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REVIEW Or INVESTLGATION PROGRESS

A. Initial-Value Problems in Stratificd Shear Flow

The question of the stability of a stratified shear flow is addressed
through the investigation of the initial-value problem defined for a two-laver
fluid of infinite extent with uniform velocity and densitv in each laver.
Solutions of this problem have application to the generations of unstable
motions in the atmosphere.

The eigenvalues of this problem can be expressed as the solutions ot a
quadratic polynomial in the frequency with coefficients wirich are functions of
the wavenumbers, and relative densi*ies and velocities. The value of the
discriminant of this equation determines if the system is stable or unstable.
Figure 1 is the locus of the neutral values of the discriminant as a function
of velocity and vaveuumber. The yrapn indicates that there is a threshold
velocity below which the svstem is stable. Figure 2 i{s an example of the values
of the imaginary part of the complex frequencv for waves traveling at angles
of obliquity of 0°, 30° and 60° to the mean velocitw.

Solutions to the initial-value problem driven by a Gaussian pulse showing
the initial distortion and the asvmptotic development are shown in Figures 3
and 4, respectivelv,

The initial distortion is evaluated using a power series expansion and
approximation of the complex dispersion relation as a polvnomial in the hori-
zontal wavenumbers. The expansion for non~dimensional time parameter 0, 0.05
and 0.75 are shown in Figure 3.

The two-dimensional asvmptotic expansion using saddle-point techniques
for this non-conservative svstem is evaluated at values of the time parameter
of 20 and 60 and is shown in Figure 4. It is apparent that the svstem tends

to become two-dimensional (long standing wave patterns) in the large.




A complete report of this work is contained in the Ph.D. dissertation

of J.E. Bradt with a version for publication to be submitted.

A second piece of research as been completed (submitted for publication)
and concerns the question of other singularities in the eigenvalue spectrum.
A recent paper by Chimonas (G. Chimonas, 1979, Journal of Fluid lechanics, 29,
1-69) drew attention to the fact that essential singularities are present and
thereby result in (a) algebraic growth in time for the perturbations and (b)
aré not form preserving. Unfortunately, Chimonas did a purely inviscid calcu-
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lation and our zanalvyeis zhioz ¢»-t gven a small it cof viseccooie, {(lar
number) negates this result. Nevertheless, the general Laplace transtorm
technique does reveal that considerable care must be given to perturbation
problems in stratified shear flow.

The general studv of the problem of shear flow-internal wave interaction
continues as well. A modelled situation is proving quite productive, partic-
ularly when the major goal is a representative of a spectrum of the fluctuating
energyv. Specificallv, tne work includes (a) viscous effects, (b) a constant
mean shear, (c) a constant Brunt-Vasailia frequency (exponential densitvy
stratification), but omits anv effects due to boundaries. This last point
seems reasonable enough in view of the fact that we are concerned with motions
in the interior of the atmosphere. . :v. ver, the technique used for solution
is novel and is capable of producing results for arbitrary three-dimensional
disturbances with the aid of an analogue computer. Both a liaster's thesis and
a publishable version of this work will soon be available.

B. Fluctuations in Geophysical Boundarv Llavers

Concentration on the analysis of perturbations in a turbulent Ekman laver

has been the center of this research since the last report. Besides desiring




the characteristics of the structure in the phvsical situation, an answer te
the important question of body force effects on turbulence was sougit. 1In
order to reduce the svstem to a workable (and understandable) means it was
decided to allow the important parameter to be the relative scale depth of the
logarithmic portion of the boundarv laver (near wall) to that of the total
shear zone (including spiral). When this ratio is too small, the laver is
unstable, a result quite different from conventional flat plate turbuient

.
boundary lavers where it is well known thac a fully turbulent laver is s
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The ramifications of this are being explored further.
A report on both the laminar (wave packets) and turbulent Exman lavers

will be available with the Pu.D dissertation of G.F. Spooner.

C. Internally or Externally Perturbed Bouadary Lavers over a Flat Plare
We consider steady viscous incompressible flow over a semi-infinite flat

plate under the influence of either internal or external time-dependent per-

turbations. Experimentally, an internal perturbation mav be realized by a
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vibrating ribbon and an external perturbation correszeiads to

h

superimposed on a uniform freestream.

We show that in either case, when the amplitude of perturbaticns o is less

"

than the boundarv laver thickness € but larger than €  the unsteadv correcticn
terms to the conventional boundary layer equations are governed by certain
linear variational equations with variable coefficients; these coefficients
involve the Blasius velocity functions. For the case of internal perturbations
we obtain certain unsteady boundary conditions to be imposed on the flat plate
while for external perturbations the unsteady boundarv conditions are specified
at infinityv in the vertical direction.

The derivation of these results proceeds svstematically from the Navier-Stokes

equations using conventional asymptotic arguments and does not involve the ad hoc




assumption of parallel flow in the boundarv laver. In fact, hoth the horizontal
and vertical velocity components of the Blasius solution occur in our variational
equations.

A rreliminary program for numerically solving the variational equations
for the case of a sinusoidal internal perturbation is complete, the results
are qualitatively in accordance with experimental observations in that the dis-
turbance region diffuses in the vertical direction and is convected downstreaxz.

t

This numerical procedure is only valid for moderate frequencies and does nor
apply for the more interesting case of high frequency disturbances. To analvze
this limit we have rescaled the variables in our variational equaticus and we
are currently working on a second numerical code.

Paralleling these numerical studies we have derived aun asymptotic approxima-
tion of the perturbazion equations in the limit of large excitation frequency.
In this limit the basic problem reduces to a weakly nonlinear diffusion equation
with an oscillating boundary condition. An approximation valid for short times
has been derived and indicates that the disturbance in the boundarv layer grows
with time. In order to derive a uniformly valid result for long times we plan
to develop a multipte variable solution. Multiple variable expansions have been
used with much success in wave propagation problems as well as in some examples
of weakly nonlinear elliptic equations. However there are no significant results
available for weakly nonlinear parabolic problems with time dependent boundary
conditions. We propose to concentrate on this point during the next grant
period.

An initial report on this work will be given at the forthcoming meeting of
the Division of Fluid Dynamics, American Physical Society, to be held at the

University of Notre Dame in November 1979.

The alternative approach to analysis of the continuous spectrum-earlv time




problem for rhe boundary laver is still is progress. Basic equations are
available with a means for solution still not complete. This work is of high

priority.

D. Report on a Turbulence Initiation Cailculational Procedure

Analytical and experimental results obtained by a number of investipators

6, 1972, p. 775; Landahl, M.T. and

{see, for example, Landahl, M.T., JFM
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;
Criminale, W.0., JFM 79, 1977; Wvgnanski, I., Haritonidis, J.H., and XKaplan, R.E.,

JEM 92, 1%79, p. 505; Gaster, M. and Grant, I., Proc. Rox. Soc. lond. 347, 1975,

U
w

p- 253; Kim, H.T., Kline, S.J., and Revnolds, ¥.C., JFM 50, 1971, p. 133, and
the rererences contained therein) help focus attention on both the importance
ana the complexitv of the nonlinear processes which take the place atter the
first appearance of a turbulent spot in a boundary laver. It appears useful to
attempt (6 suppiement tnose investigations with a reasonably %ccurate corputa-
tional approach to the problem, and tor this purpose we have considered several
pussible techniques, and have experimented brieflv with a nropram based on one
of them. The program appears promising, but it is clear that cuch rezains to
be done.

Using Cartesian index notation (and the usual summation convention), the

Navier-Stokes equations for incompressible flow mav be written

X 4
Py

1
+ 1 u = - =,k ‘ W
AN 5 Py R+ X + v {K,jﬁ (D
where ;l.kis the #'th component of velocitv, p is the density, F»’< the component
of body force, and v the kinematic viscosity. Taking the curl of Eq. (1) we

obtain after simple manipulation an equation for the vorticity vector €;

F L F Y £ . e (2)




and we note also that

Uu . = - {.‘_. ', . (3)

The advantage of using a vorticity equation is that the pressurc derivative
is eliminated. Our reason for including a bodv force term is twofold. First,
its use provides a convenient and flexible triggering mechanism, which avoids

(
the necessity of inserting a perturbation in either the entering or existing
laminar flow. Second, there is experimental evidence to the effect that a
longitudinal flow vortex can plav an important role in the growth of turbulence
near an initial turbulent spot; one wéy in which such a vortex can be generated
is if there is an unequal division of flow around a turbulent spot (the instab-
ility of parallel channel flows is well known), and this kind of inequalitwv
can be easily triggered bv the use of an appropriate small bodv force distribu-
tion.

Qur approach is to take time steps in vorticityv, using Eq. (2), and to then
use Eq. (3) to determine the new velocity field. The region of interest is anv
simple geometrical region containing the turbulent spot, with the boundaries
sufficiently far removed that in the initial portion of the turbulence build-up
there will onlv be a negligible perturbation felt at these boundaries. This
will of course not be precisely true, and in fact it will not be at all correct
on, sav, a flat plate boundary ncar which the turbulence is being generated.
Consequently, a correction procedure, near anv such boundary, will be necessarv,

To take a time step in Eq. (2), we have so far used a simple explicit
procedure. Although this can be chosen to be both stable and accurate, and has
in fact been quite satisfactory for the initial investigation, it is recognized
that larger time steps are feasible for implicit preocedures of the kinds

developed for diffusion type equations. Possible improvement in this particular




procedure will be examined. Using the new vorticity wvalues, Eaq. (3) has the
form of a Poisson equation for each component of velocitv. Assuming first

that the boundary values of velocity are those of the laminar flow, new interior
values of velocity corresponding to the new vorticities nav be cobtained v o
successive optimal over-relaxation procedure which (for a prismatical region,
say) is very efficient. The number of iteration sweeps required to reduce the
error by a factor of 100 is of the order of the number of mesh pcints aleonz a
si&e; tihe initial error is kept small by using, for a first guess, cither the
velocity values appropriate to the previous time step or extrapolations from
those values.

The coupling between Eqs. (2) and (3) required for boundary corrections
arises at the next step in the program. In order to compute interior vorticity
values for the next time step, we need new vorticity values on the houndarw.
However, we do not have a priori values for velocity derivatives (and hence
vorticities) on the boundary; thus we must extranolate to obtain these values
from interior values. This kind of calculation is known to lead to possible
inaccuracies and even instabilities, and it may be necessary to devise saie-
guards against such inaccuracies. There are some situations in wiich analvtical
1nformation snvoelvitn dulavdbive vatwes ar2 zavailakle from the above equations,
and if so the numerical calculations can be simplified.

Another problem which must ultimately be dealt with is that of mesh refine-
ment near critical resyions, for tiie purgcse of eonhanced <r-vrar Qur experience
with other problems of diffusion or potential flow character leads us to cxpect
this possibility to be useful (in that it reduces the amount of computer tirme
required for a desired accuracv of result), we have not experimented with this
feature in the present problem.

A preliminary program has been written, and applied to the initial phases

of turbulence growth near a tlat plate boundary. The mean stream flow here was




Poiseuille {low character, with an initially parabolic velocity distribution.
Nen-dimeneionalizat! »n was used, and, in terms of the distance to the infivetion
point in the parabolic profile, the Revnolds numbers used were primarilv in the
range of a few hundreds to a few thousands. Disturbances were sencrated bv
impulsive leocalized body force contributions, and with about 1300 mesh points,
a few tens of time steps were taken.

- With the limited time and computational facilities available, oniv verw

{
preliminary results could be obtained. However, the propram did appear to be
both accurate and stable, at least for the initial part cof the motion. To date,
both the space and time meshes are crude, the control of perturbed bhoundarw
values is primitive, and -~- as previously mecationed -- refinements aimed at
increasing accuracy or stability have not been madc. Qur pencral feeline is
that the method appears to ve well worth further investiszation as a4 tool in
better understanding the growth of turbulent regions, and we propose to under-

take sucih an investigation.
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