
to

'-

EFFICIENCY OF THE NETWORK SIMPLEX ALGORITHM
FOR THE MAXIMUM FLOW PROBLEM

Andrew V. Goldberg

Michael D. Grigoriadis
Robert E. Tarjan

CS-TR- 193-88

October 1988

NOV 1119 89

ZL -t3;r 7 ZTN 'TK --,m, A

Ap;,ov- d for public relecisel

Dismnt~uton Unimited

.. a I i159

Efficiency of the Network Simplex Algorithm for the Maximum Flow Problem

Andrew V. Goldberg1

Michael D. Grigoriadis2

Robert E. Tarjan3

October, 1988

Abstract. Goldfarb and Hao have proposed a network simplex algorithm Accesiu',

that will solve a maximum flow problem on an n-vertex, m-arc network in NtiS CRA&I

at most nm pivots and Otn 2 rm) time. In this paper we describe how to DTIC 71*
implement their algorithm to run in O(nm log n) time by using an exten- Unan(,

sion of the dynamic tree data structure of Sleator and Tarjan. This bound
is less than a logarithmic factor larger than that of any other known algo- By
rithm for the problem. i ,

Key Words and Phrases- dgorithms, complexity, data structures, dynamic
trees, graphs, linear programming, maximum flow, network flow, network , -
optimization. Dist J

1. The Maximum Flow Problem ' . . .

Let G = (V, E) be an undirected graph with vertex set V of size n and edge set E of

size m. We regard each edge {v, w) as consisting of two oppositely-directed arcs, (v, w)

and (w, v). For any vertex v we denote by E(v) the set of vertices w such that {v, w} is

an edge. We assume that G is connected and that n > 2. Let each arc (v, w) of G have a

nonnegative real-valued capacity u(v, w). Finally, let s and t be two distinguished vertices

of G; s is the source and t is the sink. A (feasible) flow on G is a real-valued function f

on the arcs satisfying the following constraints:

' Department of Computer Science, Stanford University, Stanford, CA 94305. Research
partially supported by a Presidential Youag Investigator Award from the National Science
Foundation, Grant No. CCR-8858097, an IBM Faculty Development Award, and AT&T
Bell Laboratories.

2 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903. Research
partially supported by the Office of Naval Research, Contract No. N00014-87-K-0467.

3 Department of Computer Science, Princeton Univerity Princeton, NJ 08544 and AT&T
Bell Laboratories, Murray Hill, NJ 07974. Research partially supported by the National
Science Foundation, Grant No. DCR-8605961, and the Office of Naval Research, Contract
No. N00014-87-K-0467.

1

For every arc (v, w), f(v, w) = -f(w, v) (antisymmetry constraints) (1.1)

For every arc (v,w), f(v,w) <_ u(v,w) (capacity constraints) (1.2)

For every vertex v V {s,i}, E f(v,w) = 0 (conservation constraints) (1.3)
twEE(v)

The value of a flow f is value (f) = EvEE() f(s, v). The maximum flow problem is

that of finding a flow of maximum value.

To date, the asymptotically fastest known algorithms are those of Goldberg and Tarjan

[8] and of Ahuja, Orlin, and Tarjan [1]. The former runs in O(nmlog(n 2 /m)) time. The

latter requires integer capacities; it runs in O(nm log(n(log U)l/ 2 /M + 2)) if no capscity

exceeds U. Both of these algorithms are based on the O(n)-time algorithm of Goldberg

[5]. Extensive discussions of the problem, its applications, and classical algorithms for it

can be found in [5], [13], [14], [17].

The above statement of the maximum flow problem simplifies notation by avoiding

explicit mention of "forward" and "backward" residual arcs. It is completely equivalent

to the usual formulation on directed graphs. The case where two oppositely-directed arcs

(v, w) and (w, v) have nonnegative capacities u(v, w) and u(w, v) and zero lower bounds

can be represented by an undirected edge {v, w} having lower bound -u(w, v) and capacity

u(v, w). We also assume for simplicity that no pair of vertices in G is connected by more

than one edge, but allowing G to be a multigraph does not in any way affect our results.

2. The Network Simplex Algorithms

The network simplex algorithm is a specialization of the revised simplex method that

uses an appropriate data structure and a pivot selection rule for its implementation. It is

based on an early observation by Fulkerson and Dantzig [6] and Dantzig [4] that any basis

matrix of a vertex-edge incidence matrix of G corresponds to a rooted spanning tree and

can be permuted to an upper triangular matrix with a ±1 diagonal. (For a description of

the method see e.g. the books of Chvatal [2], and Kennington and Helgason [12]; for an

implementation see Grigoriadis [11].)

We state the network simplex algorithm for the maximum flow problem in a form

suitable for our implementation; we omit, for example, the return arc (t, s) that is added

in the standard treatment. Given a flow f, an arc (v, w) bhts r,idual capacity u1 (v, w) =

2

u(v, w) - f(v, w). Arc (v, w) is saturated if uf(v, w) = 0 and residual if uf(v, w) > 0. An

edge {v, w} is saturated if either (v, w) or (w, v) is saturated, and residual otherwise. A

basic flow is a flow f such that the set of residual edges forms a forest (a set of trees) with

s and t in different trees. Given a basic flow f, a basis is a pair of trees S, Z that are

subgraphs of G, such that s E S, t E Z, and every vertex and every residual edge is in

either S or Z. Given a basic flow f and a basis S, Z, an edge (or arc) is a tree edge (or

tree arc) if it is in S or in Z, and a nontree edge (or nontree arc) if not. A basic flow f is

called degenerate if there is a saturated tree edge and nondegenerate otherwise.

The network simplex algorithm maintains a basic flow f and a corresponding basis

S, Z. Starting from such a flow f and basis S, Z, the algorithm consists of repeating the

following step until there is no residual arc (v, w) with v E S, t E Z:

Pivot. Select a residual arc (v,w) with v E S,w E Z. Add {v,w} to S U Z, forming a

single spanning tree T. This tree contains a unique simple path p of tree arcs from s to t.

Let b be the minimum capacity of an arc on p. Add b to the flow of every arc on p. Delete

from T some edge {x, y} such that (x, y) is a saturated arc of p. This produces two trees

that form a basis for the new basic flow.

Arc (v, w) is called the entering arc of the pivot and (x, y) the leaving arc; the pivot

is said to be on (v, w). It is possible for 6 to equal zero if the basic flow is degenerate; then

the pivot is said to be degenerate. A degenerate pivot does not change the flow but does

change the basis. A nondegenerate pivot changes the flow, increases the flow value, and

may or may not change the basis.

If a basic flow and a corresp ,"g basis are not available initially, they can be com-

puted in O(nm) time in several i6 One way is as follows. Let f = 0 and Compute a

spanning tree of T of G. Then, select a nontree residual edge, identify the unique simple

cycle it forms in T, and push flow around this cycle so that at least one of its edges is

saturated. Repeat this step until there are no nontree residual edges. Finally, push enough

flow from s to t along the unique (s, t) path in T so that at least one additional edge is

saturated. Deleting from T this edge yields a basic flow and a basis S, Z. The running

time for this computation can be reduced to to O(mlogn) by using the dynamic tree

data structure [15], 116], [17], but this does not improve the running time of the overall

algorithm.

3

3. A Refinement of the Algorithm with a Polynomial Number of Pivots

The algorithm of the previous section need not terminate unless an anti-cycling rule,

such as Cunningham's [3), is used for breaking ties in selecting the leaving arc. For integer

data, such an implementation solves the maximum flow problem in at most nOU pivots

and in O(n 2 mU) time using a simple rooted tree data structure to represent the basis.

Goldfarb and Grigoriadis [9] proposed a rule that pivots on a residual arc (v,w) with

v E S, w E Z, for which the number of residual arcs in the paths from s to v in S and from

w to t in Z is minimum over all nontree residual arcs from S to Z. This variant works

better in practice than others, but it does not improve the pseudopolynomial bound on

the total number of pivots.

The key to making the network simplex algorithm run fast is to choose pivots more

carefully. Goldfarb and Hao [10] proposed a pivot rule such ihat at most nm pivots occur.

Explaining their rule requires a few extra definitions. We call an arc (v, w) pseudoresidual

if it is residual or a tree arc1 . For any vertex v, we define the label d(v) of v to be the

minimum number of pseudoresidual arcs on a path of pseudoresidual arcs from s to v, or

infinity if there is no such path. Every vertex label remains finite, and indeed less than n,

until after the last pivot. Goldfarb and Hao's pivot rule, which we call the smallest label

rule, is:

Among all residual arcs (v, w) with v E S and w E Z, pivot on one with d(v) minimum.

Efficient implementation of this rule requires a reformulation of it, also proposed by

Goldfarb and Hao: Repeat the foliowing step until d(t) = oo:

Choose a vertex w E Z with d(w) minimum. Pivot on any residual arc (v, w) with

v E S. (Such an arc will have d(v) = d(w) - 1.)

4. Efficient Implementation of the Smallest Label Rule

We shall describe a way to implement the smallest label rule so that the running time

of the resulting network simplex algorithm is O(nm log n). This improves Goldfarb and

Hao's bound of O(n 2 m), and is within less than a logarithmic factor of the bound of any

other known algorithm.

I If the basic flow is nondegenerate, every pseudoresidual arc is also a residual arc.

4

Our implementation consists of two main parts. The first part, described in this

section, is a way to maintain vertex labels in a total time of 0(nm). The second and more

complicated part, explained in the next three sections, is a dynamic tree data structure

used to choose pivots and to maintain the basis. The amortized time 2 per pivot with this

data structure is O(log n), resulting in the claimed 0(nm log n) overall time bound.
0

To maintain vertex labels, we use the method proposed by Goldberg and Tarjan for

maintaining exact distance labels in their maximum flow algorithm (see [8], Section 7).

For each vertex w, we maintain a pointer into a fixed list A(w) of the arcs (v, w). This

pointer indicates a pseudoresidual arc (v, w) with d(v) = d(w) - 1. That is, arc (v, w) is

on some pseudoresidual path of fewest arcs from s to w. We call (v, w) the current arc

of w. For each vertex w, we also maintain a list L(w) of those vei #."ces x such that the

current arc of x is (w, x). Initializing this information kit the beginning of the ix.aximr

flow computation can be done by a single breadth-first search from s, taking 0(rn) time.

Goldfarb and Hao proved that vertex labels can never decrease, only stay the same

or increase, as the -Jgorithm proceeds. Furthermore, once a pseudoresidual arc (v,)

becomes a saturated nontree arc, it cannot become pseudoresidual again until at least one

of d(v) and d(w) increases.

We need to update vertex labels after each pivot; the leaving arc (x, y) may no longer

be pseudoresidual. If (x, y) is indeed no longer pseudoresidual, and if in addition (x, y) is

the current arc of y, we delete y from L(x) and initialize a set R={y} of vertices to be

relabeled. Then we repeat the following step until R is empty:

Relabel. Select a vertex w E R and delete it from R. Let (v, w) be the current arc of w.

(Since w was on R, either (v,w) is no longer pseudoresidual or d(v) _ d(w).) Scan the arcs

after (v,w) on A(w) until finding one, say (x,w), such that (x,w) is pseudoresidual and

d(x) = d(w) - 1, or reaching the end of A(w). In the former case, make (x, w) the current

arc of w and add w to L(x); the relabeling is complete. In the latter case, scan all of A(w)

to find the first pseudoresidual arc (y, w) on A(w) with d(y) minimum. Make (y, w) the

current arc of w, add w to L(y), set d(w) = d(y) + 1, add all vertices on L(w) to R, and

set L(tv) = 0, completing the relabeling. If there is no such arc (y, w), then d(w) = oc;

2 By amortized time we mean the time per operation averaged over a worst-case sequence

of operations. See [18).

5

the maximum flow computation is complete.

It is straightforward to verify by induction the correctness of this method of maintain-

ing vertex labels and current arcs. Each arc list A(w) for w : s is scanned at most 2n - 2

times, twice for each possible value of d(w) (from 1 to n - 1). The total time needed to

maintain vertex labels is thus O(nm).

5. The Use of Dynamic Trees

To choose pivots and maintain the basis, we use an extension of the dynamic tree

data structure of Sleator and Tarjan [15], [16], [17]. This data structure will represent a

collection of vertex disjoint rooted trees, each vertex of which has an integer label. and

each edge {v, w} of which has two associated real values, g(v, w) and g(w, v). We denote
1_7 parent(v) the parent of vertex v in its dynamic tree; if v kc a tree root, parent(v)=null.

We adopt the convention that every tree vertex is both an ancestor and a descendant of

itself. The data structure supports the following ten operations on dynamic trees. Each

operation takes O(log k) amortized time, where k is the total number of tree vertices.

make-tree(v): Make vertex v into a one-vertex dynamic tree. Vertex v must be in no other

tree.

find-parent(v): Return the parent of vertex v, or null if v is a tree root.

find-value(v): Compute and return g(v, parent(v)); if v is a tree root, return infinity.

find-min-value(v): Find and return an ancestor w of vertex v such that g(w, parent(w))

is minimum; if v is a tree root, return v.

find-min-label(v): Find and return a descendant w of v that has minimum label.

change-label(v, 1): Set the label of v equal to I.

change-value(v, b): Add real number 6 to g(w, parent(w)) and subtract 6 from

g(pareni(w), w) for every nonroot ancestor w of v.

link(v, w, a, fl): Combine the trees containing v and w by making w the parent of v. Define

g(v, w) = a and g(w, v) = P. Before the link operation, vertices v and w must be in

different trees, with v the root of its tree.

6

cui(v): Break the tree containing vertex v in two b-, deleting the edge joining v and its

parent. Before the cut operation, vertex v must be a nonroot.

evert(v): Reroot the tree containing vertex v by making v the root.

To implement the network simplex algorithm, we maintain the basis S, Z as a pair of

dynamic trees. Tree Z is permanently rooted at t; the root of S changes as the algorithm

proceeds. Initialization of the two trees requires n make-tree, n - 2 link, and n change-label

operations at the beginning of the algorithm. Each time a vertex label, as computed by

the method in Section 4, changes, we perform the corresponding change-label operation.

To determine which pivot to do next during the computation, we perform find-min-

label(t), which returns a vertex in Z, say w, of smallest label. We pivot on the current

arc (v, w) of w, as defined in Section 4. To actually carry out the pivc: we first perforn.

evert(v), to root S a v. Then we perform link(v,w,a,fl), where a = uf(v,w) and / =

uf(w, v). We compute the leaving arc (x, y) of the pivot by letting x be the vertex returned

by find-min-value(s) and then letting y be the vertex returned by find-parent(x). The

amount of flow to be moved from s to t is the amount, say b, returned by find-value(x).

To complete the pivot, we perform change-value(s, -6) and then cut(x). At the end of

the iaaximum flow computation, we compute the flow on all the tree arcs by using n - 2

find value operations.

With this implementation, each pivot takes 0(1) tree operations. The amortized time

per pivot is O(log n), so the overall running time of the network simplex algorithm is

O(nm log n), as desired.

6. Representation of Dynamic Trees by Phantom Trees

It remains for us to discuss how to implement dynamic trees so that the amortized

time per tree operation is O(log n). Obtaining such an implementation requires extending

the Sleator-Tarjan data structure. An extension designed to maintain edge values and

to support all the operatiuns except find-min-label and change-label appears in [19] and

can be used without modification here. The novel part of our implementation lies in the

handling of vertex labels; whereas the original dynamic tree data structure was designed

to compute combinations of values over tree paths, the operation find-min-label requires

combining values over subtrees. We shall describe a data structure that supports the

7

operations make-tree, find-parent, find-min-label, change-label, link, cut, and evert. For the

other operations, we can either use a separate data structure of the kind described in (19],

or we can combine the two structures into one. This can be done by adding irfor-,a'ic.

representing edge values to the data structure described below. (See [19].)

To perform find-min-label operations efficiently, we need to impose a constant upper

bound on the valence of each tree vertex. Thus we represent each dynamic tree D by a

rooted phantom tree P. Tree P contains all the vertices of D and possibly some additional

dummy vertices. Each vertex in a phantom tree, henceforth called a p-vertex, has a label and

a color. In the simulation of a dynamic tree D by a phantom tree P, the colors are vertices

in D. Every phantom tree has maximum valence three. The following operations are

allowed on phantom trees: make-tree, find-parent, find-min-label, change-label, link, cut.

and evert, with the added constraint on link operations that link(v, w) cannot be performed

unless v and u, both have valence at most two. (The third and fourth parameters of a link

operation are unnecessary, since edges do not have values in phantom trees.) Phantom

trees also support three additional operations:

find-children(v): Find and return the set of children of v.

find-top(v): Find the ancestor of v closest to the tree root that has the same color

as V.

change-color(v, y): Set the color of v equal to -y.

The precise correspondence between dynamic trees and phantom trees is as follows.

In a phantom tree P corresponding to a dynamic tree D, there is a path p(v) of vertices

colored v corresponding to each vertex v of D. One of the vertices of p(v) is identified

with v and has the same label as v; the remaining vertices o£ f(o) wa. dummy ver;cp,

each of which has label oo and valence exactly three. Each edge {v, w} of D corresponds

to an edge {v', w'} of P with v' colored v and w' colored w. That is, if each path p(v) in

P is condensed into a single vertex v and loops (edges of the form {z, z}) are deleted, the

result is tree D. (See Figure 1.)

[Figure 1]

We simulate each of the dynamic tree operations by a constant number of phantom

tree operations, as follows:

8

make-tree(v):

make-tree(v); change-color(v, v).

find-parent(v):

find-colo r(find-paren t(find-top(t))).

find-min-label(v):

find-min-label(find-top(t')).

change- label(v):

change-label(v).

link(v, U'):

Step 1. Let u=find-top(v). Perform find-children(u). If u has two or fewer children, go

to Step 2. Otherwise, find a child q of u (if any) colored v; if there is no such child. let

q be any child of u. Let r be new vertex (not in any phantom tree). Perform makc-tr c

(r); change-color(r, v); change-labe(r, oc); cut(q); link(q, r); link(u. r). Replace u by r

and go to Step 2.

Step 2. Perform find-parent(w); find-children(w). If w has valence two or less. let

x = w and go to Step 3. Otherwise, choose a child y (if any) colored u; if there is

no such child, let y be any child of u-. Create a new vertex z (not in any phantom

tree). Perform make-tree(z); change-color(z,w); change-label(z,oc); cut(y): Iink(y, z):

hnk(w, z). Let x = z; go to Step 3.

Step 3. Perform link(u, x).

cut(v):

Step 1. Let u=find-top(v) and x=find.parent(u). Perform cut(u). if u = v, go to

Step 2. Otherwise, perform find-chiidreu(u). Let q and r be the children of u. Perform

cut(q); cut (r); link(q, r). Destroy dummy vertex u.

Step 2. If x = w, stop. Otherwise, find the two vertices y and z adjacent to x by

performing find-parent(x) and find-children(x). If one of y and z, say y, is the parent

of x, perform cut(z); cut(x); link(z,y). Otherwise, perform cut(z); cut(y); link(z.y).

In either case, destroy dummy vertex x and stop.

9

evert(v):

et'' t ").

Each dynamic tree operation consists of 0(1) phantom tree operations and 0(1) ad-

ditional work. Since each dummy vertex in a phantom tree has valence exactly three a

dynamic tree containing k vertices corresponds to a phantom tree containing at most 3k/2

vertices.

7. Representation of Phantom Trees by Virtual Trees

We implement phantom trees by using the method of Sleator and Tarjan (16]. modified

only as necessary to deal with vertex labels and colors. We assume some familiarity with

[161: we shall merely sketch the details of the implementation, highlighting the change

needed for our purpose. (See also [17J, Chapter 5.)

We represent each phantom tree P by a rooted virtual tree T', which contains the

same vertices as P but has different structure. Each vertex of I' has a left child and a riqtI

child, either or both of which can be missing, and at most three middle children. We call

an edge of I' solid if it joins a left or right child to its parent and dashed otherwise. Tree

I' consists of a collection of binary trees, its solid subtrees, connected by dashed edges.

The parent in P of a vertex x" is the symmetric-order successor of x in the solid subtree

containing x in I,, unless x" is last in its solid subtree, in which case its parent in P is the

parent in I' of the root of its solid subtree. (See Figure 2.) That is, each solid subtree in

I' corresponds to a path in P, with symmetric order in the solid subtree corresponding to

the order along the path from deepest to shallowest vertex. We say a vertex x is a solid

descendant of a vertex y in V, and y is a solid ancestor of y, if x is a descendant of y and

the path from x to y consists of solid edges.

[Figure 2.]

We represent the structure of V by storing with each vertex x pointers to its parent.

its left and right children, and a list of its middle children. We also store with xA its label

and color. In addition, we store with x one piece of cumulative information, min-label(z),

which is the minimum label of any descendant of x in V. Finally, we store with X a

reversal bit rev(x), used to handle the evert operation. The interpretation of reversal bits

is as follows. Let sum-rev(x) be the mod-two sum of the reversal bits of all solid ancestors

10

of . If sum-rev(x) is 1, then the meanings of the left and right child pointers of z are
reversed, i.e., the left pointer points to the right child and vice-versa.

We use two 0(1)-time restructuring primitives on virtual trees. The first is rotation.
in which two vertices x and y joined by a solid edge are interchanged while preserving
symmetric order. (See Figure 3.) The second is splicing, in which the left child, if any. of
a vertex x is made a middle child, and possibly in addition some middle child is made the
left child. (See Figure 4.) A splice can only be performed if x is the root of a solid subtree.
It is straightforward to verify that all the values stored at each vertex can be updated in
0(1) time after a rotation or a splice.

[Figure 3]

[Figure 4]

The main restructuring operation on virtual trees is splaying. A splay at a vertex x
consists of a specific sequence of rotations and splices along the path from x to the tree
root. The effect of the splay is to restructure the tree, making x the root. The actual time
required for a splay at x is proportional to the (original) depth of x; the amortized time is
O(log k) if the tree containing x has k vertices. See [16].

We can perform each of the phantom tree operations using at most two splay opera-
tions and 0(1) additional restructuring of the tree. We shall describe the implementation
of three of the operations; implementation of the othcrs is similar. (See [16].) To perform
ever(tv), we splay at v, make the left child of v (if any) a middle child, and flip the bit
rev(v). To perform find-min-label(v), we choose a vertex x of minimum min-label among
v and all its children except the right child. We search down through descendants of x
to find a vertex y such that label(y)-=min-label(x). (This search is guided by label and
min-label values.) Then we splay at y and return y. The splay at y pays for the search to
reach y. We perform find-top(v) as follows. First, we splay at v. Then we let i - 0 and

V0 = v. We repeat the following step until v, has no right child or v i differs in color from
v: search down from the right child of v i through left children until reaching a vertex v,
of the same color as v or that has no left child; replace i by 1 + 1. Once this computation
is completed, we splay at v, and return v i if it has the same color as v; if it does not, we
return v,- 1 . The splay at v, pays for all the searching.

With this implementation, the amortized time per phantom tree operation is O(log n).

11

This implies by the discussion in Section 6 that the amortized time per dynamic tree

operation is O(log n). By the discussion in Section 5, this implies in turn that the amortized

time to choose a pivot and implement it in the network simplex algorithm is O(log n). This

gives the main result of our paper:

Theorem 1. The Goldfarb-Hao version of the primal network simplex algorithm for

the maximum flow problem can be implemented to run in O(nm log n) time.

12

8. References

[1] R. K. Ahuja, 3. B. Orlin, and R. E. Tarjan, "Improved time bounds for the maximum
flow problem," SIAM J. Comput., to appear.

[2] V. Chvatal, Linear Programming, W. H. Freeman, New York, 1983.

[3] W. H. Cunningham, "A network simplex method", Mathematical Programming 1
(1976), 105-116.

[4] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963.

[5] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University, Prince-
ton, NJ, 1962.

[6] D. R. Fulkerson and G. B. Dantzig, "Computations of maximal flows in networks".
Naval Research Logistics Quarterly 2 (1955), 277-283.

[7] A. V. Goldberg, "A new max-flow algorithm," Technical Report MIT/LCS/TM-291.
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge.
MA, 1985.

[8] A. V. Goldberg and R. E. Tarjan, "A new approach to the maximum flow problem,"
J. Assoc. Comput. Mach. 35 (1988), 921-940.

[9] D. Goldfarb and M. D. Grigcriadis, "A computational comparison of the Dinic and net-
work simplex methods for maximum flow", Annals of Operations Research 13 (19SS).
83-123.

[10] D. Goldfarb and J. Hao, "A primal simplex algorithm that solves the maximum flc v
problem in at most nm pivots and O(n2m) time," manuscript, Department of I.
dustrial Engineering and Operations Research, Columbia University, New York, N1
1988.

[11] M. D. Grigoriadis, "An efficient implementation of the primal simplex method", Math-
ematical Programming Study 26 (1986), 83-111.

[12] 3. L. Kennington and R. V. Helgason, Algorithms for Network Programming, Wiley.
New York, NY, 1980.

[13] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart,
and Winston, New York, NY, 1976.

[14] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[15] D. D. Sleator and R. E. Tarjan, "A data structure for dynamic trees," J. Computer
and System Sciences 26 (1983), 362-391.

13

(161 D. D. Sleator and R. E. Tarian, "Self-adjusting binary search trees," J. Assoc. Corn-
put. Mach. 32 (1985), 652-686.

[17] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1983.

[18] R. E. Tarjan, "Amortized computational complexity," SIAM J. Algebraic and Discrete
Methods 6 (1985), 306-318.

[19] R. E. Tarjan, "Efficiency of the primal network simplex algorithm for the minimum-
cost circulation problem," to appear.

14

b

(a)

a

(b) (b

d, e 9

(b))

Figure)1. A dynamic tree and a corresponding phantom tree.
(a) Dynamic Tree D. (b) Phantom tre P.
Labels inside the vertices of P are colors. Primes are added to distinguish ver-
tces.

q h

Figure 2. A virtual tree corrcsponding to the phantom tree in Figure 1.
Solid edges are solid; dashed edges dashed.

RIGHT
ROTATION

D E ROTATION A B z
A B C C D E

Figure 3. A rotation in a virtual tree. Triangles denote suburees.

A B C D B A C D

Figure 4. A splice ini a virtual trte.

