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1 INTRODUCTION

The EDISON project is one of developing computational models capable of creative reasoning and problem-solving
with respect to mechanical devices. The overall approach has been that of representing devices as symbolic
structures (i.c. a naive mechanics approach). The focus of our research has been on representational and processing
constructs to support the following cognitive tasks: (1) comprehension of natural language text describing
mechanical devices, (2) simulation of device behavior through manipulating symbolic representations of device
motions, (3) improvisation through adaptiag one device for use in an alternate domain, and (4} device invention
through mutation of device features. These four tasks serve to test the viability of EDISON device representations.

In carrying out this research, we hévc been influenced both by the computational and psvchological literature.

1.1. Related Computational Approaches
There are four areas of computational modeling from which the EDISON project has drawn inspiration:

(1) Qualitative physics: By using symbolic {(versus numerical) models, qualitative reasoning systems, e¢.g. [Hayes,
1978], [DeKleer and Brown, 1983], enable simulations at higher levels of abstraction. Computational reasoning
systems utilizing these models have been developed to describe and simulate objects in various physical domains
{e.g. fluid-mechanics [Kuipers, 1986}, electrical engineering [Granacki and Parker, 1986), and thermodynamics
[Forbus, 1983]).

(2) Natural Language Processing (NLP) for comprehension and invention: A system canaot be inventive if u
cannot uncerstand concepts involving devices, such as their functions, component configurations, and behaviors.
There has been some NLP research in understanding the use of objects in narrative settings [Dyer, 1983], [Lehnert,
1978]), and in reasoning about object composition and function [Rieger, 1985], (Wasserman and Lebowitz, 1983].
Natural language processing methods have also been developed to address issues specifically associated with
physical descriptions [Lebowitz, 1985] [Granacki and Parker, 1986]. The issue of invention has also been addresscd
in NLP, through examing the task of story invention [Mueller, 1987] [Turner, 1985].

(3) Memory Organization for Case-Based Recali: Device representations reside in an episodic memory and a major
aspect of invention is the recall of relevant device components, based on situational and functional indices. Case-
based reasoning systems, e.g. [Kolodner, 1984], [Lebowitz, 1980], [Pazzani, 1988], [Hammond, 1989], solve
problems by recalling relevant cases and then adapting them to the situation at hand. Thus.the organization and
indexing structures of episodic memory are critical for problem solving.

(4) Automated Discovery: Systems have been developed to create concepts from first principles, e.g.[Lenat, 1976],
{Lenat, 1983], and [Coyne et al., 1987}, to perform iterative design [Sembugamoorthy and Chandrasekaran, 1986],
{Sriram and Maher, 1986), [Ulrich, 1987], [Navinchandra and Sycara, 1989), and to reason about new mechanisms by
analogy [Falkenhainer, 1986], or from functional descriptions [Doyle, 1989].

1.2. Related Psychological Work

Psychologicai models have been proposed to describe physical reasoning capabilities in humans, from an
experimental framework. For cxample, psychological models have been developed for physical concept
classification [Rosch, 1978], [Murphy and Medin, 1985] and development [Metz, 1985]. The representations that
people use to understand the physical environment (their naive mental model) have been studied extensively
[Gentner, 1983], [McCloskey, 1983], [Norman, 1983}, {Kempton, 1986). Other models describe performance
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associated with language comprehension [Bartlett, 1932], [Ausubel, 1960], {Kozminsky, 1977] and problem-solving
tasks (Kintsch, 1986, Kintsch, 1988]. Many models have addressed memory access [ Thomson and Tulving, 1970},
[Tulving, 1972}, [Craik and Tulving, 1975], {Glenberg, 1979], retrieval performance [{Smith et al., 1978], [Smith,
1979], [Bjork, 1988], [Bjork and Bjork, 1988], and organization [Tulving, 1983]. Experimentation has been studied as
a developmenial process in leamning [Bullock et al., 1982], and {Klahr and Wallace, 1976], and design creativity in
children and adults have been studied in [DeBono, 1980], and [Dietterich, 1986], respectively.

1.3. Integration: A Goal of EDISON Project

When the four research areas mentioned above are considered collectively, the representational and processing needs
of our research show similarities with, and gaps in, existing research (center of figure 1).
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Figure 1: An invention model must combine abilities in each of four research domains: natural language processing,
mechanical reasoning, problem-solving, and creativity. Authors of representative research are shown in each area. Our
research domain is the intersection of all four research domains.

Critical to the systems in all four areas in figure 1 is the knowledge representation which supports their
implementation, along with the processes of knowledge retrieval and application required in each task domain.
Each of the above psychological models and computational systems has addressed important issues in their
respective task domains. However, no computational (or experimental) model has been developed to address the
mechanical invcntion problem directly. Toward this end we chose to study the domain of simple mechanical
devices and how they are comprehended and used in real-life situations by people with little or no technical
training (i.e. naive mechanics). We believe that this goal can be achieved through an understanding of how
everyday objects, such as can-openers, nail-clippers, doors, and mousetraps are represented and reasoned about.

Our objective has been to construct a model Jor representing and reasorning about mechanical devices, and to
illustrate the usefulness of the model with computational experiments in comprehension, simulation,
improvisation, and invention.

1.4. Publications Resuiting from EDISON Research

During the period of ONR funding, our research has resulted in a number of publications on knowledge
representation [Dyer et al., 1987a), [Hodges et al., 19871, understanding mechanical descriptions {Dyer et al., 1987b],
object experimentation and mutation [Dyer et al., 1986], situation comprehension {Dyer et al., in press], (Hodges.
1989}, and associated memory models [Hodges, 1988], and {Lange et al., 1989]. The most recent publications,




[Hodges 1989] and [Lange et al. 1989), are attached as an appendix to this report. Hodges is currently writing his
Ph.D. Dissertation. We anticipate that this document will be completed within the next 8 months. Upon
completion, it will be delivered to ONR as a report.

2 EDISON ARCHITECTURE

The EDISON system, shown in figure 2, is comprised of eight components:
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Figure 2: The EDISON process model. Input and output are designated by narrow dotted lines. Conuwollers are
represented by rounded rectangles, and memories are represented by rectangles. Communication between memories is
designated by thick, solid lines. Communication between memories and con'rcllers is designated by thick, broken
lines. The episodic memory (EPM) is not explicitly illustrated but can be considered similar to WM.

1. Semantic and Situation Memory (S§SM): Devices and device-related situations are organized into a memory
whereby they can be retrieved and reasoned about. Devices and situations are both frame-like knowledge
structures which organize associated causal inferences.

2. Working Memory (WM): During a parse, intermediate conceptua! meanings arc piaced onto a local memoery
called WM. This memory remains in effect until a sentence is disambiguated.

3. Conceptual Analyzer (CA): Textual input is processed word by word by the conceptual analyzer. Each word is
potentially associated with many semantic structures in SSM. These potential structures compete for ihe
word meaning. During parsing the words are presented and disambiguated from the local context. The results
are placed onto WM. When a sentence is entirely parsed the conceptual structures remaining on WM are
compared to SSM to disambiguate the overall meaning.

4. Language Processing and Reasoning Rules: During conceptual analysis rules are needed to comprehend text.
Three types, for word-sense disambiguation, clausal reference, and sentential disambiguation, are used.

5. Episodic Memory (EPM). The current conceptualization, regardless of task, is placed onto EPM. This
represents the system’s mental model of the text or goal.

6. Conceptual Planner (CP): Problem-solvirg is controlled nsing an agenda and rules just as the CA.

7. Plunning Memory (PM): During problem-solving tasks, situations and planning-related knowledge is retricved
from SSM and placed onto PM, much the same as WM for parsing. This local memory is used as a blackboard
for reasoning, and results are placed onto EPM.




8. Plan and Object Adaptation Rules: During problem solving, rules are needed to choose between plans, to modify
plans or objects, to perform simulations or experiments.

EDISON is designed to function in one of two modes: language comprehension and problem-solving. In language
comprehension mode, EDISON receives textual input which is passed to the conceptual analyzer. From there, an
initial comparison to SSM is made for word-sense disambiguation and the result is placed onto WM. When the
sentence is fully input, the partially-instantiated structures in WM are used as retrieval cues in SSM for sentential
disambiguation. The overall result is returned in EPM as a conceptual output. Although figure 2 shows NL ques-
tion/answering and generation, these are not implemented in the system at present. In problem-solving mode,
EDISON receives a conceptual goal to the conceptual planner. The conceptual goal is used as a retrieval cue to SSM,
and the situations and objects retrieved are placed onto PM. The CP then coordinates further analysis and
retrievals in much the same way as the CA and WM for language. The resuit is also placed onto EPM.

Language comprehension, experimentation, and improvisation tasks all rely on a conceptual representation and a
memory of devices and experiences which can be accessed and modified. The experimentation subsystem recognizes
and predicts behavior, or flaws, in device function. It may apply plan modifications to gain new information or
remove design flaws. The improvisation subsystem adapts, combines, and mutates device-related situations to
produce novel device representations.

2.1 Representing Object Use and Function

We describe objects at two abstraction levels, behavioral and intertional. Representing object behavior amounts to
a description of the causal factors effecting state changes and how they support object function. Representing
object use involves a description of the plans in which objects are used, and the goals which they help to achieve.

The representational model is comprised of three components: (1) a behavioral compenent which describes the
interactions of simple objects, (2) a machine component which describes the functional interactions of objects
which comprise devices, and (3) a plan component which describes object-use for achieving goals in context. These
components are diagramed in figure 3. Intentionally, objects are used in plans to achieve specific goals. Object use
is effected through actions/motions, resulting in observable state changes. Behaviorally, objects are perturbed and
undergo physical process transformations, resulting in the same states (if the plan is appropriately applied). Plans
and actions differ from functions and physical processes in intentionality and variability. A physical (or
behavioral) process describes a series of state changes in space and timc, and is independent of agency (who is using
the object) and context of use.

Figure 3 also illustrates a knowledge dependency graph between representational structures in EDISON. Causality
is defined between linked structures. For example, object function is comprised of a sequence of behavioral
process primitives (BPPs) which describe object behavior. The dotted link between function and BPPs illustrates
that there may be more than one pathway described between the two. BPPs are enabled by object physical and
relational properties (such as size, location, and material), and result in state changes.

The links illustrated in figure 3 can be followed bidirectionally, and have inverse link names which aren’t
illustrated in the figure. For example, if a circular (shaped) object enables a rolling (Move) BPP, the BPP is
enabled-by the object shape. In addition to enablement-type links there are disablement links which also are not
shown. These will be described later. Finally, two links (i-.: a..d-by and terminated-by) describe the states

bounding object function. These are not shown in the figure. v - i~ :xing adopted in EDISON augments that in
[Dyer, 1983).




Figure 3: EDISON knowledge dependency graph. The upper block illustrates the dependencies between object uses
(plans) of MPs in intentional knowledge structures (goals and actions). The lower block illustrates the dependencies
between MP function and the behavioral process primitives (BPPs) which effect state changes. Machine primitives
(MPs) are representational structures for describing device composition, function, and use. Links are shown as
unidirectional but are bidirectional. Settings and properties describe environmental and object states, respectively.
Dotted lines with arrows show flow of causality. Dotted lines without arrows represent non-direct causality. Solid
lines are equivalence links.
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2.2. Knowledge Primitives in Mechanical Reasoning

The EDISON model utilizes conceptual primitives to represent the knowledge and reasoning associated with
mechanical objects. Primitives represent a categorization level which enables broad concept classification with
simple, basic patterns. For this reason the use of primitives has been effective for constructing computational
reasoning models. For example, in conceptual dependency (CD, [Schank, 1977]) actions are knowledge primitives
describing causal interactions between intentional agents. Actions can be composed to describe complex
intentional behavior (such as scripts, plans, and goals).

In EDISON we recognize that reasoning about objects occurs at both inientional and behavioral abstraction levels,
and that both must be maintained in order to support the reasoning abilities of naive mechanics. To illustrate, when
an actor uses a door to enter a room he might turn the doorknob and pull on the door. Tuming and pulling are
examples of PROPEL actions which resu’t in door movement and an open (door) state. To describe object function
EDISON must be able to recognize that an actor’s actions serve to initiate door functionality, and that the causal
relationsiaps which occur internal to the doorknob/door device result in the behavior which the actor observes. It
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Figure 4: Mechanical decomposition in EDISON. All devices are composed of machine primitives related through
process primitives and relational characteristics. This level is used for high-level functional prediction. Machine
primitives are decomposed to simple objects and their behavior in process primitives. This level is used for
recognition and debugging. Simple objects are described by their physical characteristics. ’

is simply another level of detail, but the fact that the initial and final states are the same requires that the same
overall inferences regarding object use and function be consistent between abstraction levels. Moreover, the fact
that the actor turns the doorknob and that the result is an applied force on the doorknob, which initiates doorknob
rotation, suggests that causal behavior and inferences be continuous between abstraction levels. Obviously people
don't spend their time thinking about doorknob rotation when they want to enter a room. They know how 1o use a
door and they do so. However, when a door is locked or or jammed most people are capable of reasoning and
explaining the behavior. Bullock, Gelman, and Baillargeon have discussed the developmental aspects of causal
reasoning in [Bullock et al., 1982]. They present a number of experiments which suggest both use and function
reasoning capabilities in children and adults.

We introduce primitives which describe simple behavioral interactions, called behavioral process primitives
(BPPs). BPPs are analogous 10 actions in that they are causally related to state changes. There are two differences:
BPPs describe temporal dependencies, and BPPs are not dependent on agency. We also introduce primitives which
describe generalized knowledge and reasoning associated with objects. These are called simple machine primitives
(MPs), and are analogous to scripts in that they organize BPPs (as plans organize actions) with specific object
characteristics. The manner in which object behavior and function are organized to describe complex devices and
behavior is depicted in figure 4.

2.3 Causal Interactions Between Simple Objects

In EDISON, all objects decompose to simple objects of two types: some amorphous STUFF (e.g. gas, liquid, goo), and
LINKAGES. LINKAGES are objects comprised of material capable of transmitting force along [at least] one of its
dimensional axes. The behavior of simple objects is affected in three ways: by physical characteristics, by
relational characteristics, and by composition. An object’s physical characteristics include its material properties,
shape, size, and location. Relational characteristics describe topological relationships between objects (e.g.
collinear, parallel, offset), and placement of objects with respect to one another. Object composition describes
object subcomponents (such as the engine’s cooling system, or the belt in a pulley configuration).




Physical characteristics describe causal dependencies between an object and its behavior, and are helpful in
recogni.ing, predicting, and constraining object functionality. For example, a class of generalized locations (called
regions) is introduced to account for functional object locations. Consider the two circular objects in figure 5.

BICYCLE-WHEEL: BOWL:

(phys-obj BICYCLE-WHEEL (phys-obj FRUIT-BOWL
is-a WHEEL-AXLE ig-a CONTAINER
has-phys BW-RIM has-phys FB-RIM
has-phys BW-AXLE has-phys FB-BASE
has-phys BW-CENTER) has-phys FB-INSIDE)

(region BW-RIM (region FB-RIM
is-a EDGE is-a EDGE

Figure §: Both wheels and bowls are objects with circular edges. The rim orientation helps to infer the likely function
of the object. A vertically-oriented rim is associated with rolling, while a horizontally-oriented rim is associated with
containment. Has-phys is a link relating objects and their physical characteristics. The regions axle, rim, center, base,
and inside are characteristics. Has-rel is a link relating objects. The orientations vertical and horizon:al are relations.

has-rel VERTICAL) has-rel HORIZONTAL)
All circular objects have an edge region which defines a circle. If the object is oriented such that the edge is in a
vertical plane (¢.g. a BICYCLE-WHEEL), then we tend to assume that the object is used for rolling. If the edge is
oriented in the horizontal plane (e.g. a FRUIT-BOWL), then we tend to assume that the object is used for
containment. Thus, in this example, by recognizing a single region and its orientation we can make inferences about
an object’s potential functionality.

2.4 Behavioral Process Primitives - BPPs

Qualitative reasoning systems utilize generalized experiential knowledge of physical behavior to support non-
quantitative reasoning about object behavior. Qualitative models describe object behavior as causal dependencies
between objects. Any physical interaction which results in object behavioral dependencies is called a behavioral
process. A behavioral process is a knowledge structure which describes object physical (and relational)
characteristics and how they affect time-dependent state changes. Processes are represented according to the Forbus
qualitative process (QP) theory. In this model, processes have five roles: objects, physical preconditions,
behavioral preconditions, influences, and resuiting states [Forbus, 1983].

The EDISON model describes physical interactions in terms of five behavioral process primiuves (BPPs):
CONSTRAIN, MOVE, TRANSFORM, STORE, and DEFORM. CONSTRAIN and MOVE represent the most simple
processes, and the others are combinations of these as shown in table 1. BPPs have three characteristics useful for
computational reasoning:

1. BPPs support qualitative inferences and simulation

2. BPP exhibit inheritaice.

3. BPPs superpose to describe complex physical behavior.




Qualitative Behavioral Inferences: Each BPP can be recognized from the qualitatively different physical states
they effect, as shown in table 1.

f)ependencies Causal Relationship (results-in)

Consirain none 2 physical constraint

Move Constrain I physical position

Transform | Constrain, Move 2 applied force or motion dimension, direction, or magnitude
Store Transform 1 elastic size, shape, and intemal energy

Deform Store 2 plastic size and shape

Table 1: Behavioral process primitives (BPPs). BPPs differ primarily in their resulting states and process
dependencies. CONSTRAINs, TRANSFORMs, and DEFORMs always involve two objects, MOVEs and STOREs involve
one.

If an effect is observed then the process can also be inferred. Likewise, if the process can be recognized from the
physical attributes, then the effect can be predicted. For example, suppose that an object is moving along and
suddenly stops. Given the new constraint state for the object we can infer (using table 1, row 1) that some process
has occurred which disables object motion and constrains the object in this dimension and direction.

All CONSTRAIN processes result in object constraints for specific dimensions and directions. Since all BPPs
depend oni the CONSTRAIN process, each process is effected for some dimension and direction. Dimensionality is
applied as force or constraint states. Consider the MOVE process, which describes object motion. MOVE in a
dimension and direction is enabled-by constraint freedom in that dimension and direction. The MOVE is initiated-
by an unbalanced force state in the same dimension and direction. The MOVE resulis-in a position state change, also
in that dimension and direction .

Process Generality: The organization of BPPs is hierarchical, so that specializing any process role constrains the
inferences that can be made regarding the process and the affected objects. We will illustrate this relationship
with the CONSTRAIN processes because they affect all other processes. There are three CONSTRAIN types in
EDISON: contact, interfere, and cornect. Contact is the least-defined CONSTRAIN, is effected by two objects
sharing the same position, and results in constraint states for each object in opposite directions along the contact
dimension. Interfere is a specialization ot contact where the resulting constraint state effects the entire dimension.
Connect is a specialization of interfere where a fastener is used to effect the interference. Table 2 illustrates a few
CONSTRAIN specializations.

—

I Name ! Dimension | 'pre | Relational | Fastener
Support | Vertical Contact above none

Hang | Vertical Contact below none

Fit 7dim Interfere | none none

Tie 7dim Connect none Rope
Bolt 7dim Connect none Bolt/Nut

Table 2: CONSTRAIN specializations. Support and Hang are contact processes which differ in the object’s center of
gravity is above or below the other, respectively. Fit is a contact in which one object is constrained by another along
an entire dimension (?dim) but they are the only objects. Tie and Bolt are connect processes because they require a
fastener to effect the constraint states.

Table 2 describes patterns that can be used to reason about objects in contact. If a book is on a table, then we can
wifer that it is supported by the table. If a picture hangs from a wall we infer that the bulk of its weight is below
the nail. By specializing these processes the inferences which can be made regarding object participation in other
processes is further defined. At the same time, the object inherits inferences from the generalized process.

Process Assumptions: In EDISON we define two assumptions which affect process reasoning: (1) enabled
nrecesses continue until otherwise acted upon, and (2) objects are free to move in a dimension and direction unless
otherwise constrained. These assumptions, and the composition of BPPs to describe complex physical behavior are
illustrated in figure 6.




Figure 6 shows the CONSTRAIN process constrain:interfere instantiated for a screwdriver prying
function on a silver-polish can lid (SP-Can-Lid). The screwdriver-tip size being smaller than the sp-can-
slot results in the screwdriver~tip sharing positions with the sp-can-1id-1ip, and the
screwdriver-body sharing positions with the sp-can=-1ip. The first process assumption states that while
constrain:contact-react and constrain:contact-pivot are enabled each object has a censtraint
state. The second assumption states that each constraint state disables screwdriver participation in a MOVE
process in the dimension and direction of the other object unless the other object also participates in the MOVE
process. The effect of each contact iu figure 6 is to block screwdriver movement in one direction in its along-
width dimension.

The second process assumption states that objects are free to participate in MOVE processes unless otherwise
CONSTRAINed. Because the objects are only in contact, when either constrain:contact process is disabled
the object can again participate in a MOVE process, in the specified dimension and direction. Thus, when the sp-
Can-Lid is removed from the SP-Can, the Screwdriver will again be able to move in its along-height
dimension, positive direction.
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Figure 6: Contact and Interference CONSTRAIN processes instantiated for silver-polish type can (sp-can-lid) prying
with a screwdriver. The upper diagram illustrates the causal affect of screwdriver and SP-Can physical characteristics
on the contact processes required for prying and SP-Can-Lid motion. The lower diagram pictorially illustrates the
relationships in the upper diagram.

Behavior Superposition: When objects interact taeir behaviors accumulate. In the example above, the processes
constrain:contact-react and constrain:contact-pivot superpose. Each contact process in
figure 6 affects the acrewdriver inits along-width dimens..n, near the same location and in opposite
directions. The effect is to eliminate the possibility of screwdriver motion along the entire dimension at that
location and time.

2.5. Object Function: Causally-Sequenced BPPs

Complex object behavior can be described by multiple BPPs linked in causal sequences. We call such sequences
object functions. In addition to process ecnablements, each function is initiated-by, and terminated-by, physical
states. These states are often boundary values. Consider the opening [function] of a can. The function is initiated by
the force state resulting from an agent pulling, or pushing, on some PRY-OBJECT. The function is enabled by the
‘closed’ can state and, regardless of how ‘open’ the user wants the can, will terminate when the can-lid is fully
removed. Using bounding states aids in predicting object behavior, as well as explaining when object function has
backfired. These concepts are illustrated in figure 7.
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action Grasp
phys Screwdriver-Handle

state-anables
tunction Pry-Cpen
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phys1 Screwdriver-Handle
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process Move:Linear
state-onables phys-oby SP-Can-Lid

action Grasp state-disabies
phys Screwdriver-Handle

process Con:Contact
~TRuREdn [ e obit SP-Can-Lid
phys-obj2 SP-Can-Vessel

siate OPEN
property Location
phys-oby SP-Can

snables
S e

Figure 7: Representing screwdriver Pry-Object functions: the left side shows the high-level (I/O and enablement only)
dependencies for the closing function; the right side also shows the low-level (process) for the opening function. Both
functions are shown with variables bound to screwdriver and silver polish can parts and regions. Process dimensions
are not shown, and function terminating states are not shown indexed 10 their functions. The state-enables link is a
shorthand for (results-in STATE enables).

The Pry-Open and Pound-Closed screwdriver functions shown in figure 7 describe different ways that processes are
rcasoned about in EDISON. The Pound-Closed function shown on the left details only the functional enablements,
initiating and terminating states. This amounts to the QPEN SP-Can state, the problem-solver’s placement of the
SP-Can-Lid onto the SP-Can-Vessel (not shown), the action propeling the Screwdriver-Handle, and
the CLOSED SP-Can state. This reasoning level is generally used when predicting behavior of recognized or
known objects. The Pry-Open function shown on the right side of figure 7 describes the underlying process
sequence comprised of Con:Contact, Tran: Transmit, Con:Contact, Tran:Magnify,Move:Linear,
and Con:Contact BPPs. The process level description supports more detailed reasoning and prediction about the
Screwdriver as a PRY-OBJECT and SP-Can behavior. Decomposing screwdriver function representation o the
process level supports four deep reasoning requirements:

1. Infering and predicting object behavior
2. Explaining object malfunction
3. Reasoning about simple temporal relationships

4 . Limiting, or bounding, states to object function

11




1. Infer: ‘ng Object Beh- .or: BPP and functional lcvel representations are used in EDISON to reason about objecte
from different perspectives. BPPs describe behavior »f object regions. EDISON can make predictions of device
behavior given only limited knowledge. If an object is known to be participating in a process but the regions aren’t
specified, then general inferences can be made about the process (enablement, resulting states, physical
characteristics). For example, when a screwdriver is mentioned in text we expect some reference to the Pound-
Closed or Pry-Open screw.:-iver functions. Given an event in either function EDISON can predict the processes, and
resulting states, which are temporally local to the known event. For cxample, if EDISON knows that the Pry-Open
function is active and that force has been transmitted from the Screwdriver to the SP-Can, then the resulting
Pry-Open state is inferred.

When object regions are specified EDISON can trace the ‘flow’ of force and motion from process to process. Given a
state in the overall object functicn, EDISON infers which process segment is active and predicts the expected state
sequence Referring to the previous example, if EDISON knows that the Pry-Open function is active and tha: force
has been transmitted from the S-rewdriver~Tiptothe 3SP~Can-Lid~Lip, then [at least] partial enablement
of Tran:Magnify is inferred, and EDISON predicts the magnified force at SP~Can~-Lid-Lip.

2. Explanations of Object Malfunction: EDISON can use the same relationships to explain behavior. Consider the
situation in figure 7 whe~ Move:Linear is disabled. EDISON is able to explain this unexpected behavior by
noticing that its enablements weren’t satisfied, and by comparing the current instantiations in Tran:Magnify to
those in a successful situation.

3. Temporal Relationships: There are two temporal relation types illustrated in the Pry-Open process sequence:
sequential and parallel. Often processes result in states which themselves enable other processes. this is
sequential betavior and can be reasoned about by tracig the causal links between the processes. For example,
Con:Contact between the Screwdriver-Tip and SP-Car.-Lip enables the process Tran: Transmit
between same. At the same time, Con: Contact between the Screwdriver-Body and SP-Can~Lid-Lip
cnables the process Tran: Transmit between same. Because the two Con: Contact processes are enabled at the
same time this second Tran: Transmit becomes a Tran:Magnify. This second relationship is a parallel one,
because it describes relationships which occur at the same time. During process recognition EDISON uses rules to
specialize a process as much as possible, so first the transmit is recognized and then the context for magnify is
checked and the magnify is recognized. I will address these rules when the the process of BPP recognition is
introduced.

4. Bounding Object Function: The information represented in figure 7 enables EDISON to recognize motion of the
SP-Can-Lid away from the SP-Can-Vessel as part of an opening plan, to associate opening with the Pry-
Open function, and to predict that the can will be opened. The ‘open’ and ‘closed’ states bound the function and are
uscd by EDISON to make inferences about planning. For example, if a Open-Can plan is vxecuted and the open state
is not realized, then a planner sees this as a planning failure. EDISON recognizes the initiated Pry-Object function
but doesn’t recognize the terminating ‘open’ state. At this point the function can be traced at the process level to
cxplain the plan failure and to debug the plan.

2.6. Machine Primitives - MPs

Ir physical mechanics two mechanisms describe all purely mechanical behavior, the lever and the inclined-plane
{Alonso and Finn, 1970]. The U.S. Navy extends this 1o a set of six commorly used devices; levers, wheels, gears,
pulleys, inclined-planes, and screws. [n EDISON every mechanical device can be decomposed to combinations of
cleven machine primitives (MPs): LINKAGES, LEVERS, WHEEL-AXLES, GEARS, PULLEYS, BEARINGS,
PLANES, BLADES, SCREWS, SPRINGS, and CONTAINERS. Euch MP represents a specific configuration (object
composition, physicai characteristics, relational characteristics) and set of BPPs as illustrated in figure 4. Each
MP is also minimally a LINKAGE object, so the function of each MP minimally describes the TRANSFORM
(transmit) BPP. The physical relationships between MPs is shown on table 3. Machine primitives have threce
characteristics which affect.their general use:

1. MPs exhibit inheritance.
2. MPs can be combined to describe more complex devices.

3. MP functions superpose.




Machines are Hierarchically Ordered: The definition of MPs provides a framework for reasoning about objects
and devices which utilizes a common representational structure and set of inferences. LINKAGEs (for example
clubs, digging sticks, pokers and the like [Oswalt, 19761) are the most primitive machines. The function of

LINKAGEs: is to transmit or translate forces and velocities. All MPs derive from LINKAGEs (table 3).

MP " Type "~ Physical Characteristics Regions
Linkage Linkage Matenal: Elastic in dimension Appl, React
Spring Linkage Matenal: Elastc in dimension Appl, React
Container Linkage Region: Inner/Outer Surfaces Appl, React
Lever Linkage Region: Pivot Appl, Pivot, React
Wheel-Axle | Lever Shape: Circular Axle, Body, Edge
Beanng Wheel-Axle Shape: Spherical or Cylindncal Center, Surface
Gear Wheel-Axle Region; Tooth, Compositon: Chain Axle, Body, Tooth
Pulley Wheel-Axle Region: Slot, Composition: Rope or Belt Axle, Body, Slot
Plane Linkage Shape: Wedge Appl, Angle, Edge
Blade Plane Altribute: Sharp Appl, Angle, Edge
Screw Plane, Wheel-Axle Shape: Cylindrical or Conical Thread, Center

Table 3: Machine Primitive (MP) classification. All machines arise from a Linkage object, and branch into Lever,
Plane, Spring, or Container specializations.

For example, from table 3 LEVERs are defined as LINKAGEs with a pivot. The fundamental difference is that
LEVER function involves force or speed magnification instead of transmission or translation. Thus LEVERs and
their derivatives affect the mechanism of mechanical advantage with the BPP TRANSFORM:MAGNIFY. Consider
a stick. A stick can be used as a LINKAGE MP (a POKE-OBJECT) to push objects at some distance. By introducing a
fulcrum the same stick can be used as a LEVER MP (a PRY-OBIJECT) to pry objects apart. The type of input is
changed and the the resulting state is qualitatively different. Consider now a screwdriver. A screwdriver is a
WHEEL-AXLE MP because it transforms force (and motion) from one radius (the screwdniver handle) to another
(the screwdriver tip), thereby magnifying the applied force. The use of the screwdriver in this capacity, as a
SCREW-OBIJECT, can be inferred from the associated function’s resulting state. The WHEEL-AXLE is a derivative
of the LEVER MP, so the screwdriver can also be used as a PRY-OBJECT. Likewise the screwdriver can be used as a
POKE-OBJECT. Regardless of its use, the inferences associated with LINKAGE MPs can be made of the screwdriver
used as a WHEEL-AXLE because they are hierarchically defined.

Different objects can instantiate MPs. The result is that similar inferences can be made regarding their behavior,
For example, consider the screwdriver and claw-hammer depicted in figure 8 as instantiations of the LEVER MP as
used in the Pry-Object function. Each MP is described by regions which define generalized I/O and connection
locations. Since LINKAGEs are used for transmitting and translating force, and motion, they are described by two
regions; an application point (or appl) and a reaction point (react). The LEVER MP specializes the LINKAGE
definition by adding a pivot region, so every LEVER-OBJECT will have three regions (appl, pivot, and react). The
middle box in figure 8 shows how screwdriver and claw-hammer regions (upper left and right boxes, respectively)
instantiatc LEVER-OBJECT regions.

The lower box in figure 8 shows the BPP sequence for a generic PRY-OBJECT function. Using these representation
structures and relations, inferences about screwdriver and claw-hammer use as PRY-OBJECTS can be made. For
example, the claw-hammer may not satisfy the Constrain: £it requirement for prying a paint-can lid whereas a
screwdriver would. Another point is that there is no reason why screwdriver and claw-hammer regions cannot be
applied as LEVER-OBJECT regions in different ways.
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Figure 8: A screwdriver and a claw-hammer are both instances of the machine primitive. LEVER. The representation

requires three regions: an appl, or application point, a pivot, and a react, or reaction point.
screwdriver and hammer are instantiated as the LEVER regions.

ways.
illustrated.

Different regions on the

Note that these could be instantiated in different
The process sequence describing the LEVER function associated with TRANSFORM:MAGNIFY is also

Machines are Composable: Most of the objects we usc on an everyday basis represent MP compositions. In
reasoning atout why a composite device works there is an implicit understanding of the objects which comprise the
device. Consider the configuration of MPs in a common household device, the CRANK-CAN-OPENER (figure 9).
is comprised of 7 (4 different) primitives: two LEVERs, two GEARs, two
WHEEL-AXLEs, and a BLADE. EDISON is able to describe, simulate, and use each unique machine separately.

The CRANK-CAN-QOPENER (CCO)

Figure 9: Machine primitives comprise more complex devices as in the CRANK-CAN-CPENER.

cach component can be reasoned about independently.

As unique machines
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Figure 10: The CRANK-CAN-OPENER as a composition of machines. Flow of force and motion occurs at regional
locations. Thin arrow’ed lines represent input to the device, while solid lines represent connectivity. Dotted lines
represent shared roles across object boundaries. The actions illustrated represent normal application of CCO can-
opening functionality.

The representational composition of the MPs which describe the CCO is shown in figure 10. The machines are
shown with their regional roles. Given instantiations for these roles each MP function can be instantiated and
rcasoned about. Figure 10 describes functional connectivity between CCO MPs. This representation leaves the
interpretation of device function wide open. For example, the three actions associated with the (nominal) Cut-
Open function, Propel:Press at CCO-Handlel and CCO-Handle2, and Propel: Turn at CCO-Crank, are
shown. No mention is made of a can or when the different actions are applied. This information is part of the
open(can) plan. Thus, if another object is placed between the handles, and they are pressed together, the individual
LEVER-OBIJECT functions can be effected on the object without consideration for the other MPs in the CCO. This
raises a point. How do the different MP functions compose?

Figure 10 illustrates two points associated with MP connection. First, we depict the sharing of regions between
two WHEEL-AXLE configurations. The MPs associated with the CCO~CRANK, CCO-HOLD-GEAR, and CCO-
HOLD-DISK all share the same axle region. In this device (CCO) the axle region is an autonomous object so the
MPs, themselves, are part compositions. Thus any force or motion which affects one MP simultaneously affects
all three. In the figure this is represented as a dotted .ne between axles. The same is true for the pivot region of
the cco-har.dles, and for the axle region of the CCO-CUTTER-GEAR and CCO-CUTTER-DISK. The other point is
that MP connection is loosely defined so that a device can be visualized by moving MPs around. As long as the MP
regions make functional sense an object can be described.

Objects are often designed for a specific function. The physical characteristics which are so-tailored can be used to
infer functional-specificity (and constrain other interpretations) regardless of other potential functions the object
might have. For example, the CCO-CUTTER-DISK is designed for cutting even though it is a WHEEL-AXLE
MP, figure 11.
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CCO-CUTTER-DISK: CCO-HANDLEL:

(phys-obj CCO-CUTTER-DISK (phys—-obj CCO-HANDLEl

is-a WHEEL~AXLE is-a LINKAGE

part-of CRANK~CAN-QOPENER part-of CRANK-CAN-OPENER
has-phys CCO-CUTTER~AXLE has-phys CCO-HANDLE1-END
has-phys CCO-CUTTER-CENTER has-phys CCO-HANDLE1-HOLE)

has-phys CCO-CUTTER~EDGE
has-fun CCO-CUTTER-DISK-CUT-FUN)

(region CCO-CUTTER-EDGE (region CCO-HANDLEl-END
is-a EDGE is-a END
has-attribute ?SHARP) has-attribute BLUNT)

Figure 11: EDISON Representations for the CCO~CUTTER-DISX and CCO-HANDLEI objects in CRANK-CAN-
OPENER. These representations illustrate regional characteristics and their functional specificity.

Figure 11 shows the CCO-CUTTER-DISK edge (the WHEEL-AXLE region) being sharp. When a naive mechanic
sees a sharp object they infer that the object is used for cutting. In EDISON a regional attribute overrides other
physical characteristics. Despite the fact that the CCO-CUTTER-DISK is circular and has an axle, EDISON first
views it as a BLADE MP. Similarly the CCO~-HANDLEL, CCO-HANDLEZ2, and CCO-CRANK all have blunt ends.
This makes them particularly useful as handles but doesn’t obviate their use as LEVERs or WHEEL-AXLEs.

Devices can be described as compositions of MPs, but how are MP configurations interpreted? Are there an infinite
number of device combinations? Consider the devices that the CRANK-CAN-OPENER is used to effect. Can their
overall function be described as that of a machine primitive? When the CRANK-CAN-OPENER is used to crack
nuts, or to pound nails, we can view it as different types of generalized LEVERs (different orientations of appl,
pivot, and react regions).

Now consider a clockwork, such as that described in {Nielsen, 1989). If we try 1o reason about the clockwork as a
sequence of unique states we see that even the most simple child’s (transparent) clock is an intractable reasoning
task. But the clockwork can be considered a generalized GEAR (a GEAR composition, like a gearbox) which takes
some rotational motion and produces some [other] rotational motion. By considering the clockwork as a composite
GEAR the computational (cognitive) effort required to understand what it does, and how it works, is greatly
reduced. At the MP reasoning level EDISON considers each GEAR pair in the clockwork. EDISON makes inferences
about the direction and magnitude of forces and motions transmitted between the gears by considering the input
force direction and the relative number of teeth. If there are 10 gears in the clockwork, then EDISON considers 9
gear pairs and makes 18 inferences (direction and magnitude for each pair). Thus EDISON can only determine which
direction a clock hand will turn, and its relative speed with respect to the any particular gear. We believe this is
ample for the reasoning that naive mechanics appear capable of. When EDISON considers the clockwork as a
generalized Gear only two inferences are made: that the device can change the direction and magnitude of rota-
tionally applied force and motion.

Machine Functions Superpose: When introducing BPPs we described behavioral superposition as an additive
effect of one object’s behavior upon another. As unique objects each MP can be connected to another object and the
sequenced process-level behaviors superpose. For example, no matter how many objects we connect together in
some dimension they must all move as one object. Similarly, the functions of objects superpose when MPs are
connected. If a stick is used as a POKE-OBJECT and a saw is used as a CUT-OBJECT, the two objects can be
connected to cut at an extended distance (e.g. tree branches). Whatever forces are applied to the stick appl region are
transmitted to the saw and effected at its cutting edge. Similarly, whatever movement the stick makes the saw
will sce exaggerated due to stick length.

Consider the CRANK-CAN~OPENER illustrated in figure 9. CCO-HANDLE1 and CCO-HANDLEZ2 are riveted
together at CCO-PIVOT. This combination results in two single levers or one combined lever. When the CCO-
HANDLEZ is rotated about the rivet the MPs which are connected to it also rotate about the pivot. The magnificd
force which the CCO-HANDLE effects as a LEVER-OBIECT affects the functions of the CCO-CRANK, CCO-
HOLD-GEAR, and CCO-HOLD~DISK. Functional superposition thus guarantees that when objects are connected
their functions will be continuous.
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2.7 Object Function and Situational Use

Objects can be used to achieve different states in different situations. For example, a can-opener can be used to crack
nuts, or hold papers down. The functions which define object behavior are not dependent on the surrounding
context in which an object is applied, but the plans which effect that funcuionality arc. In EDISON we define object
use as the application of an object function in context. Choosing different object functions according to context
thus requires a causal interaction between plans and functions. In real situations object use depends on satisfying
two types of constraints: (1) the physical characteristics which support object function, and (2) the contextual
constraints which support plan application.

2.7.1 Functional Constraints: Reglons and Properties

An object function can be applied to a situation if the physical characteristics (material, regional, etc.) which
prescribe its function are satisfied. For example, consider the CRANK-CAN-OPENER. How does EDISON choose
this device for cracking nuts? The object chosen must satisfy three functional requirements: it must be constrain
the nut from moving, it must be capable of transmitting forces from itself to the nut, and it must be strong enough
to tran<mit the forces required to break the nut without itself breaking. These requirements fall into two
categories: regional constraints and property constraints.

1. Regional Constraints: An object can be used as a MP if it has the regions which satisfy the MPs definition. A
nutcracker is a LEVER MP, and has appl, pivot, and react regions. The CRANK-CAN-OPENER has LEVER-
OBIJECT components in CCO-HANDLZ1 and CCO-HANDLEZ2. The CRANK-CAN-OPENER thus satisfies the
regional constraints of the nutcracker.

2. Property Constraints: An object can be used as a MP if its physical properties support the functional behavior.
The breaking strength (material property) of a nutcracker is much higher than that of a nut. To use the CRANK-
CAN-OPENER as a nutcracker its breaking strength must be comparable to that of the nutcracker. Since the
CRANK-CAN-OPENER is used to open metal cans, and is made of metal itself, as is the nutcracker, the CRANK-
CAN-OPENER satisfies the property constraint. A claw hammer can also be used to crack nuts using the same
reasoning.

Objects which satisfy the regional and property constraints of the same MP are functionally equivalent to the MP.
We can say that an object has as many uses as it has functional equivalences with other objects. By decomposing
devices to other devices and MPs it is easier to describe functional equivalence without making mechanism (process
level) comparisons.

2.7.2 Contextual Constraints: Functional Attributes

An object can also be applied to a situation if those regional properties required by a particular function comply
with the constsaints set up by the situational context. For example, the claw-hammer described in figure §
satisfies the functional requirements of a PRY-OBJECT, and can be used for removing nails from wood. But a claw-
hammer cannot be used as a PRY-OBJECT for opening a paint or vamish can, because the claw is too wide to fit the
slot between the can lid and vessel. The claw cannot simultaneously contact the can-lip and the lid-lip. These con-
tacts are necessary to produce the leverage required to overcome the friction between the lid and can.

Both contextual and functional property cunstraints on object use are affected by property comparisons. These
comparisons affect how an object is used in a situation, as well as how it behaves. For example, when choosing an
object for prying we tend to look for long objects, not for objects with a specific length. The length affects object
function but the term long is sufficient for plan application. The difference is that contextual comparisons like
wide and strong do not have direct (one to one) correspondences with the associated property (size in width, and
breaking strength, respectively) values. The comparative terms are useful for planning because they include a wider
range of potential objects. But they are not correct in that they cannot effectively be used outside the context in
which an object attains such (wide or strong) designation. To continue the PRY-OBJECT example, 1or digging
holes a shovel should have a shaft that is longer than a trowel, or a screwdriver used to pry an paint-can lid. With
experience a naive mechanic can make knowledgeable comparisons using relative properties which result in
successful object application. However, early on such application suggests planning failures.

In EDISON, situational property comparisons are termed property attributes because they constrain object function,
and because we attribute property status to them. A property attribute is a comparison (>, =, <) between the
physical properties of different objects in a particular context. For example, a silk stocking may be elastic.
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Figure 12: Comparative properties, or attributes, and their relationship with object function and use. The upper level
represents the object use (planning) reasoning level. The lower level represents the object function (behavioral) level.
Attributes relate use and function through object property values. A CRANK-CAN-CPENER can be used to open nut
shells because it is strong compared to the shell. It can also be used to puncture cans open because it is sharp. Note
that different MPs in the CCO are applied in each object use.

Physical properties support different object functions, while property attributes support different object uses
(figure 12). In this figure object use is illustrated on the intentional (upper) level, and object function is
illustrated on the behavioral (lower) level. To use an object in a plan to open nut shells the object must be
stronger than the nut’s shell. To apply the crack-open object function the object’s breaking strength must exceed
that of the shell. The same property is being described on both levels but the degree of specificity is different. Each
object use is associated with different attributes. To open a soup can the lid must be punctured. This plan requires a
sharp object, which references the thickness (property) of the object. The CRANK-CAN-OPENER can be used in
either context because it satisfies the attribute and property constraints. Not shown in this figure would be the
functionality of a paperweight, the heavy attribute and the associated weight.

In order for the CCO to be used as a nut cracker and a can-opener different MPs are employed. The attribute
designation thus indexes plans and functions whether the property values are known or not.

2.7.3 Object Use Situations

Objects have many potential uses, and the more object uses one has experienced (successful or not) the more likely a
person has of understanding how an object functions and what contexts it can be applied to. A person who has
successfully used an object outside its nominal function is also more likely to try using it in that capacity again.
As noted in many experiments, experience affects both interpretation and planning with objects ([Duncker, 1945],
[Maier, 1945]). In EDISON a situation is a knowledge structure that represents a problem-solving experience.
Situations organize a context, the goals motivated, the planning and actions of actors, the function applied, and the
resulting states. Figure 13 illustrates a situation where a screwdriver is applied to the task of opening a vamish-
can. The goal, plan, machine, and process level representations are all illustrated in the figure. Screwdriver regions
(handle, shaft, and tip) instantiate the Lever MP and satisfy functional constraints. The size of the screwdriver
shaft and tip also satisfy the contextual (vamish can slot size) constraints. By satisfying both the functional and
contextual constraints the screwdriver is effectively used to pry the can lid.
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Figure 13: The Varnish Can situation illustrates screwdriver use as a PRY-OBJECT in the Pry-Open-Container plan
for a varnish can. . The upper block depicts the planning and function in the situation. The middle level illustrates the
screwdriver, and the lower level is a pictorial representation describing how the screwdriver satisfies the functional

and contextual constraints.
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3. PROCESSING TASKS USING MECHANICAL OBJECT REPRESENTATIONS

We have been examining four distinct processing tasks, each designed to test the representational constructs used in
EDISON. Currently, there four tasks are being implemented in separate program modules, utilizing different
components of the EDISON architecture, each with its own input-output behavior and processing methodologies.
For each processing task we are examining a few prototypic examples.

1. Language Comprehension: The language comprehension experiment takes as input a behavioral description of toy
dart gun function. The model builds a conceptual representation of the objects being described based only on
their behavioral interactions. The output is the resulting conceptual representation of the sentential content.

2. Experimentation and Mutation: The mutation experiment takes a description of a door and experiments with
door functionality by creating different door designs. The output is a conceptual relationship between
doorhinges and their causal relationships with door function. The recognition experiment takes examples of
objects exhibiting various behavioral interactions. The system uses rules to recognize mechanical interactions,
and constructs the associated knowledge structures,

3. Functional Prediction: The prediction experiment takes a conceptual representation of a crank-can-opener and
some perturbation criteria. The system retrieves similar objects from memory and predicts or explains can-
opener function and behavior.

4. Improvisation: The situation experiment takes the goals and states describing a problem-solving situation for
opening a can of silver polish. The system retrieves the plans and objects associated with experienced
situations. These are modified, through comparison and adaptation, to produce an object and plan to resolve
the situation.

3.1 Comprehending Device Descriptions from Object Behavior

Device descriptions abound in scientific literature, repair manuals, and technical reports. The difficulties associated
with device understanding are pervasive in our literature. The fact that people have general difficulty
comprehending physical descriptions, a problem popularized by the Murphy's Law: “If first you don’t succeed go
read the manual”, suggests the significance in comprehending mechanical descriptions.

Understanding an object description is important for describing, remembering, retrieving, and utilizing a design. If
the representation and reasoning model work for comprehending device descriptions, there is support for a
problem-solving model to support the general invention problem. We have developed a NL comprehension system,
Edca (EDISON Conceptual Analyzer), for reading and comprehending mechanical device descriptions. Edca takes a
description of object behavior, such as the description of a toy dart gun below, and produces a conceptual
representation for the object.

Toy Gun

“An object is thrust into a barrel, against a spring, compressing the spring until it catches on
a trigger. When the trigger is pulled, the spring is released and the object is propelled from
the barrel.”

When a typical human reads the text of TOy Gun they build a mental image of the objects described, and how they
interact. The reader infers knowledge missing in the text from their own experiences with similar objects. They
can pose and answer questions which pertain to the information conveyed in the description. They can also reason
about the events in the description and conjure up explanations for the behavior. Consider the questions posed
below.

J1: What is the initial relationship between the object and barrel?
Al: THE OBJECT IS IN THE BARREL.
Q2: What component catches on the trigger and why?

A2: WHILE THE OBJECT IS MOVING THE SPRING WILL COMPRESS. SINCE THE SPRING STOPS
COMPRESSING THE OBJECT MUST CATCH ON THE TRIGGER.
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Q3: How is the object propelled from the barrel?

A3: THE COMPRESSED SPRING PUSHES BACK ON THE OBJECT. WHEN THE TRIGGER IS
PULLED THE OBJECT CAN MOVE SO THE SPRING PROPELS IT OUT OF THE BARREL.

Q4: What type of motion does the object have?

Ad4: WHILE THE OBJECT IS IN THE BARREL IT MOVES IN A STRAIGHT LINE. WHEN IT
LEAVES THE BARREL IT FLIES, AND EVENTUALLY FALLS.

Questions Q1-Q4 illustrate both representation-based and processing-based issues associated with comprehending
mechanical object descriptions.

Object Behavior Aids Comprehension: Suppose that the reader of TOy Gun has no prior experience with guns
but some knowledge of objects and their interactions. As the text is read they build a conceptualization of the
object’s function. This ability requires an ability to reason about object physical and behavioral characteristics.
Question Q1 describes a way to reduce the complexity of reasoning about spatial relationships. If the reader knows
about barrels they expect the phrase “pushed into a barrel” to0 mean that the object is located in the barrel, and that
its motion (Q4) is constrained along the barrel length. The need to reason about spatial relationships can thus be
simplified by describing object physical characteristics and their affect on object interactions.

Many researchers have approached the reasoning associated with spatially complex objects. DeKleer and Brown
[DeKleer and Brown, 1983], Forbus [Forbus, 1983], Faltings [Faltings, 1987}, and Nielson [Nielsen, 1989] have ail
developed physical reasoning systems for describing object kinematics. However, none of these models have been
applied to language understanding.

Processing Mechanical Descriptions: The parsing of descriptions such as Toy Gun illustrates two issues
peculiar to physical texts: object reference, and a causal continuity.

1. Object Reference: Naive readers of Toy Gun run into a potential problem of keeping the different objects
straight from one phrase to the next. They use their knowledge of behavicral interactions between objects to
help decide which object is doing what, and how. By remembering how springs work, for example in Q2 and
Q3, the reader can infer that the “object” must be catching on the “trigger”, rather than the “spring”.

2. Causal Continuity; A reader of TOy Gun mav also experience difficulty inferring continuous and complete
causal paths in either sentence. This is because both sentenccs inake assumptions that the reader can infer
missing (or low-level) causal paths. The reader must then utilize their understanding of the behavioral
relationships between objects to infer, if necessary, the missing pieces. In Q3 the reader uses knowledge of
wotion and constraint to infer a missing object motion disablement. This also has the effect of disabling
spring compression. The same end can also be attained by understanding that the word “until” (and “when” in
the second sentence) implies a causal dependence between object states. Making use of these causal
connectives both helps to comprehend complex textual descriptions, and to understand the level of under-
standing the author considered important.

Many researchers have addressed the issue of object reference using semantic knowledge. For example, Dyer used
expectations to infer pronouns in story understanding [Dyer, 1983]. Quilici made use of the use of objects in
dereferencing data files in the AQUA UNIX advisor [Quilici et al., 1988], while Lebowitz has used references to
object composition to dereference device components (Wasserman and Lebowitz, 1983] in patent applications. In
EDISON we are trying to utilize behavioral interactions to semantically disambiguate object references in textual
descriptions.

Herskovits has done similar work on the comprehension of causal prepositions [Herskovits, 1986]. In EDISON we
are trying to understand and taxonomize causal connectives, and to recognize their use in text.

3.2 Experimentation and Invention

Naive invention requires problem-solving. Much of problem-solving involves the retrieval and adaptation of
plans and objects to suit a particular situation. Adaptation may require using plans for connecting or separating
objects, or modifying them in various ways. Experimentation is a fundamental capability that people use to
generate and test hypotheses, thereby obtaining new information that can be applied during problem-solving.
Experimentation requires an ability to modify and simulate objects and plans, and to recognize new behavior and
form hypotheses regarding that behavior. The less complex the objects and their interactions the better. By
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limiung the number and complexity of recognized behaviors and their dependencies with object characteristics, it
is possible to construct a computational model for mechanical experimentation.

3.2.1 Object Mutation and Hypothesis Generation

The process of experimentation generally involves taking some object, or plan, and modifying it through the choice
and application of operator(s). The new object can then be simulated and the behavior compared to the expected
behavior of familiar objects. After a few trials a hypothesis may be formed which can be tested by applying it to
the operator. The input to an experiment is a conceptual goal, and the output is a conceptual hypothesis. Consider
the objects pictured in figure 14 below, and a simple experiment.

Doorhinge1 Doorslab

Doorknob

Doorhinge2 Doorway

Figure 14: A simple door, with five components (doorslab, doorway, doorhingel, doorhinge2, and doorknob).

“Experiment with door function by moving Doorhinge1 from one location to another.”

Suppose that 3 child is given a scale model of the door illustrated above. Further suppose that the different parts
have velcro on them, so that they can be placed anywhere with respect to one another, and that the hinges allow
relative rotation between the plates. If the child is allowed only one operator, MOVE, and a single object,
Doorhingel, the child might then begin to move the hinge around and play with the door to see if it sall works
and how. The questions below illustrate the knowledge and reasoning that the child must have to conceptualize
the relationships between doorhinges and door functionality.

Q1: Where can you put Doorhingel?

Al: ANYWHERE, BUT THE DOOR WON'T DO ANYTHING UNLESS YOU PUT IT ON A SIDE OF
THE DOOR.

Q2: Why won’t it do anything if you put it on the Doorslab?

A2: BECAUSE BOTH HINGE PIECES WILL BE CONNECTED TO THE DOORSLAB, AND THE
DOORSLAB WONT BEND.

Q3: How do you know when a new object is interesting?

A3: WHEN IT WON'T WORK LIKE THE DOOR.

Q4: When do you decide to stop experimenting?

A4: WHEN I CAN MAKE A DOOR THAT WILL OPEN, OR NOT OPEN, ON PURPOSE.

Answering these questions raises three issues for representing knowledge in computational experimentation: (1)
representation depth, (2) hypothesis formulation, and (3) hypothesis evaluation.

Representation Depth: How deeply do naive mechanics reason during experimentation? Given a primitive
understanding of motion and constraint the experimenter can determine whether new designs can move, and
how. The goal of the experiment is to determine the effect of hinge location on door function (rotation).
Simple behavioral knowledge is thus applied in Q1 and Q2 to recognizing whether new doors are capable of
rotation. Knowing that the original door can rotate the subject need only determine if hinge movement elimi-
nates this capability. The naive experimenter can thus leamn about object function by reasoning about the
enablements and resulting states of simple behavioral interactions.
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Figure 15: Object behavior recognition: (a) a rolling wheel, (b) two bolted blocks, (c) force magnification in a simple
lever. Numbers designate objects, and arrows describe applied forces. The plrl-type notation in each illustration
represents a functional location, or region, on an object. These regions can be used to recognize and predict behavior.

Hypothesis Formulation: The child’s response to Q3 displays a knowledge that the door experiment is constrained
to two possible results; the door will either rotate or it won't. By comparing the different effects of MOVE
on door function, the child develops a hypothesis about hinge placement and door rotation; that doorhinges
must be on the same side. The subject can thus incrementally build a functional hypothesis by applying
operators one at a time,

Hypothesis Evaluation: The child’s answer to Q4 illustrates a hypothesis testing phase. By knowing that the door
will either rotate or not, the child reasons that generating a door that will work, or not, is sufficient to
knowing the relationship between doorhinge and door.

During problem-solving, recognizing physical configurations may require mentally modeling a situation and
comparing it to observable data. Simulating the mental model can affect the experimentation process by helping to
recognize the behaviors of mutated or perturbed objects. Consider the relationships depicted in figure 15. Given
this series of objects engaged in various mechanical and kinematic interactions, naive mechanics can recognize the
objects and their associated behavior.

Figure 15 illustrates three simple behaviors: rolling, bolting, and magnifying easily recognized by naive mechanics.
Consider now a person troubleshooting an automobile mechanical problem. They may not be able to see these
components and their behaviors, and must recognize behavior from what they know, can perceive, or test. They may
ask themselves questions regarding the nature of the objects and their behavior, and then make inferences about
what is going on. These relationships raise two representation issues for recognizing and predicting object
behavior: (1) what behavioral interactions do naive reasoners recognize, and (2) to what extent do naive reasoners
use object characteristics to reason about object behavior.

Fundamental Behavioral Interactions

The simple door experiment suggested that motion and motion constraint are fundamental 1o reasoning about the
behavioral interactions of mechanical objects. However, naive reasoners also recognize behavioral interactions
which are compositions of motion and constraint. For example, a naive mechanic can recognize that figure 15b
represents two bolted objects, and that bolting is a plan for connecting objects. Moreover, they know that once the
objects are bolted together the objects will remain so until the bolt rusts or until someone decides to unbolt them.
The effect of bolting thus defines a behavioral interaction between the objects which affects their mutual behavior
in time. A naive mechanic might also recognize figure 15¢ as a transformation of force and motion between object 1
and object 2. Transformation involves both motion and contact. The naive mechanic displays a knowledge of object
behavior more general than motion and constraint by recognizing transformation instead of the independently
recognizing motion and contact. When they see behavior which suggests the transformation of force or motion,
they can predict the underlying motions and constraint states. The recognition of these simple behaviors suggests
that naive mechanics recognize generic mechanical interactions and classify other interactions as examples of
generic behavior. For example, a naive mechanic recognizes the simiarities and differences between two objects
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which are bolted, as opposed to being stapled, together. By describing a small set of generic, or fundamental,
behavioral interactions the recognition process can be gready simplified.

We have been studying the composition of simple object behaviors in the hopes of describing the interactions of all
simple mechanical objects with a few general behavioral types [Dyer, 1986]. Given a primitive set of behavioral
interactions all object behavior can be recognized, composed, and compared more easily.

Object Characteristics and Behavior

A naive mechanic looking at figure 15a recognizes object rolling from the applied and gravitational forces, from
the circular shape of object 1, and from its contact with object 2. Were the object pictured square instead of circular
no one would expect it to roll. People use physical characteristics such as shape to recognize and discem behavior.
They also recognize locations on objects which have meaning to object functional capability, such as the circular
edge on a wheel, the threads on a bolt, the pivot location on a lever, or even the edge of a knife. By knowing about
generalized locations, and shapes people can reason about how objects interact, and recognize similarities when they
are encountered.

DeKleer and Brown have described a “port”, which serves as a location where conduits (methods of transporting
material or energy from one mechanism to another) connect 1o an object [DeKleer and Brown, 1983). Their use of
the port idea is similar to our notion of generalized location, or region [Hodges et al., 1987] in that it describes
object functional locations.

3.3 Predicting and Explaining Device Function

Device simulation is everpresent in the creative process. Whether a person is recognizing functional similarities
between objects, or predicting their behavior, or even experimenting to learn new information about object use and
function, the simulation of behavior plays a pivotal role in creativity. The fact that people have limited functional
knowledge about primitive mechanisms, and their composition, suggests that simple functional models can be
useful in predicting how naive mechanics reason about mechanical objects and their interactions. That people
utilize their experience with particular objects as a reminding of what the objects can be used for is suggestive of a
model which reasons about objects rather than the mechanisms which objects effect. The use of a simple functional
model, one which is based on objects and their similarities, suggests a general reasoning capability with object
composition and function. We propose a simple object reasoning model which utilizes the EDISON machine
primitives (MPs) to make high-level predictions about the functionality of an object like the CRANK~CAN-
OPENER (figure 9).

Most naive reasoners see the CRANK-CAN-OPENER as a composition of bars, wheels, and gears, instead of objects
which move, constrain, and transform force and motion in complex patterns. Although they recognize shape,
location, and material object characteristics they don’t necessarily reason about them unless the object
malfunctions. Consider the following questions that can be answered by someone that has knowledge of CRANK-
CAN-OPENER function.

Q1: If CCO-HANDLE1l and CCO-HANDLEZ2 are apart and the CCO-CRANK is tuned, will the CCO~
CUTTER-DISK rotate?

Al: WHEN CCO-HANDLE1 AND CCO-HANDLE2 ARE APART, THE GEARS CCO-HOLD-GEAR AND
CCO-CUTTER-GEAR ARENT IN CONTACT. WHEN CCO-CRANK IS TURNED THE CCoO-
HOLD-GEAR WILL ROTATE BUT WON'T TRANSMIT MOTION TO CCO-CUTTER-GEAR.

Q2: If a small object is placed near the CCO-CRANK, between CCO-HANDLE]1 and CCO-HANDLEZ, and if
the CCO-HANDLE1 and CCO-HANDLEZ2 are brought into contact with the object and then pressed
together, how much force will be applied to the object?

A2: IF A SMALL OBJECT IS PLACED NEAR THE CCO-CRANK, BETWEEN CCO-HANDLE1l AND
CCO-HANDLE2, THEN CCO-HANDLE1 AND CCO-HANDLE2 WILL ACT AS LEVERS ON THE
SMALL OBJECT WHEN CONTACT IS MADE. IF CCO-HANDLE1 AND CCO-HANDLE2 ARE
PRESSED TOGETHER, THE AMOUNT OF FORCE TRANSMITTED TO THE SMALL OBJECT
WILL BE GREATER THAN THE AMOUNT OF FORCE APPLIED AT CCC~HANDLE1l AND
CCO-HANDLEZ.
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These questions raises an issue regarding the representation of object function for prediction. Do naive mechanics
recognize objects which perform specific functions. If so how many such objects do they recognize, and how does
temporal reasoning affect prediction of their functionality.

Process Interactions, Mechanisms, and Machines: If a person asked Q1 recognizes the CRANK-CAN-OPENER as a
configuration of objects, then they may walk through the application of force, and other behavioral
interactions until they realize that the CCO-CUTTER-GEAR and CCO-CUTTER~DISK cannot rotate if
there is no transmission of motion from the CCO-HOLD-GEAR. This level of simulation is quite detailed, and
requires a consideration of how and where parts are connected. However, most people would recognize that
the CRANK-CAN-OPENCR is composed of levers, gears, even a blade. They know that the function of gears is
to transmit motion. The naive mechanic realizes that gear function is disabled as soon as they recognize that
the gears are not in contact when the handles are separated. By recognizing the objects that comprise the
CRANK-CAN-OPENER by the functions they have been used to effect, naive reasoners can reason about
complicated objects and spatial relationships without the need for explicit simulation at the behavioral level.
Being able to answer Q2 suggests that naive reasoners understand both the simple object and the behaviors
which its application describes. This reasoning suggests an abilily to reason at both representation levels.
When possible the recognized object is used to predict macro-behavior. Otherwise behavioral interactions are
used to simulate and explain object behavior.

Temporal Continuity: A person using the CRANK-CAN-OPENER 10 open a soupcan doesn’t reason about how long
it will take to open the can, or about the periodic behavior of the gears. They know from experience that, once
the cut is initiated, and as long as they continue to tum the crank, the cut will eventually return to its starting
point. This illustrates one case in which temporal reasoning can be obviated by the type of object used.

Metz's work on the development of physical concepts in children, and in particular with gear trains, has shown
that children begin to develop object models (reason about object function instead of object behavior) about the age
of 10 [Metz, 1985].

We have been building a model of simple mechanical objects whose functions effect the leverage mechanism. The
interactions of these objects are described by our simple behavioral model [Hodges, 1988, 89¢]. Our work assumes
that naive reasoners have and use object-models during problem-solving, and that their behavioral knowledge is
used to explain anomalies rather than 1o predict object function or use,

3.4 Object Use and Function in Improvisation Situations

When people engage in creative problem-solving, whether constrained as in improvisation or unconstrained as in
invention, they utilize an ability to view objects from multiple points of view, with different functionality. This
capability requires that they understand the objects they have used in their everyday experience, how those objects
have been used, and their similarities to other objects which might be used to achieve the same results. When people
have to resolve problems involving mechanical objects in real-life situations, they must make decisions based on
conflicting goals and constraints at both the planning and functional level. Regardless of an object’s prototypical
function, a situation may call for other interpreiations of its functional capability. Even though a problem-solver
may recognize a functional advantage of one object over another, higher-level goals may cause them to try known
objects which are functionally equivalent.

A problem-solving model that focuses on object use to achieve actor goals can be successful. However, such
models cannot be extended unless there is an underlying functional model to support the classification of similar
objects. We propose a simple problem-solving model based on the EDISON concepts of functional equivalence and
the use of property attributes in constraining object choices. Given the ability to view objects as functional
equivalents suppon.: their use outside known contexts. Given the ability to choose objects based on contextual
constraints helps to eliminate irrelevant objects from consideration. Together the application of object-related
experience and contextual knowledge can be used for problem resolution in new situations.

Consider the situation described in figure 17.
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Prying Knife

A man wants to polish one of his silver candlesticks. To use silver polish he must pry open a
can ot silver polish in the kitchen. However, the screwdriver ic in the garage. He reasons
that he can use a screwdriver-like object and decides to try a carving-knife.

Figure 17: A simple improvisation situation. This situation illustrates the use of objects in context and an
understanding of objects at the planning, functional, and behavioral reasoning levels.

Prying Knife illustrates an improvisational scenario which mig.:t occur to a human being. Resolving problem-
solving situations requires access and usc of knowledge at different levels of abstraction, and requires us to look at
objects in completely different ways. Consider the inferences made in order to answer the following questions
regarding Prying Kaife.

Q1: Why does the man decide to pry open the silver polish can?

Al: HE REMEMBERS A TIME OPENING A PAINT CAN BY PRYING, AND THAT BY PRYING
THE LID HE WAS ABLE TO OPEN THE CAN WITHOUT DESTROYING THE LID.

Q2: What is a screwdriver-like object?

A2: AN OBJECT THAT CAN BE USED AS A PRY-OBJECT AND CAN FIT THE SLOT IN THE
SILVER POLISH CAN.

The questions presented above illustrate two representational issues for creative reasoning about mechanical
objects: (1) the role of experience in mechanical problem-solving, and (2) the relationship between object use and
object function.

In Prying Knife the goal conflict between using the screwdriver and getting wet, and the availability of objects
in the kitchen both affect the man’s planning and how object functionality is viewed. Q1 illustrates an interaction
between a problem-solver’s goals and their retrieved experiences. The application of familiar plans, like using a
screwdriver, to resolve the can-opening problem, may be dictated by any contextual element. How the man chooses
to view the situation and available objects is determined by his related experiences. He may choose to apply the
prying plan by getting the screwdriver, 10 seck another object 10 pry open the can, or to cut the can open by applying
a different can-opening plan.

When the problem-solver abandons the idea of getting the screwdriver and decides to find an altemative object, he
must find an object which is both functionally equivalent to the scrcwdriver, and fits the contextual constraints.
He is reminded of situations where other objects have been used to obtain leverage, and objects that are physically
similar. The answer given to Q2 illustrates both functional and contextual comparisons made in selecting candi-
date objects. These comparisons require an object representation which makes use of functional similarities and
how they are affected by context.

Functional maps between objects has also been the interest of [Falkenhainer et al., 1986]. Their structure-mapping
engine (SME) has been applied to comprehending the underlying mechanisms of objects through analogical
comparisons with the behavior of known mechanisms.

4 CURRENT STATUS AND FURTHER WORK

Each of the four implementation models has been partially implemented. The representation model presented here
has been continually updated along with the development of the respective experiments. At present we can
represent, recognize, and simulate the MOVE, CONSTRAIN, and TRANSFORM related BPPs. These have been used
in the parsing of Toy Gun and the Door experimentation model. The MP reasoning model and situation problem-
solving model are only partially implemented. The processing methodologies utilized in recognizing and
rcasoning about objects in these models are vastly different. When the project was begun symbolic and rule-based
methods were being widely used for both representation and reasoning tasks in Al. However, we have been trying
to adapt our memory (retrieval and reasoning) model to a localist/connectionist spreading activation
computational paradigm {Lange et al. 1989]. This model will address some of the issues associated with scaling the
EDISON model to more complex devices and situations.

We intend to extend the the language model to include other demonstration texts, and to complete the
development of BPP and MP recognition and inference models to support problem-solving. A major aspect of the
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work at this point is consolidation and write up, which is the task of Hodges, for a doctoral dissertation. We
anticipate that this dissertation will be complete (or nearly complete) with the next 8 months. At that time we
will deliver it to ONR as an additional report.

5 LONG-TERM GOALS AND CONCLUSIONS

We are secking insights in the areas of (a) NL comprehension of dcvice descriptions, (b) symbolic simulations of
device behavior and function, (c) device experimentation and improvisation, and (d) device invention. Insights in
the processing, memory, and representational aspects of each of these areas can ultimately lead to important
applications:

(1) Device comprehension can lead to the implemeatation of (a) tutoring and dialog systems, and (b) automatic
conceptual database generation systems. On-line tutors could replace written manuals. Manuals are difficult to
read because they require the reader to supply necessary index keys, and manuals are only able to answer anticipa‘=d
questions. With NL understanding capability, a system could take descriptions from a designer and interpret them
(i.e. generate a conceptual representation). This representation would then be indexed into the conceptual database
for later use.

(2) Device Simulation is useful during mechanical design. One potential application is for design troubleshooting,
in which the system could run simulations, notice bugs in device behavior, and suggest possible modifications to
objects or plans which would allow the design process to continue.

(3) Device Experimentation and Improvisation could allow an intelligent system learn about the behavior of new
devices without assistance. Improvisation gives a system the capability of applying old devices in new and
unfamiliar environments.

(4) Device Invention could be used to rethink design scenarios and support the creation of a Design Apprentice, i.e.
a design understanding and invention system capable of reasoning and brainstorming about physical devices, their
functions and behavior, and capable of communicating that reasoning to the designer.

Automated design and invention relies on representational and processing constructs. Representations must encode
a large number of object features (e.g. regions, motons, translations of forces, constraints, connectivity relations,
etc.). By building up devices from more primitive machines (e.g. levers), the resulting system can apply inferences
in a systemmatic way and complexity is reduced via inheritance and compositionality. The critical cognitive tasks
are comprehension, recall, adaptation, simulation, and mutation. Representational constructs can only be validated
in terms of how well they support such cognitive tasks.
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ABSTRACT

Imnraovication requires an understanding and ap-
plication of mechanical objects 1n oroad conteais.
The capacity to interpret a situation in terms of
an object’s capabilities requires the integration of
functional and behavioral object representations.
A model is presented which describes the integra-
tion of causal interactions between these levels of
abstraction. The model maintains both inten-
tional and behavioral representations to allow in-
ferencing at each level, but integrates them by
applying an inferencing mapping between the
two. This model is used to reason about simple
mechanical objects in the domain of improvisa-
tional mechanics.

INTRODUCTION

When people have to resolve problems involving me-
chanical objects in real-life situations, they must
make decisions based on conflicting goals and con-
straints at both the functional and behavioral levell.
Evcn though a problem-solver may recognize a be-
havioral advantage of one object over another, their
higher-level personal goals may cause them to try ob-
jects based on functional capabilities. Consider the
following example of improvisation where these dif-
ferences lead to a goal failure:

Broken Knife

A man wants to polish one of his silver can-
dlesticks. He must therefore pry open a can of
silver polish in the kitchen, but doesn't want
10 brave winter weather to get a screwdriver
from the garage, Hereasons that he can use a
screwdriver-like object and decides to try a carv-
ing-knife. What he doesn't realize is the knife
is not strong enough in the dimension relevant
for prying. The knife blade breaks.

1 Functional descriptions refer to the iniwcnded use
of objects, as opposed to behavioral descriptions,
which describe physical interactions between ob-
jects.
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There are many representational issues in Broken
Knlle, spanning the situational, intentional, func-
tional and behavioral ressoning levels At the situa-
tional level, planning choices are dictated by the rela-
uonships between the man and such contextual ele-
ments as the winter weather and objects available in
the kitchen. On the intentional planning level, the
man has chosen the POLISH-METALLIC plan 1o pre-
serve his candlesticks. This plan requires that he have
silver polish on his rag, a state which is blocked by
the fact that the silver polish can is closed. Recog-
nizing that the only resolution is to pry the can open,
he realizes that the tool he usually uses for this func-
tion, a screwdriver, is in the garage. There is now a
goal conflict: between his goal of preserving the can-
dlesticks and his goal to preserve his own comfort.

Here the functional level becomes significant. A
screwdriver works as a prying tool for the silver pol-
ish can because it fits into the slot between the can
and lid and is strong in relation to the force necessary
to pry open the lid. A carving-knife will fit into the
slot and was strong enough for the functions that it
was used for in the past. The knife therefore appar-
ently matches the constraints for PRY-OBJECT, so
the man uses it.

Finally there is the behavioral level. The knife is in-
deed strong, but only in the context of caiving and
along the width of e knife’s blade. Along the
thickness of the knife's blade, where the force of pry-
ing will be borne, the knife is not strong - not in re-
lation to the friction force holding the lid onto the
can. The knife blade therefore breaks.

We have been interested in modeling improvisation
situations like Broken Knife in hopes of better
understanding the creative process during problem-
solving. Improvisation is a kind of invention where
the problem-solver is constrained by circumstance.
Improvisation thus encompasses the scope of
EDISON, an on-going project to model the knowledge
and reasoning of naive inventors, people whose
knowledge and planning is based on experience rather
than technical expertise [Dyer, Hodges & Flowers,
1986). Our claim is that any approach to real-life
problem-solving and decision-making must integrate
each of the above levels of abstraction into a com-
plete system. Previous object models have empha-
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sized object representasion at the functional or behav-
ioral level, but none have integrated the two into a
single representation and processing mechanism.
EDISON has been designed to achieve this integration,
and to support the associated muiti-level reasoning.

REPRESENTING OBJECT FUNCTION AND
BEHAVIOR

Intenticnal representation models have traditionally
described objects with an emphasis toward their in-
tended uses, while behavioral models have emphasized
their behavioral capabilities. Each model type has
been successful in its respeclive domain, but either
could benefit from the capabilities of the other.

Intentional and Functional Object Models

Intentional object models, such as conceptual-depen-
dency (CD) (Schank & Abelson, 1977], describe ob-
jects by an agent’s intentions and how an object’s
function affects the outcome of those intentions (i.e.
objects are black boxes). Using CD notation, the act
of throwing a ball in a game of catch is represented
by the thrower Propeling the ball toward the catcher
while unGrasping it. The resulting state enables the
ball 10 Ptrans from the thrower's location to the
catcher's location. With this kind of model inferences
can be made about the relationship between the peo-
ple playing (e.g. "John threw the ball to Bill." vs.
"John threw the ball at Bill."), but not about the ball
involved (e.g. what if the ball never reaches Bill).
This limitation presents a problem for predicting and
cxplaining how plans are affected by object function
and bchavior.

Lehnert’s object primitives [Lehnert, 1978] and
Ricger’s common sense algorithm (CSA) [Rieger,
1985] integrated object functionality into CD to de-
scribe how and when objects are used. These models
introduced the idea of a functional representation
level, between intentional and mechanical levels,
which had properties found in both. Unfortunately,
both models had wegle behavioral representations and
blurred the distincthowm. between object function and
behavior. They wese therefore unable to take full ad-
vantage of their functional representations.

Behavioral Object Models

Behaviqral object models describe objects’ physical
composition and interactions in lieu of their intended
purpose or context. Instead of action primitives
based on some form of agency, the primitives in be-
havioral models are simple qualitative physical pro-
cess descriptions [Forbus, 1985] which describe ob-
Jects and their interactions. The actor's Propel and
Grasp actions (in a game of Catch) result in Force
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and Constraint states which enable the process,
Transmit, of force to the ball. The ball unGrasping
is paralleled by a Constrain process, and the
resulting Force and Constraint states enable a
Move process. Behavioral models are useful for
predicting, explaining and simulating the ball's
behavior (e.g. when the ball's weight, force and di-
rection are known), but not for describing how or
why it was thrown in the first place. Another
problem with behavioral models is that they don't
utilize contextual and intentional information for
disambiguating, or predicting, object function during
problem-solving.

Representing Objects In Edison

EDISON is an object-based representational model for
reasoning about situations like Broken Knife by
integrating object knowledge derived from intentional
and behavioral points of view. The intentional part
of EDISON'S bi-ievel model considers the object as an
instrument to achieving specific goals in specific con--
texts. The behavioral part of EDISON considers the
object and its behavioral dependencies with other ob- .
jects. This integration is achieved by considering the
structural continuity which must be maintained to
support inferences between these abstraction levels,
and by considering a third, functional, part which
overlaps the intentional and behavioral abstraction
levels and provides for a continuous inference path be-
tween them.

The objects described in EDISON are simple mechani-
cal devices, such as screwdrivers, hammers, knives,
can openers, and nail clippers. In EDISON, the repre-
sentational emphasis is on the physical qualities and
relations which support an object's functional descnp-
tion. Most of the reasoning in EDISON is done at
higher levels, so the simulator is only used for diag-
nosis and explanation. This contrasts to detailed qual-
itative simulators, such as [Doyle, 1988), designed
for this purpose. The EDISON model represents all
objects as combinations of primitive devices (such as
levers, springs, and wheels) which effect the leverage
mechanism through the Transform process
(Hodges, Dyer & Flowers, 1987. All object behavior
can thus be described in terms of the transmissiof,
translation, or magnification of force and motion.

Object functions refer to the tasks an object has been
or could be applied to in a particular context, and have
both intentional and behavioral qualities. Using 8
knife to carve wrkey, 1o threaten someone, to tighten
screws, or to pry can lids all describe knife functions.
At the intentional level object functions describe this
context sensitivity through artributes, which are qual-
ities associated with an object's functional capability
relative to other objects. For example, if we want 10
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carve a turkey, then we need an object which has a
sharp and long blade relative 10 the rkey.

Figure 1: Knowledge structures and their causal rela-
tionships are isomorphic for intentional and me-
chanical representations.

An object's attributes direct planning choices in con-
lext by constraining applicable functions. At the be-
havioral level functions organize the processes (as
process-state sequences) which effect the object's be-
havior. Processes are constrained by an object’s phys-
ical properties and its relationships with other ob-
jects.

Intentional-Behavioral Representational
Continuity

The relationship that object function plays in inte-
grating intentional and behavioral models is depicied
in figure 1. Whether viewed intentionally or behav-
iorally, the same object function is represented in a
given situation. Each point of view provides different
inferences about the object, so in EDISON the causal
relationships are kept distinct. For example, in the
game of catch we may want to make inferences about
the ball Ptransing (such as why it was thrown), or
1s Moving (such as how and where it will go), de-
pending on our goals. If we simply merge the repre-
sentation levels one set of inferences is lost.

It is also important 10 remember that plans and func-
lions in a givem situation both describe the same be-
havior, but siggply at different levels of abstraction.
In EDISON hiése relationships are maintained by a
Structural isomiorphism between intentional and be-
havioral knowledge structures. For example, consider
the plan-action-state relationship which describes
causality at the intentional level. This has a one-to-
one correspondence with the function-process-state re-
lationship at the behavioral level.

Figure 2: The bi-level representation for a game of
catch shows the continuous, albeit separate, infer-
ence path between intentional and mechanical ab-
straction levels.

The bi-level model is designed to describe situations
like the game of catch introduced above and depicted
in figure 2. The intentional representation is shown
on the upper level and the behavioral representation is
shown on the lower level. The intentional descrip-
tion has a causal “gap” after the thrower's unGrasp
action, whereupon the ball Ptranses to the catcher.
The behavioral representation overlaps at this point,
with the enabling and constraining conditions for the
Transport function, and continues 1o describe the
ball's behavioral path (paralleling the Ptrans action)
until the Transport function terminates (i.e. the
ball's motion ceases). The Transport terminating
state is identical to the Catch plan's resulting siate
(arrival at the intended location). By integrating in-
tentional and behavioral representations this way in-
ferences can be made about object function and behav-
ior not possible with either level alone.

Intentionai-Behavioral Inference Continuity

There is a difference in generality between intentional
and bchavioral reasoning levels which, despite the
structural continuity, obviates direct inferences be-
tween the two levels. However, because the same ob-
ject is considered at both inference levels, its func-
tions provide the nccessary inference continuity
through the associated constraining attributes and
properties.

Al the intentional level, auributes describe funcllional
capabilities of an object learned through experience,
and are specific to particular objects in particular con-
texts. Knowing the atribute enables high-level infer-
ences about its functional capabilities if the coniext 1S
reinstated. For example, knowing that a carving-
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Figure 3: Functional atiributes like stirong are causally related to plan application through the constraints they

place on object functionality. Likewise property values constrain the underlying processes.

Different at.

tributes will be associated with different situations, and different property values will support the associated

functions.

knife was successful in transmitting force for carving
a turkey, one might have concluded that the knife is a
strong object (w.r.1. the turkey). The sirong attribute
of the knife is a relative term between like property
values of the knife and bird, and is only valid for this
situation. Other situations requiring sirong objects,
however, might remind the problem-solver of the
carving-knife. Attributes thus affect planning, pro-
viding grist between context and a problem-solver's
associated interpretation. Figure 3 depicts the rela-
tionship between different attributes, such as strong
and thin, and how they constrain Knife-Use via the
knife functions Pry-Object and Slice.

At the behavioral level the strong attribute is associ-
ated with the knife’s value for the breaking-strength!
property, which directly constrains the Pry-Object
function’s processes. Knowing the knife’s value for
breaking-strength guarantees inferences about its ca-
pacity 1o pry. The correspondence between the strong
atribute and the breaking-strength property value en-
ables inferences between levels. The difference
between object functionality based on the attribute,
strong, and that baséd on the property, breaking-
strength, is that dimenglomality (i.e. detail) is lost. If
the problem-solver rerieves the knife based on the
higher-level functionality (for example during plan-
ning), then the dimension of strength is unlikely to
be remembered. In Broken Knife this leads 1o failure.
However, the fact that a screwdriver was strong for its
intended function for tightening screws, leads to an
inference that it will be strong for other functions as
well, such as prying a vamish-can or punching an
oilcan for which it is an effective tool. If the knife's

1 Th :
. 1he equivalent force an obj i
prior to failure. PHeEL ean withsiand
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behavior is the basis for retrieval (for example during
problem-solving experimentation), then dimension is .
remembered and predictions, inferences, or explana-
tions can be made with confidence.

Attribute-Property Relationships

The ability to make correspondences between at-
tributes and property values is important because of
the different inferences that can be made at the func-
tional and behavioral levels, respectively. If the cor-
respondence is made, then the inferences can be com-
pared and behavior modified. Each attribute defines a
range in a property's quantity space. The two at-
tributes, light and heavy, which describe the weight
property of an object, illustrate a many-to-one rela-
tionship which is characteristic between attributes and
property values, Many attributes are associated with
object function through a specific property, such as
strong to strength, or long to length. Auributes can
also be described by combinations of properties or
other attributes. The attribute metallic, for example,
is described by the attributes shiny. smooth, cold and
hard.

There are no exact correspondences between an at-
tribute and its associated property value, since at-
tributes are context-dependent. Nevertheless, some
comparisons can be made based on how properties and
attributes are represented. In EDISON propenty values
are defined as (property, dimension, value) triples, and
attributes as (property, reference) doubles. These rela-
tionships are illustrated in figure 4 for the carving-
knife's strong attribute in Broken Knife.
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Figure 4: The amributes weak and strong illustrate
the relative breaking-strengths (shown in pounds) of
objects and their context dependency.

The attributes weak and strong map onto the material
proper'y describing breaking-strength. The numbered
line segment in figure 4 represents a portion of quan-
tity space describing breaking-strength values, with
its central value being the Friction-Force attribute
reference. There are two ways that attributes are refer-
enced to property values in quantity-space:

1. To a known reference point or value (e.g. silver-
polish can-to-lid friction force).

2. To a boundary value (e.g. the full-open position of
a water faucet).

The reference point defines the context which an at-
tribute is directly applicable, and is always found in
the situational context. For instance, in Broken
Knife the reference can be the can's or screwdriver's,
breaking-strength, or the friction force between the
Canlip and the Lidlip. Either way the knife is com-
parably weak. The shaded bars in figure 4 represent
auributes, and show the variation of the terms weak
and strong with respect to Friction-Force. The shad-
ing indicates the generalized relationship between
what the man in Broken Knife knows about knife
and can strength.

The attribute-property value relationship combined
with the bi-level structural isomorphism provides a
continuous inference path between intentional and be-
havioral levels of abstraction. If a situation exists in
memory where a carving knife has successfully been
used as a strong object, say to cut meat, then EDISON

will likely try to use it again when the need for a

strong object arises (¢.g. in Broken Knife).

REASONING ABOUT OBJECTS IN CONTEXT

The Open:varnish-can situation shown in fig-
ure S illustrates the effect that atiributes have at the
intentional level. The associated property value and
behavioral effects have also been depicted in figure 5,
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but a detailed description can be found in {Hodges,
1989]. At the intentional level vamishing a chair en-
tails a number of preparatory steps, one of which is
to get the vamish onto a paintbrush (a D-Cont goal).
In figure 5 this step leads to a plan for opening the
varnish can by prying the lid with the tip of a screw-
driver.

Figure S: The atributes associated with “leverage”
and “fitting” are instrumental in representing how a
screwdriver is used to pry a varnish-can 1id in
Open:varnish-can by constraining its applica-
tion. Attributes map both 1o object regions (such as
kandle., shaft and tip) and property values. which
constrain functional interactions.

At the functional level the Pry-Object function is
governed by two attribute groups, one for leverage
and one for fit. The "leverage” requirement states that
the screwdriver be long, so that sufficient mechanical
advantage can be gained to overcome the friction hold-
ing the can and lid together, and strong so that it
won't break under this force. The "fit" requirement
states that the tip of the screwdriver must be thin and
narrow compared to the slot between the canlip and
lidlip, and constrains the Contact and Magnify pro-
cesses in Pry-Object at the behavioral level. The
leverage box in Figure 5 states that any object with
regions of force application, pivot, and force reaction

B
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can be used to apply leverage. The screwdriver has
these regions bound to its handle, shaft, and tip. In
terms of prying these screwdriver regions are the only
locations of interest. There are similar regions asso-
ciated with the can (i.e. the lid, lidlip, can, and can-
lip). The regions on both objects are also used to de-
fine the autribute reference points for prying.

Bi-Leve! Representation and Situation in-
terpretation

The primary reason for describing object use at vary-

ing abstraction levels is to support different object in- .

terpretations depending on context. We want a repre-
sentation model which describes how a screwdriver or
knife is used as a utensil in one circumstance, a
weapon in another, and a paperweight in a third.
Each of these situations calls upon the same object
property (weight), but with different required property
values. Models that are context independent bar be-
havioral descriptions from addressing an actor’s per-
spective in the same way that models that are context
sensitive bar a functional description from making
predictions about behavior. However, even when an
object has only been used in a single context (such as
using a carving knife for slicing), the attributes which
enabled its functionality might enable its use in other

©contexts.

Knife breaking-strength provides a good example of
this. Objects used to cut must be strong enough that
they do not bend or break before the cut is completed.
Of course, knife strength is only meaningful in the
dimension of the intended cut. However, a person
who naively uses a knife might generalize the extent
of strength o all of its dimensions.

Figure 6 illustrates how Broken Knife is repre-
sented at the situational level. The upper window il-
lustrates the information given. The lower window
illustrates a number of situations where simple de-
vices have been used in standard ways, and the at-
uibutes whick'ugigirsin their fu~tionality. The D-
lWer polish onto a rag leads to an

;. This information is provided
Ex retrieval cue. The
: AWPCEIY situation, where a screw-

driver is used for prying, is the best functional match
but conflicts with the man’s P-Comfort goal. The
result is that screwdriver-use, and screwdriver-related
experiences, are unavailable for planning (with a
screwdriver). This is shown with circle-ended dotted
lines. The screwdriver attributes which are pertinent
lo prying are shared (situationally) with other devices
(e.g. carving knife in Slice:turkey) which can be
applied 10 the Pry-Object function. The
Flip:pancakes siwation is inappropriate because
the spatula has auribute broad, which conflicts with
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the narrow atribute instrumental to Pry-Object.
The carving-knife is also applicable based on
availability, since the carving-knife resides in the
kitchen setting of Broken Knife. The end result
is a plan combining the Pry-Object function with
the carving-knife object.

~ BROKEN KNIFE
e =)

. . rcomasa vt
{ Pindigcten) + O-Pron(ios(scien)) + O-Cont{paiay + HPrepipaten) + DO l

3
{Glartype Pry-Open-Cenainer(s-£-Cani )

v arave..
mTean o .

4
’
-

MEMORY

Figure 6: The Broken Knife situation illustrates
situational interpretation of a carving knife based on
its strong atribute. The Open-Container(S-P-Can)
plan is indexed in memory to situations where ob-
jects have been used for opening.
Open:varnish-can is strongly associated but
cannot be applied directly because of a goal conflict.
The screwdriver and carving knife share attributes
instrumental to prying, so that an aliernate Pry-
Object plan using the carving knife can be applied
to the situation.

A DETAILED EXAMPLE

The representation for the functional and behavioral
inference paths in Broken Xnife in figurc 6 is
fleshed out in figure 7. The behavioral description
shown in figure 7 represents the process interactions
supporting the Pry-Object function with the knife
instantiated as the Pry-Object. The representation is
shown instantiated with the carving knife after re-
trieval from memory and combination into the Pry-
Object function. The attribute/property-value rela-
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Figure 7: Functional-behavioral representation for Broken Knife. The attribute-property relationships con-

strain the Pry-Objact function and the processes which comprise it. Attributes are associated with an object in
context so the carving knife strong, narrow and thin atributes are associated with a retrieved situation,
Slice:turkey. Some of the fillers illustrated (e.g. [Lidlip S-P-Can]) are simplifications of the actual repre-

scntation.

tionship is shown as it affects the func-
tional/behavioral description under the heading At-
tribute-Property Mapping. The fit requirement affects
Pry-Object in two dimensions, so the comparison to
size 1s made in two dimensions. The size values con-
strain the processes Magnify and Transmit-Force.
The darkened two-way arrows between attributes and
property values (states) represent a “many-to-one”
link. The dashed and darkened two-way arrow be-
tween Pry-Object and Open-Container illustrates
the infcrence cross-over between the functional and
bchavioral level,

The planning and interpretation involved in Broken
Knife and the other situations illustrated in figure 6
are currently being implemented in ROBIN, a localist
spreading-activation model of high-level inferencing
[Lange & Dyer, 1989], which uses the DESCARTES
connectionist simulator [Lange, Hodges, Fuenmayor,
& Belyaev 1989). In this implementation there will
be equivalent inference paths for other devices which
could be used as the Pry-Obiject filler, such as the
candlestick itself. These inferences compete with the
use of the knife through the spread of activation. The

carving knife inference path wiil win out and be
chosen as the plan for prying open the container,
however, since its strength and fit attributes match
the constraints on the Pry-Object role better than the
other available objects.

CONCLUSIONS

Designing a knowledge representation model which
supports the invention process requires an integration
between intentional and behavioral object descrip-
tions. The model must address how the environment
and people’s higher-level goals and intentions affect
object choice during problem-solving, and how ob-
jects' properties support that functionality at the be-
havioral level. The bi-level representation used in the
EDISON model provides the necessary integration and
maintains the inferences from each abstraction level.
The concept of attributes is introduced, and their rela-
tion to property values is discussed with respect to
how they affect inferences between intentional and
behavioral levels of abstraction.
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DESCARTES:
Development Environment for Simulating Hybrid
Connectionist Architectures

Trent E. Lange, Jack. B. Hodges, Maria. E. Fuenmayor, Leonid. V. Belyaev

Computer Science Department
University of California, Los Angeles

ABSTRACT

The symbolic and subsymbolic paradigms each offer advantages and disadvantages in con-
structing models for understanding the processes of cognition. A number of research pro-
grams at UCLA utilize connectionist modeling strategies, ranging from distributed and lo-
calist spreading-activation networks to semantic networks with symbolic marker passing.
As a way of combining and optimizing the advantages offered by different paradigms, we
have started to explore hybrid networks, i.e. multiple processing mechanisms operating on
a single network, or multiple networks operating in parallel under different paradigms.
Unfortunately, existing tools do not allow the simulation of these types of hybrid connec-
tionist architectures. To address this problem, we have developed a tool which enables us
to create and operate these types of networks in a flexible and general way. We present and

describe the architecture and use of DESCARTES, a simulation environment developed to
accomplish this type of integration.

INTRODUCTION AND MOTIVATION

Within the connectionist approach there are three paradigms, each having its own advantages and

disadvantages: Distributed Connectionist Networks (DCNs), Localist Connectionist Networks
(LCNs), and Marker-Passing Networks (MPNs).

DCNs (such as the models in [Rumelhart & McClelland, 1986}) use simple, neuron-like process-
ing elements which represent knowledge as distributed patterns of activation. DCNs, sometimes
known as Parallel Distributed Processing or subsymbolic models, are interesting because they have
learning rules that allow stochastic category generalization, they perform noise-resistant associative
retrieval, and they exhibit robustness to damage. Distributed models, however, have (so far) been
sequential at the knowledge level, lacking both the structure needed to handle complex conceptual
relationships and the ability to handle dynamic variable bindings and to compute rules.

LCNs (as exemplified by the models of {Waltz & Pollack, 1985] and {Shastri, 1988]) also use
simple, neuron-like processing elements with numeric activation and output functions, but repre-
sent knowledge using semantic networks of conceptual nodes and their interconnections. Unlike
DCNs, localist networks are parallel at the knowledge level and have structural relationships be-
tween concepts built into the connectivity of the network. Unfortunately, they lack the powerful
learning and generalization capabilities of DCNs. They also have had difficuity with dynamic vari-
able bindings and most other capabilities of symbolic models.

MPNs (as exemplified by the models of {Chamiak, 1986] and [Hendler, 1988}) also represent
knowledgc_ In semantic networks and retain parallelism at the knowledge level. Instead of spread-
‘b'!g numenc activation values, MPNs propagate symbolic markers, and so support the variable
“’\“dmg necessary for rule application, while preserving the full power of symbolic systems. On
e other hand, they do not possess the learning capabilities of DCNs or exhibit the inherent ¢ -i-

dential constraint-satisfaction capabilities of LCNs.
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Hybrid Connectionist Models

Research at UCLA has spanned the range from subsymbolic to symbolic connectionist models
[Dyer, 1989]. A number of us have begun to construct hybrid architectures which use what we
term Multiple Interacting Networks, or MINs, heterogeneous connectionist networks that commu-
nicate via shared elements. A neurophysiological approach [Nenov & Dyer, 1988] effectively uses
MINs for visual/verbal association by modeling heterogeneous neuronal characteristics in separate
networks. We have also been exploring the use of MINs for higher cognitive tasks, such as plan-
ning, Creatvity, story invention, and political negotiations. In political negotiations research, for
instance, MINs are used to simulate the multiple perspectives of negotiating parties

Another approach is to build models that combine the bottom-up processing features of DCNs with
the top-down processing features of LCNs and MPNs. Figure 1 shows Hiding Pot, an example
wherein elements from each paradigm are combined using MINs. This allows us to approach a
problem that would be difficult, if not impossible, using a single paradigm. Hiding Pot shows a
simplified network built to understand the sentence, "John put the pot inside the dishwasher be-
cauce the police were coming."! Network-A in Figure 1 utilizes an MPN to do role-binding and an
LCN to activate and combine evidence for individual schemas. These then combine their func-
tionality to support predictions and perform inferencing and disambiguation.

One might also want to combine different connectionist approaches by having separate networks
that communicate with each other, where each one performs a different cognitive task. Network-8
in Figure 1 is a DCN, trained to recognize words from line segments [McClelland & Rumelhart,
1986, chap. 1]. By integrating these two approaches, we can simulate cognitive processes at the
different levels of abstraction necessary for modeling reading and understanding.

Network-A interacts with Network-B through shared lexical nodes. Once a word has been recog-
nized, it passes activation to the concepts related to the word. For example, the node for concept
John gets activation from the word node “john" which is shared by both networks. Activation then
propagates along the chain of related concepts in the network as contextual evidence for disam-
biguation. Markers are passed over the role nodes across marker passing links between corre-
sponding roles to represent role-bindings and perform the needed inferencing.

While there are several existing connectionist simulators, none allows the simulation of multiple
interacting hybrid networks, as in Hiding Pot, that integrate elements from more than one
paradigm of connectionist modelling. We have developed the DESCARTES simulation environment
specifically to address this kind of integration. DESCARTES enables researchers to design, simu-
late, and debug hybrid connectionist architectures that combine elements of distributed, localist,
and marker-passing networks.

DESCARTES ARCHITECTURE

DESCARTES is a package designed for simulating network processing, network interaction, and
integration of networks into an overall processing environment. The system consists of two inter-
active components: network elements, such as nodes and links, their associations, and their func-
uonality, and processing controllers, which organize network elements and coordinate their pro-
Cessing. The components of this architecture, as applied to Hiding Pot, are shown in Figure 2.

IThe inferencing and frame selection needed to understand sentences such as Hiding Pot is explained more
thoroughly in [Lange & Dyer, 1989a] and {Lange & Dyer, 1989b], which describe ROBIN, a model of high-level
Inferencing using an LCN without marker-passing.
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Hiding Pot

Network A

. Rote nodes over which both markers and activation spread.

O“ Feature detection nodes over which sctivation spreads. Incoming weights learned by back-propagation.
d Markers that have propagsicd (above and to the right of role nodes) representing bincings (eg Jo = John).
-— Link between reisted concepts over which weighted aclivation spreads.
- Link between concept and a role over which weighted activation spreads.
=

Mapping between role nodes over which markers are spread.

"

Spr g-activauon link whose weight is learnabie by back-propagation. Legend

Figure 1: The sentence "John put the pot in the dishwasher because the police were coming.” illustrates the
utility of integrating semantic networks (Network-A) and distributed networks (Network-8). The darkest area
represents the most highly-activated set of nodes representing the network's plan/goal analysis of the sen-
tence. Not all markers are shown. Location role nodes and other parts of the network are also not displayed.
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meta-control

LECRE K- 3 3

controller-class
sa/mp-control

nodes

M3ty oTm-3

controller-class
pdp-control S}

nodes

Transter-inside* Actor

“pO1" ]
Q- MP-Nod
(Simple-SA/MP-Node) (PDP-Noda)

<hidden units»
\&- ..po‘“ (PDP-Nodes)

Human
(Simple-SA-Nade) (POP-Node)
Marijuana . . “lohn”
(Stmple-SA-Node) lehn™ —= (PDP-Node)

(PDP-Node)
<input feature unitss

-1
Transfar-Inside (PDP-Nodas)

(Simpie-SA-Node)

Figure 2: DESCARTES Processing Architecture applied to Hiding Pot. Shown in cach network are a few
of their nodes, with the class of each node being declared in parentheses below their names. PDP-Nodces
“pot” and "john" are shared by both networks.

Processing Controllers

When DESCARTES is loaded and running, the required processing controllers are a meta-controller
(a supervisor for all elements and sub-controllers present in the run-time system) and at least one
network controller (a supervisor for an individual network and its elements). The architecture de-
scribed in Figure 2, and implemented in Hiding Pot, is controlled by a meta-controller (Meta-
Control) which coordinates the two networks (Network-A and Network-B). Each of these net-
works has a local network controller which coordinates the processing of its elements. [n this case
the controller for Network-A is of class SA/MP-Control, which combines both spreading-activation
and marker-passing functionality.

Network Elements

The nodes shown in Hiding Pot are illustrative of the kinds of nodes provided in the system.
Three of DESCARTES's predefined node classes are used in Hiding Pot: (1) Simple-SA-Node,
used in Hiding Pot for conceptual elements, such as Human and Transfer-inside, (2) Simple-
SA/MP-Node, used for roles, such as Transfer-Inside*Actor, and (3) PDP-Node, used for fea-
ture detection in Network-B, such as the node representing lexical entry "pot”. Figure 3 provides
an example of node creation in DESCARTES.

Simple-SA-Node is a basic class of spreading-activation nodes with default activation and output
functions. Simple-SA/MP-Node is another standard node class, which combines the functionality
of Simple-SA-Node with that required for marker passing. Finally, PDP-Node is the simplest
class of DCN-type nodes — spreading-activation nodes that modify the weights on their input
links by backpropagation [Rumelhart et al., 1986, chap. 8).

Many other common node and link types are predefined, with a variety of activation, threshold,
and output functions. More complicated classes are also available, including gated nodes and
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(Simple~SA-Node Transfer-Inside :in-links (SA-Link ("put" .15)
.00)
.50)
.50)

.50 ))

({Inside
(Transfer-Inside”Actor
(Transfer-Inside”0Obj

O O O = O

(Transfer-Inside~Loc

(Simple-SA/MP-Node Transfer-Inside~Actu:r :in-links (SA-Link (Transfer-Inside 1.C))
(MP-Link Inside~Planner))

Figure 3: Creation of Transfer-Inside and Transfer-Inside*Actor nodes, with forward-referencing.

links, along with more neurally-realistic nodes that communicate via output spikes, such as the ar-
tificial neural oscillators of [Vidal & Haggerty, 1987]. The functionality of DESCARTES objects
can easily be extended by combining the default class definitions of the object hierarchy with user-
defined modifications, a process described in [Lange et al., 1989].

Structured Networks

Some connectionist models have a consistent structure between groups of nodes in the network.
In a semantic network, for example, a node representing the head of a frame might always be con-
nected via a certain type of link to each of its roles, which in turn might always have a node for
their fillers. Groups of nodes forming winner-take-all networks are always completely intercon-
nected with constant inhibitory weights. Rather than force the user to repetitively define all nodes
and connections for each such structured group, DESCARTES has a facility that allows the pro-
grammer to optionally define a structured growing method for each node class. A node's growth
method automatically creates the node's expected structured incoming and outgoing nodes and
connections. This feature allows knowledge base definitions to act as keys for network creation
rather than as exhaustive listings of the networks' nodes and their connectivity.

SIMULATION IN DESCARTES

Once the networks have been designed and built, the user starts the simulation by (1) optionally
defining the cycling, termination, and display sequence for each network, (2) initializing the meta-
controller to clear out all activation and markers, (3) activating or marking the desired nodes, and
(4) starting the cycling sequence .nd specifying the number of global cycles to run. An example of
this process is shown in Figure 4, but for a complete description see [Lange et al., 1989].

Figure 4 shows the initial activation and markers needed to process the phrase "John put the pot
inside the dishwasher.” The first define-cycling command in the figure specifies that the meta-
controller spread activation in Network-A once per global cycle, while only passing markers once
per every three global cycles. Both activation and markers will cycle until stability, their default
termination condition. For analysis of the network’s activity, the user has defined that a trace of
the markers’ propagation be shown and that the status of the nodes be displayed every ten cycles.
The second define-cycling command defines that Network-B is not to be cycled in this example.

In general, the networks' cycling sequences need only be set once per session (if at all), although
all sequencing and displaying parameters may be re-specified in mid-simulation. Activations and
markers of nodes may be changed at any time. The cycling sequence is further described below.

The Simulation Cycle

As shown, DESCAR
ally. The meta-con
in parallel behave

TES is designed in such a way that networks can be cycled in parallel or seri-
troller provides for timing coordination between the networks. Networks cycled
as if they were a single net, even though they need not operate at the same fre-
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(define-cycling sNetwork-A :sa-cycle-every 1 i (1)
:marker-cycle-every 3
:marker-trace T
:display-every 10)
(define-cycling SNetwork-B :sa-cycle-~every NIL)
(i~nit meta-control) jr (2)
{clamp-activation %“"put" 1.0) pe (3
(mark %Transfer-Inside“Actor (marker %John})
{mark MTransfer-Inside~Obj (marker %¥Cooking-Por)
(marker %$Marijuana))
{mark STransfer-Inside”Loc¢ (marker %$Dishwasher))
(cycle 50) ;i (4)

Figure 4: An example of the DESCARTES control language.

quency, or, in fact, with the same functionality. A particular model may have a network of in-
hibitory nodes cycling at a faster rate than a network of excitatory nodes with which it interacts, at
the same time as symbolic markers are being passed over each, and backpropagation is being per-
formed within sub-networks of the model. With serial cycling, one network may wait until another
network completes a specified number of cycles or reaches stability before starting to cycle itself.

Each global network cycle is comprised of four steps: (1) determination of which networks need to
be cycled, (2) update of active nodes in the cycling networks, (3) spread from active nodes in the
cycling networks to their out-links, and (4) report any requested output.

Determining Active Networks: The meta-controller determines which of the networks
in the system need to be cycled in parallel on the given cycle, according to defaults and
any define-cycling commands. . Figure 4, spreading-activation nodes in Network-A
will be cycled on every global cycle, while marker-passing nodes will be cycled only on
global cycles 1, 4, 7, and so on, until termination (stability).

Update: Each active node in the cycling networks queries its incoming links for new acti-
vation and/or markers. Spreading-activation nodes calculate their new activation by ap-
plying their activation function, while marker-passing nodes store any new markers they
have received.

Spread-To-Out-Links: Each active node in the cycling networks calculates its output
(cithes activation or markers) and sends it to its outgoing links. The output of spreading-
activation nodes is calculated by applying their output function, while the output of
marker-passing nodes is generally their new markers.

Report OQutput: The final step of a cycle entails querying the cycling networks for results.
Each network controller can optionally display the status of impornant nodes at specified
cycles (Network-A's status will be displayed every 10 cycles in Figure 4) or trace new
activation and/or markers. DESCARTES currently has a number of output options useful
for system design and debugging.

IMPLEMENTATION AND SIMULATOR ACCESS

DESCARTES has been designed for portability, flexibility, and simplicity of use. Portability is
achieved via the use of COMMONLISP, the ANSI Lisp standard. Flexibility is augmented by the
use of the COMMONLISP Object System, CLOS, whose hierarchical class structure provides inheri-
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tance which enables users to utilize pre-defined functional classes to customize their own se-
mantics. A complete description of currently available functionality and test-bed cases can be
found in [Lange et al., 1989). The largest test case simulated to date is an implementation of a
ROBIN [Lange & Dyer, 1989b] network in the domain of Hiding Pot. It consists of two in-
teracting LCNs built from four node classes and five link classes, with a total of 12,400 nodes
and 40,000 links.

DESCARTES's control language is simple and effective, enabling the designer to easily set up and
test different network configurations using either pre-defined or user-defined elements. At the
same time, the system has been designed with ease of network debugging in mind, with history
and output facilities that offer researchers valuable methods for interpreting network behavior.

DESCARTES will be made available to all interested users. Enquiries about access to the simulator
should be sent to DESCARTES@CS.UCLA.EDU.

RELATED WORK

Some of the recent tools constructed for building and simulating connectionist architectures are

(1) the Rochester Connectionist Simulator (RCS) [Goddard et al., 1987], (2) the PDP Software
Package [McClelland & Rumelhart, 1988), (3) MIRRORS/II [D'Autrechy ez al., 1988], and

(4) GENESIS [Wilson ez al., 1988]. RCS is a spreading-activation simulator which allows units to
have any amount of associated data. There is no specification language for construction of the net,
but the system provides a library of commonly used network structures and units. The PDP Soft-
ware package includes a number of programs for simulating the DCN models in [Rumelhart &
McClelland, 1986]. MIRRORS/II and GENESIS, the most recent of the four systems, have both
features: a high level non-procedural language for network construction and an indexed library of
commonly used networks. Both have more sophisticated and flexible control mechanisms than
RCS and the PDP Software Package, with MIRRORS/II emphasizing simulations using LCNs and
GENESIS emphasizing realistic, biologically-based models.

The flexibility and symbolic capabilities afforded by DESCARTES' object-oriented implementation
in COMMONLISP and CLOS comes at a small expense in simulation speed in comparison to the C-
based implementations of RCS, the PDP package, and GEN®SIS. The only case where the differ-
ence in speed should be significant, however, is in simple backpropagation networks requiring
thousands of learning epochs, for which the PDP package might be more appropriate. Except for
GENESIS, all of the above-mentioned simulators are geared toward monotonic distributed or local-
ist spreading-activation networks. None of them have the concept of hybrid multiple interactive
networks as part of their design, especially those which can pass symbolic markers.

CONCLUSIONS

We have presented a development tool, DESCARTES, which provides researchers with the capa-
bility to combine Distributed Connectionist Networks, Localist Connectionist Networks and
Marker-Passing Networks within a single simulation environment. The most important theoretical
contribution of DESCARTES is the concept of Multiple Interactive Networks with intra- and inter-
network heterogeneity. As a tool, it provides a simple, portable, and versatile environment for de-
signing and testing different cognitive models. These capabilities make DESCARTES a unique and
powerful tool for researchers in Artificial Intelligence, Cognitive Modelling, and Connectionism.
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