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Abstract of Technical Progress

In earlier work the necessary conditions of optimality were derived for a
problem of minimum miss-distance guidance of ajir-to-air missiles. The model was
based upon ncnlinear translational equations of moticn. The sclution of the
necessary conditions requires a solution of a two-point boundary-condition problem.
Two zethods proposed for the latter solution, an elliptic integral wethod and a
series technique, were studied and both methods were rejected in favor of a pro-
cedure based upon the quasilinearization method. The latter requires fewer assump-
tions and exhibits excellent convergence properties.

In order to remove the numerical iategration problem anag to siapiifv the linear
two-poiat bdoundary-condition problem asscciated with quasilinearization, the regular
method was modified, three alternative rechniques being derived. and a technical
reporz was writzen which discusses the convergence properties and accuracy of the

nree modifiled guasilinearization methods applied to two-point beoundarv-ceonditicn

rr

prctlex=s in general. BN
One of the latter methods was applied tc cthe missile guidance problem and com-

pared to a linear method of guidance. The ccmparison was favorable in the cuses of

missile encounters considered. A second technical report was prepared which des-

crinbes the application and the numerical results.
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Technical Report

The principal objective was the development of an optimal guidance method
fo: air-to-air missiles, The proposed model was based upon nonlinear translatiomal
equations of motion and a quadratic performance index. Availability of a predicted
time-history of the target's position was assumxd.

In an earlier investigation the necessary conditions of optimality were derived
and two methods were proposed for solving these conditions. They were: An elliptic
integral method and a series method. These were to be placed in a form suitable for
compurition and applied to the solution of the necessary conditions, which reduce to
a two-point boundary-condition (TP3C) problem associated with a system of nonlinear
ordinary diiferential equations. As far as possible the following extensions (asong
others) to the elliptic integral aald series methods were to be made:

fa) Introduction of variable missile velocity magnitude;

(b) Extemsion into three dimensions;

fz) Al.owance for variations of more than 90: in the flight direction angles:

(d; Inciusion of the case of control angles which do not vary zonotonically

with time;

(e) Inclusion of an improved method for calculating time-to-go;

(£) Placing bounds upon the control variables.

After a study of the methods based upon elliptic integrals and series, it was

decided that a third meiLhod based upon quasilinearization (or the generalized Nr rton-

Raphson method) would be a more powerful computational device (as far as numerical

convergence to 3 solution to the TPBC problem is concerned) and a more flexible tool
in regard toc the implementation of extensions (a) - (£) given above. On consulting
with the Frogram Manager, it was decided that the quasilinearication method would be

used rather than the methods originally proposed for study.

e,
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Hcwever, the usual quasilinearization algorithm i{s involved, computationally
speaking, because it requires many numarical integrations of systems of differential
equations and the solution of many linear TPBC problems. With this in mind the
following enclosed technical report was prepared:

{1] "™Modified Methods of Quasilinearization'.

The latter report develops modified methods of quasilinearization (n which numerical
integration is unnecessary and in which the linear TPBC problems to be solved are
reduced in number. The modified quasilinearization methods are applicable to any
TPBC problem. A shortened version of the ra2port has been submitted for possible

publication in the S5IAM Journal of Numerical Analvsis.

One oi the modified merhods of guasilinearization was appiied o the air-to—-air
missile problem, the details being given in the second enclosed technical repovt:

[23 "A Guidance Method for Air-to-Air

Missiles Using CQuasilinearization'

The latter report contains a development of all pertinent eguations in the case
of encounters in three-dimensional space. It shows hew the contrci variables zav
be sounded and glves an argument fin the case cf encounters in two-dizmensional space;
for monotonic variation of the control variable. The report then describes
aumerical simulations of <everal two-dimensional missile-target encounters. The
modified method of quasilinearization is compared to a linear guidance method, the
former method providing more accurate commands than the linear method. The new
method allows for variable missle velocity magnitude, determines time-to-go, and
peraits large changes in the flight direction angles. However, the largest change
which has been simulated ic 90°. The method converged to the optimal solution to
the nonlinear guidance probiem in all encounters considered.

The only technical investigator involved in this study has been Prefessor J. F,
Andrus, Ph.D. in Mathematics, University of Florida, June 1958. His thesis was
cotitled "Partially Ordered, Ideal Preserving Groups'". He is also author of a

number of papers in numerical analysis, optimal control, and other areas of applied

mathematics.
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Modified Quasilinearization Methods

by

J. F. Andrus
Department of MathematiIcs
University of New Orleans

I. Introduction
The quasilinearization (or generalized Newton - Raphson) method {2]
has proven to be a highly effective iterative method for the numerical solution
of manv two—-point bSoundarv-conditicn (TPBC) problems. Frequently only a rougn
approximation is required to start the convergence, and - when convergence takes

place - ir is quadratic :in character.

nere are 3.so0 several difficulties associ:ted with the method. Thev are:

(a) The differentia. equations aust bde iinearized. This zalls for cifferentiaczion
27 the righthang cilos i che differential equations.

‘b Afzer each iteration the approximate sclution zmust be saved for use in the
next iteration. This presents an awkward interpolation problem. Alternative-

lv, e=ach soluticn mav bSe regenerated by means of integration during all

“:, During 2acn lteration tne linear differeatiil equaticns must oe Iintegrated

()

a

c

(isuallv numericailv) several -imes in order to obtain the sclution

']

rn

linear two-point Soundarv-value (TPBV) protlem. Sometimes finite difference
techniques are used instead to solve the TPBV problem. The solution is

obtained »v solving a large system cf linear algebraic equations.

The present paper contains the development of modified quasilinearization
mernods in wnizn the croblems (n izems (bjand {c; have heen :onsideradly reduced.
This is achieved by dividing the solutions intoc subarcs and, after each lteraticn.
using the new approxizate solution to obtain constant or linear appreximations

nver each sudintervai. The eguaticns are ltnearized about the constant or linear

approximations, therebv alleviating the problems of storage and i{nterpolation.

Moreover, one can frequently solve the linear differential equations in
rerms of definite integrals or evea in closed form over each subinterval. In

such cases the prcobiem f aumerical lategration is constderably reduced.
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Since the final values of the dependent variables on each subinterval can
be expressed linearly in terms of the unknown initial values, the solutions to
the complete linear TPBV problem can be easily obtained because the Iinal values

of the dependent variables can be expressed linearly in terms
' h

of the unknown initial values, which can then »e determined 5v sc¢lving a svstenm

(usuallv small) of linear algebraic equations. (See [1] for an example.)

It is argued that-under some reasonable assumptions- the modified methods

of guasilinearization will ceonverge. Moreover, convergence >eccmes quadratic

in nature as :he maxizum subinterval size is decreased. In order to prove

ccnvergence it is necessary that the maxizmum interval size be chosen sufficiertlivw

small., It Is 3lso oroven that the :onverged aprroximate scolutions *c the -~rizirnal
2quazions are o nearlv tnird-orcder iccuracv CITim the stanactelint

27 tumer:irii olnrtegration) In the C3se DI the C©onsilant rerr2senratiins oo

5cliticns cver 3ufdrcs and 2f Yourth-order accuracy in Tne Jases f oThe L

Ternocs.

Jne wouLd ASK nNoOw “he Jonstant solutiors, L{or example, could Lesdd T nearly
third-orier 1:1Ccuracy.  The Inswer suTInterval
tnta “«—Tn o lteratlen
s /T T AL ~nT I°r
LT Teriziin LIsell I

I1. The Jrasilinearization Metnod
“ins. fer tre TRPIC oroiblem consisting of the Jifferential equations
PSS L
ia8 _ame wrunnarv tonditicns applving i1t the initial and finai poxnts..:‘,?‘g and
Here T oane ." signify “gauon vectors with o ocomporents, and C' -~ u}v:'.‘t.. ) )

Let ¢k’:, e the x-th approxirat.on to the soluticn o <he TP3C croblem.

For thae fksli-rn ogterac, tne standard quasilineariczation algorithm determines
T Ll T . o, e Lo argeed arek e nersting ottt danear.ead
ceundary conciticns 4and the Linedr ditferential equations
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S
vhere fy is an n x n matrix of first partial derivatives.
III. Modified Quasilinearization Methods

Three modifiea methods of cuasilinearization will be consicered. For
siaplicity it will De assumed that :3 and t_ are fixed. This situation can
alwavs be accomplished bv effecting a change in the “ndependent variable. The

ub

interval (% ,:., will be divided into N subintervails

)

>
where S The usual method of gquasilinearization is 7c Se modified is

PN - . s . S N [ L. . R .
follows: After rhe solution T(r) o the linear TPREV problexm has been :-bhtainec

‘rem the x-th ireraction, the 2.Z.Z.'s 1) are lincarized !
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Seorosoa 1,200, N0 Thus, over each sudinterwval, the depencent variiatles ire

Befcre 2isrussing the order 2I accuracy ! sne tnree metncds, Ihe fonvelzence
) . :34‘- PIKY f(;? = .. S e
.- .. s . Apvaro P
as «x 0T Joun Lt , 1s we.. as the cconvergence ~Y IThu
- -
sclutions v t,, wiis ne lonsidered.

7. Cenverpence Properties

There 15 qc 1ssurance st this pofnt that the moditied metheds of tuasilinedriza-

tion will corverge. An example problem, to which Method 1 has been applied, is

presented in Reference 1] in full detall. In the latter example convergence is




-
4
demonstrated. N the convergence problem will be discussed from a theorerical
point of viea The approach will be to transform modified quasilinearization
probiems ., sStanddrd problems which are identical Iin every respect to the
modilied orcblems exceprt for certaln terms which apprcach zers as tne itera-
cicn proceeds.,
The prudiems will bde converted to standard TPBC problems by referencing
ill subintervals o a s:ingle ipterval [J,1j. 7o do so, let it =t -z, _ and
) FA/ =
) =4ar LL_"(_.I.]C;,“)
for vo= I,1,...,N, where { wvaries from J to 1l anl z =t . ~T.t »:n the i-th
. AL, o Ny - . - Y S ail
sucinterva. et v oo osigniny o owlro o+ LT Let T = Iy 2T.
- a0 . L, . s . - -
Then P T, since dt 4T = it Thus The 2.2.Z.73 1. have
TR T o5t n T
J\‘ s \
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' e o Metnods ooand

) in Method 3
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In rhe case of Method l the following boundary conditions will be imposed:
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As N » @ and mix dt, = 0, the sclutions te¢ *he TPBC problem consisting

of equations (3) ancd (4) will approach the solution to the TPBC problem associatea

. - . —.’LI:.— _.L(")
with 2quaticms (I, because 3 7(T) —?&f (7).
S

what is also iuportant is that the linearized form of equaticns (3) (in-luding
boundarv conaitions) will be the same as that of equations (2) using the modiiied
methods of juasilineari:cation except Ifor some terzs whicn—under .erzain assump-
tions — will approach zeruv as « -~ @, where x is the number of iterations.

- ® ,3‘(./!r X
. - ’ — -~ - / 1
Let ],(' (T) and Tk (7T) /0= /, ;1, > , v ) be the

resu.: of the k—-th iteraticn with anv one of the taree m7d.fied quasilineariza-

7100 mertnhocs which happens to De under Ions?leracticn.

: - : ‘a . = (¥ :,?"l./I - o
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Also to be considered are the following 0.D.E.'s obtained by setting
2d) @ . )
u 0 in equations (5):

i“) 7 u) ]:J )+ :7 ( T, “')')(/-'15/7;(6)5)

?(L): o of ;—‘h) - =
re '/ (5)*

.\f(;}:j(uéq_}j(l)k) '_?mj(,[ u.)v}(;rc) Z{> L}V

———

1 <y / -

Zquations /%) and (3)* are equivalent to the linearized TPBC problems associated

with *he three medified guasilinearization metheds. (It is assumed that all end
A(:)
zondizions, is well as the 9.D.Z.'s have teen linearized.) If che =, rerns
<

were zo de izncred, eguations {(2) ancd (4) would lead £o :the same guasilineariza-
tign 3igoriinms as would the modified methods applied Io equaticns () and the

srigzinal Soundarv conditions.

It will he assumed that I for 1 = L,l,...,5 the initial approximaticn
LIS 1) 210
‘ P . . e L2 : . .
= , 2 ) is sufficiently close to the true solution (v, , 2.°7) o the

3
TP3C -raslem consisting of equaticons (3) and (4), then the standard fuasilineariza-

tizn terhad a,nlled to the latter orodlem will fonverge guadratizally o

c will be showm that - Licer
iirizns - the convergzence assumed above implies the Iocnvergence 2

the modified quasilinearization methods which use the linear

ations (5)* and the “oundarw comditions (4).

= 200} - 3 -
Lex (’;A.NL"UJ }A’» (‘\)) for ¢+ = 1,2,....N be the soluticn sbtained
Z '

from a fuastilinearizaticon fteraticn empleving eguatiens (4 and f3).  Similarly
S0 ENEEL I

- ) LI a PR 5 - .
<! ST PO T w1.. Te che solution 2dbtalned us:iaz
\’1'9“ e, Jrn ' e . . '
aguations ‘4, ane ‘i ;%.  [In Soth cases the lirearizatlcns are abcut
> ¥ YL e .- . . _ - .
e A ) ., The solutions Must satisfy equaticns (3) and (3%,

s Lyl
rescectively. Subtracting the latter ecuations, osne obtains
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Af = ¢
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The terms T}‘El) may be written as
! lt 3(1- fl-“')
LLR jlfl A
where &K is the matrix with j-th column equai to E;i) (y}ii)* _ zéi)*)

-
for § = 1,2,...,N.

For {1 = 1,2,...,N

T
—-(¢) Y / () Sy 4
'y = (o) r )J/ [
A] n( AJ Rrti vs j/?" ;/‘,

‘u
A (k) = AT for case of Method 1
Jkr /\m

2y = 13 - TA] (¢)
/p,l /Ph JRE

.

in cases cf

=) YW Metheds . and 3
A (Tz A7 ) }
Rty SR

L =) i)
BN (7) = t-\W ”(0) in the case cf Methed 3

et the superscript [ indicate matrixk transpose and cdeline
_ ( ] (T )T ~iA) T
- v o 2 4 Y o o o )

fg R, 1\'/’1 Y, ;/9 , ;p

4

=T )T

-, a
and A; / f in the case of Method 1.
R Ll aile

In the cases of Metnods 2 and 3, .;n and Jﬁ

, respectivelw

-~

for L = L,2,...,N are also to be

S8/

tncluded in the vectors /',q and fn In case of Method 3, W

N will also be included, Then

A;:RH(T) = QW)AE,SD) + f 5 ( - /ﬁ )v‘. (6)

whera 7(T ) and '-;b('t) ire matr.ces. Clearly WTy = 1

for 3 o= 1,2,...

in the case ~f Method 1.

In the cases =f Metaads I oand 3, '} has sore elements equal to T which Tultipiv the
. .
=l . . -
1 i) tomponentsy ! (C) dtherwise ) = The matrix
]

)
Sk {s made up of submatrices consisting of zero matrices and the matrices R

p




The linearized boundary conditions on the k-th iteration have the form
- - -
, £ (0) + (1) =
'gR For o) Ck Pe4\ J dp A .
It is reasounabl: to assume that the matrix ﬁﬂf‘ék i{s nonsingular. For later

reference it should be observed that the elements of C;‘{ , which nultiply the

components of } (i) in the vector (1) in the above equation are all
BN .
zeros. Therefcre Cp A/v o) =~ &)&A ‘el
£ Kt kIR
Clearly

) =2
B Agﬂ(o/ + & A[M‘U c

From equations (6) it follows that

J -

-~

BN - v 4 o
Z?{A/i”“’) - Ck M)Alé (c) ’-./ (}}.ﬂ /,; Ju f[]_o
Since 5,9‘3-‘/’:"“’/ = C, /.m'

-
.3} (n)..-(fj’ rC,) <, (/4,,‘/?# Jir

From equation (4) it follows that

‘ al R ’
Al ey = D ,}': i - s T e E . _7 'R )
A (- QB *)(m' Se b/ ) ./ Slp e
Ry > P

Let c signiiv the EZuclidean norm of a matrix. Then, using the properrties
~f norzs,

i 'ﬂj v’T
' 4 N - / - > 4 / A Ay ~
P <|f Gl B, eIl (b -5 A TH S - T
i/fm / I 3 Tl 1), k’/ /54’/,(’*»,/}/"1L,;/'?/{}n/)/?)/“

2w the mean valle thecrem Sor intekrals,

( ,3}.;(:0’ £ ”Q(r) {/:g[(gktck)"u. ['ng(;f)[ /5;'(’%')~};<‘Tf)”r’[’5;:(t')[/;(‘.}.n-/'J;:ru)”

i < T <! d ceTY <
where o= = an O £ . Therefore,

'Af.’,.,“l"f)lﬁLIIG(TJH'U(kaC ) li-ilc “*1] “5 ” ) ma";; ('t’)f(‘r'/'
|af il e el B~ o)

_“

Hence




10

where ¢ is a constant independent of k. The existence of ¢ is predicated upon
the boundedness of the elements of (Bk + Ck)-l » G, » and S, within the region

of interest. The elements of Bk . Ck, and Sk are first and second partial

derivatives except that the elements of S contain factors Ati and

(i)* .
‘y_;) T - (1) (T){. In Section V it is shown that, under certain reason-
] *
able a><umpc1ons, for any 3 > 0 it is possible to take max A:i sufficiently
1
smali that _;{L)y ay

] /a'? "n)em
(i)*

for i = 1,2,...,N and k = 0,1,2,... . (Gince z. {s an approximation to

iy . I o . . ..
) , the above result is not surprising provided ,ci is chosen sufficiently

small.) Under the assurced conditions, it is therefore possiblie to choose the

positive numper :, which contalns 5. 3s a factor, as small .n Taznitude
* ;
as desired ov choosing = t2 le Su

3
&

re,

ficiently small.

I: has been assumeu :at ihe standard quasi.ineadarization method applied
: (4 c1 Y : PR f . N . -
to equations (3) and (4) will converge quadratically to the itrue soluticn p_

This means that chere is a gositiv. contant f such that

V5 T - f<;!/b T) = p_ m[ .

1
‘ “x

TRt
sroall vwalues of T wn the interval [0, 1], provided ;

tC 2. . -nder the same assumption |,

1)1; ('t)—/T,(fr)l < I/L.’(T; -F/—r)/

(2T ’ ) » T

Let 2 be anv number in the interwval (0, l)}. It will be shown that if ;:
is surficientlv close %o Pr oo then

W?’f'(fr,'_ a(Tlf‘G MIF:‘(’“;IT)/
T e PR TS, r i9)

implying that the modified quisilinearization algorithms are contraction marpings.

a* > .
Morecver, . * 2. a5 kK <+ =
“

In srder to verify inequaiity (9), the triangle i{nequaifty will be emploved

as follows:

-;V

| |
v el el i
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By inequalities (7) and (8),

‘“'(T 4:*‘{)]4 - wex |5 () ﬁ:('r')I{—E[ " “(-r}{’l- (10)
- ‘L’ - - 1
,}’pa ) /bT T TR ﬁ: ¢ /’T
By means of inequality (10) it can be observed that if a modified method of
quasilinearization converges, then the convergence becomes quadratic in character
as =~ 2 (i.e., as max 2t, =+ 0).

i i

a* A
Provided N is sufficiently close to Pp
Y - 2 2, - N
£l T -pol 2 i[pn'm-;rwr)l (11)

For ail values of T in the interval (0, l],

”» iownd - - ;T -~
< “’Nfﬂ-lﬁg (T)I < L)Ehw’ .FT‘T)) C}/bk (T)'/r{T)/
< ¢ ]E‘(T)‘/;‘r('r) l+¢ 1/5;‘(7’ ~/‘;‘T['r)'
Taking 7 - 2.4, we obtain

N
)
2
]
~—
3
N
=
o~
.
[ 8]
r

3v inegualizies 12y - 11
T -pan)|e 2 max| B gl 2wz |4 1) -t
fﬁu r- /"7_ T 2t /o 2 k( r
for a.. valves f T in (0, i) The iatter inequaiity implies inequality (9)
which was Ic De praven.

. ) _ qali)* a(i)*
. Examination of | " 2,

a order for the anaivsis of Section IV to be valid iz must e argued that,

N -
fo5r anv given sositive number -,
X 4 ’_7:(‘,;* " 3’
7Tuuyll; (ry —~ (T) = /c (13
1 - Ve 13)
T i
for 4= i, 0. .00 and vo= 20,2, provided the maximum Interval size is
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Take N sufficiently large and max A:i sufficiently small that
i
~lJ)¥ FlAd
)1_1?-1.'[7‘ i) ‘25 (T

N
L,
- e

for i = 1,2,...,N, where So will be chosen sufficiently small that inequality

(13) will hold. It is reasonable to assume that inequality (14) can be satisfied

o ; . S(1)* .
because the boundary conditions imposed noon 2 (T ) have been chosen in such
a(i)* , L9 . A1) _
a way that zo (T ) will be a constant or linear approximation to Yo (7). The
apprcximation would be expected to improve 3s max it is decreased.
i 1
2* ; . -
Also assume that 2, is sufficiently close tc 2p that
—_ -
i | f ) Ty <«
X . T p T T N
T ; (13)
[A
where 3 will be selected later.

Mathematical induction will He emplcved. Assume that it is xncwn thats
inequaiity (13) is true for X = 0,1,2,...,k and i = 1,2,...,N. Itr wili >:
shown that it is true fcr X = x + 1. It was shown in Section IV that, under the

) . e . o a(i)* N({)*. %
given assumptions, inequality (9) would hold true as long as max y, -z < =
— n
. C
Therefore
- 1.4 !
S~ e , -
‘ = ‘ 1 (=) — o)
YA x il [ [ - wie w ) /b_\ /
el A X fe T/ (1%
Sar W= DL, 2, ... K.
from inagualities (15) and (1%8) :t follcws that
v — K
! -y 4_-—1! A
mav | fim-priv] £ 87
“
fer WA 20,2, ,& + 1. Therefore,
|t =, (
Wld_/v'/"( \T}"i—r (T){-'./u(
- S
(= 2,00, <« pei) -
. . [
Now in all of tne modified methods of quasilinearizatisn, 2, {s 7 Ine orm
NN - a LS
r—\ : 1 - v
/% (T = hiv, &, v}
N T/ - M
ahere W Y (c) and v oo ‘1) .
/K Ad

-———— -




Hence

Ak

variables

interest, we obtain

r— _I(b}

"] i)

j;:d(’i)] - Z(Tl /?T/;()C, ,jfZ)(j)]
f‘%'[j},‘”('c)~]:“:c,7 2k [

Tie <O

de

[ 4

aL/K (1] /7

“here cthe partial derivatives are evaluated a4t intermediate values of the
. Assuming

13

1tives are bounded within the region of

il - - /T . _adv al auJH i)
! ‘hr:L)('T)—/T !T)l - ”)a:f//max j‘[d 7 (C)! /!"‘ty ) / (/)/
SEVEAO LY O
whnere
L2 ” %/LW* “ j’t‘/'/rm!
1 gl =15 5 el
-(lY - -) g i)
HIEACE SAREREE RS
< 117“7;[07?,‘ ‘7_“‘@(*[}”1()(’7 - 7},{%){
< ’3kﬁj + /*/15x
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Hence
>l S Al i
} l] m~) mH/j, (w- 3 ml} < (ltaw) A
With K = k + 1 and K = k , the latter inequality implies the following inequalities

respectively:
) P it 4
17:”‘7 ]k 1‘2}/1,.'{)10—/,17)(5 [ 1+ |

() i (Y (}’
PN TR I

Adding the two latrter inequa’ities, We obtain

il Al sy~ - ; Ve
(7‘; &y mllé ]' «~x-{v/‘)['w/*i(lfu//ﬁ«
SR / Iy

using the fact that J « & - 1. aepeated application of the above inequality gives

‘ 2l 9““ l - . -
; g T 2y . | [ < . £
I S Il Py B L s R R VA NP S O
o J C -
- . v /
Therelcre
*(L)rf ¢1 I
; {7 - <A 7
R4 jf« + l(lf-u) ) (
where s = > ,’;'" .
mIe ‘

lnequality (17) holds for 2 . T - i and L = 1,2,...,N. In order to prove

(15)) =must se

inequality (13 for K = x + 1, the numbers 50 and 1 (see inequality
*
~ncsen suificiently smail that 5‘ + 2 (L 4+ )29 42 ; i.e., such that
e %) ,;') )a
! ™ . . ho] J ; ) <
R A IO N R Y B
N meo e ’1«_1 oV m‘y .

e e
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V1. Orders of Accuracy of the Modified Methods

The question arises concerning the orders of accuracy of the converged
solutions resulting from the applications of tne three modified methods of
quasilinearization. An interval of length 4t wiil be considered. For simplici-

ty of notation it will be the first subinterval,

Jefine the operators

47 9 ) Ty 2
/} u o }‘v ,/,/ J ¢ /‘ 9")
— . - . - i P s “ i AI = N
The lav.or series solution 2f the differentiasl equations y = Fft, v through
fourch-order terms is
~ \ - b I B3 -~ ' - - ol
“ - - = — b — 3 ~ N -
Flt-at)s Jorats, r 3 atNDE) e £8P - S DF)
/ ¢ c -
\I/ J’ //( v
—~
L 9| Y S pad 2 Al
o AU DS D) pF ";D.C"r} DE] + c1a7)

. . " : . - . - .
where =he subscript 0" indicates evaluation at (to. Vo). Expanding furcher,

e hrain

©
<
(9}
C
™
e
gy, Sy
(-]

i(f cdr) =T vt et g (B D
/

(18)
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- - ,
Now suppose 2{t)} is some aporoximation to y(t) over the interval

[to, e, * it]. Suppose y(t) is a solution to the differential equations

/3 *(t) *‘r(f;)(/;
we will think of y(t) as the converged solution resulting from one of the modified
methods of quasilinearizaticn. The Tayvlor series expansion of y(to + Lit) as
determined from the above differcntial equations will be compared to expansion
(13). Let

j t] x, 3] + F Et)/c)j[y ]m]

Then in the same manner that expansion (18) was obtained, we nave

7({A»At):3+gf5‘*{‘jzl(6" +D/ﬂ7
2/ : j/c ch //C Jj 0
g

>/ >
w7 ACIT 2D g r

(19)
1. 40 Aﬁ‘) - -2 — -
siude g, w20 T w23 v T+ D
- L'J/,'C:.’ :']{f s ‘7 ‘j;/ T ]
J
- > - 3
- v *:/ —“]! f.'/.w’/4[s)

”14/ 2
where certain reras have been oxmitted because d&? «Qz 4;6 -0
&
The terzms of the righthand sile cf equarions (19) will be expressed in terms

s ¢ and Lts ierivat.ves. Thus
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;‘] Fj(t %) *%gltg‘)

Expansion (19) zay now be written as follows:

Fit,ea0=3, rarlfie 56 0G7), 1205163
AL NS o7 E/t;)]g'])}o
plgﬂf}{, t}) [ Lf ?)]; +[Ft9(t])

+
[
W9
LY
R
o
N
-+
\\N)
“~x
\u y
\_\5‘
\\(‘Q
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—
-
KUy
\.
(S
\x
“\*i

sulf e oA ;ﬂ “zr]*) . r;zr,;‘)[f(fj)
ST - {08 r*))/u‘—‘)ji»fzf’t ‘)E[‘))S
+ r£;7 ,']’/’] 7/ L/j; /.4 } / ; { /) ('; o
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NEL Y iy
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77 7 77 5/ J 7
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7 177 PLe j=
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Substituting into expansion (21) and rewriting the expansion through third-order

terms, we obtain

?lrgr_\ r) :/: Fat[F-4 Jt"(ﬂ,(g)fj].

s AR +Af_plsz‘);]

where .- = 17 i . Therefore
.

~
\:11\,
S

ay 17y

- - . »t 0 .
- I Y
- Try et )
/ N
In creer for sne ibcve expansiocn to agree with expansion 118) througn third-order
ter=s, 1%t wo'uld anly te necessary that
i - ~ - ) =
} ‘/\ : (l' ) \ D\., »qu NI
l"/ ¥ /0 I Y
L J ¥
s -
Zuoncse 72 X e . Then we 1lesire
g = = = =
2! &, 2 - (pe e
co =) LYy T = Uy Ty,
- 90 / 7 T
o
. . . 2
This :s equivalent 1o 3ol -1) =1 or B" - h + 1 = 0, Minizizing
-~ 1 -3 1 '\
327 -~ 31+ 1 with respect to 1, @e ‘ind 1 = T Therefcre, we let ¥ = Tt
3o Y - .‘L e - o
4ng w~e optain tre ters —(o L ! in expdansion (2J) rather ttun D Y ;¢ .
“« ¥y 00 yyno
Consequently, expansion (22) nearly"” compares to expansion (18) through

third-order terms.
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Hence, if y(t) is approximated by means of 55]‘:" {.At‘co fL"(‘”:I') ’
we obtain ? to nearly :hird-crder accuracy from modified quasilinearization
Suppose we take ] 7 (¢, fA(j:}
is the solution to ] — F(ré F’(t)) (07 ]) . Then

as in Method 1, where ju_

— , - = 1
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v}att 8T} +a (5”3 [tv,})rjc 2) Jlac?)
. - . .
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~— - -
N v - 2
«’t/la“ch“') 7of\A[ F(f"/]:/ P etacy
v
- = g = T
P Ul N ot ¥ A
Al I 27
v’ Jl
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- = L * v . . . s
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Now supstitutiag into expansion (21), we obtain
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A RN
where ? =L 4+ fyf. {}f 2 and ; are constant, Cchen
(Zo % F0=3a 2 7):] L0000 (1L £)s }
5 JJ,*j g / ) ;]F!z)a- L9/j
Therefore the expansion becomes

7(* -+ A7) / FacFor AT (F, F;F'

@R[ﬁt-gﬁ;:-% m{%){cpf;m

- 18 BN 42 SR '3%;])? l
n : 154_;?) 2 2 5"--‘11
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The latter expansion compares termbv-term with expansion (18). This .mplies

that Metncas & and J give rise to fourcth-order numerical accuracy.
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ABSTRACT

The problem is real-time guidance of an air-to-air missile engaging
an accelerating target whose velocity vector can be predicted as a function
of time. A Zermelo-type model, consisting of the nonlinear translational
equations of moticn, Is emploved. It is assumed that the velocify magnitude
of the missile is a xnown Iunction of time on each guidance cvcle. The per-
formance index is a weighted sum ol squares of the miss-distance and the

time-rates-cf-change, u, and u_.of the flight path angles. It is to be

A
ainizmized with respect o uA(t), uE(:}, and the final time. A nodified
quasilinearization method is used to solve the two-soint boundary-condition
problem associated with the necessary conditions of optimaliry. It is
applied to several missile engagements d4nd is shown to be considerably

nore accurate over a single guidance cycie than a method based upon the

Llinearized transiational equaticns of motion,
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I. INTRODUCTION

There is an acknowledged gap between the theory and the application
of nonlinear optimal control theory - especially in the case of real-time
applications. Since the necessary conditions of optimality frequently
take the form of a two-point boundary-condition problem, the quasilineari-
zation (or generalized Newton-Raphson) methodl comes to mind because of its
favorable convergence properties. However, there are difficulties asso-
ciated with the latter method because of the need to solve sequences of
linear two-point boundarv-value problems: One zust deal with the problem
3f storing intermediate solutions or must numerically integrate a large
number of differential equaticns. Methods based upon parameterization of
che Zontrol and use of nonlinear programming bring forth similar problem.

2

Modified quasilinearization mecthods™ have Seen developed in which
tne probiems of storage and numerical integraticn have been reduced, espe-
tizllv tor problems in which nigh-~order accuracwy in the numericai integra-
zicn is uncalled for. As a matter of fact, in most real-time applications
it is unnecessary and unwise to spend computer time integracing with high-
srder accuracy when the physical constants can not be determined with com-
parable accuracv.

In tne modified quasilinearization method which i{s applied in this
paper, the sniutious to the differential equations are divided into severai
suparcs. Intermediate approximate solutions are taxken to be constant over
each subarc, thereby permitting the linearized differential equations to
be integrared {n closed form over each subarc in the case »f the air-.o-
117 Missi.es prabiems It can be arguedz that this quastlinearization
method will converge under certain assumptions and that the converged solu-
tion will have nearly third-crder accuracy in the sense that it is equiva-

lent to integrating the differential equations with an approximate third-




order formula of numerical integration.

The development of microprocessor technclegy and improvements in
estimation methods now make it feasible to incorporate nonlinear real-time
guidance algorithms, such as the one developed in this paper, into the con-
trol systems of air-to-air missiles.

The new guidance method is expected to lead to smaller miss-distances
than the commonly used proportional navigation method which is non-optimal
for the cases of accelerating targets and nonlinear equations of motion.

It should be mentioned that thcre is a syscem3 of finite, nonlinear
equations, involving elliptic integrals, whose solution provides .he opti-
aum solution to the air-te-air oissile problems of the type considered in
this paper. Heowever, the method Is restricted o two dimensions and con-
stant missile velocity magnitudc. It also requires a good initial approxi-
nation to the solution.

Mocdels sf tne phwsical prceblem, similar o that to be emploved In
tnis paper, nave been used in zhe cast; Ior example, cne paper* Dakes use
5f a linear 2xpansion atout a solution to a simple iinear control problem
in order 2o obtain an approximate solution to the nonlinear equations.

The latter paper makes use of several simplifying assumptions such as

constant c<losing rate.

: THE MODEL

e
v
.
[42]

The space-fixed :fcordinate svstem to be emplcoved is depicted in

Figure .. The angles, v and v_, define the direction of the instantan-

-

eous Missile velocitv vector Vq.




4
The equations of relative motion of the target and missile are
_.) > v _h(_s
R o= Vo(t) -V, (e)ply) 1

£ by
where R(t) i3 the line-of-gight vector from the missile tc the target, VT(:)
.s the predicted velocity vector of the target, VH(C) is the velocity mag-

nitude of the missile,

R Ty, T [ cos ¥ cos v,

S A S N E A
= = ] : =, COoS sin .

YTy y, e R T Yg Yol

- o i L - | . 1

. sin Yp

Here V,(t) is assumed to be a known function of time. ‘lowever, it may be

-
adjusted ‘rom cne guidance cycle to the next., The initial values, AR and

— L — — . . .
R, of v and R are assuzed o De given,
- .
The control is 4 = v winich mav be bounded according Io the inegua.ities
- — -
4. < utd
ain - — "max
n
wnere J < . anc L.
zin nax
The cersIrzance Lncex LS
P N L .TF =T -
2 o= —x R{t.) <., u w(z u dt
2 F <,

where w~(t) s a given continuous positive—definite weighting matrix and
« .5 1 given positive constant. The index J is to be minimized with respect

B
to 5fr; and zthe Zinal time, :=_..

"

IIZ. NECESSARY CONDITIONS OF OPTIMALITY

It {3 necessarv that the Hamiltonian

: - - T
H o= = ‘w 3+ (N, = W ) e sy

-
be 3 minimum wWwith respect t> u at each {nstant of time. Therefore, when

- . = =T
u is not on a boundary, *H/3u « 0 so that
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Tawl 3
The adjoint equations are
A=0
ER ] ()

- — -
where A and 3 are the adjoint variables and P, is the partial derivative

‘_\ —_
matrix Ip/ay.

The :ransversalitv condizions are

- - . .b‘ -
“(tL, = KRR(To) . (il s )
r Iy T
a7 > ;
ROT{t ROty = D "tn free)
— —~— —
Jlearlv it = 2 and c: &Rt ..

Now consider 1 fine interval on Wwnich 1 LS Inoa soundarv.  Later
arguzents :ndil-te tnar, I 1 1s 0 3 bdoundarv, it is likelv to 2e during

=T
ot U Tust

the initial portisn o tne fliznt. Recall that H* = =

- -
2 o~
* ~ f
TE < ou, ot , then u, = y | !
- i~ "1 max i i
1
* ' i .
MO then 4 0= . . (3
L i min, : . @in !
* I
IS ; then oy = o2 .
. 7 T aax L i max |
— — —a
Since T oand 3% gnd ‘hence) u Wwiil He zontinuous.

At ledast in fhe lase Nt two-dizensional probdleas with v 2 0, one

&

would expect tne Illant patn o ang.e V\ O varv macnotonialiy Wwith respect

7

9 tize. This point will 9e argued more preciselv as follows. 1f 93 is
N N
ree {nct given), then =7t ) « Rit_,; = 0O, Therefore, {f V_ (t_) is large
-~ B F . » 'H( F/ L
- o - .
in comparison to V,(tF) , equaticns (1) imply p[v(:F)] . R(tF) = 0; {.e.

the optimal flight path of the missiie {s approximately perpendicular to

the line~of—sight vect:r at the final ~ime. Now suppose that at an in-




stant, &A(t) = 0 for some T i{n the interval (co,t ). Therefore, éi(T) =0

F

- = -
and equations (1) imply PY [YA(T)] . R(tF) = (0, However, p is perpendicular
A

- -
zo ;v so that p[YA(T)] is para.lel o R(CF) and hence nearly perpendicular
A :

S
zo p[yx(tg)j. This situation can not b2 possible if v, var.es by less than
v I
3 . i - . .
30° aover the -ourse of the flight. Consequently, ii such 2 case if can not
e true thacz u. (7)) = J. Iz follows that Yy is monotonic and, since u(tF) = 0,

4 can not zhange sign. Therefcre, W\ is alsc monotonic under the assumed

T4 summary, The noecessarv ong.tions consist of the differential

N\
) 1
— ~s }
o=y !
. i
-\ - T H
S ez ,
|
. L.
— - -
oAy - =
- o :
— N J
o=
sl Tne Toeundar meltions
N —a
. : . - v
—a -
. »
—-
P - 9
—_
S = P
- T -2
- ‘. Rie 5 = N
>

&mere o 1% tetermited Sy omeans b equations (),

IV, MODIFIED QUALILINEARIZATION MLETHOD

A zTcotfication of the quasilinearization nethod has Leen developed
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by the author™, The method will now be described briefly.

Consider the differential equations

L a4 o
y = £(t,)) (5

with some associated boundary conditions applying at times to and tF.

-
Hdere vy signifies a vector of n components. The time interval [’)‘cr; is
iivided {nto subintervals {t¢, ,,z ] where { = 1,2,...,N and 6y " e The
PO -~ .
_inearized equations are
.‘ __} PR .
= S(t,v )+ o(t,y Jly=v ) AN
°s v ’s 'S

«here v T} 13 AR approximate solution to the twe-point dounddry-cond:iilion
5 :

TPAC . ° o.em.  The usud. judsi.inearization metnod casss for the soluzion

-
The sclution v is Ine

> zhe IP3C oroolem associated wiin equations (5.
new 1DprSX.zalion v Lo De used in eguations ‘H; for the next izeration.
; S

The soiution to the TPBC problem during each iteration calls for several

5% or tor rthe sclution 1o a4 large svstem of

In Tne Tedilies Tetnax To te applied in this paper, the solutio

1z tne TP:C sroplem Ls cbtained at TiTes t ,T.,...,L,,. <hen one lets
2 - .
- - ~ . — \
¢ s ISl |+ T
s U AL PO RS ALTEE

As we will see, the resulz.ng

. A . . .
4. P eima car oy fav { m
N tne i-th tize :interval for & A

zern~d Zonverges in the missile encounters to he onsiderec.,  Morecver, it

13 «nown tnat the numerilal accurdcy of the converged solution is nearl v

Over w23cn 3 Sinterval, v in equations ‘6. will be constant. Oniv
3

- - -~
R A S
- Wt

st te stered after each {teraticn, Morecver, the

integration of equations (k) over each interval has been simplified. In
fact, It can often be carried out in closed form.

Assume that, with appropriate substitutions, equaticns (5) take




an equivalent form
:. - - -
y = f(y) + g(t)

Then on each iteration equations (6) will take the forwm

< ".

= Ay + b () (7

on the i-th suwbarc, where A, is 3 constant matrix., It can be shown that

— - —
y(ti) = Bi,v(ci_L) + ﬁi (8)

=
for some mactrix 3 and some vector ¥, Let My = I and M, =¥ 3,
: i A i i+ B

roLo= Nl N=l J Ir can easi.v he shown that

N
— - -
<
[ . T B S R el
AN AR o M9
h s 2 T 11
A.;

vy

— -
Rerefcre, using the latter expression which gives v(¢_) in terms of v(t ),
b3 ’ Q

-
ine lan write al.l the douncary cconditlionsg ia terms of y(t\?. One determines

o
St in o rZer T2 osatistv the houndary Conditions and emsplovs eguatians
- — - -~
3, 1o osrder o obtain viT,,, VI ), ...,y(2).
i - AJ

Here we have assumed U, 1S Jiven. Howewver, it .s possible to adiust

it 7 an outside loop” as will ve explained later.

The quasi.inearization sethod ¢an alsc be modified 1s follows: Rather

-

tnan accepting The salution v to the linearized equations is the new 4pproximacte

g 3
soldtion v, et

[ -~ A =Y a3 LR
new ) . 3 , fold)
v v om oy ':i) +oavin -y IR

turoL o= ULl L L.,0, <here 1 i3 a posiiite constant chosen such that the maxi-
-
.. " s . - .
MLT L nange 16 v wi.l not becore Mdangerousiy” Jarge.  This fs anaLorous to
the damping methcd sometimes used :n connection with the Newton-Raphsor

method used to solve a system of nonlinear. finite equations. The damping

technigue has enabled the quasilinearizatior method to converge in some
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cases in the air-to-air missile problem when it would not have converged
otherwise. (In some cases it might be desirable to take a > 1, but we have
not done so.)

Now we will apply the modified quasilinearization method to the air-
to-air missile problem. Although it is applicable to the three~dimensional
problem, it will be applied herein only to the two-dimensional problem with

o= 2 1 L5 2 .
xeR(tF)' + 7, u dt, where u = y. Equa-

N
I

tafre

0. Let vy = YA. Take J =

(3]

icns (4) reduce to the equations

v = N
. =T =
u a-VMp{ A
Ro= V(1) = Yy p } (9)

~-

wnere p = ‘zps v,sin ¥) and - in orcer to place the equaticns in the form

:f eguazicns 70 - we intraduce tne differential egquation YV r oz, with
Tt seinyg a given function
-~

The l:inearirzed equat:ions on the i-th subarc are

N . _Jr — _.‘!‘ —_ —Jr - T >
I s eV - f—-y ey S ey Y ¢ . i
P eer T M ML TP wiT e !
LM ol ;
§ ‘3
. f [
= — =Y - —
- - Vol ey ,
Rom mVypp oV e e ?
.
= -
L.
..'
,“ - r;lr_)
where 4il guantitices with the subscript | are constant over the i=th sub-
s =y
intervai., The quantity p , for exanmple.stands for p_ (¥ i)' Thus the
. Y8

-
subscript 1 signifies evaluation on the approximate solution y , o0 the
s

i-th (nterval.
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ing ™ > V. P % d taking ad £
tetting . a-vMiPYi’ a, = Vy Py Ay, an taking advantage of the
P

-

>4

=
knowledge that is a constant and = -p, the system (10) can be written

YY

as

e
L]

a., 0 0 u |+ noa+(V v, (t N -Y.1
N (Vy;7Vy ()] : i
._) - - - - a D Y
- f -V - + It - -
R S0 o1 (D)p #Volty-v = .
..e., on tne (-th subinterwval
.
- - —
y = Ay +b (t) .
. - houane ’ - : - PR
et 5, =y v, . let ¢s, = cos(f.lt), sn,. = sia(i lt), and I =
< e i i i -
in the :ase or : 2. Llet s = Josh(; . lt;, sa_ =sinh({ Lt} and I, =-1
when 3 Here we are assuming 3 Ionstant interval size li. Let

13
!
I

N i Bt i : =i
S A
-~ Ny - . - . . -~ -
i- e ... when - 1t is small, 1l 1s necessarwv Lo
ava.uate s e . ana . S>v Teans »f series. For example, when
-1 b L -1
ToLe = 5, s o= L oane - oLnoorder T3 ogwold suziraction Of nearlv egua. tumters -

Sne expancs 1§, 4nd evalddles .., iSing tne inlinite series

2 » N PR S 4
S e e ML S B AU -
2 i, (2x+2). i L
k=)
In tnis formusation Lto1s assumed thai, 2n each subintervali vV, ) o=

.
VRN RS ~L)/;:"V“' ‘-Vu(:;_.)} and similariy for V_(t).
It zan 5e shown fusing Lapiace transisras or matrix eigenvalues and

- % < -
el 3 0 it )
e H i-:
AT a4 _—
PR ' - « Ht‘ !) + (r c, #G { )
- "‘ -

where




g\ e
-
11
[ cs v
' i ll“ * [
|
* = c, = v §.v
Bi !’ i ni[ 11”74 Zi] ’
=8.7.3n, cCs, |
[ D G | lJ
T = Fs 3 R - h
721 7171724 171730 |
| ? | }
- { | a—* [ \ H
J.*® = UL ] . = Y.L v, =l =R
i ' JE S i P7471724 i 1
; ‘
. _;‘ !( )_n (.Sxt > % |
Pi3LaLun S PR IR n, +4t LT 2)
LT3, R i34 S /2)
where
1 - T - e
M R R SN VAN & S I \L L
*i ltM MUT-1 pyx i’ i 271 iTi
—_ ok M > 1 r" —_ ,
- - L - . o T .
e T Y o L USRS AL R AL PR P
- % - —
z = Vot L o~ -7
L T Ti-l het PEEDY

et the M. matrix ¢ the genera. formulation be written in

i

RIREY

terzs of Ix1 matrices as

®
“ 3
™ =
M, .
- .
Al Lo
* . * .
Let M, = [ and N, = 3. Therefore
. Al
* . 9 * " *
M ~M 3 N =N 3 o+ 2
U ity i=-1 PRt L
Iz o= NJN-l,...,0. Then tne approiximate sC.aftilon o the linearized
equations 100 Ls
- .ok L - . *
fr M 3 3 M D]
F Il 5 y {
. . ' ‘ * 2T 2 o
ulte) = u(f) + o, NN 01)
i=] N 1 :

- . - :
Pl N IR |
- r - L v - © . - kl

In order to solve the two-point boundary~value problem, one must set

ulz ) = 0, + = kE(tF)‘and nust solve the above svstem (of linear equations)




12
- PN
for u(0) and R(tF). Then one calculates the values of Y, u, and R at other
times using equations (11).

Here it has been assumed that t_ 1s given. However, in practice we

F

have staired with an initial approximation to t. and, after the iteration

F

with quasilinearization seems to have stabllized somewhat, we have corrected
r
we let

(X {0ld
(New) _ . )_g(

- -
1 v
< r

t‘(-Old))/é(téOld))

with 2 being computed only approximately,

No bounds have been oplaced uoon u in the numerical examples to he
sresented. GHowewver, the procecure can be extended in order to include :ine
tase »I bounded i, The sudintervals mav be adiusted {using the runction
u* f zondizions 3) in a4 zanner similar to that used to predict t irom 2
in order that u will not be bounded over only part of an interval. On each
{nterval on wnlicn u I{s on 4 zounddrwv, the second oI eguat:ions {9) would be

r.2.aces 3. : = ., Zzuatlons L., etC. wou.d have to be modificd accord-

V. A LINEAR METHOD

cr the saxke 3f compariscn, we will develop a rather eiaborate linear
nethod for optimizing the air~to-air missile problem,
“

- - -

Let v fz) ts an initial approximation to a1 soluticn, where v (%) = v

s s §1

z coastant an tne I-th subinterv2’, The linearization of equations (i) on

the {-th intervali is

.; - =N - T -
R o= 7 (t) - v (t)p - " ( £
T( ) 'H )VS H\t)P,fS i
, o - > - - - - - o
<here 1 = L, {,...,N, v = ¢ - ‘g 0 Pg " p(15;. ang Pys = prws). The idea

- A
{8 to choose u = %y which minimizes

I N
t. after each iteration using the condition g(c:) = 0, where g = R(tF) . R(t:

).
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2 F 270 s s
A development similar to the derivation of the necessary conditions
of optimality of the nonlinear problem gives the necessary conditions

> AT
3= Wyp  R(ty)

Clearly
t =T =
Z(t) = s(.: YyPis dt)R(tF)
F
= -1, .t -7 =
vty mexin . 'J“‘AP(S G:)R(ZF)
- -~ .04
fe)y = 0«77y Gt
5 =
v(t)y = v = <C{z,t JR(t_.)
o R F
where
‘:/:’::' = t w - "'H;;’s Jde d-
Theretore
Y Y FF e e e - Py T vd
et ) = ; . T R . g 1
LIRS SR it e, M ot
> LT “F - . ) ,
R(.F) 3 % . ijvs C(~,EF)dt‘ R(tF)
o
where
‘? - E + ’:F V. -vs +v (y =y )] dt
o ‘[j thr Mg yP
3o that
t
(1 + k / F v ; C(t,z_)dt] ;(t ) = ?
t, Mys '°F F :

The latter linear equations must be solved for E(tF) in order to obtain the
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desired solution. This is a three—dimensional formulation and is based on

i
the assumption that t_ is given. Observe that VM’ VT’ and W may be given

F

functions of time.

VI. NUMERICAL RESULTS

This section contains numerical results for the two-dimensional en-
counters now to be described. At the initial time, to = 0, the missile
is located at the origin and the target is 914,402 meters (3000 ft) away

on the positive x-axis. The missile velocity magnitude is

'»/~1 = 217.712 t + 295.549 m/sec.
. N . ~ T 1 :
There are no dounds upon Y. The rarget makes a 3g turn. Its velocity mag-

nituce is V.. = 292.352 m/sec. Specificallv,
- . - .
. ; - o : .
Vey ® V., cos(.t), Vo * OV, sin(,t)
s i 4o I
’ - . . - : -
wnere o = 17, .2.7 /sec, we will :zonsider Iour cases, corresponding to

v o= =307,37,457,307, 3v zrial it was found that the weignting factor

)
4

« = 20012915k raa”-sec,z” gives reasonable results in all four cases.

A starting vaiue ¢f t, = I seconds was used in all cases.

No full simulation of the guidance methods has been carried out.
It is realized that a final choice of method for a particular missile
aust depend upon the results of a complete simulation of a wide range of
encounters.

The initial (starting) solution for both the linear and quasilinear
guidance methods makes use of the knowledge that ?(tF) = Q and that Y
is monotone, It is assumed that ¥ Z constan® and that Y(tF) {s approxi-
mately equal to the angle between the positive x-axis and a line connect~

ing the origin to the position of the target at time tee This angle was

taken to be 40° in all cases, The constant V is chosen such that Y(tF) - 407,
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In most cases this initial solution gives a value for Y(to) which 1is rather
close tu that obtained from the converged quasilinearization method. 1In
all four cases the latter method converged with N = 15 when {t was started

with the solution just described.

Figures 2 and 3 depict the initial solution and the converged quasi-

. . - - o -~
1itearizalaue oz the -iz-s of o =307 and 'o = 90

o
. The ~rher two cases

are similar. A vaiue of N = 15 was emploved. The final time tF as well

as v(t) converged.
Table 1 shows the effect of the number N of subintervals for the case
Q . -
of v =0 as an example. There is little change in Y(0) and R(tF) as N
o
increases. However, fewer iterations are required as N increases. It has
Seen found in cther <ases chat there is a high risk of nonconvergence when
% < 13. The iterations were :zarried out until R.{t.} and R,{(t_) see=zed

o have converged within abeut one meter., <Calculations, however, were

arried oJut in terms of feet, radians, and seconds.

Tabie L, Quasiiinearization resultls Ior *3 = g
N ) i0 15 20
7(0)  (deg/sec) 1.6 42.9 43.6 43.6
RZ(:?) (meters) -2.4 -2.5 -2.6 -5.0
RZ(:?) (meters) 5.5 5.3 5.8 3.6
N lteraticns .9 25 11 il




“
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Table 2, Y(0) (deg/sec), comparison of linear and quasilinear methods

Y, (deg) -30° 0° as® 90°

Linear guidance 54.5 36.3 -8.7 -48.2

Initial solution 70.0 40.0 -5.0 -50.0

Measi  (Seh Srevation) 90.7 45.3 -10.1 -68.8

Quasi. (10th iteration) 78.2 43,7 -11.2 -36.1

Quasi. (converged) 72.1 43,6 -11.2 -51.3
in Table I the Lin .. and quasilinear detrods with N = 15 are compared

for all four cases. The linear guidance method is started with the sare
soiuticn 3s the gquasilinearizat:on zmeticd. .. sculd be otserved that the
value 7 (t ) of the guidance cormmana obtaired Ircm the linear mechod differ
aspreciably Ircm that of rhe quasilinearizaticn method which gives the optizal
szion tT the nonlinear transiationai equations ¢f motion,

It was Icund zhat when « was increased to ,00Ul5,the gquasilinearization
algerithm did not usually converge. It can be seen that the value .00001.25.%6
used for k led to miss-distances which may be a bit large for some purposes.
If{ one wishes to decrease the miss-distance it is possible to increase
gradually during the iteration.

A constant subinterval size it was used during each iteration. However,
since ¥ is zuch larger at the b»eginning of the flight than at the end, the
nudnber of intervals required can be reduced {f the interval size is varigbie.
As a rule of thumb, the subinterval should be sufflciently small that vy does
not vary by zore than 16° over the interval.

An alternate methcc !or .omputing t. would he to solve tor {t simuitan-

F

» -
eously with y(to) and RT' rather than treating t. separately. This alternate

F
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way has not been studied.
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