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REVE' r I NVEST I(,ATIO; TRO,,;RESS

A. Initial-Value Problems in Stratified Shear Flow

The question of the stability of a stratified shear flow is addressed

through the investigation of the initial-value problem defined for a two-laver

fluid of infinite extent with uniform velocity and density in each laver.

Solutions of this problem have application to the generations of unstable

moions in the atmos~phere.

The eigcnvalues of this problem can be expressed as the solutions o a

quadratic polynomial in the frequency with coefficients which are functions of

the wavenumbers, and relative densilies and velocities. The value of the

discriminant of this equation determines if the system is stable or unstable.

Figure I is the locus of the neutral values of the discriminant as a function

of velocity and qavevaumber. The graph indicates that there is a threshold

velocity below which the system is stable. Figure 2 is an example of the values

of the imaginary part of the complex frequency for waves traveling at angles

of obliquity of 0 , 30' and 600 to the mean velocity.

Solutions to the initial-value problem driven by a Gaussian oulse showing

the initial distortion and the asymptotic development are shown in Figures 3

and 4, respectively.

The initial distortion is evaluated using a power series expansion and

approximation of the complex dispersion relation as a polynomial in the hori-

zontui wavenumbers. The expansion for non-dimensional time parameter 0, 0.03

and 0.75 are shown in Figure 3.

The two-dimensional asymptotic expansion using saddle-point techniques

for this non-conservative system is evaluated at values of the time parameter

of 20 and 60 and is shown in Figure 4. It is apparent that the system tends

to become two-dimensional (long standing wave patterns) in the large.



A complete report of this work is contained in the Ph.D. dissertation

of J.E. Bradt with a version for publication to be submitted.

A second piece of research as been completed (submitted for publication)

and concerns the question of other singularities in the eigenvalue spectrum.

A recent paper by Chimonas (G. Chimonas, 1979, Journal of Fluid Itc-,anics, 90,

1-69) drew attention to the fact that essential singularities arc present and

thereby result in (a) algebraic growth in time for the perturbations and (h)

are not form preserving. Unfortunately, Chimonas did a purely inviscid calcu-

lation ar-i our c..I ' . avon a small Lit cf viscz j ' ,argo -. , .

number) negates this result. Nevertheless, the general Laplace transform

technique does reveal that considerable care must be give-i tD perturbation

problems in stratified shear flow.

The general study of the problem of shear flow-interna' wave interaction

continues as well. A modelled situation is proving quite productive, partic-

ularlv when the major goal is a representative of a spectrum of the fluctuatinc

energy. Specifically, t-e work includes (a) viscous effects, (b) a constant

mean shear, (c) a constant Brunt-Vdsaili frequency (exponential density

stratification), but omits any effects due to boundaries. This last point

seems reasonable enough in view of tle fact that we are concerned with motions

in the interior of the atmosphere. .. v: ver, the technioue used for solution

is novel and is capable of producing results for arbitrary three-dimensional

disturbances with the aid of an analogue computer. Both a Mlaster's thesis and

a publishable version of this .,ork will soon be available.

B. Fluctuations in ;eophvsical Boundary Lavers

Concentration on the analysis of perturbations in a turbulent Ekman layer

has been the center of this research since the last report. Besides desirin,'



the characteristics of the structure in the phsical situation, an answer to

the important question of body force effects on turbulence was soughit. In

order to reduce the system to a workable (and understandable) means it was

decided to allow the important parameter to be the relative scale depth of the

logarithmic portion of the boundary layer (near wall) to that of the total

shear zone (including spiral). then this ratio is too small, the laver is

unstable, a result quite different from conventional flat plate turbulent

boundary layers where it is well known thllL a fully turbulent laver is stable.

The ramifications of this are being explored further.

A report on both the laminar (wave packets) and turbulent Ekman lavers

will be available .ith the Ph.D dissertation of (.F. Spooner.

C. Internallv or Externally Perturbed Bowadarv Layers over a Flat Plaic

We consider steady viscous incompressible flow over a semi-infinite flat

plate under the influence of either internal or external time-dependent per-

turbations. Experimentally, an internal perturbation may be realized by a

vibrating ribbon and an external perturbation correspo:nis to stall f2tcain

superimposed on a uniform freestream.

We show that in either case, when the amplitude of perturbations C. is less

than the boundary laver thickness c but larter than c2 tile unsteady correction

terms to the conventional boundary layer equations are governed by certain

linear variational equations with variable coefficients; these coefficients

involve the Blasius velocity functions. For the case of internal perturbations

we obtain certain unsteady boundary conditions to be imposed on the flat plate

while for external perturbations the unsteady boundary conditions are specified

at infinity in the vertical direction.

The derivation of these results proceeds systematically from the Navier-Stokes

equations using conventional asymptotic arguments and does not involve the ad hoc



assumption of parallel flow in the boundary laver. In fact, hoth the horizontal

and vertical velocity components of the Biasius solution occur in our variational

equations.

A preliminary program for numerically solving the variational equations

for the case of a sinusoidal internal perturbation is complete, the results

are qualitatively in accordance with experimental observations in that the dis-

turbance region diffuses in the vertical direction and is convected downstream.

This numerical procedure is only valid for moderate frequencies and does nor

apply for the more interesting case of high frequency disturbances. To analyze

this limit we have rescaled the variabies in our variational equati, i and ,,'e

are currently working on a second numerical code.

Paralleling these numerical studies we have derived aii asymptotic approxima-

tion '-f the perturhaion equations in the limit of large excitation frequency.

In this limit the basic problem reduces to a weakly nonlinear diffusion equation

with an oscillating boundary condition. An approximation valid for short times

has been derived anu indicates that the disturbance in the boundary layer grows

with time. In order to derive a uniformly valid result for long times we plan

to develop a multipie variable solution. Multiple variable expansions have been

used with much success in wave propagation problems as well as in some examples

of weakly nonlinear elliptic equations. However there are no significant results

available for weakly nonlinear parabolic problems with time dependent boundary

conditions. Ue propose to concentrate on this point during the next grant

period.

An initial report on this work will be given at the forthcoming meeting of

the Division of Fluid Dynamics, American Physical Society, to be held at the

University of Notre Dame in November 1979.

The alternative approach to analysis of the continuous spectrum-early time



problem for the boundary laver is still is progress. Basic equations are

available with a means for solution still not complete. This work is of high

priority.

D. Report on a Turbulence Initiation (Laiculational Procedure

Analytical and experimental results obtained by a number of investigators

(see, for example, Landahl, ,.T., JFN 56, 1972, p. 775; Landahil, -1.1. and

Criminale, W.0., JF-1 79, 1977; k'vgnanski, I., Haritonidis, J.H., and Kaplan, R.E.,

JFM 92, 1979, p. 503; Caster, M. and Grant, I., Proc. Roy.. Soc. Lond. 347, 1975,

p. 253; Kim, H.T., Kline, S.J., and Rey.nolds, 'W.C. , JF 50, 1971, D. 133, and

the rererences contained therein) help focus' attention on both the importance

and the complexity of the nonlinear processes which take the place after the

first appearance of a turbulent spot in a boundary laver. It appears useful to

attempt LO upIcment tiiose investigaLions wit-h a reasonably accurate cc.7uta-

tional approach to the problem, and for this purpose we have considered several

possible techniques, and have experimented briefly with a orogram based on one

of them. The program appears promisinz, but it is clear tiat much remains to

be done.

Using Cartesian index notation (and the usual summation convention), the

Navier-Stokes equations for incompressible flo-: mav be ,ritten

t k

where ikis the :' th component of velocity, p is the densitv, Fk the component

of body force, and v the kinematic viscosity. Taking the curl of Eq. (1) we

obtain after simple manipulation an equation for the vorticitv vector C.

3 +.
U ,s - Fa.~r = c..k t k,,,: +  .f.. (2)

.--.... ,immmmmmmm rmm tmm m m



and we note also that

. -(3)j~~j 2*< k,,

The advantage of using a vorticitv equation is that the pressure derivative

is eliminated. Our reason for including a body force term is twofold. First,

its use provides a convenient and flexible triggering mechanism, which avoids

the necessity of inserting a perturbation in either the entering or existing

laminar flow. Second, there is experimental evidence to the effect that a

longitudinal flow vortex can play an important role in the growth of turbulence

near an initial turbulent spot; one way in which such a vortex can be generated

is if there is an unequal division of flow around a turbulent spot (the instab-

ility of parallel channel flows is well known), and this kind of inequality

can be easily triggered by the use of an appropriate small body force distribu-

tion.

Our approach is to take time steps in vorticity, using Eq. (2), and to then

use Eq. (3) to determine the new velocity field. The region of interest is an-;

simple geometrical region containing the turbulent spot, with the boundaries

sufficiently far removed that in the initial portion of the turbulence build-up

there will only be a negligible perturbation felt at these boundaries. This

will of course not be precisely true, and in fact it will not be at all correct

on, say, a flat plate boundary near which the turbulence is being generated.

Consequently, a correction procedure, near any such boundary, will be necessary.

To take a time step in Eq. (2), we have so far used a simple explicit

procedure. Althnugh this can be chosen to be both stable and accurate, and has

in fact been quite satisfactory for the initial investigation, it is recognized

that larger time steps are feasible for implicit procedures of the kinds

developed for diffusion type equations. Possible improvement in this particular



procedure will be examined. Using the new vorticitv vailues, E. . ( 3) 1as tI,!

form of a Poisson equation for each component of velocitv. Assumin; first

that the boundary values of velocity are those of the laminar flow, new interior

values of velocity corresponding to the new v_,rticities ,nay 1e o'tained b,,

successive optimal over-relaxation procedure which (for a prismatical regiol,

say) is very efficient. The number of iteration sweeps required to reduce the

error by a factor of 100 is of the order of the number of mesh points alon a

side; the initial error is kept small by using, for a first guess, either the

velocity values appropriate to the previous time step or extrapol.itions from

those values.

The coupling between Eqs. (2) and (3) required for boundary corrections

arises at the next step in the program. In order to compute interior vorticit;

values for the next time step, we need new vorticitv values on the boundary.

However, we do not have a priori values for velocity derivatives (and hence

vorticities) on the boundary; thus we must exti-apolate to obtain these values

from interior values. This kind of calculation is known to lead to possible

inaccuracies and even instabilities, and it may be necessary to devise safe-

guards against such inaccuracies. There are some situations in which analytical

intormatioui Livu!VL111' UI dti'V%7 'u'., ar zvailcb2 from the above equations,

and if so the numerical calculations can be simplified.

Another problem which must ultimately be dealt with is that of mesh refine-

ment near critical regions, for the Ijrpc-Je of '..rir.. Our experience

with other problems of diffusion or potuntial flow character leads us to expect

this possibility to be useful (in that it reduces the amount of computer time

required for a desired accuracy of result), we have not experimented "ith this

feature in the present problem.

A preliminary program has been written, and applied to the initial phases

of turbulence growth near a flat plate boundary. The mean stream flow here ,,as



Poiseuille flow character, with an initially paribolic veocit. (diatriutiDn.

Ncn-diensionaizat I waS used, and, in terms of the dist L I:e to the ilfiot. lion

point in the parabolic profile, the Revnolds numbers used We're pr'imari lv in the

range of a few hundreds to a few thousands. Disturbanc -s; were 40n.ra ted by

impulsive localized body force contributtons, and with ahut i-50o me'si points,

a few tens of tine steps were taken.

With tho limited time and computational facilities ivailabltz, on!'.v verv

preliminary results could be obtained, 11owe"ver, the oro};ram did ,i:puar t- !-e

both accurate and stable, at least for the initial part of the motion. To Jate,

both the space and time meshes are crude, the control of perIturbed oundar,'

values is primitive, and -- as previously mentioned -- refinemen'.s aimec at

increasing accuracy or stability have not been made. Our ;,,enral fein' is

that the method appears to be well worth further investigation as a tool in

better understanding- the growth of turbulent regions, and we propose to indt2r-

take such an investigation.
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