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I. INTRODUCTION

This final technical report presents a comprehensive summary of the

U research accomplishments supported by Grant #AFOSR-86-0080 over the period

January 1, 1986 to August 31, 1989. The report reviews the objectives of the

research in Section 1. The status of the research effort is reported in

3 Section 2. 5ection 3 of Chapter 1 presents a chronological list of written

publications resulting from this research effort. Manuscripts planned for

imminent submission to technical journals are also listed. Fullowing this, the

report presents a recapitulation of the advanced degrees awarded, a list of

U thesis titles, and a history of the professional personnel associated with this

grant. Seminars, presented papers, and advisory meetings with Air Force and

other DOD laboratories are reviewed in Section 5.

3 Appendix A of the report summarizes !-he resultR nf the dynamic simulation

of the Star 48 spacecraft. The results of a control law analysis to stabilize

3 the spacecraft are considered in Appendix B of this report.

The need for a convenient stationary bench model of a nutating spacecraft

3 is outlined in the research objectives. This model was developed as the

satellite simulator test rig and its design is described briefly in Appendix C.

The development of the instrumentation which was used to measure the dynamic

3 motion of the simulator is given in Appendix D. Appendix E is a discussion of

the successful computer simulation of the test-rig dynamic response from a

Lagrangian formulation of the equation of motion.

Appendices F and G summarize the results of the computational fluid

3 dynamic analysis of 2-dimensional and 3-dimensional models of the sloshing

fluid. The dynamics of a fluid in a rectangular space was analyzed and, more

recently, the response of a free surface liquid in a spherical tank has been

3 studied.
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1.1 Research Objectives

The objectives of this research grant were to derive the equations of

motion of a spacecraft containing liquid fuel stores; the modeling of the

free-surface liquid was to be done by (a) equivalent two-dimensional pendulum

representation and (b) by computational fluid dynamic modeling.

This project proposed to build an experimental test rig which simulated

the spinning and coning motion of a spacecraft. The satellite simulator would

contain symmetrically placed spherical tanks with adequate instrumentation to

study the dynamic state of the free surface liquid as well as the instantaneous

structural response. It was the stated objective of the pLoject that the

physical system modelling be continued and adapted until total agreement was

achieved between the analytical response and the experimental data obtained

from the satellite simulator.

It was the purpose of this research that it produce a mathematical model

of the spacecraft capable of predicting the precession of the spin axis of a

sdtellite that develops as the spacecraft responds to a sudden axial thrus:.



1.2 Status of Research

The work of simulation of the Star 48 Communication Satellite flight

dynamics, begun in June 1983 at AEDC-Arnold AFS, was completed and culminated

in a published paper (see Appendix A). The analysis of a control law to

provide dynamic flight stability to the satellite was completed. A technical

publication abstracted from this work has been submitted for review (see

Appendix B).

The analysis and design of the satellite simulator test-rig model was

completed. A technical publication will be abstracted from this and submitted

for review for publication in the literature (see Appendix C). Instrumentation

of the spinning and nutating simulator was completed to provide measured

dynamic response of the basic structural components as well as the fluid

response. A technical publication abstracted from this work will be submitted

for review for publication in the literature (see Appendix D). The equations

of motion of the simulator were formulated from a Langrangion analysis and were

programmed for solution on the digital computer. The successful computer

simulation of measured response of the test rig resulted. This work is

abstracted for publication in Appendix E of this report.

The computational fluid dynamic analysis completed under this grant has

produced a primitive variable simulation of two-dimensional fluid response (see

Appendix F). The three-dimensional modeling of a free surface visous fluid in

a spherical container has now simulated the dynamic response to ba.sic centrif-

ugal disturbance and is presented in Appendix G in abstract for review for

publication.
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1.3 Publications

Listed below are the technical publications resulting fhorn this work which Ih,.*c

been previously submitted to the Air Force Office of Scientific Research.

Hill, D. E., Baumgarten, J. R., and Miller, J. T., "Dynamic Simulation

of Spin-Stabilized Spacecraft with Sloshing Fluid Stores," Technical

Report No. ISU-ERI-Ames-86451, Dec. 1986.

Hill, D. E. and Baumgarten, J. R., "Control of Spin-Stabilized Spacecraft

with Sloshing Fluid Stores," Technical Report No. ISU-ERI-Ames 86452,

Dec. 1986.

Baumgarten, J. R., Prusa, J. M., and Flugrad, D. R., "An Investigation of

Liquid Sloshing in Spin-Stabilized Satellites," Technical Report No.

ISU-ERI-Ames 88175, Jan. 31, 1988.

filu, 0. E., BldLai Cen, J. T., and MiliCr, X T., "Dynamic Simulation of

Spin-Stabilized Spacecraft with Sloshing Fl"id Stores," AIAA Journal of

Guidance, Control, and Dynamics, Vol. 11, No. 6, Nov-Dec 1988, pp.

597-599.

Listed in the following are technical publications resulting from this work

which are currently under review and which will be submittcd for publication.

Hill, D. E., and Baumgatten, J. R., "Control of Spin-Stabilized Spacacaft

with Sloshing Fluid Stores," under review for the Procycdings of the 1990

American Control Conference.
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Prusa, J. M., and Kassinos, A. C., "Numerical Solution of 2-D Viscous

Sloshing in Rectangular Containers of Finite Aspect Ratio," to be

submitted to Journal of Computational Physics.

Kassinos, A. C. and Prusa, J. M., "Study of 3-D Viscous Sloshing in

Spherical Containers," to be submitted to Journal of Computational

Physics.

Flugrad, D. R., Anderson, M. D. and Cowles, D. S., "A Test Rig to Simulate

Liquid Sloshing in Spin-Stabilized Satellites - Part One: Design and

Instrumentation," to be submitted to AIAA Journal of Guidance, ContLol,

and Dynamics.

Flugrad, D. R. and Anderson, M. D., "A Test Rig to Simulate Liquid

Sloshing in Spin-Stabilized Satellites - Part Two: Experimental Results."

to be submitted to AIAA Journal of Guidance, Control, and Dynamics.

Flugrad, D. R., and Obermaier, L. A., "Computer Simulation of a Test Rig

to Model Liquid Sloshing in Spin-Stabilized Satellites," to be submitted

to ASME Journal of Dynamic Systems and Control.
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1.., l~~I.t of I(,-searcb Personnel, "'r -< t 1 awl e ,.; i, r..:,F:,t,

(A) This research was initiated in Junf, ]433 by lx. L. LJI iand .J. R.

Baumgarten during an AFOSR summer faculty a,':.'Kt.o AED Ls;:ir: .

Frcili ty at Arnnld Air Fcrce Stati ni Tenne- -o. .. i Id> ted .i Ap.or .j I.

A, AFDC had tested a typical PAM rocet no'Lor and i ld fod no

instabilities that could explain the coning, tntion of :;pinning

communication satellites. A forerunner to this preseit grant, AFOSPT

Research Initiation Grant, Subcontract N,). 8?RIPI3 allowed Hill to

initiate the study of the dynamic tispon.e of sifh~ng fuol sotots -I

possible contributor to spacecraft coning motion. Dr. Hill ,eceived h

Ph.D. degree in December 1985 and ,c pre!se L a t s IpportOd piUhlic(-ti,,:

3f this thesis titled:

Hill, D. E., "Dynamics and Control of Spin-Stabilized SpacecraVt .ith

Sloshing Fluid Stores," Ph.D. Thesis . Iowa State U liveti ty., A',m ,, IA,

1985.

(3) The desire to have a bench test lo duplicate tho relative i

co t en in a ,,pinning- 1,1't t i rig L " III,' Hl t' .7()d the ,t,'d , D

Uoes. Under di ecti o n. ,f ). P.Il r , (Fod II dg I Co . I ,u It tsr,

first working v:ers: on t the sIte ' .. -imrlat ,I dI-cr " _ at (d pi tu:, i'

Appendix C. Dougla. S. (o les , j' ' j .5. in ji, ,i'i . . i'e

Dogree in [lec-olb 1 1r I Hi' tl;., _I

L .quid Fuel 1 ro . M.. Ahe> . .a Li . i A , I.,

I



F (C) The need for measured response of the sloshing fluid and the nutating

structure prompted the instrumentation effort of M. D. Anderson. Working

under the direction of D. R. Flugrad, Anderson reconfigured the simulatoL.

instrumented the fluid tanks, the two degree of freedom universal joint.

and set up a data collection system as outlined in Appendix C. Michael P.

Anderson received the M.S. Degree in Mechanical Engineering in August 1988

and his thesis was titled:

Anderson, M. D., "Instrumentation of a Spin-Stabilized Spacecraft

Simulator with Liquid Fuel Stores," M. S. Thesis, Iowa State University,

Ames, IA, 1988.

(D) Having a working bench model of the spin stabilized satellite, it was now

desired to complete the dynamic modeling of the simulator. Under

direction of D. R. Flugrad, Lisa Ann Obermaier completed the formulation

of the test-rig equations of motion. Her successful computer simulation

of the test rig allowed the study of many response parameters and will be

a valuable tool in subsequent work. She received the M.S. Degree in

Mechanical Engineering in December 1988 and her thesis was titled:

Obermaier, L. A., "Computer Simulation of a Spin-Stabilized Spacecraft

Simulator with Liquid Fuel Stores," M.S. Thesis, Iowa State University,

Ames, IA, 1988.

(E) The need to replace the pendulum model of the sloshing liquid in its

spherical tank with a computational fluid dynamic modeling of the

free-surface liquid motivated the work of A. C. Kassinos. Directed by

7



J. M. Prusa, Kaszinos has formulated a printitive variable computer piogrz-m

for analysis of the dynamic fluid resporse. Adonis C. Kassinos C;:pects to

k ceive his Ph.D. degree in December 1989 and his the is will be titled:

[assinos, A. C., "Stidy of 3-D Viscous Sloshing in Moving Containers,"

Ph.D. Thesis, Iowa State University, Ames, IA, 1989.

(F) The desire to study the f]iid and st:ucture interaction during the

sloshing and nutating phase of the si:;,.ulator m)tion prompted Janet L.

Meyer to instrument che upper arm assembly of the sim,i]ator. Under

direction of J. R. Baumgarten, Meyer made -train gage measurements ot

structural deIlection of the spinning simulator. Lt. Janet Mey-r'3

graduate study program was interrupted after one year by her orders to

report to her first U. S. Air Force duty station at the Los Angeles

Aerospace Command. It will be nece3!ary for her to complete her M.S.

dissertation in absentia. Her thesis is tentatively titled:

Meyer, J. L., "Correlation of Liquid Motion and Structural Deflection ill

the Spacecraft Simutlator Response,' no date of graduation is committeu.
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I

1.5 Seminars, Papers, and Laboratory VisitsI
J. R. Baumgarten visited Dr. Anthony Amos at AFOSR Boiling AFB in March

1 1986 and at Wright Patterson AFB in March 1988. These visits coordinated the

work of various technical personnel with the interests of the Air Force during

the term of this grant. Dr. Amos visited the Mechanical Engineering Depart-

i ment, Iowa State University in August, 1987 to review research progress.

J. R. Baumgarten visited the Naval Research Laboratory on March 7, 1986

to study the construction of the Gyrodynamic Motion Simulator. Mr. Samuel

Hollander, Head of Control Systems, Space Systems Division was his host.

I Baumgarten presented the seminar "Sloshing Fuel Stores in Spinning Spacecraft"

to the Landing Dynamics Branch, NASA Langley Research Center, March 10, 1988.

Mr. John Tanner, Branch Manager, was the host. Baumgarten visited the Engine

3 Test Facility, AEDC, Arnold AFS, on March 9, 1989 to discuss research results

with Mr. J. R. Smith, Section Manager. The seminar "Tumbling Satellites" was

n conducted for the Society of American Military Engineers at Iowa State

University, on April 3, 1989.
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Dynamic Simulation of Spin-Stabilized

Spacecraft with Sloshing Fluid Stores
Daniel E. Hill* and Joseph R. Baumgartent

,owa State Lntter.viti . Arnes, Iowa
and

John L. Millert
Arnold Engineering IDeeloptnen I Cent er,

Tullahomna, Tennessee

Introduction

L AU NCHINGS ofwseeral communications satellites hasie
consistently resulted in a nutating motion of the spice-

craft. Flight data from the roll, pitch, and yaw axis rate gy'ros
indicated a constant-frequenc). equal-amplitude. sinusoidal
oscillation about the pitch and yaw axis. The ,ector combina-
tion of these two components of oscillation resulted in a coning
motion of the satellite about the roll axis. The vehicle 'Ads
spin-stabilized at launch about the minor axis, having a one
revolution per second (rps) roll anga>. .- '-t imparted to it

After launching from the caIrrier vehicle in the perigee phase
of its orbit, the satellite's perigee assist module ( PAM) tired its
thruster to establish a geosvnclironous Earth orbit. It is 1his
axial thrust that gives rise tii the coning that predominate', alter
PAM motor burnout. ositnlflight data from rate gy ros
indicated the steady-stateC Olie-hdlf cyc:le per second (cps) coning
frequency and a one-hial fc c c qps sm.ilatnplit ude disturbance
superimposed on the I rps roll angular velocity.

Ciimibustion instabilities in the PAM rocket motor were sus,-
pected to he the source of' a side foice that would induce the
coning motion. In order to investtgattc the presence of an,, such
comibustion instabilities, a l'AM rocket miotor was firedi it the
Engine Test Facility, Arnold Engineering tDcvelopmntit ( en-
ter. Arnold Air Force Station A test list tire having latetal and
axial load cells was utiltied. allowing the PAM to he spunl at
I rps during firitng A spectral analksis wais completed of the
resulting load cell records obtained during tiring. The test re-
sults indicated no forces at the required Irequencv ( one-halt
cps). and it was c.oncluded that eoinbustiiin instabilities w cic
not the source of' momntslu causiiig c:oninlg motion.

A preliminairy anal~ 'sis o4 the pajload (communication satel-
lite) was enoinpleted indicating that sto-shinrg IlUid stores ntLIs
induce the coning motion. It w4as suspected that %loshing nit)-
tion of the liquid stores, in thte ,ehicle, excited bs the asial
thrust, was the mnechatnisnm for cteating the nutationt, ofthe
spacecraft.

The miodeling of fluid slosh is exiensi' e and has been used by
researchers it) study- its effect (it space vehicle nmotionII
NIichelini ci al.' outlined a procedure for dceeoping the equa-
tio~ns of miotioin of ,i spinnig satellite containing fluid stores.
The equations of' in t ion we ic not. pi sen ted. but tilie sttid V
supplied the italsticail bicktrotind t, r file csperimniajt den-
titication of, the ds namic modt-) I lperimental tesults showed
that sniall-aniplitudeC ftre NsuIiL ye,ive motion does nut cause
instabilities in the setcled hnitibiliics %%ere found ito bek reuci-
ated b1' the filitd,iiticnttil no1de IlI fluid slosh. \wInchl is no(
escited hN smalaihtd tide surf c \%savC notion. Ilie Col-
sequence of thle irst-inodc Iltural ITiquemis causing iistabilit\
in thCe0M-I vehicle' 1is1t1C ticlic 01t .11 eLti\,ilerI Spherical pendju-
LinI in,,lel of 1Ibid 1101h

Rcceicd %tia\ I lI'" 1u\1;1II rc,11Ik~c N0 ,,st-t5'h t~s Ic

itauti1cs indl -\sii ioun I,,II, -tl IC1r1 Iii-
*(,r,iJiiatC SiuI&ti. I1IrrCI11; \CIrr'i I 1W1111-i. MtMitii .t

(I C 11 0i I1111A I I
iq'In :
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The equivalent spherical pendulum model, which is based on have a pendulous mass of 5 Ibm and a length of 7.2 in. with the
experimental results, is a means of simplifying the extremely centers of the four tanks positioned symmetrically 25 in. along
complicated problem of modeling the free surface Iluid behav- and 18 in. radially from the main body centerline. Fluid damp-
ior coupled to the vehicle dynamics. The problem would nor- ing was estimated to have a 0.01 dimensionless damping ratio
mally consist of solving a boundary value problem and an The dimensionless damping ratio is determined from a single
initial value problem. The simplified equivalent mechanical degree of freedom slosh analysis based on fluid type. mass,
model reduces the complexity to an initial value problem, level, and tank geometry. The damping coefficient used in the
which is handled with much more ease mathematically. This model is then determined from the classical vibration relation-
study uses the experimental results of previous researchers to ships between the dimensionless damping ratio, pendulum
develop a simplified mathematical model that describes the geometry, and pendulum natural frequency. Symmetry of the
interaction between the fluid mass and main vehicle body. tank geometry allows the same damping coefficient to he used

with respect to both of the pendulum degrees of freedom.
Numerical Simulation of the Equations of Motion The flight simulation was made with the vehice pin-stahi-

The equations that define the motion of the system shown in lizcd about the minor axis. Initial conditions on the vchicle
Fig I are a set of nonlinear coupled ordinary differential equa- were simple spin about the minor axis, with the main body
tionsi ' The equations must be solved by numerical methods fixed axis aligned with the inertial frame, an altitude of

because an analytical solution is not available. 200 miles and a 1.5-h orbital period. Figure 2 shows the bod%
Numerical values for the vehicle geometry and fuel tank fixed angular rates vs time with instability occurring near the

configuration were obtained from test data. The vehicle main PAM burnout at 85.3 s. It is reasoned that the instability is
body mass varies from 6400 to 2000 Ibm during the 85.3-s caused by increasing torque on the main body resulting from
PAM burn while the roll axis moment of inertia varies from the mass expulsion coupled with the fluid sloshing mass mo-
18869 to 10240 Ibm-ft2 and the transverse axis inertia from tion. Expulsion of mass not only produces time-varying inertia
67652 to 19513 Ibm-ft2 . Sloshing fluid stores were modeled to but also generates what may be interpreted as external torque

on the main body even if the exit velocity vector is aligned with
the spin axis. The torque is zero if there is no coning motion.

L H." 0 but any small disturbance. i.e., fluid sloshing mass motion,
perturbs the main body, causing it to cone more which, in turn.
excites the sloshing mass motion. The torque and sloshing mass

L "motion effects will be diminished if the main body is gyroscop-
S- _tj (Y.-l ically stiff enough. Before PAM burnout, the motion of" the

vehicle is still relatively stable because the system is gyroscop-
SI ically stiff and has a transverse to roll axis inertia ratio of 3.6.

After PAM burnout, the inL;rria is constant while the transverse
to roll axis inertia ratio is reduced to 1.9 and there is a step

VAN GYRO tI ftl-31 -12 1--- I
JII

PIItH GYRO t'l,

S / 3 -i0i GYRO iAO
' 1 - 1-N- p,

/- P~PAN PUMP 11 11110.,6 ,t)

13 J40 1160 1380 1400 1420

Fig. I NModel of spa'ec'raft with spherical pendulum. F~ig. 3 Body fixed angular rates ts ime- R('\(I

30 C: 50 Q 0T -8- 50 1O 10 120 1301 40 1') ,,, Ib

lIP.11 ( Hl )',l

I ag. 2 H~od) fixed angular rates vs, time witlh pitertdtl fight.

A3
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change in the main body acceleration. Thc step change in accel- Acknowledgments
eration excites the sloshing mass motion which, when coupled This study was completed under partial support of Contract
with the main body decreased inertia ratio, produces an un- AFOSR-86-0080 and Subcontract 83RIP33, U.S Air Force
stable oscillation. The authors wish to acknowledge the support of Iow.a State

Figure 3 shows telemetered flight data from a previous inls- University in accomplishing the lengthy digital computer siniu-
sion. The pitch and yaw rate gyro data show approximately lation required in this study
equal amplitude with 90-deg phase shift, indicating a coning
response. Comparison of Figs. 2 and 3 shows that the growth
of the coning motion is substantially different, indicating ',hat References
sloshing mass motion is not the mechanism causing the 'Sumner, I E . "Fxpenmcnially Determined Pendulum Analog) .4
anomaly. Liquid Sloshing in Spherral and Oblate-Spherical Tanks,. NASA TN

D-1991. Dec 1963.

Conclusions and Recommendations ?Sumner, t. E and Stofan, A J An Experinicn(al tnvetmigaiion of
the Viscous Damping of Liquid Sloshing in Spherical Tanks," NASA

this study has shown that powered flight of a spacecraft TN D-1991, Dec. 1963
carrying fluid stores within the main rigid body can be a source 'Sayar. B. A and Hauniartcn. J R . "linear and Nonlinear Anal>-
of dynamic instability, sis of Fluid Slosh Damper." .41.4.4 Journal, Vol 210. Nos 1982, pp

The major conclusions and recommendations drawn from 1534 1534.
this study are 

4 Michelini. R. C., Lucifrcdi. A . and Dim. 1 . "The DynanmiL of a
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I Control of Spin-stabilized Spacecraft with Sloshing Fluid Stores

Daniel E. Hill, Senior Engineer, Martin Marietta Astronautics Group
Joseph R. Baumgarten, Professor of Mechanical Engr., Iowa State University

I1 Abstract

I Spin-stabilized spacecraft with sloshing fluid stores are Known to

be a source of dynamic instability for certain spacecraft configurations. A

control law was developed, using an equivalent mechanical model of the

fluid motion, which results in a stable dynamic system. The control law

may also be used for pointing maneuvers and is implemented by sensing

I only the main body angular rates and attitude.
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Introduction

Spin-stabilized spacecraft carrying fluid stores are known to be

dynamically unstable for certain spacecraft configurations [1,2].

Spacecraft design constraints cause many vehicles to have the unstable

configuration. The excitation of the fluid motion may be constrained by

baffle systems but any added weight is costly in terms of payload

reduction. Equivalent mechanical models have been developed by various

investigators to approximate the complex free surface sloshing fluid

behavior [3,4,5]. The control law development in this study is based on an

equivalent np.ndii"um model of the fluid motion coupled with the main body

dynamics [6].

The dynamic system using the equivalent mechanical model is highly

nonlinear and coupled which complicates the control system analysis.

Many nonlinear systems may be linearized about a nominal operating point

and linear optimal control theory can then be applied to construct a closed

loop controller [7]. Stability of the nonlinear system with the linear

controller cannot be guaranteed but simulatior of the system within the

region of operation can be used as a check on the design.

The goal of this study was the development of a closed loop control

law which may be applied to a spin-stabilized spacecraft with sloshing

fluid stores without baffling or changing the design of the spacecraft.

The closed loop feedback control law developed stabilizes the spacecraft

and may also be used for pointing maneuvers A closed loop control

system tries to maintain a prescribed relationship of one system variable

io another by comparing functions of these variables and using the

difference as a means of control [8]. The method of closed loop control

B 2



used in this application consists of external torque reaction jets which

are normally used on spin-stabilized spacecraft. Spacecraft angular rate

and attitude are measured and compared to a reference state as input to

the controller for command of the reaction jets.
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Control System Analysis

The model of the spacecraft system is shown in Figure 1 and was

used as the basis for control law development. Figure 2 shows the

spherical pendulum relative to the body fixed reference frame. The

dynamic system is highly nonlinear (see Appendix A) which complicates

the control analysis. In many cases a nonlinear system may be linearized

about a nominal operating point and a feedback control law developed

using linear contro! theory to control the nonlinear system. Linear control

theory was used in this study to obtain a control which when applied to

the nonlinear system, brings the system to the desired angular rate and

attitude.

The linearized equations [6] are time varying because the Euler

parameters are periodic if the vehicle is spin-stabilized. Euler

parameters are an efficient method of defining the orientation of a body

[9]. Assumptions made in the analysis were,

1. The rocket motor has burned out and the inertia of the main body

remains constant.

2. The mass of the fluid, therfore the equivalent pendulum length,

does not change as fuel is expelled for control.

The problem to be solved in this study is known as the Linear

Quadratic Regulator Problem (LQRP). This consists of minimizing the

functional,

J !- [- (tf) t (tf)] T  H(tf) y(tf) - f
2



S+ [ t) _ -tl r ( t )]Iit -t/ + u T t) Rit) u (t)] dt

subject to,
(t) - A(t) -(t) + B(t) -U(t), (2)

which is the linearized system of the equations of motion.

The variables in the functional are defined as,

H(t),Q(t) =-Positive semidefinite weighting arrays

r(t) Reference state vector

R(t) Positive definite weighting array

t = Time

to M Initial time

tf= Final time

-u (t) Control vector

-(t) -State vector

Kirk [101 derived the necessary conditions for optimality which

results in the following matrix differential equations,

P(t) = -P(t) A(t) - A T(t) P(t) - Q(t) + P(t) B(t) R (t) BT(t) P(t) (3)

s(t) = .AT(t) - P(t) B(t) R- (t) BT(t) s(t) + Q(t) r(t) (4)

with boundary conditions,

P(tf) = H(tf) (5)

s(tf) = -H(tf) r-(tf) (6)
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Equation 3 is known as the matrix Riccati equation. P(t) is

symmetric and consists of n(n+l)/2 independent equations where n is the

dimension of the system. S(t) is an n vector. If the solutions to

equations 3-6 are found, then the linear optimal control law is given by,

U(t) =-R 1(t) BTp(t) (t) - R 1(t) BT(t) s(t)
= F(t) Y(t) + V(t) (7)

The linear optimal control law may be found by integrating the

[n(n+1)/2] + n system of equations backward in time and storing the

values of F(t) and v(t).



Control System Simulation

Equations 3-7 were solved by numerical methods and the feedback

gain matrix, F(t), and command vector, v(t), were stored. The control law

was then applied to the nonlinear system of equations. An initial coning

state was given by setting the roll, pitch, and yaw rates to 360, 0, and 35

degrees per second with the pitch and yaw angles set to 15 and 0 degrees,

respectively. The vehicle was spin-stabilized about the minor axis.

Simulation of the nonlinear controlled system showed that the linear

feedback control law stabilized and reoriented the vehicle to the desired

attitude. The feedback gains shown in Figures 3 and 4 reflect the time

varying nature of the Euler parameters as each gain is associated with its

respective Euler parameter. Figures 5 and 6 show the gains associated

with the roll, pitch, and yaw angular rate states while Figures 7-10 are

the gains with respect to the pendulum relative angular velocity and

position states.

The linear feedback control law simulated requires that the entire

state vector be measured. Measurement of the fluid relative angular

velocity and position would be impossible. Techniques of estimating

states have been developed with the Kalman-Bucy filter being very

popular. A controller that would neither have to measure or estimate tie

pendulum (fluid) states would be the most practical to implement.

Simulation of a reduced order controller consisting of only main body

fixed angular rates and attitude measurements showed virtually identical

identical response to the system with the entire state vector measued.
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The assumption that the mass of the fluid remains constant as fluid

is expelled for spacecraft control was also checked, i.e. robustness. A

control law was computed for seventy percent full fluid tanks and the

nonlinear response of the system with ninety percent full fluid tanks was

computed. Figures 11-13 show the body fixed angular rates, orientation

angles, and thrust forces, respectively. The only state variables which

were assumed measureable were the main body fixed angular rates and

attitude parameters. The simulation shows that the control law in

equation 15, using a reduced order controller, can stabilize the vehicle.

A pointing maneuver was also simulated by applying the reduced

order controller to orient the spinning vehicle so that the pitch angle was

ten degrees while maintaining the yaw angle near zero. Figures 14 and 15

show the body fixed angular rates and orientation angles which indicate

the final desired orientation is approached. Figures 16 and 17 show the

thrust and command forces required to perform the maneuver. The

command forces correspond to components vi and v2 of the v(t) vector in

equation 7.

i m mu n m nluuu / i immlnm 1,1i 8



Conclusions

This study has shown that the dynamic instability caused by

sloshing fluid stores carried in the main rigid body of a spacecraft may be

controlled by use of a linear optimal feedback control system with the

fluid modeled as an equivalent spherical pendulum and only the first mode

of fluid oscillation included.

The control system presented here uses easily measured state

variables (only main body fixed angular rates and attitude) and was shown

I to be stable for a wide variation in fluid level. It was shown that sensing

the dynamic state of the fluid was not necessary for this specific

spacecraft under study. A pointing maneuver was also successfully

accomplished by this control system.
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Appendix A

The equations of motion may be written as,

'. 1 Y.-  i 1: [-M, U0+ (3j -3)) u0i + (3k -3))] I'k 2()fr j

1=1 k-1i-1l Ykfor-1 for k>3~1
n 3

+ , _[-M U(i + (3j-3)) Bi] + Ci + [-RF] = 0 for j=1 ,...,3.
1.1 i=1

5 3 I Yk for k <= 3

Y [-rI u(i + (3j-3)) U(i + (3k- 3))] ' - for k > 3
k.1 i-1 LYk +2(11) for k >3

n 3
+ , ,[-MI u0i + (3j - 3)) Bj] - Df Y3 + 2n - 1- Da, Y3 + 2n = 0 for j=4,5 and I1.. n

I=1 i-i

The equations relating the main body angular rates to the Euler
parameiers are given by,

E 1 [E 4 C01 - £3 02 + £2 0)3]
2

E2= 1 [E3 )1 + E4 (02 - El C)3]
2

r.3 = ![- C2 0I + El (02 + E4 03]
2

E4 - - 1 C)' - E9 ( - E3 (0]

The coefficients and parameters in the equations of motion are defined as,

B, = (Ii(o3 + ai1)csq - 1ci) L3 - (fP(coisnol - 0)2csao)) L2

+ a)j,0)2r 2 - rl(4 + G ) + O)'IoL3 r3

+ ((WI + P1jcs(j)(co) + 13Isnal) L2 - (((2 + D3sncL;) 2 + ((03 + l)2 ) L1

+ (w + j3ICSCQ)(r" + (XI) L3

B2 = (01()1 snol - o2cSCoI) L1 - (Pu(-)3 - al)snal + al0)2) L3

- w20"3 r3 - r2(c02 + (i) + io2r,

l;l .



* (((02 + P3snoi)(o. + a,) L3 - + I3cscz) 2 + ( aon + ci)2 ) L2

+ (wl + 13csai)(o2 + P3snal) L1

B3 = (01(-" - aI)snal + a*1)2) L2 - (P3(oI + &aI)cSa - &ijl) L1

+ 0)&"r - r3(o)2 + ) + o)2"r2

+ ((cot + 3OCSaO)(coM + a1) L1 - (((o, + OIcsC4) 2 + (o02 + J3lsnl)2) L3

+ (o2 + 13sna.)((03 +i,) L2

C1 = (12- 13)(02C03

C2 = (13- 1)O1

C3 = (11 - 12)C01C02

DI = Damping coefficient wrt 03 angle = 0.35 ft-lbf-sec for j=4 and 1=1 ,..., n
=0 j<>4

Da, = Damping coefficient wrt a angle = 0.35 ft-bf-sec for j=5 and 1=1 ,...,n
=0 j<>5

Fi = Control thrust for j=1 ,3
=0 j=2

11,13 = Transverse axis inertia = 19513 Ibm-ft 2

12 = Roll axis inertia - 10240 Ibm-ft 2

L = Pendulum length - 7.2 inches

L = -Lsnozacsl31  for 1=1 ... ,n

L2 = Lcsajcs3 1  for 1=1,..,n

L3 = LsnL3 for 1=1,.,.,n

B13



m,= Pendulum mass = 5 Ibm for 1=1 ,...,n

n =Number of pendulums = 2

=i -8cs((ff-)(1-1) inches
2 for 1=1,...,n

r2 25 inches

r3 1 8sn((-)(1-1) inchesfol1,.n

R =Thruster moment arm =6 ft

=l 0

U2 =-(r 3 + 1-3)

U3 =r 2 + L

U4 =r 3 + L3

U5 =0

U6 -(r, + LI)

U7 =-(r 2 + 1-2)

u8 =r, + L

ujo = L-3snai

ui11 = -L3CSaXI

U12 = L2CScX1 - Lisna1l

U13 = --

U14 = L

U15 = 0

The state variables for numerical solution of the equations are defined as,



Y1 = Angular velocity of main body along bi direction wrt
main body fixed frame =

Y2 = Angular velocity of main body along b2 direction wrt
main body fixed frame = W2

Y3 = Angular velocity of main body along b3 direction wrt
main body fixed frame = W3

Y4 = Angular velocity component of pendulum about 13i degree =
of freedom relating the pendulum relative angular velocity
wrt the main body fixed frame

Y5 = Angular velocity component of pendulum about al degree = &
of freedom relating the pendulum relative angular velocity
wrt the main body fixed frame

Y3 . 2n -1 = Pn

Y3 +2n = Un

Y4+2n = Angular position component of pendulum about 31 degree = Pi
of freedom relating the pendulum position wrt the main
body fixed frame

Y5+2n = Angular position component of pendulum about al degree = oq

of freedom relating the pendulum position wrt the main
body fixed frame

Y2 + 4n =

Y3+4n = Cn

Y4 +4n Euler parameter 1 relating orientation of main body =

fixed frame to inertial frame

Y5+4n Euler parameter 2 relating orientation of main body = C2

B15



fixed frame to inertial frame

Y6+4n Euler parameter 3 relating orientation of main body = C3

fixed frame to ;Mertial frame

Y 7 4n Euler parameter 4 relating orientation of main body = C4

fixed frame to inertial frame
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hI (Yaw)

a' Fig. 1
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A TEST FIG TO SIMULATE LIQUID SLOSHING

3 IN SPIN-STABILIZED SATELLITES -- PART I: DESIGN AND INSTRUMENTATION

I
D. R. Flugrad
M. D. Anderson
D. S. Cowles

Iowa State University
Ames, IowaI

i ABSTRACT

i Several communication satellites with liquid stores on board have experienced

an undesirable coning motion when boosted into a geosynchronous orbit about

the earth. These spin-stabilized satellites carry tanks filled with liquid

for station tending and attitude adjustment of the spinning structure. If a

significant amount is used to eliminate an initial nutational motion, the

i useful life of the satellite is correspondingly decreased. On the other hand,

sloshing of the liquid is believed to be the cause of the problem. A test rig

3 was built to study the interaction between the rotating body and the sloshing

iiquid. The design and instrumentation of the rig is described in this paper

with experimental results presented in the companion paper, Part II. rhe

3 spinning assembly, which is mounted atop a universal joint to allow coning,

includes two liquid-filled tanks. Instrumentation monitors the spin speed of

3 the rig, the rigid body orientation of the assembly, and the motion of the

liquid.

I
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INTRODUCTION

Launchings of several of the STAR 48 communications satellites from the

space shuttle have resulted in an unstable, nutating motion of the satellite.

Flight data from roll, pitch, and yaw axis rate gyros have indicated a

constant frequency, equal amplitude, sinusoidal oscillation of the spacecraft

about its pitch and yaw axes. The pitch and yaw oscillations have been 900

out of phase. The vector combination of these two components of vibration are

consistent with a coning motion of Iiie satellite spin axis. This nutation

occurs even though the spacecraft is spin-stabilized at launch with a one

revolution per second roll velocity.

After launch from the shuttle in the perigee phase of its orbit, the

satellite's power assist module (PAM) is fired to establish a geosynchronous

earth orbit. At first it was theorized that the axial thrust gives rise to

the coning motion which predominates after PAM motor burnout. Combustion

instabilities in the P..M rocket motor were thought to be the source of a side

force that could induce the coning motion (1]. But an investigation performed

at Arnold Engineering Development Center's Engine Test Facility indicated that

no significant forces at the required frequency (one-half cycle per second)

were present. Therefore, it was concluded that combustion instabilities were

not the source of moments about the principal axes of the spacecraft causing

coning motion.

It was then proposed that the sloshing motion of the liquid fiel stores

in the vehicle was the mechanism for inducing the nutational motion. If a

perfectly rigid body spins about its axis of maximum moment of inertia or

about its axis of minimum mometit of inertia with no external forces acting on

the body, then the resulting motion is stable 121. If, however, there is an,;
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internal energy dissipation, then the only stable spin is about the axis of

maximum moment of inertia. This axis provides a minimum rotational energy

state for a given constant angular momentum. Spin about the intermediate axis

of inertia is an unstable motion.

Although spin-stabilization of a body about its axis of maximum moment of

inertia produces a stable spin, this is subject to some constraints with

regard to the design of flexible spacecraft with liquid-filled tanks. Agrawal

[3] presented stability conditions for a flexible spinning spacecraft by a

Liapunov method. Various techniques have been developed to determine the

effects of liquid propellant motion on the spacecraft's moments of inertia.

The stability conditions require that the spin to transverse moment of inertia

ratio be greater than (1+C), where C is a positive definite function of

spacecraft parameters, such as propellant density, tank size and location

relative to the spacecraft center of mass, and spacecraft inertias.

The STAR 48, and many other spacecraft, are prolate spinners --

spin-stabilized about their axes of minimum moment of inertia. This is the

maximum energy state for a given angular momentum. Therefore, if there is any

internal dissipation of energy, the spacecraft will attempt to conserve its

angular momentum, and it will begin to reorient its spin about an axis

associated with a lower energy state. This is commonly referred to as

"coning" since the spin axis generates a cone with its vertex located at the

center of mass of the spacecraft. If this coning motion is not controlled,

the spacecraft will eventually enter a flat spin--a spin about the axis of

maximum moment of inertia (the minimum energy state for a given angular

momentum). Since the STAR 48 and many other spacecraft contain a large liquid

propellant mass fraction, it seems probable to consider sloshing fluid stores

as a major source of internal kinetic energy dissipation, hence a mechanism
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for the destabilization of a prolate spinner.

Many investigators have studied the basic characteristics associated with

sloshing liquids. This has formed a basis for researchers interested in the

sloshing effect on space vehicle dynamics. The motion of a spinning

spacecraft with liquid propellant is described by very complex mathematical

equations for the rigid spacecraft dynamics and partial differential equations

for the liquid in the tanks, including appropriate initial and boundary

conditions.

In order to simplify fluid slosh studies, researchers have sought a

mechanical model to represent the fundamental mode of fluid slosh. Sumner [41

conducted an experimental investigation to determine the general liquid

sloshing characteristics (fundamental frequencies, horizontal or side slosh

forces, and damping ratios) as well as quantities for a pendulum analogy that

would effectively represent the fundamental mode of liquid sloshing in

unbaffled oblate-spheroid and spherical tanks over a range of liquid depths.

Although the fundamental slosh damping was measured by the log decrement

method, the pendulum model he used didn't allow for any viscous damping.

Hill [11 coupled the pendulum model of Sumner [41 to a set of nonlinear

ordinary differential equations for the rigid spacecraft dynamics and

simulated the system on a digital computer. The pendulum model was also

augmented by adding viscous dashpots to represent the viscous damping of the

fundamental slosh mode. Results were compared to actual telemetered flight

data with good correlation. A control scheme was presented and implemented in

the simulation, also with good results.

Zedd and Dodge [51 devised a mechanical model composed of a pendulum, a

rotor, and viscous dashpots. The pendulum represented the free surface modes

of oscillation (sloshing) and the rotor represented the inertial wave modes of
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oscillation--circulatory or to-and-fro motions in the liquid interior. In

this model the rotor was connected to the tank by a dashpot to simulate the

forcing of inertial waves by the boundary layer shear at the tank wall. Other

dashpots were used to simulate the viscous damping of the fundamental and

inertial modes of fluid oscillation. The model was used to simulate liquid

forces and moments; to predict liquid resonances and energy dissipation rates;

and to scale-up test results to flight conditions. A forced-nmotion spin table

was used to estimate the numerical values for the model parameters.

Using the principles of similitude, Garg, Furumoto, and Vanyo [6)

directly scaled test data from a forced motion test apparatus to predict

energy dissipation rates. Results were compared to previous drop test data

and to actual flight data.

This present study involves the design and instrumentation of a physical

test rig to demonstrate the dynamic characteristics of a spin-stabilized

system with Sloshing liquid stores. A vertical spin axis was chosen for a

horizontal beam that supports two six inch diameter plastic spheres located at

an equal radial distance from the spin axis. A two degree-of-freedom Hooke's

type universal joint was loc.ted just below the horizontal beam in the

vertical shaft to allow the spin axis of the beam structure to cone. A yoked

sleeve, actuated by a straight-line motion four-bar mechanism, was utilized to

cover the universal joint to give initial stability and rigidity to the system

during spin-up.

The initial design configuration resulted in a spin about the axis of

intermediate moment of inertia. This was a very unstable mode of operation.

The second configuration involved the addition of another crossbar,

perpendicular to the main horizontal beam, to act as an inertial

counterbalance. This -esulted in a spin about the axis of maximum moment of
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inertia. This system configuration was very stable and any perturbation to

induce coning quickly disappeared (within 2-3 seconds). The third

configuration, attained after considerable design modification, allowed spin

about the axis of minimum moment of inertia. This proved to be unstable.

Also described in this paper are the transducers and instrumentation

system used to monitor the motions of the rotating structure and the sloshing

liquid. It was decided that the most important factors to observe were the

driving spin rate, the oscillations of the spinning test rig assembly, and the

liquid motion in the spheres. A computer based data acquisition system was

employed to rapidly record data and to perform quantitative analysis of large

data files. The test rig was redesigned to incorporate the instrumentation.

Simultaneously, the rig was modified so the weight could be redistributed to

achieve a static balance condition with the center of mass located near or

slightly below the supporting joint.

TEST RIG DESIGN

The test rig design had to allow modification of most major dimensions to

allow testing of various sizes of tanks and geometric configurations. It was

decided that a minimum of instrumentation would be implemented until the

operation of the system was better understood and decisions could be made

about which parameters to instrument.

A physical system was designed, consisting of a vertical spin shaft with

a horizontal crossbar. Figs. 1 and 2 show assembly views of the test rig

design. Two plastic spheres were supported by the horizontal bar at equal

radial distances from the vertical spin axis. A two degree-of-freedom Hooke's

type universal joint was located just belnw the horizontal beam in the
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vertical shaft to allow the spin axis of the horizontal beam structure to

cone. A yoked sleeve, hand-actuated by a straight-line motion four-bar

mechanism was utilized to cover the universal joint to give initial stability

and rigidity to the system during spin-up. A 1/4 hp electric d.c. motor was

selected to drive the system.

Six inch diameter spheres were used. A fill height of approximately 3.9

inches produced a beam load on each end of about five pounds. The length of

the steel horizontal beam for the first design was 27.32 inches. It was 0.625

inches wide, and 0.25 inches thick. The overall crossbar length was 54.64

inches.

A 10:1 right angle gear reducer was inserted between the motor and

vertical drive shaft to utilize the more efficient upper speed range of the

motor. Since the STAR 48 satellites are spin-stabilized at one revolution per

second, this was chosen as the nominal operating speed, although speeds up

to three times this were possible with the motor and gear reducer system.

Test Rig Operation and Analysis

Operation of the initial design of the completed test rig, as shown in

Fig. 3, resulted in a very unstable motion. As soon as the supporting sleeve

was lowered, the upper assembly would instantly drop over, rotating about an

axis parallel to the main horizontal beam.

An analysis of the system inertias indicated that the spin axis was the

axis of intermediate inertia. The transverse inertias were 0.02 and 2.37

2 2slug-ft , and the inertia about the spin axis was 2.36 slug-ft . From

Greenwood (21, spin of a torque-free, rigid body about its axis of

intermediate moment of inertia is an unstable motion. Although the test rig

is not absolutely rigid, it is assumed to be nearly so, and it is further
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assumed to be torque-free since the system center of mass is approximately

located at the intersection of the universal joint axes.

For the second design configuration a shorter main support beam of 35.2

inches was chosen (compared to 54.6 inches for the initial design). A 54.6

inch inertial counterbalance beam was added normal to the main beam to produce

a maximum moment of inertia about the spin axis. The inertias were 0.13 and

2.38 slug-ft2 about the transverse axes and 2.46 slug-ft 2 about the spin axis.

Operation of the second configuration pictured in Fig. 4 proved to be

very stable. Any perturbation disappeared within one or two seconds. It was

impossible to determine visually whether or not any significant fluid slosh

was present and whether or not there was any interaction between the fluid and

the physical structure.

It was decided that a spin about the minimum axis of inertia--a spin that

is stable only if there is no internal energy dissipation--would best

demonstrate the destabilizing effects of sloshing liquid fuel on a

spin-stabilized vehicle.

Test Rig Modifications

The major change in the rig structure to allow for instrumentation of

additional configurations involved lengthening the main vertical shaft by 15

inches Lu provide additional clearance between the universal joint and the

bearing supports. This clearance allowed the spheres to be mounted low enough

to place the center of mass at or below the universal joint, even when the

assembly was spun about an axis of minimum moment of inertia. Decreasing the

radial distance from the main shaft to the sphere centers while raising the

cross-beams higher above the universal joint provided the key to achieving

spin about the minimum axis of inertia. The only other obvious way to produre
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a spin about the minimum axis of inertia would have required a substantial

addition of weight concentrated near the spin axis. The new design allowed

investigation of a wide variety of inertia ratios both greater than and less

than one by changing cross beams or by raising and lowering the spheres.

A new upper collar was designed to restrict the cone angle and to prevent

damage to the unit under unstable operating conditions while providing the

ability to restabilize the rig during spin. This can be seen in Fig. 5. The

collar is free to slide vertically along the length of the spinning shaft and

allows the operator to stabilize the rig while bringing it up to speed. The

top of the collar has an oversized inner diameter to restrict the half-cone

angle to a maximum of 100. If the collar didn't have this feature, the

nutational motion could produce an interference between the lower shaft and

spheres. The oversized diameter affords clearance necessary for the universal

joint to pivot within the collar, and it contacts the shaft about one inch

above the pivot to allow sufficient leverage to restabilize the rig.

Providing a -!xed reference on which to mount the rotational

potentiometers, while maintaining the features of the collar described above,

proved to be a significant instrumentation challenge. It was determined that

the upper collar could be slotted to allow it to slide vertically with the

potentiometer mounting pins extending through the slots. The potentiometers

were mounted on two threaded rods which pass through the lower shaft to

provide a rigid reference. A small brass tube was placed around the

protruding threads to provide a bearing surface between the rods and the slots

in the upper collar. The two sets of threaded rods together maintain

alignment and reduce binding of the collar.

The slip rings were mounted below the collar arrangement on the lower

shaft. Therefore, the redesign required machining a groove in the lower shaft
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to allow the instrumentation wires to pass through the inside of the shaft to

avoid contact with the fork of the linkage. Because the upper collar was

already restrained from rotating relative to the shaft, it seemed logical to

slot the collar and pass the wires through the slot. The wires exit the lower

shaft in an intermediate collar section to avoid disturbing the natural motion

of the rig.

INSTRUMENTATION

Instrumentation was developed to study the effects of liquid motion on

the test rig dynamics. It was anticipated that the important quantities would

be liquid position, test rig rotation rate and orientation. One obstacle to

instrumentation was the collection of transducer signals from the rotating

assembly. Slip rings were chosen based on cost and anticipated ease of use.

It was decided to track the position of the liquid by monitoring the free

surface profile. A d.c. tachometer was chosen to sense the input rotational

speed. The rig orientation was monitored with two rotational potentiometers

used to sense rotation of the test rig about perpendicular axes through the

universal joint. The tachometer and potentiometers were sufficient to allow

comparison of experimental data with satellite parameters from the literature

such as half-cone angle, precession rate and relative spin rate. A computer

data acquisition system was utilized because of its analysis capability and

its ability to handle large quantities of data.

Slip Ring Selection

Transmission of transducer signals from the totating structure to a

stationary data recording system was an important objective in the
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instrumentation of the satellite test rig. Slip rings were selected over

alternatives such as telemetry based on cost, anticipated reliability, and

simplicity of use. A through ring design was chosen to mount on the supported

portion of the lower shaft. After selection of all transducers, a slip ring

assembly was picked based on satisfactory noise level, current capacity, and

an acceptable design suited to the work envelope provided by the test rig.

A fourteen ring assembly was chosen to supply 10 volt d.c. power to the

sensors and to receive up to ten signals. An external brush block design was

specified based on its ample performance soecifications at reasonable cost.

This slip ring set was used to receive readings from two rotational

potentiometers and six light sensitive photopotentiometers. The signals were

of sufficient magnitude so that any noise associated with the slip rings was

negligible. The assembly has additional capacity to handle future addition of

strain gauges on the rotating structure. Amplification of the strain gauge

bridge signal prior to transmission through the rings is expected to produce

satisfactory results.

Measurement of Tilt, Nutation and Precession

The important parameters for tracking the rig orientation include the

tilt angle from vertical (the half-cone angle), the nutation rate (the time

rate of change of the half-cone angle), and the precession rate. The

precession rate is specified as the angular velocity of the main axis of the

spinning test rig about a ground fixed vertical axis. To determine these

quantities, the instrumentation was designed to sense rotations about the a:<is

of each pin of the universal joint. This approach provided information abolt

the rig orientation relative to the lo''er inpit shaft.

Two inexpensive rotational potentiometers were selected fot this task. A
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light weight spring was designed to overcome the friction of the rotational

potentiometer and maintain tension on the pulley string. Thirty pound

inonofilament fishing line was selected over a variety of other possibilities

for resisting stretch, and for closely conforming to the pulley radius with

little tension.

During the design phase, it was anticipated that each of the rotational

potentiometers would be insensitive to rotation about the axis on which it was

mounted. Hov-ver, trial calibrations showed that this was not the case. One

cause was found to be a slight misalignment betueen the beams of the test rig

and the axes of the potentiometers. Because of the complexity of the

geometry, it was decided that the nonlinear equations describing the system

with its misalignment should be developed and solved rather than have the

parts remachined. The orientation of the rig at any time can be determined by

first rotating through an angle, X3 , about the vertical k2-axis; by then

rotating about the 32'-axis through an angle \1; and finally by rotating

through an angle "2 about the 14-axis. This sequence is illustrated in Fig.

6. The equations that describe the system are a combination of six equations

from two vector loops and four equations relating the extension of the pulley

strings and the rotation of the potentiometers. Development of the equations

is prespntcd in the appendix. The construction error of the rig associated

with the misalignment of the cross beams was determined by using a computer

program to first solve for a theoretical rotational potentiometer position for

known rig rotations. Voltage readings were experimentally determined at

positions located by measuring the tilt of the cross bats with a carpenter's

level and adjustable triangle. The theoretical voltages were determined by

interpolating between the experimental voltages coL-Lesponding to .8 and -

of rotation about each axis foi the theoretical potentiomieter positions.
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Construction angle, '3 , was then determined as the value that minimized tne

sum of the absolute differences between the experimental and calculated

voltages.

To ensure accuracy of the data, it was decided that the calibration

procedure should be carried out before and after each set of trials. After

initial practice to gain familiarity with the system, this procedure proved

quite workable.

Once the set of fourteen nonlinear equations describing the geometry of

the rig and potentiometer were solved, the two axis rotations were used to

derive more information regarding the motion. For instance, the two rotations

alone were used to solve for the half-cone angle and nutation rate. In

addition, the projection of a vertical, body-fixed unit vector was located in

a horizontal plane fixed to rotate with the input shaft. Furthermore, once

the rig input speed was known, the precession rate was determined relative to

a stationary reference frame.

Input Speod Measurement

Measurement of the driving rig speed is important because of the

associated centrifugal acceleration. Furthermore, the input speed is used in

the determination of the precession rate as discussed previously. A d.c.

tachometer that produces a voltage proportional to rotational speed waz used

to provide a continuous reading of the instantaneous angular velocity.

For greater sensitivity, this tachometer was mounted on the high side of

the 10:1 gear reducer that drives the rig. For calibration, the HP-85 data

collection computer was used to average 15 voltage readings at each of se-eLal

spin speeds. Simultaneously, the rig roiritonz vmro visiall: ,-inted for a

period ranging from 45 to 60 seconds to dr"ie thc aerag- Lo(ation rate.
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This calibration was completed just once for the entire set of runs. The

performance of the tachometer was characterized by a linear least squares fit

technique.

Sensing The Liquid Sloshing Motion

The decision was made to instrument both spheres for liquid movement to

allow determination of any interaction between the sloshing liquid on the two

sides. It was assumed that the water would not break away from the free

liquid surface. A photosensitive device which could give quantitative output

based on light blockage by the moving liquid surface seemed ideal.

A light sensitive photopotentiometer was located with a working range of

3.4 inches. The operation of this device is similar to common wirewound

potentiometers with the exception that the resistance and hence the voltage

output is proportional to both intensity of in-ident light and sL,,.or area

expos-d t- light. The device was tested with various dyes introduced into the

water in the spheres to block the transmission of light through the liquid.

Blue dye #2 was selected for its high opacity. Yet it is highly soluble in

water which prevents permanent discoloration of the spheres. Plans called for

six photopotentiometers--two sensors on each sphere to measure oscillations in

a radial direction and a third sensor mounted on each sphere to measure

oscillations in the circumferential direction. See Fig. 7 for mounting

locations.

The two radial sensing photopotentiometers were mounted at a 450 tilt

angle based on estimates of the water position for half-filled spheres at

expected spin speeds. The circumferential ;ensor was mounted perpendicul,i1 to

the 450 tilt for maximum sensitii r. . the photpnrentio th ter- ale

rigid, they were encased in Leceptarl,- , nscure that their output v.,ould
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depend only on light passing through the sphere. The current design of the

structre holding the spheres doesn't allow for easy repositioning of these

sensors. Thus, both radial sensors were nominally located for runs made with

the spheres half filled. In the case of one-quarter volume fill, the lower

inside sensor was inactive because it was uncovered at most experimental run

speeds. Similarly, only one sensor was active at three-quarter fill since the

upper, outside senso: was comp'etely covered foL this case.

During initial test runs the photopotentiometers exhibited erratic output

with variations of nearly one volt. Similar variations were encountered even

with the collar restraining the rig from nutating. The primary root of the

problem was determined to be the uneven lighting provided by parallel rows of

fluorescent lights in the laboratory. The variation in output was greatly

reduced by repositioning the test rig midway between parallel rows of lights

and by constructing a large six foot diameter "lampshade" from translucent

material. With the shade in place over the rig, the signal noise measured

during steady rotation was found to lie between 0.10 and 0.15 volts. Although

not perfect, this level of noise was relatively small compared to the expected

output signal.

Initially the photopotentiometets were calibrated statically to relate

voltage output to an equivalent water angle. This calibration assumed that

the liquid surface would remain flat and that tilting the sphere stgtically to

a hnown angle would produce the same output as the water being spun outward

during operation of the test rig. Reduced experimental data shoved liquid

oscillations of roughly 1C0-15 ° . The data indicate, ri7ghlv the cPme

magnitlide of radial slosh from the rad ial -mfo3Q on ea.-;i :h ,. i the

'i ffetencoe bertv een zhe a ,5IwP2~ .iat-

ea-h individual spheri oac to' v [aI&e ,,

U (.!)



So that the sensors would better agree, Cie static calibration was

replaced by a dynamic calibration technique using the HP-85 computer. this

procedure related the voltage output of the photopotentiometers to an

equivalent pendulum angle with the help of the following expression 141:

tan Yo = g/2 (Xo + cos yo) (1)

In Eq. (1)

yo0 = the angle between a horizontal reference and the

equivalent pendulum arm

g = gravitational acceleration

Q = the drive spin rate

X = the radial distance from shaft center to the pivot0

of the equivalent pendulum

The computer was used to average ten readings of each photopotentiometer while

the spin speed was determined by the tachometer. A calibration curve of

calculated angle vs. voltage output was developed by a polynomial curve

fitting routine. The results of this calibration showed good agreement

between the radial sensors on each respective sphere. However, the output of

the lower inside sensor was slightly clipped when the liquid sloshed outward

from the center. It is believed that this phenomenon was observed because the

outer sensor saw the liq,,id advancing toward a previously clean portion of the

sphere surface, while [he inner sensor dete'ted a sheetino actinn of the

terreating liquid. Because tha radi J1 11:in r rijO t nPO t rM "-OL

mui nted at a 450 angle, the outplt tfr) tli half tiiii ct h e ibired a ! %I
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linear relationship between tilt angle and voltage. The calibration curves

for both one-quarter and three-quarter fill was better described by a cubic

expression.

Data Collection System

The goal of the data acquisition system was to sample all measurements at

a rate at least ten times the signal frequency to accurately record the

quantity. The schematic diagram of the instrumentation and data collection

system is shown in Fig. 8. Based on its ease of use, the Hewlett-Packard

HP-85 computer was used to record up to 200 readings per second. To achieve

this sample rate, the computer was used in the voltmeter complete mode, data

I were taken in binary coded decimal format, and both the filtpr and display

were turned off.

The sample rate used for most runs was approximately 65 zeadings per

second because a compromise had to be made between high sample rate and length

of the data file created. This means each of the nine transducers was sampled

seven times per second. This sample rate proved to be sufficient for most

i runs. For a few cases, such as runs with the spheres empty or runs that were

physically perturbed, the sample rate was doubled to provide sufficient

accuracy. The data were ultimately transferred from the HP-85 computer to a

VAX 11-785 computer system for greater computing and plotting capabilities.

SUMMARY

I The test rig described in this paper makes it possible te d- the

interaction between the dynamics of 2 ! r'nr t'v tre !,"

Spin-stabilized satellite and the soI ni. "er , -f ,nF~na d ,, e .

I
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The rig was designed to allow different crossbeam configurations to be mounted

on the supporting universal joint. In addition, the tanks can be repositioned

vertically to adjust the location of the center of mass of the spinning

assembly.

Instrumentation has been provided to monitor the input speed for the rig,

the angular orientation of the rotating body and the motion of the liquid

contained in the two spherical tanks. Slip rings are used to transfer the

transducer signals from the rotating assembly to an automated computer data

collection system. Additional rings are available to add strain gages to the

system to measure the deflection of the rods on which the tanks are mounted.

The data collected during test runs have been transferred to a VAX 11-785

computer which is used to calculate specific quantities of interest and to

plot the results.

In the companion paper, Part II, several experimental runs are described

in which such things as the inertias, tank fill heights and input speeds were

varied to determine the effects these factors have on the overall stability of

the motion. Many additional test cases are planned for the future.
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APPENDIX

The equations for the rotational potentiometers are based on the

quantities shown in Fig. 6. The rig orientation with cross beams parallel to

the rotational potentiometer shafts can be determined by a rotation 3 about

the R axis, followed by a rotation X1 about the 2 axis and finally by a2 3

rotation X2 about the 14 axis. The rig orientation expressed in coordinates of

the lower shaft is described by the concatenation of the following

transformations:
- I

x 3 - 4 (2)

Y3, =cs '2 Y4 - sin '2 z4

z3= sin '2 y4 + cos '2 z 4

x3 = Cos X, x3  + sin \ z3 (3)

Y3 = 3

Z3 = -sin ' x3 + cos ' z3

x2 = cos -3 x3 sin '3 Y3 (4)

y2 = sin '3 x3 + cos >3 y 3

z2 = 3

A loop closure equation for the rig shaft, cross-beam, pulley string, and the

potentiometer mount dimensions can be written for the x-axis potentiometer as

follows:

z4 + x4 - 52 p - H - V X (5)

'There,

H horizontal distance and direction from !-ler shaft center

to pulley center
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V = vertical distance and direction from potentiometer shaft

to universal joint pins

r = pulley radius directed to tangent pointp

Eq. (5) is then separated into three scalar component equations:
4x
242 - 2x - Hx = 0 

(6)

Y - S - rpcos E) = 0 (7)2 2 2y p 20

4 -S' - (8)2 2 z rpSin 2 + Vx2 = 0

where,

4 4 4
22 , 

2Y2  2Z2 = rig components projected into the

(2) reference frame

S2  = free length of the pulley string

$ S2' = components of $ in (2)

92 = pulley rotation from horizontal to the line

tangent point (positive CW)

An additional required equation can be derived by applying the Pythagorean

theorem to triangle S2s2 r . Neglecting the slight misalignment between r

and the actual pulley string attachment point, the expression may be written as

2 2 2
S2 = S2  + rp (9)

with,

S2= distance from the potentiometer shaft center to the line

attachment point on the test rig beam

If distance 2 is expressed in terms of rig dimensions in the xoyz,-coordinatee

system, then Eq. (9) yields

S )2 4$2' 2 (r _ ( 2 4. H.,)' 10.', ,, 7 ) ) : ! ]~ )
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The quantity $2'2 can be written as the sum of the squares of the components

2 2 2 2
$ S I + S2  + S2 1 (11)

The voltage drop measured for the potentiometer is proportional to the

overall rotation, *2' This rotation is the sum of the rotations due to the

elongation of S2  and the rotation of S2 in space:

2= *2 +"2  (12)

where,

2= total rotation of x-axis potentiometer

'2 = rotation due to elongation of S2

e = potentiometer rotation due to rotation of S2

The rotation, *2, due to elongation is determined from

- S 2 - r =0 (13)$2' 20 rp'P2=

with,

S2o = arbitrary initial length of S

Similarly, the equations for the potentiometer on the y-axis are:
4.

2X1 - x - rcos = 0 (14)

2YI - - H = 0 (15)

4 - Sli - r sin 1 + V = 0 (16)
2y) rp) z

S1 2 4 2 4 2 4 2
- (2X1 ) - (2 Y 1 - H - ( 2Z 1  V V) + (r = 0 17)

S ,22- , , 2 S,2 =0 (18)SI - ix - SI -S z

01- - 0 (19)

S'-S 'r 0 (2 r) )S1 lo rpl

From the above development, Eq7. ,,. (i- -2) ,il. i hI ti hk L
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Ilx' Sly' Slz' S19 S2x' S2y' S2z' S2 e1, 12, *', *2, 1,, and 02 . The

rotational potentiometer voltage drops are utilized to experimentally determine

+1 and *2 . A Newton-Raphson iterative technique can then be used to solve the

equations for the 14 remaining entities. At the start, values are calculated

for an orientation of = \2 = 0 to establish estimates of the unknowns to be

used in initiating the iterative technique. The initial guesses are then

updated to the values from the previous solution for each successive position.

The data reduction was carried out after the data had been transferred Lo the

VAX computer. With the sampling rate used in this stuiy, the scheme has proved

to be quite satisfactory.
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A TEST RIG TO SIMULATE LIQUID SLOSHING

IN SPIN-STABILIZED SATELLITES -- PART II: EXPERIMENTAL RESULTS

I D. R. Flugrad
M. D. Anderson

Iowa State University
Ames, Iowa

I

I ABSTRACT

I Certain spin-stabilized satellites have exhibited an undesirable nutating

motion when transferred to a geosynchronous orbit about the earth. It is

believed that sloshing liquid stores on board the satellite are responsible

3 for the nutation. A test rig was constructed to study the interaction between

the spinning structure and the sloshing liquid. Its desig, dil

3 instrumentation were discussed in the companion paper, Part I. Experimental

results are reported in this paper for spin about minimum and maximum axes of

5 inertia. All runs for spin about an axis of minimum moment of inertia were

found to be unstable and those for spin about an axis of maximum moment of

inertia were stable. Results were generally found to be consistent with the

g findings of other investigators.

I
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INTRODUCTION

Sloshing liquid stores onboard spacecraft have caused stability problems

throughout the brief history of space travel. A rigid body, for example a

rifle bullet, may be spin-stabilized about its axis of minimum moment of

inertia. However, instability has been observed when attempting to

spin-stabilize bodies containing a significant liquid mass fraction such as

the XM761, which is a 155-mm cylindrical shaped artillery projectile [1], the

INTELSAT IV satellite [2], and the STAR 48 communications satellite [3].

The STAR 48 communications satellites have consistently exhibited

nutational motion in flight, despite being spin-stabilized at one revolution

per second. Following launch from the space shuttle, the STAR 48's power

assist module (PAM) is fired to thrust the satellite into a geosynchronous

orbit about the earth. Coning motion about the spin axis predominates

following the PAM motor burnout. Constant frequency, equal amplitude,

sinusoidal oscillations about the pitch and yaw axes have been noted from

flight data sensed by roll, pitch, and yaw axis rate gyros [3]. The liquid

stores within the tanks of the satellite are intended for restabilization and

directional pointing maneuvers.

It was initiaily hypothesizPd that combustion instabilities in the PAM

rocket motor could produce a transverse thrust component which would induce

,he coning motion. The Engine Test Facility personnel at Arnold Engineering

Development Center, Arnold Air Force Station, tested a STAR 48 motor for such

forces [3]. The test stand was instrumented with axial and transverse load

(ells, and it had the ability to spin the PAM motor at nne revolution per

second during firing. The test resulr- disrvnted this theerv since no

significant forces at the required freqiiency (one-half cycle per second) were
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found [3].

Currently, the sloshing motion of the liquid stores is suspected of

causing the unstable coning. Spin about the minimum axis of ine-tia, which is

characteristic of a prolate spinner, corresponds to the maximum energy state,

and spin about the maximum axis of inertia for an oblate spinner corresponds

to the minimum energy state. The damping effect of liquid motion in a

nutating spacecraft tends to reduce the kinetic energy which results in an

increase in the nutational motion of the prolate spinner. If unrestrained,

the satellite will seek a minimum energy state, resulting in spin about the

axis of maximum moment of inertia. This is known as a flat spin.

Several researchers have attempted to model the fluid analytically to

gain insight into the phenomenon of instability with liquid fluid stores

present [4, 5, et al.]. The second order differential equations of motion for

a mechanical analogy such as an equivalent pendulum model are usually selected

over the more direct fluid equations because they are easier to solve in

carrying out a computer simulation.

Sumner [5] conducted an experimental investigation on general

liquid-sloshing characteristics and determined an experimental based pendulum

analogy to tepresent the fundamental mode of liquid sloshing in unbaffled

oblate-spheroidal and spherical tanks. His results were presented in terms of

dimensionless parameters that are generally independent of tank size, imposed

lateral acceleration, and density and viscosity of the containeo iiquid. The

liquid tank was modeled as a combination of a stationary fixed mass and a

fictitious pendulum mass to r4prosent the sloshing liquid. Only the

fundamental mode of liquid sloshing vas simulated since the higher frequency

modes are generally much higher than obser-ed frequencies, and the side forces

produced are small. The pendulum model of liquid sloshing is adequately
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described by the pendulum mass, the pendulum arm length, the maximum angles

through which the pendulum can oscillate, the fixed mass, and the centroid

location of the fixed mass. Additional liquid slosh characteristics

determined by Sumner were the fundamental trequencies, horizontal or side

forces and damping ratios. All tests were performed using water as the

liquid.

Zedd and Dodge 141 developed an equivalent mechanical model consisting of

a pendulum, rotor and viscous dashpot to simulate the liquid motion. They

also built an experimental test rig to create forced nutational motion of

liquid-filled spherical tanks. This was used to measure the energy

dissipation associated with the liquid motion. Their objectives were to

determine all liquid resonant frequencies, and to relate oscillating liquid

forces and moments to spin rate, nutation rate, coning angle and liquid fill

height. In addition, the test results were used to observe and quantify

liquid phenomena that could adversely affect prolate spacecraft under the

control of spin-stabilization. The Zedd and Dodge model can be used to

simulate liquid forces and moments, and to predict liquid slosh resonances and

energy dissipation rates. Results can be scaled-up to actual flight

conditions.

Slabinski [2] studied instability of the INTELSAT IV satellite due to

liquid stores. He was able to supplement ground testing with in-orbit testing

of the INTELSAT IV dual-spin satellite. The work of Slabinski is particularly

relevant to this research because favorable comparisons can be made between

the actual tlight data presented by Slabinski and experimental results to be

presented later in this work. One of the significant findings of Slabinski is

the presence of a liquid slosh frequen-v in orbit that is approximately

one-third of the predicted fundamental frequency based on ground testing.
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Also, he found that products of inertia had a significant effect on stability.

Hill [3) developed a computer simulation to model a spacecraft with

liquid fluid stores through the use of an equivalent spherical pendulum. The

equivalent spherical pendulum models the liquid sloshing by matching the

fundamental slosh modes. A closed loop feedback control law was derived for

earth pointing maneuvers and stability correction of the spacecraft. Hill

also outlined a means of implementing the control scheme.

This paper describes the results of an experimental investigation of the

dynamic moticn of a Lest rig built to simulate the interaction of a satellite

with onboard sloshing fluid stores. Details of the design and instrumentation

of the system were presented in the companion paper by Anderson, Cowles and

Flugrad. The prolate spinner with a minimum inertia spin axis, and the oblate

spinner with rotational motion about the axis of maximum moment of inertia

were both tested, and the results compared with those of other researcbers.

MINIMUM AXIS SPIN

Tests r,,n during the first phase of the investigation involved

configurations spun about the principal axis associated with the minimum

moment of inertia. It is well known from classical dynamics that a perfectly

rigid torque-free body w'l be stable when spun about either the minimum or

maximum axis of inertia, but unstable when rotated about the intermediate axis

of inertia. Because of the liquid in the spheres and the long length of

unsupported rods, the test rig built for this study cannot be considered

rigid. Many researchers working with spin stability have concluded that a

non-rigid body, in the absence of an artive tabilization mechani sm, can oil '

have a stable spin about the maximum ptinc ipal axis. If a non-rigid body is
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spun about the axis of minimum inertia, any internal damping present causes

the system to move towards its minimum energy state, which requires spin about

the maximum axis of inertia.

The previous work of Cowles 161 showed spinning the test rig about the

maximum axis of inertia was indeed very stable with rapid dissipation of any

perturbation imparted to the system.

Experimental Test Conditions

Location of the center of gravity at the center of the universdl joint

was necessary to allow instrumentation for spin about the axis of minimum

inertia. Test runs were made with empty, one-quarter, half and three-quarter

filled spheres by volume. The structure was statically balanced before each

run, and experimental data were collected at constant input speeds between 70

and 100 rpm.

Test runs were made at three different speeds for each fill volume. For

brevity, one run was selected to represent the results, but the parameters for

all minimum inertia spin test runs are listed in Table 1. The inertias were

estimated for the test rig to account for the nominal liquid position.

Large deflections were noted in the rods supporting the liquid spheres

due to centripetal acceleration of the liquid mass. Consequently,

monofilament line was tied betveen the rods on opposite sides of the rig to

restrain the radial deflections of the spheres. The resulting coning motion

exhibited a higher frequency of oscillation when the rods were tied together.

Results for a Specific Test Condition

Figs. 1-7 show experimental data r,-l 1-( t er f fo t t , t li i 2 of Table I.

Fig. 1 chow the osc i Ilat ions ot th- (,t ing asoembl. h()ut the :- and y ax'ea
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in degrees. The collar was dropped at approximately 1.5 seconds, and the

oscillations began immediately. Roughly 12.5 seconds later, the upper shaft

made contact with the lowered collar, ending the oscillatory motion. The

motion of the rig is perhaps best visualized by viewing a plot of the tip of a

unit vector aligned along the center of the upper shaft. The projection of

the tip onto a horizontal plane fixed to rotate with the lower shaft is shown

in Fig. 2. The small diamonds indicate discrete data points. The rig started

in the center and spiraled outward until the upper shaft came to rest on the

collar. Fig. 3 shows the time history of the half-cone angle measured from

vertical and the nutation rate. The nutation rate considered in this study is

defined as the time rate of change of the half-cone angle. The precession

rate, shown in Fig 4, is defined as the time rate of change of the rotational

position of the upper shaft about the vertical axis. These figures together

show that the rig oscillated radially from vertical as it precessed. Thus a

unit vector along the upper shaft traces out an oblong shape when projec"

onto the horizontal plane.

The angle yr' which locates the water surface in a radial plane, is zero

for the static position and is defined to be positive as the water moves

outward from the center shaft. The plot of the equivalent radial water angle

vs. time for the halt-filled case is shown in Fig. 5. The solid line

represents the photopotentiometer located nearest the vertical input shaft on

the inside of the sphere. The dashed line is the data recorded for the

photopotentiometer located farthest from the shaft. It was expected that hnth

devices should record identical signals. Ho,:o'ei . the signal of the

photopotentiometer mounted nearest the shaft did not pr fVtlv match the

signal of the photopotentiometer mniint-d f:li tho-t fi orn rh laff Fig. t,

shovs the opros;te sphere vi i te ;arnmf: 11:(iI ,i n maItin i The conventin,
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for measuring the pendulum angle is such that when the oscillations are in

phase the pendulum angle for one of the spheres decreases as the other

increases. Thus, Figs. 5 and 6 show that the liquid sloshing is in phase.

For half-filled spheres, the radial slosh amplitude is approximately 10-15

deg. The magnitude of the circumferential oscillations recorded is of the

same order of magnitude as the expected noise in the signal as shown in Fig.

7. The circumferential photopotentiometers were calibrated statically, so the

measured angle should be considered on a relative rather than an absolute

basis.

General Results for Minimum Axis Spin

The experimental data for rig oscillations and cone angles for empty,

one-quarter and three-quarter filled spheres appear in Figs. 8-13. Three runs

were made at different spin rates for each fill volume, but only one run speed

is shown at each fill volume for brevity. For all fill heights with spin

about the minimum axis of inertia, the instrumentation recoided oscillations

that increased rapidly .1 restricted by the collar. It took less than 15

seconds to reach the outer motion limit for all test condite-c. Thp

half-cone angle was found to oscillate about an increasing amplitude.

Precession and Relative Spin Rate Analysis

For this research, precession is defined as the angular rotational rate

of the axis of the upper shaft relative to ground about a vertical reference.

When the upper shaft made contact ,ith th, coll ir. the precession rate

inicreased until there ias no relative M-tiirn Letveen tile o11a. vhich va

iotating vith the drive shaft, and th,- ilt- ;haf t pie'-ssi~n rate '

• sualI.y obsered to be ]ovei that h,, , , ['H e'ssicn rat. .

1)8



calculated in terms of the drive spin rate of the body, the body inertias, and

the center of gravity location by the following equation:

+ (1 2 2 - 4(1 cos 0) Wrc)]Y
I t (1)

c t Cos e

Where,

2 = the drive spin rate of the test rig

r = the distance from the universal joint pivot to the rigcg

center of gravity (positive for center of mass above

the pivot)

= the moment of inertia for the spin axis

I- = the moment of inertia for the transverse axis
L

W =the weight of the rig supported by the universal joint

e = the half-cone angle

Since differences were noted in the literature regarding nomenclature of

precession and nutation, the development of Eq. (1) is provided in the

appcndix. Eq. (!) can be simplified by approximating cos e = 1 with no

greater than 1.5% error for all possible cone angles of the rig. This

equation assumes a body symmetrical about the z-axis, a constant input spin

rate, and no torques except that due to gravity. Figs. 14-17 show the

predicted precession rates, from Eq. (1), superimposed on the experimental

data. For all runs, the observed root corresponded to the larger of the tvo

solutions from Eq. (1). It must be noted that for the test rig to be truly

axisymmetric, a different crossbeam would be required for every fill volume

and !-in speed combination. Therefore. a compromise vas decided upon to uczp

crossbeam that provided nea~ly axisymmetric conditions for thtee-quarter

filled spheres. Figs. 14-17 show that thr pe1ic ted pre ession iat baed 0,I

either I or I is nc r the a- rage p- e:,m rate f, t hc test runs. T hX V

predicted precession rates for the erpty and one -quarter filled spheres both
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appear reasonable, even though these two cases have markedly different

transverse inertias.

The literature frequently refers to the relative spin rate, which is

defined as spin rate of the test rig about its upper shaft independent of

precession. It can be calculated based on the weight, center of mass

location, body inertias, and drive spin rate as:

(21 - Is)S + [2212 - 41 Wr cos e}Yt s tcg

21t (2)

The development of Eq. (2) is also presented in the appendix. The predicted

spin rate has been superimposed on the experimental data presented in Figs.

14-17. Both transverse inertias were used, and either choice yields good

results for all runs. The smaller of the two roots of the quadratic of Eq.

(2) was observed for all runs. For all runs made with water in the spheres,

the predicted relative spin rates were near the averege experimental relative

spin rate. Fig. 14 shows a slightly different result since the predicted

relative spin rates are approximately positioned at the extreme values of the

observed relative spin rate. However, this case also had the most dissimilar

transverse inertias. The empty spheres case shown in Fig. 14 was also

slightly different in that the predicted relative spin rates based on the two

different inertias form bounds for the majority of the data.

Analysis of Liquid Slosh for Minimum Axis Spin

It was anticipated that the instablilirv of the test rig .ould be

affected by the sloshing liquid. It ize hpothi:id rhat the force drivi<7

the oscillations vas associated ,,ih 1h- nulati(naI mct , n. The freqoen,-: .

the liquid oscillations -.as de er'in)* V '' ph f ', ,t ter data tI

esult- of hand data red ict in n nn, r ), C e:-poI imentaI liq i.i

7!;<I



slosh frequency at a value much lower than the predicted natural modes based

on the research of Zedd and Dodge [4J or Sumner [5]. The results of fr71uenc,

analysis for all minimum inertia spin runs are presented in Table 2.

Static Frequency Determination

The fundamental frequency of oscillation for the liquid in the test rig

tanks in the static case can be foind by perturbing the tank and timing the

oscillations. Ten oscillations were counted for increased accuracy and three

trials were made at each fill height. The stationary natural frequency of the

six inch diameter tanks was determined to be 2.3 Hz, 2.55 Hz, and 2.65 Hz at

one-quarter, half and three-quarter fill volumes respectively. The natural

frequency of the stationary tank is much greater than the radial or

circumferential liquid oscillations derermined by hand reduction, as shown in

Fig. 18. This obeservation that liquid sloshing occurred during dynamic

testing at a much lower frequency than observed in the stationary tank was not

expected. The work of Slabinski 121, however, agrees with this study as he

found the liquid slosh frequency from dynamic testing on earth and in orbit tc

be roughly one-third of the expected value based on stationary tank resonance.

Sumner's Slosh Frequency Parameter Method

During an experimental test run, the spheres were subjected to an

effective gravity that is the vector sum of the earth gravitational force plus

the force due to centripetal acceleration. The method of Sumner [5], which

relates the spherical tank to an "equivalent cyliindLical tank". was used to

estimate the fundamental slosh frequency for the tank. Sumner has related the

ratio of tank fill height over the tank diampter fo a fundamental frequency

parameter which can be used to estimat- the fundamental frequency for a
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spherical tank. No distinction is made regarding radial or circumferential

modes. The calculations demonstrate that increasing the rotational speed will

cause the fundamental frequency to increase due to gravitational effects.

This can be seen in Table 2.

Analysis of Forced Liquid Oscillations

The variation of the half-cone angle was investigated as a possible

forcing function. The time history of the half-cone angle varied irregularly,

so the cycles were estimated based on the highest peaks. In Figs. 14-17, the

frequency of the water and half-cone angle calculated in cycles/min are in

reasonable agreement for any given input speed and fill height. Slabinski [21

defined i drivin frcquency ratio as roilows:

p= fd/ rz (3)

where

fd is the liquid driving frequency

Wrz is the total rotor spin rate about the bearing axis

of the satellite

For a simple spinner, that is, a spacecraft rotating as a single integral

unit about a principal axis, is determined by the mass properties according

to 121

P II Irz/ t  11I (4)i

Slabinski's liquid driving frequency based on Eqs. (3) and (4) corresponds to

observed coning and liquid oscillations. For the test rig to have equal

transverse inertias would require a unique beam for everv fill height and spin

rate combination. Therefore, practicality suggested a compromise beam that

would yield nearly equal transverse axis inertias for the three-quarter fill

volume. The transverse axis inertias remained close for half filled
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conditions but were markedly different for one-quarter filled spheres, Fig.

19. For half and three-quarter filled volumes, the predicted frequencies were

4 to 35 percent too high as shown in Figs. 20 and 21. The relation of

Slabinski correctly predicted the nonlinear increase in nutational driving

frequency with increased spin rate.

For the one-quarter fill volume case Figs. 19-21 show the experimental

slosh frequencies between the high and low values predicted by Slabinski's

relationship. The wider range of predicted frequencies was due to the greater

difference between the two transverse axis inertias.

By use of the driving frequency parameter, the calculations showed that

the relationship between spin rate and nutational frequency depends on a

product involving the spin rate and inertias of the body. The inertias of the

rig were calculated as accurately as possible. This included an attempt to

account for the liquid mass at a nominal position dependent upon the input

speed. However, the fact that the inertias are actually variable during spin

was not accounted for.

Although the numerical values don't match exactly, the work of Slabinski

correctly predicted a nonlinear relationship between spin rate and liquid

slosh frequency dependent on the inertias of the body. Table 2 shows that the

driving frequency ratio was between 0.3 and 0.9 for all minimum inertia spin

configurations tested. Therefore, to excite the tank resonance would require

a spin rate of at least 190 rpm for the given inertia properties. This speed

could not be achieved with the present test rig design. Based on system

frequency response theory, it is anticipated that violent oscillations of the

test rig would occur if the nutational motion. acting as a forcing function,

were to have the same frequency as the fundamental slosh trequency of the

liquid in the spheres.
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Zedd and Dodge Equivalent Pendulum Method

The third method of determining the fundamental slosh frequency is based

on the pendulum model of Zedd and Dodge [4). The derivation involves summing

moments about the hinge point of the pendulum. These caluculations continued

to exhibit the trend of increased fundamental frequency with increased

rotational speed, as shown in Table 2. At one-quarter fill, the fundamental

frequency of radial slosh was determined to be 2.289 Hz and 2.915 Hz at 82

and 101 rpm respectively.

The test rig was unable to directly excite the fundamental frequency of

the tanks since all the primary observed nutational frequencies were less than

0.5 Hz, and the estimated fundamental frequencies of the liquid were all

greater than 2 Hz. An increase in the drive speed had the general effect of

increasing the nutational frequency, however it also increased the liquid

natural frequency.

Experimental Work of Slabinski

The work of Slabinski based on the INTELSAT IV flight data concurs with

the experimental results of this investigation and also concurs with the

conclusion that the liquid sloshing is excited by the nutational motion.

Under the sponsorship of the International Telecommunications Satellite

Organization, Slabinski [2] found that the nutational frequency for dynamic

testing is about one-third of the liquid slosh fr ,,.ic.y determined by

stationary ground testing., Since ground testing ot .nning systems produced

the same nutation frequencies, he concluded that this does not correspond to a

simple resonance of the liquid. The work described in this study has already

detaileo an observed correlation between nutation and liquid sloshing. in

addition, the slosh frequencies observed during .z-rg ", ,e roughly one-third
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the resonance of the static tank frequencies as shown in Fig. 18. Slabinski

stated that the reason for lower natural frequencies is not understood, but

consideration should be given to possible swirl oscillations of the liquid.

The present instrumentation was not able to detect swirl motion.

MAXIMUM AXIS SPIN

The second area investigated in this research involved spin about an axis

of maximum inertia. Cowles [6] demonstrated that the test rig was very stable

for spin about the axis of maximum inertia and perturbations damped out very

rapidly for this system. This is in good agreement with the work of many

researchers who state that in the absence of an active stabilizing mechanism,

the only stable spin for a body with flexible elements will occur about the

maximum axis of inertia. However, Agrawal [7] developed a more stringent

stability criterion for ncn-rlgid, torque-free spinning bodies. He stated

that the ratio of spin axis inertia to transverse axis inertia must be greater

that (1 + C) for a stable configuration, where C is a positive constant that

depends on certain specific parameters.

The configurations tested in this work had inertia ratios ranging from 1

to 1.5, and the center of mass was located at or below the universal joint.

The important parameters for all maximum inertia spin configurations are shown

in Table 3. The motive behind testing spin to transverse inertia ratios only

slightly greater than one was to determine if a spin about the maximum axis of

inertia could be unstable as suggested by Agrawal. The upper shaft was

shortened, and the spheres were moved farther away from the center drive shaft

to achieve these goals. A maximum inertia rtio of approximatelv.l.4-1.5.

depending on fill height, vas achieved by decreasing the vertical distance
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from the universal joint to the sphere center. By lowering the spheres until

they just cleared the supporting structure, the inertia ratio was deczeased to

approximately unity.

Typical Results for Spin About the Maximum Spin Axis

Figs. 22-28 show experimental results for the half-filled spheres spun

about the maximum axis of inertia. This is analogous to the data presented

for the minimum spin configuration in Figs. 1-7. The conditions for run F

2shown in Figs. 22-28 include Ix = 0.289, I = 0.289, and I = 0.325 slug-ftx y z

The center of gravity was determined to be 2.69 inches below the universal

joint for the input spin rate of 75 rpm counterclockwise. Fig. 22 shows that

after the collar was dropped at roughly 2.5 seconds, the rig immediately

sought a steady orientation. Approximately 6 seconds later, the rig exhibited

only a small oscillatory motion about the steady orientation. In Fig. 23,

which shows the trace of the tip of a unit vector embedded in the upper shaft

projected onto a horizontal plane fixed to spin with the lower shaft, it can

be seen that the rotating assembly was approximating the motion of a rigid

body. That is, there was very little movement of the upper shaft relative to

the lower shaft. The half-cone angle and nutation rate are shown in Fig. 24.

This figure confirms that the rig precesses with the upper shaft slightly off

vertical. The experimental data presented in Fig. 25 show that thc test rig

had almost pure precession since the relative spin rate of the body about the

upper shaft had only small oscillations about zero. The precession rate is

shown to have a small oscillatory component about the driving input spin rate.

The spike in both relative spin rate and precession at roughly 2.5 seconds 'gas

caused by interaction between the upper s-haft and uppei collar uh,- the collar

was lowered. Similar results were observcd when dropping the collar for spin
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about the minimum axis of inertia.

The radial liquid slosh data presented in Fig. 26 and Fig. 27 show small

oscillations about a steady value. Only photopotenLiometers 2 and 5, mounted

farthest from the shaft, produced a clean signal of the radial liquid

oscillations. This was attributed to liquid sheeting and orientation of the

liquid relative to the spheres. The frequencies of the half-cone angle

varitinti and of the liquid slosh in the radial direction were found by hand

reduction of information in Figs. 24 and 26 to be 1.1.2 Hz and 1.lD Hz

respectively. The circumferential liquid slosh was also seen to have nearly

the same frequency as the half-cune frequency and the radial liquid frequency.

Similar agreement between the half-cone and radial and circumferential liquid

slosh modes is presented for all test cases in Table 4.

Stability Analysis for Maximum Axis Spin

The unexpected result noted during spin about the maximum axis of inertia

was that the test rig did not seek a true vertical orientation. The collar

was dropped, and the rig was allowed to seek its equilibrium position before

the data collection began. To verify stability, the rig was struck with a

hammer handle while spinning, and it was observed that the oscillations

rapidly dissipated as the rig returned to its nonvertical equilibrium position

as shown in Figs. 29-31.

The test cases considered were unable to verify the (1 + C) stability

criteriuD suggested by Agrawal. The rig exhibited stable motion for all

inertia ratios and operating speeds attempted. One possible explanation is

the fact that the test rig did not meet the torque-free requirement. To

achieve an inertia ratio of nearly one. h- half-filled spheres were lovered R

inches below the universal joint, moving the center of gravity 2.85 inches
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below the joint for the stationary configuration. Gravitation had a

significant stabilizing effect under these conditions.

Analysi3 of Half-Cone Angle for Maximum Axis Spin

As noted before, when spun about the maximum inertia axis, the rig tilted

to one side and rotated as a rigid body with the lower shaft. It returned to

this position when perturbed for all fill heights, as shown in Figs. 29-31.

When the spin rate was increased, the half-cone angle also increased.

Initially, it was thought that due to friction in the universal joint the rig

might be statically balanced in a vertical position without being dynamically

balanced. The rotational potentiometers were disconnected since they apply a

slight force on the test rig, but the same tilting effect was observed.

Another hypothesis suggested that the center of gravity might not be located

exactly at the center of the shaft with the centripetal acceleration causing

an increased half-cone angle with an increase in speed. The center of mass

can be moved along the y-axis by tightening both rods that support the spheres

on one side of the x-axis. More tests were run with different static balance

points to attempt to create a stable spin with the upper shaft spinning

vertically. Because small tilt angles had little effect, the sphere support

rods were tightened on one side until the static half-cone angle was 10 deg.

Under these conditions at moderate speed, the rig lifted up off the collar,

and the half-cone angle continued to decrease with increased speed up to the

rig limit of approximately 100 rpm.

The fact that the rig would right itself vhen initially unbalanced

triggered further evaluation of the spinning motion. Ultimately, it was

discovered that small products of inet i,i - i ,tl, -xpliin the behivior of the

test rig. Numerical simulation resiilt, .', 7imilai to e:xperimental motions
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when small non-zero products of inertia were introduced.

Precession and Spin Rate Analysis

The results for spin about the axis of maximum moment of inertia show

that the precession rate oscillated about a constant value for all fill

heights. In addition, Fig. 25 illustrates that the spin component of the body

about the upper shaft exhibited a small amplitude oscillation about zero. The

spike apparent in the data several seconds into the run was caused by dropping

the collar. The oscillations were of constant amplitude and did not appear to

damp out. Therefore, the motion can be characterized primarily as precession

with an average relative spin rate of zero. In this case, the rig speed was

nearly identical to the precession rate. This is in sharp contrast with the

minimum inertia spin configuration results which demonstrated both non-zero

precession and relative spin rates.

Analysis of Liquid Slosh for Maximum Axis Spin

The photopotentiometer data from configurations spun about the maximum

axis of inertia were markedly different from the minimum inertia axis spin

case. For stability, it was anticipated that the liquid must act as a rigid

body so there would be no liquid motion relative to the test rig [7]. The

reason for initially holding the restraining collar in the up position for

several seconds was to estimate the magnitude of noise present. For tie case

depicted in Fig. 22, the rotational potientiometer was seen to give a very

clean signal during the collar up portion of the run. The significance of the

photopotentiometer data was almost overlooked because the signal during the

test run was very nearly the same as for the collar up portion as seen in

Fig. 32-35.
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Originally, no liquid oscillations were anticipated for a spin-stabilized

motion. However, small slosh amplitudes were present as observed in Figs.

26-28 and 32-35. For one-quarter and three-quarter filled spheres, there was

only one active radial liquid slosh sensor. Therefore, the radial liquid

slosh results for both spheres are shown on the same graphs of Figs. 32 and

34. There were two active sensors on each sphere at half-filled conditions.

Therefore, the data for each sphere are shown separately in Figs. 26 and 27.

Figs. 32-35 show that the radial liquid oscillations were in phase for all

sphere fill heights.

Frequency Analysis Based on Anticipated Driving Forces

Slabinski [21 related the liquid driving frequency to the spin rate of a

simple spinner as:

= fd/Q = Is/It - 11 (5)

Where fd is the liquid driving frequency. This same relation was used in the

analysis for spin about an axis of minimum moment of inertia. Fur unequal

transverse axis inertias Eq. (5) was used to predict two values based on the

two different inertias. The frequency analysis of the half-cone angle shoved

that the mode with the largest amplitude at all fill heights was consistent

with the liquid driving frequency parameter.

Results and Observations for Maximum Axis Spin Tests

Table 4 shows all experimental half-cone, radial liquid slosh, and

circumferential liquid slosh frequencies as determined by MATRIX , a soft-ware
X

package with FFT capability. In Table 4. 'STATIC NAT. FREO' refers to the

characteristic slosh frequency of the tint- a determined by perturbing the

stationary tank. The quantities 'DYN. CONE'. 'DiN. RADIAL SLOSH', and 'DYN.
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CIRCUM. SLOSH' rcfer to the experimental frequencies detected through the use

of the FFT capability of MATRIX 'SLAB' refers to the driving frequency

parameter of Slabin3ki given by Eq. (5). 'PEND. RADIAL SLOSH' and 'PEND.

CIRCUM SLOSH' refer to the slosh modes predicted by the pendulum model of Zedd

and Dodge. In addition, the precession rate was determined by Eq. (24) of the

appendix. Run designations that include a 'P', such as run 'AP', refer to

cases in which the rotating assembly was physically perturbed by a hammer blow

during testing.

For the perturbed runs tested, the table shows that the driving frequency

of Slabinski was still detected in both liquid slosh modes and the half-cone

angle. All experimental half-cone angle and liquid slosh data exhibited a

major frequency near the value predicted accor'ing to Slabinski [2]. In

addition, the experimental radial and circumferential oscillations showed a

major frequency component ner each mode predicted by the pendulum model of

Zedd and Dodge [4]. Both liquid traces showed a significant frequency near

the value of precession or total spin rate. The exact cause of this frequency

is unknown since both the precession and total spin were spproximately equal

for all maximum inertia spin axis configurations tested.

The frequency analysis indicated that the frequencies associated with

Slabinski, Zedd and Dodge, and the total spin rate or precession are roughly

of the same magnitude for either mode of liquid oscillation. The results for

the minimum inertia spin case differed in that the only significant radial

liquid slosh frequency to be observed was associated with Slabinski. Other

observed modes were of much lower amplitude.

CONCLUSIONS ANPi PFf ':!E:DATTS

Experimental data were in good agreem-nr wirh the prediction of
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precession rate based on the relative spin rate developed in the appendix 14,

8,9j. Instability was observed for all minimum inertia axis spin

configurations tested, despite the fact that those configurations were

statically balanced. The radial liquid slosh frequency observed during

dynamic testing was less than a third of the natural slosh mode anticipated

from ground testing in agreement with actual satellite data [2]. the coning

motion of the test rig appeared to have the effect of a driving frequency,

judging by the agreement between the coning frequency and the radial liquid

slosh.

Experimental investigation of spin about the maximum axis of inertia

revealed stability for all test cases. This study was unsuccessful in

verifying the work of Agrawal [7], which states that the ratio of spin axis

inertia to transverse axis inertia for a torque-free body must be greater than

(1 + C) for stability. This is more stringent than classical rigid body

theory which holds simply that a torque-free body is stable for spin about its

maximum inertia axis. Perhaps the test rig did not adequately meet the

torque-free criterion. Future work should include testing configurations

whose spin axis inertia is slightly maximum with a center of gravity closer to

the center point of the universal joint.

The motion of the maximum axis configuration is nearly pure precession,

as the spin rate of the body about the upper shaft has a very small value

which oscillates about zero. Forced oscillations were identified based on the

liquid driving frequency parameter of Slabinski 12]. This frequency was

present in the time history of the half-rone angle. The natural radial and

circumferential liquid slosh modes were alsn extracted from the

photopotentiometer data.

It was found that small products nf inertia ran ha':e a strong influence
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on the dynamics of the test rig. Products of inertia much smaller than the

body inertias cannot be neglected as they will cause the test rig to spin off

vertical center, and the tilt increases with speed.

There are a number of areas related to this work that should be studied

I further. Among them are the following:

the effect of flexible structural elements of the test rig on

* the dynamic motion.

the effect of products of inertia on the system motion.

3 the time history of the inertia variation due to rig tilt

and liquid motion.

* the effect of forcing frequencies on the natural slosh modes

as input speed, inertia ratios, sphere size, and liquid fill

I fraction are varied.

3 the system stability associated with spin about an axis

having a principal inertia only slightly greater than the

transverse inertias with the center of mass located near

the universal joint.

3 the effect of fluids with different viscosities on the

dynamic motion of the test rig.
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APPENDIX

The literature frequently cites expressions relating precession, total

spin, and relative spin rate, but often the coordinates and quantities used are

not clearly specified. Based on a review of available literature, it was

decided to derive these relationships for the system of Euler angles shown in

Fig. 36. These equations may be derived by solving the moment equations for

the rigid body. The angular rotations associated with the universal joint of

the test rig are not the same as the traditionally defined Euler angles.

Therefore, the position and velocity vector for an equivalent oiieniatiui were

derived in both systems and equated. The result provided expressions for the

precession and relative spin rates in terms of the experimental data.

The orientation of the body in terms of Fig. 36 is described by first

aligning the body with the ground-fixed XYZ coordinates. The body is

then rotated through an angle, *, about the vertical 2-axis. Next the body is

rotated by an angle, (, about the x-axis, and finally, through the angle, *,

about the z -axis. The quantity is known as the precession rate, and the

quantity * is the relative spin rate.

The relative spin and precession rates can be determined by writing the

moment equation about the xyz-axes. The moment equation is of the form [9]:

Mo = (dH /dt) + w c x H (6)

where,

= angular velocity of the xyz-coordinate system

9 = angular momentum vector of the body about o

The components of the angular momentum of the body are given by:

Hx I xw bx - xy W by xz W bz (7)

Hy I y w by yx W bx yzW bz
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Hz = IzW bz I zx bx IzyW by

with,

W b = angular velocity of the body

The angular velocity of the body may be written as

W b =e O + z' +w (8)

It may also be expressed in terms of the xyz-coordinate system by use of the

following expressions:

2 sin O y + cos E z (9)

z =Z (10)

where,

Z,x,y,z = unit vectors

Therefore, it follows that the angular velocity is

b= 6 Ex+ *sin ey+ (* cos e+ f)z (11)

The angular velocity components, w bx' W by' and w bz in the xyz system can

then be obtained by inspection of Eq. (11). If we assume a symmetrical body so

that all products of inertia are zero and Ix = Iy = it, Eqs. (7) become

Hx =ItW bx - It6 (12)

Hy I t W by It4sin e

H = Is w bz I Is(. + - cos E)

where I is the mass moment of inertia about the body-fixed spin axis.S

Therefore,

Hx = Ie (13)

Hy = I( sin e + ' 6 cos E)

H =1 +  cos E- w sin E)

The angular velocity of the xyz-coordinate system is

W = x x + z = e x -,- sin e y O 4 o z

Thus,
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ik
_ sin 8 wcos e

Wc xH 0  1 t I t sin 9 Is( + i cos e)

Expansion of the determinant of Eq. (15) and substitution into Eq. (6)

yields the following moment equations

Mx = It8 - 1t( sin e cos e + is( + P cos e)w sin E

My = 21 t , cos 8 + I t sin 8 - it ( + w cos 8) (16)

Mz = I t ( + w cos e - b b sin 8)

The expressions of Eqs. (16) are the general equations of motion for a

symmetric body in terms of Euler angles. The solution may be simplified by

assuming steady precession due to a constant moment. Then, the only external

moment acting on the body is due to the effect of gravity. This may be

expressed as

r gz x -mgZ (17)

Substitution of Eqs. (9) and (10) into Eq. (17) yields

M H Wr sin 8 (18)x cg

The steady precession rate assumption reduces the number of terms in Eq.

(16) since b = e = 4' = = 0 and M = M = 0. Therefore, equating they z

moment components, one arrives at the following:

M = Wr cgsin 8 = (Is - I )i 2sin e cos G + I * sin e (19)

M = 0 (20)Y

M = 0 (21)z

From Eq. (11), the input spin rate, Q, of the test rig is

2 z = + 4 cos e (22)

Substitution of Eq. (22) into Eq. (19) to eliminate r yields

(I - t)*2cos e + I s (9 - 1P cos E) - Wr = 0 (23)
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Application of the quadratic formula to Eq. (23) produces an expression for ':

I + [Is2 2 - 4(1 tcos e)Wrc ) (24)
21tcos 0

Then, substitution of Eq. (22) into Eq. (19) to eliminate p yields

(I - I -* 2 "cosG -I W 0 (25)
s t) c oss e s cos G cg (

A final application of the quadratic formula to Eq. (25) produces

(21t - Is)Q + (921s2 - 41 tWr cos 0}V (26)

21t

Relative motion of the universal joint of the test rig does not involve

the same angular coordinates as defined for the system of Euler angles shown in

Figs. 36 and 37. The precession and relative spin rates must be expressed in

terms of rig coordinates to apply Eqs. (24) and (26) to the instrumen- tation

data. To accomplish this, the direction and velocity components for an

arbitrary orientation in the Euler and rig coordinate systems are equated.

The angular velocity in terms of the Euler angles was given previously in

Eq. (8). The angular velocity of the system can be transformed to the XYZ

ground fixed coordinate system by

x = cos 4 X + sin P Y (27)

Substitution of Eqs. (14.5) and (14.22) into Eq. (14.3) yields

b = (0 cos 4 + 0 sine sin 4,)X (28)

+ (e sin '- * sin e cos *)Y

+ (~os e+

From Fig. 36 the rig orientation may be expressed in terms of the XYZ ground

fixed coordinates by a sequence of transformations. First, transform the body
, ,

fixed coordinates xoyoz into the x y z system by the folloving expressions:

x = cos 0 x - sin y 0 (29)
o 0
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| z, ,=d I II I+ I a

y sin 0 x0 + cos + Yo

z =z
0

, I I

The x y z -coordinates may then be transformed into the xyz-coordinate system:

x=x (30)

y = cos G y - sin e z

z = sin e y, + cos e z

The XYZ-coordinate system is subsequently expressed in terms of the

xyz-coordinates by

= cos , x - sin 'y (31)

Y = sin ' x + cos y

The orientation of the test rig may now be written in terms of body fixed

coordinates by the concatenation of Eqs. (29-31) as follows:

X= (cos * cos *- cos e sin + sin ',)x (32)

- (cos * sin * + cos e cos 4' sin *)yo

+ sin e sin 4ao

Y = (sin * cos 4' + cos e sin * sin *)x°  (33)

+ (cos e cos ' cos 4 - sin ' sin *)yo

- cos ' sin e z0

sin e sin xo + sin e cos y 0+ cos ez (34)

The operation of the universal joint restricts direct spin about the upper

shaft. Consequently, the instrumentation is set up to measure the coordinates

as shown in Fig. 37. The motion of the actual test rig is fully described by a

rotation through the angle X about the z 2-axis followed by a rotation 11 about

the X2-axis and finally by a rotation X2 about the x3 -axis. The rig position
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and angular velocity will once again be written in terms of the ground fixed

system.

The position of the test rig in the x3y3Z3-coordinates can be written in

terms of the body-fixed x0Y0z0-coordinates as

x -- Xo (35)

Y3 = COS 12 Yo - sin 2 z O

z 3 = sin >2 Yo + cos2

The x3Y3z3-components of Eqs. (35) are transformed to the x2Y2z2-system as

follows:

x2 = cos Y 3 + sin Xlz 3  (36)

Y2 = Y3

z 2 - -sin Xlx 3 + cos \lz3

Then, the x2Y2z2-components of Eqs. (36) are used to express the ground

fixed XYZ-coordinate system vectors as:

= cos X x2 - sin X y2  (37)

Y = sin X x2 + cos X Y2

z = 2

By combining Eqs. (35-37) one can express the position of the rig in the

XYZ-coordinate system by use of

= cos X cos X1 x (38)

+ (cos Xsin 1\sin '2 - sin X cos 2)Yo

" (sin X sin 2 + cos X sin >1cos >2)zo

Y = sin X cos X1x (39)

" (sin X sin \ sin > + cos X cos '2)Y 0

+ (sin X sin >11 cos '\ - cos X sin X2)z,

Z = in Xlx + cos \sin X2 °  cos X1 cos 2 z (40)

From Fig. 21 the angular velocity of the test rig may be written as
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Wb = Q+ yly2 + 2 x 3  (41)

where, 2 = X

It may also be written in terms of the XYZ-coordinate system by use of

Y2 = sin X + cos X Y (42)

X 3 = COS lX 2 - sin Y2

x2 = cos XX + sin X Y

z 2=z

Substitution of Eqs. (42) into Eq. (41) then yields

- (-1 sin X + )2cos >1 cos X)R + (>'cos X + >2cos Xjsin X)Y

+ (2 - X2 sin X9)2 (43)

The quantities X, 1 , and '2 are determined from the instrumentation.

Therefore, the Euler angles may be calculated by equating the components of

Eqs. (32-34) and those of Eqs. (38-40). If a unit vector along the upper shaft

(x° = 0, Yo = 0, z° = 1) is considered, the directional components sim.-p'fy to:

sin Wsin e= sin X sin + cos X sin ' cos X2  (44)

-cov " sin e = sin X sin ,cos '2 - cos X sin >2 (45)

cos e = cos \cos '2  (46)

The cosine of the half-cone angle is given by Eq. (46). The trigonometric

identity, sin 2E + cos 2e = 1, can be used to express the sine of the half-cone

angle as

sin e = fl - (cos X1 cos X2)
2  (47)

Substitution of the expression for sin E into Eqs. (44) and (45) yields

(sin X sin >2 + cos X sin X\Cos X2 ) (48)

si -(Cos Ylcos'2) 2 }/2

(cos X sin N2 - sin X sin N cos X.)>OS 1J (49)
=(1 - (cos \lcosN2) 2 '

/
'
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The expressions of Eqs. (48) and (49) are necessary for calculating the

precession and spin rates. The next step is to equate the components of

angular velocity in Euler coordinates to the coordinates of the rig. Equating

the xyz-components of Eqs. (28) and (43), one finds

e cos * + *sin e sin ),= Xcos X1 cos X- XAsin X (50)

e sin *- * sin e cos 11 \cos X + )2cos \sln e (51)

e cos e + 4 2 - X2sin \ (52)

From Eqs. (50) and (51), it is possible to isolate the unknowns e and 4.

The unknown 4 can be eliminated by multiplying Eq. (50) by cos 4 and Eq.

(51) by sin p. The results are then added together and simplified to

produce

C - cos , (X2 cos X1cos X - X, sin X) (53)

+ sin 4, (X1 cos X + X2 cos X, sin X)

Similarly, the relative spin rate, *, can be found by adding the results after

multiplying Eq. (50) by sin * and Eq. (51) by -cos *, to yield

sin E = sin ', (2cos lCos X - Xsin X) (54)

- cos ' (\Cos X + X2 Cos X1 sin X)

Eq. (54) defines the relative spin rate in terms of quantities available from

experimental data. The relative spin rate must be known before calculating the

precession rate. Substitution of Eq. (46) into Eq. (52)

to eliminate the half-cone angle results in a precession rate given by

= - X2sin ' - * cos \cos >2 (55)

The first derivatives of \1 and X2 may be approximated by the incremental angle

change divided by the time step between data points. The relative spin rate

and precession rates may then be determined from the experimental measurements

of X, >1, and >2
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TABLE 1. Minimum inertia axis spin test conditions

RUN VOL W Ix  Iy Iz  W rcg

frac. RPM slug-ft 2  lbs. ft.

1 .25 100 .339 .290 .209 14.54 .003
2 .50 100 .371 .349 .239 16.32 -.080
3 .75 90 .358 .357 .263 18.09 -.033
4 .75 90 .358 .357 .263 18.09 -.033
5 .75 100 .358 .356 .263 18.09 -.034
6 .0 112 .291 .203 .168 12.62 .156
7 .25 80 .341 .291 .208 14.54 .002
8 .25 90 .340 .290 .208 14.54 .002
9 .50 70 .376 .351 .237 16.32 -.080

10 .50 83 .374 .350 .238 16.32 -.080
11 .75 72 .361 .357 .262 18.09 -.033
12 .0 130 .291 .203 .168 12.62 .156

I

I
I
I
I
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TABLE 3. Maximum inertia axis zpin test conditions

RUN VOL Q II W rcg

ft-ac. RPM slug-ft2  lbs. ft.

A .25 80 .249 .212 .257 13.79 -.733
B .25 118 .217 .211 .258 13.79 -.731
C .25 90 .243 .236 .258 13.79 -.121
D .25 75 .244 .236 .257 13.79 -.122
E .25 80 .249 .212 .257 13.79 -.733
F .50 70 .280 .289 .324 13.88 -.237
GP .50 70 .280 .289 .324 13.88 -.237
H .50 105 .272 .307 .303 15.57 0.194
1 .50 75 .301 .312 .322 13.88 -.274
JP '50 70 .242 .275 .301 15.57 -.-'25
K .50 90 .294 .306 .323 13.88 -.273
L .75 90 .288 .333 .362 15.65 -.253
MP .75 90 .22U .265 .462 15.65 -.063
N .75 50 .292 .333 .358 15.65 -.254
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FIGURE 1. Test rig oscillations.
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lower shaft, minimum inerrfia spin axis.
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FIGURE 5. Radial pendulum oscillations measured by photo-
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COMPUTER SIMULATION OF A TEST RIG TO MODEL

LIQUID SLOSHING IN SPIN-STABILIZED SATELLITES

N D. R. Flugrad
L. A. Obermaier

Iowa State University
Ames, Iowa

I

ABSTRACT

Certain communications satellites carry liquid stores on board for station

tending and attitude adjustment. However, sloshing of the liquid can cause an

undesirable nutational motion of the spin-stabilized vehicle. In previous

work a test rig was designed, built and instrumented to study the interaction

between the rotating structure and liquid. To augment that experimental

project, a computer model of the test rig has been developed to simulate the

dynamic motion of the system for various parameter values. The sloshing

liquid was replaced by a two degree-of-freedom pendulum in the mathematical

model. Simulation results from this software are compared with those obtained

from a general multibody dynamics program and with experimental output

obtained from the test rig.
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INTRODUCTION

Extensive research, both analytical and experimental, has been conducted

on the stability of spacecraft having liquid fuel stores. A rigid body can be

stabilized by spinning about an axis of either maximum or minimum moment of

inertia. Common examples of spin stabilization about an axis of minimum

moment of inertia include a spinning top or a football. However, systems

containing a significant amount of liquid mass, such as the INTELSAT IV [1,21

and the STAR 48 131 communications satellites, as well as the XM761 artillery

projectile [41, have experienced instability when spun about an axis of

minimum moment of inertia. Sloshing of liquid payloads has been suspected of

causing instability of the spin-stabilized bodies.

Viscous dissipation resulting from relative movement between a liquid and

its container tends to reduce the kinetic energy of a system. The body,

attempting to conserve angular momentum, is then forced to seek a lower energy

state. For a given amount of angular momentum, spin about an axis of maximul

moment of inertia represents the minimum energy state possible. If a body

spun about its axis of minimum moment of inertia experiences energy

dissipation, it will seek the lower energy state and will end up spinning

about its axis of maximum moment of inertia if unrestrained. This is known as

a flat spin.

Agrawal (51 states that for a body with flexible elements, the ratio of

the moment of inertia of the spin axis to that of the transverse axis must be

greater than one for stability. Thus, to be stable, a body containing liquid

must be spun about an axis of maximum moment of inertia.

Several launchings of the STAR 48 communications satellites resulted in a

coning motion of the spacecraft. Hill [31 used an equivalent mechanical
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pendulum model, along with a mass representing the main body and rocket motor

to approximate the STAR 48 system. He developed control laws using linearized

equations of motion.

The INTELSAT IV communications satellite also experienced instability

once launched. Slabinski [1) conducted in-orbit testing of the satellite, as

well as a theoretical analysis, to study the sloshing phenomenon inside the

tanks containing liquid propellant. He developed relationships between

driving frequencies and nutation frequencies. Martin [2] experimented with

tanks of liquid propellant on earth. Martin, through his experimental

investigations, found that when a spinning tank is subjected to angular

oscillations about an axis which is not parallel to an axis of symmetry of the

tank, turbulent fluid motion is excited. However, when the tank is

accelerated rectilinearly, the motion of its contents is relatively calm, like

that of a rigid body. Because a sphere is axisymmetric, liquid in a sphere

did not experience the turbulent motion that it did in differently shaped

tanks. In the spherical tanks, the liquid behaved like a pendulous rigid

body.

Many analytical attempts to quantify the movement of liquids in tanks

have used a pendulum analogy. Such an analogy assumes that the liquid inside

the tank moves as a spherical pendulum would under the same conditions.

Sumner [61 developed relations to describe a pendulum representing the liquid

in spherical and oblate spheroidal nonrotating tanks as a function of tank

geometry and fill fraction. The mass of the pendulum is not equal to the mass

of the liquid in the tank. A nonsloshing mass is fixed at approximately the

center of the tank. The sum of the nonslosh mass and the pendulum mass is

equal to the total liquid mass. Sayar and Baumgarten [71 included a

rotational damper and a cubic spring in their pendulum analogy to improve
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Sumner's model in the nonlinear range.

Zedd and Dodge [81 examined the energy dissipated by liquids in rotating

spherical tanks using a pendulum analogy. Their model included a pendulum, a

rotor, and a viscous dashpot. Through this analogy, they developed equations

for natural frequencies of the pendulum as functions of tank location, tank

fill fraction, and the spin rate of the tank.

Cowles [91 built a test rig to model a satellite containing liquid fuel

stores. His model consisted of a motor driven shaft which supported a

semi-rigid assembly. The assembly was connected to the vertical input shaft

by a Hooke's type universal joint. The assembly held two tanks which were

partially filled with water. By altering the location of the tanks and the

dimensions of the assembly, Cowles was able to achieve a variety of test

conditions, including spin about axes of maximum, intermediate, and minimum

moments of inertia. When spun about an axis of maximum moment of inertia, the

assembly was extremely stable, even when perturbed. The assembly, however,

fell immediately into a flat spin when spun about an axis of intermediate

moment of inertia. Though a configuration was designed and built for spin

about an axis of minimum moment of inertia, tests were never completed because

it was felt the assembly might be damaged in a collision with the supporting

structure if it attempted to go into a flat spin.

Anderson [101 redesigned the mechanical assembly built by Cowles.

Anderson's assembly included a restricting collar so that even an unstable

test assembly could not damage itself or the supporting structure. The

redesign included instrumentation in order to acquire quantitative

measurements of the motion of the assembly and the liquid contained in it.

Just as predicted, Anderson found the case of spin about an axis of minimum

moment of inertia to be unstable.
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The work described in this study develops the equations of motion for the

test rig designed and constructed by Cowles and Anderson. Equations of motion

were derived using Lagrange's equations. State variables were chosen to best

match the quantities being measured by Anderson's instrumentation. The

equations of motion were then numerically integrated. Results of the

numerical simulation were compared with those from an existing rigid body

dynamic analysis program to verify the validity of the numerical simulation.

Simulation results were also compared with Anderson's experimental results.

DEVELOPMENT OF EQUATIONS

A schematic drawing of the mechanical system modeled is shown in Fig. 1.

The model contains four rigid bodies. A lower shaft which rotates in pillow

block bearings supports the structure. The upper assembly is connected to the

lower shaft by a Hooke's type universal joint. Two pendula, representing the

sloshing liquid in the tanks, are then symmetrically attached to the upper

assembly by Hooke's type universal joints. The pendula are assumed to be

point masses suspended from the upper assembly by rigid, massless rods. Fig.

2 shows the positioning of a pendulum with respect to the mechanical model.

A note of clarification is perhaps necessary to define terminology of

bodies in the system. The "test rig" is defined as the structure that

encloses the liquid and its associated supports, as well as the contained

fluid. This basically includes everything supported by the universal joint on

the mechanical assembly. The "upper assembly" is associated with the

mathematical model and does not have a direct physical representation. The

upper assembly is defined as the test rig minus the enclosed liquid plus the
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nonslosh masses.

To develop the equations of motion for the system, a Lagrangian

formulation was used. Through the use of coordinate transformations, position

vectors were determined for each of the bodies. The position vectors were

then differentiated with respect to time to determine velocities for the

bodies. The kinetic and potential energies of the bodies were then developed.

Once the equations cf motion were determined according to Lagrange's

equations, they were numerically integrated using a double precision version

of DIFFEQ, a numerical integration program.

Coordinate Transformations and Body Positions

The positions of the bodies were determined through simple coordinate

transformations consisting of rotations and translations of Cartesian

coordinates. All coordinate systems used were defined to be right-handed.

The x1-y1-Z1 coordinate system is stationary and is positioned at the

center of the universal joint. The z1 axis is directed vertically upward.

Positioning of the x1 and yl axes is arbitrary.

Transformation to the x2-Y2-z2 coordinate system is achieved by a

• !ght hand rotation about the zI axis. The x2 -y2 -z2 coordinate system is

attached to the lower shaft of the test rig and its origin is at the center of

the universal joint. The x2-Y2-Z2 axes are fixed in such a way that when

the z and z2 axes are aligned,. the Y2 components of the position vectors of

the pendulum supports are zero. Generally, the matrix [A ij] is defined such

1J1

that
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(Aij] i(1)
i i zj

1 1

The transformation matrix from the x2-Y2-z2 coordinate system to the x-Y-Z 1

coordinate system, [A121, is given in the appendix.

The rotation of the upper assembly relative to the lower shaft is defined

by the two rotation angles, X. First, a rotation by an amount h about the

Y2 axis defines the transformation to the x3-y3-z3 coordinate system. Then

the coordinate system is rotated through an angle 12 about the x3 axis to

arrive at the x4-y4-z4 system.

The x4-y4-z4 coordinate system is fixed to the upper assembly in such a

way that the y4 components of the position vectors from the universal joint

to the pendulum supports is zero. The origins of the x3-y3-z3 and x4-Y4-z 4

systems are located at the center of the universal joint. The rotations

between the 2, 3 and 4 coordinate systems are shown in Fig. 3.

Because the body is assumed to be axisymmetric, the position vector of

the upper assembly is given by

Fua = Pi4 (2)

where P is defined to be the height of the center of gravity of the upper

assembly abcve the universal joint when 11 and 2 are equal to zero.

The pendula, which represent the water in the spherical tanks, are

displaced from the universal joint. The physical constants r and (cg) are

defined such that the position vector of the support of pendulum 1 is
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rx4 + (cg)z 4. Consequently, the origin of the x5-y5-Z5 system is defined

to be at rx4 + (cg)z4. This is the location of the hinge point of pendulum 1,

and also the location of one of the nonslosh masses of the upper assembly.

Similarly, the origin of the x8 -y8 -z8 system is located at -rx4 + (cg)z4 ,

which is the location of the hinge point of the second pendulum, as well as

the second nonslosh mass. There are no relative rotations for the x4-Y4-Z4,

x5-Y5-z5, and x8-Y8-z8 coordinate systems.

The radial rotation of the pendula are defined by the angles, e. The

angle e1 is defined by right hand rotation of the x6-y6-Z6 system about the

Y5 axis. In a parallel fashion, the angle E2 is defined by right hand

rotation of the X9-y9-z9 system about the y8 axis. Note that if both pendula

are flared outward from the universal joint by an amount e, then eI = -e

while e2 = +e.

Circumferential (or tangential) rotations of the pendula are described

by the * angles. The x7-y7 -z7 axes are rotated through the angle *I about

the x6 axis. The x7-y7-z7 coordinate system is fixed to pendulum 1. Similar-

ly, the x10 -Y1 0 -z10 axes, which are fixed to pendulum 2, are rotated through

an angle 2 about the x9 axis. Rotations of the pendula relative to the

upper assembly are shown in Figs. 4 and 5.

The local position vectors of the pendula, rpl and rp2 are easily defined

as

rpl =-17 (3)

and

rP2 = '10(
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where 1 is the length of the pendulum. This length is a function of tank

size, tank shape, and fill height [1].

By direct substitution, the position vectors of the bodies can be

expressed in terms of world coordinates. Thus,

Yl Y4

= [AI 21[Ams][A 3 4 ] (5)

1 1J

The overall transformation matrix, [A14 ], is simply the product given by

12 23] [A341 Since rua = Pz4 , it can be expressed as

rua = p(cosO sinA1 cosA 2 + sin4sinA2 )i 1

+p (sinik sin Al cos A2 - cos - sin A2 ) l

+pcos A1 cos A2 i I  (6)

In similar fashion,

= [A 12 1[A 2 3 ][A 3 4 ][A 4 5 1iA5 61[A 6 7: (7)

2}1 z7

1 1

and

YI 10(8

= A12][A231'-4341[A48][A89] A9,101'  (8)

Si1
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The position vectors rpl and rp2, expressed in terms of world coordinates,

are presented in the appendix.

Body Velocities and Energies

The translational velocities of the center of mass of the upper assembly

and the two pendula can be determined by differentiating their position

vectors with respect to time. Using the chain rule of calculus,

dF 7 Of dqi (9)

Thus, differentiation of Eq. (6) produces

vua = p [(cosiksinA 2 - sin i sin Al cOs A2 )

+A 1 Cos 0 COS A1 cos A2

--"2 (- cos sin A 1 sinA 2 - sin, icosA2 ) -'

+p [4 (cos ibsin A1 cOsA2 - sin V; sin A2 )

+A1 sini' Cos A1 Cos A2

+A 2 (-cos4'cosA 2 - sintsinA Isin A2 )V l

-P (-A 1 sinA1 cOsA 2 - 2 cosA 1 sinA2) l (10)

Velocity vectors of the pendula are determined in an identical fashion. Due

to their lengthiness, however, they are shown in the appendix rather than

here.

Using the addition theorem for angular velocities, the angular velocity

of the upper assembly can be expressed as a sum of simple components as

.ua= 14)z1  ' - A2 3  (1
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or expressed in terms of body fixed axes:

+ u (4,:, sin + i o.:)o
+ COS Al sin A2 + l COS A2 ) Y4

+ ( coS A 1 coSA2 - sin A2 )'4  (12)

The inertia dyadic of the upper assembly, ?ua can be expressed as

fua = I-a;4 i4 + Iyy4Y4 - IzzZ4i 4

+IXY (z4y4 + 4;') + Iyz ( 44 + Z 4 y 4 ) (13)

where Itrl is defined to be the inertia scalar of the upper assembly relative

to its center of gravity for unit vectors &4 and n4 . Note that the body is

assumed to have zero products of inertia about its center of gravity for the

x4 and z4 axes.

The angular velocity of the lower shaft is simply

Za= 4'z1  (14)

The relevant term of the inertia dyadic for the lower shaft is the moment

of inertia of the shaft about the z1 axis, Ils. Because the pendula are

are assumed to be point masses, their inertia dyadics are zero.

The kinetic energy, T, of the system can now be calculated by summing

the rotational and translational kinetic en _gies of all the bodies:

- 1 ~ -
T = 2mf, a l 4- + m P2 "vP2 + 2' ' Muvu -vu

+2Wua *ua "Wua + 2 WIs" ,s "Wls (15)

where ms is the mass of a pendulum and ma is the mass of the upper assembly.

The kinetic energy is expressed in matrix form as
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T {4}T [M] {4} (16)

2

where the matrix [M], shown in the appendix, is symmetric. The vector (q}

is defined as

A1

A2

{q}= - 1 (17)

01

02

The potential energy, V, of the system is determined from the elevation

of each of the bodies. Thus,

V = MuagpCosA 1 cosA 2 + mpg[lsinA1 (sin81 cos€ 1 + sin 82 cos0 2 )

-l cos A1 cos A2 (cos 01 cos 0 1 
+ cos 02 cos 2 )

-l cos A1 sin A2 (sin 0 1 -- sin 2) -- 2 (cg)cos A1 cos 2  (18)

Lagrangian Formulation

The Lagrangian, L, for the system is defined simply as L = T - V.

Equations of motion can be determined from Lagrange's equations of the

second kind as

d (H) Fqr r 1,...,7 (19)dt\ Nr ] 9qr
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The generalized force, Fqr , due to viscous damping can be expressed as

Fqr = Cr4r r = 1, ... ,7 (20)

where c r is the viscous damping coefficient expressed in dimensions of torque

per unit angular velocity.

Substituting L = T - V into Eq. (10) and noting that V does not depend

on 4 we have

d (OT _ T OV
d( \ r~r) -qT 8 V +Fqr r=1, ...,7 (21)

Since T = 0.5}4)[M]{I} where [M] does not depend on 4, the first term on

the left hand side of Eq. (21) is determined by

-T = i { (22)

and by the chain rule of calculus,

d ( T )= 1r 1 1 {4}1]~ (23)
dt 84r L

For the second term on the left hand side of Eq. (21),

8T 1 7 (24)
&qqrr 2 3E(24)

i=1
j=1

So that the equations of motion become
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7I
__ + - 7 (a ii) + =Fqr rl 7 (25)

j=l

These equations are assembled into a matrix form,

[Au] {} + [Al] {} -[DELM]T {} + V = {Fq} (26)

where [DELM] is defined by

DELMi -- q' (27)
k= qk(

This system of equations was numerically integrated using a double

precision version of DIFFEQ, a numerical integration program. The user

of DIFFEQ must supply a subroutine which computes the derivatives of the

state variables with respect to the independent variable, given the current

values of the independent variable and the state variables.

SIMULATION RESULTS

To ensure the accuracy of the equations of motion, simulation results

were compared with those from a multibody dynamics program called CAMS.

Results were also compared with experimental data.

CAMS (Control Analysis for Mechanical Systems), a three-dimensional

multibody program, was used to verify the accuracy of the previously derived

equations of motion. To run CAMS, a user creates a data file specifying

the type of connection existing between h)dies. a- ,:ell a! th- inertial
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properties, initial positions, and initial orientations of all of the bodies

in the system.

Because CAMS is more generic than the program tailored specifically

to solve the satellite problem, it was considerably more time consuming to

generate an input data file for CAMS than for SATELL, the specific program

written for this study. Several runs were completed using CAMS. However,

only two representative runs are displayed here for brevity.

The physical values of the test rigs used for the analyses are given

in Table 1. 1s is defined as the moment of inertia of the test rig about

its spin axis. It is defined as the moment of inertia of the test rig about

a transverse axis throught its center of gravity. For all runs in this

section, the center of gravity of the test rig at its initial speed is

located at the universal joint.

Figs. 6-12 compare the output of CAMS and SATELL for a case in which

half filled, one ft. diameter spheres spin about an axis of maximum moment

of inertia (specifically, Is/It = 1.6). Fig 12 shows the half cone angle

versus time for each of the programs, where the half cone angle, 1, is defined

to be the angle between the z4 and z2 axes. Mathematically,

3 = cos - 1 (cos AI cos A,) (28)

Close agreement is seen in both the magnitudes and frequencies of all of the

state variables.

Figs. 13-17 compare the results of CAMS and SATELL for the case of spin

about an axis of minimum moment of inertia.
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Comparison with Experimental Data

To determine the validity of the mathematical model, output from SATELL

was compared with Anderson's [101 experimental results.

In his experiments, Anderson used six-inch plastic spheres. Physical

properties of two of the test rigs used in experiments are given in Table 2.

In both _ases, the spheres were half full. Two transverse moments of inertia

are listed, with Itl the moment of inertia of the test rig about the x4 axis

and It2 the moment of inertia of the test rig about the Y4 axis.

Figs. 18-22 show a comparison of experimental data and SATELL output for

spin about an axis of minimum moment of inertia, runs 1E and iSE. Only about

ten seconds of experimental data could be acquired before the unstable upper

assembly came to rest on a supporting collar.

CONCLUSIONS

This work has developed the equations of motion for a test rig designed

to model a spin-stabilized satellite. The applicability of the equations of

motion to the motion of a satellite is based on two assumptions. The first

is that the mechanical assembly is a valid model of a satellite, and the

second is that the mathematical model is a valid model of the mechanical

test rig.

The major accomplishments of the study have included:

Development of the equations of motion of a spacecraft simulator using

a Lagrangian formulation

Numerical integration of the developed equations of motion in order to

simulate the motion of the test rig.

Comparison with a multibody dynamics program to verify accuracy of the

equations
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Comparison with experimental results to determine the validity of the

mathematical model

Basic theories were confirmed. That is, that a body containing a

sloshing fluid is stable when spun about an axis of maximum moment of inertia

and unstable when spun about an axis of minimum moment of inertia.

Comparison of the results of SATELL with the results of CAMS showed good

agreement. The results agreed very closely. The relative ease in calculating

the input values for SATELL supports its use over that of CAMS for this

particular application.

Agreement between experimental data and the output of SATELL was

reasonable. The results showed similar frequencies and magnitudes.

Difficulty in modeling the experimental setup arose in determining values

for mass moments of inertia of the test rig. These values were calculated

using formulas for mass moments of inertia of basic geometric shapes.

Another difficulty was encountered in determining damping coefficients at

the universal joint and pendulum supports.

Now that a computer program has been developed to simulate the dynamics

of a spin-stabilized structure carrying liquid stores, many additional factors

can be studied. For example, different size tanks and different inertias can

be considered. The absence of gravity in outer space can also be simulated by

simply setting the acceleration of gravity equal to zero. Furthermore, plans

call for additional development of the computer program to handle cases

where the liquid tanks are not perfectly symmetric and may not even hold the

same quantity of liquid.
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TABLE 1. Test rig data for comparison with CAMS

run total sphere % r (cg) spin I, ,
mass diam fill speed

slug ft ft ft rpm slug ft2 slug ft2

iS 2.0 1 50 1 0 100 2.22 1.39
1C 2.0 1 50 1 0 100 2.22 1.39
3S 2.0 1 50 1 0 100 2.08 3.47
!IC 2.0 1 50 1 0 100 2.08 3.47

TABLE 2. Test rig data for comparison with experiment

run total height spi, Iit,
mass of c.g. speed

slug ft rpm slug ft2 slug ft2 slug ft2

lE 0.507 -0.080 -100 0.223 0.343 0.340
1SE 0.507 -0.080 -100 0.223 0.343 0.340
2E 0.431 -0.121 -70 0.324 0.280 0.289
2SE 0.431 -0.121 -70 0.324 0.280 0.289
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ABSTRACT

The sloshing of a liquid in a two-dimensional container undergoing a

constant, horizontal acceleration is examined in this study. A fluid initially

in a state of hydrostatic equilibrium is suddenly accelerated from rest. This

sudden acceleration causes an equally sudden change in the pressure field such

that the original hydrostatic pressure field no longer gives the correct

initial condition. The dimensional formulation is singular at the moment the

acceleration begins. By using appropriate scales for the velocity and pressure

fields, a nonsingular dimenisionless formulation is developed which leads to the

correct initial condition for pressure. A transformation to container centered

coordinates is also used. In this noninertial frame, the sudden acceleration

becomes a horizontal body force. Another transformation immobilizes the wavy

free surface, and maps the liquid domain into a unit square for all time. A

numerical method is used to solve the resulting dimensionless formulation.

Detailed information on pressure and velocity fields is given, as well as

global information on sloshing frequency and viscous damping rates.
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1. INTRODUCTION

The motion of waves along a gas-liquid interface poses a problem of

tremendous analytical and practical interest. Examples range from the

prediction of tides [11 to the sloshing of liquids in finite containers. The

prediction of tides, bores, and wave induced drag all have obvious maritime

applications. The sloshing of fluids is of prime concern in all types of

moving vehicles (tanker trucks, railroad cars, and ships; as well as aircraft

and spacecraft) since their motion may be adversely affected by the sloshing.

The adverse effects may range from outright changes in vehicle orientation due

to unwanted moments generated by the sloshing to substantial periodic forcing

due to vehicle resonance near the natural frequency of the fluid.

1.1 Analytical Works

Theoretical studies, beginning some two hundred years ago (11 and

continuing to the present day, have built uD a co'iderable body of knowledge

about wave dynamics. Although somewhat limited in scope, these studies have

contributed greatly to our understanding of these types of problems. Almost

all analytical work focuses upon potential flows. Two basic approximations are

universally employed.

In shallow water (or long) wave theory, the wavelength of a disturbance is

assumed to be much larger than the depth of the fluid. This implies that the

vertical acceleration of fluid particles is negligible--that the pressure

distribution is purely hydrostatic and that the horizontal components of

velocity are not functions of fluid depth. In a horizontally unbounded fluid.

- /
the velocity of propagation, c (celerity), is equal to (hg)Y where h is the

depth of fluid below the wave and g is the acceleration of gravity. For waves

of infinitesimal amplitude, the total energy of the wave is half kinetic and

F2



half potential [11. For waves of small, but not infinitesimal amplitude, the

wave changes shape as it propagates because higher parts of the wave,

corresponding to larger values of h in the preceding formula, travel faster

than lower parts of the wave. In horizontally bounded fluids, for one

dimensional infinitesimal waves, the oscillations are harmonic with frequency

(an/ 2 n) and wavelength Xn such that an = nnc/l and Xn = 21/n where n is integer

and 1 is the length of the bounded horizontal region. The extension to two

dimensional, infinitesimal bounded waves is straightforward; with nn/l being

replaced by k = (m2 /p2 + n2/1 2 )h where m.n are intr-r, 2nA n. r

lengths of the bounded region; and Xn = 21/n and km = 2p/m being the

corresponding wavelengths of the disturbances in the two directions. For p >

1, the component oscillation of largest period (smallest o ) is obtained by

choosing m = 1 and n = 0, this disturbance is everywhere parallel to the longer

side of the bounded domain [1].

In deep water (or surface) wave theory, the wavelength of a disturbance is

assumed to be comparable to the depth of the fluid. Although the amplitude of

the wave is assumed to be infinitesimal, vertical and horizontal accelerations

are now of comparable magnitude. Unlike the case of shallow water waves, in

deep water waves the magnitude of motion decreases rapidly with depth

(exponentially fast, in fact, for the limiting case of infinitely deep water).
•V2

In a horizontally unbounded flk'I. -he celerity is c = {(g/2t) tnh.), ., .

Thus the wave speed is dependent upon the wavelength of the disturbance

(such that c increases with X) as well as the fluid depth. In a

horizontally bounded fluid, for one dimensionsal waves, the oscillations

are again harmonic with frequency an /2n and wavelength X = 21/n wheren n

2
= gk ntanh(k h) and kn = 2n/X . As was the case for shallow waves, the

total energy of a deep wave is half kinetic and half potential. The extension
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tn two-dimensional bounded waves merely involves replacing kn above with k
n m,n

as given by the shallow wave theory [4.

Within the framework of either shallow or deep water wave theory, a number

of additional aspects of wave motion have been examined. These include the

effects of variable depth, forced oscillations, small but finite amplitude

waves, waves in circular basins and spherical sheets, rotation, and traveling

pressure disturbances, to list a few (1]. More recently, two and three-

dimensional sloshing in horizontal cylindrical and spherical containers has

been investigated [2,3] with these techniques. An interesting result has been

the observation that the dependence of frequency with depth is also mode

dependent. For the lowest modes of oscillation, frequency simply increases

with the depth of fluid in the container. For higher mode oscillations,

however, the frequency first decreases and thien increases with depth. Another

recent study of forced vertical oscillations in a slightly non-square basin has

also revealed the existence of symmetry-breaking bifurcations and chaotic free

surface oscillations if the basin is sufficiently non square and/or the

frequency of forcing is sufficiently detuned from the natural frequencies of

oscillation [4]. This work has been confirmed experimentally [5]. The specter

of chaotic sloshing leads to the disturbing thought that sloshing motions in

their fullest nonlinear form may be inherently unpredictable.

In certain cases, potential flow theory may also be helpful in examining

waves whose amplitudes are not small. For example, it is possible for a wave

to propagate through a liquid of depth comparable to the wave amplitude without

the wave changing its shape. Such a wave, which seems to defy the results of

shallow wave theory, is called a soliton. The key requirement for this

behavior is that the wavelength of the soliton not be so great (compared to the

depth) that vertical accelerations are negligible. Thus the basic assumption
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of shallow wave theory is untenable in this case Ill. As the soliton amplitude

is aecreased (and thus the ver~ical acceleration decreases), the wavelength of

the soliton increases, and it approaches the shape of a shallow water wave of

infinitesimal amplitude.

The effects of surface tension and fluid viscosity has been investigated

theoretically using deep wave theory. If surface tension dominates gravita-

tional effe!cts, then the celerity increases with surface tension and decreases

with disturbance wavelength. With both surface tension and gravitational

effects taken into account, the frequency of oscillation i- found to increase

with increases in gravity, surface tension, and,'or disturbance wavenu,.Z , k.

The celerity first decreases, but then reaches a minimum value and finally

incr-ases with k. For a free surface at which the gas (or vapor) density is

iiegligible compared to the liquid density p, the critical wavelength corre-

2 - -
sponding to the minimum value of celerity cin 2(g/p) is X= 2n(ypg)

where y is the coefficient of surface tension. If X/Xc > 3, then gravitational

effects dominate the wave dynamics, while for X/Xc < 1/3, surface tension

2 3 2 -effects dominate. More generally, y = gk + yk /p and c = g/k + yk/p [1]. A

recent work employing a regular perturbation in terms of wave amplitude shows

that surface tension acts to decrease wave amplitude and to increase the

potential energy of the wave to values well beyond the level of kinetic energy.

These increases in potential energy are due to the surface tension. The

gravitational contribution to the potential energy first increases, and then

decreases with increasing surface tension [6]. The effect of viscosity is to

cause a damping of the wave such that its amplitude decays exponentially in

time like e where v is the kinematic viscosity of the liquid. For the

case of infinitesimal deep waves, viscosity has no effect on wavelengt:i.

frequency, or wavespeed 111.
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The idealizations of potential flow and shallow water wave theory may even

be used to gain realistic insight into the breaking of waves. Surface tension

is found to act to keep the free surface from breaking up [7].

1.2 Numerical Works

Despite the apparent number and diversity of analytical solutions for wave

problems, analysis which can reveal the full nonlinear scope of wave dynamics

lies well beyond present day analytical techniques. In recent times (the past

25 years), numerical methods and solutions for wave problems have appeared

which incorporate effects of viscosity, surface tension, finite enclosures

(rectangles, cylinders, and spheres), and finite wave amplitude simultaneously.

Perhaps the first numerical method which could successfully be used to

treat arbitrary wave problems was the Particle in Cell (PIC) method [8]. In

the PIC method, a continuum model is not used, instead, the motion of a finite

number of fluid particles is followed using a Lagrangian description of the

dynamics. First order upwind differencing was used In the PIC method,

resuiting in solutions with significant numerical viscosity. Also, momentary

crowding or depletion of particles could occur in a computational cell,

resulting in random, high frequency oscillations of fluid properties.

The idea of tracking a finite number of fluid marker particles was used in

a continuum model called the Marker and Cell (MAC) method 19,10]. The MAC

method is a finite difference method which solves the governing equations for

primitive variables on a staggered mesh. A Poisson equation which implicitly

enforces continuity is used for pressure. The position of the free surface is

deduced by the distribution of marker particles. Unlike the PIC method,

however, these particles are not involved in the dynamical calculation other

than that they are used to determine where the free surface is located.
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Initial results with the MAC method indicated that for sloshing in containers,

that the period of sloshing increases with viscosity and that the multiple

modes of oscillation which occurred did not have periods which were rational

multiples of each other. Thus there is a lack of perfect periodicity in the

sloshing and the free surface is never flat once sloshing has commenced (until

steady state is reached). While the MAC method generally can be used to make

successful predictions of wave problems, the marker particles are not always

distributed smoothly. This in turn, leads to a free surface and pressure field

which are not smooth. Perhaps the bilinear interpolation on the velocity field

which is used to determine the marker particle velocities is the root of this

lack of smoothness. Another difficulty is that since the free surface will

generally lie somewhere inside a computational cell (rather than the edge),

that the application of the free surface (zero stress) boundary conditions is

of an ad hoc "particle cell" nature. This too may contribute to the lack of

smocthness in the solution. In the original MAC method, zero normal stress at

the free surface is approximated by setting the pressure of the cell containing

the interface equal to zero. This is correct only in the double limit of zero

viscosity and zero surface tension and if the free surface runs exactly through

the center of the cell. Zero tangential stress is approximated by setting

n-VU = 0, where n is the outward pointed unit normal vector to the

free sitrf~ce and U is the velocity vector. This expression is correct only in

the double limit of vanishing surface curvature and negligible tangential

gradient of the component of velocity normal to the free surface. These

limitations and a more general formulation of the zero stress boundary

conditions weLe fitst given in [i1. Inclusion of the more general normal

stress condition in the MAC method was found to increase the accuracy of a hoLe

calculation by a factor of 2 to 3. In a coanda ("teapot") effect calculation,
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the more general condition resulted in a qualitatively correct solution,

whereas the solution based upon the original free surface boundary conditius

did not. In each case, the more general zero tangential stress condition was

not met because that would have required the position of the free surface to a

degree of accuracy greater than the MAC method could provide. Consequently,

while the accuracy was considerably improved using the improved normal stress

condition, noticeable errors still occurred. While (111 does provide a more

general formulation for the zero stress conditions at the free surface, the

results are not completely general because higher order second derivative terms

in free surface position are missing, limiting the formulation in [111 to

slightly curved free surfaces.

An evolutionary by-product of the MAC method was a general purpose

numerical algorithm called SOLA-SURF [111]. This algorithm relied upon use of a

kinematic condition rather than upon marker particles to determine the position

of the free surface. As a result, the free surface was determined much more

accurately than in a typical MAC method. Unlike the MAC method, the surface

cell pressure was not set equal to zero. Instead, it was chosen such that a

linear interpolation between it and tne pies~ure in ti first cell belcv

yielded zero pressure at the free surface. Unfortunately like the MAC method,

the vertical component of velocity at the top of the surface cell was chosen so

that the surface cell is divergence freE. This is ,'nfort,,-" I)ocPlse it is

only that portion of the surface cell which lies below the free surtace that

should be divergence free. Thus while the pressure field is accurately aligned

with the free surface, the velocity field is not. Like the MAC method,

SOLA-SURF is fully explicit in time, and sets the horizontal component of

velocity at the free surface so that n.?U = 0 there. SOLA-SURF also determines

the pressure field by choosing cell pressureq vhich result in divergence free
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interior cells. Convective terms are represented by a hybrid finite difference

formula which is a combination of second order centered and first order upwind

differences (the original MAC method uses only centered differences). While

this hybrid formula helps to keep solutions smoother, it does so at the cost of

increased numerical viscosity. Solutions for several sample wave problems are

illustrated in 1ll1, including the interacticn of two solitons, and the damped

bobbing of a free floating body. While the solutions appear reasonable and

match analytical results (where available) reasonably well, no definitive

information on numerical error is given. Such a study would probably have shed

some light on the soliton interaction where, for example, each soliton is found

to change height slightly, and there appears high frequency, low amplitude

disturbances. It is not clear that these effects are truly nonlinear effects

as suggested.

While the SOLA-SURF algorithm represents a considerable advance over the

MAC method in terms of being dble to more accurately predict free surface

positiun, this enhanced accuracy comes at the cost of a considerable decrease

in the arbitrariness of the shape of the surface. In particular, in two

dimensions the surface position as determined by the Kinematic condition must

rema-' a singly valued function of one (or two in three dimensions) of the

independent spatial coordinates. Thus the surface may not fold over upon

itself. Physically, this means that phenomena like breaking waves or a spray

of drops cannot be modeled. Also, the free surface should not be inclined more

than the diagonal of a surface ceil. Neither of these limitations occurred in

the original MAC method, which was quite capable of handling multiply connected

fluid regions separated by free surfaces of arbitiary orientation.

The development of the SOLA-VOF algorithm (There VOF stands tot Volume

Fluid method), represents an attempt to retain the fluid region tracking
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ability of thr ','AC method while aZ the same time retaining increased accuracy

with whici the free surface location is known [12]. The key is to introduce an

auviliary function F, whose average value in a surface cell gives the volume of

fluid in that cell. Since F moves with the fluid, the substantial derivative

can be used to determine a simple partial differential equation for F. The

differencing for F is of an extremely ad hoc nature, and reflects the fact that

F is a step function. The free surface is approximated by a straight line

segment in the surface cell; its slope and height can be determined from the

volume of fluid function F. Solutions to several interesting wave problemq are

given in [121, and they all look, for the most part, qualitatively correct.

Reasonable agreement with analytical results, where available, is also

demonstrated.

1.3 Present Work

All of the works so far cited, while covering an extensive list of wave

problems, are all for liquids which are at rest it. a global sense. That is.

for unbounded liquids, accelerations occur only inside the wave, whereas for

sloshing in containers, the containers themselves are inertial. Difficulties

in the dynamic control of spacecraft [13] dictate that wave dynamics in

non-inertial frames of reference also be studied. It is this imperative vhich

motivates the present study of sloshing in an accelerating, rectangular

container. For greatest accuracy, the free surface position is calculated

using a kinematic condition. This method has the advantage of being readily

generalizable to three dimensions. The present york requires that the free

surface remain singly valued, as discussen previousiy. However. the use of a

function fur surface position does not prdlide the poslbilitv of modelin1

more complex wave dynamics such as brea ing. It may be practicable to divide
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th. computational region up into several domains, whereby in each domain, the

function for the position of the free surface is singly valued (141.
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2. MATHEMATICAL FORMULAIION

The basic 2-D geometry cf the problem is depicted in Fig. 1. A visc-us

fluid, Dnially at rest, fills a rectangular container of width a to a depth

b. The position of the free surface--denoted by R--is a function of horizontal

3 coordinat' x, and time, T. The remaining independent variable is the vertical

Loordinate, y. The dependent hydrodynamic variables are the horizontal and

3 vertical components of velocity, u and v, respectively; and the pressure p.

Since the fluid is initially at rest (with respect to a constant gravitational

3 field which is pointed vertically down), it is in a state of hydrostatic

equilibrium.

I Suddenly, the container is translated to the right with a constant

acceleration. As viewtd from a noninertial frame of reference which is moving

with the container, this motion results ;P an apparent uniform body accelera-

tion of magnitude q, directed to the left (the principle of equivalence).

A primitive variable formulation was chosen to model the problem primarily

Sbecause it was felt that this was more readily generalizable to 3D (see the

companion paper to this work [151) and because information on the pressure

I field was one of the major types of information to be obtained from the study.

We note that a streamfunction-vorticity apploach could easily be used for the

present 2-D study, however. In this latter type of formulation, the body

3 forces enter into the formulation only through the boundary conditions, because

the cross differentiation of the momentum equations which produces the

3 vorticity transport equation eliminates conservative body force terms from the

governing equations themselves.

3 Three separate variable transformations are used in this formulation. The

first one is used to change the frame of reference so that the coordinate

system stays fixed with respect to the container. The second transformation

I
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maps the free surface--whatever its shape--into a straight horizontal line.

The final transformation regularizes the formulation at the moment translation

of the container begins.

2.1 Dimensional Formulation

We assume an incompressible, Newtonian liquid for the sloshing fluid.

Since the rigid container is translated to the right, this means that the

origin of any inertial frame of reference translates to the left with respect

to a noninertial frame of reference which is fixed with respect to the

container. Since the translation is due to constant acceleration, we define

the coordinate transformation from (x,y,t) space to (x ,y ,t ) space:

x= x - 1/2q1 , y y, and t= t (la)

Substitution of equation (la) into the standard forms of the continuity and

momentum equations for an inertial frame of reference results in:

V.U = 0 (lb)
* *

-- + U Vu = , -()
at P ax*

av *1 + vV2 v* _ (
+ U Vv = -+ V- g (id)at ay

* -- * - 2* *-- *-

where V = (a/ax )i + (/ay )j, V2 = V.V, and U = u i + v J. Here i and J are

the unit basis vectors in (x ,y ) space. Note that the dependent variables are

redefined for this noninertial frame of reference.

ui u - qt, v = v, and p p (le)

Although equations (Ib-d) may be used to determine the dependent variable,

u , v , and p , they are not in a form .dhich brings out the elliptic nature ,f

the pressure field. We differentiate equation (ic) with respect to x a and
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(id) with respect to y , and add the results to produce a Poisson equation for

pressure:

V2 p* = 2pJ(u*v*) - p + U VD) +u.V2D* (If)
at

* * * * au av au avwhere D = V'U and J(u ,v ) = ,i ,i , ,i
ax ay ay ax

Here p is the absolute viscosity (v = pv) of the fluid. Note that although the

dilatation D is identically zero by continuity (Ib), these terms are retained

in the pressure Poisson equation because they are important for the stability

of the numerical method used to solve it [81.

A final governing equation is required to determine the position of the

free surface. We use the general kinema'ic condition that dR/dt = 0

(originally proved by Lord Kelvin [1]). Note that d/dt, the total derivative,

is also known as the material or substantial derivative. Physically, this

condition means that if a particle is on the free surface at any time, then it

must remain on it for all time (since fluid motion with respect to the free

surface must be everywhere tangential to it)--provided that the motion is

continuous. Substitution of R = R(x,t) into the general kinematic condition

followed by the coordinate transformation (la) into noninertial space leads to:
* * * * *

aR/at v - u aR/ax along y = R (Ig)

The initial conditions for the governing equations are:
* * ** *

R b for all x , U = 0 for all (x,y*) at t = 0; and (2a,b)

p - Po = pg(b-y ) at t = 0 (2c)

Here b is the initial height of fluid, and p0 is the ambient pressure at the

free surface.

The boundary conditions for the governing equations are:

U = 0 along x = 0.a and y = 0 (1A.bc)

S * au T aun
*and - T n=T 0 along y =R (3d,e)

1ax
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S2- pq along x = O,a (3f)
ax

ap 2 v * ,,,
= a---- - p along y= 0 and p = PO along y = R (3g,h)

ay*

where

u + v R -RU + v n.V and .
u - andu n T- ' =-

l+R' l+R'

with n = -R i+j and T =i+R K =-R (+R ) 3/2

l+R' l+R'

and R = aR/ax , R =a R/ax

Here K is the local radius of curvature of the free surface, while uT denotes

the component of velocity tangential to the free surface, and T is the unit

tangent vector to the free surface. Thus boundary condition (3e) is a zero

tangential stress condition along the free surface. Boundary condition (3d)

results from continuity. The pressure boundary conditions (3f-g) result from

applying the momentum equations (lc,d) at the container boundaries where

U = 0. The pressure boundary condition (3h) is the result of a zero normal

stress condition along the free surface (assuming negligible surface tension

effect).

While the use of local orthonormal coordinates (n,T) makes clear the

physical basis of the zero tangential stress boundary condition (3e), the

boundary condition needs to be written in (x ,y ) coordinates to make it

useful. The final result is:
* * * , ,,.

(I-R )- + - 4R 3u - 2 = 0 (3i)
ax ax (lR')

where aR/at*.

Equations (ic - 3d and 3c-i) constitute a complete formulation for the
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problem. The continuity equation (Ib) is not explicitly used, but instead, is

used indirectly later on in the numerical method when the dilatation terms are

evaluated in the pressure equation (1f).

2.2 Characteristic Scales

The moving boundary which is the free surface in a sloshing problem

introduces an additional nonlinearity into the problem simply because the

boundary position is a function of time. If in addition, the shape of the

boundary is somewhat irregular, then further complexities arise in the analysis

[161.

The difficulty of tracking a moving, irregularly shaped domain is

eliminated completely in this study by transforming it into a time invarient

unit square. By using R as a local characteristic scale for y , an elementary

algebraic stretching transformtion can be used to accomplish this normali-

zation.

Another major problem comes to light when one considers the momentum

equations (lc,d) and what they imply about the nature of the pressure field the

moment the sudden acceleration begins. Consider the x* momentum equation (1c)
,

along the bottom of the container (at y 0):
* 2u*

0 2P + -J a2 q (4a)

a y *

For fluids (such as water) which have very small values of viscosity, a naive

scale analysis of equation (4a) seems to indicate that:

2u*
~ pq >> -W 2 and thus 6p - pajq along y* 0 (4b)

ax ay*

nere 6px is the change in pressure from x 0 to x a along the containe!

bottom. The insignificance of the viscous term in (4b) is even more strongly

supported as t 0 0, since U = 0 at t 0. But initially the pressure field
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p cannot be a function of x* because it is hydrostatic (see initial condition

2c). Thus a glaring inconsistency becomes apparent. The same naive analysis

on the y momentum equation (Id) reveals that:

Apy~ pag along x = O,a (4c)

Note that the values for 6px and Apy given in equations (4b,c) are in fact

exact, initially--provided the viscous terms are truly negligible. Summing the

pressure changes along the left, bottom, and right walls results in:

Ay - Apx - iyP = p 0 or paq - p 0 (4d)

where p 0 is the pressure change along the free surface. p 0 should be equal

to zero because the pressure is constant along the free surface (boundary

condition 3h). But for paq > 0, Ap 0 0 and the pressure field must become

discontinuous along the boundary (if both 6p0 # 0 and boundary condition 3h are

correct)!

Clearly, the formulation is singular at t = 0. The sudden horizontal

acceleration causes a sudden shift in the pressure field, from a classical

hydrostatic distribution at t* = 0- to a non-equilibrium distribution at
* 0+

t 0 which satisfies the governing equations and boundary conditions.

Consequently the initial condition for pressure (2c) is really incorrect, and

it should not be used to begin a solution.

Initially, frictional effects will be confined to thin boundary layers

along the sides and bottom of the container, and so the fluid core will (as a

first approximation) tend to remain at rest with respect to an inertial frame

of reference. With respect to the noninertial frame of reference defined by

the coordinate transformation (la), the core will appear to be a solid body

accelerating at a constant rate of -qt Secondary local variations will be

superposed upon this solid body motion, however, by the non-equilibrium

pressure distribution.

Based upon this intuition, and assuming that q - g, we choose the
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characteristic velocity scale for u to be u ~ qt By continuity, v - c

also if a - b (order one aspect ratio). The characteristic time, tc, for which

this scaling is valid is found by scaling the unsteady and convective terms in

the momentum equations. The result is that tc << a/g for solid body motion

of the core. Physically, this limit is due to the time it takes a wave to

travel across the container (celerity - ag).

2.3 Dimensionless Formulation

In accord with the preceding discussion, the dimensionless variables are

formulated to both:

normalize the domain of analysis.

regularize the solution as t* + 04

The first point requires the employment of a coordinate transformation to

produce a natural coordinate system for the domain of analysis. We choose a

simple algebraic stretching:

* * Vl-7
x = x /a, y = y /aB, and t = t / a/g(5a)

where B(x,t) = R(x ,t )/a, called the dimensionless gap function, is simply the

dimensionless free surface position.

Regularization of the formulation is achieved by transforming the

dependent variables as follows:

u = u /t ag, v = v / ag, and p = (p -po)/pag (5b)

Note the explicit factoring of t-I from the dimensional velocity to produce the

dimensionless velocity. This is a crucial step in developing a model which is

initially nonsingular.

Substitution of equations (5a,b) into (lb-d and lf.g) produces the

dimensionless governing equations:
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a 4 Y + R - = D (5c)

a(tu) + 2 (u au) tt - 'u- }auat + t -T + t(v -yB u) - y]

= - fP - ) + tGa Y2(V2 - N)u -0(5d)

D(tv) + t 2 +~ t (v - yB u) - y )
a t y

1 22 + tGa-%( 7 2 - N)v - 1 (5e)
B ay

2I

(V2 - N)p = 2t2j(u,v)/B - a(tD)/at (5f)

B = t(v - uB ) along y = 1 (5g)

where

72 _ a2lax2 + B-a l2/aY2

' 2 ,2 F1 ' 2 2
N 2 - - 2 B Y a (o y B a

J(u,v) = Lx ay ay ax' and

B aB/ax, B = a B/ax , and B = /t

and

Ga = a g9V2  (Galileo number) (5h)

Q = q/g (dimensionless horizontal acceleration) (5i)

Equation (5c) defines the dimensionless dilatation, D = D /t g/a. Continuity

requires D 0 0. Equation (5g) is the kinematic condition for the position of

the free surface--it provides the governing equation for the gap function.

Terms representing the convection and diffusion of dilatation, apparent in the

dimensional pressure equation (If), have been dropped from the dimensionless
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version (5f). By numerical experiment, we found them to be unnecessary for

numerical stability, so only the transient dilatation term has been retained in

the dimensionless Poisson equation (5f). In both momentum equations (5d,e)

additional convective terms of the form

- yt[(B/B) - t(B'/B)u]a/ay

appear due to use of the coordinate transformation (5a). Information giving

the motion and shape of the free surface in physical space cannot be lost. In

the transformed space, since the free surface is both immobilized and

normalized, this information appears in the form of adultio,,al ter.,; in the

governing equations themselves. The (B/B)a/ay term represents a convective

effect due to actual movement of the free surface, while the (B /B) ua/0y term

(also appearing in the continuity equation 5C and in the pressure term of 5d)

rqpresriLs a convective effect due to the irregular shape of the free surface.

The N operator appearing in the momentum and Poisson equations (5d-f) repre-

sents a diffusive effect due to the irregular shape of the free surface. Note

that B, B , and B must be singly valued and well defined (one-to-one) for the

coordinate transformation (5a) and its inverse to be well behaved.

Only two similarity parameters appear in the dimensionless governing

equations. The Galileo number, Ga, is the ratio of gravitational to frictional

force, while Q is the dimensionless body acceleration in the x momentum

equations. The gravitational body acceleration in the y momentum equations is

normalized by the nondimensionalization to a unit magnitude.

Substitution of equations (5a,b) into (3a-d and f-i) produces the

dimensionless boundary conditions:

u,v = 0 along x = 0,1 and y = 0 (6a)

SB - - B- and -
= B v - B- along y = 1 (6b,c)

ay ax ay av 2
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'Bp(2u  ' 2 2
Y 2 t u ( _ Bu y2aGa t - + - auax~xa u -R =j2 BJYu

+ - along x =0,1 (6d)

Ga-"(t/B) 2 v  B along y 0

and p = 0 along y = 1 (6e,f)

2.4 Non-Singular Initial Conditions

Since the hydrostatic initial condition (2c) does not give the correct

pressure distribution at t 0+, it is necessary to determine it. This is done

oy examining the limiting forms of the governing equations (5d-g) and boundary

conditions (6a-f) corresponding to t -* 0+ . As t -+ 0+ , the governing equations

reduce to:

u = -p/ax - 0 and v = - (i/1)3p/ay - I (7a,b)

op = 0andB =0 (B (7cd)

where V2 = a2/ax2 + (I/52 )a2 /ay2 and

0 = b/a (initial aspect ratio) (7e)

while the boundary conditions (6b-e) simplify to:

av/ay = -oau/3x and au/oy = -Oav/ax along y = 1 (7f)

8p/3x = -Q along x = 0,1 and ap/ay = -1 along y = 0 (7g,h)

Boundary conditions (6a,f) are retained unchanged for the initial conditions.

Note the appearance of the third and last similarity parameter. (equation

7e). This parameter gives the initial ratio of fluid height to depth, before

the sloshing motion begins.

The elliptic nature of the initial pressure field is clearly shovn bv thm
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La Place equation (7c). It is subject to one Dirichlet boundary condition (6f)

and three Neumann Boundary conditions (7g,h). Through the pressure field, the

velocity field is also made elliptic in nature, a behavior which is not obvious

from the momentum equations (7a,b). The elliptic nature of the velocity field

can be made clearer by examining the streamfunction defined by u = -3f /ay

and v = af*/ax*. In dimensionless form, the streamfunction definition

becomes:

1 f
u =-- and v- + yBu (7i)

where f = f /(at ag. Cross differentiation of the momentum equations (7a,b)

and adding the results to eliminate the pressure results, upon use of (7i), in

a La Place equation for the streamfunction:

Vof = 0 (7j)

The no-slip boundary condition (6a) results in:

f = 0 along x = 0,1 and y = 0 (7k)

The first part of boundary condition (7f) is satisfied identically by

definition of the streamfunction. The second part of (7f) is more conveniently

replaced by using the momentum equation (7a) itself along the free surface.

The result is:

3f/ay = 00 along y = 1 (71)

The La Place equations for streamfunction (7j) and pressure (7c) subject

to the boundary conditions (7k,l) and (6f,7g,h) may be solved using the

classical method of separation of variables. The solution for streamfunction

may be differentiated as indicated in equation (7i) to yield the velocity

field. The results are:

f = E b sinX sinhY (8a)
m=m m m

M=O
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00

p = 1(l-y) + Q(1/2-x) - E b cosX coshY (8b)m:Om m m

u = -E bm(2m+l)rsinXmcoshYm (8c)
m=O

v = E b m(2m+l)tcosX msinhYm (8d)

where

bm = 40/(n 2(2m+l) 2cosh[(2m+l)n g) and

X = (2m+l)nx, Y = 0(2m+l)rEym m

The solutions (8b-d) provide the dimensionless initial conditions for the

fuil governing equations (5d-f). Note that (8c,d) satisfy the no-slip boundary

conditions (6a).

2.5 Steady State Condition

The ultimate steady state of the system may be considered a hydrostatic

state with respect to the combined body force acceleration - (g q). It

may be easily found in closed form by integrating the momentum equations

directly. In dimensionless form, the result is:

u,v + 0, B - S + Q(1/2-x) as t - (9a,b)

p -4 - y + Q(1/2 - x) as t -+ (9c)

These final conditions have been written as limits rather than equalities

because the system approaches them asymptotically, through the mechanism of

viscous damping.
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3. NUMERICAL METHOD AND COMPUTATIONAL PROCEDURE

The various derivatives appearing in the governing equations (5c-g) were

approximated by finite difference formulas based upon Taylor series expansions.

The resulting nonlinear algebraic equations in u, v, p, D, and B were solved

iteratively, using an implicit, essentially point Gauss-Seidel method. The

cross derivative term arising from the N diffusion operator and all source

terms were evaluated using information totally from the previous iteration

(Jacobi method). All convective terms were split up into a first order upward

difference plus a second order correction term. The upward difference was

evaluated using the Gauss-Seidel method while the correction terms were

evaluated using the Jacobi method. All diffusion terms were approximated uting

the standard central difference formula. A first order, forward time

difference was used for the unsteady terms.

A Iook at the momentum equations (c,d) reveals that there are two choices

for the Neumann boundary conditions for pressure along the container walls. In

particular, a tangential or a normal pressure gradient can be specified along

the walls. We experimented with both types, and found that the normal gradient

boundary conditions--as given in equations (3f,g)--are vastly supetior to the

analytically equivalent tangential gradients. Use of the tangential gradients

increased the number of iterations for convergence and even often caused

divergence of the iterations. We believe that this was due to poor spatial

resolutions in the boundary layers which form along the walls. Apparently, use

of th normal pressure gradients tends to minimize this problem. In an eftttt

to further enhance the speed of the algorithm. ,e examined the role of th,

spatially differentiated dilatation tetm:: in the pressure equation f) .

found t hat by retaining thc spat ial te '' r h - t rh- di 1It j - iol'I x -

marginally improved (that is, it appta hclid a vaIue ot rP m ,,ro Cll,')
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Negligible change ii, the number of iterations for convergence was observed.

Despite the slight increase in CPU time per iteration which resulted, we

elected to retain the spatial dilatation terms in the pressure Poisson equati,n

for most of the computations whose results are summarized in the next section.

In order to produce time accurate solutions for each timestep, all

dependent variables were iterated to a convergence criterion of

k+l k
k < (10)

max

where 0 = uvp, or B and k refers to the iteration number. kax is the

maximum value of j*kj occurring anywhere in the computational domain. A

convergence criterion of c = 10- 5 was used for variable increment grids vith

21x21 and 41x41 nodes. This value of c seemed to be the minimum value requitedI
-3)

to keep the dilatation, D, small (of order 10 ). The 21x21 grid was used nil'.

for trials with the lowest Ga and Q values. The 41x41 grid was used to pio-h,,<

most of the data in the following section. All of the dependent variable< _.,

under-relaxed. For interior nodes, relaxation values of 0.8 to ().9 and 0.-

were used for the pressure and velocities, respectively. For the piesslie

Neumann boundary conditions, a value of 0.5 was used for the relaxation

parameter. Along the free surface, a relaxation parameter of 0.5 ..a ,

the velocities.

A constant timestep of 6t = 0.01 was used in all trials. Thie: qii',

about 350 timesteps per period. The choice of timestep size 'ad

primarily by the desire to reduce overall (Pil time 1:4 ms;h a-, j--:iM ,

oiir method was fully implicit, it vasz p- iK] 1.. a

timesteps and still obtli, on' er - ' ' s "

(,inilated over all t 111cps) -.o i ,1

h- increased to the point .Iore i ,inJ p i in itt ,-n



time. We felt that 20 to 50 timesteps per period provided a reasonable minimum

time resolution. Our choice of stepsize thus represents a significant

improvement over the minimum criterion, aad consequently, we believe that the

time truncation error in our results is negligible.

For Ga = 104 about fifty to one hundred iterations per timestep were

required, on average, to produce a converged solution. More iterations were

required when the wave motion neared a stationary point (point of raximum

potential energy and minimum kinetic energy). Less iterations were required

when the free surface was passing through the final equilibrium position given

by equation (9b) (point of maximum kinetic energy and minimum potential

energy). Surprisingly, less iterations were also required early in the trial,

when the amplitude of the sloshing was largest. At later times even though

frictional effects acted to damp out fluid motion, the number of iterations

steadily increased. Finally, the number of iterations for convergence also

decreased with Ga. For the Ga = 104 trials, typically 3 to 4 hours of CPU time

were required on a NAS9160 (a 10-30 megaflop machine) to compute a solution to

a dimensionless time of 16.
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4. RESULTS AND DISCUSSION

A number of computational trials were executed, corresponding to the

following twelve sets of similarity parameters:

Ga = 10 4, = 0.5, and 0 = 0.1,0.2,0.3

Ga = 10 Q = 0.2, = 0.75 and 1.00

Q = 0.2, = 0.5, Ga = 103,105,106,107,108,109, and 1010

Since the Galileo number is inversely proportional to the square of

kinematic viscosity, Ga decreases as the fluid becomes more viscous. In order

to gain a feel for the value of Ga, Table 1 presents representative values of

it for various fluids at 20'C, assuming a = 0.1 m.

TABLE 1. Representative Values of Ga for Various

Fluids at 200 C assuming a = 0.1 m.

fluid I liquid Hg water air SAE 1OW oil glycerin

Ga 1012 1010 108 106 104

We present detailed results of the solution only for the trial with

Ga = 104, q = 0.2, and 1 = 0.5. This trial will be referred to as the standard

case throughout the remainder of the section. Limited, global information on

the rate of energy dissipation is presented for the remaining eleven trials.

4.1 Accuracy of the Solution and Verification

With the Inviscid Limit

Since our formulation (and finite differencing) is non-conservative, one

variable which can he monitored that immediate!y yields information on the

accuracy of the solution is the overall fluid volume. V. In diimensionless tlLfs

it is given by:
1

V = V/a 2 = {Bdx (Ila)

0
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Since the fluid is incompressible, the volume is constant. Thus equation (Ila)

should yield V = a in all trials at all times, whatever the shape of the

free-surface. In all trials, we have essentially observed that V > 0, albeit

only slightly. In the standard case (Ga = 104, Q = 0.2, and 0 = 0.5),

initially V drops below 0 by 0.001%, and then increases above 0 by 1.4% at a

dimensionless time of t = 1.98. At this moment, the fluid is near a point of

greatest potential energy and least kinetic energy (these extrema occur at

t = 1.96). Local maxima in the V error occur near successive points of energy

extrema, but these errors decay in magnitude as time increases--and the total

sloshing motion becomes more and more damped out. Inbetween the potential and

kinetic energy extrema, the V error drops considerably from its peak values at

the energy extrema. The error in fluid volume increases with increasing Ga

and/or decreasing 0, and/or increasing Q. For the trial with Ga = 101 0 (and 0

= 0.2, 0 = 0.5), the maximum error in V was 3.8%. For the trial with Q = 0.3

4
(and Ga = 104, 0 = 0.5), the maximum error in V was 3.2%, while for the trial

with 0 1.0 (and Ga = 104 , Q = 0.2) the maximum error was only 0.3%.

The period of oscillation of the numerical solution may also be compared

with a linearized analytical result [I1 for irrotational sloshing. This

analytical solution is valid in the triple limit Ga 4 -, Q -+ 0, and the

sloshing -* infinitesimal magnitude. The period of oscillation for the present

results is determined by examining the transient behavior of the

kinetic energy of the fluid, defined by:

?P 6I 2'U + V2)dV

1 -2 +99= QVq t t* udV + -o( - v )dV (i

The first term on the RHS of equation (11b) is the rate of york required to
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accelerate the fluid if it moved like a solid body. The dimensionless kinetic

energy is found by subtracting this work from equation (llb), and then

normalizing the resulting difference with respect to a gravitational kinetic

energ.y:

1 2 * 2 11RE - 2P~ 1 2 2
KE = 2 = f Jfu + (u +v ) Bdxdy (lic)a2-2t 2  0 O"0

pag t

This kinetic energy equation is appropriate for a frame of reference which

moves with the container. Note that as viscous damping causes the sloshing

motion to dissipate, that KE 4 0 whereas RE increases to infinity like

1 2 2 ,

jpVq t (as t 4 * ). The results of the comparison are shown in Table 2.

Despite the fairly large value of Q and the extreme viscosity of the fluid (low

Ga), the numerical result compares very favorably with the analytical result

11]. For the trial with 0 = 0.50, it predicts a period 2.2% longer than the

analytical result. With 0 = 1.0, the numerical result predicts a period which

is 1.1% longer. In order to assess the effects of large Q and low Ga,

additional trials were examined for their sloshing periods. These results are

shown in Table 3. The effects of Q (for Ga = 104 and 13 = 0.5) are seen to be

quite pronounced. When extrapolated back to 0 = 0, these data indicate a

period of 3.74, within 1.1% of the analytical result. The effect of Ga appears

to be less significant. As Ga + - (inviscid fluid limit), the period appears

to decrease slightly (less than 1%). When a correction for finite viscosity is

added (on top of the zero Q correction), the predicted period for Ga -+ -, Q -

0, and 0 = 0.5 drops to 3.72, which is only 0.5% longer than the analytical

result [lj. In order that the third limit condition of the analytical resK'It

be approximately satisfied, the periods listed in Tables 2 and 3 wetE

determined from the numerical solutions onDv at the ends of the tcials. ',:hen

the sloshing motion had damped out to the maX:imum extent. In all cases. -'e
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TABLE 2. Comparison of Sloshing Periods

0.50 0.75 1.00

Analytical result [1] 3.70 3.58 3.55

Present numerA cal result, 3.78 3.62 3.59
trial Ga = 10 and Q = 0.2

Percent error +2.2% +1.1% +1.1%

TABLE 3. Effect of Horizontal Acceleration and Fluid
Viscosity on Sloshing Period. Present Numerical
Results for 0 = 0.5.

Q

0.1 0.2 0.3

104 3.75 3.78 3.84

Ga 107 -- 3.79 --

1010 -- 3.76 --

noticed a finite amplitude (of the sloshing) effect on the sloshing period.

For trials with Q = 0.2 and 0 = 0.5, periods with large finite amplitudQ3 were

typically 1.0% larger than periods with very small amplitude motion, for 1010 >

4
Ga > 10

The numerical result for the trial for the standard case is also compared

with a potential flow solution. The potential flow solution, valid for

irrotational flow (Ga 4 - limit), was determined by numerically solving the La

Place equation for velocity potential . There i = U Zero tangential

velocity along the solid walls resulted in Neumann boundary conditions for t

around the container wall. At the free surface, Bernoulli's equation was used
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to provide an appropriate boundary condition for *. This potential flow

solution was formulated for a sudden acceleration, hence it is valid for finite

0 as well as for large amplitude sloshing. Figure 2 shows the comparison using

the average slope of the free surface. The slope has been normalized so that

its maximum value is 2 while the steady state value is 1. The periods are

again seen to be very similar. Note the viscous damping of the present

numerical result for the standard case, which is rapidly approaching steady

state.

4.2 Initial Conditions

Since the initial conditions (8a-d) are themselves a non-trivial part of

the overall solution, an example solution for them is depicted in Fig. 3. the

initial pressure field for Q 0 1 and 0 = 1, Fig. 3a, is clearly quite different

from the hydrostatic distribution which one is naively led to expect. The

initial velocity field is shown in Fig. 3b with a plot of lines of constant

streamfunction. Velocity vectors are everywhere tangential to lines of

constant streamfunction; overall they point leftward.

Taken together, Figs. 3a,b indicate that as soon as the sudden

acceleration is imparted to the container, there is a sudden loss of pressure

in the upper right corner, a sudden increase of pressure in the lower left

corner, and a net leftward migration of fluid. This overall pattern results in

the free surface falling in the right half of the container and rising in the

left half of the container.

4.3 Velocity and Pressure Fields

The detailed transient velocity' field for the standaLd :ase iS shevn in

Fig. 4. With the exception of Fig. 4a. the velocity ve ctor U = (ui vj)t is
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plotted. Since u and v are multiplied by dimensionless time, U is directly

proportional to the physical velocity (U = U*/ a). Fig. 4a shows the initial

velocity field U = u. vi (rather than U). This figure is analogous to the

streamfunction plot, Fig. 3b, only now the values of Q and 0 are somewhat less.

Fig. 4b again shows the initial velocity field, but now in terms of U. Since

t = 0, the velocity field is identically a zero field. All vectors are reduced

to points. Note that Fig. 4b effectively shows the node distribution of the

computational grid which was used. Nonzero velocity magnitudes appear only for

t > 0; and by t = 0.10, they are quite noticeable. As the velocity field

continues to grow in magnitude, a slight deformation in the free surface

becomes noticeable by t = 0.20. At a dimensionless time of t = 0.40, the

velocity field is approaching its maximum magnitude. At t = 0.80, the fluid is

near a maximum in kinetic energy and the deformation of the free surface is

becoming significant. Up to this point in time, the velocity field has

retained the same qualitative character, and looks much like the initial

condition, Fig. 4a. Beyond this time, the kinetic energy decreases as the

fluid approaches a state of maximum potential energy. By t = 1.51, small

recirculating regions appear in the lower corners of the container. At

t = 2.01, these recirculating regions have grown greatly in size, merged, and

now dominate the velocity field. only a small vestige of the initial flov

pattern remains in the fluid core. The fluid is near a state of maximum

potential energy and minimum kinetic energy. Figures 4i-k repeat the preceding

sequence of events, only in the reverse direction. At t = 2.51, the fluid is

again near a state of maximum kinetic energy, similar to Fig. 4e. Only noz. in

Fig. 4i, damping has considerably reduced the magnitude of the velocity

vectors. In Fig 4j, small regions of recirculation are again seen in the i',e
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corners of the container. Inbetween the times corresponding to Figs. 4j and k,

at t = 3.84, the fluid reaches a state of minimum kinetic energy--one period of

the slosh has been completed. In Fig. 4k, the flow has largely changed

direction again and resumed much of its initial character, as the second period

of the slosh gets underway. At t = 4.51, the fluid is again near a state of

maximum kinetic energy. The effect of viscous dissipation is even more obvious

than in Fig. 4i. The sloshing motion has been damped out sufficiently by t =

4.69 that only 6% of the initially available kinetic energy remains.

Consequently Fig. 41, at t = 4.51, shows the fluid close to its final steady

state, for which the free surface is a line with a slope of -Q. Although the

computation was carried out to a dimensionless time of t = 16.90, no new flow

physics is revealed for t > 4.51.

The transient pressure field for the standard case is shown in Fig. 5.

Here, isobars with a constant dimensionless pressure increment of 6p = 0.05 are

plotted. The initial pressure field is depicted in Fig. 5a. As was the case

fr the velocity field, note th- -esemblarc to the initial pressure

distribution depicted in Fig. 3a. In Fig. 5b, recall that the flow is near a

state of maximum kinetic energy. Note the bifurcation in the zero pressure

isobar (the free surface is at zero pressure) at the extreme right of the

diagram. The small triangular region defined by the two branches of the zero

isobar is a region of very slight negative pressure. We note that such a

region is physically possible so long as it is an interior region (which it is)

and so long as the physical pressure in this region does not drop below the

cavitation pressure. If the free surface pressure is somevhat greater than the

cavitation pressure, then this region of negative pressure does not pose all:

special problems. It is of interest to recognize that the pressure initial

condition, equation (8b). also predicts a tin' region of negative pressure in
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this corner of the flow field, if 0 is large enough. Although the sloshing has

really just started, the pressure field has largely adjusted itself so that

qualitatively it now looks very much like the final steady state field, which

is given in Fig. 5e (the kinetic energy has been dissipated by a factor of

about 105 at t = 16.90). The relatively minor adjustments to the pressure

field which do occur are confined to the vicinity of the free surface. Note

the persistance of the negative pressure region to Fig. 5c. Here, the fluid is

near a point of maximum potential energy. As in Fig. 5b, the right side of the

surface is falling (note that viscous drag along the right wall acts to retard

the motion of the surface locally). At t = 3.51, the edge of the free surface

along the right side of the container is now rising--and there is no region of

negative pressure. Curiously, no region of negative pressure develops along

the left ledge of the free surface, which is now falling. By t = 4.51, the

flow has reversed itself again (beginning of second period of sloshing), and

the free surface along the right wall is again falling. At this time, the

fluid is again near a point of maximum kinetic energy. The region of negative

pressure has reappeared, albeit much smaller.

4.4 Parametric Effects on Sloshing

From the earlier section on verification, the effects of Ga, 0, and i on

the sloshing period have already been noted (see Tables 2 and 3). In summary,

the period increases very slightly with decreasing Ga; increases slightly with

increasing Q; and increases somewhat more significantly with decreasing values

of 0. In this section the effects of the three similarity parameters on the

rate of viscous damping of the sloshing motion is examined.

Figure 6 presents results on the damping rate for three trials, each with

the same values of Ga and Q, but with different values of $. The figure
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presents the envelope of maximum kinetic energy KEmax as a function of time.

The states of KEmax are states in which the free surface approximates its final

steady state shape. Thus the fluid potential energy is minimized. For the

standard case, the first KEmax occur at dimensionless times of t = 0.87, 2.80,

and 4.69 (see Fig. 4). The most striking feature of Fig. 6 is that the damping

rate is exponential in time.

Despite the complexity of the fluid motions, in terms of the dissipation

of energy, a sloshing fluid behaves much like a simple damped pendulum. This

exponential decay has also been shown to be correct by an analytical solution

for viscous, infinitesimal, deep water waves [I. The other important point to

recognize from Fig. 6 is that while 0 has the most significant effect on the

period (causing the points of KE to spread out as time increases), it hasmax

very little effect on the slope of the KE envelope. Data from :th standardmax

case represents the other two trials very well.

The effect of Q on the envelope of KEmax is presented in Figure 7. The

figure is very similar to Fig. 6 and again shows the exponential decay of the

KEma x . While the value of Q does lead to some spreading in the times of KEmaxi

it is seen that the standard case represents the other two trials well. Thus

the value of 0 also has only a minor effect on the rate of viscous damping.

Figure 8 presents the effect of Ga, and hence fluid viscosicy, on the rate

of damping. As expected, the value of Ga has a tremendous effect, with the

rate of damping increasing as Ga decreases. Regression analysis was used to

determine the modulus of decay T, defined by the relation:

KE max = (lid)

The results of the regression analysis are summarized in Table 4. Note

the differences in significant figures in the t values for various Ga. The;

reflect actual differences in the precision vith vhich the T values vre
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determined. These differences in precision are due in part to the differences

in the duratl - of di ...L.onless time for which a trial vas e::z.cuted.

Although the four trials for Ga > 107 show a nice exponential type of

Table 4: Modulus of Decay, , as a Function of Ga. Regression
Analysis of Present Numerical Results for Q = 0.2 and
=0.5

Ga 103 104 105 106 10' 108 109 101 0

r 0.62 0.255 0.126 0.061 0.0352 0.023 0.018 0.0177

damping relationship for KEmax (t), we believe that the r values for Ga>107 , as

given in Table 4, may be far less accurate than they are precise (although this

is uncertain at present). This suspicion is based upon the long time (t > 30)

behavior of KEmax for the Ga = 107 and 1010 trials. In particular, the

numerical solution begins to show oscillation in the value of KE as themax

time increases. These oscillations became pronounced sooner (in time) as Ga

increases. The magnitude of the oscillations increase exponentially fast with

time for a given trial, leading us to believe that they are due to a numerical

error. These oscillations may be disczerned in the envelope for the Ga = 1010

trial in Fig. 8. They also exist in the Ga = 107 trial but are much more

subtle. As time increases beyond t = 30, the oscillations increase so much in

magnitude that tbo results obviously became physically incorrect--increases in

KE appear in the numerical results. At first, these increases occur in anmax

alternating pattern. From a given KE to the next, the value is seen tomax

decrease (normal behavior). Upon going to the next value of local maximum.

however, KE is seen to increase in value beyond the preceeding onc. Thz
max

next KEma x then again decreases in value, followed by an increase, and so on.

This has the effect of making the KEmax envelope "bumpy". When the alternating
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pattern in energy maximums first establishes itself, the oscillations are very

small and the KEmax still decrease, on average. But as the oscillations grow,

a point is reached where the KEmax grow very rapidly. Divergence of the

iterations follows shortly afterwards. For the Ga = 107 trial, the first

increase in KEmax does not occur until t = 59.83, well beyond the domain of

Fig. 8. For the Ga = 1010 trial, the time at which this occurs is t = 19.89.

For t > 30, the oscillations in KE ; grow so large that the iterations diverge

max

at t = 58.49.

Since T = t(Ga) only can be inferred from the information displayed in

Fig.'s 6-8, a plot of log vs. Log Ga can be used to deduce the functional

relationship (Ga). A simple linear relationship was observed -- but only for

7 7the trials with Ga < 10 . The Ga = 10 result was somewhat off the line, while

the Ga = 10 1 result was quite distant. The Ga = 108 and 109 trials produced

results at intermediate distances fru.. the linear relationship. For the

rpAsons given above, these four points were discarded, and the remaining points

were used for a linear regression analysis with the following result:

= 5.6Ga -0 .3 3  (lle)

Because the modulus of decay for the standard case is the most precise (and

ostensibly, most accurate) value listed in Table 4. it was double weighted -

the determination of T(Ga). Equation (lie) gives values of T which are in

error by about 5%, at most. It should be valid for the parameter range Ga >

10, Q < 1, and B 1

It is of interest to note the analytical solution for viscous, infini-

tesimal, deep water waves presented in 11]. predicts an exponential damping in

time for the displacement, n, of the free surface from its steady-state

(equilibrium) position. In dimensional thm. he mo ul! ,of de,," :ou r in

found to be proportional to the viscnsit'. T Nc. Since the fluid potentialI

energy is proportional to r2 and KE potential energy (via an energy balance).
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one is led to the result that Tr _ also. In terms of Galileo number, this

requires - - Ga -Y .

5. SUMMARY AND CONCLUSIONS

The problem of viscous sloshing in a rectangular container induced by a

sudden, constant horizontal acceleration is examined and solved using a

numerical finite difference method. Initially, the fluid is in a state of

hydrostatic equilibrium. The problem is characterized by a moving, irregularly

shaped free surface, and an initial singularity caused by a sudden change in

the pressure field from time t = 0- to t = 0+ . A coordinate transformation is

used to fix the container in a noninertial reference space. This transforma-

tion causes the translation in physical space due to the acceleration to appear

as an additional body force term in the governing equations (principle of

equivalence). A second coordinate transformation maps the free surface,

whatever its shape at any given moment of time, into a horizontal line. The

domain of analysis thus becomes the unit square. A third transformation of the

dependent variables regularizes the formulation as t 4 0+. An analytical

solution is then presented which uniquely d-fi"cs the initial coidition. Three

similarity parameters are found to govern the nature of solutions for the

problem. The Galileo number, Ga, is a measure of the ratio of gravitational to

frictional forces acting on the fluid. The dimensionless horizontal

acceleration, Q, gives the ratio of horizontal to gravitational accelerations.

The final parameter, 0, is the initial aspect ratio of the fluid (a - 0

implying container width >> initial depth of fluid when it was in a state of

hydrostatic equilibrium). Ga does not enter into the initial condition.

The present results indicate that rlith perid of slol;hing is least
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sensitive to the value of Ga, and depends most strongly upon the value of a.

The 8 effect is, however, mild, with the sloshing period decreasing somewhat as

1 increases. Results from an analytical solution (valid for triple limit; Ca

+ -, Q + 0, waves are infinitesimal in size) for the sloshing period agree

with the present numerical results to the order of one percent.

The rate of viscous damping is fairly insensitive to the values of Q and

8. The fluid kinetic energy is found to decay exponentially fast in time. -.,ith

a modulus of decay which is proportional to Ga-0 "3  The present results

are expected to be valid in the parameter range Ga > 103, Q - 1, and 6 - 1.

The qualitative nature of exponential decay agrees with an analytical

solution for viscous, deep water waves of infinitesimal magnitude. The

analytical solution, which is valid for the limits Ga >> 1, Q + 0, and 1 - 0

(with 8 >> wave amplitude); predicts a viscous dependency in which the modulus

of decay for the displcement of the free surface from its final equilibrium
-1/2

position is proportional to Ga

Detailed analysis of the transient pressure field indicates that regions

of low pressure may foim just below the free surface, along the container

walls. If the free surface pressure is sufficiently close to the fluid's vapor

pressure, cavitation may occur. This event becomes more likely as 0 is

increased.
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Figure 1. Geometry of the two-dimensional viscous sloshing model.
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FIgure 3. Initial conditions for 0 = 1 and 8 = 1. (a) pressure field, Ap =

0.05, (b) streamfunction field, ~f = 0.025.
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Study of 3-D Viscous Sloshing in Spherical

Containers

A. C. Kassinos J. .l Prusa

18 Sept 1989

Abstract

A model is deeloped to describe the rntion of a viscous fluid within

a partially filled moving spherical container. The container is underg ,ing a

motion characterictic of that experienced bv spin-stabilized space vehicles,

The incompressible three dimensional Navier-Stokes tquati,)ns are cast mit a

frame appropriate for the descriptin ,f the fluid motion and sIved using a

numerical technique The model is presented in detail and sample calcuilat, is

are given.
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1 INTRODUCTION

The sloshing of a viscous incompressible fluid within a partially filled liuvin .- i

ical container is being considered here. The fluid =loshing is induced by cian".-

that occur in the equilibrium pressure field within the fluid as a result ofA the :i,-

tion of the container. The container is assumed to be undergoing a 2eneral m .

characteristic of that experienced by spin-stabilized space vehicles.

The present work is motivated by the need to describe the complex iution m

occurs in liquid stores that are carried aboard spin-stabilized spacecraft. er:TaI-

configurations of the STAR-48 series of communication satellites have coin-I,tenr,',

demionst rated a nutational instability during the perigee burn. After iaunching froiii

the space shuttle the s;atellite's power assist module fires it, thruster to move the

,atellite out to a eovnchronous orbit. Sinusoidal oscillations about the pitch ani,!

yaw axis of the spacecraft. which have the same frequency but are out of pha-e l,

'H) degrees, have been observed to occur shortly after the application of this iitidrn

thrust. The v-ctor combination of these two vibrations gives rise to a nuta iM1

motion about th, -pin axis of the spacecraft which results in the destabilization ,t

the vehicle. It is believed that the nutating motion is initiated and iuitained kv

the -cmning that ,ccir' in the liquid stores in res.ponse to the lldtiet axial thrii'.

The imnediate prol)lew, has been tra liti cuallv resolved by -everelv retrictin ti-i

iltiln of the fuit through the use of lare., However. the caui-ef h, pri,

ha- rmained obcure because tile internal fluid iwtion is very difiqcult to ann..:e.



The analysis of the dynanmic behavior of fluids in mioving containers preserits

3 a difficult task. In general the modelling of the fluid motion requires the iue Of

non-inertial coordinate systems. thus resulting in a complicated et of governingl

equations. The presence of a free surface. another non-linearity, introduces- addi1-

I tional modelling complications. The domain on which the g overnirng eyuation- are,

3 solved, which is determined by the position of the free surface, IS not known a priori

and has to be determined 4s part of the solution. In 18xs1 Stearne 1. published

a theoretical result for the irrotational spin-up of an infinitely deep liquid. Lamb£ 2.in 945 usd alinaried naltical method to deterinre the mocde shape, andi

characteristic frequencies azsociated with the smiiall amplitude irrot at jonal slo ,hin~y

of a liquid in a rectangular container. The rapid dev:elopmients in the space and

I ii.,ile technologies that took place in the early 1966's spured an explosive initer-

3e ,t in understanding4 sloshi phenomena which lasted for approxinmately a decade,.

-Numierous paper we re published during t hi, era, the tuaj ri ty of which expne

on thle analyt ical wcork by L aitih to ncltide ot her 4eoinet ne-., 0 . Li , Or TIJ no;i r

3 erfccts t.7.S . The effects of vso dampling- were -T ii. [el experimewtally% ft c.\liri-

3(irical andr spherical conltainlers. b. altlhoii_,h Thle Ilse cf, hattie> a, lampvti1. deviC",

doiirted the miajority% Of the expeerietai xork at he, timew. A cnrhn

I 'unjinary Of most ,t' this eaily% work (-an 6e ftoind in .

3 Nl(ne recently. lit [9'', reprt pTiibhh-d I)Y -,aiiia. Na-:ina llrar

de0al-. %%ith tht- -ollitioni 4 'le t tree Lien jurtaltiet" C,. 1 :>i

Nurrihers in hrack, d,-sigmate Reu'r~m - 7 ! .'no F the pa -r



cal canister filled with fluid and undergoing spinning and nutating motions. I-he

model is simplified Jue to the absence of a free surface. In addition. only steady tate

solutions of highly viscous fluids in an aeroballistic frame of reference are considered.

A general model is presented here which may be used to study sloshing phenom-

ena under a variety of conditions. It allows for general translational and rotational

motions of the container as well as superimposed small amplitude vibrations. A

free surface tracking coordinate transformation technique is presented which allows

the free surface to be modelled under a variety of sloshinz conditions without any

modifications in the model.



2 MATHEMATICAL MODEL

The sloshing of a viscous fluid inside a moving spherical container is modelled using

first principles. Equations describing the conservation of mass and linear moment uin

are formulated in a coordinate system that is moving along with the container.

The selection of a body fixed coordinate system to describe the fluid motion wa.,

based on the simplicity of the resulting form of the boundary conditions and on the

straightforward interpretation of the numerical solution.

The motion of a fluid particle in an inertial frame of reference can be described

by the Navier-Stokes equations. The incompressible three dimensional form of the~e

equations can be written using index notation as

;:u ) 1 i~ ,'______,,
-- - - -, , -viV', l

it LX, p x'-)X, '-) x

- 0 12

where ;j, i the ah.oiute velocity of a fluid particle.

, i3 the acceleration due to gravity.

p is the static pre,,ure.

/, i- the fluid len-itv.

and v' is the kinemiatic vicositv )f The tiiid.

ia (t io,,v fixe'i c.,rdinlate -v terI. ntirmation pertiniii-o_ To lie T.,i,,l ,,I 11I ,

c,,itainer i- tran-lerr,(l fr,,m thie bouniarv o,ilitinm to the governing ettuatiA)ns it-

e.trt Term-. -h,'-e tru 11i are t,, e , iot,-r m i Y c,n i1 .rin th, Ilt n 4)t tle

G -



container, which is assumed to be attached to a moving spacecraft. with respect to

the inertial coordinate frame x.

2.1 Linearly Accelerating Coordinate System

The effects of the spacecraft acceleration on the fluid particles within the container

are introduced into the governing equations by considering the following transfor-

niation. Let rO denote a coordinate system that is moving with the spacecraft ! see

figure 1 and £denote its position with respect to the inertial coordinate sstem.

Introducing new coordinates and a new velocity defined as.

xt, - , 13 1

into equations I 1 and 2). where dotted quantities represent time derivatives, the

following set of equations results.

,?t u0 ,x0, p , o, t.0,, X,).

where j0, g.

Therefore. with the velo city deyIe wi th r>pete IT h nun-inertial t'r t I e. h

et,,ct of linear acceleration is to introjiuce ,.xtra teri , inlt( the .,,,-rnin , eq' Ilt on.

he,, terms act to mI)dilitv the holy force term> ,ich that :,,) now represent- ti",

net kodY force a a r,,it of the pacecrat't ,celeration and the aceleration due.T t,,

zr'iv I t v



2.2 Spinning Nutating Coordinate System.

The effects of spin stabilization and nutation can be captured by the following trans-

formation. Consider a coordinate system x, that is fixed on the spacecraft and thus

is spinning and nutating with respect to coordinate system .r0 . The instantaneous

angular orientation of the coordinate system x, with respect to x0 can be envi-

sioned to be the result of three successive rotations. The three angles of rotation

. i = 1.2.3. corresponding to the three successive rotations are known as the

Euler angles. In a right-hand coordinate system there are a total of twelve possible

sequences of rotations that can be used to define the given orientation of the r

coordinate system. The zyx convention used here defines the following sequence.

The ,r coordinate system is rotated counterclockwise by an angle L3 about the .

axis as shown in figure (2). The resulting intermediate coordinate system .r! is then

rotated counterclockwise by an angle t'. about the }t: axis to yield the coordinate

system labelled x,. A third counterclockwise rotation by an angle z', about the x:

axis yields the de ,ired - system.

The coordinates of any point in r, can then be related to its respective coordi

nates, in .P,) by

whlere represent, the transforniation teior cottainium the imetri-s iil S giren

iII the Appendix. The inetric- are obtained iroiii the gt-oiiettfy k " o if ure 1'2i and are

,generally products o" fitMiple tri)n,,ietri- t lion ins n terr -,i the Eiler inle .



Introducing a new velocity measured relative to the nutating coordinate system

Ut, -: Cd, 11Od - C'Id2 C-k X lk I "

into the governing equations (5.6) yields.

Ott I- 2.3, ul, - 3t ,xi, - .3,,rl,=

1 ,p __________

- =0 ,101

where 3. 61 k

and 31 .- ,,0J.

(onsequently. the rotation of the coordinate vsteni .r- with rep)ect tO .r0 re-tlt.

in the appearance of three new tvpet of terims in the t overnina equations. Ih, Teri

"..i, represent, the (orioli< acceleration effects experienced )v fluid parti,,>

a:, a result of the rotation of the axi. [he term -... repre-ent 'ent ri fitu.

accelerations effect,; induced by the tihe axial rotation. The tern 4.. r cail he

.lparat ed into tangential acceleration terin- and addlitifal ,entriftiial acelerat

t er" IG



2.3 Body Fixed Coordinate System

The spherical container enclosing the fluid is assumed to be attached to the flexible

frame of a moving spacecraft. Let h, denote the position vector from the orizin of

the nutating coordinate system x1 to the origin of the body fixed coordinate system

.r. which coincides with the center of the spherical container (see figure 2). Since

there is no relative rotation between coordinate systems x, and x. any changes

in the magnitude of h, are caused by the elasticity of the spacecraft frame. The

governing equations in the body fixed coordinate system are obtained by replacing

x, and I 1 by.

.., = x ,- ( Ll

and.

u 2, -- - , (12

in equations (9.10) to yield.

-' 23 ,, t - ., , -3,,j- 3, -h.
'r

__ 3,- 13

i i 1 , 0 1 4

where /I, = - ,

As a re-lit of this tran- forination. the body force tern j,, is niodified to refleci

thp accel-ration experienced by a fluil particle within the container as a result of

Hte m,,io~n induced by the elastic spacecraft frame.

G,)



2.4 Self Adjusting Body Fixed Coordinate System.

All the physical principles needed to describe the motion of a fluid particle within

the container are embodied in equations (13.14). However. the presence of a free

fluid surface introduces a nonlinearity into the model since it represents a boundary

ot unknown shape and position that has to be determined as part of the solution.

In order to describe the motion of the free surface by a kinematic condition. it-

position F needs to be expressed as a function of time. t. as well as two of the three

independent spatial coordinates ,2?. The choice of such a pair of spatial coordinates

must he carefully conldered to ensure that F remains single valued everywhere.

Since tne initial value of i'- is sGi-c-vhat arbitrary. h, can -be taken to be equal to

zero without any loss in generality. This would imply that the center of the spherical

container lies in the x, - .rt 3 plane. For a container that is rotating about the .-3

axis the direction of the motion of the bulk of the fluid will be along the r.: - r,

plane. However. neither of the two likely choices. Fjt.r 1 . r,) or Fit. . ).can

enure that F will remain single valued. Consquentl.,. , sclf adjuiing body fixe(l

coordinate system, labelled X3 in figure 1i3. is introduced. The coordinate sv-tem

. is defined by a single clockwise rotation by an an.le about The .r-2 axis. With

the po,-ition of the free surface described by F't-_ 22-V..3 the value f 'i: adjusted

ti ensure that F reiiiain, single valued.

The co)rdiniate., of a point with rep.,'- t,, the .elf adjlstin fram, e ., can ,

determiine'd from it, c,,rdiiates with re po,. - to framef, r., fr,,n.

C."il



where s:, is the transformation tensor given in the Appendix.

Replacing , in the governing equations and introducing a new velocity.

113s, = Sp ,-, (16)

yields the following set of governing equations in the self adjusting frame.

S 1 3, - f,.X.3k) -- (2\, f,j u3 , - Aia'U -niuh, =
Ot ('9r31

I Op "-)2

/3]113,

"1r3 ,

where f,, =

"\ I i j ( 3 f n, I n t ,, , I n s , : s ,, a

-\, = (3f j - 3 t j ).s,1

and 93, = 9?.j.

The new terms appearing in the governing equations are (tue to the rotation of

tihe axis. The X3 coordinate sYstem is rotating with respect to the .r, system but

the velocity u3 is still measured with respect to r, Thus, the 'oriolit- and r he

convection terms are modified to reflect this.

2.5 Poisson Equation for Pressure.

The pressure distribution within the fluid can be determined by the solution of a

Po, i on eqation which is derived from the momentuni equations. Differentiat in y

G 11



equation 17) with respect to .r3 , and contracting on n yields.

-1 _ ) p2 ( 3 . ?1 32 - J1 3( 13 .1- 1133 J"' ?I . .U, I

p -)X, 3iX3j

d 2x 3 , ,5 I, m\ 1

D Di D ,-"Dt- D ' - U3, - fk,, .. ) r3, 3 r , . 3 , j 1

where D represents the dilatation and is defined by

D =9 120
OD x 

3 ,

and the two dimensional Jacobians J,,( .4. B) are defined by

( ').4 0) B 0 B 0., 4
JJ(A. B) (.3 OB B

i x 3j OX 3 , ,')X3r

The dilatation terms in equation ( 19) which are ideally zero for an incompressible

fluid are retained in the above derivation because they are used to ensure the stability

of the numerical method.

2.6 Free Surface Conditions

The motion of the free surface is determined by a kinematic cridition. Thi5 -c,n-

dition, which was fir-t introduced by Lamb i. is based on tihe asutimpti,, t ha

fluid particles that lie on the free surface mtust remain there. Fkor The geomet r\ of

the present prolblem the position of the !ree surface F t..I... , can e calculatei

fromll.

ii1..
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However. the kinematic condition as formulated above is inviscid in nature. Con-

sequently. its use is inappropriate in the highly viscous region adjacent to the con-

tainer walls. The motion of the free surface along the container wall is determined

by a local momentum balance which incorporates viscous and surface tension effects

(see 12 for details).

The dynamic conditions at the free surface are obtained by requiring that the

normal and tangential stress components be continuous across the liquid-vapor in-

terface. The viscous stress components in the vapor phase are several orders of

magnitude smaller than those in the liquid phase. Consequently. these terms are

ignored. and the resulting dynamic conditions at the free surface are expressed in

terms of a local curvilinear coordinate system as.

normal stress:

tangential stresses:

,-__ - ,Il.. H 22

'U z = 0 ,2:

,. g = 0 , 4
Kri

where U,1 denotes t he velocity component norm'al to the tree ,urface and U-. and U-.

the two velocitV components tangent to the surface. The normal..,i . and tangential

coordinates. r, and . along the free surface are based on the following . et of unit

vectors. which are defined in terms of the unit vector- of the Yr. coordinate ,vsten.

G1:3



e 31 -Fe 2 - F3 I3 3

F1 - Fi

F2 3 1 -2 2

- FF - Fi-(1 - FW 3

The K~, represents the local curvatures of the free surface which are defined by

i-F,2 )3 2

wit h.

F F and F,~
Orx3. 'T]

The dynamic free surface conditions and the continuity equation are I')l t

provide boundary conditions for the pressure and the three velocity corniponet'l

aloniz the free surface.

2.7 Initial and Boundary Conditions

One of the advani ae of the Dody- fixedl coordinate vsteiii is that hie appropriate

boundary condit ions can he easily (letcrinincd. The velocit v, . .( hias been detineI1

ot hat the no0- ip1 con-mdition for a vi seopii ui d a long1 a wail ret ai ii- it, famtiliar f ,riii

0 akjn thle conitainier wall.

The pres sure boundarly conditions alon,. tiie container wvall are obtained by foriiiim

an expre-,mon t'fr hei rinal g4radient alo n, hfe wall trmin IIhe 1momentlnm equa t ,-.

(" II



The nurm-al stress condition along the free surface is further simplified by neglecting

the viscous terms. Thus at the free surface.

- P0  -- ()3{

where p, represents the pressure of the vapor phase.

Initially, at time t =0- . the fluid is motionless and the pressure is in equilibriumli

with the net body force experienced by the fluid as a result of the acceleration due

to gravity and linear and centrifugal acceleration components resultingz from the

motion of the container. The initial condition equations are obtained by setting.

tt3, 0

in the governing equations (1.81)to yield

33 - ' ln 3 i1
3,:3

The above equations can be s.olved to determine the pressure dist ribut ion withbin thle

fluid undler 4 atc cond1(1it ion,.

At time t -- 1 the motion of the container is altered ' uch that the niet body

force ex(perienced bY the fid a, a result of the container motin1 different thoin

hat pre~ent at time t I = ince the Hi'ld is miodlelled asit, rit~~il the

pre>,-ire field adj'it, to the new (7onditimi I~ i t alitaieolu vy Thlu. at Tille 0- .)

a new pre-s~ure (list ribition exists withini the fluid. Equlation, 0)1.121 can he ii ,ed

to determine the pressuire- field at t - H- - Mice the fluid 1, till tiirionle'-.

GIT



2.8 Nondimensionalization of the Governing Equations

The governing equations are nondimiensionalized according4 to th, following, charac-

teri-,tic scales:

* lengt h L -~a

* time (I~

* Velocity 14 Ig

where a represents thne radiu-s of the spherical container andI ; the accelerati1

due to gravity. The characteristic velocity scale. 11. is equivalent to the propagationl

,peedl determined from shallow water w~tvc: t hwry .A nondinlti sinat pressure i

(Ihr~ bY.

The (II ninsiunles>- gzroutp that ezierates from thenolliteisml atin

(;alileo number. (i .dIehEn ed as.

which re 1)re eiit>, a rittio of the -Yravitati)ral to the fifi ~tect,. The Isli eniileII--

( aleV nwinher ca;n il1o he viewedl a iri altaiogsius to) t he 'quare M, a R"% 1,,1

riliiuher kiaed (mi rli ' haciicteri.Stlc~li\ c: I



3 Numerical Method

The three dimensional equations of motion (levelope(i in the previous eclicn ;,ru,

solved using a numerical method to determine the motion of the fluid within fit,

sphericai container. An elliptic grid is used that conforms to the irregular. t10,

dependent shape of the fluid region. The governing equations are exr,-sst,(. in

terms of the generalize- grid coordinates ,ind solved using a second order acclrate

finite difference method. An outline of the numerical met hod and the computational

procedure is given.

3.1 Generalized Grid Coordinates

3 The accuracy of a nunerical olution is strongly dependent orn the selec icion of th,

,rfputat ional grid. This is particularl Y critical for moving boundarv pr,)hlem-

where tihe Iiape and posit i)n of the free boundary are .ke:'orxl i o r,

3 ,i er-nired as part of the solution.

! I;,.~~ne.rzdrzed zrid ,,,,rdinare>.. a-c ,*'nrat i en isin t h, . ,i~ ,. .vq .,,m i

Pro1,,-r 'l h, 5tl r-ts hYaf l Vho ri , , ii ,i iI lpe i rt1. , i, ,; -* a,

-.. . ~..

\1Dde tr i I

I
UF



adjacent grid point,; in the comiputational doinai' .~IS equal to 1unitv. TlI hidonItfe to)

s~iniplitv the finIte difference represent at ions_.

T he mapping of t he phNysical region onto thle co,li putatioital domnai n i, depicted III

figure (4). The point dlefined by the intersect ion of the x11 axis with the free suirface

is mapped onto the face of the ruhoidl (lefined by cl 0 . The botunidarv alonmz t ho

cont airner wall is niappedr onto the opposmite face of the cuhoidl at C F The

r 11 axis is niappedI 'nt o t he 0 plane while t lie free surface onto t he 'C'-

planie. F inailly. a cii t is taken along4 the plane diefined by t, .r, and the pt IT~Ii',

ir xi and this sect ten ui mapped onto thle C., anld thw :.2 C. ace>') lilt

The proceaure folluwetl in ,,Ilin4 thlese equation> i> Iinlular to) the one( (lec(rihed l i

I I . Equations, 314 are- tranrm~ned Into tilie colinputat tonal domainl hY Hitorchar'-

nM- the role of dependent andl independenit coo~rdhiate> midn iolxed ;in ii ntfe

di1 ference itet hod(. T Ie( onl Iy 1 _'ignI fi ca ri u le %-IatjI,)n fr ,it th Itoi)r( c t( 11re (Ie'c rI'-, i i ii

I 1 1, ihht an alebric 40t111jitiori P fir~t j-.t'( ,) app)rwxu lliato II ~I,, t(, th, t1

rod dt'grec 4 r I i i it v lomu tho III I'lhuie ~ ttt ino-i n- (. a r,

lioni ictermiined opiityfrumt he iipprtui unmitiod _,ridl ;ii' HIIi, 1, flo t



Governing Equations

The governing equations are transformed in terini of the generalized courdi ate.

to take the following form:

moment umn equat ions:

-, 113n 3 ,~ , 2 ~k~':]3 kl 33A '- l,'It ri h u j - ,] f c . 2)C

- 3 , f , ) - 1 , ' . , - , ,

Op0

- '1 , -,) 9 3 ., - ( , o - - , *3 5

continuitv:

13,

pressure equation:

2 1 , 0 2 .rj i ii

hi IreI.

I. " .. , . .



Sp =JD2 - r j. - 'j, 1:3j - 3J X ) .

- ( 02 D - OD ( .D,

with the dilatation. D. given by,

= 114

the two dimensional Jacobians in terms of , defined by.

(1):4 0 B 0' B .4J,, 1 .4. B ) = ,:- ,_ -; ;- -,

and the grid transformation mnetrics given by.

7, -

0q:

(j2

The kinematic condition at the free siurface. C -, ran be written in term -

Of tIe ,eneralized coordinate-, as.

iii F
-- - t, -- ! '" b

'F- -I:: u - . ,.r'.. - I: ./;: t I.r ,

,F

- i. - '. : ", - t I.r.a - tq~,. ( ... - fJ . .,' -1 .

The prs hr o ,undar ,',n~litlou alhms the cnwarer ,.THl. at t, ::

,il ainel ky uiing t chain-rdl, to ur i an ,x rep ir t,,r Q te ra ierit r n 0 ,

In],ollo;lli,-
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3.2 Finite Difference Method

The governing equations are approximated using an implicit second order accurate

finite difference scheme. Sample difference approximations are given below for ont-

of the terms in the governing equations. The time level is denoted by superscript

n white superscript rn is used to denote the iteration level. Subscripts i. j. and

k. are used to denote the position of a grid point in the c, . and '3 directiori -

respectively.

Time derivatives are differenced using a forward difference as in.

- n ,, n" -
, .C t ii

the Iiffl sion teritis are differenced usin,4 eir,red (Iifference of tihe torm.

M I' - t i l e " ' t ai - -t - t j 4 4 t/
)2 -i 

j  
- .'-I * "

k d l ' { t h e c o n v e c t i v e t r n i -a r e ( i t h e r e i l e ,j V 'i n ~ - a t w ,v, - t e 1 ) h I t , i ~ t l e r e n c e , ,[ tm i

.I, 
.t - .

--!- -.. .. ~



where Ef, and C6 represent second order correction termis that are added to the

upwind differences to obtain centered. second order accurate difference approxixila

tions. They are defined by.

a-i m I m~r--m ni"

n -

It has been demionstrated that by evaluating the second order correction terms

at the previous iteration level. m .the secondl order accuracy of a centered (lifferelice

is etanedwhie te rsulings~sem f finite difference equations become, moure

diagonally dominant (see -12' for detailsi

The Jacobian of the generalized grid transformiation vanishes along the x.,' axis'.

This corresponds to a sIngularity in the governing equations and it reuuire, the

special treatment of the equations along the X31 axis; .A" a res1 ult, two different

procedlures were identified for obtaining the values of the depenident variable, along

the .r,, axis. These involve the use of a locally rect angular vtemof co-ordila? e-

or mat ching. Although hot h procedures appearedl to work equiallY well, thie match-

im procedure wa , ;elected because of its, siniplicit v. ( 'on.seqient lv. the lepenfllifl

variables lo~ th .r.-ai are ov- Yrequiring that the variable and~ it!,i~

derivative remiai n continuous, acros)s th li, axis. T his in be accuti pli, eo: I )%lv

QIP ()ft Ihe fo-Illowing! p11eid0-boiind-arv 'uii1tP Wi.

.1'~ '' for U



UpI1±for T I 7

-k -

where .4 denotes any of the dependent variables, u3 1 - 32. u1,3. p. or F. and ) i,

used to denote the circumferential angle corresponding to the grid section identified

by k along which c3 is constant. Note that k, is used to denote the grid section

which is displaced by 1 0 degrees in the circumferential direction from the section

denoted by k.

3.3 Computational Procedure

The resulting set of finite difference equations is solved iteratively using the G;auls.-

Siedel procedure. An outline of the computational procedure is given. With the

solltilnn converg.ed at time I identified a.- time level a . the following sequence of

steps is taken to advance the solution to the next time level. 71 - 1:

1. The value of time is adjusted to the ! - I level such that t " - .t.

2. I'ing the converged solution at time level a the kinemartic condition eqpariN

11 ) is solved explicithv to obtain the new free surface p,-irin. F'

Fith- value, of the varioll- paraiiietor, describing the p,.,,itioI of rhe c'ontairp'r.

i. and I? . are 1i dated. ,nt ints r. ". K . a Id pc a re the awii

I p at ed.

1. Ba''d on Tl rnw p,.iiun ol tf th free- -urtace, F"- . e , -lvral, ,h

I ra'kin ant l i c ;( adi, ste, . ,ch t hat I he C) ,r(It-t I Iv ' r , Ta!

) '



follow tLte center of graiky of the Hulu. Coefficients f. . \2 andl q,

that (lependl on are updated.

A.. new computational grid t hat conforms to the shape of the fluid definedl

by P-1 is obtained by solving equations- .34). The generalized coordinate

metrics. q1. are updated.

6. The velocities at the wall are set equal to zero accordIns to the no slip coiL-

tion 129). Velocity values at all interior points are calculated from the tinlile

dlifference repres entmaion of equations .The dynainic conlit ions an([

tinuitv are used to calculate the velucitv values alone the tree srfme. \Ahue,

along the r,31 axis are calculated accring to the mat chins: condition, At.M.

7.The (dilat ation. [D . is calculated at all grid points usinn equation 140.

The pre~su re in et equal to zero a!'-one t he free u rface accr'lna tor condi t C

1i.Pre- irp values at A the inrorior points are calcumlateud using the innI

difference repre~-ettaio of the pr-r equation I, pre, . re va. H''

Alunt the comainer wall are calonde! W- lhmindarv Cuunltion ' 12,. I 'h,

:u1atchin-g condit ions new pres-vro- o o,e arw cakwhi ie an r W- r ax-

- 0!,I) t o N i ar repe'-ate I unII fti I o *: tii i h ,III-)II r le 11" tj ,e Ht I I

)r e .r P . ,T t lit, con ereo cet' ,r ,rr



4 Sample Results and Discussion.

The model described in the previous sections was used to generate results for two

cases which will be presented here. The first case. case-A. involved the simulation of

the resulting fluid flow in a spherical container of radius a = 7.41 cm. and half-filled

with liquid glycerin at 21.1 degrees Celsius. when the container is impulsively spun

about its axis of symmetry. The second case. case-B, involved the simulation of the

flow that results within the same container when the spin axis is located 24.10 cm

away from the container axis of svmnietry. Both of these cases were selected as a first

step in evaluating the model because ot the relatively uncomplicated flow regimes

that result under these conditions. The first case allows for the evaluation of the

three dimensional model under conditions for which the resulting flow is essentially

two dimensional. The geometry of the second case was selected to allow for future

comparisons with experimental data from a test rig.

Case A: Two Dimensional Spin-up.

The flow of ilycerin in a half-filled spherical container i> ,,nsidered here. Initially. at

tite t - 1 . the container i., motionles and the !lycerin i- i a rate, hvdrr,tatI,

e uilibrit mi. .\t tunile t tie 0. the ,containler htwgi- t,, rtiltfe ahout it- axi, of

",III ilfT .rv I .X ,1 h t hat .

II ft r t

¢. _

. f ,r



%%here the di, ensionless apQrvetocit 'Is equal to Q 0.19 636. Which corresporidV

to approximtately 54 .5 rpm. Inst ant aneouiv. at time f - the pre,.snre diotribu-

ion wit hin the fluid a(Ijust5 I t self to reflect thle cent rifugal ac('elerat loll eXperienol~

bV fluid particles as a result of the ;udden rot at ion. The change inl the pressure- fie-ld

causes the fluid to begi4n to oscillate about t he new eo uilibrjilini po it ion tunt il it I-

broug ht to rest by viscous dissi pation1.

The governing equations were solved to dletermine the rulnz lug i n liio in wi-

the values of t h filown paramleters >et equtal to:

t. 0 for 1 .2..

b. 0 for 1 I. 2.i

Mnd the value oithe urface trackin, aiile eyi to:

Thle Value oif the ilI i , i I) lIe- i o i il , :i: I r r r ptut tI) - ~- I nIiit ':.

I it P rei,e :t fit~ ol lv~ i ! v ;it !1-, I %



dimensional nature of the flwfield was demionst rated verv well by the numleric'll

solution. Less than one percent variation with circumferential position was detected

in any of the v-aluies of the dependent variables.

The resultingl flow within the container is depicted in figure .5). The velocitv

field along the r2 l - .1" 3 plane is plotted for five different values, of diiniensionles

time. t. At time t -=0-. the flid is still motionless. This is depicted in figure i 5

were the solid line at -C'_3 = 0 represents the initial position of the free >urface g iven

hby:

F(0 . x..rV 33 ) 0

and the dashed line represents the equilibrii urn posit ion of the free . urface, which is_

a paraboloid given by:

FIXJ'3 2,fl ( -332 3xL l-

\vhiere C., i>, a conist ant detertmined anialyt Wcallyv from a gluhal ia , coiist raiiTT.

The >ud(11lenl rotaition 4f The Container caii~e the pre,,>iire dltrihiit i itIIP

fiii~ to irop To level, helok\ those cletermiied bYthe hi\ r,) tm i ThItnce iw;irTi,

'pill axis. anld to l'-ee>eccd the hlvdr.>,tatic valule> for pint locatod a~ tr'uI

the ;pin axl . Inl re!ii r reecii;z l e hid h( I i 1t :;ill !l'Ar th r cu r ,'I

The conrairter ai t,, rlP rietr Tile wall. I 11c- 1" hteN l'11'. \ohi'\i t1 IW

fr ~ ~ ~ .I inI~ir he titiid tlu"" 'Xri iuil oo he ri N

ptrliiie> ne r thew centler of I he -()TT;i 111r 1100., In I l ( vii %%-rd a ii.I ut w~trI i - ; 11



;S igmificantly weaker. The fluid continue.- to move past the equilibrium p-,iti,-)n

and by time t = 1.60 it has slowed down and the flow pattern begins to rever-,

itelf. Phis is ,-hown in figure (.c! and more -c lea r l v in hgure 5dl. where at t = 2. i

the fluid is mioving back toward the center of the container. The most signihcan

flow remains along the free surface with the fluid near the bott,)n of the cuntaiiier

undergoing a weak recirculating motion..At time t = 3.20. figure I e,. the fluiji ha.,

nearly completed one full cycle as it moves back toward its initial position. T ie

actual Ilimensionles period exhibited by the fluid wa- approxiinately ,qual t,) ;.24.

fie fluid oscillations decav a a result A the viscous di->ipatioii. the effect-, )

which are shown in figlre ,. Here. ....,. which i, defi ne bd .

F7 0. F r I

and it represent> a iiea.ure ot the ro,,t mnean -qiart, dex T i ,f 'ito h ree

p, -i I1tt 1 rom the eq ,ili brium i n w i ,t, 1,[tt vi ,r~ u time. Initil;lIv. it 'ii, ,

p .... - ual To oe. Vli, repro ent, tie tiliaxnI ui , :! (i. i , u ,' til l'. 1

1 a i i i I i - I .' ir '' r , ;t
- 

- , .2 i't* '", Ti r *

t t' r r I I I, t t

rI



Case B: Three Dimensional Spini-up.

A scod esewascoputed using the samte parameters; as, in case- A %%ithl the

exception of hl. For this case, the value of the dimensionless parameter h! was et

equal to.

hI=:3.252

This indicates that the center of the spherical container is located away froim the

,pin axis. r, 3. at Li = h,.

The centrifugal acceleration experienced by fluid particles a-, a result cf the

.)U(den rot at ion of the container is now proportional to

The cent rifulgal acceleration effects are st ronaer for this case clue to the po'it ioi ()t

he c:ontai ner relative to) the spin axis;. ~o e etl.ter~li ~dwfedi

lon,_,er synmmietrical ahwiut the i~axis. The equiliriumii 1p()it ion of the free, suirt~w

hie y.

F 3~r.~i

A he"re foncet 1,ai il a con'liant detertiliel ;ialvt ill% fr in a aih,i)al tia dl

Ih ~I,, 11,~~iii 'f Th fijlii \VtiTh the 'uTtaI~ier I- Iepcid li 7

F l_,ine~in~ raphi, al rePjr,-, ait (d t .1" II, t Ii II I ne 'tHe -III

lit -lij)C4 ~ie:ret iirtc' v eptedK iI~ Kr i w tnl 'i



lines. The xj coordinate YMwtelu and the initial positin ,4 the free -urfacp air,

the container wall are hown in da.-hed lire-. The -pherical crtaimnr " t honi

I t. i h," tdtI Iiiio - I he tiree dIii -ii ,,i ,l hatpe d he I, ,rree -,ir Ai, , ,. il

would be seen by an observer rotatine along wii the- >.phrical ,'ntainer t.ueh iiat

As position reniains along a line 4. degreen abe the horizwal .r ."' plane . ,I,

45 ienre. bet .,en the negative .r2 axi- and te positive r2? ax. The po,i ,,

the container relative t, the stationarv .r,, coordinate ysteli i. -h,,wr in The 'apt, - -

,,I Op of fiure 17 ). The lirection of observatonin alsoiniiatld Kv he arrow. IW

iritial poilioi 4t the tree -iritce. at time t - in 'hwn ill ,,ri ,lre t . Ihe :inl .

in re.pons- to the alen centrifiigal acceleration re uiltin froi the n ton , '

c(n(tainer. hegin, to ni,,e away rmil the pin axis. hni h treWe -u rra,' riw-- ;h,

th, port ion oft the coit ailer wall that i- tle atart- .ert away !t,,Iil !he -pill Xi ;. ,

(-.in- to drorp alon the p,"oin 4 the wvail tat i o ,' r to lh, pie l ai,,I>. l t-

,it"rL. de i ei,, iin iuur, ,71) n vhere i T,,- rh,, , tr ee -171 . r;,,' I- - , :.

I-. - 1 .lire .7 X ,h ie pmjtl1 1 rii ii tree ifta , i ' .a t r '

w wtere T"l e fiI I ro I e e I I r t tie rrit p ithirl.

.e h' - : :r Te 7 Ii ti Ia I.



3III a'-n~ tide ct the cenit ri fm~al accelerat Ion a tt lie t wo ide, o I it, c( nt airier Lj cle;, r

shown iii ternis (-)I t he po it ion of t he free surface and( t he direct in 4, he Teui

I vec tor s

The resutlts presented here were igenerated usingz a co'niputl at i-n!gud wit

I nde> in the radial direc tion, I I n~odes in he azi' mut h ai Idirec t io, an11d 2 1 [p d", 2i

the ci rcumiferential di rection. . ase- A req ui red a total oit .,uh~ir, )f Il -P tlii "

a A\ IX P O1~. an IBM compatible miainframre '11pliter with a 'nu~n pe

I ~ ~of approxim~ately 10 Nltop,;. to hre solved to a tIiiit~ i e )C f f U

a time >tep of' -- t -0.112. ( ase-B , reqJuired a total of 6.32 hwir- of ( '1 tilk"

tea!;i a value of .0 1 using the ,amie , ii~e stepie

3 *A '-Vilowledlgm~eits

Vie \wthur, woiilfi iike ;tcknowiwl.'d.,o tho -uipporrtaie fr':ii ieo A\I- i',si

I ~ fC-, it' 'iiiC]'iti ti h 'A> 1 1upu~ mwih Ik f-Fu CCIto1':;I

Iip l ito i t !'- 'a 1p ~ *e ;a1(I1 t-',

VidW
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APPENDIX:

The poition of a given poiart in the nutating coordinate svsteill .r- C'an bere

to its respective coorclinates IT the .c0, coordlinate syte h.

where the mnet tics of the t ranstornat ion in terzn of the t hree Eule-r anriglv, L r

whee ere.' sln, j and(l

Tie' transtoririation fron' ne P, to the x. _ -urdtliiate strI- i dte Crlibel t)%.

ltr li Tiletr it' a-,,-C defined r
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