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1. Introduction

A central problem in machine vision is that of recognizing partially occluded ob-
jects from noisy data. Recognition systems generally search for a matching between
elements of an object model and instances of those elements in the data, recovering
a transformation that maps part of the model onto part of the image. There are
a number of different approaches to this model-based recognition problem, includ-

ing clustering in parameter space (e.g., Stockman [1987], Stockman et al. [1982],
Thompson and Mundy [1987]), searching a tree of corresponding model and image
features (e.g., Grimson [1989a, 1989b] Grimson and Lozano-P6rez [1984, 1987], Et-
tinger [1987, 19881, Murray [1987a, 1987b], Murray and Cook [1988], Ayache and
Faugeras [1986], Faugeras and Hebert [1986], Ikeuchi [1987]), and directly searching

for possible transformations from a model to an image (e.g., Fischler and Bolles
[1981], Huttenlocher and Ullman [1987, 1988]) (see also Chin and Dyer [1986] and
Besl and Jain (1985] for more comprehensive reviews). These approaches all share
the common property that a decision is ,:ade about the presence or absence of an
object on the basis of geometric evidence acquired from the sensory input. In this

paper we inves igate the nature of this decision process and develop a formal means
for deciding when a match should be accepted as correct.

To determi.e what constitutes an acceptable match of a model to an image,
most recognition systems use one of two ad hoc approaches. The first approach is to
find all possible interpretations and order them by some measure of completeness,
such as the percentage of the model accounted for. The best interpretations, as
defined by this measure, are then taken as correct solutions. Suppose one is looking
for interpretations in the data of a particular object from the library of possible
objects. If an instance of a particular object model is present in the scene and the
measure of completeness is well behaved, then this apprpach will correctly find the

interpretations. If no instance of a particular object model is present in the scene,
the interpretations of this object that best account for the data are in fact incorrect.
In this case, one must either accept false interpretations or there must be some

means of deciding whether or not the object is pres-nt. Furthermore, this approach
is computationally expensive, as in order to find all possible interpretations the
entire search space must be accounted for.

The second common approach is to again apply a measure of completeness to
each hypothesized match, but to use this measure to prematurely terminate the
search as soon as an interpretation is found whose measure exceeds some threshold.

Termination can be based strictly on the completeness of the current interpretation,
or can involve examining the data for additional confirming or refuting evidence.

Finding additional evidence can increase the measure of completeness of an inter-
pretation, but one is still left with the problem of deciding whether an interpretation

is good enough to accept as a correct match.

Current methods for deciding whether a match is correct are based on empiri-
cally determined thresholds. A more rigorous approach would be to derive conditions
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under which to accept a match that are based on fundamental grounds. In this paper
we analyze the problem of determining what constitutes a good match of a model
to an image. In particular we derive an expression that relates the probability of a
false match to the fraction of model features that are accounted for by the match.
This expression is a function of the number of model features, the number of image
features, and a bound on the degree of tolerable sensor noise. The derivation results
from an examination of the likelihood of false positives (i.e., interpretations that are
incorrect but arise due to a random coincidence of events in the image).

We then use this relation to define a threshold on the fraction of features that
must be matched in order to limit the probability of a random coincidence to some
level. We analyze some existing recognition systems ([Grimson and Lozano-P~rez,
1984, 1587] [Ayache ad Faugefab, Lo,36j and find that our technique yieids thresh-
olds similar to the ones that were determined empirically for these systems. This
provides experimental evidence of the validity of the technique, and suggests that it
can be used profitably to set thresholds for other recognition tasks and systems.

Specifically, we address the following question:

0 Suppose that we are given a model with m features, a set of s data features
from a sensor, and bounds Ep and E on the positional and orientational error
in the data. Further, suppose that some recognition method has found a match
that accounts for a fraction f (f E [0, 11) of the m model features. What is
the relation between f and the likelihood b that such a match can occ,,r at
random?

We use this relation to set a threshold on the minimum fraction of model features
that must be matched, fo, such that the likelihood of such a match occurring at
random is small (e.g., 6 < .001). Note that there is not necessarily a value of fo for
any choice of 6 (in particular as 6 gets very small, or as m, s, Ep or ca get very large
there may be no fraction of model ires that limits the probability of a random
match to 6).

There are three basic steps to thie technique. First, given a particular type
of feature, the type of transformation from a model to an image, and a bound
on the sensor error, we characterize the set of transformations that are consistent
with a single pairing of model and image features. This set of transformations is
described by a volume V in the transformation space (a d-dimensional space with
one dimension corresponding to each of the d transformation parameters).

We then determine the probability, Pr{e > 1} that the number of everts (in
this case the number of such volumes) that intersect at a common point in the
transformation space is at least 1. This likelihood is an estimate of how often a
match of I features will occur at random. The probability of I volumes intersecting
is estimated by considering the limiting case of a statistical occupancy problem as
the number of observations and cells goes to infinity [Feller, 1968). This method is
similar to that used for the analysis of the generalized Hough transform in [Grimson
and Huttenlocher, 1989].



3

Finally, the probability that I volumes will intersect at random is used to set a
threshold on the minimum fraction of model features, fo, that must be matched in
order to accept an interpretation. In particular we set the threshold fo such that
mfo :< 1, and Pr{e > l} is a tolerable false matching rate 6.

2. The Space of Transformations

For rigid objects, the pose of an object with respect to a sensor can be character-
ized by a transformation from the model to the sensor coordinate systems. In this
paper we focus on the case where this transformation is a similarity (i.e., consist-

ing of translation, rotation, and scaling). The set of possible solutions to a given
recognition problem can be viewed as a transformation space having one dimension
corresponding to each parameter of the transformation from model to sensor coor-
dinates. A point in this transformation space defines a pose of an object, which
in turn defines a possible solution to the recognition problem. For example, with
a two-dimensicnal image and world, the transformation space is four-dimensional
(translation in x and y, rotation in the plane, and scaling).

A matching of a mode, feature with an image feature (such as an edge or vertex)
defines a range of possible transformations from the model to the image, that is, a
volume in the transformation space. The size and shape of this volume depends on
the type of feature and on the degree of accuracy in the measurement of the features.
In this section we present an analytic expression for the size of this volume. This
expression is related to that developed in [Grimson and Huttenlocher, 19891 for
characterizing the range of feasible transformations when the transformation space

is tesselated at some sampling rate. Here, we determine an expression for the volume
of feasible transformations in a continuous transformation space.

In this section we limit the discussion to the case of two-dimensional matching
problems where the transformatiolL is an isometry (translation and rotation without

scaling), and the features are linear edge fragments. The method also applies to
point features, as discussed at the end of the section. A similar analysis holds for
three-dimensional matching problems and for problems involving change of scale, as
described in the appendix.

Consider the problem of recognizing a two-dimensional polygonal model from
noisy, occluded data. If M is the model coordinate system, we let

Mj be the vector to the midpoint of the jth model edge, measured in M,

'ti be the unit tangent of the edge, measured in M,

Lj be the length of the edge.

We let in, ij,t j denote similar parameters for the jh data edge, measured in the
sensor based coordinate system, I. (Note that we use upper case characters to
distinguish model parameters and lower case characters to distinguish sensory data

* parameters.)
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The transformation from model coordinates to sensor coordinates may be rep-
resented by

v. = RoVM + V0

where 4 -a vector in model coordinates, Re is a rotation matrix corresponding
to an angle of 0, V0 is a translation offset, and v. is the corresponding vector in
sensor coordinates.

We need to know what transformations will map a model edge to a data edge.
First, if Ij > Lj, we assume that the two edges cannot match. Thus, suppose that
Ij _5 Lj. Then the rotation needed to align the two tangents is given by the angle
0, between j'j and ij, and this defines a rotation matrix Rq.. If we apply this
rotation to the set of edge points

we get a set of transformed points

R-M r +Il] E[ L, Lj]J
1 ' 2

To align the edges, we need to translate these rotated points. Now, because
tj _ Lj, there are many transformations that will cause the edges to overlap.
Consider one endpoint -f the data edge

Pi = mj -j- -j2

If this happens to coincide with a model edge endpoint,
P1 = Mi - 2"itg

2
then

m - -- tj = Ro_ M3 - LTj + VO

so that the translation is

Vo mj -ReMj + Lj Rtj
2

because Retj = tj. Similarly, if the other endpoints align, we get

Vo = mj - RMj- Lj -JRo,,Wj.
2

Because any intermediate position is also acceptable, the set of translations consis-
tent with matching model edge J to data edge j is given by

{mj-RqmMj+TRq.Aj 1 7E [ L -jL ]} (1)

Hence, matching model edge J to data edge j yields a set of points in transform
space P, with a single value for the rotation parameter and a set of values for the
translation, thL correspond to a line of length Li - 1j, with orientation Rqm Ij in
the x-y plane. This is shown in Figure 1.

This, however, ignores the issue of noise in the measurements. In practice, we
may only know the position of the endpoints of the data edge to within some ball
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igure 1. Range of feasible translations, for fixed 9 and with no posLiun error. The line
in the direction of RTi denotes the set of feasible translations for a given value of 0.

(which in two dimensions is just a circle) of radius Ep, and the orientation to within
an angular error of Ea. For the case of two dimensional lines, these error ranges
are related. Given endpoint variations of Ep, it is straightforward to show that the
maximum angular variation occurs when the correct line is tangent to both circles
of radius Ep about the two endpoints, and is given by

ca = tan- 1  2c-( 12 - 4 2
Vq' -P1

provided I > 2ep.

Inclusion of error effects on position measurements imply that the line of feasible
translations, for a given rotation, (as given by equation (1)), must be expanded to
include any points in the parameter space within EP of that line. Further, this
expansion into a region must be repeated for each value of 0 in [0, - E, 0 , + ca].
Note that this carves out a skewed volume in transform space, because the region's
center and orientation are functions of 0 (see equation (1)). This observation has
been carefully analyzed in [Clemens, 1986]. The volume is illustrated in Figure2.

Thus, given Mj, Tj, L j, mj, tj, j, we will use the following conditions:

* If 4j - 2Ep > Lj, then there are no consistent transformations,

* Otherwise, the set of feasible transformations is denoted by the volume

V(j, J)= U S(0,j,J)
oGE[o,. - 8,, o,+ 1



where an individual set of translations is denoted by:

vo@y

VVOIX

Figure 2. Range of feasible translations, with error. The region enclosed in solid lines
indicates the slice S(O,j,J) for a particular value of 0. As 0 varies, this slice rotates
through a helicad path, as indicated by the region enclosed by a dashed line.

We can use this expression to determine the size of the set of feasible transformations.
Since each slice 8(0, j, J) consists of two hemicircles and a rectangie, it is easy to
show that the volume of the region defined above is given by

cjj = 2c0 [2ep(LJ - tj) + rc'].

The term in square braces corresponds to the area of a single slice, this is integrated
over a range of angles, yielding the 2Ea term.

For simplicity, we let the data edge have a length

tj = (1 - ejj)Lj

where ajj denotes the amount of occlusion of the edge, so that the expression for
the volume becomes

cjj = 2Ea [2,EpajjLj + rc'] . (2)

If we are dealing with point features, rather than extended edges, the above
resu!t can be specialized. Here L1 - 0 so that equation (2) becomes

= 2eirE. (2a)

....... ~~~cj = i 2iiai i m U imI
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Now, what is E, in the case of a point feature? If the feature is a vertex, one can use
the direction of the bisector of the two edges defining the vertex as the orientation
of the vertex, and hence can bound the error in measuring that orientation as Ca.
Similarly, if the vertex is a curvature extremum or a point of curvature inflection.
one can use the local tangent of the curve to define the orientation, and Ca is again
defined by a bound on measuring this orientation. If the vertices are truly isolated
points, then ca = ir. In any event, our annlysis provides estimates for cjj both for
the case of edge features and for the case of vertices.

For the case of a rigid two-dimensional isometric transformation, we have char-
acterized the volume of transformation space, cjj that is consistent with a single
data-model pairing (j, J). This expression is given by equation (2) for edge features
and equation (2a) for point features. The expression is a function of the noise in the
data measurements, Ep and ca, and in the case of edges is further a function of the
amount of occlusion, a 1 j, and the length of the model edge, Lj. In the appendix we
consider adding scaling to the transformation as well as the case of three-dimensional
transformations. We now turn to the question of how these volumes interact.

3. The Probability of a Conspiracy

In the previous section, we characterized the volume of transformation space that
is consistent with a data-model pairing. If two such volumes overlap, then their
intersection defines the set of transformations that are consistent with both of the
data-model pairings. Thus a correct match of a model to an image will lie in the
intersection of several volumes. In this section we investigate the likelihood that I
volumes in transformation space will intersect at random. Such an event corresponds
to an arrangement of image features that happens to be consistent, within error
bounds, with I of the model features, but which does not actually corresponLd to an
instance of the object.

TbpM l;lihood that I transformation space volumes will intersect at random is
a function their rumber and size. The number of volumes depends on the number
of model and image features. The size of each volume depends on the amount of
noise in the data, the type of feature, and for edge features the amount of occlusion
of the edges. In order to be confident that a match accounting for I model features
is correct, we would like to choos, I such that the likelihood of a random matching
of that size is very small.

In order to characterize the likelihood that several volumes will intersect at
random we make use of a statistical occupancy model. In the discrete case, if r
events are uniformly randomly distributed across n buckets, an occupancy model
can be used to estimate the probability that a given bucket will contain k events.
The events in our case are points in the volumes in transformation space, and the
buckets are points in the transformation space itself. These events and buckets are
continuous rather than discrete, and thus we are concerned with the limiting case
as n, r --+ o.
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The volume of transformation space defined by each incorrect model and image
feature pairing is independent of the correct match. Furthermore, we assume that
the image features are independent of one another. Thus we can model the volumes
in transformation space as independent random events. The distribution of these
volumes depends on the image features, which are unknown, so we assume the
uniform distribution as an approximation.

While the volumes in transformation space can reasonably be viewed as in-
dependent randcm events, we are modeling the probability of events occurring at
points in these volumes. As the number of volumes, R, gets large (compared with
the ratio of the total size of the transformation space to the size of each volume,
V/c) the overall distribution of points in the space is aiso random. For the cases ot
interest here Rc > V, so the assumption of independent random pointwise events
is a reasonable approximation.

An alternative explanation of the independence of the pointwise events in trans-
formation space is the following. The probability that a particular point is consistent
with a given data-model pairing is equivalent to the Probability that the point lies
within some neighborhood of the centroid of the given volume in transformation
space. Since the image features are assumed to be indepndently randomly dis-
tributed, this probability is independent of the choice of image feature. Thus in the
following analysis we assume that the events in transformation space are randomly
distributed, and use the uniform distribution as an approximation.

Given a uniform random distribution of r events into n cells such that each of
the nr placements have equal probability, the probability that a given cell contains
exactly k events is given by the binomial distribution

In the limit, as n,r - oo, where the ratio Z - A, the binomial distribution isn
approximated by

Ak
Pk :Zt -. e- '

Pk !
This distribution is often termed the Maxwell-Boltzmann statistic (for a standard
reference see [Feller, 1968]).

In addition to the Maxwell-Boltzmann distribution, another common distri-
bution used in occupancy problems is the Bose-Einstein statistic, which has an
experimental basis in particle ph T nJer thp Bose-Einstein model, for large r
and n where " -- A, the limiting case is the geometric distribution, wheren

Ak
Pk (1 + A)k+1 "

This distribution has a long tail as k - oc, and thus predicts large peaks with a
higher probability than does the Maxwell- Boltzmann model. We are interested in
establishing conservative bounds on the likelihood that a large number of volumes
will intersect at random, thus we use the Bose-Einstein statistic because it provides

a higher estimate of this likelihood.
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The parameter A of the occupancy model is the ratio of the occupied volumes
of the transformation space to the total size of the transformation space. From
equations (2) and (2a) in the previous section we know that each pair of model and
image fe.t-.,:-es defines a volume of size cji in transformation space. There are ms
suc) ,'.-.jmes for m model features and s image features, so the occupied volume of
the transformation space is given by

zzj.J.
j=1 J=1

The total size of the transformation space is just the product of the ranges for the
dimensions of the space. Each rotational dimension ranges over the interval [0,27r],
and each translational dimension ranges over [0, D], where D is the linear extent of
the image. Thus in the case of a two dimensional isometry (translation and rotation)
we get

27rD 2

We can simplify this to

A = Ms

where T is the average normalized volume size.

In the case of two-dimensional edge features, from equation (2) we obtain the
average normalized volume size

2 c,, [2c,5 L + 7rc2]

27rD 2

where L is the average edgc length, Z is the average amount of occlusion of the
edges (the average value of ajj), and where we have incorporated the normalizing
term 27rD 2 . Note that as expected F increases as the noise c,,, pincreases, and also
F increases as the average amount of occlusion of the edges 7T increases.

For two-dimensional points features (with associated orientations), the average
normalized volume size is given by

- Er 2

2irD 2

Note that we can restrict E < ir and E !5 2 In the extreme case, this can lead to
E> 1, which does not make physical sense. We should really take the minimum of
the above expressions and 1, but in practice ? is usually much smaller than this and

hence we ignore this special case.

A particular recognition task thus defines a value for A, based on the type of
transformation from the model to the image, the type of features, the number of
model features m, the number of data features s, and a bound on the positional and
angular error, (P and c,.

Given a value for A, we are interested in the probability that I or more of the
volumes intersect at random, which is given by

i- I

Pric > 1} = 1- ZPk
k=o
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This corresponds to an arrangement of data features occurring at random that such
that I of the model features can be matched (within the error bounds) to those data
features. From Pr{e > 1} we can determine the fraction of model features, fo, such
that the probability of mfo features being matched at random is less than some
predefined level, 6. This value is just the smallest f such that

Pr {e > mf} <

i.e.
fo = min{f I Pr{e > 7nf} ! }.

We then choose 6 such that the probability of a false match is small, for example
6 = .001.

The analysis in this section simply counts each pairing of a data feature with
a model feature equally. It is also possible to weight the events by the amount of
model accounted for. Below we consider the case of weighting each feature match
by the length of the matched edge.

4. Deriving Formal Thresholds

We have used an occupancy model to determine an expression for the probability
that I or more volumes in transformation space will intersect at random. This
expression is a function of the number of features, the type of features, and bounds
on the sensor error. The expression was then used to set a threshold, fo, on the
fraction of model features that must be matched in order to limit the probability of
a random matching to some level. In this section we derive a closed-form expression
for fo.

Under Bose-Einstein statistics, we have

Ak
Pk (I + A)k+1

or equivalently

Pk )

The probabi!;:y that there will be I or more events occurring at a point is given by
1-I

Pr{e >1 1- Pk-
k=O

We are interested in finding a threshold for distinguishing correct from random
interpretations. This can be done by setting the threshold, fo, to be the fraction
of model features such that I = mfo. If we choose a value 6 for the robability
that there will be info or more events occurring at random (i.e. a limit on the false
positive rate), then the condition on fo is given by

Mfo-1

k=O
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Substituting for Pk yields

k=0

and using the geometric series relationb -p yields
I / 1 m fo

1+A 1

We can isolate fo by appropriate algebra:

A log (()3
m log (1 + 70)(3

where

A = insT.

The value of T depends on the particular type of feature being matched and
the bounds on the sensor error. In the case of two dimensional edge fragments

considered above, we derived

2c, [2cU-T + rE'3 ] +a [e L Er
2irD 2  7 r 2 D D \D)JJ

Note that equation (3) exhibits expected behavior. If the noise in the data
increases, then F increases, and so does the bound on fo. Similarly, as the amount

of occlusion increases, then so does F and thus the bound on fo. As either m or s

increases so does the bound on fo, and as 6 decreases fo increases.

Also note that for large values of ms, the logarithm in the denominator can be
approximated by its first order term, and one gets the following approximation

Thus, in the limit, the bound on the fraction of the model is linear in the number of
sensory features, linear in the average size of the volumes in transformation space,

and varies logarithmically with the inverse probability of a false match.

The expression for fo in equation (3) can yield values that are greater than 1.0,
which makes no sense as a fraction of the model features. When fo is greater than

1.0 it means that for the given number and type of features, and the given bounds

on sensor error, it is not possible to limit the probability of a false match to the
chosen b (even if all the model features are matched to some sensor feature).

Thus to obtain a value for the fraction of model features that must be matched

in order to limit the probability of a random conspiracy to 6, we simply need to com-
pute F for the particular parameters of our recognition task, and then use equation
(3) to compute .o.

There are several possible choices for b. One could simply set 6 to be some

small number, e.g. 6 = .001 so that a false positive is likely to arise no more than

• .,nmm mmmmml llmlmmll II II Ii
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one time in a thousand. One could also set 6 as a function of the scene complexity,
e.g. some multiple of the inverse of the total number of data model pairings

ins'
where /3 is an arbitrarily chosen constant.

A third possibility is to set b so that the likelihood of a false positive, integrated
over the entire transformation space, is small (e.g. less than 1). The idea is to
determine the appropriate value of 6 such that the expectation is that no random
matches will occur. If we let v be a measure of the sensitivity of our system in
distinguishing transformations, then we could choose 6 as

27rD
2

For example, we could set v to be a function of the noise in the data measurements,
given by the uncertainty in orientation times the uncertainty in position: (2ca)(rf2).
In this particular case, we get

log( D.

fo > (3a)
mlog (1 + )

To illustrate the values for fo, we graph representative examples in Figures 3-5.
Figure 3 displays graphs of fo as a function of s, with m = 32,c = .0002215 (these
numbers are taken from the recognition systems analyzed in section 5). Each graph
is for a different value of 6. Note that as s gets large, the graphs become linear, as
expected.

Figure 4 displays fo as a function of m for different values of 6. Here, s =
100, c = .0002215. Note that as expected, when m becomes large, fo becomes a
constant independent of m.

Figure 5 displays Jo as a function of the sensor error, for different values of 6.
Here, s = 100, m = 32. The percentage of error along the horizontal axis p is used
to define sensing errors of c, = pir and cp = pL. As expected, the threshold on fo

increases with increasing error.

Allowing for weighted votes

The preceding analysis treated each data-model feature pairing equally, and bounded
the probability that I such pairings would be consistent at random. Another ap-
proach is to weight the contribution of each data-model pairing by some measure.
One common scheme is to use the size of each data feature as a weight. In the case
of two dimensional edges, for example, a data-model pairing (j, J) would carry a
weight of tj (the length of the data edge), so that transformations consistent with
pairings of long data edges to model edges would be more highly valued than those
involving short data edges.

We can modify our preceding analysis to handle this case as well. Note that the
parameter A essentially measures the average "vote" at each point in the transforma-
tion space. Since we have assumed that each volume of transformations consistent
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f as function of s
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Figure 3. Graphs on bounds on threshold. fo is graphed as a function of s, with other
parameters fixed. The three graphs are for 6 = .0001, .001, .01 from top to bottom respec-
tively.

f as function of mf
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Figure 4. Graphs on bounds on threshold. fo is graphed as a function of m, with other
parameters fixed. The three graphs are for 6 = .0001, .001, .01 from top to bottom respec-
tively.

with some data-model feature pairing is independent, we can derive the expected
weighted "vote" at any point in transformation space. As one might expect, due to
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f as function of error
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Figure 5. Graphs on bounds on threshold. fo is graphed as a function of error, with
other parameters fixed. The three graphs are for 6 = .0001, .001,.01 from top to bottom
respectively. The percentage of error along the horizontal axis p is used to define sensing
errors of c. = pr and fp = pL.

the independence, this simply yields
A = msC

where 1 is the average length of the data edges. Note that this is the average length

over all data edges, not just those that match the object.

In this case we are interested in bounds on fo such that

mLf o-1

Working through the same algebra as in the previous section leads to the following

bound:

fo >. OD (4)mnLlog I1 + 1~

5. Some Real World Examples

To demonstrate the utility of our method, in this section we analyze some working
recognition systems that utilize a threshold on the fraction of model features which
must be accounted for by a match. We find that the analysis predicts thresholds
that axe close to those that were determined experimentally. This suggests that
the technique can be profitably used to analytically determine thresholds for model-
based matching. Because our analysis shows that the proper threshold varies with
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the number of model and data features, it is important to be able to set the threshold
as a function of a particular matching problem rather than setting it once based on
experimentation.

As a first example, we consider the application of the interpretation tree method
[Grimson and Lozano-P6rez, 1984, 1987; Ettinger, 1987, 1988; Marray, 1987a, 1987b;
Murray and Cook, 1988] to recognizing sets of two dimensional parts. In this ap-
proach, a tree of possible matching model and image features is constructed. Each
level of the tree corresponds to one of the image features. At every node of the tree
there is a branch corresponding to each of the model features, plus a special branch
that accounts for model features that do not match the image. A path from the
root to a leaf node maps each image feature onto some model feature or the spe-
cial "no- ,iatch" symbol. The tree is searched by maintaining pairwise concc::.i-y
among the nodes along a path. Consistency is checked using distance and angle
relations between the model and image features specified the nodes. If a given node
is inconsistent with any node along the path to the root then the subtree below that
point is pruned from further consideration.

A consistent path from the root to a leaf that accounts for more than some
fraction of the model features is accepted as a correct match. This threshold is chosen
experimentally. In our analysis of thresholds for the interpretation tree method,
we use the parameters for the objects demonstrated in [Grimson and Lozano-Pdrez

1987], and the parameters for a typical scene in the experimentation described there.
These values are substituted into equation (2), and then a threshold fo is computed
using equations (3) and (3a).

In the experiments reported in [Grimson and Lozano-P~rez, 1987], the following

paramneter. hold:
m = 32

S = 100

L = 23.959

(p = 10

Ca = o

We have computed ? as a function of the amount of occlusion U, and then
determined the corresponding threshold fo on the fraction of model features. Note
that an occlusion of 1 represents the limiting case in which only a point on the line
is visible. The results are given in Table 1. The first column of the table shows the
values of fo computed using equation (3a). Recall that this method integrates over
the transformation space in order to limit the expectation of a randomly occurring

match by setting

For comparison, the second and third columns of the table are computed using

equation (3), with the probability of a random match, 6, set to .001 and .0001,
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Occlusion f, eqn (3a) f, with 4 = .001 f, with 6 = .0001

0.0 0.225 0.173 0.230
0.1 0.244 0.188 0.250
0.2 0.263 0.202 0.270
0.3 0.282 0.217 0.289
0.4 0.301 0.231 0.308
0.5 0.319 0.245 0.327
0.6 0.337 0.259 0.346
0.7 0.355 0.273 0.364
0.8 0.374 0.287 0.383
0.9 0.392 0.301 0.401
1.0 0.409 0.315 0.420

Table 1. Predicted bounds on tPrmination threshold, as a function of the amount of
occlusion, for trials of the RAF system.

respectively.

As expected, the bound on f increases as the amount of occlusion increases.
Note that this bound is limited in scope even as the occlusion factor ranges over the
entire possible range, that is, even for occlusions ranging from none 0 to all 1, the
bound on f only varies over a range of 0.225 to 0.409. It is interesting to compare
these results with empirical observations. Grimson and Lozano-P6rez report that in
running the RAF system on a variety of images of this type using thresholds of f = .4
resulted in no observed false positives, while using thresholds of f = .25 would often
result in a few false positives. Since on average the occlusion was roughly .5, this
observation fits nicely with the predictions of Table 1, namely that a threshold of .4
should yield no errors, while a threshold of .25 cannot guarantee such success.

If we use the lengths of the data features to weight the individual feature match-
ings then substituting into equation (4) leads to the predictions shown in Table 2.
These values were computel using equation (3a) in the same manner as the first
column of Table 1. Again, this agrees with empirical experience for the RAF system,
in which weighted matching using thresholds of f = .25 almost always led to no
false positives, while using thresholds of f = .10 would often result in a few false
positives.

As a second example, we consider the HYPER system of Ayache and Faugeras
[1986). Similar to RAF, HYPER also uses geometric constraints to find matches of
data to models. An initial match between a long data edge and a corresponding
model edge is used to estimate the transformation from model coordinates to data
coordinates. This estimate is then used to predict a range of possible positions
for unmatched model features, and the image is searched over this range for po-
tential matches. Each potential match is evaluated using position and orientation
constraints, and the best match within error bounds is added to the current inter-
pretation. The additional model-data match is used to refine the estimate of the
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Occlusion f with = T f with 7 = .75T f with f = .5L

0.0 0.119 0.091 0.062
0.1 0.136 0.103 0.071
0.2 0.153 0.116 0.079
0.3 0.171 0.129 0.088
0.4 0.188 0.142 0.097
0.5 0.205 0.155 0.105
0.6 0.222 0.168 0.114
0.7 0.240 0.181 0.123
0.8 0.257 0.194 0.131

0.9 0.274 0.207 0.140

Table 2. Predicted bounds on termination threshold, as a function of' the amount of
occlusion, for trials of the RAF system. In this case, the lengths of the matched edges is
used, instead of just the number of matched edges.

transformation, and the process is iterated.
Although not all of the parameters needed to apply our analysis are given in

the paper, we can estimate many of them from the illustrations -rovided in the
article. Given several estimates for the error in the measurements, a range of values
for the threshold f are listed in Table 3. Object-1 and Object-2 refer to the object
labels used by Ayache and Faugeras. In these examples, we use orientational errors
of c. = 7r/10 and ir/15 radians and positional errors of Ep = 3 pixels.

In HYPER, a threshold of .25 is used to discard false positives, and Ayache and
Faugeras report the observation of no false positives during a series of experiments
with their system. For the two objects listed in Table 3, Ayache and Faugeras
report that their system found interpretations of the data accounting for a fraction
of .55 of the model for Object-1 and accounting for a fraction of .40 of the model for
Object-2. Both these observations are in agreement with the thresholds predicted
in Table 3, for different estimates of the data error.

Thus for two different recognition systems (RAF and HYPER), using both weighted
and unweighted matching schemes, we see that the technique developed in this paper
yields matching thresholds that are similar to those determined experimentally by
the designers of the systems.

6. Conclusion

In order to determine what constitutes an acceptable match of a model to an image,
most recognition systems use an empirically determined threshold on the fraction
of model features that must be accounted for. In this paper we have developed a
technique for analytically determining the fraction of model features fo that must
be matched in order to limit the probability of a random conspiracy of the data to
some level 6. This fraction fo is a function of the type of feature, the number of
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Object-I Object-2
Occlusion f, (Eo = f, (a= , = , (a=

0.0 0.224 0.185 0.206 0.168
0.1 0.243 0.199 0.225 0.181
0.2 0.261 0.212 0.243 0.195
0.3 C.979 0.225 0.262 0.208
0.4 0.297 0.238 0.280 0.221
0.5 0.315 0.251 0.298 0.234
0.6 0.333 0.264 0.316 0.247

0.7 0.350 0.277 0.335 0.260

0.8 0.368 0.289 0.353 0.273
0.9 0.386 0.302 0.371 0.285

Table 3. Predicted bounds on termination threshold, as a function of the amount of
occlusion, for trials of the HYPER system. The first two columns for f are Object-i, the
final two for Object-2.

model features, m, the number of sensor features, s and bounds on the translation
error EP and the angular error c of the sensor and feature detector.

Our analysis shows that the proper threshold varies with the~ iLmbei- ,f model
and data features. A threshold that is appropriate for relatively few data features
is not appropriate when there are many data features. Thus it is important to be
able to set the threshold as a function of a particular matching problem, rather than
setting a single threshold based on some experimentation. The technique developed
in this paper provides a straightforward means of computing a matching threshold
for the values of m and s found in a given recognition situation.

We have applied the technique to two existing recognition systems, and found
that the predicted thresholds are close to those that were determined experimentally.
This suggests that the method can be profitably used to analytically determine
thresholds for model-based matching systems.

Appendix: Extending the method to other cases

So far, we have demonstrated our method on the case of recognition of rigid two-
dimensional objects from two-dimensional edges or vertices. We can readily extend
our method to other cases as well. In general, equations (3) and (4) still hold, with
the proviso that 7 changes as the problem changes. First we consider adding scal-
ing to the two-dimensional transformation, and then we consider three-dimensional
transformations.

Objects that scale

First, we consider the case in which a two-dimensional object is free to scale within



19

some predefined range. In this case, the space of possible transformations is four-

dimensional, having two dimensions for translation parameters, one for rotation,

and one for scale.

In this case, the transformation from model coordinates to sensor coordinates

may be represented by

Vs = SROVM + Vo

where VM is a vector in model coordinates, Re is a rotation matrix corresponding to
an angle of 0, s is a scale factor, VO is . translation offset, and v, is the corresponding

vector in sensor coordinates.

As in the earlier case, if we consider the conditions on the transformation so
that the endpoint of a data edge corresponds to the endpoint of a model edge, we

find that

m3 - tj =sRm, [Mj - -j] + Vo

We also have the condition that

sLj > tj
so that

- Lj
'r' allow for error in the measurements, that

S > t j - 2cp

- Lj

Hence, for each choice of s, the translation is

VO = mj - sRom Mj + sL" - LR Tj.
2

Similarly, if the other endpoints align, we get

VO = mj - sRomMj - Lj -jReTj.

Because any intermediate position is also acceptable, the set of translations

consistent with matching model edge J to data edge j is given by

V (Os) = mj -sRomMj+ 7Roq_!Tj 'Y E [ "Lj- , sLj- . (5)

Hence, matching model edge J to data edge j yields a set of points in transform

space P, with a single value for the rotation parameter and a set of values for the

translation, that correspond to a line of length sLj - fj, with orientation RoTJ

in the z-y plane, where s can range from
S > t j - 2Ep

- Li

to some predefined maximum Sh.

To determine the full volume of transformation space consistent with a data-
model feature pairing, we must allow for noise in the measurements. As in the non-

scaled case, we can integrate over a range of orientations within ca of the computed
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one, and we must also integrate along the line of translations defined above as s
varies. 9'his implies that the full volume is given by

]Sh

2c,,J~ (2cp (sLj - e?,) + ire') ds

which reduces to

2ca (h - t -2Ep) T 2 + 2cp (ShLj-e - Er)C

This is normalized by the total volume of transformation space

2rD 2 (Sh - 1)

to yield

Ea 2 -- Shr - f -

For cases involving scale, we can substitute c8 in place of c in the earlier analysis.

Three dimensional case

As a second extension, consider the problem of recognizing three-dimensional ob-
jects from three-dimensional edges. In this case, the transformation space is six
dimensional, with three dimensions for translational components, and three for ro-
tational components. As in the previous cases, we must deduce an expression for c
that holds in this case.

We begin with the rotational parameters. Given the unit tangent vector of a
model edge and of a data edge, there is a set of rotations that will consistently map
the model tangent into the data tangent. The axis of rotation that will accomplish
this lies anywhere in the great circle on the unit spnere eq'Jidistant from the two
tangent vectors. For each such axis of rotation, there is a unique angle of rotation
that will effect the mapping. When we allow for error, the data tangent is only
known to within a cone of radius c, and hence the great circle expands into a band
of feasible axes of rotation. If we integrate out the volume of feasible rotations, we
get

2 rff sinododO = 47r V -C.

To account for the translation, we find that an analysis similar to the two
dimensional case holds. In particular, the set of feasible translations is a cylinder of
radius cp of length aL, where a is the amount of occlusion of the edge, capped by
two hemi-spheres of radius cp. Hence, the overall volume is given by

4 irv/iT1 (ae++ + 31rE)•
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If the linear range of values for each dimension of translation is D, then the normal-
ized coefficient in the three dimensional case is given by

4 (L
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