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There have been a number of highly successful .pplicatiom; of Lat, 1t

trait models in the last couple of years. Reviews of many of thcse

applications are provided by Hambleton, Swaminathan, Cook, Eignor, and

Gifford (1979), Pentz and Rentz (1978), and Weiss (1978). The one-,

two-, and three-parameter logistic latent trait models have been used by

measurement specialists to solve problems in the areas of tailored testing

(Weiss, 1978), test score equating (Lord, 1977, in press; Marco, 1977;

Rentz & Bashaw, 1977) test dpvplonment (Wright k Stone, 107R),.-A - t r

bias (Lord, in press). In fact, the applications cited, and others,

have been so successful that the discussionsabout the use of latent trai',

models have shifted from a consideration of the potential of latent trait

models relative to classical models, to a consideration of (1) latent

trait models which Thould be used with particular measurement problems and

(2) technical problems (e.g., parameter estimation and goodness of fit

measures) arising in connection with the application of particular latent

trait models.

This paper was prepared to report some of our recent work in using

the three-parameter logistic model in test development. One of the fea-

tures of using any latent trait model is rhc ossibility of specifying

a "target information curve" and then selecting test items from an item

pool to produce a test with the features characterized by the "target

information curve." A target information curve describes the desired For

level of "information" at each point on the ability scale underlying I

examinee test performance. Information, in turn, is directly related I
31all

to the degree of precision of ability estimates at different points

on the ability continuum. In fact, as long as a test is not too short, .cn/
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the standard error of estimation at a particular ability level is equal

to one divided by the square root of information provided by the test

at the ability level in question (SEE (0) = i/information (0) ). In

practice, since the contribution of each test item to the test information

curve (referred to as a "score information curve" when item parameter

estimates are used instead of the item parameter values) is known (once

the item parameter values or the item parameter estimates are specified),

it is possible to select test items from a pool of "calibrated" test items

(i.e., a pool of test items with associated parameter estimates) to pro--

duce a "score information curve" which approximates a desired "target

information curve." With the three-parameter logistic model, items are

described by three parameters, referred to as "item difficulty," "item

discrimination," and "item pseudo-chance level" (Hambleton et al., 1979).

One of the problems with the paradigm offered above for test devel-

opment is the imprecision associated with the item parameter estimates.

Score information curves (and therefore the associated standard errors

of ability estimates) will depend on the precision of item parameter

estimates. In turn, precision of item parameter estimates is influenced

by the examinee sample size used to estimate the item parameters, and

in the case of the item discrimination parameter, estimates are influenced

by the length of the test. This study was designed to address three

practical questions which are of some importance and interest to test

developers:

1. What are the effects of examinee sample size and test
length on the precision of standard error of ability
estimation curves?
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2. What eftects do the statistical characteristics of an item
pool have on the precision of standard error of ability
estimation curves?

. What is the relationship between test length and standard
error of ability estimation curves in typical item
pools?

A computer simulation study was chosen as the mode of investigation

for the three questions because of the large number of variables which

were to be studied, and the need to "know" in some instances, the values

of the item parameters.

The remainder of the paper is divided into four sections: (1)

Background on Item and Score Information Curves, (2) Method of Investi-

gation, (3) Results, and (4) Conclusions.

Background on Item and Score Information Curves

Once a latent-trait model is specified, the precision with which

it estimates examinee ability can be determined. Birnbaum (1968) defined

the notion of information as a quantity inversely proportional to the

squared length of the confidence interval around an estimate of an

examinee's ability. The standard error of ability estimation is equal

to i/r.information. When information at an ability level is high, narrow

confidence bands around the estimates result. If information is low,

wider confidence bands are obtained. Because the test information curve

varies with ability level, it has been suggested that test information

curves ought to replace the use of classical reliability estimates and

standard errors of measurement in test score interpretations.

In mathematical terms, Lord (in press) gives the test information

curve by
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n p'21(6) = E [11

g=l PgQg

and the standard error of estimation curve by

SEE(O) 1 [2].'I(6)

In the expressions above, I(e) is the amount of information at ability

level e, SEE(S) is the degree of precision of an ability estimate at

ability level 6, Pg is the probability of a correct answer to item g by

an examinee with ability level 0; Qg is equal to I-Pg; and Pg is the

slope of the item characteristic curve at ability level 0. When item

parameter estimates are used in Equation [1, Lord (in press) substitutes

the term "score information curve" for "test information curve."

The quantity P' 2 /gg is the contribution of item g to the infor-

mation curve of the test and is referred to as the item information

curve. Item information curves have an important role in determining

the accuracy with which ability is estimated at different levels of e.

Each item information curve depends on the slope of the particular item

characteristic curve and the conditional variance of test scores at each

ability level 0. The higher the slope of the item characteristic curve

and the smaller the conditional variance, the higher will be the item

information curve at that particular ability level. The height of the

item information curve at a particular ability level is a direct measure

of the usefulness of the item for precisely measuring ability at that

level.
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Method of Investigation

Description of the Variables

(a) Test Length

Tests of three lengths were considered: 10, 20, and 80 items.

A test with 10 items is about as short a test as is used in practice

and therefore the 10-test item length was studied. An 80-item test was

considered because the length represents about as long a test as is used

in practice.

(b) Ability Distribution

In this particular study, ability scores were simulated to be

normally distributed (mean = 0, sd = 1). This assumption was made to

conform with a very important assumption made in the item parameter

estimation method selected for the study (Urry, 1974). Actually, the

parameter estimation method used is a slight modification of the one

Urry reported in his 1974 paper. He refers to this new method as

"ancillary estimation method." Urry's method was chosen for the study

because (1) the method has been extensively used and found to give

acceptable results and (2) Urry's computer program is inexpensive.

(c) Sample Size

Three examinee sample sizes were chosen: 50, 200, and 1.000. The

smallest sample size (N=50) is considerably smaller than anyone should

use in practice. It was chosen to identify the "worst possible" results.

that could be expected. The other two sample sizes define minimum and

maximum sample sizes typically used in test development work with latent

trait models.
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(d) Item Pools

Rangesof parameter values for items in the two pools are shown

below:

Item Range of Values
Parameter Pool One Pool Two

Difficulty (b) -2.00 to 2.00 -1.00 to 1.00

Discriminatioa (a) .60 to 2.00 .60 to 1.50

Pseudo-Chance (c) .25 to .25 .25 to .25

The differences between the two item pools can be described as follows:

Items in pool one had a wider range of difficulty and discrimination

values.

Simulation of Dta

The eight steps in the simulation study were as follows:

1. Item pool one was selected for study.

2. A test length (10, 20, or 80 items) and a sample .ize (50,
200, or 1000 examinees) were selected. A sample of examinee

a-i11ty socra, -i:e Ira.-,, f-c- nnrmal Aistribution (mean=O,
sd=l).

3. Using a computer program, DATAGEN (Hambleton & Rovinelli, 1973),
(1) item parameters, given the constraints of the item pool
under investigation, and (2) examinee item scores were produced.
The computer program assumed the corrtnp f t-hp three-
parameter logistic model, used the ability scores from step 2
and item parameters generated at this step, to produce prob-
abilities of correct answers for examinees to the test items.
These probabilities, in turn, were converted to examinee item
scores (0 or 1) via the use of a random number generator.

4. The examinee item scores from step 3 were used in Urry's
computer program to estimate item and ability parameters.
However, only the item parameter estimates were used further

in this particular study.
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5. The item parameter estimates were used in Equation 2 to
obtain SEE(O). The value of SEE(6) at seven ability levels

(6 = -3.00, -2.00, -1.00, 0.00, 1.00, 2.00, 3.00) was cal-

culated.

6. Steps 3 to 5 were repeated three times to obtain three esti-
mates of SEE(). All item and ability parameter values fir the
three runs were identical. The particular examinee item

scores varied from one run to the next because of the
probabilistic nature of the score outcomes.

7. Steps 3 to 6 were repeated for each combination of test length
and sample size (3x3=9).

8. Steps 2 to 7 were repeated with the second item pool. In all,
54 sets of test data were considered in the study.

Results

Effects of Samole Size and Test Length
on the Precision of Standard Error of

Ability Estimation Curves

In the remainder of this paper "Standard Error of Ability Estimation

Curves" will be referred to as "SEE Curves" for convenience.

Tables 1 to 6 contain the SEE Curves with Item Pool One obtained

for three replications of three examinee sample sizes (N=50. 200, 1000)

and three test lengths (n=10, 20, 80) and reported for seven ability

levels. Table 1 to 3 and 4 to 6 contain the same information. '4hat

differs is the way the data are organized in the two sets of Tables.

Data have been arranged in Tables 1-3 to facilitate an examination of

the effect of sample size on SEE Curveb. The data presented in

Tables 4-6 have been arranged to facilitate an examination of the

effect of test length on SEE Curves. Test lengths and sample sizes

given under the column headed "actual" are the number of items and

examinees remaining after a satisfactory set of item and ability param-

eter estimates are obtained from Urry's computer program.
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For ease of interpretation, the same data reported .in Tables

1 to 6 is presented in graphical form in Figure 1.

Tables 7 to 12 contain similar data to Tables 1 to 6. Tables

7 to 12 contain SEE Curves with Item Pool Two. (There is no figure,

however, corresponding to Figure 1 for Item Pool Two.) Tables 13 and

14 were constructed to organize the data reported in Tables 1 to 12 to

facilitate the interpretation of results.

(a) Item Pool One-Effect of Sample Size

The results of the simulations for a fixed test length of 10 items,

which are reported in Table 1, clearly show the lack of stability of the

SEE Curves for all sample sizes. There was little improvement, if

any, due to increasing sample size. This result, however, may be due

to the limited amount of data considered since improvements were obtained

in Item Pool Two and at other test lengths.

From examination of Table 2, which contains the results of the 20

item simulations, it is apparent that the SEE Curves were beginning to

stabilize. Except at extreme values of the ability continuum the results

were nearly as good as those obtained with the larger sample size (N=1000).

At a test length of 80 items, Table 2 clearly shows that SEE Curves

are highly stable. Similar to the effect noted with test lengths of 20,

the expected decrease in variation of the standard errors with increase

in sample size, is apparent only at ability levels of --l, +1, and +2.
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(b) Item Pool Oc-u-Effect of Test

ExaminaLion of the results reported in Table 4 indicate that,

for samples of size 50, as test length increased, variation in the

SEE Curves decreased at all ability levels.

Tables 5 and 6, which represent the results of the simulations

for sample sizes of 200 and 1000, clearly show the following trends:

(1) the most stable SEE Curves were obtained for the longest test length;

and (2) for all ability levels, variation in the SEE Curves decreased as

test length increased.

Table 13 presents a summary of the data found in Tables 1-6.

Entries in this table are the standard deviations of the standard errors

of estimate obtained across the three replications of the various studies.

Standard deviatiens are reported for each test length-sample size combi-

nation across five ability levels. Also included in Table 13 is the

average of the standard deviations across ability levels for each test

length-sample size combination. It is this latter value that is the focus

of the following discussion.

Several trends are apparent from examination of the average variation

of standard errors: (1) the variation decreased as test length increased

for all sample sizes, (2) when test length was fixed at 10 items, sample

size had little or no effect on the stability of the SEE Curves, and (3)

sample size, generally, had a noticeable effect on the stability of the

SEE Curves.

Figure 1 contains three graphs illustrating the effect of tes'

length and sample size on the stability of the SEE Curves at five ability

levels. Each graph represents a plot of the values of the SEE Curves

obtained when sample size was held constant and test length was varied.
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It is clear, from examination of these graphs, that sample size has littl.

effect on the stability of SEE Curves of short tests; (n=l0). The eff.,:L

of sample size en the stability of the standard errors was most apparent

for the intermediate length test (n=20). For a long test (n=80) sample

size showed the most pronounced effect when there was an increase from

50 to 200 examinees. An effect was also noticed when sample size was

increased from 200 to 1000 examinees, however, the 1mprovements in

precision were more modest in size.

(c) Item Pool Two-Effect of Samule Size

Table 7 presents the results of the simulations involving test

lengths of 10 items. It should be noted that no values are reported for

ability level -3 and also that the only complete set of values at ability

level -2 are reported for a sample size of 200. Values obtained at these

ability levels fluIctuated greatly and so they are not reported (a similar

explanation applies to other results not reported). In summary, there

was a substantial improvement in the precision of SEE Curves for in-

creasing sample sizes. In fact, the improvements in precision of SEE

Curves due to sample size for test lengths of 20 and 80 items are also

clear from a study of Tables 8 and 9.

(d) Item Pool Two-Effect of Test Length

The results of this investigation are reported in Tables 10-12.

These results are very similar to those obtained for item pool one and

therefore will niot be discussed to any great extent. It is important

to note that for all sample sizes and at all ability levels there appears

to be fairly consistent tendency for the stability of the SEE Curves to

increase as test length was increased.
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Table 14 summaru'zes th- results reported in Ta bies 7-i2. Data

are arranged in Table 14 in the same manner in which they were arranged

in Table 13. Examination of the average variation across ability

levels, indicated that for all test lengths, sample size has a notice-

able effect on the stability of the SEE Curves. In comparison to the

results reported in Tible 13, the effect of test lcigthl on the avcryC

variation across ability levels is not so apparent. The reason for

this is the smaller variation observed for short tests with this parti-

cular item pool.

Effects of Statistical. Characteristics
of an Itc-m Pool on Precision of SEE Curves

A comparison of the results reported in Tables 13 and 14, indicated

that for tests of 20 and 80 items, the variation in the SEE Curves,

averaged across ability levels, is very similar for both item pools.

For test lengths of 10, the situation is quite different. In order to

make the average variations across ability levels at this test length

comparable for both item pools, these values were recomputed for item

pool two, excluding the values obtained for ability level of -2. The

recomputed average variation values are .33, .38, and .52 for sample

sizes of 50, 200 and 1000 respectively. It is clear that, for short

tests, the homogeneous item pool (pool one) resulted in smaller average

variations than did the heterogeneous item pool. A second point worth

noting, is that the heterogeneous item pool (pool two) provided more

stable Standard Errors at an ability of -2 for test lengths of 10 or

20 items than did the homogeneous item pool. For test lengths of 80,

the results appear to be about the same for both item pools. It
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should also be noted that the homogeneous it,-:, pool generally results in

greater stability of Standard Errors for ability levels between +1 and

-1 than did the heterogeneous item pool.

Relationship Between Test Length and SEE Curves
in Two Typical Item Pools

Figure 2 contains tuo graphs, representing item pools cne and two.

These graphs show the relationship between test length and SE7 Curves.

Item parameters were used to derive the Curves rather than estimates of

the item parameters. The trends in the results are generally what one

would expect. The value of the figure is the information it provides to

test developers who must determine a test length.

Test lengths of 10 and 20 items, drawn from the heterogeneous item

pool (item pool one) do not show the expected U shaped pattern exhibited

by the curves obtained for these test lengths when the simulation involved

a homogeneous item pool. The "humping" effect noted at the center of

the ability distribution is due to the particular sample of items chosen.

There are a few less items selected with difficulty values close to zero.

It is quite apparent that the heterogeneous item pool provided smaller

standard errors of across a wider range of abilities than did the

homogeneous item pool.

Further insight into the effect of the item pool on the size of

the standard errors can be obtained by examination of the graphs presented

in Figure 3. Each graph represents one of the three different test

lengths that was studied. The relationship between test length and SEE

between +3 and -3 is graphed for both item pools on the same axes to

facilitate comparison of the effect of the item pools. The decrease in
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the size of the standard errors as test length increases is quite evident

for both pools. Also apparent is the fact that tests based on items

drawn from the heterogeneous item pool provide greater precision over a

wider ability range then do tests developed from the homogeneous itetm

pool..

Conclusions

A study along the general lines as this one is not going to reveal

any major new results. It is well-known that the size of an examinee

sample, the length of a test, and the characteristics of an item pool,

will have an important influence on the shape and stability of SEE

Curves. The importance of this study is that it provides data concern-

ing the size of improvements in SEE Curves relative to the three factors

under investigation: (1) sample size, (2) test length, and (3) item

pool characteristics. In this regard several conclusions seem warranted:

1. Both test length and sample size are extremely important
factors in the precision of SEE Curves. (There were a
small number of reversals in the results; no doubt this
was due to sampling fluctuations.)

2. Precision of SEE Curves at the extremes of an ability
continuum is very poor, even with large examinee sample
sizes. The results are substantially better when tests
are lengthened, even if the sample size is small (N=50).

3. The precision of SEE Curves would be acceptable in most
instances if the Curves are based on 200 or more examinees
with tests with at least 20 items. This recommendation
holds if primary concern is with values of the Curves
in middle regions of the ability continuum (-l to +1].

4. Increases in examinee sample sizes from 50 to 200 pro-
duce sizeable improvements in the precision of SEE
Curves. Gains in precision due to increasing a sample
size from 200 to 1000 produce only modest gainsin pre-
cision of the SEE Curves.
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5. Similarly for test lengths, improO:-.:nLs in precision were
substantially better when the change was from 10 to 20
items than 20 to 80 items.

Perhaps by offering a practical testing problem that arises, we

can explain our interest in the precision of SEE Curves. Suppose a

test developer selects a set of test items from a pool of items for

a particular test he or she desires to build. Item selection is usually

based on the item statistics. This test developer may then calculate

the "expected" score information curve and corresponding SEE Curve. The

usefulness of a SEE Curve will depend on its precision. If we knew

that a second administration of the test to a similar group of examinees

would produce a radically different curve, the curve will be of little

or no value. The rcsults of our study suggest that if an item pool is

"typical," the stability of SEE Curves across readministrations of the

test to similar groups of examinees will be quite good if the test in-

clud's at least 20 items, and if 2CC or inore examinees are used in

deriving the item statistics.

We hope that our research has provided at least a few guidelines

to aid test developers in determining the confidence which they should have in

SEE Curves that arise in their work. If it also serves as a motivator

to further extend our work by considering other aspects of the problem

(for example, the shape of the underlying ability distribution, the

number of parameters describing a test item, and methods used to estimate

parameters) we will be even more pleased.
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