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SUMMARY

In this report the errors in linear reduced models of structures, their
effects, and means of compensation are discussed. An analysis of natural fre-
quency errors resulting from Guyan reduction shows that errors are reduced as
the complementary structure of a reduced model is stiffened. A semi-analytic
minimum-ratio criterion is proposed for selecting a best set of retained
degrees of freedom. Numerical examples indicate that applying this criterion
results in good reduced models. Further improvement of reduced models can be
achieved by using Analytical Model Improvement (AMI) program, which accounts
for the specific modal parameters in the frequency range of interest. The
effectiveness of AMI under various conditions is evaluated. Also investigated
is the capability of various reduced models to accurately represent the
effects of structural changes. Numerical results of eigensolution and forced
response computations confirm that reduced models formulated in accordance
with the minimum ratio criterion and improved by AMI are excellent bases for
efficient structural design studies. The approach is especially applicable to
the design of large space structures because it (1) takes full advantage of
Guyan reduction; (2) simplifies the task of choosing retained DOF; (3) incor-
porates a powerful error compensation algorithm; and (4) provides an accurate
analytical base for structural modifications.
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SECTION I
INTRODUCTION

The use of large space structures for surveillance, reconnaissance,
detection, and tracking will be increased in the near future. Minimizing the
structure’s mass is crucial for Taunching cost reduction. This among other
considerations leads to the design of highly flexible structures. The overall
size of an antenna boom-solar panel assembly is on the arder of 100m and its
first several elastic modes are below 0.1 Hz. These characteristics cause
problems in the dynamic analysis and design of control systems. For instance,
disturbances can create significant structural deformations far beyond strin-
gent mission tolerances, and control must be applied to suppress the vibration
level.

It is the size and flexibility of structures and the requirement for
active control which make it necessary for the dynamic characteristics of such
systems to be determined accurately. Furthermore, since the dynamic charac-
teristics of large space structures in the actual space environment cannot be
rigorously determined from ground vibration testing, their design and the
design of control systems for them will require precise analytical models.

Detailed finite element analysis, however, will result in a large order
dynamic model. Prior to further studies, it will be necessary to reduce the
order of the analytical model to allow economical computations. For this pur-
pose, essentially two types of techniques are developed: component mode syn-
thesis and reduction of physical coordinates. The former employs selected
component modes to represent system structural response. Component modes used
can be eigenvectorsl, Ritz vectors solved from the corresponding static prob-
1em2, or their combinations3. Similarly, reduction of physical coordinates
may apply to both component and system levels. This latter class includes
Guyan reduction4 and generalized dynamic reductions. Certainly, it is possi-
ble to combine two types of reduction techniques if the design is based on
substructure syntheses. For example, Guyan reduction can be applied to vari-

ous component levels to bring down the number of degrees of freedom, an




eigensolution can then be obtained from the assembled structure and, finally,
a modal transformation can be performed to formulate the system equation. In
the present research, we focus on reduction of physical coordinates without
using substructure syntheses techniques.

As indicated in References 6 and 7, a reduced model is inherently non-
linear, even when the full model is linear. Thus, all 1i1near dynamic models
having a reduced number of degrees of freedom (DOF) are imprecise7. It is
important then to evaluate the effects of these errors and to develop means to
correct them.

In practice, attempts to minimize these imprecisions are made by using a
set of modes whose frequencies cover the range of interest (notably, the trun-
cated normal mode approach), or by eliminating unimportant DOF and retaining a
well distributed set of coordinates. These intuitive procedures may be ade-
qQuate when the reduction order is small and when test data is available to
qualitatively validate the models. This is not the case for large space
structures. More sophisticated algorithms have also been developed to improve

the accuracy through analytical selection of retained DOF8’9

10,11

or using sub-
structure techniques “ne former approach eliminates DOF by performing
reduction one DOF at a time while the latter involves matrix inversions of
high rank. Neither can be pursued for the design of large systems where major

reduction is a main concern.

Moreover, even if these methods can be used with confidence, there is no
commonly accepted method for compensating for errors.

The generalized dynamic reduction5 applies subspace iteration techniques
to compensate errors in a Guyan reduction. Low modes of the structure are
used recursively to make up the lost dynamic portion. The iterative nature
makes the algorithm computationally inefficient for large structure systems
and the procedure may be sensitive to noise resulting from the orthogonaliza-
tion procedure. It is also expected that this compensation method has little




effect ¢ those modes beyond, say, the first dozen. For large space struc-
.
tures, it is reported that as high as 100 elastic modes may be considered in

structure/control system interaction analysislz.

Despite its poor accuracy for higher elastic modes, Guyan reductiond,
mainly due to its efficiency, is still popular in practical applications. The
present approach will take advantage of this. But to ease the burden of cau-
tiously choosing retained DOF, as encountered in any reduction procedure, a
semi-analytical, one time only gquideline would definitely be helpful to ana-
lysts dealing with large systems. Also, when a reduced model is obtained, the
question arises as to the possibility of improving the model through compensa-
tion for errors for specified modes. A qualified improvement procedure should
be computationally efficient, applicable to realistically large models, and
satisfy dynamic constraints. Another important problem is the accuracy with
which a reduced model can reflect structural changes. Evaluation of this cap-
ability would decide the usefulness of a reductior and compensation procedure
for system design, especially in the preliminary design stage where intensive
modifications are inevitable.

This report addresses these issues.




SECTION II
ANALYSIS OF INACCURACIES

Exact Reduced Eigenproblem

A linear structure subject to applied forces can be described by
My + Ky = f(t) (1)

where the system mass and stiffness matrices are of order N. The associated
eigenequation

H{w) = (K - wM) x = 0 (2)

uniquely defines the dynamic characteriscice of the system. In Equation 2, w
is the square of a natural frequency and x the corresponding mode shape vec-
tor. When the order of M and K is Tarye (as in a detailed finite element
modeling of structures), it is desirable to use Xpr @ subset of x containing
all retained DOF, to deicribe the system. That is, a reduced model (Mr and

Kr) of order n < N is sought which satisfies the equation

- er)xr =0 (3)

The exact reduced model is the one preserving all information of the full
model. To formulate reduced models, M and K are reordered in such a way that
the upper left submatrices correspond to X that is,

S MM, Wl
T A " :
Ko K4 My My LXS @)

where the subset X, contains ali DOF to be condensed out and is related to X,
as:




xg = - (Kg - oMy (K; i wM;) X

Substituting Eq. (5) back to the first part of Eq. (4) leads to

r (5)

ST
K. = Ky - Ky Ky Ky (6a)
. [ 1,7 1T
M= M- LKZ (Kg - aMy) ™" My + My (K, - oMy) 7 K,
-1 21,7 1T
+ Ky Ka™ My (Ky = aMy) ™0 Ky + oMy (K, - wMy) My (6b)

It is observed that no approximation has been introduced in condensation
procedures up to this point. The reduced model in Eq. (6) contains complete
information of the full model. However, since Mr is frequency dependent the
reduced eigenproblem, Eq. (3), is nonli.near. Solution of this equation is
difficult because it involves extensive iterations. A useful approximation is
simply to impose w = 0 on Eq. (6b) which Jeads to the well-known Guyan reduc-

tion

K. = D'KD (7a)
_ _ Al
Mro = Mr (w = 0) =D'MD (7b)
Hro(w) = Kr - erO (7¢)
[
where D t_K_lKT . Eq. (7) is exact only when w = 0, hence is a quasi-static
2

condensation.

Application of Guyan reduction to dynamic analysis., as is often done, can
be poor. The errors depend on the subset X chosen and the frequency range of
interest. Questions then a.,ise as to the chcice of X, which best represents
the dynamic characteristics of the full model and to the accuracy of the
quasi-static approximation.

on




Reformulation of Reduced Eigenproblem
”»

In Eqs. (4) - (6), submatrices of a full model have been used to define a
reduced model. A structure having M4 and K4 as its mass and stiffness matri-
ces is defined to be the "complementary structure” of the reduced model. Con-
ceptually, it is achieved by constraining all X, in the full model to be zero
and using Xg as its DOF (see Figure 1).

Let A (pxp), p =N - n, be a diagonal matrix whose nonzero elements (Ai,
i=1, ..., p) are the square of natural frequencies of the complementary struc-
ture and ¢(pxp) the corresponding mode shape matrix. The eigenequation and
the orthogonality property of this structure are given by

(Ky - AMy) 6, = 0 (8a)
éTM4§ -1 (8b)
27K, = A (8¢)

where ¢i is the ith mode shape vector.

Note that under linearity assumption, x_ is the sum of modal superposi-

s
tion when X is constrained to zero and the displacement due to relaxation of

the constraint, i.e.,

-1

4 K

) x (9)

T
2 r

Xg = ¢a - (K
The last term in Eq. (9) actually is the static expression (w = 0) of the
right hand side of Eq. (5). The modal coefficient vector a is solved from

Eq. (5), (8), and (9)!!

a = A(w) B X, (10a)
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Figure 1. Definition of Complementary Structure.




in which
LI
Aw) = w (A - o) ! (10b)
B=aM - alelk! (10¢)
2 2
Thus,
x_ = [#A(w) B - Ki1 Kl x (11)
S 4 2 r

Substituting Eq. (11) into Eq. (4) results in the exact reduced eigen-
equation

Hr(w) X, =0 (12a)

Ho(w) = K, - M+ BTA(w)B] (12b)

where Kr and Mro were defined in Eq. (7). Formally, Eq. (12b) is different
from Eq. (7c) only in the additional term BTA(w)B in the bracket. Although
Eqs. (3) and (6), and (12) are equivalent and exact, the new formulation (Egq.
(12)) 1is considered more efficient than its old version (Eqs. (3) and (6))
because the only frequency dependent matrix A(w) is diagonal. However, no
attempt is made here to solve Eq. (12) since it still needs intensive itera-
tions. This formulation is used as a base for the error analysis in the next
subsection.

Error of Naturai fFrequency

A perturbation analysis is performed below to investigate the natural
frequency errors introduced by Guyan reduction. It is assumed tacitly that
w # 0 which precludes a trivial case.




Let (“i’ qh) be an eigenpair defined by a (Guyan) reduced model, i.e.,
Hpg (0j) ¥; =0 (13a)
where wi has been normalized so that

b b, = 1 (13b)

ir

Expand Hr(w) and X, with respect to their corresponding approximate func-
tions at W, the exact eigenproblem (12) becomes

[Kr - wiMrO - (wiAMr + AwiMrO) - Awi AMr] (wi + Awi) =0 (14a)
where

MM = B'A(w)B (14b)

Premultiplying Eq. (14a) by (wi + Aw].)T and applying Eq. (13) to simplify

the result, then

Mo = g Y MM (0)) ¥, (15)

Therefore, the error ratio of a natural freguency is

du/u, = Y] B'A (0,) BY,

m
]

Tl y-lgT, T

T
[(Q M2 -A® Kz) wi]

1T L TT )
(8'M, - A8 Ky) ¥, (16)

]

(A - wiI)

Note that if A is positive definite then Awi <0, i.e., (he natural fre-
quency of a (Guyan) reduced model is bigger than its corresponding exact value
of the full model.

In Eq. (16), the error of natural frequency of a reduced model through
quasi-static condensation is expressed in terms of the eigenpair (wi, wi) of




the reduced model and the eigensolutions (A, ¢) of the complementary struc-
ture. In the case of a major reduction in degrees of freedom from the full

complementary structure are time-consuming when the order of eigenequation (p)
is large. Further development is possible if the scope of the analysis is
confined to error-bound calculation.

Let Al be the smallest eigenvalue in A. When w, <« Al, an inequality can
be obtained from Eq. (16)

TosTul . 4-1
€; <wy/A [Pi(@ My - A

T .7 }
3 KZ)T (éTM; Ry K;) V. (17)

Using Eqs. (8b) and (7b), the expression in the bracket in Eq. (17) is
rewritten as

1 -y

1

1T
(M) - My M,° M) Y,

; (18)

It is noted that the expression in the parentheses in Eq. (18) is the
same as that of in Eq. (6a) if M is replaced by K. In other words, the paren-
thesized matrix is an exact condensation of a system with M as its stiffness
matrix and thus, is positive semidefinite. Since Eq. (16) guarantees €, being
positive for w; < Al, (i.e., an eigenvalue of a reduced model is greater than
the corresponding eigenvalue of the exact model), combination of Egs. (17) and
(18) leads to

€; < wi/kl (19)

Eq. (19) gives an upper bound of errors due to Guyan reduction. The
error bound is a function of natural frequency sought (“i) and, as expected,
becomes larger when the natural frequency is higher. The only information
required from complementary structure is the smallest eigenvalue )1. Many
efficient algorithms are available to compute the leading eigenvalue of a
large order eigenproblem. A similar derivation was shown in Reference 13 as

10




an intermediatg_step to find absolute error bound. Here Equation 19 is used
as a base from which to draw useful information for the retained DOF selec-
tion.

Choice of X,

Eq. (19) also reveals that an optimal subset X, chosen from the full
model should maximize kl to make the error bound low. In other words, the
retained degrees of freedom X must be selected in such a way that the corres-

ponding complementary structure is as "stiff" as possible.

For a given set of full matrices M and K, no once-for-all criterion on
the choice of X, can be drawn analytically because there is no functional
relationship between eigenvalues of a system and the individual elements of
the system. It is acknowledged that an "analytical" method on selection of X
based on simple criterion and incorporated with frontal solver techniques was
proposed. This approach requires reducing degrees of freedom one by one and
in each loop a Guyan reduction be performed. It may be useful for a rela-
tively small system. In the case of major reduction from a large structure,
as is usuailly done, this procedure would be prohibitively expensive and thus

is not recommended here.

From Eq. (8a), it is justifiable qualitatively to expect that a comple-
mentary structure is stiffer if all diagonal element ratios (K4)ii/(M4)ii
become larger. This means that as a rule of thumb a best set of degrees of
freedom 1is the one having minimum Kii/Mii (i =1, ..., n) ratios. The
greatest advantage of this criterion is its simplicity although it is not an
analytical result. There is no guarantee that the reduced model so obtained
will preserve all n lowest natural frequencies of the full model. This guide-
line will be referred to as the minimum ratio criterion in the future discus-
sion. The "analytical selection” method adopted in References 8 and 9 uses
the same criterion, but is on an iterative basis.

11




Frequency Response

The mobility matrix of a linear dynamic system, Eq. (1), is defined by
TRt -1
Z(w) = (w 'K - M) (20)

The (i, j)th element of Z(w) characterizes the steady-state response of jth
DOF when a unit force of frequency w is applied at ith DOF of the system. To
evaluate how good a reduced model can predict the forced response of the full
model, it is useful to compare certain mobility elements of interest, for in-
stance, the driving point mobility (a diagonal element of Z(w)) of both
models.

Validation of the Criterion

A delta wing is modeled as a coupied system of three rigid ribs (modal
representation) and five skin finite element substructures using Kaman’s DYSCO
(Oynamic System Coupler) program. In Figure 2, each skin Tlumped-mass is
denoted by a solid circle and each rib center of gravity is denoted by an X.
Vertical displacements of the skin and ribs and pitch displacements of the
ribs are considered. The total number of DOF represented in Figure 2 is 61,
including 21 implicit (dependent) DOF. A1l skin DOF coincident with ribs are
considered to be implicit, that is they can be expressed as linear combina-
tions of the rib vertical and pitch DOF. Thus, the model has 40 independent
DOF.

In DYSCO the required input data are the finite element mass and stiff-
ness matrices for each skin substructure and the modal definition, center of
gravity location, and implicit degree of freedom definitions for each rib.
The coupled 40 degree of freedom model is then assembled automatically by the
program. Figure 3 identifies the final 40 degrees of freedom which define a
full model. An eigenanalysis of the full model was performed using DYSCO and
the first 10 modes are shown in Figure 4.

12
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Various rgguced models can be obtained by applying Guyan reduction to the
full model. Five of them having 10 or 15 DOF and their eigenvalue errors of
the first several modes are shown in Figure 5. Selection of DOF for RM4 and
RM30 are based on intuitive judgement while in the "worst" model (RM20), two
dominant rib DOF (PTCH 1000 and PTCH 3000) are intentionally reduced out. The
rest two, RM11 and RM40 are formulated based on the minimum ratio criterion.

It is observed that both RM4 and RMI11 preserve (in the sense that -dw;
and €; are small) the first eight modes of the full model and are considered
as good reduced models. In this case, use of the criterion does not make RMI1l
much different from a reasonably formulated RM4 since choosing 15 out of 40
may not be viewed as a truly major reduction in system DOF. A more crucial
comparison is made for the three 10 DOF models. Note that in Figure 5, RM40Q
preserves the first seven modes, RM30 missed the fifth and modes beyond the
sixth while RM20 preserves only modes 1, 2, and 4. Obviously, the reduced
model with the minimum ratio criterion is superior to the other two.

Other evidence of the minimum ratio criterion being a good guideline for
the selection of retained DOF is seen from frequency responses. In Figure 6
the driving point mobilities at the wing tip (Z55) for RM4 and RMll are
plotted against that for the full model in the frequency range of 15 to 95 Hz.
Similarly, the driving point mobilities at Z19 for RM30, RM40 and the full
model are given in Figure 7. Obviously, RM1l and RM40 are better than their
intuitively chosen counterparts RM4 and RM30.
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SECTION III
ERROR COMPENSATION FOR REDUCED MODELS

>
—

Although it can result in better models, some deficiencies still exist in
using the minimum ratio criterion. First of all, there is no guarantee that
the resultant reduced model can preserve all natural frequencies of the full
model in the freguency range of interest. The situation is even worse if the
range of interest is not in the lowest frequency range. Furthermore, accura-
cies of the corresponding eigenvectors may be very poor and cannot be esti-
mated analytically. Thus, for the compensation of these errors, a procedure
called AMI (Analytical Model Improvement) is applied to modify reduced models.

AMI is a procedure which finds the smallest changes in the given model so
that the improved one satisfies orthogonality relationships and the dynamic
equation and exactly predicts specific dynamic characteristics (eigensolutions
in the assigned frequency range) of the full model. This algorithm was origi-

nally designed for structural system identification14’15, whose physica17’16

and mathematica]ls’17

foundations have been extensively discussed. The bases
of this identification method are a well-formulated analytical model and a
modal matrix to be matched. In the present model reduction problem, they are
the reduced model and the specific modes of the full model, respectively. The
program is applicable to realistically Tlarge models and is computationally

efficient.

Improvement of Reduced Models

The following procedures are used to modify a reduced model:
1. Extract eigensolutions of the given full model over a frequency

range of interest. In practice, the number of eigensolutions
extracted is very small compared to the order of the full

21




modeL. Many algorithms are available, notably thcse of
NASTRAN, to ef?ective]y perform this procedure.

2. Formulate a reduced model by using Guyan reduction.

3. Provide the modes to be matched (i.e., the eigensolutions
extracted in step 1) to AMI for the improvement of the reduced
model.

4. Compute and plot mobilities of interest of the full and reduced
models for comparison.

Figure 8 shows some results of AMI improvement when the procedures are
applied to the models described in Figure 5. In column 3, m (m < n) denotes
the number of modes to be matched and column 4 specifies these modes. The
percentage changes of mass and stiffness matrices are shown in columns (5) to
(10). A measure given in (5) and (8) is the ratio of the root mean square
(rms) of the changes to the rms of the original matrix of a reduced model.
The other two measures named the absolute mean ratio of the diagonal changes
and rms of the changes divided by the square root of product of the two cor-
responding diagonal elements are listed in columns (6) and (9) and columns (7)
and (10), respectively. These last two are important measures since mass
matrices are strongly diagonal. Apparently, Jarge changes in matrices of a
reduced model imply that the modes to be matched deviate far from any subject
of eigensolutions of the model. In RM4, the number of modes to be matched (m)
are chosen to be 5, 7, 10, and 15, and large m value means imposing move con-
straints on the AM! procedures. It is noted that m/n may not exceed one hailf
or the improvement procedures would be too constrained to allow small modifi-
cations on the reduced model to match the assigned m modes.

To investigate the sensitivity of AMI to a missed mode, two cases are per-
formed on RM20, RM30 and RM40 for comparison. In the first case, AMI is car-
ried out to match the first five modes (the first one being rigid body mode)
of the full model, while in the second case, the third mode is intentionally
dropped. It is observed that the changes are about the same order for both

22




REDUCED =] MODES 10 .
MODEL | n |'m [BE MATCHED : AM(%) - : aK(%) -
(1) (2) |(3) (4) (5) (6) (7) (8) (9) 10)

5 1-5 1 .6 .5 1 3 3
RM4 15
7 1-7 3 2 1.6 1 1 .6
1-7 3 ] .9 1 4 3
RM11 |15 | 7
1-3; 5-8 5 3 3 4 3 { 3
—t
1-5 2 .8 6 | 2.5 8 I .7
|
RM40
"Best" [10 | 5 | 1-2; 4-6 3 1.6 1.8 .5 .8 7
3-7 1.4 1.4 1.7 { 3.2 2.8 2.2
1-5 22 21 23 7 7 8
RM30
"Medium" |10 | 5 | 1-2; 4-6 42 8 7 35 4l 13 13
1 I
3-7 196 73 79 | 163 161 166
1
1-5 1459 525 533 | 730 257 261
RM30
"Worst" |10 | 5 |1-2; 4-6 23 €5 61 26 22 20
3-7 3699 5594 | 5566 |4046 | 1952 | 1924
. 172
t = rms (AA)/rms(A) * = 1/n E[AAii/Aiil = rms (8A)/ (A 4A55)
Figure 8. AMI Improvement.
23




cases if the unimproved reduced models (RM40 and RM30) are reasonably formu-
lated. Eviden{]j} RM20 is a poor reduced model as is seen from very large
changes in the first case. Since changes are relatively small in the second
case, RM20 seems not that bad if the third mode is not included in AMI. This
can be attributed to the fact that the unimproved RM20 missed the third mode
of the full model (see Figure 5). Therefore, AMI is numerically stable when-
ever the unimproved reduced model is well formulated even if certain low modes
are not included in the imnrovement nrocedures.

Also shown in Figure 8 are the percentage changes of the three 10 DOF
models when modes 3 to 7 of the full model are assigned to AMI. It is anti-
cipated that the current changes are higher than the corresponding ones which
match the first five modes.

Forced responses are given in Figures 9 to 12. For a good reduced model
(RM11) based on the minimum ratio criterion, Figure 9 shows that AMI still can
improve it to give better mobility prediction. As expected, improvement be-
comes more significant when frequencies are larger. For various 10 DOF re-
duced models (RM40, RM30 and RM20), Figures 10 to 12 show driving point mobil-
ities at wing root trailing edge (Z19) plotted against the full model mobil-
ity. It is evident that the AMI improved models (based on either the first 5
modes or the modes 3 to 7) excellently match the specified modes of interest
even the corresponding unimproved model (for instance, RM20) is highly inaccu-
rate.
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SECTION IV
EFFECTS OF STRUCTURAL CHANGES

Structural Modification

Design of a large space structure requires intensive interactions among
project departments. When a design change is made, the whole analysis loop
must be repeated, which includes reformulation of full and reduced models and
thus is quite inefficient. It is desirable to be able to modify reduced
models directly without a new analysis loop.

To clarify this idea, four sets of models are defined as follows. Before
structural modifications, a full model is identified by M and K, and a reduced
model by Mr and Kr. The corresponding full and reduced models are denoted by
M, K and Mr’ Kr respectively after modification of the structure. There are
two approaches to achieve a modified reduced model ﬁr, Rr' The first obtains
M, K by directly modifying the original full model and then reduces the modi-
fied full model to get ﬁr, Kr‘ This approach is exact but tedious. The sec-
ond approach avoids changing a fuli model. Rather, it reduces M, K to Mr’ Kr
and modifies this small system to achieve the modified reduced model (Mr, Kr).
The latter approach certainly is much more efficient. The question remaining
is the error it may introduce. That is, we have to investigate the capability

of ﬁr and Kr to represent the effects of changes if the shortcut is taken.

fvaluation of Various Reduced Models

Figure 13 shows how we evaluate the capacity of various reduced models to
accurately represent the effects of changes. In the figure, eigensolutions
and/or frequency response from modified reduced model ﬁr and Kr (which are
obtained through the shortcut as shown in the last section) are compared
against those from modified full model M and K. For numerical comparison we
use the 40 DOF delta wing model (see Figure 3) as the original full model and
the results are given in Figures 14 to 16. The modified full model s
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A MODIFIED FULL EIGENSOLUTIONS

ORIGINAL FULL

M, K - MK == FREQ. RESPONSE
REDUCTION

REDUCED A MODIFIED REDUCED ————==EIGENSOLUTIONS

ﬁr’ Kr‘ ’.ﬁr’ Kr FREQ. RESPONSE

Figure 13. Evaluation of Reduced Model Capability

To Represent the Effects of Changes.

> COMPARISON

/
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LA
o FREQUENCIES OF ELASTIC MODES (Hz)

MODEL

2tt 3 4 5 6
FO 17.39 27.27 39.56 45.13 53.89
M 21.96 31.64 39.53 45.15 53.83

[26] [16] [-.06] [.05] [-.1]

|

RM30M 22.66 32.78 40.15 52.48 56.85

(3.2) (3.6) (1.6) (16) (5.6)
1 1
|

IM30M - 21.74 32.53 | 39.55 45.17 55.97
C(-1) (2.8) | (.06) (.05) (4)

; 1
| | |

RM40M . 22.18 ! 31.99  40.15 46.38 55.24
ﬁ (1.0) | (1.1) (1.6) | (2.7) (2.6)
. | '

IMaOM - 21,94 | 31.86 39.53 45.16 55.22
~(-.08) @ (.7) (0) (.01) (2.6)
L0

le=0

Figure 14. Frequencies of Various Modified Models.
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achieved by dogb]ing mass and stiffness elements at Z.1 and Z19 (see Figure
3). The changes are significant as can be seen from a 26% increase in natural
frequency of the first elastic mode (compare the solid lines labeled 2 in Fig-
ures 7 and 15). The other modified reduced models in Figures 15 and 16 are
obtained by changing the associated elements of the AMI improved and unim-
proved RM30 and RM40 (see Figures 5 and 8) accordingly.

Figure 14 lists frequencies of the first five elastic modes of two full
and four reduced models. The two full models are the original (FO, as shown
in Figure 3) and the modified (FM). The four reduced models are all modified
ones which include RM30M, IM30M, RM4OM and IM40OM. Note that here "modified"
(e.g., FM, RM30M and IM30M) is referred to 100% increase of mass and stiffness
element values at ZI1 and Z19 from the corresponding unmodified full (FQ) or
reduced (RM30, IM30) model. [IM30 and IM40 are the AMI improvement (matching
modes 1 to 5 of FO) of RM30 and RM40 before modification. In the figure, the
percentage frequency change of a FM mode relative to the associated FO mode is
given in brackets while the percentage change of a reduced model mode relative
to the associated FM mode is given in parentheses. Obviously, from the eigen-
value comparison the improved IM30M and IM4OM are better than their unimproved
counterparts RM30M and RM4OM in the frequency range shown. Also, the modified
reduced models applying the minimum ratio criterion (RM40M and IM4OM) are
better than the corresponding models (RM30M and IM30OM) without applying the
criterion.

In Figure 15, the modified, improved reduced model (DASHDIP) shows much
better agreemert with the modified full model (SOLID) than the modified, unim-
proved one (DOT) in the specified frequency range. The same conclusion also
can be drawn from Figure 16. This validates the effectiveness of using AMI
improved reduced models as a baseline for design modification. Furthermore,
comparison of the two DASHDIP cases in Figures 15 and 16 indicates that the
modified improved RM40 better reflects the structural changes than the modi-
fied improved RM30. Therefore, it is effective to use the AMI improved re-
duced models whose DOF are chosen using the minimum ratio criterion as bases
of modification when changes in structural design are made.
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SECTION Vv
CONCLUSTONS

This report deals with several important aspects of dynamic model reduc-
tion and related issues. Guyan reduction is here applied to the design of
large space systems because the procedure is highly efficient and the struc-
ture is quite flexible. The minimum-ratio criterion, which retains a subset
cf DOF whose corresponding diagonal element ratio of stiffness over mass
matrices are the smallest, is drawn from an analysis of natural frequency
errors. Comparison of eigensolutions and frequency responses of various
reduced models reveals that the criterion is a good guideline for the selec-
tion of retained DOF. The reduced model is then improved by AMI program to
exactly match desirabie modes of the associated full model. Extensive studies
show that this compensation algorithm is computationally efficient, numeri-
cally stable and formulated on sound physical grounds. Numerical solutions
also indicate that the reduced model, which is based on the selection criter-
ion and improved by AMI, excellently represents the structural modifications
in the frequency band of interest. The proposed approach is, therefore,
highly recommended for the design of large space structures.
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