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ABSTRACT

Path reversal is a form of path compression used in a disjoint set union

algorithm and a mutual exclusion algorithm. We derive a tight upper bound on

the amortized cost of path reversal.
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Let T be a rooted n-node tree. A path reversal at a node x in T is performed by traversing

the path from x to the tree root r and making x the parent of each node on the path other than x.

Thus x becomes the new tree root. (See Figure 1.) The cost of the reversal is the number of

edges on the path reversel. Path reversal is a variant of the standard path compression algorithm

for maintaining disjoint sets under union [5]. It has also been used in a novel mutual execution

algorithm [2,61.
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Figure 1. Path reversal. Triangles denote subtrees.
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Suppose that a sequence of m reversals is performed on an arbitrary initial tree. What is the

total cost of the sequence? Let T(n,m) be the worst-case cost of such a sequence, and let

A(n,m) = T(n,m)/m. We are most interested in the value of A(n,m) for fixed n as m grows. As

discussed by Tarjan and Van Leuwen [5], binomial trees provide a class of examples showing

that A(n,m) 2Llog nj , and their rather complicated analysis gives an upper bound of

A(n,m) = Ologn + nlogn). Ginat and Shankar [2] prove that A(n,m) _ 2logn + nlogn We
m m

shall prove that A (n,m) < logn + nlogn In the special case tLhat the initial tree consists of a root
2m

with n-I children, which is the case in the mutuil exclusion algorithm, the bound is

A(n,m) 5 logn.

To obtain the bound, we apply the potential function method of amortized analysis. (See

14].) Let the size s(x) of a node x in Tbe the number of descendants J x, including r itself. Let

the potential of T be 4)(T) = -L I log s(x). Define the amortized cost of a path reversal over a
xE T

path of k edges to be k - 4)(T) + 4)(T'), where T and T' are the trees before and after the reversal,

respectively. For any sequence of m reversals, we have

Sa, = Z-,(t, - D,-, + Dj) = + rm'

i=1 i==

where a,,t,, and (1), are the amortized cost of the ith reversal, the actual cost of the iPh reversal,

and the potential after the iPh reversal, respectively, and 0o is the potential of the initial tree.
nI

Since ( < -.--logn and , 2! -Llogn, this inc .mry yields
2

Zt 5 .ai + -(n-)logn,
i-I j.1 2

which in turn implies

A (n m) ai +nogn
Al- t.loih 2m

o ADl logarithm- i- "hig .r..": c twn.
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We shall prove that the amortized cost of any reversal is at most logn, thereby showing that

A(n,m) <_ logn + o When the initial tree consists of a root with n-I chilP'en, the bound
2m

drops to A(n,m) < log n, since then Oo ; 0., and the extra additive term drops out.

Let xox 1 ,x 2 _ ...,xk be a path that is reversed, and let A be the amortized cost of the reversal.

For 0:< i _< k, let s, be the size of x, before the reversal. The size of x 0 after the reversal is s&, and

the size of si after the reversal, for 1 < i < k, is si -si-I. We can thus write A as

k I I k I
A = k-Y - log si + - log Sk + Y, - log (si -si-i )

i-o i-I

1 k-I
= k + - I (log (si+,-si) -log s,)

2 i==

I k-I= k + - I log ((s,+l-si)/s,).
2 1=

For 0: i _< k-1, let a, = s,.j/si. Note that (si,-si)/si = ai-l. We have

1 k-I
A = k + - 2 log (ao-l)

k-I I
= Y (I + - log (a -l))

10 2

We now make use of the following inequality, which will be verified below: for all a > I,
I

I + -- log(a-l) . loga. From this inequality we obtain
2

k-I
A :5 Y log o

i=O

k-I k-I
= log (si+1 Isi) = (log i+i --ogi)

i-O i,,O

= log s., -log so

S AU n,

since sk = n and so 1.
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This completes the amortized analysis. We verify the needed inequality by the following

chain of reasoning:

0 < (cr-I) 2

=> 0_ W -4a + 4

=> 4 (,,x -1) <_ca2

=> log (4(c -I)) 5 log (a 2 )

=> 2 + log (a -1) < 2log a

=> 1 + - log ((x-1) :- log a.
2

We conclude with some remarks. The definition of the potential function used here has

been borrowed from Sleator and Tarjan's analysis of splay trees [3]; it has also been used :o

analyze pairing heaps [1). As in the case of splay trees, the upper bound can be generalized in the

following way. Assign to each tree node x a fixed but arbitrary positive weight w(x). Define the

total weight of x, tw(x), to be the sum of the weights of all descendants of x, including x itself.

Define the potential of the tree T to be 4(T) = 2I F log tw(x). A straightforward extension of

the above analysis shows that the total cno.t of a sequence of m reversals is at most

log (W/w,) + 00-,, where wi is the weight of the node xi at which the i h reversal starts and
i=1

W is the sum of all the node weights.

Choosing w(x) = I for all x e T gives our original result. Choosing w(x) =f(x) + 1, where

f(x) is the number of times a reversal begins at x, gives an upper bound for the total time of all

reversals of ' log + I

It is striking that the "sum of logarithms" potential function serves to analyze three dif-

ferent data structures. We are at a loss to explain this phenomenon; whereas there is a clear con-

nection between splay trees and pairing heaps (see [I1), no such connection between trees with

path reversal and the other two data structures is apparent. In the case of path reversal, the sum of

logarithms potential function gives a bound that is exact to within an additive term depending

only on the initial and final trees. It would be extremely interesting and useful to have a sys-

tematic meUJ c2 for deriving appropriate potential functions. The three examples of splaying,

pairing, and reversal offer a setting in which to search for such a method.
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