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I. INTRODUCTION

This final technical report presents a comprehensive summary of the
research accomplishments supported by Grant $AFOSR-86-0080 over the period
January 1, 1986 to August 31, 1989. The report reviews the objectives of the
research in Section 1. The status of the research effort is reported in
Section 2. GSection 3 cf Chapter 1 presents a chronological list of written
publications resulting from this research effort. Manuscripts planned for
imminent submission to technical journals are also listed. Fullowing this, the
report presents a recapitulation of the advanced degrees awarded, a list of
thesis titles, and a history of the professional personnel associated with this
grant. Seminars, presented papers, and advisory meetings with Air Force and
other DOD laboratories are reviewed in Section 5.

Appendix A of the report summarizes the results nf the dynamic simulation
of the Star 48 spacecraft. The results of a control law analysis to stabilize
the spacecraft are considered in Appendix B of this report.

The need for a convenient stationary bench model of a nutating spacecraft
is outlined in the research objectives. This mcdel was developed as the
satellite simulator test rig and its design is described briefly in Appendix C.
The development of the instrumentation which was used to measure the dynamic
motion of the simulator is given in Appendix D. Appendix E is a discussion of
the successful computer simulation of the test-rig dynamic response from a
Lagrangian formulation of the equation of motion.

Appendices F and G summarize the results of the computational fluid
dynamic analysis of 2-dimensional and 3-dimensional models of the sloshing
fluid. The dynamics of a fluid in a rectangular space was analyzed and, more

recently, the response of a free surface liquid in a spherical tank has been

studied.




1.1 Research Objectives

The objectives of this research grant were to derive the equations of
motion of a spacecrzft containing liquid fuel stores; the modeling of the
free-surface liquid was to be done by (a) equivalent two-dimensional pendulum
representation and (b) by computational fluid dynamic modeling.

This project proposed to build an experimental test rig which simulated
the spinning and coning motion of a spacecraft. The satellite simulator would
contain symmetrically placed spherical tanks with adequate instrumentation to
study the dynamic state of the free surface liquid as well as the instantaneous
structural response. It was the stated objective of {he project that the
physical system modelling be continued and adapted until total agreement was
achieved between the analytical response and the experimenial data obtained
from the satellite simulator.

It was the purpose of this research that it produce a mathematical model
of the spacecraft capable of predicting the precession of the spin axis of &

satellite that develops as the spacecraft responds to a sudden axial thrus:.




1.2 Status of Research

The work of simulation of the Star 48 Communication Satellite flight
dynamics, begun in June 1983 at AEDC-Arnold AFS, was completed and culminated
in a published paper (see Appendix A). The analysis of a control law to
provide dynamic flight stability to the satellite was completed. A technical
publication abstracted from this work has been submitted for review (see
Appendix B).

The analysis and design of the satellite simulator test-rig model was
completed. A technical publication will be abstracted from this and submitted
for review for publication in the literature (see Appendix C). Instrumentation
of the spinning and nutating simulator was completed to provide measured
dynamic response of the basic structural components as well as the fluid
response. A technical publication abstracted from this work will be submitted
for review for publication in the literature (see Appendix D). The equations
of motion of the simulator were formulated from a Langrangion analysis and were
programmed for solution on the digital computer. The successful computer
simulation of measured response of the test rig resulted. This work is
abstracted for publication in Appendix E of this report.

The computational fluid dynamic analysis completed under this grant has
produced a primitive variable simulation of two-dimensional fluid response (see
Appendix F). The three-dimensional modeling of a free surface visous fluid in
a spherical container has now simulated the dynamic response to besic centrif-
ugal disturbance and is presented in Appendix G in abstract for review tor

publication.




1.3 Publications

Listed below are the technizal publications resulting fiom this work which lLave

been previously submitted to the Air Force Office ol Scientific Research.

Hill, D. E., Baumgarten, J. R., and Miller, J. T., "Dynamic Simulation
of Spin-Stabilized Spacecraft with Sloshing Fluid Stores," Technical

Report No. ISU-ERI-Ames-86451, Dec. 1986.

Hill, D. E. and Baumgarten, J. R., "Control of Spin-Stabilized Spacecraft

with Sloshing Fluid Stores," Technical Report No. ISU-ERI-Ames 86452,

Dec. 1986.

Baumgarten, J. R., Prusa, J. M., and Flugrad, D. R., "An Investigation of
Liquid Sloshing in Spin-Stabilized Satellites," Technical Report No.
ISU-ERI-Ames 88175, Jan. 31, 1988.

di1li, v. B., Bauligaiien, J. o., aad Miller, Y T., "Dynamic Simulation of
Spin-Stabilized Spacecraft with Sloshing Fliid Stores,™ AIAA Journal of
Guidance, Control, and Dynamics, Vol. 11, No. 6, Nov-Dec 1988, pp.

597-599.

Listed in the following are technical publications resulting from this work

which are currently under review and which will be submitted for publicatinn.

Hill, D. E., and Baumgarten, J. R., "Control nf Spin-Stabilized Spaceccrait
with Sloshing Fluid Stores," under review for the Procecdings of the 1290

American Control Conference.




Prusa, J. M., and Kassinos, A. C., "Numerical Solution of 2-D Viscous

Sloshing in Rectangular Containers of Finite Aspect Ratio,"” to be

submitted to Journal of Computational Physics.

Kassinos, A. C. and Prusa, J. M., "Study of 3-D Viscous Sloshing in
Spherical Containers,” to be submitted to Journal of Computational

Physics.

Flugrad, D. R., Anderson, M. D. and Cowles, D. S., "A Test Rig to Simulate
Liquid Sloshing in Spin-Stabilized Satellites - Part One: Pesign and
Instrumentation," to be submitted to AIAA Journai of Guidance, Control,

and Dynamics.

Flugrad, D. R. and Anderson, M. D., "A Test Rig to Simulate Liquid
Sloshing in Spin-Stabilized Satellites - Part Two: Experimental Results,"

to be submitted to ATIAA Journal of Guidance, Control, and Dynamics.

Flugrad, D. R., and Obermaier, L. A., "Computer Simulatisn of a Test Rig
to Model Liquid Sloshing in Spin-Stabilized Satellites," to be submitted

to ASME Journal of Dynamic Systems and Control.
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1.+ List of Rosearch Personnel, Thesis Title o and Derroos Lwarued

This research was initiated in June 1683 by D0 E. DNl and J. R.
Baumgarten during an AFOSR summer faculty apreir ment to AEDC hongine oot

N

Freility art arnold Air Fecrce Statior. Tennes_eo. e Iadicated 1n Apoaends.
A, ALDC had tested a typical PAM rociiet motor and had tfound no
instabilities that could explain the coning motion of spinning
communication satellites. A forerunner to this present grant, AFOSE
Rescarch Initiation Grant, Subcontract No. 82RIP33 allowed Hill to
initiate the study of the dynamic responce of sloshing fuel stores as oa
possible contributor to spacecraft coning motion. Dr. Hill received the

Ph.D. degree in December 1985 and .he present grant supported publication

cf this thesis titled:

Hill, D. E., "Dynamics and Contiol of Spin-Stabilized Spacecraft with

" H

Sloshing Fluid Stores,” Ph.D. Thesis. Towa State Uulversity, ames, 14,

1985.

The desire to have a bench test device to duplicate the relative tluid

moticen in a spinning-nutating structure motivarcd the study of Do S,

Cowles. Under divection of D. K. Flogrod, Covle desizis 4 ard bavle the

first working version of the satellite simulator doncribe? and pictured in
c

Appendix C. Douglazx S, Covles teccrved the HoSo in Mechianicar Fog e Ty

Degree in Decenmb:r 1787, Hir the<i~ wn - 101 led:

Cowle<, D. 9. Decdpn of a Sy oo e e e gl it alotor w0

Logquid Fuel Stove 0" M5S0 Thesis, Towie Srtate Mntova ity awes, 1A, ot
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(C)

(D)

(E)

The need for measured response of the sloshing fluid and the nutating
structure prompted the instrumentation effort of M. D. Anderson. VWorkinr
under the direction of D. R. Flugrad, Anderson reconfigured the simulator,
instrumented the fluid tanks, the two degree of freedom universal joint,
and set up a data collection system as outlined in Appendix C. Michael D.
Anderson received the M.S. Degree in Mechanical Engineering in August 1983

and his thesis was titled:

Anderson, M. D., "Instrumentation of a Spin-Stabilized Spacecraft
Simulator with Liquid Fuel Stores," M. S. Thesis, Iowa State University,

Ames, IA, 1988.

Having a working bench model of the spin stabilized satellite, it was now
desired to complete the dvnamic modeling of the simulator. Under
direction of D. R. Flugrad, Lisa Ann Obermaier completed the formulation
of the test-rig equations of motion. Her successful computer simulation
of the test rig allowed the study of many response parameters and will be
a valuable tool in subsequent work. She received the M.S. Degree in

Mechanical Engineering in December 1988 and her thesis was titled:

Obermaier, L. A., "Computer Simulation of a Spin-Stabilized Spacecraft
Simulator with Liquid Fuel Stores," M.S. Thesis, Iowa State University,,

Ames, IA, 1988.

The need to replace the pendulum model of the sloshing liquid in its
spherical tank with a computational fluid dynamic modeling of the

free-surface liquid motivated the work of A. C. Kassinos. Directed by




J. M. Prusa, Kascinos has formulated a primitive variable computer progrcm

for analysis of the dynamic fluid response. Adonis C. Kassinos cipects to

v ceive his Ph.D. degree in December 1989 and his thesis will be titled:

"assinos, A. C., "Study of 3-D Viscous Sloshing in Moving Containers,"

Ph.D. Thesis, Iowa State University, Ames, IA, 1989.

(F) The desire to study the fluid and stiucture interaction during the
sloshing and nutating phase of the simulator m>tion prompted Janet L.
Meyer to instrument che vpper arm assembly of the simnlator. Under
direction of J. R. Baumgarten, Meyer made <train gage measurements ot
struntural deilectien of the spinning simulator. Lt. Janet Meyer's
graduvate study program was interrupted after one year by her orders to
report to her first U. S. Air Force duty station at the Los Angeles
Aerospace Command. It will be necescary for her to complete her M.S.

dissertation in absentia. Her thesis is tentatively titled:

Meyer, J. L., "Correlation of Liquid Motion and Structural Deflection in

the Spacecraft Simulator Response,’ nc date of graduation is committeu.




1.5 Seminars, Papers, and Laboratory Visits

J. R. Baumgarten visited Dr. Anthony Amos at AFOSR Bolling AFB in March
1986 and at Wright Patterson AFB in March 1988. These visits coordinated the
vork of various technical personnel with the interests of the Air Force during
the term of this grant. Dr. Amos visited the Mechanical Engineering Depart-
ment, Iowa State University in August, 1987 to review research progress.

J. R. Baumgarten visited the Naval Research Laboratory on March 7, 1986
to study the construction of the Gyrodynamic Motion Simulator. Mr. Samuel
Hollander, Head of Control Systems, Space Systems Division was his host.
Baumgarten presented the seminar "Sloshing Fuel Stores in Spinning Spacecraft”
to the Landing Dynamics Branch, NASA Langley Research Center, March 10, 1988.
Mr. John Tanner, Branch Manager, was the host. Baumgarten visited the Engine
Test Facility, AEDC, Arnold AFS, on March 9, 1989 to discuss research results
with Mr. J. R. Smith, Section Manager. The seminar "Tumbling Satellites" was
conducted for the Society of American Military Engineers at Iowa State

University, on April 3, 1989.




APPENDIX A

SPACECRAFT DYNAMIC SIMULATION
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Dynamic Simulation of Spin-Stabilized
Spacecraft with Sloshing Fluid Stores

Daniel E. Hill* and Joseph R. Baumgartent
Jowa State Unicersity, Ames, lowa
and
John T. Millert
Arnold Engineering Development Cener,
Tulluhomu, Tennessee

Introduction

AUNCHINGS of several communications satellites have

consistently resulted in a nutating motion of the space-
craft. Flight data from the roll, pitch, and yaw axis rate gyvros
indicated a constant-frequency, equal-amplitude, sinusoidal
oscillation about the pitch and yaw axis. The vector combina-
tion of these two components of oscillation resulted in a coning
motion of the satellite about the roll axis. The vehicle was
spin-stabilized at launch about the nminor axis, having a onc
revolution per second (rps) roli angdia, o~y imparted to it

After launching from the carner vehscle in the perigee phase
of its orbit, the satellite’s penipee assist module (PAM) fired 1ts
thruster to establish a4 geosvachronous Earth orbit. 1t s this
axaal thrust that gives rise to the comng that predominates alter
PAM motor burnout. Consistently, thight data from rate gyros
indicated the steady-state oue-halt cycle per second (¢ps) coning
frequency and a one-hatf cyele cps smali-amphitude disturbance
superimposed on the 1 rps roli angular velocity.

Combuston instabilities in the PAM rocket motor were sus-
pected 1o be the source of a stde force that would induce the
coning motion. In order te invesugate the presence of any such
combustion tnstabilities, & PAM rocket motor was fired at the
Engine Test Facility. Arnold Engincening Development Cen-
ter, Arnold Air Foree Station A test tixture having lateral and
axial load cells was utihzed, allowing the PAM to be spun at
| rps during firing. A spectral analysis was completed of the
resulting load cell records obtained durtng tiring. The test re-
sults indicated no forees at the required frequency (one-hall’
cps). and it was concluded that combustion instabihties were
not the source of moments causing conthg motion.

A preliminary analy sis of the payload (communication satel-
lite) was completed indicatng that sloshing fluid stores may
induce the comnag motwon. It was suspected that sloshing mo-
tion of the hiquid stores in the vehicle, excited by the aval
thrust, was the mechamsm for creating the nutation of the
spacecraft.

The modehng of fluid stosh s extensive and has been used by
rescarchers to study ats cffect on space vehicle moton' !
Michelini et at* outhned a procedure for developing the equa-
uons of monon of a spimnyg satellite contning fluid stores.
The equations of motion were not presented. but the study
supplicd the analyucal background tor the expenmenta) wden-
utication of the dynanic model Baperimental results showed
that small-amphitude free sunface wave motton does not cause
instabilities in the sehicle Tnstabehities were found to be genet-
ated by the fundamental mode of flurd slosh, which s not
cxcited by small-amphtude free surface wave motion. The con-
sequence of the first-mode natural trequency causing instabibity
i the vebacle jushibies the wse ot an equn alent sphernica) pendu-
lum model of fud slosh

Recerved May PO T4 n rcvivon recenved Nov 3 1EIRT Copyrnehu ¢
FOX™ by Damiel b HlL Publichicd by the Amencar fnstitute of Ao
nautics and Astronguiicy, o with permis o
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598 J. GUIDANCE

The equivalent spherical pendulum model, which is based on
experimental results, is a means of simplifying the extremely
complicated problem of modcling the free surface uid behav-
tor coupled to the vehicle dynamics. The problem would nor-
mally consist of solving a boundary value problem and an
imtal value problem. The simpiified equivalent mechanical
modcl reduces the complexity to an initial value problem,
which is handled with much more ease mathematically. This
study uses the experimental results of previous researchers to
develop a simplificd mathematical model that describes the
interaction between the fluid mass and main vehicle body.

Numerical Simulation of the Equations of Motion

The equations that define the motion of the system shown in
Fig 1 arc a sct of nonlincar coupled ordinary difficrential equa-
tions.* 7 The equations must be solved by numerical methods
because an analytical solution is not available.

Numerical values for the vehicle gcometry and fuel tank
configuration were obtained from test data. The vehicle main
body mass varies from 6400 to 2000 ibm during the 85.3-s
PAM burn while the roll axis moment of inertia varies from
18869 to 10240 Ibm-ft* and the transverse axis inertia {rom
67652 10 19513 tbm-f1°. Sloshing fluid stores were modeled 10

by R

b (Yaw)

/]

Ly ek h
|

!
!
1
1
~~_l

Fig. 1 Model of spacecraft with spherical pendulum,

)

L.

VOL. 11, NO. 6

have a pendulous mass of 5 1bm and a length of 7.2 in. with the
centers of the four tanks positioned symmetrically 25 1n. along
and 18 in. radially from the main body centerline. Fluid damp-
ing was estimated to have a 0.01 dimensionless damping ratio
The dimensionless damping ratio is determined from a single
degree of freedom slosh analysis based on fluid type. mass,
level, and tank geometry. The damping coefficient used n the
model is then determined from the classical vibration relation-
ships between the dimensionless damping ratio, pendulum
geometry, and pendulum natural frequency. Symmetry of the
tank geometry allows the same damping coefficient to be uscd
with respect to both of the pendulum degrees of freedom.
The flight simulation was made with the vehicle spin-stati-
lized about the minor axis. Initial conditions on the vehicle
were simple spin about the minor axis, with the main body
fixed axis aligned with the ineruial frame, an alutude of
200 miles and a 1.5-h orbital period. Figure 2 shows the body
fixed angular rates vs time with instability occurring near the
PAM burnout at 85.3s. It is reasoned that the instability 15
caused by increasing torque on the main body resulting from
the mass expulsion coupled with the fluid sloshing mass mo-
tion. Expulsion of mass not only produces time-varying inertia
but also gencrates what may be interpreted as external torque
on the main body even if the exit velocity vector is aligned with
the spin axis. The torque is zero if there is no coning motion.
but any small disturbance. i.¢., fluid sloshing mass motion,
perturbs the main body, causing it to cone more which, in turn,
cexcites the sloshing mass motion. The torque and sloshing mass
motion effects will be diminished if the main body is gyroscop-
ically stiff enough. Before PAM burnout, the motion of the
vehicle is sull relatively stable because the system is gyroscop-
ically stiff and has a transverse to roll axis inertia ratio of 3.6.
After PAM burnout, the incriia is constant while the transverse
Lo roll axis inertia ratio is reduced to 1.9 and there is a step

TA GYRO 1%2)
Mn-31-12 6 Hz LPF

PITCH GYRO (x2)

FN-30-13 6 M1 irf
30
opPS t ""‘V
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PAM MITOR (1 « 1380.6 u1C }
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Fig. 3 Body fixed angular rates vs time- ROA-C 1.
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change in the main body acceleration. The step change in accel-
cration excites the sloshing mass motion which, when coupled
with the main body decreased incrtia ratio, produces an un-
stable oscillation.

Figure 3 shows telemetered flight data from a previous mis-
sion. The pitch and yaw rate gyro data show approximately
equal amplitude with 90-deg phase shift, indicating a coning
response. Comparison of Figs. 2 and 3 shows that the growth
of the coning motion is substantially diffcrent, indicating that
sloshing mass motion is not the mechamsm causing the
anomaly.

Conclusions and Recommendations

This study has shown thai powered flight of a spacecraft
carrying fluid stores within the main rigid body can be a source
of dynamic instability.

The major conclusions and recommendations drawn from
this study are:

1) Explicit dynamic response equations for this complex
system were derived using both Kane's method and Lagrange’s
equation, with the fluid modcled as an equivalent spherical
pendutum.

2) Sloshing fluid stores are not the source of dynamic insta-
bility seen in the launchings of STAR 48 rocket-motor-
equipped spacecraft that carried the fluid stores.

A4
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Control cof Spin-stabilized Spacecraft with Sloshing Fluid Stores

Daniel E. Hill, Senior Engineer, Martin Marietta Astronautics Group
Joseph R. Baumgarten, Professor of Mechanical Engr., lowa State University

Abstract

Spin-stabilized spacecraft with sloshing fluid stores are known to
be a source of dynamic instability for certain spacecrait configurations. A
control law was developed, using an equivalent mechanical mode! of the
fluid motion, which results in a stable dynamic system. The control law
may also be used for pointing maneuvers and is implemented by sensing

only the main body angular rates and attitude.
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introcduction

Spin-stabilized spacecraft carrying fluid stores are known to be
dynamically unstable for certain spacecraft configurations [1,2].
Spacecraft design constraints cause many vehicles to have the unstable
configuration. The excitation of the fluid motion may be constrained by
baffle systems but any added weight is costly in terms of payload
reduction. Equivalent mechanical models have been developed by various
investigators to approximate the complex free surface sloshing fluid
behavior [3,4,5]. The control law development in this study is based on an
equivalent pendulum model of the fluid motion coupled with the main body
dynamics [6].

The dynamic system using the equivalent mechanical model is highly
nonlinear and coupled which corﬁplicates the control system analysis.
Many nonlinear systems may be linearized about a nominal operating point
and linear optimal control theory can then be applied to construct a closed
loop controller [7]. Stability of the nonlinear system with the linear
controller cannot be guaranteed but simulatior of the system within the
region of cperation can be used as a check on the design.

The goal of this study was the development of a closed loop control
law which may be applied to a spin-stabilized spacecraft with sloshing
fluid stores without baffling or changing the design of the spacecraft.
The closed loop feedback control law developed stabilizes the spacecraft
and may also be used for pointing maneuvers A closed loop control
system tries to maintain a prescribed relationship of one system variable
(G another by comparing functions cf these variables and using the

difference as a means of control [8]. The method of closed loop control




used in this application consists of external torque reaction jets which
are normally used on spin-stabilized spacecraft. Spacecraft angular rate
and attitude are measured and compared to a reference state as input to

the controller for command of the reaction jets.
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Control System Analysis

The model of the spacecraft system is shown in Figure 1 and was
used as the basis for control law development. Figure 2 shows the
spherical pendulum relative to the body fixed reference frame. The
dynamic system is highly nonlinear (see Appendix A) which complicates
the control analysis. In many cases a nonlinear system may be linearized
about a nominal operating point and a feedback control law developed
using linear contro! theory to control the nonlinear system. Linear control
theory was used in this study to obtain a control which when applied to
the nonlinear system, brings the system to the desired angular rate and
attitude.

The linearized equations [6] are time varying because the Euler
parameters are periodic if the vehicle is spin-stabilized. Euler
parameters are an efficient method of defining the orientation of a body
[9]. Assumptions made in the analysis were,

1. The rocket motor has burned out and the inertia of the main body

remains constant.

2. The mass of the fluid, therfore the equivalent pendulum length,

does not change as fuel is expelled for control.

The problem to be solved in this study is known as the Linear
Quadratic Regulaior Froblem (LQRP). This consists of minimizing the

functional,

J =15ty - 7] Hit [yt - (to)]

N =




+12— f g - T Qw [y - F(t)]+ T Ry Gt ot

subject to,
y(t) = A(t) y(t) + B(t) u(t), (2)
which is the linearized system of the equations of motion.

The variables in the functional are defined as,

I

H(t),Q(t) = Positive semidefinite weighting arrays

r(t) = Reference state vector

R(t) = Positive definite weighting array
t= Time

to = Initial time

tr = Final time

Control vector

C
—

—
g

1l

State vector

<
=
i

Kirk [10] derived the necessary conditions for optimality which

results in the following matrix differential equations;

P(t) = -P(t) Alt) - AT(t) P(t) - Q1) + P(t) B(t) R'(1) B'(t) P() (3
S0 = AT - PO B R BT(m! s + Q) r(1) 4)

with boundary conditions,

"D
—
0
T
=
»

)




Equation 3 is known as the matrix Riccati equation. P(t) is
symmetric and consists of n(n+1)/2 independent equations where n is the
dimension of the system. S(t) is an n vector. If the solutions to
equations 3-6 are found, then the linear optimal control law is given by,

Uy = -R7() BT w1 - R BT() S(1)

F(t) y(t) + v(t) (7)

The linear optimal control law may be found by integrating the
[n(n+1)/2] + n system of equations backward in time and storing the

values of F(t) and v(t).




Control System Simulation

Equations 3-7 were solved by numerical methods and the feedback
gain matrix, F(t), and command vector, v(t), were stored. The control law
was then applied to the nonlinear system of equations. An initial coning
state was given by setting the roll, pitch, and yaw rates to 360, 0, and 35
degrees per second with the pitch and yaw angles set to 15 and 0 degrees,
respectively. The vehicle was spin-stabilized about the minor axis.
Simulation of the nonlinear controlled system showed that the linear
feedback control law stabilized and reoriented the vehicle to the desired
attitude. The feedback gains shown in Figures 3 and 4 reflect the time
varying nature of the Euler parameters as each gain is associated with its
respective Euler parameter. Figufes 5 and 6 show the gains associated
with the roll, pitch, and yaw angular rate states while Figures 7-10 are
the gains with respect to the pendulum relative angular velocity ?nd
position states.

The linear feedback control law simulated requires that the entire
state vector be measured. Measurement of the fluid relative angular
velocity and position would be impossible. Techniques of estimating
states have been developed with the Kalman-Bucy fiiller being very
popular. A controller that would neither have to measure or estimate ihe
pendulum (fiuid) states would be the most practical to implement.
Simulation of a reduced order controller consisting of only main body
fixed angular rates and attitude measurements showed virtually identical

identical response to the system with the entire state vector measuied.
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The assumption that the mass of the fiuid remains constant as fiuid
is expelled for spacecraft control was also checked, i.e. robustness. A
control law was computed for seventy percent full fluid tanks and the
nonlinear response of the system with ninety percent full fluid tanks was
computed. Figures 11-13 show the body fixed angular rates, orientation
angles, and thrust forces, respectively. The only state variables which
were assumed measureable were the main body fixed angular rates and
attitude parameters. The simulation shows that the control law in
equation 15, using a reduced order controller, can stabilize the vehicle.

A pointing maneuver was aliso simulated by applying the reduced
order controller to orient the spinning vehicle so that the pitch angle was
ten degrees while maintaining the yaw angle near zero. Figures 14 and 15
show the body fixed angular rates and orientation angles which indicate
the final desired orientation is apbroached. Figures 16 and 17 show the
thrust and command forces required to perform the maneuver. The

command forces correspond to components vi and v2 of the v(t) vector in

equation 7.




Conclusions

This study has shown that the dynamic instability caused by
sloshing fluid stores carried in the main rigid body of a spacecraft may be
controlled by use of a linear optimal feedback control system with the
fluid modeled as an equivalent spherical pendulum and only the first mode
of fluid oscillation included.

The control system presented here uses easily measured state
variables (only main body fixed angular rates and attitude) and was shown
to be stable for a wide variation in fluid level. It was shown that sensing
the dynamic state of the fluid was not necessary for this specific
spacecraft under study. A pointing maneuver was also successfully

accomplished by this contrcl system.
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Appendix A

The equations of motion may be written as,

n 3 3 Y for k<=3 .
2 Z 2 [-Miuge @3y Uis @k-3))| . “ -§Y;
i Yk+2¢1) for k>3

+ Z Z [-m; U(i + (3j-3) Bi] + Cj 4 [-RFi] =0 fOl’j=1 e 3.
[=1 i=1

5 3
DD MUy (33 Y+ 3k - 3)

Y. for k<=3 1
Knl i=t

Yk+2(‘.1) for k>3 |

n 3
+2 2 [-ml Ui + (3j - 3)) Bi]- Dg Y3s2n-1-DgYaion =0 forj=4,5andl=1,..n

=1 =1

The equations relating the main body angular rates to the Euler
parameiers are given by,

€4 W1 - €3 Wp + €2 Ox)

€3 W1 + €4 G - & g

(
[
[- €2 w1 + &1 w2 + €4 W3]
[- &) @« - & ap - €3 wa)

The coefficients and parameters in the equations of motion are defined as,
= (Bilws +ci)csoy - 6yn) Ls - (Blwrsnoy - wpcsa)) Lz
+ 01wl - (w5 + w5) + ®1wars
(1 + Bresa(wz + isnce) Lz - (w2 + Bisna)? + (@3 + @)?) L
+ (o + Besen)(@ + &) Lg
= (BI(U)1 snoy - wocsay) L B| -3 - o)Snoy + aywp) La

2 2
+ wpwgla - ra(wy + W3) + Wwoly




+ (02 + Prsnou)(wa + &) La - (@1 + Biesn)? + (w3 + &1)?) L
+ () + B.csoq)(mg + Bsnal) Ly
Ba= (Bi-ws - cu)snay + cump) La - (Bi{s + cu)esay - cywq) Ly
+ W10030y - 30 + @) + wpara
+ (01 + Breson)(ws + &) Ly - (@1 + Bese)? + (w2 + Bisnau)?) Ls
+ (o2 + B|sna|)(m3 +ou) Lo
C1 = (l2- lz)opwg

Co=(l3- ly)awg

Ca=(l1 - )wrmp

Dg, = Damping coefficient wrt § angle = 0.35 ft-lbf-sec for j=4 and I=1,.. .
=0 j<>4

Do, = Damping coefficient wit o angle = 0.35 ft-lbf-sec for j=5 and I=1,...,
=0 j<>5

F; = Control thrust for j=1,3
=0 j=2

I1,I3 = Transverse axis inertia 19513 Ibm-ft2

]

I = Roll axis inertia

It

10240 Ibm-ft2

L = Pendulum length = 7.2 inches

Ly = -Lsnoycspy for I=1,.., n
L2 = LesayesP) for 1=1,. ..n
L3 = Lsnf; for 1=1,....n

-----
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m, = Pendulum mass =5 Ibm for I=1,....n

n = Number of pendulums =2

= -1803((121)(1-1) inches

for I=1,...,n
r, = 25 inches
r3= 18sn((121)(|-1) inches for 1=4 ...n
R = Thruster moment arm =6 ft
uy =90
uz =-(r3 + La)
uz=ra2+ Lo
Ug=ra+Ls
us=0

ug =-(r1 + L)

Uz = °(I'2 + LQ)

ug =r + Ly
ug=0

uig = Lashoy
Uyr = -Lacsay

ui2 = Locsay - Lisnay

uiz =-Lo
uis = Ly
uis=0

The state variables for numerical solution of the equations are defined as,

Pl




Y,y = Angular velocity of main body along bi direction wrt
main body fixed frame

Y2 = Angular velocity of main body along b2 direction wrt
main body fixed frame

Ya = Angular velocity of main body along b3 direction wrt
main body fixed frame

Y4 = Angular velocity component of pendulum about B1 degree
of freedom relating the pendulum relative angular velocity
wrt the main body fixed frame

Ys = Angular velccity component of pendulum about @1 degree
of freedom relating the pendulum relative angular velocity
wrt the main body fixed frame

Y3+ 2n -1

Y342a

Yas2n = Angular position component of pendulum about Bs degree
of freedom relating the pendulum position wrt the main
body fixed frame

Ys.2n = Angular position component of pendulum about @1 degree

of freedom relating the pendulum position wrt the main
body fixed frame

Y2+4n

Y3+4n

Yasan Euler parameter 1 relating orientation of main body
fixed frame to inertial frame

Ys.4n Euler parameter 2 relating orientation of main body
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fixed frame to inertial frame

Ye.4n Euler parameter 3 relating orientation of main body
fixed frame to nertial frame

Y7.4n Euler parameter 4 relating orientation of main body
fixed frame to inertial frame
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A TEST FIG TO SIMULATE LIQUID SLOSHING

IN SPIN-STABILIZED SATELLITES -- PART I: DESIGN AND INSTRUMENTATION

D. R. Flugrad
M. D. Anderson
D. S. Cowles
Iowa State University
Ames, Iowa

ABSTRACT

Several communication satellites with liquid stores on board have experienced
an undesirable coning motion when boosted into a geosynchronous orbit about
the earth. These spin-stabilized satellites carry tanks filled with liquid
for station tending and attitude adjustment of the spinning structure. If a
significant amount is used to eliminate an initial nutational motion, the
useful life of the satellite is correspondingly decreased. On the other hand,
sloshing of the liquid is believed to be the cause of the problem. A test rig
was built to study the interaction between the rotating body and the sloshing
liquid. The design and instrumentation of the rig is described in this paper
with experimental results presented in the companion paper, Part II. The
spinning assembly, which is mounted atop a universal joint to allow coning,
includes two liquid-filled tanks. Instrumentation monitors the spin speed of
the rig, the rigid body orientation of the assembly, and the motion of the

liquid.
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INTRODUCTION

Launchings of several of the STAR 48 communications satellites from the
space shuttle have resulted in an unstable, nutating motion of the satellite.
Flight data from roll, pitch, and yaw axis rate gyros have indicated a
constant frequency, equal amplitude, sinusoidal oscillation of the spacecraft
about its pitch and yaw axes. The pitch and yaw oscillations have been 90°
out of phase. The vector combination of these two components of vibration are
consistent with a coning motion of ihe satellite spin axis. This nutation
occurs even though the spacecraft is spin-stabilized at launch with a one
revolution per second roll velocity.

After launch from the shuttle in the perigee phase of its orbit, the
satellite’s power assist module (PAM) is fired to establish a geosynchronous
earth orbit. At first it was theorized that the axial thrust gives rise to
theAconing motion which predominates after PAM motor burnout. Combustion
instabilities in the P..M rocket motor were thought to be the source of a side
force that could induce the coning motion [1]. But an investigation performed
at Arnold Engineering Development Center’s Engine Test Facility indicated that
no significant forces at the required frequency (one-half cycle per second)
wvere present. Therefore, it was concluded that combustion instabilities were
not the source of moments about the principal axes of the spacecraft causing
coning motion.

It was then proposed that the sloshing motion of the liquid frel stores
in the vehicle was the mechanism for inducing the nutational motion. If a
perfectly rigid body spins about its axis of maximum moment of inertia ov
about its axis of minimum momeat of inertia with no external forces acting on

the body, then the resulting motion is stable [2]. If, however, there is anv




internal energy dissipation, then the only stable spin is about the axis of
maximum moment of inertia. This axis provides a minimum rotational energy
state for a given constant angular momentum. Spin about the intermediate axis
of inertia is an unstable motion.

Although spin-stabilization of a body about its axis of maximum moment of
inertia produces a stable spin, this is subject to some constraints with
regard to the design of flexible spacecraft with liquid-filled tanks. Agrawal
[3] presented stability conditions for a flexible spinning spacecraft by a
Liapunov method. Various techniques have been developed to determine the
effects of liquid propellant motion on the spacecraft’s moments of inertia.
The stability conditions require that the spin to transverse moment of inertia
ratio be greater than (1+C), where C is a positive definite function of
spacecraft parameters, such as propellant density, tank size and location
relative to the spacecraft center of mass, and spacecraft inertias.

The STAR 48, and many other spacecraft, are prolate spinners -~
spin-stabilized about their axes of minimum moment of inertia. This is the
maximum energy state for a given angular momentum. Therefore, if there is any
internal dissipation of energy, the spacecraft will attempt to conserve its
angular momentum, and it will begin to reorient its spin about an axis
associated with a lowver energy state. This is commonly referred to as
"coning" since the spin axis generates a cone with its vertex located at the
center of mass of the spacecraft. If this coning motion is not controiled,
the spacecraft will eventually enter a flat spin--a spin about the axis of
maximum moment of inertia (the minimum energy state for a given angular
momentum). Since the STAR 48 and many other spacecraft contain a large liquid
propellant mass fraction, it seems probable to consider sloshing fluid stores

as a major source of internal kinetic energy dissipation, hence a mechanism
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for the destabilization of a prolate spinner.

Many investigators have studied the basic characteristics associated with
sloshing liquids. This has formed a basis for researchers interested in the
sloshing effect on space vehicle dynamics. The motion of a spinning
spacecraft with liquid propellant is described by very complex mathematical
equations for the rigid spacecraft dynamics and partial differential equations
for the liquid in the tanks, including appropriate initial and boundary
conditions.

In order to simplify fluid slosh studies, researchers have sought a
mechanical model to represent the fundamental mode of fluid slosh. Sumner [4]
conducted an experimental investigation to determine the general liquid
sloshing characteristics (fundamental frequencies, horizontal or side slosh
forces, and damping ratios) as well as quantities for a pendulum analogy that
would effectively represent the fundamental mode of liquid sloshing in
unbaffled oblate-spheroid and spherical tanks over a range of liquid depths.
Although the fundamental slosh damping was measured by the log decrement
method, the pendulum model he used didn’t allow for any viscous damping.

Hill [1] coupled the pendulum model of Sumner [4] to a set of nonlinear
ordinary differential equations for the rigid spacecraft dynamics and
simulated the system on a digital computer. The pendulum model was also
augmented by adding viscous dashpots to represent the viscous damping of the
fundamental slosh mode. Results were compared to actual telemetered flight
data with good correlation. A control scheme was presented and implemented in
the simulation, also with good results.

Zedd and Dodge {5] devised a mechanical model composed of a pendulum. a
rotor, and viscous dashpots. The pendulum represented the free surface modes

of oscillation (sloshing) and the rotor represented the inertial wave modes of
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oscillation--circulatory or to-and-fro motions in the liquid interior. In
this model the rotor was connected to the tank by a dashpot to simulate the
forcing of inertial waves by the boundary layer shear at the tank wall. Other
dashpots were used to simulate the viscous damping of the fundamental and
inertial modes of fluid oscillation. The model was used to simulate liquid
forces and moments; to predict liquid resonances and energy dissipation rates;
and to scale-up test results to flight conditions. A forced-motion spin table
vas used to estimate the numerical values for the model parameters.

Using the principles of similitude, Garg, Furumoto, and Vanyn [6]
directly scaled test data from a forced motion test apparatus to predict
energy dissipation rates. Results were compared to previous drop test data
and to actual flight data.

This present study involves the design and instrumentation of a physical
test rig to demonstrate the dynamic characteristics of a spin-stabilized
system with sloshing liquid stores. A vertical spin axis was chosen for a
horizontal beam that supports two six inch diameter plastic spheres located at
an equal radial distance from the spin axis. A two degree-of-freedom Hooke’s
type universal joint was loc.*ed just below the horizontal beam in the
vertical shaft to allow the spin axis of the beam structure to cone. A yoked
sleeve, actuated by a straight-line motion four-bar mechanism, was utilized to
cover the universal joint to give initial stability and rigidity to the system
during spin-up.

The initial design configuration resulted in a spin about the axis of
intermediate moment of inertia. This was a very unstable mode of operation.
The second configuration involved the addition of another crossbar,
perpendicular to the main horizontal beam. to act as an inertial

counterbalance. This -esulted in a spin about the axis of maximum moment of
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inertia. This system configuration was very stable and any perturbation to
induce coning quickly disappeared (within 2-3 seconds). The third
configuration, attained after considerable design modification, allowed spin
about the axis of minimum moment of inertia. This proved to be unstable.

Also described in this paper are the transducers and instrumentation
system used to monitor the motions of the rotating structure and the sloshing
liquid. It was decided that the most important factors to observe were the
driving spin rate, the oscillations of the spinning test rig assembly, and the
liquid motion in the spheres. A computer based data acquisition system was
employed to rapidly record data and to perform quantitative analysis of large
data files. The test rig was redesigned to incorporate the instrumentation.
Simultaneously, the rig was modified so the weight could be redistributed to
achieve a static balance condition with the center of mass located near or

slightly below the supporting joint.

TEST RIG DESIGN

The test rig design had to allow modification of most major dimensions to
allow testing of various sizes of tanks and geometric configurations. It was
decided that a minimum of instrumentation would be implemented until the
operation of the system was better understood and decisions could be made
about which parameters to instrument.

A physical system was designed, consisting of a vertical spin shaft with
a horizontal crossbar. Figs. 1 and 2 show assembly views of the test rig
design. Two plastic spheres were supported by the horizontal bar at equal
radial distances from the vertical spin axis. A two degree-of-freedom Hooke's

rype universal joint was located just below the horizontal beam in the

Go




vertical shaft to allow the spin axis of the horizontal beam structure to
cone. A yoked sleeve, hand-actuated by a straight-line motion four-bar
mechanism was utilized to cover the universal joint to give initial stability
and rigidity to the system during spin-up. A 1/4 hp electric d.c. motor was
selected to drive the system.

Six inch diameter spheres were used. A fill height of approximately 3.9
inches produced a beam load on each end of about five pounds. The length of
the steel horizontal beam for the first design was 27.32 inches. It was 0.625
inches wide, and 0.25 inches thick. The overall crossbar length was 54.64
inches.

A 10:1 right angle gear reducer was inserted between the motor and
vertical drive shaft to utilize the more efficient upper speed range of the
motor. Since the STAR 4B satellites are spin-stabilized at one revolution per
second, this was chosen as the nominal operating speed, although speeds up

to three times this were possible with the motor and gear reducer system.

Test Rig Operation and Analysis

Operation of the initial design of the completed test rig, as shown in
Fig. 3, resulted in a very unstable motion. As soon as the supporting sleeve
vas lowered, the upper assembly would instantly drop over, rotating about an
axis parallel to the main horizontal beam.

An analysis of the system inertias indicated that the spin axis was the
axis of intermediate inertia. The transverse inertias were 0.02 and 2.37
slug—ftz, and the inertia about the spin axis was 2.36 slug-ftz. From
Greenwood (2], spin of a torque~free,lrigid body about its axis of
intermediate moment of inertia is an unstable motion. Although the test rig

is not absolutely rigid, it is assumed to be nearly so, and it is further
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assumed to be torque-free since the system center of mass is approximately
located at the intersection of the universal joint axes. h

For the second design configuration a shorter main support beam of 35.2

inches was chosen (compared to 54.6 inches for the initial design). A 54.6
inch inertial counterbalance beam was added normal to the main beam to produce
a maximum moment of inertia about the spin axis. The inertias were 0.13 and
2.38 slug-ft2 about the transverse axes and 2.46 slug-ft2 about the spin axis.

Operation of the second configuration pictured in Fig. 4 proved to be
very stable. Any perturbation disappeared within one or two seconds. It was
impossible to determine visually whether or not any significant fluid slosh
was present and whether or not there was any interaction between the fluid and
the physical structure.

It was decided that a spin about the minimum axis of inertia--a spin that
is stable only if there is no internal energy dissipation--would best
demonstrate the destabilizing effects of sloshing liquid fuel on a

spin-stabilized vehicle.

Test Rig Modifications

The major change in the rig structure to allow for instrumentation of
additional configurations involved lengthening the main vertical shaft by 15
inches tu provide additional clearance between the universal joint and the
bearing supports. This clearance allowed the spheres to be mounted low enough
to place the center of mass at or below the universal joint, even when the
assembly was spun about an axis of minimum moment of inertia. Decreasing the
radial distance from the main shaft to the sphere centers while raising the
cross-beams higher above the universal joint provided the kev to achieving

spin about the minimum axis of inertia. The only othev obvious way to produce
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a spin about the minimum axis of inertia would have required a substantial
addition of weight concentrated near the spin axis. The new design allowed
investigation of a wide variety of inertia ratios both greater than and less
than one by changing cross beams or by raising and lowering the spheres.

A new upper collar was designed to restrict the cone angle and to prevent
damage to the unit under unstable operating conditions while providing the
ability to restabilize the rig during spin. This can be seen in Fig. 5. The
collar is free to slide vertically along the length of the spinning shaft and
allows the operator to stabilize the rig while bringing it up to speed. The
top of the collar has an oversized inner diameter to restrict the half-cone
angle to a maximum of 10°. If the collar didn’t have this feature, the
nutational motion could produce an interference between the lower shaft and
spheres. The oversized diameter affords clearance necessary for the universal
joint to pivot within the collar, and it contacts the shaft about one inch
above the pivot to allow sufficient leverage to restabilize the rig.

Providing * Vixed reference on which to mount the rotational
potentiometers, while maintaining the features of the collar described above,
proved to be a significant instrumentation challenge. It was determined that
the upper collar could be slotted to allow it to slide vertically with the
potentiometer mounting pins extending through the slots. The potentiometers
were mounted on two threaded rods which pass through the lower shaft to
provide a rigid reference. A small brass tube was placed around the
protruding threads to provide a bearing surface between the rods and the slots
in the upper collar. The two sets of threaded rods together maintain
alignment and reduce binding of the collar.

The slip rings were mounted below the collar arrangement on the lower

shaft. Therefore, the redesign required machining a groove in the lower shafr
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to allov the instrumentation wires to pass through the inside of the shaft to
avoid contact with the fork of the linkage. Because the upper collar was
already restrained from rotating relative to the shaft, it seemed logical to
slot the collar and pass the wires through the slot. The wires exit the lower
shaft in an intermediate collar section to avoid disturbing the natural motion

of the rig.

INSTRUMENTATION

Instrumentation was developed to study the effects of liquid motion on
the test rig dynamics. It was anticipated that the important quantities would
be liquid position, test rig rotation rate and orientation. One obstacle to
instrumentation was the collection of transducer signals from the rotating
assembly. Slip rings were chosen based on cost and anticipated ease of use.
It was decided to track the position of the liquid by monitoring the free
surface profile. A d.c. tachometer was chosen to sense the input rotational
speed. The rig orientation was monitored with two rotational potentiometers
used to sense rotation of the test rig about perpendicular axes through the
universal joini. The tachometer and potentiometers were sufficient to allow
comparison of experimental data with satellite parameters from the literature
such as half-cone angle, precession rate and relative spin rate. A computer
data acquisition system was utilized because of its analysis capability and

its ability to handle large quantities of data.

Slip Ring Selection

Transmission of transducer signals from the votating structure to a

stationary data recording system was an important objective in the
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instrumentation of the satellite test rig. Slip rings were selected over
alternatives such as telemetry based on cost, anticipated reliability, and
simplicity of use. A through ring design was chosen to mount on the supported
portion of the lower shaft. After selection of all transducers, a slip ring
assembly was picked based on satisfactory noise level, current capacity, and
an acceptable design suited to the work envelope provided by the test rig.

A fourteen ring assembly was chosen to supply 10 volt d.c. power to the
sensors and to receive up to ten signals. An external brush block design was
specified based on its ample performance svecifications at reasonable cost.
This slip ring set was used to receive readings from two rotational
potentiometers and six light sensitive photopotentiometers. The signals were
of sufficient magnitude so that any noise associated with the slip rings was
negligible. The assembly has additional capacity to handle future addition of
strain gauges on the rotating structure. Amplification of the strain gauge
bridge signal prior to transmission through the rings is expected to produce

satisfactory results.

Measurement of Tilt, Nutation and Precession

The important parameters for tracking the rig orientation include the
tilt angle from vertical (the half-cone angle), the nutation rate (the time
rate of change of the half-cone angle), and the precession rate. The
precession rate is specified as the angular velocity of the main axis of the
spinning test rig about a ground fixed vertical axis. To determine these
quantities, the instrumentation was designed to sense rotations about the avis
of each pin of the universal joint. This approach provided information abourt
the rig orientation relative to the lower input shafr.

Two inexpensive rotational potentiometers were selected for this task.
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light weight spring was designed to overcome the friction of the rotational
potentiometer and maintain tension on the pulley string. Thirty pound
monofilament fishing line was selected over a variety of other possibilities
for resisting stretch, and for closely conforming to the pulley radius with
little tension.

During the design phase, it was anticipated that each of the rotational
potentiometers would be insensitive to rotation about the axis on which it was
mounted. Howaver, trial calibrations showed that this was not the case. One
cause was found to be a slight misalignment between the beams of the test rig
and the axes of the potentiometers. Because of the complexity of the
geometry, it was decided that the nonlinear equations describing the system
with its misalignment should be developed and solved rather than have the
parts remachined. The orientation of the rig at any time can be determined by
first rotating through an angle, %3, about the vertical Ez—axis; by then
rotating about the 52’—axis through an angle Xl; and finally by rotating
through an angle 12 about the TA—axis. This sequence is illustrated in Fig.
6. The equations that describe the system are a combination of six equations
from two vector loops and four equations relating the extension of the pulley
strings and the rotation of the potentiometers. Development of the equations
is presented in the appendix. The construction error of the rig associated
with the misalignment of the cross beams was determined by using a computer
program to first solve for a theoretical rotational potentiometer position for
known rig rotations. Voltage readings were experimentally determined at
positions located by rmeasuring the tilt of the cross bars with a carpenter’s
level and adjustable triangle. The theoretical voltages were determined bv
interpolating between the experimental voltages corresponding to .8% and -a"

of rotation about each axis for the theoretical potentiometer positions.
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Construction angle, X3, was then determined as the value that minimized tae
sum of the absolute differences between the experimental and calculated
voltages.

To ensure accuracy of the data, it was decided that the calibration
procedure should be carried out before and after each set of trials. After
initial practice to gain familiarity with the system, this procedure proved
quite workable.

Once the set of fourteen nonlinear equations describing the geometry of
the rig and potentiometer were solved, the two axis rotations were used to
derive more information regarding the motion. For instance, the two rotations
alone were used to solve for the half-cone angle and nutation rate. In
addition, the projection of a vertical, body-fixed unit vector was located in
a horizontal plane fixed to rotate with the input shaft. Furthermore, once
the rig input speed was known, the precession rate was determined relative to

a stationary reference frame.

Input Speed Measurement

Measurement of the driving rig speed is important because of the
associated centrifugal acceleration. Furthermore, the input speed is used in
the determination of the precession rate as discussed previously. A d.c.
tachometer that produces a voltage proportional to rotational speed was used
to provide a continuous reading of the instantaneous angular velocity.

For greater sensitivity, this tachometer was mounted on the high side of
the 10:1 gear reducer that drives the rig. For calibration, the HP-85 data
collection computer was used to average 15 voltage readings at each of several
spin speeds. Simultaneously, the rig rorarions were visually connted for a

period ranging from 45 to 60 seconds to determine thc average totation rate.
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This calibration was completed just once for the entire set of runs. The
performance of the tachometer was characterized by a linear least squares fit

technique.

Sensing The Liquid Sloshing Motion

The decision was made to instrument both spheres for liquid movement to
allow determination of any interaction between the sloshing liquid on the two
sides. It was assumed that the water would not break away from the free
liquid surface. A photosensitive device which could give quantitative output
based on light blockage by the moving liquid surface seemed ideal.

A light sensitive photopotentiometer was located with a working range of
3.4 inches. The operation of this device is similar to common wirewound
potentiometers with the exception that the resistance and hence the voltage
output is proportional to both intensity of isciident light and seusor area
exposed t~ light. The device was tested with various dyes introduced into the
vater in the spheres to block the transmission of light through the liquid.
Blue dye #2 was selected for its high opacity. Yet it is highly soluble in
water which prevents permanent discoloration of the spheres. Plans called for
six photopotentiometers--two sensors on each sphere to measure oscillations in
a radial direction and a third senscr mounted on each sphere to measure
oscillations in the circumferential direction. See Fig. 7 for mounting
locations.

The two radial sensing photopotentiometers were mounted at a 45°% tilt
angle based on estimates of the water position for half-filled spheres at
expected spin speeds. The circumferential sensor was mounted perpendicular to
the 457 tilt for maximum sensitivit.. <inece the photopnrentiometers are

rigid, they were encased in receptacle~ ro ensure that their output would
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denend only on light passing through the sphere. The current design of the
structv~e holding the spheres doesn’t allow for easy repositioning of these
sensors. Thus, both radial sensors were nominally located for runs made with
the spheres half filled. 1In the case of one-quarter volume fill, the lower
inside sensor was inactive because it was uncovered at most experimental run
speeds. Similarly, only one sensor was active at three-quarter fill since the
upper, outside senso. was comp’etely coverad for this case.

During initial test runs the photopotentiometers exhibited erratic output
with variations of nearly one volt. Similar variations were encountered even
vith the collar restraining the rig from nutating. The primary root of the
problem was determined to be the uneven lighting provided by parallel rows of
fluorescent lights in the laboratory. The variation in output was greatly
reduced by repositioning the test rig midway between parallel rows of lights
and by constructing a large six foot diameter "lampshade" from translucent
material. With the shade in place over the rig, the signal noise measured
during steady rotation was found to lie between 0.10 and 0.15 volts. Although
not perfect, this Zevel of noise was relatively small compared to the expected
output signal.

Initially the photopotentiometers were calibrated statically to relate
voltage output to an equivalent water angle. This calibration assumed that
the liquid surface would remain flat and that tilting the sphere stetically re
a known angle would produce the same output as the water being spun outward
during operation of the test rig. Reduced experimental data shoved liquid

oscillations of roughly 16°-15°.  The data indicated voughly the same

magnitude of radial slosh from the radial -~ensors on ea-h sphere. har the
difference betwveen the absolnte wate: angle o for the vadial s ad e o
earh individual sphere was ton latge to b ponoped,
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So that the sensors would better agree, the static calibration was
replaced by a dynamic calibration technique using the HP-85 computer. this
procedure related the voltage output of the photopotentiometers to an

equivalent pendulum angle with the help of the following expression [4]:

2
tan v, = g/9 (X + cos v) (1)
In Eq. (1)
Yo = the angle between a horizontal reference and the

equivalent pendulum arm

g = gravitational acceleration
Q@ = the drive spin rate
X0 = the radial distance from shaft center to the pivot

of the equivalent pendulum

The computer was used to average ten teadings of each photopotentiometer while
the spin speed was determined by the tachometer. A calibration curve of
calculated angle vs. voltage output was developed by a polynomial curve
fitting routine. The results of this calibration showed good agreement
between the radial sensors on each respective sphere. However, the output of
the lower inside sensor was slightly clipped when the liquid sloshed outward
from the center. It 1s believed that this phenomenon was observed because the
outer sensor saw the liqnid advancing toward a previouslv clean portion of the
sphere surface, while the inner sensor detected a sheeting action of the
vretreating liquid. Because the radial =enzing pheropotensiometayrs —ore

0 . . . Sy
mouvnted at a 457 angle, the outpnt tor the half tull =sphere< axhibited a neay




linear relationship between tilt angle and voltage. The calibration curves
for both one-quarter and three-quarter fill was better described by a cubic

expression.

Data Collection System

The goal of the data acquisition system was to sample all measurements at
a rate at least ten times the signal frequency to accurately record the
quantity. The schematic diagram of the instrumentation and data collection
system is shown in Fig. 8. Based on its ease of use, the Hewlett-Packard
HP-85 computer was used to record up to 200 readings per second. To achieve
this sample rate, the computer was used in the voltmeter complete mode, data
vere taken in binary coded decimal format, and both the filter and display
vere turned off.

The sample rate used for most runs was approximately 65 readings per
second because a compromise had to be made between high sample rate and length
of the data file created. This means each of the nine transducers was sampled
seven times per second. This sample rate proved to be sufficient for most
runs. For a few cases, such as runs with the spheres empty or runs that were
physically perturbed, the sample rate was doubled to provide sufficient
accuracy. The data were ultimately transferred from the HP-85 computer to a

VAX 11-785 computer system for greater computing and plotting capabilities.

SUMMARY

The test rig described in this paper makes it possible rto stud- the

interaction between the dvnamics of a 1ntaring srirncture ~u-h 3 a

spin-stabilized satellite and the slashing =ntion af anbravd ligquid stores.

-
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The rig was designed to allow different crossbeam configurations to be mounted
on the supporting universal joint. 1In addition, the tanks can be repositioned
vertically to adjust the location of the center of mass of the spinning
assembly.

Instrumentation has been provided to monitor the input speed for the rig,
the angular orientation of the rotating body and the motion of the liquid
contained in the two spherical tanks. Slip rings are used to transfer the
transducer signals from the rotating assembly to an automated computer data
collection system. Additional rings are available to add strain gages to the
system to measure the deflection of the rods on which the tanks are mounted.
The data collected during test runs have been transferred to a VAX 11-785
computer which is used to calculate specific quantities of interest and to
plot the results.

In the companion paper, Part II, several experimental runs are described
in which such things as the inertias, tank fill heights and input speeds were
varied to determine the effects these factors have on the overall stability of

the motion. Many additional test cases are planned for the future.
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APPENDIX

The equations for the rotatinnal potentiometers are based on the
quantities shown in Fig. 6. The rig orientation with cross beams parallel to
the rotational potentiometer shafts can be determined by a rotation X3 about
the EZ axis, followed by a rotation A\, about the }2' axis and finally by a
rotation Xz about the TA axis. The rig orientation expressed in coordinates of

the lower shaft is described by the concatenation of the following

transformations:

§3 = XA (2)
Y = es A ?a - sin X, 24

53 = sin X2§4 + cos X\ EA

§3 = COS Xl §3’ + sin Xl 53’ (3)
Yy = Y3

zy = -sin A 523’ + cos A 23'

§2 = cos X3 §3 - sin X3 §3 (4)
;2 = sin X3 §3 + cos AB §3
52 = 23

A loop closure equation for the rig shaft, cross-beam, pulley string, and the

potentiometer mount dimensions can be written for the x-axis potentiometer as

follows:

ZA + XA - S2 - rp - Hx -~ VX =0 (9)
where,

ﬁy = horizontal distance and direction from lowver shaft center

to pulley center




.

Vx = vertical distance and direction from potentiometer shaft
to universal joint pins
_p = pulley radius directed to tangent point
Eq. (5) is then separated into three scalar component equations:
A - S, - Hx =0 (6)
272 2x -
4y, s, —rtcos® =0 (7)
2 '2 T P2y T FptOS B <t
4 ’ ,
222 - S, - r sin eb + sz =0 (8)
where,
4 4

2X2, 2Y2, 322 = rig components projected into the
{2} reference frame

S2 = free length of the pulley string

Syxt  4» S, = components of 52’ in {2}

82 = pulley rotation from horizontal to the line
tangent point (positive CW)

An additional required equation can be derived by applying the Pythagorean

theorem to triangle 5252 rp. Neglecting the slight misalignment between ?p

and the actual pulley string attachment point, the expression may be written as

2 r2 2
S,7 =5, "+ T (9

with,
82 = distance from the potentiometer shaft center to the line
attachment point on the test rig beam
If distance LZ is expressed in terms of rig dimensions in the x2y722~coordinate

“

system, then Eq. (9) yields

2 i "
5,% + (rp)z - (GRy - BT e GET (- Ty 2 (m




The quantity 32'2 can be written as the sum of the squares of the components

.2 ,2 2 ,2
52 = S2x + 529 + Szz

The voltage drop measured for the potentiometer is proportional to the

(11)

overall rotation, ¢2. This rotation is the sum of the rotations due to the

!

elongation of 52 and the rotation of 82 in space:

¢, = ¥y +9§ (12)
vhere,

¢2 = total rotation of x-axis potentiometer

¥, = rotation due to elongation of SZ'

8, = potentiometer rotation due to rotation of §

2

The rotation, Yy s due to elongation is Jetermined from

Sz' - Szé - rp“@ =0 (13)

with,

526 = arbitrary initial length of 52’

Similarly, the equations for the potentiometer on the y-axis are:

!

4
2X1 - S1x - rpcos 81 =0 (14)
by _s _H -0 (15)
2°1 13 y
4 ' .
02y = Sy, - r,sin 61 + Vy =0 (16)
2 4 2 4, L2 2
- Xl) - (2Y1 - H )" - (221 + vy) + (rp) =0 (17)
.2 )2 ;2 v

TR P s1y - S0 =0 (18)
Sl' - Slé - rpwl =0 (20)
From the above development, Eqs. ¢~ ") and (10-24) tally desotibe the 12

pasitian Thase 14 equatione cantain 1« oantitjes . ) A
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1x’ sly’ slz 2x’ S2y’ 271

rotational potentiometer voltage drops are utilized to experimentally determine

s , Sy S O, 8, ¥, ¥y, 6, and $,. The

¢1 and ¢2. A Newton-Raphson iterative technique can then be used to solve the
equations for the 14 remaining entities. At the start, values are calculated
for an orientation of Al = Az = 0 to establish estimates of the unknowns to be
used in initiating the iterative technique. The initial guesses are then
updated to the values from the previous solution for each successive position.
The data reduction was carried out after the data had been transferred co the

VAX computer. With the sampling rate used in this stu.y, the scheme has proved

to be quite satisfactory.
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A TEST RIG TO SIMULATE LIQUID SLOSHING

IN SPIN-STABILIZED SATELLITES -- PART II: EXPERIMENTAL RESULTS

D. R. Flugrad
M. D. Anderson
Iowa State University
Ames, Iowa

ABSTRACT

Certain spin-stabilized satellites have exhibited an undesirable nutating
motion when transferred to a geosynchronous orbit about the earth. It is
believed tnat sloshing liquid stores on board the satellite are responsible
for the nutation. A test rig was constructed to study the interaction between
the spinning structure and the sloshing liquid. Its design and
instrumentation were discussed in the companion paper, Part I. Experimental
results are reported in this paper for spin about minimum and maximum axes of
inertia. All runs for spin about an axis of minimum moment of inertia were
found to be unstable and those for spin about an axis of maximum moment of
inertia were stable. Results were generally found to be consistent with the

findings of other investigators.
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INTRODUCTION

Sloshing liquid stores onboard spacecraft have caused stability problems
throughout the brief history of space travel. A rigid body, for example a
rifle bullet, may be spin-stabilized about its axis of minimum moment of
inertia. However, instability has been observed when attempting to
spin-stabilize bodies containing a significant liquid mass fraction such as
the XM761, which is a 155-mm cylindrical shaped artillery projectile [1}, the
INTELSAT IV satellite [2], and the STAR 48 communications satellite [3].

The STAR 48 communications satellites have consistently exhibited
nutational motion in flight, despite being spin-stabilized at one revolution
per second. Following launch from the space shuttle, the STAR 48's power
assist module (PAM) is fired to thrust the satellite into a geosynchronous
orbit about the earth. Coning motion about the spin axis predominates
following the PAM motor burnout. Constant frequency, equal amplitude,
sinusoidal oscillations about the pitch and yaw axes have been noted from
flight data sensed by roll, pitch, and yaw axis rate gyros [3]. The liquid
stores within the tanks of the satellite are intended for restabilization and
directional pointing maneuvers.

It was initially hypothesized that combustion instabilities in the PAM
rocket motor could produce a transverse thrust component which wnuld induce
.he coning motion. The Engine Test Facility personnel at Arnold Engineering
Development Center, Arnold Air Force Station, tested a STAR 48 motor for such
forces [3]. The test stand was instrumented with axial and transverse load
cells, and it had the ability to spin the PAM motor at one revolution per
second during firing. The test results discaunted this rheory since no

significant forces at the required frequencyv (one-half cycle per second) were




found [3].

Currently, the sloshing motion of the liquid stores is suspected of
causing the unstable coning. Spin about the minimum axis of ine-tia, which is
characteristic of a prolate spinner, corresponds to the maximum energy state,
and spin about the maximum axis of inertia for an oblate spinner corresponds
to the minimum energy state. The damping effect of liquid motion in a
nutating spacecraft tends to reduce the kinetic energy which results in an
increase in the nutational motion of the prolate spinner. If unrestrained,
the satellite will seek a minimum energy state, resulting in spin about the
axis of maximum moment of inertia. This is known as a flat spin.

Several researchers have attempted to model the fluid analytically to
gain insight into the phenomenon of instability with liquid fluid stores
present [4, 5, et al.]. The second order differential equations of motion for
a mechanical analogy such as an equivalent pendulum model are usually selected
over the more direct fluid equations because they are easier to solve in
carrying out a computer simulation.

Sumner [5] conducted an experimental investigation on general
liquid-sloshing characteristics and determined an experimental based pendulum
analogy to represent the fundamental mode of liquid sloshing in unbaffled
oblate-spheroidal and spherical tanks. His results were presented in terms of
dimensionless parameters that are generally independent of tank size, imposed
lateral acceleration, and density and viscosity of the contained liquid. The
liquid tank was modeled as a combination of a stationary fixed mass and a
fictitious pendulum mass to represent the sloshing liquid. Only the
fundamental mode of liquid sloshing was simulated since the higher frequency
modes are generally much higher than observed frequencies, and the side forces

produced are small. The pendulum model of liquid sloshing is adequately
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described by the pendulum mass, the pendulum arm length, the maximum angles
through which the pendulum can oscillate, the fixed mass, and the centroid
location of the fixed mass. Additiornal liquid slosh characteristics
determined by Sumner were the fundamental trequencies, horizontal or side
forces and damping ratios. All tests were performed using water as the
liquid.

Zedd and Dodge [4] developed an equivalent mechanical model consisting of
a pendulum, rotor and viscous dashpot to simulate the liquid motion. They
also built an experimental test rig to create forced nutational motion of
liquid-filled spherical tanks. This was used to measure the energy
dissipation associated with the liquid motion. Their objectives were to
determine all liquid resonant frequencies, and to relate oscillating liquid
forces and moments to spin rate, nutation rate, coning angle and liquid fill
height. 1In addition, the test results were used to observe and quantify
liquid phenomena that could adversely affect prolate spacecraft under the
control of spin-stabilization. Thke Zedd and Dodge model can be used to
simulate liquid forces and moments, and to predict liquid slosh resonances and
energy dissipation rates. Results can be scaled-up to sctual flight
conditions.

Slabinski [2] studied instability of the INTELSAT IV satellite due to
liquid stores. He was able to supplement ground testing with in-orbit testing
of the INTELSAT IV dual-spin satellite. The work of Slabinski is particularly
relevant to this research because favorable comparisons can be made between
the actual tlight data presented by Slabinski and experimental results to be
presented later in this work. One of the significant findings of Slabinski is
the presence of a liquid slosh frequensv in orbit that is approximately

one-third of the predictad fundamental fiequency based on ground testing.




Also, he found that products of inertia had a significant effect on stability.
Hill [3) developed a computer simulation to model a spacecraft with
liquid fluid stores through the use of an equivalent spherical pendulum. The

equivalent spherical pendulum models the liquid sloshing by matching the
fundamental slosh modes. A closed loop feedback control law was derived for
earth pointing maneuvers and stability correction of the spacecraft. Hill
also outlined a means of implementing the control scheme.

This paper describes the results of an experimental investigation of the
dynamic moticai of a test rig built to simulate the interaction of a satellite
with onboard sloshing fluid stores. Details of the design and instrumentation
of the system were presented in the companisn paper by Anderson, Cowles and
Flugrad. The prolate spinner with a minimum inertia spin axis, and the oblate
spinner with rotational motion about the axis of maximum moment of inertia

wvere both tested, and the results compared with those of other researchers.

MINIMUM AXIS SPIN

Tests run during the first phase of the investigation involved
configurat.ons spun about the principal axis associated with the minimum
moment of inertia. It is well known from classical dynamics that a perfectly
rigid torque-free body will be stable when spun about either the minimum or
maximum axis of inertia, but unstable when rotated about the intermediate axis
of inertia. Because of the liquid in the spheres and the long length of
unsupported rods, the test rig built for this study cannot be considerea
rigid. Many researchers working with spin stability have concluded that a
non-rigid body, in the absence of an acrive <tabilization mechanism, can onl:

have a stable spin about the maximum principal axis. I1f a non-rigid body is




spun about the axis of minimum inertia, any internal damping present causes
the system to move towards its minimum energy state, which requires spin about
the maximum axis of inertia.

The previous work of Cowles [6] showed spinning the test rig about the
maximum axis of inertia was indeed very stable with rapid dissipation of any

perturbation imparted to the system.

Experimental Test Conditions

Location of the center of gravity at the center of the universal joint
was necessary to allow instrumentation for spin about the axis of minimum
inertia. Test runs were made with empty, one-quarter, half and three-quarter
filled spheres by volume. The structure was statically balanced before each
run, and experimental data were collected at constant input speeds between 70
and 100 rpm.

Test runs were made at three difierent speeds for each fill volume. For
brevity, one run was selected to represent the results, but the parameters for
all minimum inertia spin test runs are listed in Table 1. The inertias were
estimated for the test rig to account for the nominal liquid position.

Large deflections were noted in the rods supporting the liquid spheres
due to centripetal acceleration of the liquid mass. Consequently,
monofilament line was tied betwveen the rods on opposite sides of the rig to
restrain the radial deflections of the spheres. The resulting coning motion

exhibited a higher frequency of oscilliation when the rods were tied together.
Results for a Specific Test Condition

Figs. 1-7 show experimental data cnllecred for re-t run 2 of Table 1.

Fig. 1 shnws the oscillations of the i1oraring assembl. about the ¥ and y axes
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in degrees. The collar was dropped at approximately 1.5 seconds, and the
oscillations began immediately. Roughly 12.5 seconds later, the upper shaft
made contact with the lowered collar, ending the oscillatory metion. The
motion of the rig is perhaps best visualized by viewing a plot of the tip of a
unit vector aligned along the center of the upper shaft. The projectiocr of
the tip onto a horizontal plane fixed to rotate with the lower shaft is shown
in Fig. 2. The small diamonds indicate discrete data points. The rig started
in the center and spiraled outward until the upper shaft came to rest on the
collar. Fig. 3 shows the time history of the half-cone angle measured from
vertical and the nutation rate. The nutation rate considered in this study is
defined as the time rate of change of the half-cone angle. The precession
rate, shown in Fig 4, is defined as the time rate of change of the rotational
position of the upper shaft about the vertical axis. These figures together
showv that the rig oscillated radially from vertical as it precessed. Thus a
unit vector along the upper shaft traces out an oblong shape when projec: .4
onto the horizontal plane.

The angle Yoo which locates the water surface in a radial plane, is zero
for the static position and is defined to be positive as the water moves
outward from the center shaft. The plot nf the equivalent radial water angle
vs. time for the half-fiiled case is shown in Fig. 5. The solid line
represents the photopotentiometer lncated nearest the vertical input shaft on
the inside of the sphere. The dashed line is the data recorded for the
photopotentiometer located farthest from the shaft. It was expected that bnth
devices should recourd identical signals. Howeveir. the signal of the
photopotentiometer mounted nearest the shaft did not perfectly match the
signal of the photopotentiometer maunted tavrhect fram rhe shafr. Fig. 6

shows the oprosite sphere with the came occillation magnitude.  The convention
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for measuring the pendulum angle is such that when the oscillations are in
phase the pendulum angle for one of the spheres decreases as the other
increases. Thus, Figs. 5 and 6 show that the liquid sleoshing is in phase.

For half-filled spheres, the radial slosh amplitude is approximately 10-15
deg. The magnitude of the circumferential oscillations recorded is of the
same order of magnitude as the expected noise in the signal as shown in Fig.
7. The circumferential photopotentiometers were calibrated statically, so the
measured angle should be considered on a relative rather than an absolute

basis.

General Results for Minimum Axis Spin

The experimental data for rig oscillations and cone angles for empty,
one-quarter and three-quarter filled spheres appear in Figs. B-13. Three runs
vere made at different spin rates for each fill volume. but only one run speed
is shown at each fill volume for brevity. For all fill heights with spin
about the minimum axis of inertia, the instrumentation recorded oscillations
that increased rapidly - .1 restricted by the collar. Tt took less than 15
seconds to reach the outer motion limit for all test conditions. The

half-cone angle was found to oscillate about an increasing amplitude.

Precession and Relative Spin Rate Analysis
For this research, precession is defined as the angular rotational rate
of the axis of the upper shaft relative to ground about a vertical reference.

When the upper shaft made contact with the collar., the precession rate

increased until there was no relative matinn hetween the colla:, which was

rotating with the drive shaft, and the upper ~hatr.  The precescion rate s

visually observed to be slower thar the i specd.  The preseszion vare
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calculated in terms of the drive spin rate of the body, the body inertias, and

the center of gravity location by the following equation:

AL (12 - 4(x, cos o) wr )" .
ZIt cos ©
Where,

Q = the drive spin rate of the test rig

rCg = the distance from the universal joint pivot to the rig
center of gravity (positive for center of mass above
the pivot)

Is = the moment of inertia for the spin axis

It = the moment of inertia for the transverse axis

*) = the weight of the rig supported by the universal joint

S] = the half-cone angle

Since differences were noted in the literature regarding nomenclature of
‘precession and nutation, the development of Eq. (1) is provided in the
appendix. Eq. (1) can be simplified by approximating cos € = 1 with no
greater than 1.5% error for all possible cone angles of the rig. This
equation assumes a body symmetrical about the z-axis, a constant input spin
rate, and no torques except that due to gravity. Figs. 14-17 show the
predicted precession rates, from Eq. (1), superimposed on the experimental
data. For all rung, the observed root corresponded to the larger of the two
solutions from Eq. (1). It must be noted that for the test rig to be truly
axisymmetric, a different crossbeam would be required for every fill wvolume
and £oin speed combination. Therefore. a compromise was decided upon to use a
crossheam that provided nearly axisymmetric conditions for three-quarter
filled spheres. Figs. 14-17 show that the predicted precession rate based on
2ither Ix or Iv is neur the average precexcinn rate for the rest puns. The

predicted precession rates for the empty and one-quarter filled spheies both
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appear reasonable, even though these two cases have markedly different
transverse inertias.

The literature frequently refers to the relative spin rate, which is
defined as spin rate of the test rig about its upper shaft independent of
precession. It can be calculated based on the weight, center of mass
location, body inertias, and drive spin rate as:

2

2 %
i (2It - IS)Q + {Q IS - AItVng cos 6}

$ = (2)
ZIt

The development of Eq. (2) is also presented in the appendix. The predicted
spin rate has been superimposed on the experimental data presented in Figs.
14-17. Both transverse inertias were used, and either choice yields good
results for all runs. The smaller of the two roots of the quadratic of Eq.
(2) was observed for all runs. For all runs made with water in the spheres,
the predicted relative spin rates were near the average experimental relative
spin rate. Fig. 14 shows a slightly different result since the predicted
relative spin rates are approximately positioned at the extreme values of the
observed relative spin rate. However, this case also had the most dissimilar
transverse inertias. The empty spheres case shown in Fig. 14 was also
slightly different in that the predicted relative spin rates based on the two

different inertias form bounds for the majority of the data.

Analysis of Liquid Slosh for Minimum Axis Spin

It was anticipated that the instablilitv of the test rig would be
atfecred by the sloshing liquid. It waz hvpothesiced rthat rhe force driving
tte oscillations was associated with the nutatinnal metion. The freguen..w ot
the liquid oscillartions was determined f1om the phocopotentinmeter data The

results of hand data reduction conwi sopnt i chowved the expetimental liguild




slosh frequency at a value much lower than the predicted natural modes based
on the research of Zedd and Dodge [4] or Sumner [5]. The results of frequencv

analysis for all minimum inertia spin runs are presented in Table 2.

Static Frequency Determination

The fundamental frequency of oscillation for the liquid in the test rig
tanks in the static case can be fond by perturbing the tank and timing the
oscillations. Ten oscillations were counted for increased accuracy and three
trials were made at each fill height. The stationary natural frequency of the
six inch diameter tanks was determined to be 2.3 Hz, 2.55 Hz, and 2.65 Hz at
one-quarter, half and three-quarter fill volumes respectively. The natural
frequency of the stationary tank is much greater than the radial or
circumferential liquid oscillations derermined by hand reduction, as shown in
Fig. 18. This obeservation that liquid sloshing occurred during dynamic
testing at a much lower frequency than observed in the stationary tank was not
expected. The work of Slabinski [2], however, agrees with this study as he
found the liquid slosh frequency from dynamic testing on earth and in orbit to

be roughly one-third of the expected value based on stationary tank resonance.

Sumner’s Slosh Frequency Parameter Method

During an experimental test run, the spheres were subjected to an
effective gravity that is the vector sum of the earth gravitational force plus
the force due to centripetal acceleration. The method of Sumner [5], which
relates the spherical tank to an "equivalent cylindiical tank”. was used to
estimate the fundamental slosh frequency for the tank. Sumner has related the
ratio of tank fill height over the tank diameter to a fundamental frequency

parameter which can be used to estimate the fundamental frequency for a
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spherical tank. o distinction is made regarding radial or circumferential
modes. The calculations demonstrate that increasing the rotational speed will
cause the fundamental frequency to increase due to gravitational effects.

This can be seen in Table 2.

Analysis of Forced Liquid Oscillations

The variation of the half-cone angle was investigated as a possible
forcing function. The time history of the half-cone angle varied irregularly,
so the cycles were estimated based on the highest peaks. In Figs. 14-17, the
frequency of the water and half-cone angle calculated in cycles/min are in

reasonable agreement for any given input speed and fill height. Slabinski {2]

p = fd/oorz (3)
vhere

fd is the liquid driving frequency

w_, is the total rotor spin rate about the bearing axis

of the satellite

For a simple spinner, that is, a spacecraft rotating as a singie integral
unit about a principal axis, is determined by the mass properties according
to [2]

p = |I_/I -1| (4)

rz
Slabinski’s liquid driving frequency based on Eqs. (3) and (4) corresponds to
observed coning and liquid oscillations. For the test rig to have equal
transverse inertias would require a unique beam for every fill height and spin
rate combination. Therefore, practicality suggested a compromise beam that

would yield nearly equal transverse axis inertias for the three-quarter fill

volume. The transverse axis inertias remained close for half filled
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conditions but were markedly different for one-quarter filled spheres, Fig.
19. For half and three-quarter filled volumes, the predicted frequencies wvere
4 to 35 percent too high as shown in Figs. 20 and 21. The relation of
Slabinski correctly predicted the nonlinear increase in nutational driving
frequency with increased spin rate.

For the one-quarter fill volume case Figs. 19-21 show the experimental
slosh frequencies between the high and low values predicted by Slabinski’s
relationship. The wider range of predicted frequencies was due to the greater
difference between the two transverse axis inertias.

By use of the driving fiequency parameter, the calculations showed that
the relationship between spin rate and nutational frequency depends on a
product involving the spin rate and inertias of the body. The inertias of the
rig wvere calculated as accurately as possible. This included an attempt tu
account for the liquid mass at a nominal position dependent upon the input
speed. However, the fact that the inertias are actually variable during spin
vas not accounted for.

Although the numerical values don’t match exactly, the work of Slabinski
correctly predicted a nonlinear relationship between spin rate and liquid
slosh frequency dependent on the inertias of the body. Table 2 shows that the
driving frequency ratio was between 0.3 and 0.9 for all minimum inertia spin
configurations tested. Therefore, to excite the tank resonance would require
a spin rate of at least 190 rpm for the given inertia properties. This speed
could not be achieved with the present test rig design. Based on system
frequency response theory, it is anticipated that violent oscillations of the
test rig would occur if the nutational motion, acting as a forcing function,
vere to have the same frequency as the fundamental slosh trequency of the

liquid in the spheres.
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Zedd and Dodge Equivalent Pendulum Method

The third method of determining the fundamental slosh frequency is based
on the pendulum model of Zedd and Dodge [4]. The derivation involves summing
moments about the hinge point of the pendulum. These caluculations continued
to exhibit the trend of increased fundamental frequency with increased
rotational speed, as shown in Table 2. At one-quarter fill, the fundamental
frequency of radial slosh was determined to be 2.289 Hz and 2.915 Hz at 82
and 101 rpm respectively.

The test rig was unable to directly excite the fundamental frequency of
the tanks since all the primary observed nutational frequencies were less than
0.5 Hz, and the estimated fundamental frequencies of the liquid were all
greater than 2 Hz. An increase in the drive cpeed had the general effect of
increasing the nutational frequency, hovever it also increased the liquid

natural frequency.

Experimental Work of Slabinski

The work of Slabinski based on the INTELSAT IV flight data concurs with
the experimental results of this investigation and also concurs with the
conclusion that the liquid sloshing is excited by the nutational motion.
Under the sponsorship of the International Telecommunications Satellite
Organization, Slabinski [2] found that the nutational frequency for dynamic
testing is about one-third of the liquid slosh fr< .c.cy determined by
stationary ground testing. Since ground testing of = .nning systems produced
the same nutation frequencies, he concluded that this does not correspond to a
simple resonance of the liquid. The work described in this studyv has alread:y
detailea an ovbsorved correlation between nutation and liquid sloshing. In

addition, the slosh frequencies observed during iesting wre roughly one-thirtd




the resonance of the static tank frequencies as shown in Fig. 18. Slabinski
stated that the reason for lower natural frequencies is not understood, but
consideration should be given to possible swvirl oscillations of the liquid.

The present instrumentation was not able to detect swirl motion.

MAXIMUM AXIS SPIN

The second area investigated in this research involved spin about an axis
of maximum inertia. Cowles [6] demonstrated that the test rig was very stable
for spin about the axis of maximum inertia and perturbations damped out very
rapidly for this system. This is in good agreement with the work of many
researchers who state that in the absence of an active stabilizing mechanism,
the only stable spin for a body with flexible elements will occur abont the
maximum axis cf inertia. However, Agrawal [7] developed a more stringent
stability criterion for ncn-rigid, torque-free spinning bodies. He stated
that the ratio of spin axis inertia to transverse axis inertia must be greater
that (1 + C) for a stable configuration, where C is a positive constant that
depends on certain specific parameters.

The confiigurations tested in this work had inertia ratios ranging from 1
to 1.5, and the center of mass was located at or below the universal joint.
The important parameters for all maximum inertia spin configurations are shown
in Table 3. The motive behind testing spin to transverse inertia ratios only
slightly greater than one wac to determine if a spin about the maximum axis of
inertia could be unstable as suggested by Agrawal. The upper shaft was
shortened, and the spheres were moved farther away from the center drive shaft
to acrhieve these goals. A maximum inertia ratio of approvimatelv.l.4-1.5,

depending on fill height, was achieved by decreasing the vertical distance
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from the universal joint to the sphere center. By lowering the spheres until
they just cleared the supporting structure, the inertia ratio was decceased to

approximately unity.

Typical Results for Spin About the Maximum Spin Axis

Figs. 22-28 show experimental results for the half-filled spheres spun
about the maximum axis of inertia. This is analogous to the data presented
for the minimum spin configuration in Figs. 1-7. The conditions for run F
shown in Figs. 22-28 include Ix = 0.289, Iy = 0.289, and Iz = 0.325 slug—ftz(
The center of gravity was determined to be 2.69 inches below the universal
joint for the input spin rate of 75 rpm counterclockwise. Fig. 22 shows that
after the collar was dropped at roughly 2.5 seconds, the rig immediately
sought a steady orientation. Approximately 6 seconds later, the rig exhibited
only a small oscillatory motion about the steady orientation. In Fig. 23,
wvhich shows the trace of the tip of a unit vector embedded in the upper shaft
projected onto a horizontal plane fixed to spin with the lower shaft, it can
be seen that the rotating assembly was approximating the motion of a rigid
body. That is, there was very little movement of the upper shaft relative to
the lower shaft. The half-cone angle and nutation rate are shown in Fig. 24.
This figure confirms that the rig precesses with the upper shaft slightly off
vertical. The experimental data presented in Fig. 25 show that thz test rig
had almost pure precession since the relative spin rate of the body about the
upper shaft had only small oscillations about zero. The precession rate is
shown to have a small oscillatory component about the driving input spin rate.
The spike in both relative spin rate and precession at roughly 2.5 seconds was
caused by interaction between the upper zhaft and upper collar wvhen the collar

was lowered. Similar results were observed when dropping the collar for spin
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about the minimum axis of inertia.

The radial liquid slosh data presented in Fig. 26 and Fig. 27 show small
oscillations about a steady value. Only photopoteniiometers 2 and 5, mounted
farthest from the shaft, produced a clean signal of the radial liquid
oscillations. This was attributed to liquid sheeting and orientation of the
liquid relative to the spheres. The frequencies of the half-cone angle
variation and of the liquid slosh in the radial direction were found by hand
reduction of information in Figs. 24 and 26 to be 1.12 Hz and 1.1> Hz
respectively. The circumferential liquid slosh was also seen to have nearly
the same frequency as the half-cune frequency and the radial liquid frequency.
Similar agreement between the half-cone and radial and circumferential liquid

slosh modes is presented for all test cases in Table 4.

Stability Analysis for Maximum Axis Spin

The unexpected result noted during spin about the maximum axis of inertia
was that the test rig did not seek a true vertical orientation. The collar
wvas dropped, and the rig was allowed to seek its equilibrium position before
the data collection began. To verify stability, the rig was struck with a
hammer handle while spinning, and it was observed that the oscillations
rapidly dissipated as the rig returned to its nonvertical equilibrium position
as shown in Figs. 29-31.

The test cases considered were unable to verify the (1 + C) stability
critericn suggested by Agrawal. The rig exhibited stable motion for all
inertia ratios and operating speeds attempted. One possible explanation is
the fact that the test rig did not meet the torque-free requirement. To
achieve an inertia ratio of nearly one, the half-filled spheres were lowered R

inches velow the universal joint, moving the center of gravity 2.85 inches
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below the joint for the stationary configuration. Gravitation had a

significant stabilizing effect under these conditions.

Analysi, of Half-Cone Angle for Maximum Axis Spin

As noted before, when spun about the maximum inertia axis, the rig tilted
to one side and rotated as a rigid body with the lower shaft. It returned to
this position when perturbed for all fill heights, as shown in Figs. 29-31.
Vhen the spin rate was increased, the half-cone angle also increased.
Initially, it was thought that due teo friction in the universal joint the rig
might be statically balanced in a vertical position without being dynamically
balanced. The rotational potentiometers were disconnected since they apply a
slight force on the test rig, but the same tilting effect was observed.
Another hypothesis suggested that the center of gravity might not be located
exactly at the center of the shaft with the centripetal acceleration causing
an increased half-cone angle with an increase in speed. The center of mass
can be moved along the y-axis by tightening both rods that support the spheres
on one side of the x-axis. More tests were run with different static balance
points to attempt to create a stable spin with the upper shaft spinning
vertically. Because small tilt angles had little effect, the sphere support
rods were tightened on one side until the static half-cone angle was 10 deg.
Under these conditions at moderate speed, the rig lifted up off the collar,
and the half-cone angle continued to decrease with increased speed up to the
rig limit of approximately 100 rpm.

The fact that the rig would right itself when initially unbalanced
triggered further evaluation of the spinning motion. Ultimately, it was
discovered that small products of inertia conld oxplain the behavior of the

test rig. Numerical simulation resultsz were similar to experimental motions
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when small non-zero products of inertia were introduced.

Precession and Spin Rate Analysis

The results for spin about the axis of maximum moment of inertia show
that the precession rate oscillated about a constant value for all fill
heighis. In addition, Fig. 25 illustrates that the spin component of the body
about the upper shaft exhibited a small amplitude oscillation about zero. The
spike apparent in the data several seconds into the run was caused by dropping
the collar. The oscillations were of constant amplitude and did not appear to
damp out. Therefore, the motion can be characterized primarily as precession
with an average relative spin rate of zero. 1In this case, the rig speed was
nearly identical to the precession rate. This is in sharp contrast with the
minimum inertia spin configuration results which demonstrated both non-zero

precession and relative spin rates.

Analysis of Liquid Slosh for Maximum Axis Spin

The photopotentiometer data from configurations spun about the maximum
axis of inertia were markedly different from the minimum inertia axis spin
case. For stability, it was anticipated that the liquid must act as a rigid
body so there would be no liquid motion relative to the test rig [7]. The
reason for initially holding the restraining collar in the up position for
several seconds was to estimate the magnitude of noise present. For the case
depicted in Fig. 22, the rotational potientiometer was seen to give a very
clean signal during the collar up portion of the run. The significance of the
photopotentiometer data was almost overlooked because the signal during the
test run was very nearly the same as for the collar up portion as seen in

Figs. 32-35.
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Originally, no liquid oscillations were anticipated for a spin-stabilized
motion. However, small slosh amplitudes were present as observed in Figs.
26-28 and 32-35. For one-quarter and three-quarter filled spheres, there was
only one active radial liquid slosh sensor. Therefore, the radial liquid
slosh results for both spheres are shown on the same graphs of Figs. 32 and
34. There were two active sensors on each sphere at half-filled conditions.
Therefore, the data for each sphere are shown separately in Figs. 26 and 27.
Figs. 32-35 show that the radial liquid oscillations were in phase for all

sphere fill heights.

Frequency Analysis Based on Anticipated Driving Forces

Slabinski [2] related the liquid driving frequency to the spin rate of a
simple spinner as:

p = fd/Q = ]IS/It - 1) (3)
Where fd is the liquid driving frequency. This same relation was used in the
analysis for spin about an axis of minimum moment of inertia. Fur unequal
transverse axis inertias Eq. (5) was used to predict two values based on the
two different inertias. The frequency analysis of the half-cone angle showed

that the mode with the largest amplitude at all fill heights was consistent

with the liquid driving frequency parameter.

Results and Observations for Maximum Axis Spin Tests

Table 4 shows all experimental half-cone, radial liquid slosh, and
circumferential liquid slosh frequencies as determined by MATRIXX. a software
package with FFT capability. 1In Table 4. "STATIC NAT. FREN’ refers to the
characteristic slosh frequency of the tanlk as determined bv perturbing the

stationary tank. The quantities ‘DYN. (OME’., "DYN. RADIAL SLOSH’, and 'DYN.




CIRCUM. SLOSH' refer to the experimental frequencies detected through the use
of the FFT capability of MATRIXX. *SLAB’ refers to the driving frequency
parameter of Slabinski given by Eq. (5). /PEND. RADIAL SLOSH’ and ’PEND.
CIRCUM SLOSH’ refer to the slosh modes predicted by the pendulum mcdel of Zedd
and Dodge. In addition, the precession rate was determined by Eq. (24) of the
appendix. Run designations that include a 'P’, such as run 'AP’, refer to
cases in which the rotating assembly was physically perturbed by a hammer blow
during testing.

For the perturbed runs tested, the table shows that the driving frequency
of Slabinski was still detected in both liquid slosh modes and the half-cone
angle. All experimental half-cone angle and liquid slosh data exhibited a
major frequency near the value predicted accor'ing to Slabinski [2]. 1In
addition, the experimental radial and circumferential oscillations showed a
major frequency component ne.r each mode predicted by the pendulum model of
Zedd and Dodge [4]. Both liquid traces showed a significant frequency near
the value of precession or total spin rate. The exact cause of this frequency
is unknown since both the precession and total spin were spproximately equal
for all maximum inertia spin axis configurations tested.

The frequency analysis indicated that the frequencies associated with
Slabinski, Zedd and Dodge, and the total spin rate or precession are roughly
of the same magnitude for either mode of liquid oscillation. The results for
the minimum inertia spin case differed in that the only significant radial
liquid slosh frequency to be observed was associated with Slabinski. Other

observed modes were of much lower amplitude.

CONCLUSIONS AND RE/AOMUEMNDATIOMNS

Experimental data were in good agreement with the prediction of
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precession rate based on the relative spin rate developed in the appendix [4,
8,9). Instability was observed for all minimum inertia axis spin
configurations tested, despite the fact that those configurations were
statically balanced. The radial liquid slosh frequency observed during
dynamic testing was less than a third of the natural slosh mode anticipated
from ground testing in agreement with actual satellite data [2]. the coning
motion of the test rig appeared to have the effect of a driving frequency,
judging by the agreement between the coning frequency and the radial liquid
slosh.

Experimental investigation of spin about the maximum axis of inertia
revealed stability for all test cases. This study was unsuccessful in
verifying the work of Agrawal [7], which states that the ratio of spin axis
inertia to transverse axis inertia for a tcrque-free body must be greater than
(1 + C) for stability. This is more stringent than classical rigid body
theory which holds simply that a torque-free body is stable for spin about its
maximum inertia axis. Perhaps the test rig did not adequately meet the
torque-free criterion. Future work should include testing configurations
whose spin axis inertia is slightly maximum with a center of gravity closer to
the center point of the universal joint.

The motion of the maximum axis configuration is nearly pure precession,
as the spin rate of the body about the upper shaft has a very small value
which oscillates about zero. Forced oscillations were identified based on the
liquid driving frequency parameter of Slabinski [2]. This frequency was
present in the time history of the half-cone angle. The natural radial and
circumferential liquid slosh modes were also extracted from the
photopotentiometer data.

It was found that small products of inertia can have a strong influence
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on the dynamics of the test rig. Products of inertia much smaller than the
body inertias cannot be neglected as they will cause the test rig to spin off
vertical center, and the tilt increases with speed.
There are a number of areas related to this work that should be studied

further. Among them are the following:

the effect of flexible structural elements of the test rig on

the dynamic motion.

the effect of products of inertia on the system motion.

the time history of the inertia variation due to rig tilt

and liquid motion.

the effect of forcing frequencies on the natural slosh modes

as input speed, inertia ratios, sphere size, and liquid fill

fraction are varied.

the system stability associated with spin about an axis

having a principal inertia only slightly greater than the

transverse inertias with the center of mass located near

the universal joint.

the effect of fluids with different viscosities on the

dynamic motion of the test rig.
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APPENDIX

The literature frequently cites expressions relating precession, total
spin, and relative spin rate, but often the coordinates and quantities used are
not clearly specified. Based on a review of available literature, it was
decided to derive these relationships for the system of Euler angles shown in
Fig. 36. These equations may be derived by solving the moment equations for
the rigid body. The angular rotations associated with the universal joint of
the test rig are not the same as the traditionally defined Euler angles.
Therefore, the position and velocity vector for an equivalent orieniatiovin were
derived in both systems and equated. The result provided expressions for the
precession and relative spin rates in terms of the experimental data.

The orientation of the body in terms of Fig. 36 is described by first
aligning the body with the ground-fixed XYZ coordinates. The body is
then rotated through an angle, ¥, about the vertical Z-axis. Next the body is
rotated by an angle, 6, about the x-axis, and finally, through the angle, ¢,
about the 5'—axis. The quantity ¥ is known as the precession rate, and the
quantity ¢ is the relative spin rate.

The relative spin and precession rates can be determined by writing the

moment equation about the xyz-axes. The moment equation is of the form [9]:

MO = (dHo/dt) W x Ho (6)
wvhere,

ZE = angular velocity of the xyz-coordinate system

_o = angular momentum vector of the body about o

The components of the angular momentum of the body are given by:

H I

x = Tu® by - xy® by ~ Lez® bz 7
I w -1

Hy y by yxw bx ~ Iyzw bz
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Hy = 1@y = TpxWpx - Izyw by
with,
w p = angular velocity of the body
The angular velocity of the body may be written as
w b = é X + ; z' o+ @ A (8)
It may also be expressed in terms of the xyz-coordinate system by use of the

following expressions:

Z ~sin 8y + cos 62z (9)
7 =z (10)
vhere,

Z,X,y¥,Z = unit vectors

Therefore, it follows that the angular velocity is
ab='e§+\'ysine§+(iycose+f¢)§ (11)

The angular velocity components, bx! © by’ and w bz in the xyz system can
then be obtained by inspection of Eq. (11). If we assume a symmetrical body so

that all products of inertia are zero and Ix =1 =1 Egqs. (7) become

y v’
He = Tow, = Ité (12)
o= Towy = I ¥sin @
Hz = Isw bz = IS($ + @ cos 9)

vhere Is is the mass moment of inertia about the body-fixed spin axis.

Therefore,
H =18 (13)
By = It(w sin 9 + @ 8 cos )
ﬁz = Is($ + & cos O - @ 8 sin e)

The angular velocity of the xyz-coordinate system is
u{ =BOX+yYz=06x4+yYsin Oy + Y cos 6z (14)
Thus,
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i j k
_ _ ) @ sin © @ cos O
w X H = . . . .
(] o Ite Itw sin © Is(¢ + Y cos ©)

Expansion of the determinant of Eq. (15) and substitution into Eq. (6)

yields the following moment equations

=
(]

Ite - It(@)zsin © cos 9 + Is($ + @ cos 9)@ sin ©

X
]

thé v cos 6 + It\l; sin © ~ Ité (¢ + ¥ cos ©) (16)

M_ = It($ + Y cos © - ¢ 6 sin @)

The expressions of Eqs. (16) are the general equations of motion for a
symmetric body in terms of Euler angles. The solution may be simplified by
assuming steady precession due to a constant moment. Then, the only external
moment acting on the body is due to the effect of gravity. This may be
expressed as

)

M= rcgz x -mgZ (17)

Substitution of Eqs. (9) and (10) into Eq. (17) yields
M = Wr sin © (18)
X cg
The steady precession rate assumption reduces the number of terms in Eq.

(16) since 8 = = & = @ = 0 and My = Mz = 0. Therefore, equating the

moment components, one arrives at the following:

. <2 . o
Mx = Vrcgs1n 0 = (IS - It)¢ sin © cos 8 + IS¢ ¢ sin © (19)
M =0 20
y (20)
Mz =0 (21)

From Eq. (11), the input spin rate, @, of the test rig is
Q= w = $ + ¥ cos O (22)

Substitution of Eq. (22) into Eq. (19) to eliminate ¢ yields

) . .
(Is - It)w cos B + Isw (R - ¢ cos 8) - Wrcg =0 (23)
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Application of the quadratic formula to Eq. (23) produces an expression for y:

2 "
19 (I & - 4(I,cos OVr_)

. (24)
v o= 2Itcos 2]

Then, substitution of Eq. (22) into Eq. (19) to eliminate v yields

Q- $.2 -9
(Is ~ It)(cos e) cos 6 + 1 ¢( cos e) cg =0 (25)

A final application of the quadratic formula to Eq. (25) produces

2_ 2 %
. (?.It - IS)Q {Q I - AItVrcgcos 9}
¢ = 7T
t

(26)

Relative motion of the universal joint of the test rig does not involve
the same angular coordinates as defined for the system of Euler angles shown in
Figs. 36 and 37. The precession and relative spin rates must be expressed in
terms of rig coordinates to apply Eqs. (24) and (26) to the instrumen- tation
data. To accomplish this, the direction and velocity components for an
arbitrary orientation in the Euler and rig coordinate systems are equated.

The angular velocity in terms of the Euler angles was given previously in
Eq. (8). The angular velocity of the system can be transformed to the XYZ

ground fixed coordinate system by

Xl

=cos v X + sin ¢ ¥ (27)
Substitution of Eqs. (14.5) and (14.22) into Eq. (14.3) yields

wy = (6 cos v + ¢ sin 8 sin ¢)X (28)
+ (6 sin v - ¢ sin 8 cos W)Y

+ (¢ cos 8 + WZ
From Fig. 36 the rig orientation may be expressed in terms of the XYZ ground
fixed coordinates by a sequence of transformations. First, transform the body

’

’ I
fixed coordinates XYoo into the x y z svstem by the followving expressions:

14

X = cos ¢ xo - sin ¢ Yo (29)
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-1 - —_
y = sin ¢ X, + cos $ Yo

’ —

zZ =z
o

’ 1 1
The x y z -coordinates may then be transformed into the xyz-coordinate system:

‘
' !

X =X (30) i
y = cos © i’ - sin 8%
zZ=1sin 0y, + cos € z

The XYZ-coordinate system is subsequently expressed in terms of the

xyz-coordinates by

X =cos yx - sinyy (31)
Y=sinyx +cos ¢y
7 =2

The orientation of the test rig may now be written in terms of body fixed
coordinates by the concatenation of Eqs. (29-31) as follows:

X

(cos ¢ cos ¢ - cos © sin ¢ sin w)IO (32)
~ (cos ¢ sin ¢ + cos © cos ¢ sin w)?o

+ sin © sin wEo

i
1

(sin ¢ cos ¢ + cos © sin ¥ sin ¢)§0 (33)
+ (cos © cos y cos ¢ - sin ¢ sin ¢)§o

- cos ¢ sin © Eo

Z = sin © sin ¢ ;o + sin © cos ¢ §0 + cos © Eo (34)

The operation of the universal joint restricts direct spin about the upper
shaft. Consequently, the instrumentation is set up to measure the coordinates
as shown in Fig. 37. The motion of the actual test rig is fuily described by a

rotation throuzh the angle X about the z2~axis followed by a rotation %1 about

the Az—axis and finally by a rotation Az about the X3 -axis. The rig position
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and angular velocity will once again be written in terms of the ground fixed
system.

The position of the test rig in the x3y3z3—coordinates can be written in
terms of the body-fixed xoyozo-coordinates as
Xy = X (35)
yq = cos X, §o - sin ) Eo
zy = sin Xz Y, + cos Xz z,

The X4Y¥Z4-components of Eqs. (35) are transformed to the X)¥,2,-System as

follows:
; = CoS Xlx + sin Xlz (36)
Yy = Y3

z, = -sin X1x3 + cos klz3
Then, the X,¥925-Ccomponents of Eqs. (36) are used to express the ground

fixed XYZ-coordinate system vectors as:

X = cos A Xy - sin X Yy (37)
Y = sin X 22 + cos X ?2
7 = 52

By combining Eqs. (35-37) one can express the position of the rig in the

XYZ-coordinate system by use of

X = cos X cos Alio (38)
+ (cos Xsin X\ sin XZ - sin X\ cos A2)§0
+ (sin X sin XZ + cos A sin A cos XZ)EO

Y = sin A cos A1§0 (39)
+ (sin X sin X sin ), + cos X cos Az)?o
+ (sin X sin X1 cos Az - cos A sin XQ)EO

Z = sin A1§ + cos A sin Xzy s cos N rosx z, (40)

From Fig. 21 the angular velocity of the test rig may be written as

D29




F* I T Wl W T T O B T I B O O T T W

iy

QZ + lez + )2x3 (41)
vhere, @ = X
It may also be written in terms of the XYZ-coordinate system by use of

—

¥, = -sin X X+cos \Y (42)
x3 = €OS Xlxz - sin Xlzz
;2 =cos AX + sin AT

Z

Substitution of Egqs. (42) into Eq. (41) then yields
Kﬁ = (—ilsin i + X2cos chos MY + (ilcos A+ izcos Xlsin NY
(2 - Aysin A)Z (43)
The quantities X, )1’ and A2 are determined from the instrumentation.
Therefore, the Euler angles may be calculated by equating the components of
Eqs. (32-34) and those of Eqs. (38-40). If a unit vector along the upper shaft

(x0 = 0, Yo = 0, z = 1) is considered, the directional components simplily to:

o
sin ¢ sin © = sin X sin Az + cos A sin klcos XQ (44)
-cos ¥ 3in © = sin X sin X1cos Az - cos X sin Xz (45)
cos © = cos chos XZ (46)

The cosine of the half-cone angle is given by Eq. (46). The trigonometric
identity, sinze + cosze = 1, can be used to express the sine of the half-cone
angle as

sin 8 = {1 - (cos Alcos Az)zl% (47)

Substitution of the expression for sin © into Eqs. (44) and (45) yields

(sin X sin Xz + ¢os A sin chos Xz)

. _ (48)
sin ¥ = 2.
{1 -(cos choskz) }
(cos X sin XQ - sin X sin Alcos %2) (49)
coSs Y = 7 1
{1 - (cos X1cosX2) }e
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The expressions of Eqs. (48) and (49) are necessary for calculating the
precession and spin rates. The next step is to equate the components of
angular velocity in Euler coordinates to the coordinates of the rig. Equating

the xyz-components of Eqs. (28) and (43), one finds

@ cos ¥+ ¢ sin 8 sin ¢ = chos klcos X - )1sin A (50)
© sin ¢ - ¢ sin B cos ¢ = chos A+ chos Xlsin o (51)
©cos O+ y= Q- Xzsin Xl (52)

From Eqs. (50) and (51), it is possible to isolate the unknowns é and @.
The unknown @ can be eliminated by multiplying Eq. (50) by cos ¥ and Eq.
(51) by sin y. The results are then added together and simplified to
produce

b = COS ¢ (;2cos chos X - i1 sin A) (53)

+ sin ¢ (ilcos A+ ;zcos Xl sin A)

Similarly, the relative spin rate, ;, can be found by adding the results after
multiplying Eq. (50) by sin ¢ and Eq. (51) by -cos ¢, to yield

; sin & = sin ¢ (;Zcos Alcos A - ilsin A) (54)

- cos ¥ (ilcos A+ izcos Xl sin A)

Egq. (54) defines the relative spin rate in terms of quantities available from
experimental data. The relative spin rate must be known before calculating the
precession rate. Substitution of Egq. (46) into Eq. (52)
to eliminate the half-corne angle results in a precession rate given by

@ = Q - ;2sin X1 - ; cos %1cos XZ (59)
The first derivatives of Xl and Xz may be approximated by the incremental angle
change divided by the time step between data points. The relative spin rate

and precession rates may then be determined from the experimental measurements

of A, Xl, and Az.
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ft.
1 .003
2 .50 100 371 .349 .239 16.32 -.080
3 .75 S0 .358 .357 .263 18.09 -.033
4 .75 90 .358 .357 .263 18.09 -.033
5 .75 100 .358 .356 .263 18.09 -.034
6 .0 112 .291 .203 .168 12.62 .156
7 .25 80 . 341 .291 .208 14.5¢ .002
8 .25 90 . 340 .290 .208 14.54 .002
9 .50 70 .376 .351 .237 16.32 -.080
10 .50 83 .374 .350 .238 16.32 -.080
11 .75 72 .361 .357 .262 18.09 -.033
12 .0 130 .291 .203 .168 12.62 .156
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TABLE 1. Minimum inertia axis spin test conditions
RUN VOL Q Iy Iy I, W
frac. RPM slug-ft2 lbs.
.25 100 .339 .290 .209 14,54
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TABLE 3.

Maximum inertia axis cpin test conditions

RUN VOL Q Iy ly I, eg

frac. RPM slug-ft 1lbs ft.
A .25 80 . 249 .212 . 257 13.73 .733
B .25 118 .217 .211 .258 13.79 .731
C .25 S0 .243 .236 .258 13.79 .121
D .25 75 . 244 .236 .257 13.79 122
E .25 80 . 249 .212 .257 13.79 .733
F .50 70 .280 .289 .324 13.88 .237
GP .50 70 . 280 .2889 .324 13.88 .237
H .50 105 .272 .307 .303 15.57 194
I .50 75 .301 .312 .322 13.88 274
JP .50 70 .242 .275 .301 15.57 .25
K .50 S0 . 294 . 306 .323 13.88 .273
L .75 30 .288 .333 .362 15.65 .253
MP .75 90 .220 .265 . 362 15.65 .063
N .75 50 .292 .333 .358 15.65 .254
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FIGURE 1. Test rig oscillations.
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FIGURE 6. Radial pendulum cscillations measured by photo-
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COMPUTER SIMULATION OF A TEST RIG TO MODEL

LIQUID SLOSHING IN SPIN-STABILIZED SATELLITES

D. R. Flugrad
L. A. Obermaier
Iova State University
Ames, Iova

ABSTRACT

Certain communications satellites carry liquid stores on board for station
tending and attitude adjustment. However, sloshing of the liquid can cause an
undesirable nutational motion of the spin-stabilized vehicle. 1In previous
work a test rig was designed, built and instrumented to study the interaction
between the rotating structure and liquid. To augment that experimental
project, a computer model of the test rig has been developed to simulate the
dynamic motion of the system for various parameter values. The sloshing
liquid was replaced by a two degree-of-freedom pendulum in the mathematical
model. Simulation results from this software are compared with those obtained

from a general multibody dynamics program and with experimental output

obtained from the test rig.
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INTRODUCTION

Extensive research, both analytical and experimental, has been conducted
on the stability of spacecraft having liquid fuel stores. A rigid body can be
stabilized by spinning about an axis of either maximum or minimum moment of
inertia. Common examples of spin stabilization about an axis of minimum
moment of inertia include a spinning top or a football. However, systems
containing a significant amount of liquid mass, such as the INTELSAT 1V [1,2]
and the STAR 48 [3]) communications satellites, as well as the XM761 artillery
projectile [4], have experienced instability when spun about an axis of
minimum moment of inertia. Sloshing of liquid payloads has been suspected of
causing instability of the spin-stabilized bodies.

Viscous dissipation resulting from relative movement between a liquid and
its container tends to reduce the kinetic energy of a system. The body,
attempting to conserve angular momentum, is then forced to seek a lower energy
state. For a given amount of angular momentum, spin about an axis of maximuu
moment of inertia represents the minimum energy state possible. If a body
spun about its axis of minimum moment of inertia experiences energy
dissipation, it will seek the lower energy state and will end up spinning
about its axis of maximum moment of inertia if unrestrained. This is known as
a flat spin.

Agrawal [5] states that for a body with flexible elements, the ratio of
the moment of inertia of the spin axis to that of the transverse axis must be
greater than one for stability. Thus, to be stable, a body containing liquid
must be spun about an axis of maximum moment of inertia.

Several launchings of the STAR 48 communications satellites resulted in a

coning motion of the spacecraft. Hill [3] used an equivalent mechanical
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pendulum model, along with a mass representing the main body and rocket motor
to approximate the STAR 48 system. He developed control laws using linearized
equations of motion.

The INTELSAT 1V communications satellite also experienced instability
once launched. Slabinski [1] conducted in-orbit testing of the satellite, as
vell as a theoretical analysis, to study the sloshing phenomenon inside the
tanks containing liquid propellant. He developed relationships between
driving frequencies and nutation frequencies. Martin [2] experimented with
tanks of liquid propellant on earth. Martin, through his experimental
investigations, found that when a spinning tank is subjected to angular
oscillations about an axis which is not parallel to an axis of symmetry of the
tank, turbulent fluid motion is excited. However, when the tank is
accelerated rectilinearly, the motion of its contents is relatively calm, like
that of a rigid body. Because a sphere is axisymmetric, liquid in a sphere
did not experience the turbulent motion.that it did in differently shaped
tanks. In the spherical tanks, the liquid behaved like a pendulous rigid
body.

Many analytical attempts to quantify the movement of liquids in tanks
have used a pendulum analogy. Such an analogy assumes that the liquid inside
the tank moves as a spherical pendulum would under the same conditions.

Sumner [6] developed relations to describe a pendulum representing the liquid
in spherical and oblate spheroidal nonrotating tanks as a function of tank
geometry and £i11 fraction. The mass of the pendulum is not equal to the mass
of the liquid in the tank. A nonsloshing mass is fixed at approximately the
center of the tank. The sum of the nonslosh mass and the pendulum mass is
equgl to the total liquid mass. Sayar and Baumgarten [7] included a

rotational damper and a cubic spring in their pendulum analogy to improve
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Sumner’s model in the nonlinear range.

Zedd and Dodge {8] examined the energy dissipated by liquids in rotating
spherical tanks using a pendulum analogy. Their model included a pendulum, a
rotor, and a viscous dashpot. Through this analogy, they developed equations
for natural frequencies of the pendulum as functions of tank location, tank
fill fraction, and the spin rate of the tank.

Cowles [9] built a test rig to model a satellite containing liquid fuel
stores. His model consisted of a motor driven shaft which supported a
semi-rigid assembly. The assembly was connected to the vertical input shaft
by a Hooke’s type universal joint. The assembly held two tanks which were
partially filled with water. By altering the location of the tanks and the
dimensions of the assembly, Cowles was able to achieve a variety of test
conditions, including spin about axes of maximum, intermediate, and minimum
moments of inertia. When spun about an axis of maximum moment of inertia, the
assembly was extremely stable, even when perturbed. The assembly, however,
fell immediately into a flat spin when spun about an axis of intermediate
moment of inertia. Though a configuration was designed and built for spin
about an axis of minimum moment of inertia, tests were never completed because
it was felt the assembly might be damaged in a collision with the supporting
structure if it attempted to go into a flat spin.

Anderson [10] redesigned the mechanical assembly built by Cowles.
Anderson’s assembly included a restricting collar so that even an unstable
test assembly could not damage itself or the supporting structure. The
redesign incluyded instrumentation in order to acquire quantitative
measurements of the motion of the assembly and the liquid contained in it.
Just as predicted, Anderson found the case of spin about an axis of minimum

moment of inertia to be unstable.
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The work described in this study develops the equations of motion for the
test rig designed and constructed by Cowles and Anderson. Equations of motion
vere derived using Lagrange’s equations. State variables were chosen to best
match the quantities being measured by Anderson’s instrumentation. The
equations of motion were then numerically integrated. Results of the
numerical simulation were compared with those from an existing rigid body
dynamic analysis program to verify the validity of the numerical simulavion.

Simulation results were also compared with Anderson’s experimental results.

DEVELOPMENT OF EQUATIONS

A schematic draving of the mechanical system modeled is shown in Fig. 1.
The model contains four rigid bodies. A lower shaft which rotates in pillow
block bearings supports the structure. The upper assembly is connected to the
lower shaft by a Hooke’s type universal joint. Two pendula, representing the
sloshing liquid in the tanks, are then symmetrically attached to the upper
assembly by Hooke’s type universal joints. The pendula are assumed to be
point masses suspended from the upper assembly by rigid, massless rods. Fig.
2 shovs the positioning of a pendulum with respect to the mechanical model.

A note of clarification is perhaps necessary to define terminology of
bodies in the system. The "test rig" is defined as the structure that
encloses the liquid and its associated supports, as well as the contained
fluid. This basically includes everything supported by the universal joint on
the mechanical assembly. The "upper assembly" is associated with the
mathematical model and does not have a direct physical representation. The

upper assembly is defined as the test rig minus the enclosed liquid plus the
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nonslosh masses.

To develop the equations of motion for the system, a Lagrangian
formulation was used. Through the use of coordinate transformations, position
vectors were determined for each of the bodies. The position vectors were
then differentiated with respect to time to determine velocities for the
bodies. The kinetic and potential energies of the bodies were then developed.
Once the equations cf motion were determined according to Lagrange’s
equations, they were numerically integrated using a double precision version

of DIFFEQ, a numerical integration program.

Coordinate Transformations and Body Positions

The positions of the bodies were determined through simple coordinate
transformations consisting of rotations and translations of Cartesian
coordinates. All coordinate systems used were defined to be right-handed.

The ;1—;1—;1 coordinate system is stationary and is positioned at the
center of the universal joint. The ;1 axis is directed vertically upward.
Positioning of the ;1 and ;1 axes 1s arbitrary.

Transformation to the ;2-;2—;2 coordinate system is achieved by a
»ight hand rotation about the ;1 axis. The ;2—§2—;2 coordinate system is
attached to the lower shaft of the test rig and its origin is at the center of
the universal joint. The ;2—;2-;2 axes are fixed in such a way that when
the ;1 and ;2 axes are aligned,. the ;2 components of the position vectors of

the pendulum supports are zero. Generally, the matrix [Aij] is defined such

that
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l i; 2
| Yy Y;
T . =401 7 | (1)
Z.‘ Z]'
{ 1 ), \ 1 J

- - -

The transformation matrix from the ;2-;2—;2 coordinate system to the X1-¥1-%,
coordinate systenm, [A12]’ is given in the appendix.

The rotation of the upper assembly relative to the lower shaft is defined
by the two rotation angles, A. First, a rotation by an amount Xl about the
&2 axis defines the transformation to the ;3-;3-;3 coordinate system. Then
the coordinate system is rotated through an angle Az about the ;3 axis to

- -

arrive at the ;4—y4-24 system.

The ;4—;4-;4 coordinate system is fixed to the upper assembly in such a
wvay that the §4 components of the position vectors from the universal joint
to the pendulum supports is zero. The origins of the ;3-;3—;3 and ;4-;4—;4
systems are located at the center of the universal joint. The rotations
betwveen the 2, 3 and 4 coordinate systems are shown in Fig. 3.

Because the body is assumed to be axisymmetric, the position vector of

the upper assembly is given by
Tua = P4 (2)

wvhere »p {s defined to be the height of the center of gravity of the upper
assembly abcve the universal joint when X1 and Xz are equal to zero.

The pendula, which represent the water in the spherical tanks, are
displaced from the universal joint. The physical constants r and (cg) are

defined such that the position vector of the support of pendulum 1 is
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X, + (cg)za. Consequently, the origin of the Xg-Yg-2g System is defined

to be at rx, + (cg)zA. This is the location of the hinge point of pendulum 1,

and also the location of one of the nonslosh masses of the upper assembly.

Similarly, the origin of the Xg-Yg-2g System is located at —IX, + (cg)za,

vhich is the location of the hinge point of the second pendulum, as well as

the second nonslosh mass. There are no relative rotations for the X4~V 424

- - - -

Xg-Yg-2g, and Xg-yg-2g coordinate systenms.
The radial rotation of the pendula are defined by the angles, ©. The

angle 61 is defined by right hand rotation of the Xg-Ye~Zg System about the

Ys axis. In a parallel fashion, the angle 62 is defined by right hand

rotation of the Xg-Yg-2q system about the g axis. Note that if both pendula

are flared outward from the universal joint by an amount 6, then 8, = -8

1

while 92 = +6,
Circumferential (or tangential) rotations of the pendula are described
by the ¢ angles. The x7 y7-z7 axes are rotated through the angle ¢1 about

the Xe axis. The X5- y7-z7 coordinate system is fixed to pendulum 1. Similar-
ly, the xlo—ylo-z10 axes, which are fixed to pendulum 2, are rotated through

an angle ¢2 about the Xg axis. Rotations of the pendula relative to the
upper assembly are shown in Figs. 4 and 5.

The local position vectors of the pendula, ?pl and ?pZ are easily defined

as
and
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vhere 1 is the length of the pendulum. This length is a function of tank

size, tank shape, and fill height [1].

By direct substitution, the position vectors of the bodies can be

expressed in terms of world coordinates. Thus,

(. ) (. )
z) 24
U1 Y4

<  — [A12][A423](A434] 4 (5)
7] 7}

[ 1) (1)

The overall transformation matrix, [AM], is simply the product given by

[AIZ][A23][A34]’ Since ?La = P2, it can be expressed as
fua = p(cos'd:sin/\lcos)\g+sin¢sin/\2);i:1

+p(siny sin A] cos Ag — cos ¥ sin Ag) Yy

+pcos Ay cos A9z (6)
In similar fashion,
z) z7
n , 1 LW
>=tA12][A23][A34][‘4451‘{A561[467;ﬁ 0 7
2y 27
\ 1 / \ 1 J
and
() (. )
2 Z10
gl r 1 T [ T * glo
{ (= “ialidaslidaall4agll4solide,10. | &
21 210
1 ] 1
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tes nd g , .
The position vectors rp1 and rpZ’ expressed in terms of world coordinates,

are presented in the appendix.

Body Velocities and Energies

The translational velocities of the center of mass of the upper assembly
and the two pendula can be determined by differentiating their position
vectors with respect to time. Using the chain rule of calculus,

S S

dr Or dg;
v = — = E —_— (9
v dt =1 8qi dt )

Thus, differentiation of Eq. (6) produces
Yuga = P [&(cosd)sin Ao — sinsin Ay cos Ag)
+X1coswcosA1cosA2
+X2(-cos¢sh1Alsh1A2*—ﬁnwcoskg)}il

+p W)(cosx/zsin A1 cos Ag +sin¥sinAg)

L

+A1 sin cos Ay cos A9

+,'\2 (— cosycos Ag — sin¥sin Ay sin Ao)l gy

i
4

+p(—ﬂ1ﬂnA1cosA2 —XQCOSAlﬁnAQ)él (10)

Velocity vectors of the pendula are determined in an identical fashion. Due
to their lengthiness, however, they are shown in the appendix rather than

here.

Using the addition theorem for angular velocities, the angular velocitxr

of the upper assembly can be expressed as a sum of simple components as

Sug = Wi] = Ay ~ A9i3 (11)
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or expressed in terms of body fixed axes:
Wya = (-¢ sin A1 + /\2) z4
+ (111 cos Aq sin A9 + ;\1 cos /\2) g
4—(¢cosA1cosA2-Xlsh1A2)£4 12)

The inertia dyadic of the upper assembly, fﬁa can be expressed as

Tya = Izzdgdy+ Iyyiady + L2253

+Izy(54g4‘+g4j4)4‘Iyz(§4i4-+24g4) (13)

vhere IEn is defined to be the inertia scalar of the upper assembly relative
to its center of gravity for unit vectors Ea and N, - Note that the body is
assumed to have zero products of inertia about its center of gravity for the

X, and z, axes.

The angular velocity of the lower shaft is simply
Wy =¥ (14)

The relevant term of the inertia dyadic for the lower shaft is the moment
of inertia of the shaft about the ;1 axis, Ils' Because the pendula are
are assumed to be point masses, their inertia dyadics are zero.

The kinetic energy, T, of the system can now be calculated by summing

the rotational and translational kinetic en-_gies of all the bodies:

1 1

T = '2'm31?p1 . ﬁ‘pl + Ems‘!-fpz . 17p2 + imua{]‘ua . l?ua,
1. > 1. = .
+'2'wua.'1ua'wua+§w13-Ils'w[3 (15)

wvhere m is the mass of a pendulum and ma is the mass of the upper assembly.

The kinetic energy is expressed in matrix form as
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T = 2 {07 (M) {4) (16)

vhere the matrix [M], shown in the appendix, is symmetric. The vector {q}

is defined as

{at =1 6 (17)

?2

\

The potential energy, V, of the system is determined from the elevation

of each of the bodies. Thus,
V = myggpcosAycos Ay + mpg[lsin A (sinfy cos 1 + sin g cos ¢9)
—lcos Ay cos Ag (cos 67 cos ¢y + cos g cos é9)

+lcosA15h1A2(sh1¢1-rsh1¢2)f-2(cg)cosA1cosA2} (18)

Lagrangian Formulation
The Lagrangian, I, for the system is defined simply as L = T - V.

Equations of motion can be determined from Lagrange’s equations of the

second kind as

d<BL) oL =Fgp r=1,.,7 (19)




= S

The generalized force, qu, due to viscous damping can be expressed as
Fgp =crgr r=1,..,7 (20)

vhere ¢, is the viscous damping coefficient expressed in dimensions of torque
per unit angular velocity.
Substituting L = T - V into Eq. (10) and noting that V does not depend

on q we have

d(aT) or ov

dt dqr - Oqr - Oqr B qu T Lt b

Since T = 0.5{q}[M]{q} where [M] does not depend on 4, the first term on

the left hand side of Eq. (21) is determined by

orT

g~ M (22)
ar - I{d}
and by the chain rule of calculus,
d (0T .
2122 = . . - (23)
m (aqr) [a1] {4} + (M {3}

For the second term on the left handrside of Eq. (21),

8T 1 27: oMz
o 2.5 Oar 19 (24)
j=1

So that the equations of motion become
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oV

BM
( qqu) +5q: =qu 1"'—=1,...,7 (25)

7 7
Z ( ird;i + Nf”.qz) Z
=1

These equations are assembled into a matrix form,

3] () + 1431 - (DELMT (0 + {52} = 1) (26)

vhere [DELM] is defined by

L)
DELM;; = ZB‘I

k=1 3"1

(27)

This system of equations was numerically integrated using a double
precision version of DIFFEQ, a numerical integration program. The user
of DIFFEQ must supply a subroutine which computes the derivatives of the
state variables with respect to the independent variable, given the current

values of the independent variable and the state variables.

SIMULATION RESULTS
To ensure the accuracy of the equations of motion, simulation results

vere compared with those from a multibody dynamics program called CAMS.

Results were also compared with experimental data.

CAMS (Control Analysis for Mechanical Systems), a three-dimensional
multibody program, was used to verify the accuracy of the previously derived
equations of motion. To run CAMS, a user creates a data file specifving

the type of connection existing between bhnadies, az well as the inerrtial
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properties, initial positions, and initial orientations of all of the bodies
in the system.

Because CAMS is more generic than the program tailored specifically
to solve the satellite problem, it was considerably more time consuming to
generate an input data file for CAMS than for SATELL, the specific program
written for this study. Several runs were completed using CAMS. However,
only two represcntative runs are displayed here for brevity.

The physical values of the test rigs used for the analyses are given
in Table 1. Is is defined as the moment of inertia of the test rig about
its spin axis. It is defined as the moment of inertia of the test rig about
a transverse axis throught its center of gravity. For all runs in this
section, the center of gravity of the test rig at its initial speed is
located 2t the universal joint.

Figs. 6-12 compare the output of CAMS and SATELL for a case in which

half filled, one ft. diameter spheres spin about an axis of maximum moment

of inertia (specifically, IS/It = 1.6). Fig 12 shows the half cone angle

versus time for each of the programs, where the half cone angle, B, is defined

to be the angle between the z, and z, axes. Mathematically,

3=cos-1(cos/\1 cos Ag) (28)

Close agreement is seen in both the magnitudes and frequencies of all of the
state variables.
Figs. 13-17 compare the results of CAMS and SATELL for the case of spin

about an axis of minimum moment of inertia.
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Comparison with Experimental Data

To determine the validity of the mathematical model, output from SATELL
was compared with Anderson’s [10] experimental results.

In his experiments, Anderson used six-inch plastic spheres. Physical
properties of two of the test rigs used in experiments are given in Table 2.

In both .ases, the spheres were half full. Two transverse moments of inertia

I
|
I
l

are listed, with It1 the moment of inertia of the test rig about the x, axis

and It2 the moment of inertia of the test rig about the 94 axis.

Figs. 18-22 show a comparison of experimental data and SATELL output for
spin about an axis of minimum moment of inertia, runs 1lE and 1SE. Only about

ten seconds of experimental data could be acquired before the unstable upper

assembly came to rest on a supporting collar.

CONCLUSIONS
This work has developed the equations of motion for a test rig designed
to model a spin-stabilized satellite. The applicability of the equations of
motion to the motion of a satellite is based on two assumptions. The first
is that the mechanical assembly is a valid model of a satellite, and the
second is that the mathematical model is a valid model of the mechanical
test rig.

The major accomplishments of the study have included:

Development of the equations of motion of a spacecraft simulator using
a Lagrangian formulation

Numerical integration of the developed equations of motion in order to
simulate the motion of the test rig.

Comparison with a multibody dynamics program to verify accuracy of the

equations

El6




Comparison with experimental results to determine the validity of the

mathematical model

Basic theories were confirmed. That is, that a body containing a
sloshing fluid is stable when spun about an axis of maximum moment of inertia
and unstable when spun about an axis of minimum moment of inertia.

Comparison of the results of SATELL with the results of CAMS showed good
agreement. The results agreed very closely. The relative ease in calculating
the input values for SATELL supports its use over that of CAMS for this
particular application.

Agreement between experimental data and the output of SATELL was
reasonable. The results showed similar frequencies and magnitudes.

Difficulty in modeling the experimental setup arose in determining values
for mass moments of inertia of the test rig. These values were calculated
using formulas for mass moments of inertia of basic geometric shapes.
Another difficulty was encountered in determining damping coefficients at
the universal joint and pendulum supports.

Now that a computer program has been developed to simulate the dynamics
of a spin-stabilized structure carrying liquid stores, many additional factors
can be studied. For example, different size tanks and different inertias can
be considered. The absence of gravity in outer space can also be simulated by
simply setting the acceleration of gravity equal to zero. Furthermore, plans
call for additional development of the computer program to handle cases
wvhere the liquid tanks are not perfectly symmetric and may not even hold the

same quantity of liquid.
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Because [M] is symmetric, only the upper elements of the matrix are

displayed here. The lower elements are determined by Mij =M ji-

My = m312 Kcos2 Ag + sin2 A sin2 /\2> (sin2 P71 + sin2 ¢32)
+ cos? A1 (sin2 61 cos2 1 + sin2 6o cos? ¢>2>
+ (sin2 Ag + sin? A1 cos? AQ) (c052 61 cos? é1 + cos? 62 cos? ¢2)
+2 cos? A1 €os Ag sin A9 (cos 81 cos @1 sin @1 + cos 89 cos ¢9 sin p9)
+2cos Ay sin Aj cos Ay (cos 81 sin8q cos? @1 cos f9 sin 09 cos? d>2>
—~2cos A1 sin Ay sin Ag (cos 87 cos @1 sin A} + cos 89 cos ¢ sin @9 )’
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+2mg (cg)2 (sin2 Ag + sin? Al cos? )«2)
~2mglr {—coo A1 (sinfq cos ¢y — sinfy cos ¢9)
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Mg = m312c0502—m31(cg)cosd>2

Myy = m312 cos? #1

Mys = 0.
My = 0.
My7 = 0.

Mss = mgl?

Mgg = 0
Myz = 0
Mg = msl“2 cos? D)
Mgz =0




TABLE 1. Test rig data for comparison with CAMS

run total sphere % r (cg) spin I, I,
mass diam fill speed
slug ft ft  ft rpm  slug ft?  slug ft?
1S 2.0 1 30 1 0 100 2.22 1.39
1C 2.0 1 50 1 0 100 2.22 1.39
3S 2.0 1 50 1 0 100 2.08 3.47
2C 2.0 1 30 1 0 100 2.08 3.47

TABLE 2. Test rig data for comparison with experiment

run total height spin I, I, I,
mass of c.g. speed

slug ft rpm  slug ft?  slug {t?  slug ft?

1IE 0507 -0.080 -100 0.223 0.343 0.340
1SE 0.507 -0.080 -100 0.223 0.343 0.340
2E 0431 -0.121 -70 0.324 0.280 0.289
25E 0.431 -0.121 -%0 0.324 0.280 0.289
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ABSTRACT

The sloshing of a liquid in a twvo-dimensional container undergoing a
constant, horizontal acceleration is examined in this study. A fluid initially
in a state of hydrostatic equilibrium is suddenly accelerated from rest. This
sudden acceleration causes an equally sudden change in the pressure field such
that the original hydrostatic pressure field no longer gives the correct
initial condition. The dimensional formulation is singular at the moment the
acceleration begins. By using appropriate scales for the velocity and pressure
fields, a nonsingular dimensivnless formulation is developed which leads to the
correct initial condition for pressure. A transformation to container centered
coordinates is also used. In this noninertial frame, the sudden acceleration
becomes a horizontal body force. Another transformation immobilizes the wavy
free surface, and maps the liquid domain into a unit square for all time. A
numerical method is used to solve the resulting dimensionless formulation.
Detailed information on pressure and velocity fields is given, as well as

global information on sloshing frequency and viscous damping rates.
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1. INTRODUCTION

The motion of waves along a gas-liquid interface poses a problem of
tremendous analytical and practical interest. Examples range from the
prediction of tides [1] to the sloshing of liquids in finite containers. The
prediction of tides, bores, and wave induced drag all have obvious maritime
applications. The sloshing of fluids is of prime concern in all types of
moving vehicles (tanker trucks, railroad cars, and ships; as well as aircraft
and spacecraft) since their motion may be adversely affected by the sloshing.
The adverse effects may range from outright changes in vehicle orientation due
to unvanted moments generated by the sloshing to substantial periodic forcing

due to vehicle resonance near the natural frequency of the fluid.

1.1 Analytical Works

Theoretical studies, beginning some two hundred years ago [1] and
continuing to the present day, have built up a considerable body of knowledge
about wave dynamics. Although somewhat limited in scope, these studies have
contributed greatly to our understanding of these types of problems. Almost
all analytical work focuses upon potential flows. Two basic approximations are
universally employed.

In shallow water (or long) wave theory, the wavelength of a disturbance is
assumed to be much larger than the depth of the fluid. This implies that the
vertical acceleration of fluid particles is negligible--that the pressure
distribution is purely hydrostatic and that the horizontal components of
velocity are not functions of fluid depth. 1In a horizontally unbounded fluid,
the velocity of propagation, ¢ (celerity), is equal to (hé)v2 vhere h is the
depth of fluid below the wave and g is the acceleration of gravity. For waves

of infinitesimal amplitude, the total energy of the wave is half kinetic and
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nalf potential {1j. For waves of small, but not infinitesimal amplitude, the
vave changes shape as it propagates because higher parts of the wave,
corresponding to larger values of h in the preceding formula, travel faster
than lower parts of the wave. 1In horizontally bounded fluids, for one
dimensional infinitesimal waves, the oscillations are harmonic with frequency
(cn/2n) and wavelength Xh such that o, = nnc/l and Xh = 21/n vhere n is integer
and 1 is the length of the bounded horizontal region. The extension to two
dimensional, infinitesimal bounded waves is straightforward; with nn/l1 being

replaced by km " = (mz/p2 + n2/12)%. vhere m.n are intecar and p 1 are the

lengths of the bounded region; and Ah = 21/n and )m = 2p/m being the
corresponding wavelengths of the disturbances in the two directions. For p >
1, the component oscillation of largest period (smallest Gm,n) is obtained by
choosing m = 1 and n = 0, this disturbance is everywhere parallel to the longer
side of the bounded domain [1].

In deep water (or surface) wave theory, the wavelength of a disturbance is
assumed to be comparable to the depth of the fluid. Although the amplitude of
the wave is assumed to be infinitesimal, vertical and horizontal accelerations
are now of comparable magnitude. Unlike the case of shallow water waves, in
deep water waves the magnitude of motion decreases rapidly with depth
(exponentially fast, in fact, for the limiting case of infinitely deep water).
In a horizontally unbounded £1li.:. :he celerity is ¢ = {{g\27n) :anh
Thus the wave speed is dependent upon the wavelength of the disturbance
(such that c increases with X) as well as the fluid depth. 1In a
horizontally bounded fluid, for one dimensionsal waves, the oscillations
are again harmonic with frequency cn/Zn and wavelength Xn = 21/n where

2

o, = ékntanh(knh) and kn = 2n/Xn. As was the case for shallow waves, the

total energy of a deep wave is half kinetic and half potential. The extension




to two-dimensional bounded waves merely involves replacing kn above with km,n
as given by the shallow wave theory [1].

Within the framework of either shallow or deep water wave theory, a number
of additional aspects of wave motion have heen examined. These include the
effects of variable depth, forced oscillations, small but finite amplitude
wvaves, waves in circular basins and spherical sheets, rotation, and traveling
pressure disturbances, to list a few [1]. More recently, two and three-
dimensional sloshing in horizontal cylindrical and spherical containers has
been investigated [2,3] with these techniques. An interesting result has been
the observation that the dependence of frequency with depth is also mode
dependent. For the lowest modes of oscillation, frequency simply increases
with the depth of fluid in the container. For higher mode oscillations,
however, the frequency first decreases and tiien increases with depth. Another
recent study of forced vertical oscillations in a slightly non-square basin has
also revealed the existence of symmetry-breaking bifurcations and chaotic free
surface oscillations if the basin is sufficiently non square and/or the
frequency of forcing is sufficiently detuned from the natural frequencies of
oscillation [4]. This work has been confirmed experimentally [5]. The specter
of chaotic sloshing leads to the disturbing thought that sloshing motions in
their fullest nonlinear form may be inherently unpredictable.

In certain cases, potential flow theory may also be helpful in examining
vaves whose amplitudes are not small. For example, it is possible for a wave
to propagate through a liquid of depth comparable to the wave amplitude without
the wave changing its shape. Such a wave, which seems to defy the results of
shallow wave theory, is called a soliton. The key requirement for this
behavior is that the wavelength of the soliton not be so great (compared to the

depth) that vertical accelerations are negligible. Thus the basic assumption
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of shallow wave theory is untenable in this case [1}. As the soliton amplitude
is aecreased (and thus the veriical acceleration decreases), the wavelength of
the soliton increases, and it approaches the shape of a shallow water wave of
infinitesimal amplitude.

The effects of surface tension and fluid viscosity has been investigated
theoretically using deep wave theory. If surface tension dominates gravita-
tional effects, then the celerity increases with surface tension and decreases
with disturbance wavelength. With both surface tension and gravitational
effects taken into account, the frequency of oscillation ie found to increase
vith increases in gravity, surface tension, and/or disturbance wavenui..e., k.
The celerity first decreases, but then reaches a minimum value and finally
increases with k. For a free surface at vhich the gas (or vapor) density is
negligible compaved to the liquid density p, the critical wavelength corre-

sponding to the minimum value of celerity cz

— h o, = A
rin = 2(¥8/0) " is A = 2n(+v/eg) ",

where y is the coefficient of surface tension. 1If X/Xc > 3, then gravitational
effects dominate the wave dynamics, while for X/Xc < 1/3, surface tensiocn

effects dominate. More generally, 02 = gk + Yk3/p and c2

= g/k + Yk/p [1]. A
recent work empioying a regular perturbation in terms of wave amplitude shows
that surface tension acts to decrease wave amplitude and to increase the
potential energy of the wave to values well beyond the level of kinetic energy.
These increases in potential energy are due to the surface tension. The
gravitational contribution to the potential energy first increases, and then
decreases with increasing surface tension [6]. The effect of viscosity is to
cause a damping of the wave such that its amplitude decays exponentially in

. . -vkzt . . ) . . .
time like e wvhere v is the kinematic viscosity of the liquid. For the

case of infinitesimal deep waves, viscosity has no effect on wavelength,

frequency, or wavespeed [1].




The idealizations of potential flow and shallow water wave theory may even
be used to gain realistic insight into the breaking of waves. Suriace tension

is found to act to keep the free surface from breaking up [7].

1.2 Numerical Vorks

Despite the apparent number and diversity of analytical seclutions for wave
problems, analysis which can reveal the full nonlinear scope of wave dynamics
lies well beyond present day analytical techniques. In recent times (the past
25 years), numerical methods and solutions for wave problems have appeared
which incorporate effects of viscosity, surface tension, finite enclosures
(rectongles, cylinders, and spheres), and finite wave amplitude simultaneously.

Perhaps the first numerical method which could successfully be used to
treat arbitrary wave probiems was the Particle in Cell (PIC) method [8]. 1In
the PIC method, a continuum model is not used, instead, the motion of a finite
number of fluid particles is followed using a Lagrangian description of the
dynamics. First order upwind differencing was used in the PIC method,
resulting in solutions with significant numerical viscosity. Also, momentary
crowding or depletion of particles could occur in a computational cell,
resulting in random, high frequency oscillations of fluid properties.

The idea of tracking a finite number of fluid marker particles was used in
a continuum model called the Marker and Cell (MAC) method [9,10]. The MAC
method is a finite difference method which solves the governing equations for
primitive variables on a staggered mesh. A Poisson equation which implicitly
enforces continuity is used for pressure. The position of the free surface is
deduced by the distribution of marker particles. Unlike the PIC method,
however, these particles are not involved in the dyvnamical calculation other

than that they are used to determine where the free surface is located.
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Initial results with the MAC method indicated that for sloshing in containers,
that the period of sloshing increases with viscosity and that the multiple
modes of oscillation which occurred did not have periods which were rational
multiples of each other. Thus there is a lack of perfect pericdicity in the
sloshing and the free surface is never flat once sloshing has commenced (until
steady state is reached). While the MAC method generally can be used to make
successful predictions of wave problems, the marker particles are not alwavs
distributed smoothly. This in turn, leads to a free surface and pressure field
wvhich are not smooth. Perhaps the bilinear interpolation on the velocity field
which is used to determine the marker particle velocities is the root of this
lack of smoothness. Another difficulty is that since the free surface will
generally lie somewhere inside a computational cell (rather than the edge),
that the application of the free surface (zero stress) boundary conditions is
of an ad hoc "particle cell" nature. This too may contribute to the lack of
smoc thness in the solution. In the original MAC method, zero normal stress at
the free surface is approximated by setting the pressure of the cell containing
the interface equal to zero. This is correct only in the double limit of zero
viscosity and zero surface tension and if the free surface runs exactly through
the center of the cell. Zero tangential stress is approximated by setting

n-% = 0, where n is the outward pointed unit normal vector to the

free surface and U is the velocity vector. This expression is correct only in
the double limit of vanishing surface curvature and negligible tangential
gradient of the component of velocity normal to the free surface. These
limitations and a more general formulation of the zero stress boundary
conditions were first given in [11)}. 1Inclusion of the more general normal
stress condition in the MAC method was found 1o increase the accuracy of a bore

calculation by a factor of 2 to 3. 1In a coanda ("teapot") effect calculation.
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the more general condition resulted in a qualitatively correct solution,
vhereas the solution based upon the original free surface boundary conditicas
did not. In each case, the more general zero tangential stress condition was
not met because that would have required the position of the free surface to a
degree of accuracy greater than the MAC method could provide. Consequently,
vhile the accuracy was considerably improved using the improved normal stress
condition, noticeable errors still occurred. While [11] does provide a more
general formulation for the zero stress conditions at the free surface, the
results are not completely general because higher order second derivative terms
in free surface position are missing, limiting the formulation in [11] to

slightly curved free surfaces.

An evolutionary by-product of the MAC method was a general purpose
numerical algorithm called SOLA-SURF [11]. This algorithm relied upon use of a
kinematic condition rather than upon marker particles to determine the position
of the free surface. As a result, the free surface was determined much more
accurately than in a typical MAC method. Unlike the MAC method, the surface
cell pressure was not set equal to zero. Instead, it was chosen such that a
linear interpoiation between i1t and the piessuce in the first cell belcw
yielded zero pressure at the free surface. Unfortunately like the MAC method,
the vertical component of velocity at the top of the surface cell was chosen so
that the surface cell is divergence free. This is nnfortunarte hacansge it is
only that portion of the surface cell which lies below the free surtace that
should be divergence free. Thus while the pressure field is accurately aligned
with the free surface, the velocity field is not. Like the MAC method,
SOLA-SURF is fully explicit in time, and sets the horizontal component of
velocity at the free surface so that n-@i = 0 there. SOLA-SURF also determines

the pressure field by choosing cell pressures which result in divergence free




interior cells. Convective terms are represented by a hybrid finite difference
formula which is a combination of second order centered and first order upwind
differences (the original MAC method uses only centered differences). While
this hybrid formula helps to keep solutions smoother, it does so at the cost of
increased numerical viscosity. Solutions for several sample wave problems are
illustrated in [11], including the interacticn of tvwo colitons, arnd the damped
bobbing of a free floating body. While the solutions appear reasonable and
match analytical results (where available) reasonably well, no definitive
information on numerical error is given. Such a study would probably have shed
some light on the soliton interaction vwhere, for example, each soliton is found
to change height slightly, and there appears high frequency, low amplitude
disturbances. It is not clear that these effects are truly nonlinear effects
as suggested.

While the SOLA-SURF algorithm represents a considerable advance over the
MAC method in terms of being able to more accurately predict free surface
positiun, this enhanced accuracy comes at the cost of a consideratle decrease
in the arbitrariness of the shape of the surface. In particular, in two
dimensions the surface position as determined by the kinematic condition must
remain a singly valued function of one (or two in three dimensions) of the
independent spatial coordinates. Thus the surface may not fold over upon
itself. Physically, this means that phenomena like breaking waves or a spray
of drops cannot be modeled. Also, the free surface should not be inclined more
than the diagonal of a surface celi. Neither of these limitations occurred in
the original MAC method, which was quite capable of handling multiply connected
fluid regions separated by free surfaces of arbitrarv orientation.

The development of the SOLA-VOF algorithm (where VOF stands for Volume nf

Fiuid method), represents an attempt to retain the fluid region tracking
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ability of the “iC method while at the same time retaining increased accuracy
with whicu the free surface location is known [12]. The key is to introduce an
auviliary function F, whose average value in a surface cell gives the volume of
fluid in that cell. Since F moves with the fluid, the substantial derivative
can be used to determine a simple partial differential equation for F. The
differencing for F is of an extremely ad hoc nature, and reflects the fact that
F is a step function. The free surface is approximated by a straight line
cegment in the surface cell; its slope and height can be determined from the
volume of fluid function F. Solutions to several interesting wave problems are
given in [12]), and they all look, for the most part, qualitatively correct.
Reasonable agreement with analytical results, where available, is also

demonstrated.

1.3 Present Work

All of the works so far cited, while covering an extensive list of wave
problems, are all for liquids which are at rest i a global sense. That is.
for unbounded liquids, accelerations occur only inside the wave, whereas for
sloshing in containers, the containers themselves are inertial. Difficulties
in the dynamic control of spacecraft [13)] dictate that wave dynamics in
non-inertial frames of reference also be studied. It is this imperative which
motivates the present study of sloshing in an accelerating, rectangular
~ontainer. For greatest accuracy, the free surface position is calculated
using a kinematic condition. This method has the advantage of being readilv

generalizable to three dimensions. The present work requires that the free

surface remain singly valued, as discussea previously. However, the use of a
function fur surface po<cition does not preclnde rthe poszsibility of modeling
more complex wave dynamics such as breaking. It may be practicable te divide
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th. computational region up into several domains, whereby in each domain, the

function for the position of the free surface is singly valued {141,




2. MATHEMATICAL FORMULAYICN

The basic 2-D geometry cf the problem is depicted in Fig. 1. A viscous
fluid, ini-ially at rest, fills a rectangular container of width a to a depth
b. The position of the free surface--denoted by R--is a function of horizontal
coordinate X, and time, t. The remaining independent variable is the vertical
coordinate, y. The dependent hydrodynamic variables are the horizontal and
vertical components of velocity, u and v, respectively; and the pressure p.
Since the fluid is initially at rest (with respect to a constant gravitational
field which is pointed vertically down), it is in a state of hydrostatic
equilibrium.

Suddenly, the container is translated to the right with a constant
acceleration. As viewed from a noninertial frame of reference which is moving

wvith the container, this motion results inr an apparent uniform body accelera-

tion of magnitude g, directed to the left (the principle of equivalence).

A primitive variable formulation was chasen to model the problem primarily
because it was felt that this was more readily generalizable to 3D (see the
companion paper to this work [15]) and because information on the pressure
field was one of the major types of infcrmation to be obtained from the study.
We note that a streamfunction-vorticity approach could easily be used for the
present 2-D study, however. In this latter type of formulation, the body
forces enter into the formulation only through the boundary conditions, because
the cross differentiation of the momentum equations which produces the
vorticity transport equation eliminates conservative body force terms from the
governing equations themselves.

Three separate variable transformations are used in this formulation. The
first one is used to change the frame of reference so that the coordirate

svstem stays fixed with respect to the container. The second transformation




maps the free surface--whatever its shape--into a straight horizontal line.
The final transformation regularizes the formulation at the moment translation

of the container begins.

2.1 Dimensional Formulation

Ve assume an incompressible, Newtonian liquid for the sloshing fluid.
Since the rigid container is translated to the right, this means that the
origin of any inertial frame of reference translates to the left with respect
to a noninertial frame of reference which is fixed with respect to the
container. Since the translation is due to constant acceleration, we define

- — _ * *
the coordinate transformation from (x,y,t) space to (X ,y*,t ) space:
* — --2 * — * —
X =x-1/2qt", y =y, and t =t (la)

Substitution of equation (la) into the standard forms of the continuity and

momentum equations for an inertial frame of reference results in:

*

v-U =0 (1b)
*

LIS N . I S (1)
at P

k% 1 3" *
i**u-vv=-;—p-;+v\72v - (1d)
at 3y

where © = (3/3x )i + (3/38y )j, = V9V, and U =uil + v j. Here i and j are
* %
the unit basis veéctors in (x ,y ) space. Note that the dependent variables are

redefined for this noninertial frame of reference.

* — —— * - * —
u =u-gqt, v =v, and p = p (le)

Although equations (1b-d) may be used to determine the dependent variablecx
H * *
u, v, and p , they are not in a form which brings out the elliptic nature ot

*
the pressure field. We differentiate equation (lc) with respect to x , and
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*
(1d) with respect to y , and add the results to produce a Poisson equation for

pressure:
*
Vzp* = 2pJ(utv*) - p(aD* + U*-VD*) +usz* (1£)
at
* * *  * 3 3 * 3 3 *
vhere D = VU and J(u ,v ) = —E; —X; - —E; —X;

Here py is the absolute viscosity (u = pv) of the fluid. Note that although the
dilatation D* is identically zero by continuity (lb), these terms are retained
in the pressure Poisson equation because they are important for the stability
of the numerical method used to solve it [8].

A final governing equation is required to determine the position of the

free surface. We use the general kinema“ic condition that dR/dt = O

(originally proved by Lord Kelvin [1]). Note that d/dt, the total derivative,
is also known as the material or substantial derivative. Physically, this
condition means that if a particle is on the free surface at any time, then it
must remain on it for all time (since fluid motion with respect to the free
surface must be everywhere tangential to it)--provided that the motion is
continuous. Substitution of R = R(x,t) into the general kinematic condition

followed by the coordinate transformation (la) into noninertial space leads to:

*
oR/ 3t

]

* * * *

v - u dR/3;&x along y =R (1g)

The initial conditions for the governing equations are:

R =b for all x', U" = 0 for all (x,y") at t* = 0; and (2a,b)
- * *

P - P, = Fg(b-y )att =0 (2¢)

Here b is the initial height of fluid, and Py is the ambient pressure at the

free surface.

The boundary conditions for the governing equations are:

* * *
U = 0alongx =0,aandy =0 (3a.b,c)
* * du du
av au T n *
—% = - —% and Pl KuT - 0 along y =R (3d,e)
oy ax
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- a4t *
~R; =y uz - pq along x = 0,a (3f)
*
>3 ax
Ap* 32v* - * * *
—E; = H—3 - 8 alongy =0and p =p_ alongy =R (3g,h)
3y ay* °
where
* *e R o *
up = U+ and u = —2 *YV éﬁ = n-V and %T = T:9
1+R’ 1+R’
- R'I.3 -~ T.R'J v 123
vithh= 22 and T=221 | k- _rR (1+r )°'%,
1+R’ 1+R’
’ * 1! 2 *2
and R = dR/ox , R = 9 R/9x

Here x is the local radius of curvature of the free surface, while Up denotes
the component of velocity tangential to the free surface, and T is the unit
tangent vector to the free surface. Thus boundary condition (3e) is a zero
tangential stress condition along the free surface. Boundary condition (3d)
results from continuity. The pressure boundary conditions (3f-g) result from
applying the momentum equations (lc,d) at the container boundaries where

U* = 0. The pressure boundary condition (3h) is the result of a zero normal
stress condition along the free surface (assuming negligible surface tension
effect).

Vhile the use of local orthonormal coordinates (n,T) makes clear the
physical basis of the zero tangential stress boundary condition (3e), the
boundary condition needs to be written in (x*,y*) coordinates to make it
useful. The final result is:
© ' RR R

) 2
ax (1+R"7)

2, (9 * 9 *
! u v
(1-R “) L_? + =
ox

=0 (3D

where R = 3R/3t .

Equations (lc - 3d and 3c-i) constitute a complete formulation for the
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problem. The continuity equation (1b) is not explicitly used, but instead, is
used indirectly later on in the numerical method when the dilatation terms are

evaluated in the pressure equation (1f).

2.2 Characteristic Scales

The moving boundary which is the free surface in a sloshing problem
introduces an additional nonlinearity into the problem simply because the
boundary position is a function of time. If in addition, the shape of the
boundary is somewhat irregular, then further complexities arise in the analysis
[16].

The difficulty of tracking a moving, irregularly shaped domain is
eliminated completely in this study by transforming it into a time invarient
unit square. By using R as a local characteristic scale for y*, an elementary
algebraic stretching transformtion can be used to accomplish this normali-
zation.

Another major problem comes to light when one considers the momentum
equations (lc,d) and what they imply about the nature of the pressure field the
moment the sudden acceleration begins. Consider the x* momentum equation (lc)

*
along the bottom of the container (aty = 0):
2 %
u -—
7 - f4 (4a)
ax *

3y

For fluids (such as water) which have very small values of viscosity, a naive

scale analysis of equation (4a) seems to indicate that:

* 2 %
EE; -~ pq > ua u2 and thus Apx - paq along y* = 0 (4b)
ax *
ay
wnere Op  is the change in pressure from X =0 tox -a along the containe:

bottom. The insignificance of the viscous term in (4b) is even more strongly

* * *
supported as t = 0, since U = 0 at t = 0. But initially the pressure field
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p* cannot be a function of x* because it is hydrostatic (see initial condition
2c). Thus a glaring inconsistency becomes apparent. The same naive analysis
on the y* momentum equation (1ld) reveals that:

Apy - pag along X = 0,a (4c)

Note that the values for Apx and Apy given in equations (4b,c) are in fact
exact, initially--provided the viscous terms are truly negligible. Summing the
pressure changes along the left, bottom, and right walls results in:

8p, - 8p, - 8p, = 8p, or paq ~ Op (4d)
vhere Apo is the pressure change along the free surface. Apo should be equal
to zero because the pressure is constant along the free surface (boundary
condition 3h). But for paq > O, Apo # 0 and the pressure field must become
discontinuous along the boundary (if both Apo # 0 and boundary condition 3h are
correct)!

Clearly, the formulation is singular at t* = 0. The sudden horizontal
acceleration causes a sudden shift in the pressure field, from a classical
hydrostatic distribution at t* = 0 to a non-equilibrium distribution at
t* = 0% which satisfies the governing equations and boundary conditions.
Consequently the initial condition for pressure (2¢) is really incorrect, and
it should not be used to begin a solution.

Initially, frictional effects will be confined to thin boundary layers
along the sides and bottom of the container, and so the fluid core will (as a
first approximation) tend to remain at rest with respect to an inertial frame
of reference. With respect to the noninertial frame of reference defined by
the coordinate transformation (la), the core will appear to be a solid body
accelerating at a constant rate of —at*. Secondary local variations will be

superposed upon this solid body motion. however. by the non-equilibrium

pressure distribution.

Based upon this intuition, and assuming that q -~ g, we choose the
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characteristic velocity scale for u* to be u, - Et*. By continuity, v u,
also if a . b (order one aspect ratio). The characteristic time, tc’ for which
this scaling is valid is found by scaling the unsteady and convective terms in
the momentum equations. The result is that t. << /;75 for solid body motion

of the core. Physically, this limit is due to the time it takes a wave to

) . v =
travel across the container (celerity . "ag).

2.3 Dimensionless Formulation

In accord with the preceding discussion, the dimensionless variables are
formulated to both:
+ normalize the domain of analysis.
regularize the solution as t* » 0*
The first point requires the employment of a coordinate transformation to
produce a natural coordinate system for the domain of analysis. We choose a

simple algebraic stretching:

X = x/a, y = y*/aB, and t = t°/ a/g (5a)

*  k
where B(x,t) = R(x ,t )/a, called the dimensionless gap function, is simply the
dimensionless free surface position.

Regularization of the formulation is achieved by transforming the

dependent variables as follows:

u = u*/t/;é, v = v*//zé, and p = (p*—po;/paé (3b)
Note the explicit factoring of t_1 from the dimensional velocity to produce the
dimensionless velocity. This is a crucial step in developing a model which is
initially nonsingular.

Substitution of equations (5a,b) infte (lb-d and 1f.g) produces the

dimensionless governing equations:
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du 1
x ‘")'é?*ﬁfa;"") (5¢)

a(tu) + tz [uau) + % {t(v - yB’u) - yé} 39

3t x ay
= - {%5 -y —')%g} + t6a (P - Nyu - Q (3d)
3(tv) 20 vY ' - | av
N + t lyaxJ B {t(v - yB u) - yB} 3y
- - % %5 v G (P - Ny - 1 (Se)
(P - N)p = 2t2J(u,v)/B - 3(tD)/dt (5£)
B - t(v - uBl) along y = 1 (5g)
wvhere
72 = 32/ax2 + B_'ZE)Z/ay2
’ 2 12 rs ! 2 2

J(U,V) = -s; —a—y‘ - -é-y— *a—)z, and
B = 3B/3x, B = 3°B/3x%, and B = 3B/at
and
33—, 2 .
Ga = a“g/v (Galileo number) (5h)
Q =q/g (dimensionless horizontal acceleration) (51)

Equation (5c) defines the dimensionless dilatation, D = D*/t/§7;. Continuity
requires D = 0. Equation (5g) is the kinematic condition for the position of
the free surface--it provides the governing equation for the gap function.
Terms representing the convection and diffusion of dilatation, apparent in the

dimensional pressure equation (1f), have been dropped from the dimensionless




version (5f). By numerical experiment, we found them to be unnecessary for
numerical stability, so only the transient dilatation term has been retained in
the dimensionless Poisson equation (5f). In both momentum equations (5d,e)
additional convective terms of the form

- yt[(B/B) - t(B /B)u]d/ay
appear due to use of the coordinate transformation (5a). Information giving
the motion and shape of the free surface in physical space cannot be lost. In
the transformed space, since the free surface is both immobilized and
normalized, this information appears in the form of additioual ter.s in the
governing equations themselves. The (é/B)a/ay term represents a convective
effect due to actual movement of the free surface, while the (B’/B) ud/dy term
(also appearing in the continuity equation 5C and in the pressure term of 5d)
represenis a convective effect due to the irregular shape of the free surface.
The N operator appearing in the momentum and Poisson equations (5d-f) repre-
sents a diffusive effect due to the irregular shape of the free surface. Note
that B, B', and B" must be singly valued and well defined (one-to-one) for the
coordinate transformation (5a) and its inverse to be well behaved.

Only two similarity parameters appear in the dimensionless governing
equations. The Galileo number, Ga, is the ratio of gravitational to frictional
force, while Q is the dimensionless body acceleration in the x momentum
equations. The gravitational body acceleration in the y momentum equations is
normalized by the nondimensionalization to a unit magnitude.

Substitution of equations (5a,b) into (3a-d and f-i) produces the

dimensionless boundary conditions:

u,v = 0 along x = 0,1 and y = 0 (6a)
v ! du du du i\ Qv
¥ - B W Bg; and i B W B?; along v =1 (6b,c)
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r 2 [} 2 rs
v ,(BYP _ qah U (?yB a7u 2B B}, ,8u
x y@]ay‘ca ‘{‘a:f B ]axay+ Z B | %y
r.2.2
+ Gﬂi—) _u - Q along x = 0,1 (6d)
B 2
ay
3 " 2%y
£ -6a"(t/By>5 - B alongy = 0
» 3y
and p = 0 alongy =1 (6e,f)

2.4 Non-Singular Initial Conditions

Since the hydrostatic initial condition (2c) does not give the correct
pressure distribution at t = O+, it is necessary to determine it. This is done
by examining the limiting forms of the governing equations (5d-g) and boundary
conditions (6a-f) corresponding to t = 0*. As t » 0%, the governing equations
reduce to:

u=-9p/d&x - Qand v-=-(1/83p/dy -1 (7a,b)

%p

Oand B=0 (B = B) (7¢,d)

32/ax2 + (1/8%)3%/ay? and

where V2
o)

B = b/a (initial aspect ratio) (7e)
while the boundary conditions (6éb-e) simplify to:

v/ 3y
ap/ ax

-Bu/3x and Ju/3y = -Bav/3x along y = 1 (78)

-Q along x = 0,1 and 3p/3y = -1 along y = 0 (7g,h)
Boundary conditions (6a,f) are retained unchanged for the initial conditions.
Note the appearance of the third and last similarity parameter, B (equation
7e). This parameter gives the initial ratio of fluid height to depth. before
the sloshing motion begins.

The elliptic nature of the initial pressure field is clearly shown by the




La Place equation (7c). It is subject to one Dirichlet boundary condition (6f)
and three Neumann Boundary conditions (7g,h). Through the pressure field, the
velocity field is also made elliptic in nature, a behavior which is not obvious
from the momentum equations (7a,b). The elliptic nature of the velocity field
can be made clearer by examining the streamfunction defined by u* = -af*/ay*
and v’ o= af*/ax*. In dimensionless form, the streamfunction definition

becomes:

u o= - % %5 and v = =— + yB u (71)

* —
where f = £ /(at/;;. Cross differentiation of the momentum equations (7a,b)
and adding the results to eliminate the pressure results, upon use of (7i), in
a La Place equation for the streamfunction:

Vif =0 (73)

The no-slip boundary condition (6a) results in:

f =0 along x =0,1 and y =0 (7k)

The first part of boundary condition (7f) is satisfied identically by
definition of the streamfunction. The second part of (7f) is more conveniently
replaced by using the momentum equation (7a) itself along the free surface.

The result is:

9f /3y = AQ along y =1 (7D)

The La Place equations for streamfunction (7j) and pressure (7c¢) subject
to the boundary conditions (7k,1) and (6f,7g,h) may be solved using the
classical method of separation of variables. The solution for streamfunction
may be differentiated as indicated in equation (7i) to yield the velocity
field. The results are:

f=1I bmsinXmsinhYm (8Ba)
m=0
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p = B(l-y) + Q(1/2-x) - L b cosX coshY (8b)
meo ™ m m
u = ;fobm(2m+1)n51nxmcoshYm (8¢)
v =mfobm(2m+1)ncosxmsinhYm (84d)
vhere

b, = 40/ (n(2m+1)2cosh{(2m+1) 1]} and

Xm = (2m+1) mx, Ym = B(2m+1)ny

The solutions (8b-d) provide the dimensionless initial conditions for the
full governing equations (5d-f). Note that (8c,d) satisfy the no-slip boundary

conditions (6a).

2.5 Steady State Condition

The ultimate steady state of the system may be considered a hydrostatic
state vith respect to the combined body force acceleration - (g + q). It
may be easily found in closed form by integrating the momentum equations
directly. In dimensionless form, the result is:

u,v 20, B>B8+ Q(l/2-x) as t » @ (9a,b)

p*B-vy +Q(l/2 - x)as t 3 = (9¢)

These final conditions have been written as limits rather than equalities
because the system approaches them asymptotically, through the mechanism of

viscous damping.




3. NUMERICAL METHOD AND COMPUTATIONAL PROCEDURE

The various derivatives appearing in the governing equations (5c-g) were
approximated by finite difference formulas based upon Taylor series expansions.
The resulting nonlinear algebraic equations in u, v, p, D, and B were solved
iteratively, using an implicit, essentially point Gauss-Seidel method. The
cross derivative term arising from the N diffusion operator and all source
terms were evaluated using information totally from the previous iteration
(Jacobi method). All convective terms were split up into a first order upward
difference plus a secong order correction term. The upward difference was
evaluated using the Gauss-Seidel method while the correction terms wvere
evaluated using the Jacobl method. All diffusion terms were approximated using
the standard central difference formula. A first order, forward time
difference was used for the unsteady terms.

A look at the momentum equations (lc,d) reveals that there are two choices
for the Neumann boundary conditions for pressure along the container walls. In
particular, a tangential or a normal pressure gradient can be specified along
the walls. We experimented with both types, and found that the normal gradient
boundary conditions--as given in equations (3f,g)--are vastly superior to the
analytically equivalent tangential gradients. Use of the tangential gradients
increased the number of iterations for convergence and even often caused
divergence of the iterations. We believe that this was due to poor spatial
resolutions in the boundary layers which form along the walls. Apparently, use
of th normal pressure gradients tends to minimize this problem. In an effou?

to further enhance the speed of the algnrithm. we examined the role nf the

spatially differentiated dilatation termz in the pressure equation (5f). "
found that by retaining tho spatial terme  thor the dilatation field van
marginally improved (that is, it approached a value of Cero morve clocelv).
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Negligible change in the number of iterations for convergence was observed.

Despite the slight increase in CPU time per iteration which resulted, we

elected to retain the spatial dilatation terms in the pressure Poisson equation

for most of the computations whose results are summarized in the next section.
In order to produce time accurate solutions for each timestep, all

dependent variables were iterated to a convergence criterion of

¢k+l 4,k
——E——:~—— < g (1)
¢max

where ¢ = u,v,p, or B and k refers to the iteration number. ¢;ax is the
maximum value of |¢k| occurring anyvhere in the computational domain. A
convergence criterion of € = 10_5 vas used for variable increment grids with
21x21 and 41x4]1 nodes. This value of € seemed to be the minimum value required
to keep the dilatation, D, small (of order 10'3). The 21x21 grid was used onl,
for trials with the lowest Ga and Q values. The 41x41 grid was used to produce
most of the data in the following section. All of the dependent variables wore
under-relaxed. For interior nodes, relaxation values of 0.8 to 0.9 and 0.~
vere used for the pressure and velocities, respectively. For the pressute
Neumann boundary conditions, a value of 0.5 was used for the relaxation
parameter. Along the free surface, a relaxation parameter of 0.5 was used o
the velocities.

A constant timestep of At = 0.01 was used in all trials. This resuls.d
about 350 timesteps per period. The choice of timestep size was dicrated

primarily by the desire to reduce overall CPUI time as much as posaibl.,

our method was fully implicit, it was poooible to s oabhorantialle oo
rimesteps and still obtain converged <obaty s The rr b ey e e
(aceumnlated over all timestreps) vonld e sy B e o T ne

be increased to the point where a single poraod oo dnonttioventiy ool
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time. We felt that 20 to 50 timesteps per period provided a reasonable minimum
time resolution. Our choice of stepsize thus represents a significant
improvement over the minimum criterion, and consequently, we believe that the
time truncation error in our results is negligible.

For Ga = 104 about fifty to one hundred iterations per timestep were
required, on average, to produce a converged solution. More iterations were
required when the wave motion neared a stationary point (point of raximum
potential energy and minimum kinetic energy). Less iterations were required
wvhen the free surface was passing through the final equilibrium position given
by equation (9b) (point of maximum kinetic energy and minimum potential
energy). Surprisingly, less iterations were also required early in the trial,
vhen the amplitude of the sloshing was largest. At later times even though
frictional effects acted to damp out fluid motion, the number of iterations
steadily increased. Finally, the number of iterations for convergence also
decreased with Ga. For the Ga = 104 trials, typically 3 to 4 hours of CPU time
vere required on a NAS9160 (a 10-30 megaflop machine) to compute a solution to

a dimensionless time of 16.




4. RESULTS AND DISCUSSION
A number of computational trials were executed, corresponding to the

following twelve sets of similarity parameters:

. Ga = 10%, B = 0.5, and Q = 0.1,0.2,0.3
. Ga =10% Q=0.2, B=0.75 and 1.00
£ Q=0.2, B=0.5 Ga = 10°,10°,10%,107,108,10%, and 10%°

Since the Galileo number is inversely proportional to the square of
kinematic viscosity, Ga decreases as the fluid becomes more viscous. In order
to gain a feel for the value of Ga, Table 1 presents representative valuzs of

it for various fluids at 20°C, assuming a = 0.1 m.

TABLE 1. Representative Values of Ga for Various
Fluids at 20° C assuming a = 0.1 m.
fluid |  1liquid Hg vater air SAE 10W oil glycerin

12 1010 108 10° 104

Ga | 10

We present detailed results of the solution only for the trial with
Ga = 104, q = 0.2, and B = 0.5. This trial will be referred to as the standard
case throughout the remainder of the section. Limited, global information on
the rate of energy dissipation is presented for the remaining eleven trials.

4.1 Accuracy of the Solution and Verification
Vith the Inviscid Limit

Since our formulation (and finite differencing) is non-conservative. one

variable which can be monitored that immediatelv yvields information on the

accuracy of the solution is the overall fluid volume, V. In dimensionless forw

it is given by:

1
Vo= V/a2 - Jde (lla)
0




Since the fluid is incompressible, the volume is constant. Thus equation (lla)
should yield V = B in all trials at all times, whatever the shape of the
free-surface. In all trials, we have essentially observed that V > B8, albeit
only slightly. 1In the standard case (Ga = 104, Q =0.2, and B = 0.5),
initially V drops below 8 by 0.001%, and then increases above B by 1.4% at a
dimensionless time of t = 1.98. At this moment, the fluid is near a point of
greatest potential energy and least kinetic energy (these extrema occur at

t = 1.96). Local maxima in the V error occur near successive points of energy
extrema, but these errors decay in magnitude as time increases--and the total
sloshing motion becomes more and more damped out. Inbetween the potential and
kinetic energy extrema, the V error drops considerably from its peak values at
the energy extrema. The error in fluid volume increases with increasing Ga
and/or decreasing B8, and/or increasing Q. For the trial with Ga = 1010 (and Q
= 0.2, 8=0.5), the maximum error in V was 3.8%. For the trial with Q@ = 0.3

(and Ga = 104, 8 = 0.5), the maximum error in V was 3.2%, while for the trial

with B = 1.0 (and Ga = 104, Q = 0.2) the maximum error was only 0.3%.

The period of oscillation of the numerical solution may also be compared
with a linearized analytical result [1] for irrotational sloshing. This
analytical solution is valid in the triple limit Ga »> «, Q » 0, and the
sloshing - infinitesimal magnitude. The period of oscillation for the present

results is determined by examining the transient behavior of the

kinetic energy of the fluid, defined by:

1 ~-2 2 - *x 1 ‘- X
= ijq t + pqt |u dV + ;‘pJ‘(LI « v )dV (11b)

The first term on the RHS of equation (l1b) is the rate of work required to




accelerate the fluid if it moved like a solid body. The dimensionless kinetic
energy is found by subtracting this work from equation (l1lb), and then

normalizing the resulting difference with respect to a gravitational kinetic

energz K
2
- *
RE - %”qut o 1,2 2
KE = - j j uQ +5(u?+v?) Bdxdy (11¢)
00

22 #%
palglt

This kinetic energy equation is appropriate for a frame of reference which
moves with the container. Note that as viscous damping causes the sloshing
motion to dissipate, that KE » O whereas RE increases to infinity like
%pvazt*z(as o @), The results of the comparison are shown in Table 2.
Despite the fairly large value of Q and the extreme viscosity of the fluid (low
Ga), the numerical result compares very favorably with the analytical result
{1]. For the trial with B = 0.50, it predicts a period 2.2% longer than the
analytical result. With B = 1.0, the numerical result predicts a period which
is 1.1% longer. In order to assess the effects of large Q and low Ga,
additional trials were examined for their sloshing periods. These results are
shown in Table 3. The effects of Q (for Ga = 10A and B = 0.5) are seen to be
quite pronounced. When extrapolated back to Q = 0, these data indicate a
period of 3.74, within 1.1% of the analytical result. The effect of Ga appears
to be less significant. As Ga -2 « (inviscid fluid limit), the period appears
to decrease slightly (less than 1%). When a correction for finite viscosity is
added (on top of the zero Q correction), the predicted period for Ga - =, 0 -
O, and 8 = 0.5 drops to 3.72, which is only 0.5% longer than the analvtical
result [1]. In order that the third limit conditinn of the analytical resnlt
be approximately satisfied, the periods listed in Tables 2 and 3 wvere
determined from the numerical solutions onlv at the ends of the trials, vhen

the sloshing motion had damped out to the maximum extent. In all cases. ve




TABLE 2. Comparison of Sloshing Periods
<]
0.50 0.75 1.00
Analytical result [1] 3.70 3.58 3.55
Present numerzcal result, 3.78 3.62 3.59
trial Ga = 10" and Q = 0.2
Percent error +2.2% +1.1% +1.1%

TABLE 3. Effect of Horizontal Acceleration and Fluid
Viscosity on Sloshing Period. Present Numerical
Results for B = 0.5.

Q
0.1 0.2 0.3
4
10 3.75 3.78 3.84
Ga 10’ - 3.79 -
1010 - 3.76 -

noticed a finite amplitude (of the sloshing) effect on the sloshing period.

For trials with Q = 0.2 ana B8 = 0.5, periods with large finite amplitudus were

typically 1.0% larger than periods with very small amplitude motion, for 1010 >

Ga » 104.

The numerical result for the trial for the standard case is also compared
with a potential flow solution. The potential flow solution, valid for

irrotational flow (Ga - = limit), was determined by numerically solving the La

*

Place equation for velocity potential ¢. where ¥$ = U . Zero tangential

velocity along the solid walls resulted in Neumann boundary conditions for ¢

around the container wall. At the free surface, Bernoulli’s equation was used
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to provide an appropriate boundary condition for $. This potential flow
solution was formulated for a sudden acceleration, hence it is valid for finite
Q as well as for large amplitude sloshing. Figure 2 shows the comparison using
the average slope of the free surface. The slope has been normalized so that
its maximum value is 2 while the steady state value is 1. The periods are
again seen to be very similar. Note the viscous damping of the present
numerical result for the standard case, which is rapidly approaching steady

state.

4.2 1Initial Conditions

Since the initial conditions (8a-d) are themselves a non-trivial part of
the overall solution, an example solution for them is depicted in Fig. 3. the
initial pressure field for Q = 1 and B = 1, Fig. 3a, is clearly quite different
from the hydro;tatic distribution which one is naively led to expect. The
initial velocity field is shown in Fig. 3b with a plot of lines of constant
streamfunction. Velocity vectors are everywhere tangential to lines of
constant streamfunction; overall they point leftward.

Taken together, Figs. 3a,b indicate that as soon as the sudden
acceleration is imparted to the container, there is a sudden loss of pressure
in the upper right corner, a sudden increase of pressure in the lower left
corner, and a net leftward migration of fluid. This overall pattern results in
the free surface falling in the right half of the container and rising in the

left half of the container.

4.3 Velocity and Pressure Fields

The detailed transient velocity field for the standaid case iz showvn in

Fig. 4. WVith the exception of Fig. 4a. the velocity vector U = (ui « vj)t i=
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plotted. Since u and v are multiplied by dimensionless time, ﬁ is directly
proportional to the physical velocity (6 = u*/“gé_). Fig. 4a shows the initial
velocity field U = ui+ vj (rather than 6). This figure is analogous to the
streamfunction plot, Fig. 3b, only now the values of Q and B are somewhat less.
Fig. 4b again shows the initial velocity field, but now in terms of 6. Since

t = 0, the velocity field is identically a zero field. All vectors are reduced
to points. Note that Fig. 4b effectively shows the node distribution of the
computational grid which was used. Nonzero velocity magnitudes appear only for
t > 0; and by t = 0.10, they are quite noticeable. As the velocity field
continues to grow in magnitude, a slight deformation in the free surface
becomes noticeable by t = 0.20. At a dimensionless time of t = 0.40, the
velocity field is approaching its maximum magnitude. At t = 0.80, the fluid is
near a maximum in kinetic energy and the deformation of the free surface is
becoming significant. Up to this point in time, the velocity field has
retained the same qualitative character, and looks much like the initial
condition, Fig. 4a. Beyond this time, the kinetic energy decreases as the
fluid approaches a state of maximum potential energy. By t = 1.51, small
recirculating regions appear in the lower corners of the container. At

t = 2.01, these recirculating regions have grown greatly in size, merged, and
nov dominate the velocity field. Only a small vestige of the initial flow
pattern remains in the fluid core. The fluid is near a state of maximum
potential energy and minimum kinetic energy. Figures 4i-k repeat the preceding
sequence of events, only in the reverse direction. At t = 2.51, the fluid is
again near a state of maximum kinetic energyv, similar to Fig. 4e. oOnly now. in
Fig. 4i, damping has considerably reduced the magnitude of the velocity

vectors. In Fig 4j, small regions of recirculation are again seen in the 1o e
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coriiers of the container. Inbetween the times corresponding to Figs. 4j and k,
at t = 3.84, the fluid reaches a state of minimum kinetic energy--one period of
the slosh has been completed. 1In Fig. 4k, the flow has largely changed
direction again and resumed much of its initial character, as the second period
of the slosh gets underway. At t = 4.51, the fluid is again near a state of
maximum kinetic energy. The effect of viscous dissipation is even more obvious
than in Fig. 4i. The sloshing motion has been damped out sufficiently by t =
4.69 that only 6% of the initially available kinetic energy remains.
Consequently Fig. 41, at t = 4.51, shows the fluid close to its final steady
state, for which the free surface is a line with a slope of -Q. Although the
computation was carried out to a dimensionless time of t = 16.90, no new flow
physics is revealed for t > 4.51.

The transient pressure field for the standard case is shown in Fig. 5.
Here, isobars with a constant dimensionless pressure increment of 8p = 0.05 are
plotted. The initial pressure field is depicted in Fig. 5a. As was the case
for the velocity field, ncte the regemblarce to the initial pressure
distribution depicted in Fig. 3a. In Fig. 5b, recall that the flow is near a
state of maximum kinetic energy. Note the bifurcation in the zero pressure
isobar (the free surface is at zero pressure) at the extreme right of the
diagram. The small triangular region defined by the two branches of the zero
isobar is a region of very slight negative pressure. Ve note that such a
region is physically possible so long as it is an interior region (which it is)
and so long as the physical pressure in this region does not drop below the
cavitation pressure. If the free surface pressure is somewvhat greater than the
cavitation pressure, then this region of negative pressure does not pose any
special problems. It is of interest to vecognize that the pressure initial

condition, equation (8b). also predicts a tiny region of negative pressure in

¥33




this corner of the flow field, if Q is large enough. Although the sloshing has
really just started, the pressure field has largely adjusted itself so that
qualitatively it now looks very much like the final steady state field, which
is given in Fig. Se (the kinetic energy has been dissipated by a factor of
about 105 at t = 16.90). The relatively minor adjustments to the pressure
field which do occur are confined to the vicinity of the free surface. Note
the persistance of the negative pressure region to Fig. 5c¢. Here, the fluid is
near a point of maximum potential energy. As in Fig. 5b, the right side of the
surface is falling (note that viscous drag along the right wall acts to retard
the motion of the surface locally). At t = 3.51, the edge of the free surface
along the right side of the container is now rising--and there is no region of
negative pressure. Curiously, no region of negative pressure develops along
the left ledge of the free surface, which is now falling. By t = 4.51, the
flow has reversed itself again (beginning of second period of sloshing), and
the free surface along the right wall is again falling. At this time, the
fluid is again near a point of maximum kinetic energy. The region of negative

pressure has reappeared, albeit much smaller.

4.4 Parametric Effects on Sloshing

From the earlier section on verification, the effects of Ga, Q, and B on
the sloshing period have already been noted (see Tables 2 and 3). In summary,
the period increases very slightly with decreasing Ga; increases slightly with
increasing Q; and increases somewhat more significantly with decreasing values
of B. In this section the effects of the three similarity parameters on the
rate of viscous damping of the sloshing motion is examined.

Figure 6 presents results on the damping rate for three trials, each with

the same values of Ga and Q, but with different values of B. The figure

F34




presents the envelope of maximum kinetic energy KEmax as a function of time.

The states of KEma are states in vhich the free surface approximates its final

X
steady state shape. Thus the fluid potential energy is minimized. For the
standard case, the first KEmax occur at dimensionless times of t = 0.87, 2.80,
and 4.69 (see Fig. 4). The most striking feature of Fig. 6 is that the damping
rate is exponential in time.

Despite the complexity of the fluid motions, in terms of the dissipation
of energy, a sloshing fluid behaves much like a simple damped pendulum. This
exponential decay has also been shown to be correct by an analytical solution
for viscous, infinitesimal, deep water waves [1]. The other important point to
recognize from Fig. 6 is that while B has the most significant effect on the

period (causing the points of KEma to spread out as time increases), it has

x
very little effect on the slope of the KEmax envelope. Data from thz standard
case represents the other two trials very well.

The effect of Q on the envelope of KEmax is presented in Figure 7. The

figure is very similar to Fig. 6 and again shows the exponential decay of the

KEmax' While the value of Q does lead to some spreading in the times of KEm

1

ax
it is seen that the standard case represents the other two trials well. Thus

the value of Q also has only a minor effect on the rate of viscous damping.

Figure B presents the effect of Ga, and hence fluid viscosiiy, on the rate
of damping. As expected, the value of Ga has a tremendous effect, with the
rate of damping increasing as Ga decreases. Regression analysis was used to
determine the modulus of decay T, defined by the relation:

KE = 107" (11d)

The results of the regression analysis are summarized in Table 4. Note

the differences in significant figures in rhe T values for various Ga. Thev

reflect actual differences in the precision with which the T values were




determined. These differences in precision are due in part to the differences
in the duraticn of diucisicnless time for which & trial wvas exccuted.

Although the four trials for Ga > 107 show a nice exponential type of

Table 4: Modulus of Decay,T, as a Function of Ga. Regression
Analysis of Present Numerical Results for Q = 0.2 and
B=0.5

3 4 5

10 10 6 107 108 ? 10

Ga 10 10 10

10

T 0.62 0.255 0.126 0.061 0.0352 0.023 0.018 0.0177

damping relationship for KEmax(t), ve believe that the T values for Ga>107, as
given in Table 4, may be far less accurate than they are precise (although this
is uncertain at present). This suspicion is based upon the long time (t > 30)
behavior of KEmax for the Ga = 107 and 1010 trials. In particular, the
numerical solution begins to show oscillation in the value of KEmax as the

time increases. These oscillations became pronounced sooner (in time) as Ga
increases. The magnitude of the oscillations increase exponentially fast with
time for a given trial, leading us to believe that they are due to a numerical
error. These oscillations may be discerned in the envelope for the Ga = 1010
trial in Fig. 8. They also exist in the Ga = 107 trial but are much more
subtle. As time increases beyond t = 30, the oscillations increase so much in
magnitude that the results obviously became physically incorrect--increases in
KEmax appear in the numerical results. At first, these increases occur in an
alternating pattern. From a given KEmax to the next, the value is seen to
decrease (normal behavior). Upon going to the next value of local maximum,

however, KEma is seen to increase in value beyond the preceeding onc. Th

)

X

next KEmax then again decreases in value. folloved by an increase., and so on.

This has the effect of making the KEmax envelope "bumpy". When the alternating
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pattern in energy maximums first establishes itself, the oscillations are very
small and the KEmax stiil decrease, on average. But as the oscillations grow,
a point is reached where the KEmax grow very rapidly. Divergence of the
iterations follows shortly afterwards. For the Ga = 107 trial, the first
increase in KEmax does not occur until t = 59.83, well beyond the domain of

Fig. 8. For the Ga = 1010

trial, the time at which this occurs is t = 19.89.
For t > 30, the oscillations in KEmax grow so large that the iterations diverge
at t = 58.49.

Since T = t(Ga) only can be inferred from the information displayed in
Fig.’s 6-8, a plot of log T vs. Log Ga can be used to deduce the functional
relationship t(Ga). A simple linear relationship was observed -- but only for

the trials with Ga < 107. The Ga = 107 result was somewhat off the line, while

8 and 109 trials produced

the Ga = 100 result was quite distant. The Ga = 10
results at intermediate distances fro.. the linear relationship. For the
reasons given above, these four points were discarded, and the remaining points
vere used for a linear regression analysis with the following result:

T - 5.66a70"33 (1le)
Because the modulus of decay for the standard case is the most precise (and
ostensibly, most accurate) value listed in Table 4, it was double weighted in
the determination of T(Ga). Equation (lle) gives values of Tt which are in
error by about 5%, at most. It should be valid for the parameter range Ga >
103, Q <1, and B - 1.

It is of interest to note the analytical solution for viscous, infini-
tesimal, deep water waves presented in [1]. predicts an exponential damping in
time for the displacement, n, of the free surface from its steady-state
(equilibrium) position. In dimensional form. the modulus ot Adecay (or n is
tound to be proportional to the viscnsir., Ty~ W Since the fluid porential

energy is proportional to h2 and KE . potential energy (via an energy balance).
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one is led to the result that ?n ~ Vv also. In terms of Galileo number, this
requires T - ca™ ™.
5. SUMMARY AND CONCLUSIONS

The problem of viscous sloshing in a rectangular container induced by a
sudden, constant horizontal acceleration is examined and solved using a
numerical finite difference method. Initially, the fluid is in a state of
hydrostatic equilibrium. The problem is characterized by a moving, irregularly
shaped free surface, and an initial singularity caused by a sudden change in
the pressure field from time t = 07 to t = 0'. A coordinate transformation is
used to fix the container in a noninertial reference space. This transforma-
tion causes the translation in physical space due to the acceleration to appear
as an additional body force term in the governing equations (principle of
equivalence). A second coordinate transformation maps the free surface,
whatever its shape at any given moment of time, into a horizontal line. The
domain of analysis thus becomes the unit square. A third transformation of the
dependent variables regularizes the formulation as t » 0'. An analytical
solution is then presented which uniquely defires the initial coundition. Three
similarity parameters are found to govern the nature of solutions for the
problem. The Galileo number, Ga, is a measure of the ratio of gravitational to
frictional forces acting on the fluid. The dimensionless horizontal
acceleration, Q, gives the ratio of horizontal to gravitational accelerations.
The final parameter, B, is the initial aspect ratio of the fluid (B » 0
implying container width >> initial depth of fluid when it was in a state of
hydrostatic equilibrium). Ga does not enter into the initial condition.

The present results indicate that the period of sloshing is least
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sensitive to the value of Ga, and depends most strongly upon the value of 8.
The B effect is, however, mild, with the sloshing period decreasing somewhat as
B increases. Results from an analytical solution (valid for triple limit; Ga
+ o Q 20, waves are infinitesimal in size) for the sloshing period agree
with the present numerical results to the order of one percent.

The rate of viscous damping is fairly insensitive to the values of Q and
B. The fluid kinetic energy is found to decay exponentially fast in time, wirh

a modulus of decay which is proportional to Ga_0'33. The present results

are expected to be valid in the parameter range Ga » 103, Q f 1, and 6 - 1.
The qualitative nature of exponential decay agrees with an analytical
solution for viscous, deep water waves of infinitesimal magnitude. The
analytical solution, which is valid for the limits Ga >> 1, Q - 0, and 8 » 0
(with 8 >> wave amplitude); predicts a viscous dependency in which the modulus
of decay for the displcement of the free surface from its final equilibrium
position is proportional to Ga_l/z.

Detailed analysis of the transient pressure field indicates that regions
of low pressure may fo.m just below the free surface, along the container
walls. If the free surface pressure is sufficiently close to the fluid’'s vapor

pressure, cavitation may occur. This event becomes more likely as Q is

increased.
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Figure 1. Geometry of the two-dimensional viscous sloshing model.
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APPENDIX G

THREE-DIMENSIONAL VISCOUS
SLOSH ANALYSIS




Study of 3-D Viscous Sloshing in Spherical

Containers

A. C. Kassinos J. M. Prusa

18 Sept 1989

Abstract

A model is developed to deseribe the motion of a viscous luid within
a partially filled moving spherical container. The container is undergaing a
motion characterictic of that experienced bv spin-stabilized space vehicles.
The incompressible three dimensional Navier-Stokes equations cre cast into a
frame appropriate for the description of the fluid motion and slved using a
numerical technique. The model is presented in detail and sample calculations

are givern.
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1 INTRODUCTION

The sloshing of a viscous incompressible fluid within a partially filled moving <pher
ical container is being considered here. The fluid :loshing is induced by chanue-
that occur in the equilibrium pressure fieid within the fluid as a result of the mo.
tion of the container. The container is assume=d to be undergoing a general motion.

characteristic of that experienced by spin-stabilized space vehicles.

The present work 1s motivated by the need to describe the complex motion “har
occurs in liquid stores that are carried aboard spin-stabilized spacecraft. Cerrain
configurations of the STAR-43 series of communication satellites have cousistentiv
demonstrated a nutational instability during the perigee burn. After faunching trom
the space shuttle the satellite’s power assist module fires its thruster to move the
atellite out to a geosvnchronous orbit. Sinusoidal oscillations about the piteh and
vaw axis of the spacecraft. which have the same frequency but are out of phase h
90 degrees. have been observed to occur shortly after the application of this sudden
thrust. The vector combination of these two vibrations gives rise to a nutatinz
motion about the <pin axis of the spacecraft which results in the destabilization «f
the vehicle. It 1s believed that the nutating motion is initiated and <ustained by
the sloshing that oceurs in the liquid stores in response to the sudden axial thrus
The tmnediate problem has been traditionally resolved by severelv restnicting the
motion of the Huid through rhe use of hatHes. However. the canse of the probie

has remained obsenre hecause the internal Huid motion 1= very dithenlt to ana. e,
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The analysis of the dynamic behavior of fluids in moving containers presents
a difficult task. In general the modelling of the fluid wotion requires the use of
non-inertial coordinate systems. thus resulting in a complicated set of governing
equations. The presence of a free surface. another non-linearity. introduces addi-
tional modelling complications. The domain on which the governing equations are
solved. which is determined by the position of the free surtace. is not known a priori
and has to be determined as part of the solution. [n 1¥x1 Stearne 1 ° published
a theoretical result for the irrotational spin-up of an infinitelv deep liquid. Lamb
2 .in 1945. used a linearized analyvtical method to determine the mode shapes and
characteristic frequencies associated with the small amplitude irrotational sloshing
of a liquid in a rectangular container. The rapid developments in the space and
missile technologies that took place in the early 1960's spured an explosive inter-
est 1n understanding sloshing phenomena which lasted for approximately a decade.
Numerous paper were published during this era. the majority of which expanded
on the analvtical work by Lamb to include other geometries 3.5 . or non-hinear
etfeets 6.7.% 0 The effecrs of viscons damping were stindied experimentally for evhin.
drical and spherical containers. ~4 _althoneh the nse of hatfles a~ damping devices
domiin~ted the majority ot the experimental work at the rime. A comprehnensive
siummary of most of this early work can be found in 9,

More recently. i 1S3 a4 report published by Sandia National Laboratones

deals with the ~olution of the thiree diten tonal Navier-~Stokes equations tor a evhinds

Numbers (n brackets desiznate Referaness at the ond f the paper
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cal canister filled with fluid and undergoing spinning and nutating motions. The
model is simplified due to the absence of a free surface. In addition. only steady state
solutions of highly viscous fluids in an aeroballistic frame of reference are considered.

A general model is presented here which may be used to study sloshing phenom-
ena under a variety of conditions. It allows for general translational and rotational
motions of the container as well as superimposed small amplitude vibrations. A
free surface tracking coordinate transformation technique is presented which allows
the free surface to be modelled under a variety of sloshing conditions without any

modifications in the model.




2 MATHEMATICAL MODEL

The sloshing of a viscous fluid inside a moving spherical container is modelled using
first principles. Equations describing the conservation of mass and linear momentum
are formulated in a coordinate system that is moving along with the container.
The selection of a body fixed coordinate system to describe the fluid motion was
based on the simplicity of the resulting form of the boundary conditions and on the
straightforward interpretation of the numerical solution.

The motion of a luid particle in an inertial frame of reference can be described
by the Navier-Stokes equations. The incompressible three dimensional form of these

equations can be written using index notation as

A, U, 1 dp 3%,

1y, = = - R /% ppe—— i1
it dr. 1% e, (f/.l‘,(f).l‘J

u,

— =0 (2
47/.[‘,

where u#, is the ahsolute velocity of a fluid particle.

J. 1s the acceleration due to gravity,

p 1s the statiec pressure.

~

is the fluid Jdensiry,

and 1 i: the kinematic viscosity of the Huid.

fn a body nxed coordinare svstem. intormation pertaining to the motion of the
container is transterred trom the boundary conditions to the governing equations a~
extra terms. [hese terins are to be determined by considering the motion of the
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container. which is assumed to be attached to a moving spacecraft. with respect to

the inertial coordinate frame x.

2.1 Linearly Accelerating Coordinate System

The effects of the spacecraft acceleration on the fluid particles within the container
are introduced into the governing equations by considering the following transtor-
mation. Let rq denote a coordinate system that is moving with the spacecraft (zee
fizure 1) and ¢ denote its position with respect to the inertial coordinate system .r.

Introducing new coordinates and a new velocity defined as.

g, = u, — 1, i

into equations (1) and i2), where detted quantities represent time derivatives. the

following set of equations results.

I)UO” l)llr),z | )p ot Up, =
- Uy, — = — — Yyp — W P

it 1oy, P Ton gy,

[

tu

T& = Pt

(—V’IO.'

where g, = g~ €

Therefore. with the velociry defined with respect to the non-inertial trame. the
etlect of linear acceleration is to introduce extra terms into the governing eguations.
These terms act to wodify the body force terms such that s, now represents the
net bodv force a< a result of the spacecratt acceleration and the acceleration due 1o

gravity,

Gh




2.2 Spinning Nutating Coordinate System.

The effects of spin stabilization and nutation can be captured by the following trans-
formation. C'onsider a coordinate system z, that is fixed on the spacecraft and thus
is spinning and nutating with respect to coordinate system ry. The instantaneous
angular orientation of the coordinate system r, with respect to ry can be envi-
sioned to be the result of three successive rotations. The three angles of rotation
vyt = 1.2.3. corresponding to the three successive rotations are known as the
Euler angles. In a right-hand coordinate system there are a total of twelve possible
sequences of rotations that can be used to define the given orientation of the r,
coordinate system. The zyx convention used here defines the following sequence.
The ro coordinate system is rotated counterclockwise by an angle L3 about the .y,
axis as shown in figure (2). The resulting intermediate coordinate system 7, is then
rotated counterclockwise by an angle v» about the 7, axis to vield the coordinate
svstem labelled 7,. A third counterclockwise rotation by an angle v, about the &,
axis vields the desired -~ system.

The coordinates of any point in «, can then be related to its respective coordi-

nates in ry hy
T AT i

where v represents the transtormation tensor containing the metrnes and is given
in the Appendix. The metrics are obtained [rowm the geometry of hgure 121 and are
genetally products of simple teigonometric tunctions in terms of the Euler angles ¢
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Introducing a new velocity measured relative to the nutating coordinate system

Uy = g, Ug, — Qg Qg Iy I\

into the governing equations (5.6} yields.

Auyn Uy
- Uy _2'3rm“11 - 3tm‘l‘l' _'3}"111‘11 =
Ot (j‘rl.'
W et
1 dp IS VO
- TG — gy U, N
}} (,).Z'l,, (__}-('1-’,-).2'1')
aulz .
- = 0 1
"A"rlz
where 3., = agay, .
3.’ A Y TR 3 U
«_'}f = I'}g.,r:!;\.v, - 4-11\.,&.,,,1 A
and 9. = g,

(Consequently. the rotation of the coordinate svstem r; with respect to ry resalts
in the appearance of three new tvpes of terms in the governing equations. The term
1., 1y, represents the Coriolis acceleration effects experienced by Huid particles
as a result of the rotation of the axi. The term 3.0, represents centrifugal
accelerations effects induced by the the axial rotation. The term 4.5 can be

~eparated into tangential acceleration rermis and additional centrifugal acceleration

terins.




2.3 Body Fixed Coordinate System

The spherical container enclosing the fluid is assumed to be attached to the flexible
frame of a moving spacecraft. Let h, denote the position vector from the origin of
the nutating coordinate system r, to the origin of the body fixed coordinate system
r» which coincides with the center of the spherical container (see figure 2}. Since
there is no relative rotation between coordinate systems r, and r,. any changes
in the magnitude of h, are caused by the elasticity of the spacecraft frame. The
governing equations in the body fixed coordinate system are obtained by replacing
ry and u, by.

Lay = Iy, — h, (11
and.

ey = Uy, — hr (1.2‘

in equattons (Y.10) to vield.

(s, e
;:- — U2y T - ‘zjrm“l‘z - -3(.,,[.["_\,*}7,)— 3'%”(1‘3:—}77’:
(1t "}.l'g‘. ’
1 /b'/p ll’zl['s,.
- ]
i N VL3
p s, T a0,
/v)(l'_\.
- =0 {14
[REER

where ja, = 4, - h..

As a result of this transformation. the body force term 4o, is modifed to reflect
the acceleration experienced by a fluid particle within the container as a result of
the motion induced by the elastic spacecralt frame.
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2.4 Self Adjusting Body Fixed Coordinate System.

All the physical principles needed to describe the motion of a fluid particle within
the contalner are embodied in equations (13.14). However. the presence of a free
fluid surface introduces a nonlinearity into the model since it represents a boundary
ot unknown shape and position that has to he determined as part of the solution.
In order to describe the motion of the free surface by a kinematic condition. its
position F needs to be expressed as a function of time. t. as well as two of the three
independent spatial coordinates ra,. The choice of such a pair of spatial coordinates

must be carefully considered to ensure that F remains single valned evervwhere,

Since the initial vaiue of vz 15 sciiicwhat arbitrary. h» can-be taken to he equal to
zero without any loss in generality. This would imply that the center of the spherical
container lies in the r.; — z,3 plane. For a container that is rotating about the ¢,
axis the direction of the motion of the bulk of the fluid will be along the z.. - 24,
plane. However. neither of the two likely choices. Fit.ra;.ran) or Fit.ras.ra3). can
ensure that F will remain single valued. Consequentiv. a self adjusiing body fixed
coordinate system. labelled r3 in figure 13, is introduced. The coordinate sy<tem
&z, is defined by a single clockwise rotation by an angle » about the r.n axis. With
the position of the free surface described by Fit raa 031 the value of o 1y adjusted

to ensure that £ remains single valued.

The coordinates of a point with respect to the <elf adjusting frame ¢, can he

determined from its coordinates with respect to frame oo from.

-1
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L3 = 3T, (13}
where s, is the transformation tensor given in the Appendix.
Replacing r» in the governing equations and introducing a new velocity,
uz, = $,,Ua, (161

vields the following set of governing equations in the self adjusting frame.

allsn (9113,,
- - (u3l - ka-'l‘&k') S - 2’\r mo fnx)u:}t - ’\1 al3 — '\'_’ mhv =
Jt Jra,
1 dp p P ug,, -
- T3 —‘gsn_utu P - (ll’
P Jdr3n U.I‘glif)l‘gj
ua, ~ 0 . (1)
31‘31 ‘
where f,, = 5.,5,,.
’\"l_] = 3" nmsnysrn] .

’\1ij - (jfnm - j’tnm)snzsmj .
’\’1.} = (jfn} *.3,,’])3,1[_

and Ja, = S92,

The new terms appearing in the governing equations are due to the rotation of
the axis. The ry coordinate svstem is rotating with respect to the r, svstem but
the velocity uy is still measured with respect to ry. Thus. the Coriolis and the

convection terms are modified to reflect this.

2.5 Poisson Equation for Pressure.

The pressure distribution within the fluid can be determined by the solution of a
Poisson eguation which is derived from the momentum equations. Differentiating

Gl1
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equation {17) with respect to r3, and contracting on n vields.

l 3 p
- L\,j U 2 ) .]1'_\( Uz Uzo ) — Jlg((t;;l. 33l — .jggf Uan. Uzal
P r_?.rsldrgj
_ s,
—-— [3,\,. nt E; - 5,“ .\1 ni
{.j D ” ’.:’ D ”j 2D
| = =D —ug ~ fula) 7—— v, | (1"
ot s, ' (_".L'g,(__).l‘_;J
where D represents the dilatation and is defined by
Ju
D = -2 1200
'91‘31

and the two dimensional Jacobians .J, (4. B) are defined by

94 B 8B 94
J,]H.B):( A )

('v:’I:}, (9.1‘3', 6)1‘3, ff).l‘\;j
The dilatation terms in equation (19) which are ideally zero for an incompressible

fluid are retained in the above derivation because they are used to ensure the stability

of the numerical method.

2.6 Free Surface Conditions

The motion of the free surface is determined by a kinematic condition. This con-
dition. which was first introduced by Lamb L1 . is based on the assumption that
duid particles that hie on the free surface must remain there. For the geometry ot
the present problem the position of the tree surface Fit. ., 0,0 can be caleulared

from.
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However. the kinematic condition as formulated above is inviscid in nature. Con-
sequently. its use is inappropriate in the highlyv viscous region adjacent to the con-
tainer walls. The motion of the free surface along the container wall is determined
by a local momentum balance which incorporates viscous and surface tension effects
(see 12 for details).

The dynamic conditions at the free surface are obtained by requiring that the
normal and tangential stress components be continuous across the liquid-vapor in-
tertace. The viscous stress components in the vapor phase are several orders of
magnitude smaller than those in the liquid phase. Consequently. these terms are
ignored. and the resulting dvnamic conditions at the free surface are expressed in
terms of a local curvilinear coordinate system as.

normal stress:

U

p—p, = 2 — (22)
n

tangential stresses:
AU, Y.
L - —— = kU, =0 kY

ATs iIn ‘

U, .-,

. . - ~ - "431/{*3 = 0 1'34!

Ty n

where U,, denotes the velocity component normal to the free surtace and (-, and -
the two velocity components tangent to the surface. The normal. n . and tangential
coordinates. 7» and r; along the free surtace are based on the following et of unit

vectors. which are defined in terms of the unit vectors of the r; coordinate <vstem,




n = — 200
\ l - F'_? e ‘;l
7 = Faey — €52 o
\ 1 - F:.'
- Fyéy — FoFyésn — (1 ~ F7)égg -
Ty = = ‘-.EA |
V- FP-Ff 1= F;
The ~, represents the local curvatures of the free surface which are defined by
£,
K, = —— — 5 i 2N
(1 - F7)33
with.
Ja PF
F = L— and F, = ( .
(3.1'3‘, o) 'l‘.'}l

The dynamic free surface conditions and the continuity equation are used to
provide boundary conditions for the pressure and the three velocity components

along the free surface.

2.7 Initial and Boundary Conditions

One of the advaniages of the body fixed coordinate svstem is that the appropnate
boundary conditions can be easily determined. The velocitv, wy . has been denned

o that the no-slip condition for a viscous fluid along a wall retain- it~ famuliar torm.
iy, = 0 valong the container wall: . 2

The pressure boundary conditions alonz the container wall are obrained by tornnne
an expression tor the normal gradient alonz the wall from the momentum equations.

!




The normal stress condition along the free surface is further simplified by neglecting

the viscous terms. Thus at the free surface.
p-po =190 {300

where p, represents the pressure of the vapor phase.

[nitially. at time t = 07 . the fluid is motionless and the pressure is in equilibrinm
with the net body force experienced by the fluid as a result of the acceleration due
to gravity and linear and centrifugal accelecation components resulting from the

motion of the container. The initial condition equations are obtained by setting.
Uz, = 0

in the governing equations (17.18.19) to vield

L3 ‘
B P = —Y3n ‘-,\1,,,1'3, ‘"’\Emhl ‘)’1}
Iy (').1‘3,,

l o ,

S 1321
P 1'1‘3;![).1‘.,] )

The above equations can be solved to determine the pressure distribution within the
flnid under static conditions.

At time f = 0. the motion of the container 1s altered such that the net body
force experienced by the Huid as a result of the container motion i~ different than
that present at time f = (. Since the Huid is modelled as incampressible the
pressure feld adjusts to the new conditions instantaneously. Thus. at time t = 0°
a new pressure distribution exists within the fluid. Equations ¢31.221 can be used

to determine the pressure field at £ = (7 <inee the fuid i~ still notionles




2.8 Nondimensionalization of the Governing Equations

The governing equations are nondimensionalized according 1o the following charac-

teristic scales:

o length L -~ a
¢ time T~ \ay
o velocity U ~ 19

where 1 represents the radius of the spherical container and 4 the acceleration

due to gravity. The characteristic velocity scale, I{. is equivalent to the propagation

speed determined from shallow water wave theory. A nondimeasicnal pressure i<

dehincd by

,ﬁ_ﬁ-'

Py

p

The dimensionless group that emerges from the nondimensionalization 1s the

(Cialileo number. (7a . defined as.

which represents a ratio of the gravitational to the viscous effects. The dimensionless
Galileo nnmber can also be viewed s heing analogous to the square of a Kevuolds

nunitber based on rhe charactenstie veloon scale .

e
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3 Numerical Method

The three dimensional equations of motion developed in the previous section are
solved using a numerical method to determine the motion of the fluid within 1t
spherical container. An elliptic grid is used that conforms to the irregular. tirne
dependent shape of the fluid region. The governing equations are expressed in
terms of the generalizei grid coordinates and solved using a second order acecurare
finite difference method. An outline of the numerical method and the computational

procedure is given.

3.1 Generalized Grid Coordinates

The accuracy of a numerical <olution is strongly dependent on the selection of the
computational grid.  This 1s particularly critical for moving bonndary problems
where the shape and position of the free boundary are zenerally unknown and are

deternined as part of the solunion.

Generalized arid coordinares, £ 0 are cenerared nsing the elliptic svatem ot eqia

Nons proposed by Shanks and Thompson 13 and independenric o Thonmas and
Middiecott 11,
N OIS S T N (L I
LoeTe the bapnetions OO0 are bnnstedd too b e ale et crn D Dt sttt
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adjacent grid points in the computational domai. is equal to unity. This is done to
siniplify the finite difference representations.

The mapping of the physical region onto the computational domain is depicted in
figure (4). The point defined by the intersection of the r;; axis with the free surtace

1s mapped onto the face of the cuboid defined by &, = 0. The boundary along the

container wall is mapped onto the opposite face of the cuboid at & = & ..r . The

N

axis is mapped onto the & = 0 plane while the free surface onto the & = 2.

N g

T
plane. Finally. a cnt is raken along the plane defined by the 7 and the positive
r,» axis and this <ection is mapped onto the &5 =8 and the &5 = &0 faces of the
cuhotd,

The procedure followed in solving these equations i~ similar to the one de<cnibed in
Li. Equations i34y are transtormed into the computational domain by interchang.
ing the role of dependent and independent coordinates and ~olved using a Hwre
ditterence method. The only significant deviation from the procedire descrioedn
[l i~ that an algebraic equation is fr-t ased to approximate the and to the de
ired degree of orthosonality alone the boundaries. The conrrol funenous € are
then determined explicitly trom the approcimared ard valnes This s done to save

computational etfort by raking advantaze of the known ceomerncal featires of e

phusicar region.




Governing Equations

The governing equations are transformed in termns of the generalized courdinares £

to take the following form:

nmonientum eguations:

Tign . g,
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continuity:
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pressure equation:
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with the dilatation. D. given by,

ug,

D =~
g,
in terms of & defined by,

the two dimensional Jacobians
( A1 0B JB a4 )
A€, ('_')f] 4‘,:)5, (’flf}

J, (4. B) =

and the grid transformation metrics given by,

] n,
ot

no=
In,
7],‘4, = ;)‘E—

:;"
’_}-7]L'
can be written in term-

i yoT ST
df,'jt_,
The kinematic condition at the free surface. &, = &,
of the generalized coordinates as.
=73 )
— = Uy - foara,
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The pressure boundary eondition along the container wall. a

obtained by wsing the chaim-tule to form an expression tor the @ aradient Trom

Thu-.

motnentuny eqiuation-
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3.2 Finite Difference Method

The governing equations are approximated using an implicit second order accurate
finite difference scheme. Sample difference approximations are given below for somnie
of the terms in the governing equations. The time level is denoted by superscript
n while superscript m 1s used to denote the iteration level. Subscripts .. ;. and
k. are used to denote the position of a grid point in the £, . & . and & directions
respectively.

Time derivatives are ditterenced using a tforward difference as in.

nelm-i -l om-] nom =1

o fs ' O (At i
— SN IR A S B NIV R
it L At

the diffusion terms are differenced using centered differences of the torm.

’41 ne~1l m=-
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and the convective terms are differenced 1ing a 1wo-step hnite ditterence of the

forrnu.
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where £, and &,  represent second order correction terms that are added to the

upwind differences to obtain centered. second order accurate difference approxima

tions. They are defined by,

=lm oy n-1.m n-1l.m
e v o=t .-ulv_].[\' U'IJI\'-I
Cfr — —
fe 2
n-1 m ~1lm n+-1m
Uz_;!‘\'—l - ok “r_/,"«'—l
9

[t has been demonstrated that by evaluating the second order correction terms
at the previous iteration level. m . the second order accuracy of a centered difference
is retained while the resulting system of finite difference equations becomes more
diagonally dominant {see 12 for details).
The Jacobian of the generalized grid transformation vanishes along the ry; axis.
This corresponds to a singularity in the governing equations and it requires the
special treatment of the equations along the r3; axis. As a result. two different
procedures were identified for obtaining the values of the dependent variables along
the r;. axis. These involve the use of a locally rectangular svstem of coordinates
or matching. Although both procedures appeared to work equally well. the match-

ing procedure was selected because of its simplicityv. Consequentiv. the dependent

»

variables along the r,. axis are solved by requiring that the variable and 1t~ firat
axis. This can be accomplished by tie

derivative remain continuous across the r,

n~e of the following psendo-boundary conditions,

1
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— = - tor = Vo 2n 47
(96'_»‘

'Lk
where 4 denotes any of the dependent variables, uz; . ugs. wy3. p.or Foand v 1s
used to denote the circumferential angle corresponding to the grid section identified
by h along which & is constant. Note that A, is used to denote the grid section

which is displaced by 120 degrees in the circumferential direction from the section

denoted by A .

3.3 Computational Procedure

The resulting set of finite difference equations is solved iteratively using the Gauss-
Siedel procedure. An outline of the computational procedure is given. With the
solution converged at time ¢. identified as tie {evel n . the tollowing sequence of

steps is taken to advance the solution to the next time level. n - [
1. The value of time is adjusted to the n — 1 level such that 77! = 7 — \¢.

2. Using the converged solution at time level n the kinematic condition equation

(11) 1s solved explicitly to obtain the new free surtace position. f7

3. The values of the variou. parameters describing the position of rthe container.
.. w..and h . are w dared. Coethelents J.0 40 3.0 and 4.0 are then also

updared.

b, Bas<ed on the new position of the tree surtace. F7 7 L the value of the cartace
tracking angle o 1= adjusted sueh that the coordinate svstem 2y ratates 1o

Goo
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tollow tie center of graviiy of the fluid. Coeflicients f. \. . N, . \,. and .,

that depend on o are updated.

A new computational grid that conforms to the shape of the fluid defined
by F"~!' is obtained by solving equations (34). The generalized coordinate

metrics, 1. are updated.

The velocities at the wall are set equal to zero according to the no slip coindi-
tion {29). Velocity values at all interior points are calculated trom the tinite
difference representation of equations (35). The dyvnamic conditions and con-
tinuity are used to calculate the velocity values along the free surtface. Valnes

along the r;; axis are calculated according to the matching conditions « 46,17 ).

The dilatation. D . is calculated at all grid points using equation 1 40).

The pressure is et equal to zero alonz the free surtace accarding ro condition
v300. Pressure values at all the interior points are calculated using the Hnire
difference representation ot the pressure equation (427 The pressiare valies
along the container wall are calculared by boundary condition 42 Uane the

matching conditions new pressure vilnes are calenlated along the v axis.

Steps B to Xoare repeated until the ~ohiton tor the velootess oo o amd the

pressure. poorneets the conversence criierion.,




4 Sample Results and Discussion.

The model described in the previous sections was used to generate results for two
cases which will be presented here. The first case. case-A. involved the simulation of
the resulting fluid flow in a spherical container of radius ¢ = 7.41 cm. and half-filled
with liquid glycerin at 21.1 degrees Celsius. when the container is impulsively spun
about its axis of symmetry. The second case. case-B. involved the simulation of the
flow that results within the same container when the spin axis is located 24.10 cm
away from the container axis of symmetry. Both of these cases were selected as a first
step in evaluaring the model because ot the relatively uncomplicated flow regimes
that result under these conditions. The first case allows for the evaluation of the
three dimensional model under conditions for which the resulting flow is essentially
two dimensional. The geometry of the second case was selected to allow for future

comparisons with experimental data from a rest rig.

Case A: Two Dimensional Spin-up.

The How of glveerin in a half-flled spherical container 1> considered here. Initially. ar
tiime ¢~ 0 the container is motionless and the glveerin s 1 a state of hvdrostatie
eguilibrium. At time tune ¢ = (. the container begins to rotate ahout its axis of

svinmerry, ey, such thar,

l il for ¢ i

l Or for f i}




where the di+ ensionless angular velacity is equal to Q = 044636, which correspond-
to approxinmately 34.5 rpm. Instantaneously. at time t = 0~ . the pressure distribu-
tion within the luid adjusts itself to reflect the centrifugal acceleration experienced
by fluid particles as a result of the sudden rotation. The change in rhe pressure field
causes the fluid to begin to oscillate about the new equilibrium position until it i~
brought to rest by viscous dissipation.

The governing equations were solved to determine the re<ulting Huid motion with

the values of the fallowing parameters set equal to:

bo=0 fort=1.2.3

and the value of the surface tracking angle equad ro:

The value of the dimensionless Galileo nuniber corresponding to these condition s -

egial to:
(v’:l Y:"_)_)

The centoibuzad aceeleraiion experiencet v i pactices s aroportiogad o ot
where oorepresents the radial Jistanee frong e spinascs - Gnsegrent b irenter
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dimensional nature of the flow field was demonstrated veryv well by the numerical
solution. Less than one percent variation with circumferential position was detected
in any of the values of the dependent variables.

The resulting flow within the container is depicted in figure (5). The velocity
field along the r»; — ra; plane is plotted for five different values of dimensionless
time. t. At time + = 0. the fluid is still motionless. This is depicted in figure 1 3a1

were the solid line at «.; = 0 represents the initial position of the free surface given

byv:

F(O‘.l“;g.figg' =1

and the dashed line represents the equilibrium position of the free surtface. which is

a paraboloid given by:
- . 102 2 2
Fix rgpozg Oy = 59 (r32 = 734)

where (', 1> a constant determined analvticallv from a global mass constrain.

The sudden rotartion of the container causes the pressure distribution witlun the
Huid to drop to levels below those determined by the hvdrostatie balunee near 11e
spin axis. and to {evels exceeding the hvdrostatie values tor points located away from
the <pin axis. In response to these changes, the tnd begins to wadl near the center o1
the container and to rise near the wall, Thie iovdepieted by the veloeiny helld <shown
for v oxtbin fignce b The Haid How s crroneest near the free cartiee woriothnd
particies near the center of the container moving downwards and outwards wnt e

particles rising alone the walll The Hod monon near the Botrom of the conraaner




15 significantly weaker. The fluid continues to move past the equilibnium position
and by time t = 1.60 it has slowed down and the flow pattern begins to rever.e

itself. Thisis shown in figure (5cy and more clearly in Hgure i 3dv. where at + = 2,10

the fluid is moving back toward the center of the container. The wmost significant
flow remains along the free surface witn the fluid near the bottom of the container
undergoing a weak recirculating motion. At time f = 3.20. figure 1 Jey. the flund his
nearly completed one full cvele as 1t moves back toward 1ts initial position. The

actual dimensionless period exhibited by the Huid was approximarely eqnal 10 524,

I'he fluid oscillations decay as a result of the viscous dissipation. the etfecrs ot

which are shown in fgnure 161, Here. D...,. which 15 defined hy,

{;,_” e ! F|f.<r.{':‘ Loaat — F' X T30 ! 1 /l
D,.,,,, (t) = =i =S R
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and 1t represents a measure of the roort mean <quare deviation of he {ree o
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posttion from the equilibrinm position plotred versus thme. Initiallve ar e

Do, 1~ equal 1o ones This represents the maxinum deviation of the tree snrtoce

trotn it~ equiltbrinm postion. A< time jnereases the Juand beons ro e sowir g

the vpulibrinm positton. and consequensiy Do decreasess Tre vaime soes s
a local ndninonn as e free srfaee piasses throagely Che coniiiriiin e o
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Case B: Three Dimensional Spin-up.

A second case was computed using the same parameters as in case-A with the
exception of h;. For this case. the value of the dimensionless parameter h. was set

equal to.

This indicates that the center of the spherical container is located away from the
spin axis. ry3. at xy; = hy

The centrifugal acceleration experienced by fluid particles as a resnlt of the

sudden rotation of the container is now proportional to
~ X ~
320 =y - RO

The centrifugal acceleration effects are stronger for this case due 1o the position ot
the container relative to the <pin axis. (‘onsequently. the resulting dow field 1~ no
longer svmumetrical abont the o, axis. The equilibrium position of the tree surface

is given by,
Fixcirgnorgr =10, - -Q {r5, - 0]

where once again () 1~ a constant determnned analvucally from a 2iobal mass bal
AL

[he motion of the fad within the contaner 1~ depreted e tgnre 700 Froore
Toisa three dinensional graphical representation of tae mmotion of the free syt e

[he Shape of the free surtace 1 deprered by rhe crrendar e defined by the coind
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lines. The r, coordinate svsten and the mitial position of the tree surface ajong

the container wall are shown in dashed lines. The spheneal container 1+ outhined
by the dotted hneso The three ditnen-ronal shape of the free cnrtace s dravn oo o
would be seen by an observer rotating along with the sphencal container such that
its position remains along a line 45 degrees above the honizontal 7o s pliane. anid
15 degrees between the negative ra axis and rhe positive raoaxis. The position of
the container relative to the stationary o, coordinate svstem is ~howrn in the captions
on op of igure 1 7). The direction of obzervation 1s also indicared by the arrow. The
iminal posttion of the free surfice.at fime £ 2 07 1s shown in Heee s Taos The Hind,
tn response to the andden centrifugal wcceleration resulting from the motion of the

container. hezins to move away tfrom the spin axis. Fhus the free surface rises ajonz

the portion of the contamer wall that i~ the farthest away trom the spin oxis.

hestns to drop along the portion of the wall that 1 closer to the <oinaas. This

| }

f

clerly deprered i Heuee  Thio where the nocrion of the tree cartace 1v shown tor
! ot Fooure - Too Shows the posttion of the free surface a0 i Tater tai e of tine
1 b where the thned has moved even closer to the eqmibrom poaition,

The direction o tbhe naran of the Lok o the and o aiar o e o roy oolene
[hos oo bie o rhe abenee of any tanoential soceieration effeer cie e
A b Contaner as g - et Yo Yo Doy ot el i ey Per Lo ottt ‘
o the ol pe shomun e e N ter thie s L nes of dnneneaar
Grne e the coes ioedd g eire 0] o Tooar o e nd e tes
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! magnitude ¢f the centrifugal acceleration at the two <ides of the container i~ cleariy
ll shown in terms of the position of the free surface and the direction of the velooins

l vectors.

The results presented here were generated using 2 computational grid with

I nodes in the radial direction. 11 nodes in ~he azimuthal direction. and 21 nodes in
‘l the circumferential direction. Case- \ required a total of 3.52 hones of CPT time on

a NAS Ay 91x0. an IBM compatible mainframe cotputer with a compnting ~peeid

of approxtmately 10 Mtops. to be solved to a dimensionless time of + = 614 neins

a time step of A = 0.2 Case-B | required a toral of 6.32 hours of CPI tie to

reach a valine of # = 1001 using the ~ame time step size.
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APPENDIX:

The position of a given point in the nutating coordinate svstem r- can be related

to its respective coordinates in the rg, coordinate svstern by,

I, = A, Iy,

where the metrics of the transformation in terms of the three Euler angles « are

given by,

(30 (NN — Ny (Na07) = 5,8,
d = \:7,\’ "1 \;\‘ft - ('z( \‘\‘\( - ( ,)\1
- ('35, {al /J

= coNbeo,

where here S, — sini 1 and

The transformation from the ra to the o, coordinate sy=tems is described by

where the merries s are defined by,

coso D s
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Figure 2: Nutating coordinate system,
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Figure 4: Generalized grid coordinate system.




Fignre Sa: Velocity el for the 2D spinup at ¢ = 0.0




Fignre 5b: Velocity field for the 2 D spin-up at ¢ ~ 0¥
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Figure 5d: Velocity field for the 2-D spin-up at ¢ = 2.4
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Figure 6: Viscous dissipation for the 2-D spin up.
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