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A. Nonperiodic GaAs-AlAs Superlattices.

Nonperiodic superlattices offer interesting possibilities for experimental studies

of unusual physical phenomena.' During the course of our research. we have studied

several types of nonperiodic superlattices: random., Fibonacci. and Thue-Morse. The

interest in random superlattices focuses on the problem of Anderson localization. 2

Fibonacci superlattices are 1D analogs of quasicrystals with wave behavior character-

ized by a self-similar hierarchy of gaps and critical (or chaotic) eigenstates. 1 Struc-

tures based on automatic srjuences have recently been considered in the literature.

Thii-Morie superlattices' belong to this group.

Nonperiodiail does not necessarily imply the lack of a deterministic order (as in

A. the case of a random system). Fibonacci and Thue-Morse superlattices are produced

following well ddfined rules. 1 Fibonacci superlattices are examples of quasiperiodic

(or incommensurate) structures. The major problem in fabricating such structures in

the past has been the fact that simple incommensurate modulations require increas-

ingiy larger layer thicknesses to approach the irrational limit. Layer deposition in

sequences generated by special production rules provides a solution to this problem. 1

Superlattices grown according to these sequences show a degree of quasiperiodicitv

that is deterrmned not by the width of the layers (which is arbitrary), but by the

thickness of the samples. I

We have investigated these nonperiodic systems using several methods of optical

spectroscopy: photolurninescence. optical reflectivity, optical absorption, and Raman

scattering. Our results are described in detail in the publications. The most fruitful of

these techniques has been Raman scattering by acoustic phonons. The non-resonant



Raman spectra of these systems provides information about the structure of the su-

perlattice which complements the information obtained by X-ray scattering. ' The

resonant Raman spectra resembles a weighted density of states which provides infor-

mation about the gaps in the phonon spectrum. This information can not possibly

be obtained through other techniques. 4

B. Surface effects in periodic GaAs-AlAs Superlattices.

The simplest superlattice to study which does not have tranilational symmetry

is a semi-infinite or finite periodic superlattice. Here, the translationa! symmetry is

broken by the presence of a surface (or two surfaces). This has two major effects on

the elementary excitations of the system. First, it allows for the existence of states

localized. at the surface with energy in tht gap of the infinite system. Second. all wave

functions are Etanding waves since they are required to satisfy boundary conditions

at the surface. This second effect leads to the existence (,f surface avoiding wave func-

tions for states with momenta near the zone edge or zzn e cnter of the superlattice. 6

We have found that the amphtude of acoustic phonons with momenta q = nrd- 1 =E

is vanishingly small in a region proportional to E- ' from the surface (n is an integer

and d is the superlattice period). Accordingly, the matrix element describing couphng

of phonons to electronic excitations lcalized at the surface shows pronounced dips in

the vicinity of the gaps in the phonon density of states. We conjecture that dips in

tile Raman spectra. observed by us in nonpeniodic superlattices. I and previously bv

others in finite periodic superlattices, 5 arise from this effect, i.e.. that they reflect con-

tributions of surface electronic states to the scattering. We have performed numerical

calculations of the Raman spectra of several systems which compare favorably with

experimental data.
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