where

a& -Srqa i~) (B.6)

Note that A > 0 since M is the positive definite matrix ( see Sec. I Eq. (3). Next by a

substitution of Eq. (B.5) into Eq. (B.1), one obtains

a = [b, b2  .... by ]M - '[b 1  b2,. .... bj IT I I,

=[b, TIM-[bI IT 11 5 1 12 (B.7)

A [bb + bTK.rK-b A + bTK -K 1 K 1 t IS 112=--b -b K,1_1- ,Kj , _xbl 2K j~~xiblS

where

b= [ b2 ,b3.  bf IT

In Eq. (B.7) define the general normalized correlate coefficient

AK (B.8)

and the ratio

- 1 b K2b (B.9)
X, I

of the GSNR in the other scenes to SNR in the primary scene of maximum SNR.

Then Eq. (B.7) becomes

a = Ga' (B.10)

where G is the generalized gain, given by

I - 2 rT12 + Tr (1 _ f2Tp_ + (jh 2  ( .1
G = 12 (B.l11)

1 - (.tB

Note by Eqs. (B.6) and (B.8) and the comment following Eq. (B.6) that t~12 > 1.
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Lemma : Let G be the generalized gain function defined in Eq. (B.10), then G>I.

Note first that

G >__1 iff 1- 21T p.+ kT (1 -e,2_) + (kT.)2 ;> 1-1 p

iff J2T12 - 2 jTp + h (1 _Tp)+(rT.)2 > 0 (B.12)

where " iff " denoted " if and only if ", the logical equivalence. Next let

[2TI2 --- Ot 2 (B. 13-1

Th = (B.13-2)

IT (X P cosy (B. 13-3)

then using (B.13-1) to (B.13-3), the last statement in (B.12) becomes

G 1 iff a2 - 24cosy + p2(1 - 2 ) + a 2P2cos'y > 0. (B.14)

There are two cases to consider.

case I : If p2 > 1, then since 1 _ p21 > 0, one has

Ox2 - 2ac1cosy + p2(1 - a 2 ) + aC21 2 cos2 y 2 a 2 - 2a[kcosy + (1 - a 2 ) + a 2p 2 cos2-y (B. 15)

- I - 20xfCOSy + a2p2COS2 y = (1 - C3tcosy) 2 > 0.

case II : If P2 < 1, then

a 2 - 2apcosy + 2(1 - a2 ) + a 2132COS2y = a 2 - 2ajcos-y + p2 _ aX2p 2(1 _ ccs2 y)

cc 2 - 2apc1osy + p2 _ a2 (1 _ cos22y) (B.16)

=(aCosy- 1)2 > 0

Thus G _> I and Lemma is proved.
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