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SUMMARY
p

In this report the errors in linear reduced models of structures, their

effects, and means of compensation are discussed. An analysis of natural fre-

quency errors resulting from Guyan reduction shows that errors are reduced as

the complementary structure of a reduced model is stiffened. A semi-analytic

minimum-ratio criterion is proposed for selecting a best set of retained

degrees of freedom. Numerical examples indicate that applying this criterion

results in good reduced models. Further improvement of reduced models can be

achieved by using Analytical Model Improvement (AMI) program, which accounts

for the specific modal parameters in the frequency range of interest. The

effectiveness of AMI under various conditions is evaluated. Also investigated

is the capability of various reduced models to accurately represent the

effects of structural changes. Numerical results of eigensolution and forced

response computations confirm that reduced models formulated in accordance

with the minimum ratio criterion and improved by AMI are excellent bases for

efficient structural design studies. The approach is especially applicable to

the design of large space structures because it (1) takes full advantage of

Guyan reduction; (2) simplifies the task of choosing retained DOF; (3) incor-

porates a powerful error compensation algorithm; and (4) provides an accurate

analytical base for structural modifications.
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SECTION I

INTRODUCTION

The use of large space structures for surveillance, reconnaissance,

detection, and tracking will be increased in the near future. Minimizing the

structure's mass is crucial for launching cost reduction. This among other

considerations leads to the design of highly flexible structures. The overall

size of an antenna boom-solar panel assembly is on the order of 100m and its

first several elastic modes are below 0.1 Hz. These characteristics cause

problems in the dynamic analysis and design of control systems. For instance,

disturbances can create significant structural deformations far beyond strin-

gent mission tolerances, and control must be applied to suppress the vibration

level.

It is the size and flexibility of structures and the requirement for

active control which make it necessary for the dynamic characteristics of such

systems to be determined accurately. Furthermore, since the dynamic charac-

teristics of large space structures in the actual space environment cannot be

rigorously determined from ground vibration testing, their design and the

design of control systems for them will require precise analytical models.

Detailed finite elcment analysis, however, will result in a large order

dynamic model. Prior to further studies, it will be necessary to reduce the

order of the analytical model to allow economical computations. For this pur-

pose, essentially two types of techniques are developed: component mode syn-

thesis and reduction of physical coordinates. The former employs selected

component modes to represent system structural response. Component modes used

cpn be eigenvectors I, Ritz vectors solved from the corresponding static prob-

lem 2 , or their combinations3. Similarly, reduction of physical coordinates

may apply to both component and system levels. This latter class includes

Guyan reduction4 and generalized dynamic reduction 5. Certainly, it is possi-

ble to combine two types of reduction techniques if the design is based on

substructure syntheses. For example, Guyan reduction can be applied to vari-

ous component levels to bring down the number of degrees of freedom, an

1



eigensolution can then be obtained from the assembled structure and, finally,

a modal transformation can be performed to formulate the system equation. In

the present research, we focus on reduction of physical coordinates without

using substructure syntheses techniques.

As indicated in References 6 and 7, a reduced model is iiiherently non-

linear, even when the full model is linear. Thus, all loear dynamic models
7

having a reduced number of degrees of freedom (DOF) are imprecise 7 . It is

important then to evaluate the effects of these errors and to develop means to

correct them.

In practice, attempts to minimize these imprecisions are made by using a

set of modes whose frequencies cover the range of interest (notably, the trun-

cated normal mode approach), or by eliminating unimportant DOF and retaining a

well distributed set of coordinates. These intuitive procedures may be ade-

quate when the reduction order is small and when test data is available to

qualitatively validate the models. This is not the case for large space

structures. More sophisticated algorithms have also been developed to improve

the accuracy through analytical selection of retained DOF8'9 or using sub-

structure techniques The former approach eliminates DOF by performing

reduction one DOF at a time while the latter involves matrix inversions of

high rank. Neither can be pursued for the design of large systems where major

reduction is a main concern.

Moreover, even if these methods can be used with confidence, there is no

commonly accepted method for compensating for errors.

The generalized dynamic reduction5 applies subspace iteration techniques

to compensate errors in a Guyan reduction. Low modes of the structure are

used recursively to make up the lost dynamic portion. The iterative nature

makes the algorithm computationally inefficient for large structure systems

and the procedure may be sensitive to noise resulting from the orthogonaliza-

tion procedure. It is also expected that this compensation method has little

2



effect L those modes beyond, say, the first dozen. For large space struc-P

tures, it is reported that as high as 100 elastic modes may be considered in
12

structure/control system interaction analysis

.4
Despite its poor accuracy for higher elastic modes, Guyan reduction 4

mainly due to its efficiency, is still popular in practical applications. The

present approach will take advantage of this. But to ease the burden of cau-

tiously choosing retained DOF, as encountered in any reduction procedure, a

semi-analytical, one time only guideline would definitely be helpful to ana-

lysts dealing with large systems. Also, when a reduced model is obtained, the

question arises as to the possibility of improving the model through compensa-

tion for errors for specified modes. A qualified improvement procedure should

be computationally efficient, applicable to realistically large models, and

satisfy dynamic constraints. Another important problem is the accuracy with

which a reduced model can reflect structural changes. Evaluation of this cap-

ability would decide the usefulness of a reduction and compensation procedure

for system design, especially in the preliminary design stage where intensive

modifications are inevitable.

This report addresses these issues.

3



SECTION II

ANALYSIS OF INACCURACIES

Exact Reduced EiQenproblem

A linear structure subject to applied forces can be described by

My + Ky = f(t) (1)

where the system mass and stiffness matrices are of order N. The associated

eigenequation

H(w) = (K- M) x = 0 (2)

uniquely defines the dynamic characterisLic, of the system. In Equation 2, W

is the square of a natural frequency and x the corresponding mode shape vec-

tor. When the order of M and K is larje (as in a detailed finite element

modeling of structures), it is desirable to use xr' a subset of x containing

all retained DOF, to describe the system. That is, a reduced model (Mr and

K r) of order n < N is sought which satisfies the equation

Hr (w)x r = (Kr - Mr)xr = 0 (3)

The exact reduced model is the one preserving all information of the full

model. To formulate reduced models, M and K are reordered in such a way that

the upper left submatrices correspond to xri that is,

2 K4  2 4_ L S (4)

where the subset x contains all DOF to be condensed out and is related to xr

as:

4



-K w 4) ( 2  M2) Xr (5)

Substituting Eq. (5) back to the first part of Eq. (4) leads to

Kr  K1 - K2 K4  K2  (a)

Mr = 1  L [ 2  (K w4)  2 2 4 wM)1(K
1  MT +- ( -1 K

+ K K-1 M ( -' 1 KT + W-( 1 1 (6b)2 4 (K4  M4) 2 +M 2 (K4 - wM4 ) M2

It is observed that no approximation has been introduced in condensation

procedures up to this point. The reduced model in Eq. (6) contains complete

information of thp full model. However, since Mr is frequency dependent the

reduced eigenproblem, Eq. (3), is nonlinear. Solution of this equation is

difficult because it involves extensive iterations. A useful approximation is

siniply to impose w = 0 on Eq. (6b) which leads to the well-known Guyan reduc-

tion

Kr = DTKD (7a)

M = Mr (w =0) = DTMD (7b)

H ro() = Kr - Mro (7c)

where D = K-1K T Eq. (7) is exact only when w = 0, hence is a quasi-static

condensation.

Application of Guyan reduction to dynamic analysis, as is often done, can

be poor. The errors depend on the subset x r chosen and the frequency range of

interest. Questions then a.-ise as to the chcice of xr which best represents

the dynamic characteristics of the full model and to the accuracy of the

quasi-static approximation.

5



Reformulation of Reduced Eigenproblem

In Eqs. (4) - (6), submatrices of a full model have been used to define a

reduced model. A structure having M4 and K4 as its mass and stiffness matri-

ces is defined to be the "complementary structure" of the reduced model. Con-

ceptually, it is achieved by constraining all xr in the full model to be zero

and using xs as its DOF (see Figure 1).

Let A (pxp), p = N - n, be a diagonal matrix whose nonzero elements (XP

i=1, ... , p) are the square of natural frequencies of the complementary struc-

ture and 't(pxp) the corresponding mode shape matrix. The eigenequation and

the orthogonality property of this structure are given by

(K4 - XiM 4 ) Oi = 0 (8a)

TM41 = I (8b)

TK4, = A (8c)

where ¢i is the ith mode shape vector.

Note that under linearity assumption, xs is the sum of modal superposi-

tion when xr is constrained to zero and the displacement due to relaxation of

the constraint, i.e.,

-1 TXs :a - (K4 K 2 ) Xr  (9)

The last term in Eq. (9) actually is the static expression (w = 0) of the

right hand side of Eq. (5). The modal coefficient vector a is solved from

Eq. (5), (8), and (9)

= A(w) B x r (lOa)

lOR-



full complementary

/

Xr / --

777 777777/ 777 777/7777

Xr= 0 X= X

Figure 1. Definition of Complementary Structure.
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in which

A(w) = w (A - wI) I  (lOb)

B = *TMT - ITK T (lOc)2 2

Thus,

xs = [r(w) B K41K x (11)

Substituting Eq. (11) into Eq. (4) results in the exact reduced eigen-

equation

Hr (W) xr = 0 (12a)

Hr(w ) = Kr - w [Mro + B TA(w)B] (12b)

where Kr and Mro were defined in Eq. (7). Formally, Eq. (12b) is different

from Eq. (7c) only in the additional term BTA(w)B in the bracket. Although

Eqs. (3) and (6), and (12) are equivalent and exact, the new formulation (Eq.

(12)) is considered more efficient than its old version (Eqs. (3) and (6))

because the only frequency dependent matrix A(w) is diagonal. However, no

attempt is made here to solve Eq. (12) since it still needs intensive itera-

tions. This formulation is used as a base for the error analysis in the next

subsection.

Error ot Naturai Frequency

A perturbation analysis is performed below to investigate the natural

frequency errors introduced by Guyan reduction. It is assumed tacitly that

w 0 which precludes a trivial case.

8



Let (wi$ t) be aneigenpair defined by a (Guyan) reduced model, i.e..

Hro (wi) Oi = 0 (13a)

where Oi has been normalized so that

T r i = 1 (13b)

Expand H r(w) and x r with respect to their corresponding approximate func-

tions at wi, the exact eigenproblem (12) becomes

[Kr - -iMro (MiAMr + ACiMro) - Awi AMrI (Oi + Ai) = 0 (14a)

where

AM r BTA(w)B (14b)

Premultiplying Eq. (14a) by (Oi + A~i) T and applying Eq. (13) to simplify

the result, then

T
AWi = - 4 1i AMr (wi) ti (15)

Therefore, the error ratio of a natural frequency is

i -i/W i =T BTA (wi) B

S[(TMT A- 4T T) Ol (A - w I)- K) i (16)

Note that if A is positive definite then Awi < 0, i.e., Lhe natural fre-

quency of a (Guyan) reduced model is bigger than its corresponding exact value

of the full model.

In Eq. (16), the error of natural frequency of a reduced model through

quasi-static condensation is expressed in terms of the eigenpair (wi' Oi) of

9



the reduced model and the eigensolutions (A, f) of the complementary struc-
ture. In the case of a major reduction in degrees of freedom from the full

model, Eq. (16) is not very promising heause comnltc eigersolutions of the

complementary structure are time-consuming when the order of eigenequation (p)

is large. Further development is possible if the scope of the analysis is

confined to error-bound calculation.

Let X be the smallest eigenvalue in A. When wi << XP an inequality can

be obtained from Eq. (16)

S< Wi [T( TMT A- 1T K2)T (,TMT _-11T K) (17)

Using Eqs. (8b) and (7b), the expression in the bracket in Eq. (17) is

rewritten as

T(M M M- 1 M T (18)
1 i (r1  2 )O

It is noted that the expression in the parentheses in Eq. (18) is the

same as that of in Eq. (6a) if M is replaced by K. In other words, the paren-

thesized matrix is an exact condensation of a system with M as its stiffness

matrix and thus, is positive semidefinite. Since Eq. (16) guarantees ei being
positive for w. <A (i.e., an eigenvalue of a reduced model is greater than

the corresponding eigenvalue of the exact model), combination of Eqs. (17) and

(18) leads to

Ei < W i/1 (19)

Eq. (19) gives an upper bound of errors due to Guyan reduction. The

error bound is a function of natural frequency sought (wi) and, as expezted,

becomes larger when the natural frequency is higher. The only information

required from complementary structure is the smallest eigenvalue >I" Many

efficient algorithms are available to compute the leading eigenvalue of a

large order eigenproblem. A similar derivation was shown in Reference 13 as

10



an intermediate step to find absolute error bound. Here Equation 19 is used
p

as a base front-which to draw useful information for the retained DOF selec-

tion.

Choice of xr

Eq. (19) also reveals that an optimal subset xr chosen from the full

model should maximize I to make the error bound low. In other words, the

retained degrees of freedom xr must be selected in such a way that the corres-

ponding complementary structure is as "stiff" as possible.

For a given set of full matrices M and K, no once-for-all criterion on

the choice of xr can be drawn analytically because there is no functional

relationship between eigenvalues of a system and the individual elements of

the system. It is acknowledged that an "analytical" method on selection of

based on simple criterion and incorporated with frontal solver techniques was

proposed. This approach requires reducing degrees of freedom one by one and

in each loop a Guyan reduction be performed. It may be useful for a rela-

tively small system. In the case of major reduction from a large structure,

as is usually done, this procedure would be prohibitively expensive and thus

is not recommended here.

From Eq. (Sa), it is justifiable qualitatively to expect that a comple-

mentary structure is stiffer if all diagonal element ratios (K4}ii/(M4)ii

become larger. This means that as a rule of thumb a best set of degrees of

freedom is the one having minimum Kii/Mii (i = 1, ..., n) ratios. The

greatest advantage of this criterion is its simplicity although it is not an

analytical result. There is no guarantee that the reduced model so obtained

will preserve all n lowest natural frequencies of the full model. This guide-

line will be referred to as the minimum ratio criterion in the future discus-

sion. The "analytical selection" method adopted in References 8 and 9 uses

the same criterion, but is on an iterative basis.

11



Freauency Response

The mobility matrix of a linear dynamic system, Eq. (1), is defined by

Z(W) = (W-IK - M)-  (20)

The (i, j)th element of Z(w) characterizes the steady-state response of jth

DOF when a unit force of frequency w is applied at ith DOF of the system. To

evaluate how good a reduced model can predict the forced response of the full

model, it is useful to compare certain mobility elements of interest, for in-

stance, the driving point mobility (a diagonal element of Z(w)) of both

model s.

Validation of the Criterion

A delta wing is modeled as a coupled system of three rigid ribs (modal

representation) and five skin finite element substructures using Kaman's DYSCO

(Dynamic System Coupler) program. In Figure 2, each skin lumped-mass is

denoted by a solid circle and each rib center of gravity is denoted by an X.

Vertical displacements of the skin and ribs and pitch displacements of the

ribs are considered. The total number of DOF represented in Figure 2 is 61,

including 21 implicit (dependent) DOF. All skin DOF coincident with ribs are

considered to be implicit, that is they can be expressed as linear combina-

tions of the rib vertical and pitch DOF. Thus, the model has 40 independent

DOF.

In DYSCO the required input data are the finite element mass and stiff-

ness matrices for each skin substructure and the modal definition, center of

gravity location, and implicit degree of freedom definitions for each rib.

The coupled 40 degree of freedom model is then assembled automatically by the

program. Figure 3 identifies the final 40 degrees of freedom which define a

full model. An eigenanalysis of the full model was performed using DYSCO and

the first 10 modes are shown in Figure 4.

12



SUBSTRUCTURE DEFINITION

SKIN # DOF RIB # DOF # IDOF*

1 19 1 2 10

2 17 2 2 7

3 15 3 2 4
RIBI 4 18

5 15
(*IDOF =IMPLICIT DOF)

Si S2 S3 S4 35

Figure 2. A Delta Wing Model.
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SYSTEM DOF ,

I ZCG 1000
2 PTCH1000
3 Z 11
4 Z 12
5 Z 13
6 Z 14
7 Z 15
8 Z 16
9 Z 17

10 Z 18
11 Z 19
12 Z 20
13 Z 21
14 Z 22
15 Z 23
16 Z 24 .
17 Z 25
18 Z 26
19 Z 27 PTCHIO00 •12 020
20 ZCG 2000
21 PTCH2000 13 .21
22 Z 35 •
23 Z 36 ZCG 1000
24 Z 37
25 Z 38 @14 .22 PTCH2000 035
26 Z 39
27 Z 40 015 023 036 41
28 Z 41 0
29 Z 42 ZCG 2000
30 Z 43.16 24 3 42
3i Z 44 0 PTCH3000
32 Z 45
33 ZCG 3000 17 300 0
34 PTCH3000 .17 .25 038 043 , --- 050
35 Z 50
36 Z 51 ZCG 3000
37 Z 52 018 ,26 039 044 *51 053

38 Z 5339 Z 54140 452 540 Z 519 0 27 0 0 0 0

Figure 3. Coupled Model of 40 DOF.
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Figure 4. The First 10 Modes of the Full Model.
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Various reduced models can be obtained by applying Guyan reduction to the
p

full model. Five of them having 10 or 15 DOF and their eigenvalue errors of

the first several modes are shown in Figure 5. Selection of DOF for RM4 and

RM30 are based on intuitive judgement while in the "worst" model (RM20), two

dominant rib DOF (PTCH 1000 and PTCH 3000) are intentionally reduced out. The

rest two, RM1I and RM40 are formulated based on the minimum ratio criterion.

It is observed that both RM4 and RM11 preserve (in the sense that -Awi
and ei are small) the first eight modes of the full model and are considered

as good reduced models. In this case, use of the criterion does not make RM11

much different from a reasonably formulated RM4 since choosing 15 out of 40

may not be viewed as a truly major reduction in system DOF. A more crucial

comparison is made for the three 10 DOF models. Note that in Figure 5, RM40

preserves the first seven modes, RM30 missed the fifth and modes beyond the

sixth while RM20 preserves only modes 1, 2, and 4. Obviously, the reduced

model with the minimum ratio criterion is superior to the other two.

Other evidence of the minimum ratio criterion being a good guideline for

the selection of retained DOF is seen from frequency responses. In Figure 6

the driving point mobilities at the wing tip (Z55) for RM4 and RM11 are

plotted against that for the full model in the frequency range of 15 to 95 Hz.

Similarly, the driving point mobilities at Z19 for RM30, RM40 and the full

model are given in Figure 7. Obviously, RM11 and RM40 are better than their

intuitively chosen counterparts RM4 and RM30.
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SECTION III

ERROR COMPENSATION FOR REDUCED MODELS

AMI

Although it can result in better models, some deficiencies still exist in

using the minimum ratio criterion. First of all, there is no guarantee that
the resultant reduced model can preserve all natural frequencies of the full

model in the frequency range of interest. The situation is even worse if the

range of interest is not in the lowest frequency range. Furthermore, accura-

cies of the corresponding eigenvectors may be very poor and cannot be esti-

mated analytically. Thus, for the compensation of these errors, a procedure

called AMI (Analytical Model Improvement) is applied to modify reduced models.

AMI is a procedure which finds the smallest changes in the given model so

that the improved one satisfies orthogonality relationships and the dynamic

equation and exactly predicts specific dynamic characteristics (eigensolutions
in the assigned frequency range) of the full model. This algorithm was origi-

nally designed for structural system identification14' 15, whose physical7'16

and mathematical 16'17 foundations have been extensively discussed. The bases

of this identification method are a well-formulated analytical model and a
modal matrix to be matched. In the present model reduction problem, they are

the reduced model and the specific modes of the full model, respectively. The

program is applicable to realistically large models and is computationally

efficient.

Improvement of Reduced Models

The following procedures are used to modify a reduced model:

1. Extract eigensolutions of the given full model over a frequency

range of interest. In practice, the number of eigensolutions

extracted is very small compared to the order of the full
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model. Many algorithms are available, notably thcse of

NASTRAN_, to effectively perform this procedure.

2. Formulate a reduced model by using Guyan reduction.

3. Provide the modes to be matched (i.e., the eigensolutions

extracted in step 1) to AMI for the improvement of the reduced

model.

4. Compute and plot mobilities of interest of the full and reduced

models for comparison.

Figure 8 shows some results of AMI improvement when the procedures are

applied to the models described in Figure 5. In column 3, m (m < n) denotes

the number of modes to be matched and column 4 specifies these modes. The

percentage changes of mass and stiffness matrices are shown in columns (5) to

(10). A measure given in (5) and (8) is the ratio of the root mean square

(rms) of the changes to the rms of the original matrix of a reduced model.

The other two measures named the absolute mean ratio of the diagonal changes

and rms of the changes divided by the square root of product of the two cor-

responding diagonal elements are listed in columns (6) and (9) and columns (7)

and (10), respectively. These last two are important measures since mass

matrices are strongly diagonal. Apparently, large changes in matrices of a

reduced model imply that the modes to be matched deviate far from any subject

of eigensolutions of the model. In RM4, the number of modes to be matched (m)

are chosen to be 5, 7, 10, and 15, and large m value means imposing more con-

straints on the AMI procedures. It is noted that m/n may not exceed one half

or the improvement procedures would be too constrained to allow small modifi-

cations on the reduced model to match the assigned m modes.

To investigate the sensitivity of AMI to a missed mode, two cases are per-

formed on RM20, RM30 and RM40 for comparison. In the first case, AMI is car-

ried out to match the first five modes (the first one being rigid body mode)

of the full model, while in the second case, the third mode is intentionally

dropped. It is observed that the changes are about the same order for both
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REDUCED - - MODES TO
MODEL n m BE MATCHED M **

IJ2 (3) (4) _(5)t (6)* (7) (8)t (9) (10)

5 1-5 1 .6 .5 1 .3 .3
RM4 15

7 1-7 3 2 1.6 1 1 .6

RM11 15 7 1-7 3 1 .9 1 .4 3

1-3; 5-8 5 3 3 4 3 3

1-5 2 .8 .6 2.5 .8 .7

RM40
"Best" 10 5 1-2; 4-6 3 1.6 1.8 .5 .8 .7

3-7 1.4 1.4 1.7 3.2 2.8 2.2

1-5 22 21 23 7 7 8

RM30
"Medium" 10 5 1-2; 4-6 42 8 7 35 13 13

3-7 196 73 79 163 161 166

1-5 1459 525 533 730 257 261

RM30
"Worst" 10 5 1-2; 4-6 23 65 61 26 22 20

3-7 3699 5594 5566 4046 1952 1924

t = rms (AA)/rms(A) * = I/n ZIAAii/Aiij ** = rms(AA)/(AiiA.jj)1/2

Figure 8. AMI Improvement.
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cases if the unimproved reduced models (RM40 and RM30) are reasonably formu-

lated. Evidently, RM20 is a poor reduced model as is seen from very large

changes in the first case. Since changes are relatively small in the second

case, RM20 seems not that bad if the third mode is not included in AMI. This

can be attributed to the fact that the unimproved RM20 missed the third mode

of the full model (see Figure 5). Therefore, AMI is numerically stable when-

ever the unimproved reduced model is well formulated even if certain low modes

are not included in the improvement procedures.

Also shown in Figure 8 are the percentage changes of the three 10 DOF

models when modes 3 to 7 of the full model are assigned to AMI. It is anti-

cipated that the current changes are higher than the corresponding ones which

match the first five modes.

Forced responses are given in Figures 9 to 12. For a good reduced model

(RM11) based on the minimum ratio criterion, Figure 9 shows that AMI still can

improve it to give better mobility prediction. As expected, improvement be-

comes more significant when frequencies are larger. For various 10 DOF re-

duced models (RM40, RM30 and RM20), Figures 10 to 12 show driving point mobil-

ities at wing root trailing edge (Z19) plotted against the full model mobil-

ity. It is evident that the AMI improved models (based on either the first 5

modes or the modes 3 to 7) excellently match the specified modes of interest

even the corresponding unimproved model (for instance, RM20) is highly inaccu-

rate.
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SECTION IV

EFFECTS OF STRUCTURAL CHANGES

Structural Modification

Design of a large space structure requires intensive interactions among

project departments. When a design change is made, the whole analysis loop

must be repeated, which includes reformulation of full and reduced models and

thus is quite inefficient. It is desirable to be able to modify reduced

models directly without a new analysis loop.

To clarify this idea, four sets of models are defined as follows. Before

structural modifications, a full model is identified by M and K, and a reduced

model by Mr and K . The corresponding full and reduced models are denoted by

M, K and Mr' Kr respectively after modification of the structure. There are

two approaches to achieve a modified reduced model Mrl Kr The first obtains

M, K by directly modifying the original full model and then reduces the modi-

fied full model to get Mr' K r This approach is exact but tedious. The sec-

ond approach avoids changing a full model. Rather, it reduces M, K to Mr, Kr

and modifies this small system to achieve the modified reduced model (M r Kr).

The latter approach certainly is much more efficient. The question remaining

is the error it may introduce. That is, we have to investigate the capability

of Mr and Kr to represent the effects of changes if the shortcut is taken.

Evaluation of Various Reduced Models

Figure 13 shows how we evaluate the capacity of various reduced models to

accurately represent the effects of changes. In the figure, eigensolutions

and/or frequency response from modified reduced model Mr and Kr (which are

obtained through the shortcut as shown in the last section) are compared

against those from modified full model M and K. For numerical comparison we

use the 40 DOF delta wing model (see Figure 3) as the original full model and

the results are given in Figures 14 to 16. The modified full model is
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ORIGINAL FULL A MODIFIED FULL EIGENSOLUTIONS

M , K M , K FREQ. RESPONSE

REDUCTION COMPARISON

REDUCED A MODIFIED REDUCED - 'EIGENSOLUTIONS

Mr, Kr r, Kr FREQ. RESPONSE

Figure 13. Evaluation of Reduced Model Capability
To Represent the Effects of Changes.
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FREQUENCIES OF ELASTIC MODES (Hz)

MODEL

2tt 3 4 5 6

FO 17.39 27.27 39.56 45.13 53.89

FM 21.96 31.64 39.53 45.15 53.83

[26] [16] [-.06] [.05] [-.1]

RM30M 22.66 32.78 40.15 52.48 56.85

(3.2) (3.6) (1.6) (16) (5.6)

IM30M 21.74 32.53 39.55 45.17 55.97

(-1) (2.8) (.06) (.05) (4)

RM40M 22.18 31.99 40.15 46.38 55.24

(1.0) (1.1) (1.6) (2.7) (2.6)

IM40M 21.94 31.86 39.53 45.16 55.22

(-.08) (.7) (0) (.01) (2.6)

tt& I  0

Figure 14. Frequencies of Various Modified Models.
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achieved by doubling mass and stiffness elements at Z1I and Z19 (see Figure

3). The changes-are significant as can be seen from a 26% increase in natural

frequency of the first elastic mode (compare the solid lines labeled 2 in Fig-

ures 7 and 15). The other modified reduced models in Figures 15 and 16 are

obtained by changing the associated elements of the AMI improved and unim-

proved RM30 and RM40 (see Figures 5 and 8) accordingly.

Figure 14 lists frequencies of the first five elastic modes of two full

and four reduced models. The two full models are the original (FO, as shown

in Figure 3) and the modified (FM). The four reduced models are all modified

ones which include RM3OM, IM3OM, RM40M and IM4OM. Note that here "modified"

(e.g., FM, RM30M and IM3OM) is referred to 100% increase of mass and stiffness

element values at ZII and Z19 from the corresponding unmodified full (FO) or

reduced (RM30, IM30) model. IM30 and IM40 are the AMI improvement (matching

modes I to 5 of FO) of RM30 and RM40 before modification. In the figure, the

percentage frequency change of a FM mode relative to the associated FO mode is

given in br3ckets while the percentage change of a reduced model mode relative

to the associated FM mode is given in parentheses. Obviously, from the eigen-

value comparison the improved IM30M and IM40M are better than their unimproved

counterparts RM30M and RM40M in the frequency range shown. Also, the modified

reduced models applying the minimum ratio criterion (RM40M and IM4OM) are

better than the corresponding models (RM30M and IM3OM) without applying the

criterion.

In Figure 15, the modified, improved reduced model (DASHDIP) shows much

better agreement with the modified full model (SOLID) than the modified, unim-

proved one (DOT) in the specified frequency range. The same conclusion also

can be drawn from Figure 16. This validates the effectiveness of using AMI

improved reduced models as a baseline for design modification. Furthermore,

comparison of the two DASHDIP cases in Figures 15 and 16 indicates that the

modified improved RM40 better reflects the structural changes than the modi-

fied improved RM30. Therefore, it is effective to use the AMI improved re-

duced models whose DOF are chosen using the minimum ratio criterion as bases

of modification when changes in structural design are made.
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SECTION V

CONCLUSIONS

This report deals with several important aspects of dynamic model reduc-

tion and related issues. Guyan reduction is here applied to the design of

large space systems because the procedure is highly efficient and the struc-

ture is quite flexible. The minimum-ratio criterion, which retains a subset

of DOF whose corresponding diagonal element ratio of stiffness over mass

matrices are the smallest, is drawn from an analysis of natural frequency

errors. Comparison of eigensolutions and frequency responses of various

reduced models reveals that the criterion is a good guideline for the selec-

tion of retained DOF. The reduced model is then improved by AMI program to

exactly match desirable modes of the associated full model. Extensive studies

show that this compensation algorithm is computationally efficient, numeri-

cally stable and formulated on sound physical grounds. Numerical solutions

also indicate that the reduced model, which is based on the selection criter-

ion and improved by AMI, excellently represents the structural modifications

in the frequency band of interest. The proposed approach is, therefore,

highly recommended for the design of large space structures.
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