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1. Introduction :

In [1] an adaptive constant false alarm rate (CFAR) detection algorithm is
developed from the generalized maximum likelihood ratio (MLR) test by using the
experimentally obtained result in [3], that most optical images can be modeled as a
whitened Gaussian random process with a rapidly space-varying mean and a more
slowly varying covariance. Such a CFAR test is closely related to the test developed
by E. J. Kelley in [4] for detecting radar targets. The probability of false alarm
(PFA) of the CFAR test in [1] is a function only of N, the number of samples, and
K, the number of reference image scenes used. The CFAR detection algorithm in [1]
allows one to find a detection threshold which achieves a fixed PFA over the entire

set of image scenes which is invariant to intensity changes in the noise background.

The CFAR detection algorithm considered in [1] is suitable only for detecting a
target pattern in one main image scene and a number of other noise-only reference
image scenes which contain negligible signal energy. However, in many applications,
one needs to test for the presence of a signal pattern which has nonnegligible unk-
nown relative intensities in several optical bands. As a consequence it is of impor-
tance to generalize the previous CFAR detection algorithm [1] to a test which is able
to detect the presence of an optical signal pattern with non-zero intensity in several
signal-plus-noise bands or channels. A effort was made in (2] to find and compute

the statistics of this generalized CFAR test, but the results were incomplete.

In this paper the approach first = .1sid=red in [2] to find this new CFAR test is
improved and solved. In Section II tihhn general hypothesis test is formulated and
found in terms of the generalized maximum likelihood ratio principle. The result is a

r
CFAR test for a signal with unknown relative intensities in J channels. If J =1, the

resulting test reduces io the standard normalized matched filter test for finding a sig- ;'7
i
nal in clutter of unknown and varying intensity. The detection statistic found for this @ -
T e
new test is similar to the adaptive array test for spread spectrum communications

’
obtained by Brennan and Reed in [5] except that their test was not obtained from a Cotn
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hypothesis test. The test in [S5] for automatic synchronization was derived as a least

mean square criterion.

In order to analyze the performance of this new CFAR test, the probability den-
sity function of the MLR test for both hypotheses is found exactly in Section III
These probability densities are used then to calculate the probability of a false alarm
(PFA) and the probability of detection (PD) as a function of the detection threshold
in a manner similar to that utilized in [1]. The PFA of the test is computed in a
closed formula which is independent of the covariance matrix of the actual residual
clutter noise encountered. The probability density obtained here for a real optical sig-
nal in residual clutter noise is similar to that found in (5] for complex communication
channels. However, the method of derivation is different and can be extended to

other more complex detection problems.

I1. Formulation Of The Problem

The present detection problem is formulated in a manner to that used in {1].
First let the column vector, { x(n) = [ x,(n), x5(n), ..., x;(n)}7, for n =1,2,.,N} be
the J correlated image scenes which contain an optical signal with known shape and
unknown position. Let § =[s(1), s(2), ..., s(N) ¥ be the signal pattern N- vector,
and b= [by by ...b; 1T be aJ-vector of signal intensities corresponding to the J
scenes or channels, respectively. The two hypotheses which the adaptive detector
must distinguish are given by

Ho: x(n)=x%n)

(1)
Hy: x(n)=x%n)+bsn)

forn=1,2 - -,N where x°is the vector of residual clitter noise-only processes.




3.

Thus, under hypothesis H, defined in Eq. (1), the joint probability density func-

tion of the Gaussian clutter vector x(n) is given by

1 10
p&x(n) | Hy) = (27:)(J*K)”2IM|“2e forn =1,2,...,N ()
where
M=E[Gn)-Ex(r)xn) -Ezn) ] 3)

is the unknown covariance matrix of x(n) and IM | # 0 is its determinant.

It was demonstrated previously [3] that the subtraction of a space- varying local
mean from the image can yield an approximate zero-mean,.near-white, Gaussian pro-
cess with a slowly space-varying covariance matrix. Thus for N sufficiently small
tne subimage size, N, can be chosen so that matrix M is approximately a constant.
Experiments ir dicate that such residual clutter noise is also approximately indepen-
dent and Gaussian from pixel to pixel {2]. Therefore, it is reasonable to assume that
the residual clutter is independent from spatial sample to sample ( see appendix A

(3D.

Next define J xN matrix of subimage data as follows:

X =[x ...x(N)]. , 4)
The j-th row of matrix X is x; = [x;(1), x;(2), .y x; (V)] for j=1,2,..,J. These are
the N observation samples of the j-th image scene or channel. All of these J scenes
or channels may be obtained either from different frequency bands of the same image
or from sequential observations of the same scene. Hence, for N 2J the rows of
matrix X are assumed to be linearly independent. Then because of the mutual
independence of the components of X in Eq. (4), the joint probability density of X
under H is given by

N
PoX) =px(1),x(2), .. . x(N) V H) =T p&x(n) | Hyp

n=1
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In terms of the trace funciion, which consists of the sum of the diagonal entries

of a square matrix, the exponent in Eq. (5) can be re-expressed as

N N
TxTMx)=TrM ' T xtn)xT(n)) . (6)

n=] n=l

Hence, in terms of (6), po(X) in (5) becomes

_ N
TR D)
1 2 L .

X) = e
poX) a2 IM IN?
1 ;:’—Tr(u-m) -
S o iyt
where
- 1 ¥ T 1 T
M =% x(n)x (n)=X,-X Xt . (8)

n=1

For the signal-plus-noise hypothesis H/, described in Eq. (1), one computes the

conditional mean value of x(n), given hypothesis A, as follows :
E(z(n) | Hil=E[2%r)+b s(n))
=b s(n) 9)

for n =1,2,...N. Hence, the joint probability density function of the residual
signal-plus-Gaussian clutter noise vectors, x(n) for n=1,2,... N under hypothesis

H,, is found similarly to be

piM)=p&(1), x(2), ... x(N) 1 Hy)

1 -‘;— Tr(M~'M,)

10
(27[)NJ/2|M'NI2 (10)

N
=[Tpa@n) I Hy)=
n=1




xp(n)=[x(n)—-b s(n)] and (11-1)

~

N
M, =—;72 h(n);g(n)=-}1v(X -bST )X -uSTH . (11-2)

Note that M and M,, are nonsingular if N 2 J, (e.g. see [5]).

The generalized maximum likelihood ratio test (e.g. see [1]) is shown readily to

A (M (V72 2k ,then H, i
b &

Clearly, the tes: in Cq. (12) is equivalent to

1——ﬁ|—— 2c ,then H, 13
T min, .~ <c ,then Hy
p 1My
where ¢ = k*N
IM1=1XXT 1| (14-1)
and
Myl = 1 X -bSTHX -2 STHTI. (14-2)
Next a substitution of Eqgs. (14) into Eq. (13) yields
- L xxT | 2c¢ ,then H,
T mi c,thenH
X =bSHx -0 8N ’
or
L CxxT 2c¢ ,then H, 1s)
" min , <c ,then Hy
b | Fy !
where




F X -bsHx -b s .

b
Fp=XX" b §TaT -x@ s +b 8" 8T

=xxT —p STXT -xs bT +b bTESTS).

expressing Eq. (17) as follows:

Fy =679 | -25)
p=Q [ s’s (bsfs

setting b = X3 in Eq. (19), one obtains

sTs
T T
g A Fy, _ XX (X$)XS$)
nr"i sTs (§78)?

s S
by Eq. (20) independent of the magnitude of vector §.

the following relationship:

F, = S BI/Z I +B—l/2(b XS )(— )TB—]fz
2= 69 sTs .sTs

To find ™™ | F, | one can start by expanding F, as follows:

f TyT T T T
FQ - (575) b QT _ b STX _ XSTQ gXQ )Tgxsz) (XS )5XSZ) ( )
$'S A $'S) $7s)

Hence, by a " completion of squares “ operation Eq. (18) becomes

XSy, &xxTy  xsHxs)”
sTs | (sTsy

It is proved in Theorem A. 2 of Appendix A that F, in Eq.

v
definite matrix for any vector & , including the special vector p = Sr

(16)

aa7)

¢ s
Then by adding and subtracting the term X’(S;;.};S)) simultaneously in Eq. (17), one

can decompose the J xJ matrix F), into the sum of three matrices in such a manner

that only one of them contains the unknown vector p. This is accomplished by first

(18)

(19)

(19) is positive

. Hence by

(20)

where B is positive definite. Thus 87! and the square roots B*""* exist. Note that B is

To calculate the determinant | F, | one can establish from Eqs.(19) and (20)

2D




Thus the the dewnninant of F, is

| F, 1 =(STSY 1B “1, +B"’2(Q—-—XT—S— X;S )Ta-lﬁl , (22)

Hence finally, the denominator of Eq. (15) is given in a new form by

™I py 1 = (S78Y 1B mé"

I, + B7"%(p- o7 S)(Q—S o B"”l (23)

Since B“’Z(Q~S S) 1s a Jxl-column vector, by a matrix identity proved in

Appendix of [3], one obtains

1 +B” lfl(b XS)(Q S)B—lfz
s7s sTs

=14 @2y gt L 24)
S'S $° S

where B! is positive definite. Therefore, the minimum in Eq. (23) is obtained when

the second term in the right side of Eq. (24) vanishes. But this happens if and only

if,

b = ;TSS (25)
Thus, a substitution of Eq. (24) into Eq. (23) yields finally,
m(;“ 1F, | =(S78) 181
SHXSHT
=@y fsxs ST
e @es)? | 26)
| ORI

It is proved in Theorem A. 2 of Appendix A for b = 0 that the J xJ matrix XX7
. .. . | 12 . . .
is positive definite, so that the square roots (XX Y™ exist. Hence, the denominator of

Eq. (15) can be expressed further as

. Ty-172 T T\-112
T Fy L= 1XXT 11, - XX ) XS NXI) (XX) : 27
= RN




-8-

Thus, since (XXT)""%(X§) is a Jx! -column vector, Eq. (27) becomes
win g 2ty - STEXNTRS)

b ")

Finally, a substitution of Eq. (28) into Eq. (15) yields

1 2r0.thenh’l

= - gx§2TgxxT)—1@ <r0.(henH0
(sT8)

!

(28)

(29)

as the likelihood ratio test function. Clearly by Eq. (15) the test in Eq.( 29) is

equivalent to

TiyyT -1 2rg,then H
, = XS) (XX )" (XS) 0 !

where r is related to [ by [ = l 1

reduces to the normalized matched filter test,

(&TS)z ZrO.[henf‘ll
r =

- (.JQT&)(STS) <rg,thenH, °

a well-known CFAR test for one frequency band or channel.

III. Detection and False Alarm Probabilities of Test

(30)

, and r0=1——1-. In the case J =1 the test r
c

(31

In order to find the probability density function of the test » in Eq. (30) on both

hypotheses H, and H ;. one partitions matrix X as follows:

X={x(Mtx2)! . . 1xN)]

(32)

where x(n) 4 [x(n)xy(n), .. x;(n)] is the Jx1-column vector as defined in Eq. (1).

By (1) and (3) one has

Covix(n) | H =M for {=0,1.




Also
El(x(n) | Hy)=E[x°%n)]1=0 and
E(x(n) | H 1=E[x%n)+bs(r)1=bs(n),
or in terms of X as defined in Eq. (32),

E[X I Hy]=0 and E[X |H, |=bS" . (33)

Next perform a whitening procedure on x(n) by defining
z(n)=M" x(n), forn=1,2,...N, (34-1)
ie let
Z=0M!z .. 1zN)=M"X . (34-2)

The whitening procedure in Eq. {34) and the assumption, that the residual clutter

samples in the spatial coordinates are mutually independent, produces the result,
Cov [ z;,(m)z,(n) ] = 8 (i—j ,m—-n) (39

for i,j=1,2,...J and m,n=1,2,...N. Here & (n.m) is the Kronecker delta
function defined by

1 ifn=0 and m=0
d(n.m) = (36)
0 otherwise ,

and z;(m) is the i-th element of vector z(m). Then by Egs. (33) to (36),

E[ZIHy]=0 , (37)
E{(ZIH,1=M"p ST and (38)
Cov[z(m)IH, 1=1, for i=01. (39)

Evidently by the transformation in the Eq. (34) the test function in Eq. (30)
becomes in terms of Z in Eq. (34-2) the expression,

_@syazlylas) 2ot

(STS) <rg., then H() ’ (4())
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Now let
M
L= —2— (41)
(sTs)?
Then the test function in Fq. (40) becomes, using Eqs (40) and (41) ,
r=C0"ZZ"y' @2y (43)

Also by Eq. (41) the sum-of-squares norm of ¢ is given by izl = 1 so that ¢ is a unit

vector in the "direction" of vector §.

Now consider the N xN orthonormal matrix U,, which carries out rotations in
N -dimensional space, in such a manner that unit vector ¢ is transformer] into the new

unit vector,

=U,t=(1,0,...0]" . (44)

I~

Also, let

V=2zZUT=(x(), 2@, ... x(N)I, (43)
Then the test function r in Eq. (43) reduces to

r=v( Wyl . (46!

The covariance matrix of v(n), for n =1,2,... N is similar to that of z(n), the
only change of the statistics of the v(n) from that of the z(n) is their mean values

under hypothesis H,. This mean is derived as follows:
E[VIH,1=E[VUTIH,]
=M~ p T UT (STS)HM
=M"p[1,0,...0}E"5"
=M aETH 0., 01 (47)

From Eqs. (44) and (47) a figure of merit or what might be termed, the generalized

signal-to-noise ratio (GSNR ) of the test, is derived as follows:
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(GSNR)=E [vT(1)IH, | E [ ¥(DIH, |
="M p)isi2 2, (48)

Now consider a further simplification of the test function r in Eq. (46). First

separate matrix V into two parts in such a manner that

N
wl=yu M+ TvmpTmy=van’ 1)+ 07, (49-1)
n=2
where
N
Q=Yvirp ()=, .., Y(N)IL@), . ..,y )7 (49-2)
n=2

is a non-singular / xN matrix.

A well-known matrix inversion identity applied to Eq. (49-1) produces the

result,

-1 T .
WT -1 =T 1 T 1 -1 =17 - Q 1(1)! (]) -1 . 50
vvh) vy (D+ Q] { T+ 37 (00 v (D 1Q (50)

A substitution of Eq. (50) into the test function r in Eq. (46) yields the test functio:

r as the new expression,

o2y _ N 51
1+vT(E vy 141y

where
ri=yT(He v . (52)

It is desired now to find the probability density, f(ry!H,) , of r; in Eq. ( 52).

First by Eq. (49-2), define D = (v(2), . . ., v(N)] and re-express Eq. (52) in the form,
T

- 2, _v (D Tyt __v(1) 4

r= eI OO o) 54

Then normalize the J-component vector v(1) as follows :
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_ v
S= Ny (DI - (55)
Hence by Eq. (55) one obtains r in Eq. (54) in the form,
ri=ly(MIZETDODTY B = lv(Hi? e, (56-1)
where
A
e =

ETODTY 8. (56-2)

Now one can further process the term e in Eq. (56) by conditioning on the ele-
ments of v(1) so that & can be treated as a normalized constant vector. Then since &

has unity magnitude, there exists a J xJ orthonormal matrix U, such that,
U,E=(1,0,...0]". (57)

Next apply this transformation to matrix D, defined before Eq. (54), by letting
H=U;D =U,@),...,v(N)}). (58)

Then the term e in Eq. (56) has the simple form, |
e=ETODTY'E=(1,0,...0)(HHTY'[1,0,...0} . (59)

Clearly H in Eq. (58) has the exactly the same statistical properties as D, under the

assumption that v(1) is given.

Now partition # as follows:
H = , (60-1)

where h, is the N-1-column vector and Hp is the (/-1)xN~1) matrix. Then by Eq.

(59,

-1
hiky  hiHj Ri  Ras

Hphy  HpH] Rga  Ras

(HHTY ! = (60-2)
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According to the Frobenius relations, e.g. see [8] or [9], for a partitioned matrix,

Rua = (hihy — hIHFHg HDY ' Hy by 17 = (B — HY(Hg H]) ' Hg )by 17!

1 1

- = , 61
hill - Hi(HgH3) "Hpdhy  hiPihy e
A substitution of Eqs. (60) and (61) into Eq. (59) yields
= (62)

hiP by

where P, 2 1y_ - HIHa HD 'H, is a projection operator such that P? = P, and
Tr (P;) = N-J. In the same manner used for the projection matrix P in [1] it is not
difficult to show that P, has N/ unity eigenvalues and /-1 zero eigenvalues. Thus

P, can be diagonalized to the form ,

Iy, 0
UT Py Us=A) = . (63)
0 0,
where [y_; is the W-J)x(N-/) identity matrix. By arguments similar to those used
previously in [1], one finds also, under the assumption that v(1) and P, are given,
that
N-J

hiPihy =0" n= ¥ n?, (64-1)

i=1
where
néh._ATU:;Allz (64-2)

is a 1x(N¥-J)-column vector. The conditional joint probability density function of n

is subject to the normal density function, N (Q , Iy_; ), i.e.
Py - - s Nvny ¥ (D, PY =N@Q,Iyy) - (65)

Since py(ny, - . .. Nw-sy 1 2(1).P) in Eq. (65) does not depend on y(1) and P,

the vector y(1) and matrix P, must be statistically independent of vector n. Also by
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Eq. (62) one obtains the ratio r, in the form,

J
Ty
T b
= tynte = LM (66)
an zn?

i=]
in term of the magnitudes of these two vectors only. Thus by the independence of

vectors 1 and (1) and a use of the Corollary 2 in [7, pp 52], one has the probability

density function,

J=2 =8
T 2
r 4 ar
FlrHY = ! 7 FiE sy, ©67)
N-J 1 5 A+ry
B(T,E.,) (1 +r1)

of r, in Eq. (51) under hypothesis H,.

Finally by using the relationship of r, to r in Eq. (51) the probability density

functon of the test function r under hypothesis H{ is given by

rh LEE S
fCIHy= AR, (A-r) 2 r2e? |F|(-2—;E;£2’;) (68)
r(“—2—)1‘(-2—)

for 0 < r <1 where a is the generalized SNR in Eq. (48) and F(a;b;x) is the
confluent hypergeomitric function. Clearly, if no signal is present, then a =0 . Thus

Eq. (67) reduces in the H, hypothesis to a Beta-function probability density of form,

r, N2 g2
f(r|H0)=—N—JL7-(1-r) 2 .2 for0srsi. (69)
r(—;—')r(-z-)

Finally in terms of the above probability density functions in Eqgs. (69) and (68)
the probability of a false alarm is found by

1
Pra = [f(r\Hpdr (70)
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and the probability of detection by

Pp = [f(r\Hpar | (71)

To

IV. Performance Analysis

Performance curves of the probability of detection in Eq. (71) versus SNR for a
given false alarm probability with respect to various values of ¥ and J are computed
in this section. First, in Fig. 1 the probability of detection is calculated as a function
of the generalized signal-to-noise ratio (GSNR) a in Eq. (48) for several different
values of parameter N. These curves demonstrate that, for a fixed GSNR, 4, the

CFAR detector has a higher detection probability if more samples are used.

In order to compare the detection performance improvement for different
numbers of signal-plus-noise ‘bands, the probability of detection in the single scene of
maximum SNR is compared with the probability of detection in two correlated
scenes, i.e. forJ =2. To acéomplish this, the GSNR in J correlated scenes is related

to the maximum SNR of the J scenes. Consider first the case of J = 2.
For J =2 let the maximum signal-to-noise ratio in the 2 correlated scenes be

given by

btusu?
@ =" (72)
oy

Then the GSNR in Eq. (48) forJ =2 is

a={b by )M '[b byl UsH?%, a3)
where
2 2
_ |9 G2 o
M= {021 022}' (74)
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Hence,
2 2
- 1 O3 02
M= , 75
o7l ~oh [-cn of ] )
and as a consequence one has
bl +b2al - 2bbyo) IS I
a=[by by ]lM™ (b by T agn?= L1O2* 0 2 AL (76)
0,07 — 032
1 bEUSH  bEUSH  2bby08
= p) 7+ 2 2.2 )
1 Oj2 Gy 145 Gi0;
ofaf
/ b? o? b, ©
=—ft_a+2S 221 e2)
Oiz b{ o3 b, o,
1-—=
Gi02
In terms of the normalized correlation coefficient,
Giz
= — 78
pop (78)
and the ratio,
2 A (SNR), b usi¥c} 79)
(SNR),  bZusgi¥o?’

of SNR in the second scene to SNR in the primary scene of maximum SNR, Eq. (77)
(80-1)

can be re-expressed as follows:

4

a =Ga
where
2 _
G = {1+A - 2p) (80-2)
1-p

is the gain in signal-to-noise ratio of a detector which uses J = 2 scenes over a single
detector which uses that scene with the maximum SNR. The following lemma is now
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proved.

Lemma 1:
G - A+ -2p)
1-p?
for all A and p with 0 < A, p < 1 such that condition A =1 and p =1 is not true.
Proof: Start with inequality (A — p )> 20, with equality if and only if A = p. This
implies A2 - 2Ap 2 —p? which in term yields 1 +A2~2Xp 21 -p% Thus if A #p,

2
then by above inequality, G = -U—ﬂ—:%)‘ﬂl 21 and Lemma is true. However if
-p

2 2
A=p and 0<sp<1, G =$-1—+-9-;229)- =1 and again Lemma is true. Finally if
-p
A=p and p = 1. Clearly for this final case G is indeterminate. Thus Lemma 1 is

proved. The above Lemma is generalized to any positive integer J in Appendix B.
The above Lemma shows that the new CFAR detector algorithm of a target in

two correlated scenes is always better than a CFAR detector in the scene with max-

imum SNR. Fig. 2 illustrates the probability of detection for a false alarm probability

of Pr, =107 as a function of @’ for J =1,2, N =49, A =02 and p = 0.95, i.e. for
G = 6.77. This shows that this detector using 2 scenes with (SNR), = —;—(SNR)l has an

approximate 8.5 dB SNR improvement over a detector which uses the single scene
with maximum SNR.

A comparison of the SNR in Eq. (80-1) is now made with Eq. (46) in [1] for
K =1 the single noise-only reference scene case in [1]. By Eq. (46) in [1] the SNR

for a scene with signal, using one reference without signal, is given by

a, é ’
oD = Ga 81

a = (6lio} ) =

in terms of p and &', the SNR in the scene with signal. By Eq. (80-1) the GSNR

depends on p, the correlation coefficient, but also on A, the ratio of SNR’s in both
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scenes. It is evident from Egs. (80-1) and (81), that as long as the inequality
-723 < p < 1 holds, the gain in SNR in Eq. (80-1) is always less than or equal to the
gain in the SNR given in Eq. (81).

Using the correlation coefficient p = 0.81, a computational comparison is made
in Fig. 3 with the results given in [1] for X = 1. These curves in Fig. 3 illustrate that
for the same p the probability of detection curves for the new CFAR detector are
limited to tﬁe probability of detection curves given in [1] for K = 1. The leftmost
curve in Fig. 3 is as derived under the assumption that there is no signal in the refer-

€nce scene.

Figs. 4(a) and (b) show typical 32x 32 subimages in two different optical bands
( the green and red bands ) of the San Diego area. A 5x5 signal with the pattern,
given in Fig. §, is implanted in both of these green and red images with
(SNR); = 0.37 and (SNR); = 0.2x0.37. A local mean is subtracted from both of these
subimages. The resulting residual images are approximately zero-mean Gaussian
processes. The CFAR test given in Eq. (30) is calculated for each pixel. The test
statistic of this CFAR test is plotted pixel by pixel in Fig. 4(c). A target is detected
with a threshold determined by a Pr, = 107 . The results of this test are illustrated in

Fig. 4(d) which shows that the target was, in fact, detected.

—oooo
o~
—
OO~ —
OO0 —~

Fig. 5 Target signal template
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In order to demonstrate the theoretical SNR improvement in Eq. (80-1), a com-
puter simulation was performed to determine the required SNR in the primary scene
of maximum SNR needed to detect a target in single primary scene and in J =2
scenes. A computer simulation was made similar to that developed in [1]. The results
of this new CFAR test are shown in Table 1, where A = 0.2. Using 5 different subim-
ages the averz{ge improvement of a detector using J =2 scenes over the single pri-

mary scene is 6.21 dB.

V. Conclusions:

Under the same assumptions for optical noise clutter used in [1], a generalized
constant-false-alarm-rate (CFAR) algorithm is developed for detecting the presence of
an optical signal of non-zero intensity in J signal-plus-noise bands or channels. For
many applications this new algorithm is more flexible and practical than the one
given in [1]. If J = 1, the resulting test reduces to the standard normalized matched

filter test for finding a signal in clutter of unknown and varying intensity.

Both theoretical and computer simulation results show that the SNR improve-
ment gain of this new algorithm using multiple band scenes over the single scene of
maximum SNR is always greater than one and in some _ases it can be substantial. A
comparison of SNR gain between this new detection algorithm and the one given in
[1] illustrates, that for the same correlation coefficient p of related scenes the proba-
Lility of detection curves for the new CFAR detector are limited to the probability of

detection curves given in [1].
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CFAR Algorithm Simulation Results for the Optical Color Image with
N = 49 Samples for Covariance Estimation

Subimage J=1 =2
Location (dB) (dB)
(100, 10) 6.67 0.96
(234, 30) 9.34 2.04
( 50, 310) 7.32 5.18
(200, 200) 2.30 -4.32
( 65 1) 3.80 -4.20
Average 5.88 -0.33
Improvement — - 6.21
Factor
Table 1




Appendix A

Theorem A. 1:

A is nonnegative definite if and only if there exist a matrix W, such that

A =wWwT | For a proof, see [5, pp 2571.

Theorem A. 2:

The J xJ matrix F), é'(X -b XX -5 8) in Eq. (16) is positive definite for

any arbitrary vector b .

Proof : Since

F

I
]
—~
>
i
IS
i
ﬂ
~
—
(o]
1S
N
~
~
Ni

S (A-2)

where W = (X - b §7). By using Theorem A. I matrix F), is nonnegative definite,
and all the eigenvalues of F, satisty A; 20 forj =1,2,...J. But by previously
showing that M,Z were nonsingular, F,, is also nonsingular by Eq. (14-2). This means

that
det (Fp)=AA, ... 4, %0,

or A; >0forj=1,2,...J. Hence F, is a positive definite matrix. In particular if

one chooses b = -}-‘é then by Eq. (26)

A _xxT xsyxs)y” ]
7 7T T T Ty (A9

is a positive definite matrix.
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Appendix B

In this Appendix, Lemma 1 of Sec. IV is generalized to an arbitrary positive
number J. By Eq. (48) the generalized signal-to-noise ratio (GSNR) for J bands is

given by
a=lbyby,....b)IM7 (b by ..., by 1T HSH? (B.1)
where
T e ) I
| £ X Kg, Kyx
and
&é[x2x3...‘.ler.

In terms of the above notation the inverse of M in Eq. (B.2) can be put in the form,

-1
lexl lel A A B
M= S (B.3)
K_n, K, C D
By the Frobenius relations in [8] or [9], one has the results
- - 1
A=K,, -K, KK, )= ~ (B.4-1)
*1 X XT XXX, Kx,xl _ legK_{glexl
1 1 1 "'Kx[xKx—xl B.4-2
B =—(K -K, . K. K, )V'K, K, = — . (B.4-2)
XX 2D St B Sk © 3] X XX X lexl"lelKé—;Kgl
T B KKy,
C =BT =K, — K ;KK 'K K = (B.4-3)

-1 '
K“xxl - K11£K££K5xl

-1 -1
K& &KSMK‘H!K&J. (B 4-4)
-1 : .
Kyx, = Ky s Ky i Kys,

D =K, +

for the submatrices defined in Eq. (B.3). Hence, one can rewrite Eq. (B.23) as

1 ‘K&—;Km
mt=1 , B.5
Al _k-lk K'A+K7K_ K, K] B
XX X XXX, £X

XX
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where

A -
A= (lex, - legKg;lexl) . (B.6)

Note that A > 0 since M is the positive definite matrix ( see Sec. I Eq. (3). Next by a

substitution of Eq. (B.5) into Eq. (B.1), one obtains

a=[byby,....,b) )M [byby ... b1 NSH?
=(by 6T M6, BT T USH? (B.7)
1 - - - - _
= X[b,2 - b1b K Ky ~ Ky 1 Kiibby + BTK b A+ bTK K K, (K TIB IS 12,

where

b8 bybs. . by I

In Eq. (B.7) define the general normalized correlate coefficient
A g -1n »
R =K1K K, (B.8)

and the ratio

(B.9)

of the GSNR in the other scenes to SNR in the primary scene of maximum SNR.
Then Eq. (B.7) becomes

a =Gd (B.10)
where G is the generalized gain, given by

G=l=2Tp+ 2»:&(1 ;i@*ﬁr@f_ . (B.11)
-pTp

Note by Egs. (B.6) and (B.8) and the comment following Eq. (B.6) that p’p>1.
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Lemma : Let G be the generalized gain function defined in Eq. (B.10), then G 21.
proof : Note first that

G21iff 1-22Tp+A"M1-pT+AT? 2 1-97p
iff pTp-22Tp+ATA(1-pTp)+ ATp)? 2 0 (B.12)

where " iff " denoted " if and only if ", the logical equivalence. Next let

plp =0l (B.13-1)
ATA=p? (B.13-2)
ATp = a P cosy (B.13-3)

then using (B.13-1) to (B.13-3), the last statement in (B.12) becomes
G 2 1iff o ~ 20Bcosy + P31 — o®) + a®Bcos™y = 0. (B.14)
There are two cases to consider.

case I : If B2 > 1, then since 1 - p7p > 0, one has

a? - 2aBcosy + B3(1 - o) + a®Pcos’y = of — 20Pcosy + (1 — o) + a®B%cos™y  (B.15)
= 1 — 20Bcosy + a®Bcos’y = (1 — ofcosy)® = 0.

case II : If B% < 1, then

a? - 20Bcosy + B*(1 - o®) + o?Bleos’y = o — 20Pcosy + B — o*BA(1 - cos?y)
> o? - 20fcosy + B% - o¥(1 — cos?y) (B.16)
= (acosy — B)2 2 0.

Thus G 2 1 and Lemma is proved.
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