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Introduction

-'Potentially harmful noise levels in many military environ-
ments require the use of hearing-protective devices by personnel
operating in those environments. A rapid, reliable, and valid
method for the field measurement of the amount of attenuation
afforded by the various hearing protectors is needed to ensure
that the devices are being properly used and are effective in
reducing noise exposure. At present, a method for objectively
measuring the attenuation of hearing protectors in a field
environment is not available.

The purpose of the present study was to determine if evoked
auditory potentials could provide objective measures which could
be used as dependent variables in a more extensive study of the
attenuation characteristics of hearing-protection devices. An
additional purpose of the work was to provide baseline, labora-
tory data as a comparison for the field work of the attenuation
study.

Noninvasive, electrophysiological recording techniques have
been used to objectively measure the biologically effective
levels of auditory stimuli in both laboratory and clinical
settings. Such measures are objective in that they do not
require a judgment on the part of the subject. Indeed, no overt
response or active participation at all is required of the sub-
ject in order for a valid measurement to be made.

At present, the most commonly used of these measures is the
auditory brainstem response (ABR). The ABR consists of a series
of short-latency electrical potentials evoked by brief stimuli
and recorded by surface electrodes placed at various locations on
the head. The potentials are averaged over a number of stimulus
presentations to isolate activity temporally locked to the
stimulus from the random background activity. Wave V of the ABR
can be reliably identified by trained observers over a wide range
of measurement conditions and its latency in persons with normal
hearing varies in a predictable manner with the level of the
stimulus (Moore, 1983). Although human judgment and error have
always been factors in measuring the latency of Wave V, several
automated, statistical procedures are under development to
objectively detect this wave (cf., Elberling and Don, 1987; Salvi
et al., 1987).

A recently developed measure, the 40-Hz evoked response, is
not yet in general use as a standard in auditory work. This
response is derived from three waves of the mid-latency responses
(MLR) which follow the ABR. These waves have natural latencies
which are multiples of the period of 40-Hz. At a stimulus
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repetitiun rate of 40 Hz they are enhanced, making them easily
detectable in the averaged waveform (Galambos et al., 1981;
Lenarz et al., 1986; Sammeth and Barry, 1985). This enhanced
potential can be recorded from the same electrode placements as
used for the ABR. Although there are a few reports regarding
latency changes produced by changes in stimulus level, at present
the dependent variable of choice is the amplitude of the 40-Hz
MLR.

Both the ABR and the MLR have advantages and disadvantages
as measures of the effectiveness of auditory stimulation. The
ABR has been used extensively and the variation in the latency of
its Wave V as a function of effective stimulus level is well
known. On the other hand, the stimuli used in most cases are
broad-band clicks, so that frequency-specific information is not
produced. Another disadvantage is that different latency norms
must be used for male and female subjects (Schwartz and Berry,
1985). The 40-Hz evoked MLR is reported to be a robust, fre-
quency-specific response, which can be obtained with fewer
ctinulus presentations than the ABR, but it suffers from con-
siderable variability aepending on the attentional state of the
subject. No data have been reported concerning pozsible gender
differences for this measure.

Neither the ABR nor the MLR has been standardized well
enough to be used in laboratory or clinical settings without con-
siderable interpretation according to local ground rules. The
stimuli which are described in most published reports have
unknown frequency content and poorly specified levels. In
addition, a variety of stimulus durations and repetition rates,
both of which affect the ABR response (Moore, 1983), are used by
different investigators. The filters used in recording are often
chosen to eliminate various types of noise contamination with
little regard to the resulting phase distortion of the evoked
waveforms. Severe filtering can affect amplitudes, latencies and
even the polarities of the waves of interest (Scherg, 1982;
Janssen et al., 1986). The many electrode placements which are
used also contribute to the difficulty of interpreting data from
different sources.

For the above reasons, it is not possible to use evoked-
response data already existing in the literature as a norm for
the field study of attenuation. The present, preliminary, study
was conducted to determine a feasible configuration of stimulus
variables consistent with the rapid acquisition of objective data
necessary for field attenuation measurements.
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Materials and Methods

Both the ABRs and the MLRs were recorded from the same
subjects over a range of frequencies and levels. The stimuli
used were 12-ms tone bursts produced by modulating sinusoids with
an 83.3-Hz haversine. These waveforms met the requirement for a
brief duration without exhibiting an excessive spread of energy
to non-signal frequencies.

The stimuli for the ABR conditions were bursts of 250, 500,
1000, 2000, and 4000 Hz presented at a rate of 10 per second.
With the exception of 4000 Hz, all were presented at sensation
levels (3L) of 20, 35, and 50 dB. The levels for the 4000-Hz
conditions were 20, 30, and 40 dB SL.

The same frequencies were used for the MLR conditions as
were used for the ABR. At frequencies other than 4000 Hz, the
levels were 20, 30, 35, 40, and 50 dB SL. At 4000 Hz, the levels
were 20, 30, and 40 dB SL. The repetition rate was 40 per
second.

The signals for both the ABRs and the MLRs were conducted to
the ear from a TDH-49 headphone, sealed to a 2-ml coupler, by a
length of polyethelene tubing., The tip of the tubing was passed
through an opening in an E-A-R plug, which was used to seal the
tube to the ear canal of the subject. Resonances in the tubing
were damped by the insertion of tufts of steel wool into each end
of the tubing. The headphone-coupler-tubing combination was
calibrated with an additional 2-ml coupler and 0.5-inch micro-
phone in place of the subject's ear. The waveforms and spectra
for each frequency of tone burst measured in this manner are
shown in Figures 1-5. The second harmonic distortion products
were at least 35 dB below the signal levels at all frequenci.es,
with the exception of 250 Hz, where the second harmonic was 33.7
dB lower than the signal.

Ten young adults, seven males and three females, selected
from the subject pool of a local community college, were used in
the experiment. Each subject was screened for acceptable hearing
on the basis of a pure-tone audiogram obtained for each ear.
Acceptable hearing was defined as thresholds between -10 dB and
20 dB at standard audiometric frequencies (ANSI S12.6, 1984). No
other selection criteria were employed. The subjects were
comfortably positioned in a reclining chair inside a double-
walled Tracoustics audiometric testing booth for the recording
sessions. Instructions were given them to relax during the

* See manufacturer's list.
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recording sessions and most slept during the ABR recordings. For
the MLR recordings, they were instructed to remain relaxed but
alert. The experimenter made frequent checks to ensure that the
subjects were awake, but no assessment of the degree of alertness
was attempted.

Commercial, adhesive-backed disposable surface electrodes
were used for the recordings. The same electrode array was used
for both the ABR and the MTR recordings. The positive input to a
differential isolation amplifier was obtained from the forehead,
the negative input from the mastoid contralateral to the ear
stimulated and the ground from the ipsilateral ear lobe.

The ABRs were filtered with a pass band of 5 to 2000 Hz and
the MLRs with a pass band of 5 to 60 Hz. After filtering, the
waveforms were digitized by a 12-bit A-to-D converter and
averaged by an IBM XT-compatible computer.

Rapid data acquisition is a requirement for the field study
and each ABR was based on 2000 stimulus repetitions. The results
of a pilot experiment using a single subject had indicated that
this number of repetitions would produce an adequate signal-
to-noise ratio. The averaged waveforms were displayed on-line
and stored on disk for more detailed analyses off-line.

The latency from the stimulus onset to the peak of Wave V
was the dependent measure for the brainstem response. The
amplitude of the 40-Hz component obtained from a fast Fourier
transform of the averaged waveforms was the MLR dependent
measure.

Results

The ABR results are summarized in Figure 6. The figure
shows the mean latencies for all subjects at all frequencies as a
function of the SL of the stimulus. Any sex differences which
may have been present in the latencies were obscured by other
sources of variability. The latencies, therefore, were averaged
without regard to sex. The latencies shown have been corrected
in this and all subsequent figures for the acoustic delay
introduced by the length of tubing which conducted the stimulus
to the ear. It is evident that the overall latencies for the
five frequencies are ordered according to the relative positions
of their travelling wave maxima along the basilar membrane. The
#higher frequencies, with maxima near the basal end of the
membrane, are represented by short latencies and the lower
frequencies, with maxima nearer the apical end, are represented
by longer latencies, indicating that the responses elicited by
the various stimuli were frequency-specific.
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Filled circles: 250 Hz Open squares: 500 Hz
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The mean ABR data for the individual frequencies are pre-
sented in Table 1. With the exception of the 500-Hz data, the
mean latencies show little change as a function of the stimulus
intensity. In addition, at most frequencies the variability
around each data point is quite high, approaching and sometimes
exceeding the magnitude of the change produced by the independent
variable. Several methods were attempted to reduce the vari-
ability of the data, including digital filtering of the averaged
waveforms and averaging the waveforms across subjects. None of
these methods produced any practical improvement.
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Table 1.

ABR latencies and standard deviations.
Means for all subjects.

Sensation level (db) Latency (ms) Standard deviation (ms)

0.25 kHz

20 14.22 0.58
35 13.93 0.76
50 13.37 0.34

0.50 kHz

20 12.00 2.14
35 10.70 1.12
50 9.97 1.18

1.00 kHz

20 7.96 0.74
35 8.71 1.16
50 8.38 0.83

2.00 kHz

20 7.02 0.39
35 7.71 0.70
50 7.20 0.49

4.00 kHz

20 7.35 0.37
30 7.47 0.10
40 10.90 0.43

13



The mean magnitudes of the 40-Hz component of the MLRs for
all subjects are shown as a function of stimulus level in Figure
7. A general trend for the magnitude of the recponse to increase
with increasing level can be discerned, with a 30 dB increase in
stimulus level producing about a 10 dB increase in the magnitude
of the 40-Hz component. The variability of the response, how-
ever, is extreme as shown in the data for individual frequencies
presented in Table 2. Here, as in the ABR results, the magnitude
of the effect due to variation of the independent variable is
obscured by the uncontrolled variation in the dependent variable.

30

20

C

Cy 0 0

01
20 30 40 50

Sensation level (dB)
Figure 7. Mean magnitures of MRL respones for all subjects and

all frequencies.

Filled circles: 250 Hz Open squares: 500 Hz
Filled diamonds: 1000 Hz Filled triangles: 2000 Hz
Filled squares: 4000 Hz

Discussion

Although the pilot data taken from one subject indicated
that the averaged ABR responses to 2000 stimulus repetitions
would be an adequate number upon which to base an estimate of the
latency of the Wave V component, this did not prove to be the
case in the main experiment. The variability both within and
across subjects was unacceptably high. The latency changes pro-
duced by the full range of stimulus intensity often were exceeded
by the standard deviation at any given intensity (Table 1).
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Table 2.

MLR magnitudes and standard deviations. Means for all
subjects. Values in all columns are in decibels.

Sensation level Magnitude Standard deviation

0.25 kHz

20 9.64 7.5
30 13.87 7.7
35 15.67 8.2
40 14.98 5.3
50 19.57 5.5

0.50 kHz

20 11.96 6.5
30 9.13 10.7
35 15.18 6.3
40 16.19 8.4
50 20.72 5.6

1.00 kHz

20 13.18 3.3
30 12.27 8.1
35 18.17 4.8
40 17.62 5.6
50 20.80 4.5

2.00 kHz

20 9.00 5.6
30 12.53 4.3
35 15.62 6.7
40 18.15 3.4
50 18.94 5.4

4.00 kHz

20 11.66 5.2
30 13.88 4.6
40 16.47 4.4
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Most of the published reports regarding the magnitude of the
40-Hz component of the MLR as a function of stimulus level state
that it is a good ineicator of threshold. The variability of the
measurements is rarely included in these reports, so that no
meaningful comparisons can be made between them and the results
of the present experiment in which the variability was considered
unacceptably high. As in the case of the ABR results, the range
of the dependent variable is small compared with the standard
deviation at any given level (Table 2). Lenarz et al. (1986),
however, do report the standard deviations for their measure-
ments. For stimulus conditions similar to those of the present
experiment, their variability appears to be comparable in mag-
nitude. They attribute this large intrasubject and intersubject
variability to contamination by myogenic potentials and to
changes in the subject's state of vigilance. The variability of
their data does decrease for near threshold levels, which they
interpret to be the result of a decrease in myogenic potentials
generated by cranial musculature. These potentials often con-
taminate middle lazency responses, even when the subject appears
to be in a relaxed state (Streletz et al., 1977). Since the
present data were all collected at suprathreshold levels, the
possibility of myogenic contamination cannot be ruled out.

Conclusions

When evoked by the proper stimulus, Wave V of the ABR can
produce frequency-specific information. It must be averaged over
a large number of repetitions before it can be considered a reli-
able indicator of effective stimulus level, however, making it an
unsuitable measure for field work in which time is limited. Some
reduction in variability and in data collection time might be
achieved through the use of one of the automated statistical pro-
cedures mentioned earlier. However, the length of time required
for such a procedure is determined in part by the signal-to-noise
ratio, which could not be known in advance.

The MLR also is unsuitable for use as a rapid measure of
effective stimulus level due to its large variability. This
variability might be reduced by the use of a data-collection
protocol which provides for the maintenance of the subject's
attention within narrow limits. It is not clear, however,
whether the possible contribution of myogenic potentials to the
variability could be reduced to an acceptable amount at supra-
threshold stimulus levels.

For the conditions examined in the present experiment,
neither measure provides a reliable estimate of the effective
stimulus level.
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