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RAPID GENERATION OF SYNTHETIC SEISMOGRAMS IN LAYERED
MEDIA BY VECTORIZATION OF THE ALGORITHM

BY ROBERT A. PHINNEY, ROBERT I. ODOM®*, AND GERARD J. FRYER

The theory and practice of computing synthetic seismograms in layered media
are now quite well understood, and are nicely set forth in the monograph by Kennett
(1983) and the textbook by Aki and Richards (1980). In applications, these methods
can still be unsatisfactorily slow.

It may be necessary to work with models having a large number of microlayers.
Modeling of reflection seismology data in typical sedimentary rocks may commonly
require more than 100 layers. Many situations having a smooth velocity gradient
and need many microlayers to model the gradient, when, for one reason or another
asymptotic methods are not suitable. For example, if we are studying wide-angle or
long-range propagation in the top 500 m of a sedimentary section, we need to model
the pronounced near-subbottom material gradients due to compaction as well as
particular layers which are high or low velocity, density, or  anomalies with respect
to the reference gradient.

In seeking to determine the variation of material properties in a sedimentary pile,
we may start with some generalized reflection data set, containing reflected and
refracted signals produced by an impulsive point source and recorded at a number
of sensors in the water layer at various offsets from the source. Any true inversion
procedure, regardless of details, must compare the observed data with synthetic
data for a sequence of models in order to obtain and characterize models which fit
the data within some prescribed limits. We thus seek a forward modeling procedure
for arbitrary layered models which is fast enough that many repetitions are possible
in a reasonable time.

The procedure that we describe in this paper is based on a reorganization of the
inside loops of a conventional reflectivity algorithm to permit vectorization. With
this optimization, it is unncessary to be concerned in detail with optimization ot
the code that generates individual matrix elements from their algebraic expressions,
a technique adopted by Kind (1976). The vectorized procedure is by itself faster
than previously described procedures, simply because practically all redundancy has
been eliminated. When implemented on an array processor, however, it achieves
additional speed enhancement of about 20, by making effective use of the vector
hardware. We have implemented this procedure on a Data General Nova 3, and on
a Perkin-Elmer 3230, with a CSPI MAP 300 array processor, in both Fortran and
C. In particular, we have used a slowness method, with the Haskell-Dunkin 6 x 6
minor matrices for construction of the reflectivity (Haskell, 1953; Dunkin, 1965).
An optimal code in terms of stability and computational overhead would probably
use the Kennett 2 X 2 reflection-transmission matrices. We will take as a basis for
most of this discussion the monograph by Kennett (1983) and not repeat much
standard material here.

A vectorized version of the WKBJ method has been developed and tested by
Chapman and Orcutt (1985), and applied to the inversion of marine refraction data
by Shaw and Orcutt (1985). For certain problems requiring summation 6f many
rays to synthesize the signal, or when investigating phases omitted by the WKBJ
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theory, the more accurate, but also the more time-consuming reflectivity method
would be required. This has been a motivation for developing our algorithm.

THE PROCEDURE

Consider an impulsive point pressure source in a layered stack of sediments, with
a surface water layer, and the observed acoustic pressure field near the surface. In
the slowness/reflectivity method, the acoustic pressure field P(r, t) may be repre-
sented by the double integral

Pl(r, t)=f due“"‘S(w)J; dp pJo(wpr)®(wp, p) )

where p(= k/w) is slowness, ® is the plane wave response function of the layered
medium, and S(w) is the Fourier transform of the source-time function S(¢).
Carrying out the integration over w in (1) gives the exact relation for the solution
as

Pir, t) -%sm -D’J; ¢(p, 7) .Jo(;’,- r) dp, (2)

where J,(t) is the inverse Fourier transform of J;(w), and ¢ is the inverse Fourier
transform

é(p, 1) = 51': f e ' S(w){(p, w)Rpp(wp, w)o(p, w) dw. 3)

Although we consider cylindrical waves, ¢ may be regarded as the plane wave
transient response of the medium with the given source and receiver functions. To
generate the plane wave transient response, we need the following components from
(3) :

S(w) = Fourier transform of the source * -~ wavelet
{(p, w) = source directivity function (= 1/. ., i*.r a point pressure source)
Rpp(wp, w) = reflectivity or total medium plane --  response function
a(p, w) = receiver directivity function (= 1, for a pressure receiver).

In this paper, we present a scheme by which the computation of the plane wave
transient response ¢(p, r) may be optimized for use with an array processor. The
evaluation of (2) is a separate question, for which no perticularly rapid algorithm
has been proposed, in the general case. In the very ccmmon instance, however,
where the source receiver offset is not close to zero, (2) can be rapidly evaluated by
the slant stack

1 d ,f”_.
P(rt) 21rdtH 5 ¢(p, t + px) ap (1)

(Chapman, 1978; Phinnev et al., 1981).
In order to clarify our new aigorithm, we summarize the familiar spectral and
slowness methods ((A ) and (B)).
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(A): for (w =010 w = Wne)

initialize
for (R =0tok = Rpas)
(w fixed)
for (layer = 0 to layer = N)
{ R @ flxed )
evaluate layer and interface matrices
matrix multiplies
integrate over k (Bessel function evaluation)
integrate over w.

Similarly, for the slowness method we have
(B): for(p=01t0p=pne)

initialize
for (w =0 t0 w = Wea)
{ p fixed)
for (layer = 0 tc layer = N)
(w, p ﬁxed)
evaluate layer and interface matrices
matrix muitiplies i
integrate over w ( Fast Fourter Transform — ¢(p, 7))
integrate over p {slant stack)

{B) is more efficient than (A ) as it avoids the Bessel function evaluations and the
oscillatory integral over k. Both algorithms, however, have essentially the same
structure for the innermost loops. Starting from the siowness algorithm (B), we
recognize the inner loops to achieve a vectorized algorithm, which is an optimum
way of generating the plane wave transient response ¢(p, 7).

The principle computationai burden in evaluating é(p, 7) lies in the evaluation
of the response of the medium to plane waves paramaterized by k = wp and w. We -
are required to evaluate the reflectivity of the stack of layers, as seen at a reference
level in layer 0. In the Haskell-Dunkin minor matrix method, which we have
implemented, and which we discuss for concreteness, a six-element vector

vy = col(1, 0, 0, 0, 0, 0}

is established in the lower half-space, and analytically continued upward to layer 0
by a sequence of matrix multiplications

Vo = Q@) - Qn-yun. (5)
(The snecific form tahen by these matrices depends on the exact starting definitions
used ir. setting up the problem. See the Appendix for the formu!lation used here.)

. . bbee by o Vo P -~ : . £
We then ohtzain directly the rellection funcuons by inspectisn 38 oy

Uy = COl[A, —RpsA, —RssA, RppA, RSPA, det RA] (6)
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Since the reflection functions arise from v, as ratios of elements, the procedure (5)
may be modified by multiplying v, by any cumplex scaling constant at any stage n,
without affecting the result. Each wave propagator matrix @, is the product of an
interface matrix F, and a layer crossing matrix E,

Qﬂ = E’IF'I'
We will obtain a fast aleorithm by exploiting two properties of these matrices

F, can be written: F,(p)

E_ can be written (7a)

diag[e“““"‘“""'"’, 1, e-wd.(v.-q.’)' eu-d.w.w."y 1, ewd..w.*o.‘)] (7b)

where d. is laver thickness and g,, g’ are P and S vertical slownesses.

We can exploit the properties (7a) and (7b) to convert ( B) to a vectorizable

algorithm, as follows.

1. Loops are nested (outer to inner): loop in p; loop on layer {n]; loop on frequency
[m}.

2. The innermost (frequency) loop is redefined to consist of vector processes, in
which the dimension of the relevant complex vectors is the number of frequen-
cies, M, being evaluated. On an array processor, this loop can be implemented
as true vector operations, while on an ordinary processor, the vectorized code
provides substantial computing advantages over the conventional procedure.

3. Suppose that the code is to be run for M equally spaced frequencies. The six-
element complex state vector v is assigned storage for a 6 X M complex vector

v
n', v, -, ve'", | 1st frequency
i va? .. ve®, | 2nd frequency
oD = : X
Lor ™, 0™, -, g™ | Mth frequency (8)

This vector is, for each new value of p, initialized with v, "™ = 1.0, for m = 1,
2, ---, M, and all other elements set equal to zero. The calculstions then
proceed by carrying out each successive matrix multiplication in (5) for all
frequencies by operation on the extended 6 X M state vector ©.

4. Consider the matrix multiplication

U = EFUn, {9)

in which the state vector is analytically continued from the top of the (n + 1)
layer to the top of the (n) layer. When we extend v, to ©,, by including all
frequencies, we need suitable extensions of F, and E,.. Now, the complex 6 x
6 matnx F is (7a) independent of frequency. We may thus provide stogage for
the values of F for the N interfaces, which may be precomputed once for each
value of p (the outer loop). The matrix multiplication
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u= Fnon-kl
uses the same 36 values of F, in operating on U, for all frequencies. In an

array processor environment, this operation can be set up as a complex
convolution of the rows of F, with 0,, with a shift of 6.

. Matrix multiplication by E, requires that E, be given extended storage for M

frequencies. We treat E, as a complex six vector, since it is diagonal, and
obrain a & X M representation similar to (8), we we call E,. The matrix
multiplication

bn = E.u (10)

becomes a dot product of two complex 6 x M dimensional vectors.

. Computation of the values of E., requires some optimization, for the algorithm

would seem to demand 6 X M X N complex values to be computed and stored.
In particular, we seek to reduce what appears to be 2 X M X N complex
exponential evaluations. We do this by generating the values for E, recursively,
using the first six elements (zero frequency) as starting values. Assign storage
for N complex “incrementor” vectors G,. If

$a* = gltedelatan) (11)

and similarly for s, ~, then we define
G, = [1/3-*: 1,1/, 8,7, 1, 3n+]- (12)

The collection of G, depends= on p, but not on w, and may be precomputed
once for each value of p, in the outer loop. Consequently, E., is generated by
assigning starting values (for zero frequency): E; . ..¢ = 1.0, and by using G,
to generate the higher frequency values of E, by complex multiplication

Enl  [G]  [Ena

Em-ﬁ‘ Gz Em—.’:
= | . . form=1713, ..., 6 X(M~-1)+1. (13)

E,.ws Gg Em-l

The basic computational unit thus consists of the following vector process (which
we label (P} ) which has the effect of continuing the system vector © from the top
of layer n + 1 to the top of the layer n, for all frequencies

» Complex convolve the rows of F, with 0,.,, with a skip of 6 — u.

« Complex dot product of E, with u — &,.

+ Generate new vector E,_, for the next layer.

These may be implemented as array processor calls or, lacking an array processor,
as an inner loop over frequency. Uy, Uy-;, -+ -, may all occupy in succession the
same storage array.

The algorithm is summarized as (C)

(CY: for (D =potop = Pmas)
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(compute the reflectivity for this p, all w)
initialize
initialize G,, forall n
for (layer = N — 1 to layer = 0)

(continue v from one layer to next)

execute vector process {P)

(handles all frequencies)

Generate plane wave seismogram by Fast Fourier Transform.

One pass through the stack of layers produces the complex reflectivity for all
frequencies; the plane wave seismogram is then produced by Fourier transformation.

Incorporation of source and receiver directivity and spectrum into the algorithm
is easily done, as is a frequency domain cperator embodying H*(d/dt) [equation
(4)]). The algorithm may be easily redesigned to use one of the more popular matrix
schemes, such as the reflection-transmission matrix scheme of Kennett (1981,
1983), which is wholly free of potential overflow or underflow problems. Incorpo-
ration of the effects of a free surface, and of source and receiver at different levels,
requires the construction of a response matrix from the reflectivity matrix using
methods described by Kennett (1983), but lie outside the inner loop and do not
appreciably affect the computational load. In the Haskell-Dunkin method, the
computation of the elements of £ can lead to overflow and underflow at higher
frequencies, particularly when the compressional wave function in one or more
layers is evanescent. To avoid these problems, we normalize E by its largest value;
a process which does not affect the reflectivities, as we have remarked.

Speed and storage. The performance characteristics of our implementation are
summarized in Table 1. Even though the algorithm is based on formation of long

TABLE 1
SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF OUR
IMPLEMENTATION OF THE REFLECTIVITY ALGORITHM

Spesd and Storage for Algorithm (C)

Processor: Perkin-Elmer 3230 with 1k cache, 3mb memory,
and floating point hardware

Array processor: CSPI MAP 300

Operating systam: Unix version VII

Language: C
Test speed: 50,000 indexed floating point multiply-adds per
second
Algorithm: Tested for 256 frequencies, one value of p
2.2 sec per layer: 3230, with subecripted array
references
0.6 sec per layer: 3230, with pointers for array
access
30 msec per layer: array processor
Storage: Given N layers, M frequencies, and using N = 25,
M = 256.
Array Type Worde Byt
0 Complex 6x M 48x M 12,288
) A Complex 3 x N 144 x N 3,600
y 4 Complex 6x M B8xM 12,288
G. Compiex 6 XN 48 xN 600
Total - — - 28,776
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vectors, from Table 1 we see that the storage actually required is still well within
the capability of commonly used computers. Use of pu.ater access methods, which
are available in the C language (or in assembler patches under Fortran), provided a
speed improvement factor of 3.6. The extra factor of 20 obtained by use of the array
processor is clearly a major factor in making this algorithm one that might be used
in repetitive situations. While any code may be marginally improved by close
attention to eliminating unnecessary operations, such as multiplication by 1 or 0,
this procedure appears to be nearly optimum. Function evaluations (exponentials
and square roots) have only a trivial effect on the total time, and matrix element
evaluations have been removed from the innermost loop, as far as possible. We
judge that any further order of magnitude improvement in performance will be
through the use of suitable hardware, such as a state-of-the-art {250 mflops) array
Processor.

Use in an inversion process. We seek particularly high speeds to facilitate the
inversion of reflection-refraction data. In an inversion procedure, one is asked to
take a single data set and to generate a potentially large number of synthetic data
sets for iteration to a solution and for assessment of the class of models which fit
the data in some sense. An optimum data set for this purpose would consist of
sufficiently many receivers in a radial array, so that spatial aliasing and windowing
effects are unimportant. It would then be possible to generate an accurate represen-
tation of the plazc wave decomposition of the data. The inversion process would
then generate synthetic data for a very restricted subset of slownesses, which
contains most of the independent information required to fit the data. Suppose, for
example, that five plane wave seismograms are being generated per pass at a model,
and 2 sec are required per slowness; then 360 models can be evaluated per hour. If
it is desired to generate the spatial representation ¢ (r, t), then over 200 plane wave
seismograms are needed as input into a reasonably accurate slant stack, and only
nine models per hour can be generated.

DiscussionN

Our purpose in needing a fast algorithm is to be able to explore a large variety of
models, both globally and incrementally. At this point, we discuss these models in
the sense that we are simulating a laboratory experiment and trying to develop a
more thorough understanding of the wave propagation phenomena which charac-
terize the sea-bottom sediment column. This understanding is a prerequisite to
applying the modeling procedure in an inversion process, which will require judicious
choice of procedures for subselecting data and model parameters.

At this point we have no idea whether the speed achieved is fast enough. With
the array processor, computation speeds which deliver tens of models per hour are
certainly insufficient for even a restricted Monte Carlo procedure; perhaps more
orderly inversion algorithms can be established which can make good use of this
capability. With modern supercomputers and/or modern superarray processors,
however, hundreds of models per hour are now feasible. Whether the application
justifies that kind of expense remains to be seen.
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APPENDIX
The interface matrix F, is the matrix product

Fn = Tn-lTnol

where T, is the 6 X 6 delta matrix for the nth layer. The elements of the Dunkin
matrix are formed from the 2 X 2 subdeterminants of the 4 X 4 matrix which
generates the stress-displacement vector trom the wave potential vector. The
interface matrix F, is explicitly frequency-independent, and because we are inter-
ested only in ratios, we can ignore any explicit normalization, and common factors
among the elements may be removed.

The following is a list of the 16 independent elements pf the Dunkin matrices.
To reduce the number of multiplications required to form the elements, they have
all been divided by u.

ty=—=(p*+q@’)/u=ts

tiz = —2pq/u
ta=—(p’ = qq’)/u=—ty
tis=—2pq’/u

ty =iq /B = —try = ~ts = —tzg

tyy = —ip(T + 299" ) = tss =t = tes

tyy = —4ip’q

tin=—ip(T = 2q9q°) = ty3 = —ta = =ty .
tys = =2ilg’ .
te=-2Tgq

tes = —4ip’q’
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tsy = —1q/B% = tsy = tsq = —lse
te, = —u(T? + 4p?qq’ ) = tes

tes = —4ul'pq
tea=—u(T?—4piqq’) = —te,
tes = "4“ I'pq ’
tn=t25=t55=t52=0

where

r=2p?-1/8%

After removal of a common factor of gq’, the inverse T, ' is seen to be just a
rearrangement of the elements of T,

. ter tsy ty ta Ly tn

—t&s 0 "t“ ‘tu 0 ‘-t15

T = —ts =lsn —ly3 —In tay —tia

tsa —ts tyy 3 tn tis

{-Qz 0 =t =t 0 =t

leg =ts tn ta —tn tn




