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Abstract of Technical Progress

In earlier work the necessary conditions of optimality were derived for a

problem of minimum miss-distance guidance of air-to-air missiles. The mdei was

based upon nonlinear translational equations of moticn. The solution of the

necessary conditions requires a solution of a two-point boundary-condition problem.

Two methods proposed for the latter solution, an elliptic integral method and a

series technique, were studied and both methods were rejected in favor of a pro-

cedure based upon the quasilinearization method. The latter requires fewer assump-

tions and exhibits excellent convergence prooerties.

order to rer'ove the numerical integration problem and to simplify the linear

two-point boundary-condition problem associated with quasilinearization, the regular

method was modified, three alternative techniques being deriyed, and a technical

report was wTitten which discusses the convergence properties and accuracy of the

t'.ree mod:fied quasilinearization methods applied to two-point b-undarv-ccnditicn

prcciemsin general. ,

One of the latter metiods was applied to the missile guidance problem and com-

pared to a linear method of guidance. The comparison was favorable in the c¢ses of

missile encounters considered. A second technical report was prepared which des-

cribes the application and the numerical results.
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Technical Report

The principal objective was the development of an optimal guidance method

fo; air-to-air missiles. The proposed model was based upon nonlinear translational

equations of motion and a quadratic performance index. Availability of a predicted

time-history of the target's position was assum,d.

In an earlier investigation the necessary conditions of optimality were derived

and two methods were proposed for solving these conditions. They were: An elliptic

integral method and a series method. These were to be placed in a form suitable for

compur-tion and applied to the solution of the necessary conditions, which reduce to

a two-point Doundary-condition (TPBC) problem associated .ith a system of nonlinear

ordinary differential equations. As far as possible the following extensions (among

others) to the ellipt. intr:egral aad series methods were to be made:

(a) Introduction of variable missile velocity magnitude;

(b) Extension into three dimensions;

(C) Allowance for variations of more than 90 in the flight direction angies,

(d> incusion of the case of control angles which do not vary monotonicallv

with time;

(e) Inclusion of an improved method for calculating time-to-go;

(f) Placing bounds upon the control variables.

After a study of the methods based upon elliptic integrals and series, it was

decided that a third meLhod based upon quasilinearization (or the generalized Nr ,ton-

Raphson method) would be a more powerful computational device (as far as numerical

convergence to a solution to the 7PBC problem is concerned) and a more flexible tool

in regard to the implementation of extensions (a) - (f) given above. On consulting

with the ?ro'ram Manager, it was decided thdt the quasilinearization method would be

used rather than the methods originally proposed for study.

r[
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However, the usual quasilinearization algorithm is involved, computationally

speaking, because it requires many numarical integrations of systems of differential

equations and the solution of many linear TPBC problems. With this in mind the

following enclosed technical report was prepared:

(1] "Modiiied Methods of Quasilinearization".

The latter report develops modified methods of quasilinearization in which numerical

integration is unnecessary and in which the linear TPBC problems to be solved are

reduced in number. The modified quasilinearization methods are applicable to any

-PBC problem. A 3hortened version of the report has been submitted for possible

publication in the SLAM Journai of Numerical Analysis.

One of the modified methods of quasilinearization was applied to the air-to-air

missile problem, the details being given :n the second enclosed technical report:

12 IJ  "A Guidance Method for Air-to-Air

Missiles Using Quasilinearization"

The latter reoort contains a development of all pertinent equations in the case

of encounters in three-dimensional space. It shows how the control variables may

be oounded anc gives an argument (in the case of encounters in -wo-dimensioaal spact-'

for monotonic variation of the control variable. The report then describes

numerical simulations of qeveral tvo-dimensional missile-target encounters. The

modified method of auasilinearization is compared to a linear guidance method, the

former method providing more accurate commands than the linear method. The new

method allows for variable missle velocity magnitude, determines time-to-go, and

permits large changes in the flight direction angles. However, the largest change

which has been simulated iF 90 . The method convergee to the optimal solution to

the nonlinear guidance problem in all encounters considered.

The only technical :nvestizator involved in this study has been Professor J. F.

Andrus, Ph.D. in Mathematics, University of Florida, June 1958. His thesis was

c.titlcd "Partially Ordered, Ideal Preserving Groups". He is also author of a

number of papers in numerical analysis, optimal control, and other areas of applied

mathematics.



Modified Quasilinearization Methods

by

J. F. Andrus

Department of Mathematics
University of New Orleans

I. Introduction

The quasilinearization (or generalized Newton - Raphson) method :2]

has roven to be a highly effective iterative method for the numerical solution

of many two-point boundary-condition (TPBC) problems. Frequently only a rough

approximation is required to start tne convergence, and - when convergence takes

place - it is quadratic :n character.

--ero are iiso several difficulties assoclited wit the method. :hev are:

(a) T-he 'ifferential equations must be linearized. This cail for cifferentiati=n

it the rgntnan -3- -- - -- he differential equations.

'b) After epch !Leration the aDprcximate solution must be saved for use in the

next iteration. This presents an awkward interpolation problem. Alternative-

>v, each solution may be regenerated by means of integration during 31'

s.coeed iteat:rs

. )uring ach iterat:-n the linear iferentala equations must oe intearatec

usuall: n--uerc:ali') several :imes in order to obtain the scluticn to a

linear two-ooint boundary-value (TPBV) problem. Sometimes finite difference

techniques are used instead to solve the TPBV problem. The solution is

obtained by solving a large system of linear algebraic equations.

The present paoer contains the development of modified quasilinearization

netnQcs in 'wnizn tne oroblems in items (b)and .c; nave been onsiderabiy reduced.

Ths is achieved ov ilv'ding the solutions into subarcs and, after each iteration.

using the new aiproxiate solution to obtain constant or linear approximations

over eac- suonter-,ai. The equations are "tnearized about the constant or linear

aproximnatlons. thereby alleviating the problems of storage and interpolation.

Moreover, one -an frequently solve the linear differential equations in

terms qf definite integrals or in clospd form over each subinterval. In

such cases the Problem ;f numerical integration is considerably reduced.



Since the final values of the dependent variables on each subinterval can

be expressed linearly in terms of the unknown initial values, the solutions to

the complete linear 1P8V .problem can be easily obtained because the 4final values

of the dependent variables can be ex-pressed linearly in terms

of 'he unknown initial values, -in an then I- determi.ned by sclvin; a s,.stem

(usual>v small, of linear algebraic equations. (See [11 for an example.)

I' s argued that-under some reasonable assumptions- the modified methods

of quasitinearization will converge. Moreover, convergen~ce becomes q~uadratic

:n natu;re as :ne maxium subinterval size is decreased. in order to o rove

-onvergence It is necessary that the 7raximum inter'al size be cnosen s::tr~

-3ma I :ti -s also ;oroven :h : he _onvergei approximate sol,.tions tC tn.e -ria

~'rta cctcsire n~rear!%- ti~rd -orrer accura,_% frc he a 7 C c -n

7 C- - ,I n t e i:r a n r -e :ase .)- to e constant re:resentat* >fl -7e

-~n . oszvr .arc:s ano cr-te IzCurac. to -e is;t'

7netn CoS

-o'e wccask now .e :onsctant soIjutors, o ~D., couc e_ t near!;

--- rc-er i_-,co rc . 7e irswf r s -- at the soicn iv:er atvia 3 ner.

:t ---. n -I 2 f= e --t 1tracc. o :cnstant: t ca mc-' .3;cr :<:oace

c'ar 1 .7, n:3-acr n t r ;Se crc -:se k-- teraticcn. Therfor

.:r itc ts e -<oroce o tne ic::ura: ot te nurtert__a. nr'~a c.

.Oe Liasi-nerizatc.4r "eto-oc

ns~rtt. .P.&. ro~m cscatr.~or e ccrferentia, equattoran

:n -me -inoar: onttn inrv cnz it the initial. ind ' inal points.. t. and K

ret-rc ac~fty ola= vecor wt- n c:omponents, anu v ;L ~v .

-ortb. 2- :orotl- ic*'n, -jinr1 -uaq4,"r-,ear".:C(?n u-orth etermno-

braner: oni,-dn t..r 11 r difrPTnt 4al Ouatione
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where f is an n x n matrix of first partial derivatives.
y

1i:. Modified Quasilinearization Methods

Three modifieo methods of cuasilinearization will be consicered. For

simplicitv it wi-l be assumed that t and t- are fixed. This situation can

aiwavs be accompiished by effecting a change it the -ndeoendent variable. The

interai :,r 4ill be divided into N subinter;ais t ti-7,2__N

where - t. .he usual method :,: quasilinearization is .c be modifiec is

fo~lows: Aft- rh soiuticn -  o he i.near : rol o em has been :otalnec

rcm the k-th itera'on, the ) are" l-nLar-zec t: .:Ie nex: terait:-n.

-n the :-tno u,..te-.a ,

.ejc -z (,

./ p7

". . -ne~nePee[e

L'

:- ....... over e ac' surbe erva., the eendea: b-ar:-:es i

aree tsed ea Reene n tlr aer.In re at .

Rp. ;re ai 4sr-.uss in t:-e rdr .7-. acurc nt:~ ree teto.C z tocc..ve: Zen,:e

a s k t V) i s we. as the ccnver~ence -:th~'

.V. .nver,'ence ?rcoertte,

Th'r'~i i,,v;u point that the motdi -d 7ntnicds :1 :uas :eir

tion will corverge. An example problem, to which Method I has been applied, is

presented in Reference rij in full detail. In the latter example convergence is
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demonstrated. N the convergence pr-blem will be discussed from a theoretical

point of vie- The approach will be to transform modified quasillnearization

problems , scandard problems whi-nc are identical in every respect to the

-'odified orcb ems except for certar. ter-.s w&ich aporcach zero as tne :'-era-

cion proceeds.

Srublms wil: be ',)nerted to standard ?BC oroblems bv referenc nz

ai suointer'ja's -o a s.ngle _nterval ',. To do so, let 't; - ,_ and

LL
-, p:/ . -4 L. r L - c L L

or - 4, where - :ar'.es from 0 to ZI t )n the i-th

7..

sunterval.Let ..-( ,C s lnif-, ,.'t 1 , t" . L.et ; '.: :. " Z-

77 1 S 74 X ... -oC t

r -

in t .,-. l cl

., in.S r " o'd .

..') 4 - p- , ,. . .,- )

V -i -. .

- (% . the .se :: "et".'c :1

V / =/ (Tj 7) in Method 3

CL-1 -z ..

i w I l l i i I l mm i ml I i m I ,4



where q & _ A(, i

in r-he case of Method I the following boundary conditions will be imposed:

Y L.,.) - ;, ./ (I) -- -

S/

/ ' ,. , .k ]

." ere 3 and v are recu, red to 3a:, sfv the or znal bou n ar : 7-d 7. s - e
0

-se '"t7C Z,, w,_- De -i e

.4

7,

A ,. -, - , _ - .. . -,

" ''::V { ," si'',- 0 , ,

-. , . t , ., / -, V

,-- -.4 ,- A- fl

-'7 ,K ,-- O :,,y 7- jJ ' - :ntl.eocise

-a~ - n;f ~ ~ ~ ~ ~ ~ ~ i ".-.e :asel e:e:f l-d !k

(A

/ L/

' , ." -"

• ~ A7- , L-: -, A -



As N and max At. 0, the srlutions tc. the TPBC problem consisting

of equations (3) and (4) will approach the solution to the T".BC problem associatea
-IZ

with 2qjaiticfls } because A~C)-
2

mhat ia also important is that the linearized for.- of equations (3) (Inluding

boundary concitions) will be the same as that of equations (2) using the modified

methods of quasi!inearizatico e-xcept for some ter-s whicn-uner -ertain assump-

:ions - will approach zero as k - -, where k s :he number of iterations.

Let 7,' T and ; CT) V, b-, v e the

resul: of the k-th iteraticn with any one of the tiree mi.fied ouasilineariza-

ion methocs which hlaoens to -'e under zcn 'IeraLion.

e in7eari.a:,,n ; e;'J3tions '11) abcu W anc e s

-" c)" .

4 -4 L

- , / t -- p"' I p -

-ii

I r

A' / "

," -' '-"-L

-, 2 -XD
I 

i "

,.1 /Ij/~

, C i •

/ I

7" . "'A ci"
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Also to be considered are the following O.D.E.'s obtained by setting

u k .0 in equations (5):

P (5)

Equations ~')and 15)* are equivalent to the linearized BCproblems associated

'-ith toe t.-ree mcdi"ied quasilineartzation methods. (:t Is assumed that al! end

-ondi:o_ ns, wseil, as the as.E s nave 1ee 7:iear:ed. ) 'f :he te r~.

-were to 'ne 'ored, equations '3) anc. .2) wouLJ lead to :he same 7ouasi:1eariza-

:i:;cn alzr'it'.s as ..ould t-e 7ncd.t ec 7ethods app:ll' t.o equat'tons ":) and the

;r'4:na' toufluar., conditions.

:l '.,e assumed that _f for i ,,....; the initia: approximaticni

4s cu:.-ct o-se tothe true soito (v ,z_' to the

7?BC 7r-t lern zoosisting of ecua::cos ()and .2,then the stancoro_ 4. :-:near iza-

-.e''~ a. :lled -t t-_- 'ater :rDem will. :ooverze cuadrati~l -o t

teoattr :~. a. : toestancaro -uasIzinear:zaotzcn zt

to - c :c o ernto -,courrto:g n :oractice. :t vtll e Sho'ot -at ;:'C e r

:ertaionO~.O the:ngoe assumed abcve implies thne :onivergence to

,o~te mdifed 'uacliearization methods which use the linear

d .ferentc.a! equa t o ns a5~ rnd t he o u nd a r c ord it io n s

._et I o'(T for II. 1..... be the solutio-n o-bta-_ed

:r: ita. nea-.zat:ocn iteration emploving et,.iaticns '<an,; (5). Si i a r v

et-uat 4ons a4 ano : : 'n hot" oases the llnearlizaticns are .ibcut

~ ~~T) I". -;ut: ins must 3att.s.f .q'ia t i ns :~and

r es:c t v el: Subtracting the latter ereuations, o)ne obtains

AL

-~4L

7::.) -(~b ~ ~ (
A 4- (

whoP~ rkt eI ind*i



- (i)
The terms uk  may be written as

LLi W, W

where P. is the matrix with j-th column equal to (
yy. 1' Y Zk

)*

for j - 1,2 .

For i 1,2_. N,
z

- Ct;) Afor case of Method 1
&\ , 'T) 4 c

,n cases a:
M ethods 2 and 3A ,,(T j: A, (c 3

.. ,, [') : (o) 4n the case c: Methcd 3

Let the superscript indicate natrix transpose and define

-T _ / -(,W) -{ - ) ( ,Q -I

and / - in the case of Method I.

in the cases of Metnods 2 and 3. and ior i N are also to be

included in the vectors A and , respective>y, in case of Method 3,

or ..- ,.. will also be included. Then

where O([ ) and ?k(7) Lre .atr.ces. Clearly (E) I I in the case if Method 1.

Ir. the -. v e . A ds 2 ,r , 'has lore el.ments equal to widish -uti piv thhe

ell -omp~~:rneni: le ,ti

Sk is made up of submatrices consisting of zero matrices and the matrices

k ik ..



The linearized boundary conditions on the k-th iteration have the form
,,o) +- 6A )= #i

It is rcdsoi.abl. to assume that the matrix t is nonsingular. For later

reference it should be observed that the elements of , which multiply the

components of (1) in the vector in the above equation are all

zeros. Therefcre (.A' A ') C

Clearly

From equations (6) it follows that

S.nce

:-s ecuatlon 6, ifollows :-at

- -*6) -- "".-

Ler sgni:f the Eucliean norm of a matrix. Then, using the properties

of norms,

;ntv~rais

i; Pi ,,L

where A' and T .. Therefore,

Hence IfL~il k6)~~~~I.15 /nv~rJu'
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where c is a constant independent of k. The existence of c is predicated upon

-1Ithe boundedness of the elements of (Bk + Ck ) , Ck , and Sk within the region

of interest. The elements of Bk , C and Sk are first and second partial

derivatives except that the elements of SK contain factors At i and

i - z(T)* ). In Section V it is shown that, under certain reason-Yjk jk " ,

able abqumptions, for any > 0 it is possible to take max it. sufficientlyi

small that

for i 1,2. 1 and k 0,1,2,... (.ince z,(  is an approximation to

7i1 the above result is not surprising provided It. is chosen sufficiently

small.) Under the assur-d conditions, it is therefore possible to choose the

positive number -, wh,,ch jnains S, as a factor, as small .n magnitude

as desired zT, :hoosing to e suffic-ently small.

ias 'een assumed .at Lhe stdndard quasi.lnearization method applied

to equations (3) and (4) will converge quadratically to the true soiut:cn p..

This means that there is a rositll, contant f such that

r al' ":a!.-es of n tne interval :0, 2] provided :. s su::azentv :lose

t ner :he same assumptlcrn

Let ' be any number in the interval (0, 1). it will be shown that if Pk

4s su ficlently close to PT , then

impl7ing that the modified quisilinearization algorithms are contraction mappings.

Moreover, a k

in order to verify inequality (9), the triangle inequality will be emploved

as folows:

I -7 I"rll • I/ ,,rJ f,,,,,r;-t J P



By inequalities (7) and (8),

By means of inequality (10) it can be observed that if a modified method of

quasilinearization converges, then the convergence becomes quadratic in character

as c 0 (i.e., as max 2t. 0).
i 1-

Provided P. 5s sufficiently close to pT

6- (TIII T

7or a'! values of i in the interval '0, 1)

C LT) - j4 LT j,(T) T)7

ak~g , we o6rain

c[ ,lw - % / & - l/_ r- j1)( ()2)

:)r a-- ':a .;es -n -

3v(T) e /.)I::e ,4 -7~s,~ f '-k1

for al ";alies of Z in :0, . The latter inequality implies inequality (9)

wnic.'. 'as to be proven.

',. xaml1natlon of ',. - :

:r order or the ana.ysis of Section :V to be valid 1: must 'e argued that.

fr an': .'- 7c.li' nv er

-IK, . or- d (1 x u r s3 )

f, r i , ,. . i nd = ',, , . . provided L6he , naximum interval size i%
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Take N sufficiently large and max Lt i sufficiently small that
i

-1, -14t

for i - 1,2,..., N, where 0 will be chosen sufficiently small that inequality
0

(13) will hold. It is reasonable to assume that inequality (14) can be satisfied
because the boundary conditions imposed o,DOn "zhv) e*

. z t have been chosen in such
) * o_ i ) v

a way that z (Z) will be a constant or linear approximation to Y ). The
0 0

approximation would be expected to improve as max Lt. is decreased.i i.

Also assume that P. is sufficiently close tc PT that

-here : %ill be selected later.

Mathematical induction will be employed. Assume that it is known tna:

a'nequai'7 (1-3) is true for K = 0,,,. k and - w,2. N. It will b

shown that it is true fcr K - k + I. :t was shown in Section :V that, under the
- (.)* <) - *

given assumptions. inequality (9) would hold true as long as max Y, - z. -

Therefore

-4 2,

fr - 0,l,2 ..

LFrom IiqualitiJes (15)an (16) it follow~s that

- r " , 1. ... , 4 1. Therefore,

Now in all of tne modified methods of quasilinearizatin, , s te -. rm

- 0-1J -hit b"where U- (c) and V-/ i
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Hence

,c7ji - I[ , - -T 1
e e

where the partial derivatives are evaluated at intermediate values of the

variables. Assum'r-z the partial deri'-itives are bounded within the region of

interest, we obtain

wrierp

~zJ/ +

V~

ILJ((ti ~ ~ Ir (T. Lr )<~ ~~' 10, -1Lj  -. L)) -". ' -,0

o- ii ,/ / -xTj
/ 7r' <'

J r ' i "i
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Hence

I~~~~~~ T) T~,~r-fit-~Jl i

Vith K - k + I and K - k , the latter inequality implies the following inequalities

respectivelyb

- 17 - -

• szn~g t.he act hat 0 "i Repeated application of the above i'ecuaiiv gi'es

//-)

I _. (:7)

here re - , '

where

:nejia1:ty (17) holds for - I and i 1,2 N in order to prove

necua.ty (13k for K -k -  the numbers and - (see -neauality (15)) must be
0

:ncsen su: .c.ent l small that . 3.)"- i.e., such that

.i
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VI. Orders of Accuracy of the Modified Methods

The question arises concerning the orders of accuracy of the converged

solutions resulting from the applications of te three modified methods of

quasilinearization. An interval of length Lt will be considered. For simplici-

ty of notation it will be the first subinterval.

Define :he operators

, ;-c saL~ eries solution :-4te iff:eren ia l equations y .t , 7.1 through

. ourtn-, r~er :er..-s is
--

I,) + 9 - ?

a -0

//

-- je4 -ncai4

C Y

w ere :-.e su cr c "0" ndicates e'valuation at (t , yo. Expanding further,

4--

./ ;

'' tr jr[ , ; z
ft t~' 7.7 (i

-L3~#2 + ~ ) 3J F

C1

Ii
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Now suppose z(t) is some aporoximation to y(t) over the interval

[t , t + At]. Suppose y(t) is a solution to the differential equations
- ( 0

We will think of y(t) as the converged solution resulting from one of the modified

methods of quasilinearization. The Taylor series expansion of (4- t) as
0

deter.ined from the above differential equations will be compared to expansion

(13). Let

F, t ) Ct y
T.hen in the same manner that expansion (18) was obtained, we have

J ,,/

--ere zertai.n terms nave been cmittez ,ecau~se Of "~o~
e terms *f tle rignthand si-e cf eqarions (19) will be expressed n terms

ird ts :ervat..es. Thus

5*J , 5:jJ}
tI
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where

(t

-<I

7;CJp rlt) A
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Expansion (19) may now be written as follows:

(tj

i JJ

L

/

-f+2
.,,z_+ g:k, ¢ _ Lq) + _J-.? .],
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';e must now expand expressions such as f(t , z ) about v

Th us

- / - I'

* e

.7k

'- 5 .

-' - -'

Z L~

F, r 6 - 9

.. 4

Irr

I "

4-, 9- .
""7 <, i

A tt
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Jcy y

I t

+ ~ j31Cp

5)y

J jj cn;-5Ure -0 2 -,e eauFto--; e ,)} - - :
itt; L 7 17 1



21

Substituting into expansion (21) and rewriting the expansion through third-order

terms, we obtain

4- r

~4tL4+- +- 4 )1 ,l

where -J( herefore

tems t ,oi_ tn., te, nee r tha

6f r 'f7C 3

te j-s !n -rol en: e ncesr tn1 dehatn e e(7 7'i

J / ,c 2'"(.f

J -'t res ec t

Consequently, expaneon (22) nearly" compares to expansion (18) through

third-order t ermm.

a, •
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Hence, if y(t) is approximated by means of ))1t j LtFO tc~ 4 t
we obtain y to nearly chird-crder accuracy from modified quasilinearization.

Suppose we take : o * J as in Method 1, where

is the solution to . r, ) (,) (, Then

;e see that z - :(-t). Therefore
-0

4 ,,- - -:

ence near l nv ?r e ic zr a cy s bta ned either " r = Met:od " r "_he

-, le~

:et~ic n wnItn z~rci assu-_ng th e :atter =etc~ zonverges.

i in e - n a nd .7

- J

L I /

9; r7

- T -

2 -... ..llilt ( -- l i linT( I I I-
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In the case of Method 3, z - YO + (t - to )f so that again z - - and

= -0. Ho ever P - .Therefore, in the cases of Methods 2 and 3,

-b-

- c 3 +

where 1 and 3 0 in the cases of Methods 2 and 3 respectively.

Now suostitutng into expansion (21), we obtain

.-- . , -J r1 C

L

L
*>11

+ )c)

b~cause

- * w > - m( ; (mm4m7 m
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where +f + Y, f f a and b are constant, then
y I;

Therefore the expansion becomes

+ -6 A"(- -:.()

Itt

r

/ /2

-=I)

j IL4

-he latter expansion coupares tern-b,- term with expansion (18. This Lmplies

tnat M etnocs 2 and 3 give rise to four:h-order numerical accuracy.
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ABSTRACT

The problem is real-time guidance of an air-to-air missile engaging

an accelerating target whose velocity vector can be predicted as a function

of time. A Zermelo-type model, consisting of the nonlinear translational

equations of motion, is employed. it is assumed that the velocity magnitude

of the missile is a known function of time on each guidance cycle. The per-

formance index is a weighted sum oi squares of the miss-distance and the

time-rates-cf-change, uA and uE.of the flight path angles. It is to be

min'-ized with respect to uA(t), UE(t), and the final tit-e. A mocified

quasilinearization method is used to solve the two-point boundary-condition

problem a.sociated with the necessary conditions of optimality. it is

applied to several missile engagemetts and is shown to be considerably

more accurate over a single guidance cycle than a method based upon the

linearized translational equations of motion.

Research sponsored by the Air Force Office of Scientific Research, Air

Force Systems Command, USAF, under Grant No. AFOSR 78-3641 - 'he United

States Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation hereon.
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I. INTRODUCTION

There is an acknowledged gap between the theory and the application

of nonlinear optimal control theory - especially in the case of real-time

applications. Since the necessary conditions of optimality frequently

take the form of a two-point boundary-condition problem, the quasilineari-

I
zation (or generalized Newton-Raphson) method comes to mind because of its

favorable convergence properties. However, there are difficulties asso-

ciated with the latter method because of the need to solve sequences of

liear two-point boundarv-value problems: One must deal with the problem

storing intermediate solutions or must numerically integrate a large

numner if diffcrential equations. Methods based upin parameterization of

the control and use of nonlinear programming bring forth similar problem.

Modified quasilinearization methods2 have been developed in which

tne problems of storage and numerical integration have been reduced, espe-

:or problems in which nigh-order accuracy; in the numerical integra-

tion is uncalled for. As a matter of fact, in most real-time applications

i s unnecessary and unwise to spend computer time integrating with high-

arder accuracy when the physical constants can not be determined with com-

parable accuracy.

:n tne modified quasilinearizatiun method which is applied in this

paper, the solutious to the differential equations are divided into several

,ubarcs. :ntermediate approximate solutions are taken to be constant over

each subarc, thereby permitting the linearized differential equations to

be integra~ed in closed form over each subarc in the Lase of the air-o-

lir I ri,. . It -an be .irgtwd 2 that this quasilinearization

method will converge under certain assumptions and that the converged solu-

tion will have nearly third-order accuracy in the sense that it is equiva-

lent to integrating the differential equations with an approximate third-
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order formula of numerical integration.

The development of microprocessor technology and improvements in

estimation methods now make i.t feasible to incorporate nonlinear real-tme

guidance algorithms, such as the one developed in this paper, into the con-

trol systems of air-to-air missiles.

The new guidance method is expected to lead to smaller miss-distances

than the commonly used proportional navigation method which is non-optimal

for the cases of accelerating targets and nonlinear equations of motion.

3
:t should be mentioned that there is a system of finite, nonlinear

equations, involving elliptic integrals, whose solution provides h opti-

mum solution to the air-to-air missile problems of the type considered in

this paper. However, the method is restricted to t'.o dimensions and con-

stant missile velocity ma4nituac. it also requires a good initial approxi-

mation to the solution.

Models if tne physical proble, sLwiar to that to he employed in

tnis paper, 7ave Seen "sed in the :ast; for example, one paper makes use

of a near expansion about a solution to a simple linear control problem

in order to obtain an approximate soIntion to the nonlinear equations.

The latter paper makes use of several simplifying assumptions such as

constant closing rate.

W1 7HE MODE_

7he vwAne-fixed 2oordinate system to be empicyed is depicted in

Figure 1. The angles, I and j., define the direction of the instantan-

A m
eous missile velocity¢ vector V
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The equations of relative motion of the target and missile are

-1 -.1J

R = VT(t) - VM (t)p(y) (1)

where R(t) is the line-of-sight vector from the missile to the target, VT (t)

i.s the predicted velocity vector of the target, V (t) is the velocity mag-

nitude of the missile,

A r os Vr  Cos Y7

Y = , =!COS YE sin YAY A 1 E A

-sin E

Here VM,(t) is assumed to be a known function of time. 11wever, it may be

adiusted from one guidance cycle to the next. The initial values, " and
0

. , and R are assumed :j be given.

The zontrol is u - . wnicn may be bounded accord.ng to tne inequaliites

=n - max

wrnere tC A

1:1a r:rance cex s

Rt. 7 ".(: ! dt

wnere ",;(t) is a given continuous positive-definite weighting matrix and

. is a given positive constant. The index J is to be minimized with respect

to -(t) and the final time, t..

NECESSARY CONDITIONS OF OPT2AL'TY

I s necessar:: that the ' amiitonian

_T -T-T--

be a minimum with respect t- u at each instant of time. Therefore, when

u is not on a boundary, 3HI;u - 0 so that
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u -W 3

The adjoint equations are

= VPy (2)

where A and n are the adjoint variables and pe is the partial derivative

matri JO y

The :ransversaiity conditions are

R (t_. (t_...' - .t_ free)

Now _, silor i te .o n wn:c. i' :i is: a nouncarl". :.a ter

arg,ments indizte t:at, L ,i :n a boundarv, it :s likeiy to ne curing

the rinttia! port==n )* t-e flizt. Recall that H* = - Must

e . es:- . A- Anv g ven ::e t'e surface

: a.'ee C..i r 1 >, ?s.t: :e :.:: . .et : = -1 e

.< - I. e n u 4 - .

tw min iMa

e ten u 1 (3)" L ..'./,.I, i i M1i.11

nadx 7"ax

inC e : ,C- are : n 2A,;, t ,n ri hence) u wil' be :ontinuous.

At astt, or :wo-o :iensionai rcblems with "E 'J, one

', ' e :e, e ; to varv menoton zai l.v wtth respectA

- time. Th:s po':nt w:.. -w arzued ,more precisely as follows. 1! tF is

;r 'e n c , .t , * . r efre ore, if V (t) is r e
r F F i jg

in comparison to V.(t,) , equations (I) imply p[,(tF)1 R(t ) 0 i.e.
, F F F

the oprizai flight path of tne missiie is approximately perpendicular to

he line-f-Aight ve,'r .it the final time. Now suppose that at an in-
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stant, UA( ) - 0 for some T in the intervil (o,tF). Therefore, (T) - 0

and equations 2) imply p [ YA(7)] " (tF F 0. However, p is perpendicular
A

Po so that pfY (7)] is parallel to (tF and hence nearly perpendicular
A

to p''A (tF)j. This situation can not be possible if "'A varies by less than

90 over the :ourse of the Ilight. Consequently, in such a case it can not

be :rue t.hat A (-, - I). l:oiws that uA is monotonic and, since u(t F ) - 0,

u zan not zhanre sign. Therefore, fA is alsc monotonic under the assumed

i niOijS.

-:e 7iecesarv L-,nOLt-ons consit of the ifferential

72

•e . - ,

=F. 7 't .4,' V " -. ~ :2

7- '. i.

IV. MODIFID ,t.A iL:NEAR!ZAT:ON Mh':IOD

A zouification of the iuasilineartzation method has Leen developed

m m n m~e l~, -
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by the author . The method will now be described briefly.

Consider the differential equations

y - (t) (5)

with some associated boundary conditions applying at times t and tF '

Here y signifies a vector of n components. The time interval [* ,t is

divided into subintervals Lti ,'t where i - 1,2 ..... ,N and t t. The

...earized equations are

y = +(t ,v ) + (t ',y -' )
*s v .5 "s

rr- - v t) is ar. apprx4Ate ioiutin to the :wc-pocnt oundrv-conc:

7?BC en. e ;sua- 7casI. earczat'cn ne cc calls for -ne so"l1c

3e C :rzoem associatec :i equations he. Te scution vs :ne

new i::rzxizatcon v o De csec >n ec'iations : ; :cr tne next iterat.nc

re solut ion to the TBC problem during each iteration calls for several

-n.egrati=ns -f ec uti:ns n or :r e soltion -3 a large system

::.i:e c:: ere.ce ,'coaz:ans.

.r.:e 7101.O: ret:xN -c e . ileC In t . aoer, the soiutcn

-ne PBC prob.em is otainea at ::7es t ,-.,....tN. Then one lets

+ y

:ne - =e -nterval far .- A . . s we wil2 see, te -esuAl.ng

:etrd cr-.eres in :ne - s'e enccunters to -e :ns-cerea. Morecver,

Knc n :,,l he rurer.c . ccuric: at the c n ~', rged so uton Is near y

Over -c,:: h,.nrerval, in eluations b, wil- be constant. On> v

v gt. ,...,: ; omust re stored after each iterat4,n. Moreover, the

integration of equations '6) over each interval has been simplified. In

fact, it can often be carried out In closed form.

Assume that, with appropriate sub~titutions. equations (5) take 4
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an equivalent form

y- f(y) + g(t)

Then on each iteration equations (6) will take the forn

y Aiy + bi(t) (7)

on the i-th slbarc, where A, is a constant matrix. It can be shown that

Y~t +(8)

:jr some matr~x 3 and some vector * Let = I and M. = M B

...... . it -an .sil' be shown thit

7t)= M ?( '- i 7

Therefcre, using :he latter expression which gives y(t-) in terms of y(t),
0

7ne :an write a!- tne bouncary :zcnditlons in terms of v(t One determines

- ...n;rser msatis: ",e nounuary-: ConcOtlcns anc empoVs ecuatclsns

n -rcer t" Ot. 0 V(t, V .... ..

-ere we nave assmec is given, However, it is possibleto adjust

,n an "iuts.de 1oop" as will ne explained later.

.The ;, :a .rneoria:I~n metnou s-in alsc be modfied s -ollows: Rathler

-nan acceDtn, tne soiution to the .inearIzed equaitions as tne new adproxi Ate

,. i"new I = -. 's ' *t.) + - (aid '

Sr -:,,_...,, s Is a pos1ti,.e constant shosen such that the maxI-

.. .,,,e r, w " net he ' ' r--" !.n 'r usi'" yh , is .ina. 'Zus to

'le damping metnh(od sometimes ised Ln connection with the Newton-Raphsor

method used to solve a system of nonlinear. finite equations. The damping

tecoinique has enabled the quasilinearizatior method to converge in some
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cases in the air-to-dir missile problem when it would riot have converged

otherwise. (In some cases it might be desirable to take a > 1, but we have

not done so.)

Now we will apply the modified quasilinearization method to the air-

to-air missile problem. Although it is applicable to the three-dimensional

problem, it wil! be applied herein only to the two-dimensional problem with
* 2 1 iF 2

- . Let -f . Take J - k.R(t ) + - o dt, where u - y. Equa-

-:ons (4) red,_-e to :he equati1ns

-- V

R -(9)

v'nero cos ,sin ,) I3nd - n)rer tc olace :he equations in the form

quatzns"uce : z erential equation .

.he : earizez equations zn the i-th iubarc are

R - V_ p , V p,- ' ) .,.

I =l

;hre il. ;,nt ties. :. :he suhscript i are constant over the i-th sub-

inter'a . Te quantity p. , for example.stands for p ( . Thus the

subscript i signifies evaluation on the approximate solution y s on the

i-th interval.



10

Letting r* .-V Mip .. a, V M.p. A.X, and taking advantage of the

knowledge that A is a constant and p = -p, the system (10) can be written

as

CL 0 01 t)]+vM

R - i QJR - VM (")P+Vft:)-i

* e.,flt:~ ~t~suointerval

y- A~y + bh(t)

.et: '-= et cs. --os(:I'.At), sn. si(.t) and

-ne -ase 2.Let :-s -osn(, t;, Sn. -sinn>.1h 3 Cn

' e efe -w -Ire a ssun A :st ar. ~nterva' SIze 't. .et

.3

-- S .~ tn .- . Ten r. ~s sma t ;. necessar: to

ea.ae an..,a c -n eans ;er,-es. For examrnole, w-en

-~ ~ ~ ~~~~~~ t - rr, v utr2tj 2 ne -rj a.nutr-

n e ex : ~s .s . in,: ea-,;ate s s sng tne n:nteser .es

tn -:r~2A-atlon LS .s)snd n: eacn' subinter-.a.

- - - .) t t and .. lr .. .

:t :a-, '-e shewn fusilng Lap~ace transfcrs or matrix eigenvalues and

t~ L)

wheret
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Cs V

P* -,C i  i i[V ii, i V21 ]

S2i -i3i

• - , ., - s- 5. . -(L . - ",

i j 2i 1- i

I .-.. y .'. )n +Lt( -; /)

3 -a f 31 t

-where

'1 LVM V M 1-. Ti 2M

,;e "- -i 4 :e rS the genera*. ;ormulation '-e -wrtt.en in

erms Dr 'x' matr: :es as

Let Y_. = " and ,. - 2. Therefore

- N - N*3 -

'r - a;-,... .hen ne aprximace sc n ; *1 -e [inearizet

, . t _ ft . , . - ft

uF' - 1O " ('"
N,,1ft ! *ft

= u(O) + + )

In order to solve the two-point boundary-value problem, one must set

u' ) 0, K- k(tF), md must golve the above svstem (of linear equations)
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for u(O) and R(t F). Then one calculates the values of y, u, and R at other

times using equations (11).

Here it has been assumed that tF is given. However, in practice we

have stax ed with an initial approximation to tF and, after the iteration

with quasilinearization seems to have stabilized somewhat, we have corrected

t. after each iteration using the condition g(t.) - 0, where g R(r ) R(t
r F 7(j

We let

(New) (Old) - (Old) .(Old)
- g(tF ,/g(%

with being computed only approximately.

No bouncs have been placed uoon u in the numerical examples to be

Dresented. nowever, tne procecure can be extended in order to inciuce zne

-ase D: Douncec a. *ne suintervals may be ad'usted ('using the -unction

zondictons 3) in a manner similar to that used to predict t_ from g)

in orDer that j -dill not be pounded over only Dart o; an interval. On each

inte-va. on s s a noundar"v, the second of euatlons (9) wo be

re _ace,: - . Cuato-ns U, etc. would have to De modifico accorz-

V. A LNEAR .METHOD

.cr tne SaKe Df comparison, we will develop a rather elaborate linear

method for optimizing the air-to-air missile prroblem.

Let 7 It) '- an in:tal approximation to a soiuticn, where (t) -7,
S S Si

- cnstant n tne i-i. subnter.2' The linearization ot equations () on

the i-th interval is

R V Tt) - (r)P - M(t)P s

where ., ,,.. ,, - - , p 0 and p p'h,")" The idea

is to choose u 'f which minimizes
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1 - 12 1 'F TJ- kI (t) + 7 f,, (Ys+u ) W(t)(f +u) dt
F 2S

A development similar to the derivation of the necessary conditions

of optimality of the nonlinear problem gives the necessary conditions

3 kV Mp' R(tr)

Mvst FF M 0s

Clearly

k( V P dt (t )

4 9

0 "

'er e

4t d

"s

There:ore

tr -t -T " tR ( t F ) " .- F "-" T + -s
V M"o" )dt -. 'F V p v dt

00- ' r M > C( ~.tF)dt ] R(t v)

where

- - + :- -' v "
S + R V p (y -)]dt

0 t s Ms 1; 0

so that

t[I +k ;0 V py C(t. tF)dt] R(tF) S

The latzer linear equations must be solved for R(t ) in order to obtain the

iiF
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desired solution. This is a three-dimensional formulation and is based on

the assumption that tF is given. Observe that VM, VT' and W may be given

functions of time.

VI. NUMERICAL RESULTS

This section contains numerical results for the two-dimensional en-

counters now to be described. At the initial time, to  0, the missile

is located at the origin and the target is 914.402 meters (3000 ft) away

on the positive x-axis. The missile velocity magnitude is

V . 217.7!2 t + 295.549 m/sec.

There are no bounds upon '. The target makes a 9g turn. its velocity mag-

ninuse is V.. - 295.352 m/sec. Specifically,

7-= .V os(.t), VT V sin(,t)

anere - ...1,1,sec. -e will consider 'our cases, corresponding to

-30 A . 3v ;r:a it 4as founc that the weignting factor

K .30012t9 rao'-sec,= gives reasonable results in all four cases.

A starting value cf to 2 seconds was used in all cases.

No full simulation of the guidance methods has been carried out.

it is realized that a final choice of methoo for a particular missile

must depend upon the results of a complete simulation of a wide range of

encounters.

The initial (starting) solution for both the linear and quasilinta-

guidance methoos makes use of the knowledge that ";(tF  0 and that

is monotone. It is assumed that 7 constant and that Y(tF) is approxi-

mately equal to the angle between the positive x-axis and a line connect-

ing the origin to the position of the target at time t.F. This angle was

taken to be 400 in all cases. The constant is chosen such that Y(tF ) a 40
°.
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In most cases this initial solution gives a value for y(t) which is rather

close tu that obtained from the converged quasilinearization method. In

all four cases the latter method converged with N - 15 when it was started

with the solution just described.

Figures 2 and 3 depict the initial solution and the converged quasi-

l ieaizL.,.. ,:. the :::'s of " 0 - , qO° . "'u- orher two cases
0 0

are similar. A value of N - 15 was employed. The final time tF as well

as v(t) converged.

Table I shows the effect of the number N of subintervals for the case

of 'f 00 as an example. There is little change in Y(0) and R(t ) as N

increases. However, fewer iterations are required as N increases. It has

oeen found in ocher cases that there is a high risk of nonconvergence when

N < '5. The iterations were :-arried out until . (t. and R,(t-) seemed

to h-ave converged within about one meter. Calculations, however, were

:arried out in terms of feec, radlans, and seconds.

-.abLe I. Quas iinearization re3u.ts for - 0

N i 1O 15 20

_(0) (deg/sec) 41.6 42.9 43.6 43.6

R,(t-) (meters) - -2.5 .2.6 -3.3

R.(t_) (meters) 5.5 . 5.8 5.b

Nc. :teratIlcns 19 15 iI 11
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Table 2. i(0) (deg/sec), cQmparison of linear and quasilinear methods

y (deg) -30 0 4,-0 900

Linear guidance 54.5 36.3 -8.7 -48.2

Initial solution 70.0 40.0 -5.0 -50.0

[.i .I- i- tion) 90.7 45.3 -10.1 -68.8

Quasi. (10th iteration) 78.2 43.7 -11.2 -56.1

Quasi. (converged) 72.1 43.6 -11.2 -51.3

n Table 2 the in _: and quasilirnear met 'ods with N - 15 are compared

for all four oases. The linear guidance method is started with the same

solution Ts the quasilinearization xet.'d. -. sculd be oserved that the

value :(t ) of the guidance coan obtained! fr-m the linear method differ0

acpreciablv frcm that of e quasilinearizaticn method which gives the optizal

so' 4-on t the non'lnear translational equations cr motion.

it was :cund tnac when k was increased to .30015. tne quasilinearization

algcrithm did not usually converge. It can be seen that the value .0000i29 6

used for k led to miss-distances which may be a bit large for some purjoses.

If one wishes to decrease the miss-distance it is possible to increase k

gradually during the iteration.

A constant subinterval size -t was used during each iteration. However,

since v is much larger at the beginning of the flight than at the end, the

number of intervals required can be reduced if the interval size is variabie.

As a ruIe of thumb, the subinterval should be sufficiently small that f does

not var' by more than i0° over the intfrval.

An alternate meth c :,or .omputing tF would be to solve tor it simultJo-

eously with "(t0) and %, rather than treating t separately. This alternate
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way has not been studied.
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