
PROCEEDINGS OF THE
FOURTH ANNUAL

Ada SOFTWARE ENGINEERING
EDUCATION AND TRAINING

SYMPOSIUM

II

Sponsored by:

Ada Software Engineering Education and Training Team
Ada Joint Program Office

DT-',-
.... T t .

NOV, : '"

J.W. Marriott Hotel
Houston, Texas

June 13-15, 1989

Approved for Public Release:
Distribution Unlimited

8 9 11 019

The views and opinions herein are those of the
authors. Unless specifically stated to the contrary,they do not represent official positions of the
authors' employers, the Ada Software Engineering
Education and Training Team, the Ada JointProgram Office, or the Department of Defense.

Hm

ASEET TEAM MEMBERSHIP

Ms. Wanda B. Barber AV 687-1722
USA Information Systems Software 804-734-1722
Development Center-Lee wbarber@ajpo.sei.cmu.edu
Stop L-75
Fort Lee, VA 23801

Captain Roger Beauman 601-377-3728
Software Engineering Training Branch AV 868-3728
3390 TCHTG/FI'MKPP rbeauman@ajpo.sei.cmu.edu
Keesler AFB, Mississippi 39534-5000

Captain Eugene Bingue 402-294-2545
HQSAC/SCRT AV 271-2545
Offutt Air Force Base
Nebraska 68113-5000 SAC.INSTRUCTOR@E.ISI.EDU

Captain David A. Cook 409-693-3881
1403 Francis Drive
College Station, TX 77840 dcook@ajpo.sei.cmu.edu

Skip Dane 301-267-2797
Assist. Professor dane@USNA.MIL
Computer Science (M.S. 9F)
U.S. Naval Academy
Annapolis, MD 21402

Mr. Leslie W. Dupaix 801-777-7377
Hill AFB, Utah 84056 AV 458-7377
USAF Software Technology Support Center
OO-ALC/MMEA- I

Major Charles B. Engle, Jr. 412-268-6525
Deputy Program Manager cengle@ajpo.sei.cmu.edu
Software Engineering Institute engle@sei.cmu.edu
Carnegie Mellon University
Pittsburgh, PA 15213

Captain Jay Hatch 914-938-2302
US Military Academy
Department of Geography & Computer Science
West Point, NY 10996

ii

Captain Joyce Jenkins 719-472-3530
US Air Force Academy AV 259-3530
Computer Science Department jjenkins@ajpo.sei.cmu.edu
Colorado Springs, CO 80840

Major Pat Lawlis
Dept of Computer Science
Arizona State University lawlisp@ajpo.sei.cmu.edu
Tempe, AZ 85287 lawlis%asu@relay.cs.net

Major Ed Liebhardt 202-694-0208
AJPO, Pentagon Room 3E 114 AV 224-0208
Washington, D.C. 20301-3081 liebhard@ajpo.sei.cmu.edu

Ms. Cathy McDonald 703-824-5531
IDA AV 289-1890
1801 N. Beauregard Street mcdonald@ajpo.sei.cmu.edu
Alexandria, VA 2211

LCdr Lindy Moran 202-433-5236
Navy Regional Data Automation zkc620@NARDACNET-DC.ARPA
Center Code 62 moranl@ajpo.sei.cmu.edu
Building 159, Room 335
Washington Navy Yard
Washington, D.C. 20374-1435

E.K. Park 301-267-2679
Assist. Professor 301-267-3080
Computer Science (M.S. 9F) eun@USNA.MIL
U.S. Naval Academy
Annapolis, MD 21402

Major Doug Samuels AV 858-6941
Headquarters AFSC/PLR 301-981-6941
Andrews AFB, Maryland 20334-5000 dsamuels@ajpo.sei.cmu.edu

Major Randall B. Saylor AV 487-2172
HQ ATC/TIOK 512-652-2172
Randolph AFB, TX 78150 6426

saylor@dca-ems

Captain Michael Simpson AV 868-3728
Software Engineering Training Branch 601-377-3728
3390 TCHTG/TTMIKPP msimpson@ajpo.sei.cmu.edu
Keesler AFB, Mississippi 39534-5000

iv

Major David Umphress AV 785-3098
Air Force Institute of Technology 513-255-3098
AFIT/ENC durnphres@galaxy.afit.af.mil
WPAFB, OH 45433

Captain David Vega AV 868-3728
Software Engineering Training Branch 601-377-3728
3390 TCHTGr1IMKPP dvega@ajpo.sei.cmu.edu
Keesler AFB, Mississippi 39534-5000

V /

This Page Left Blank Intentionally

vi

TABLE OF CONTENTS

Message From The ASEET Chair ... 1

Wednesday, June 14, 1989

Software Maintenance Exercises for a Software Engineering
Project Course - Charles Engle, Gary Ford, Tim Korson 3

Software Engineering and Ada Database System (SEAD) -
M orris Liaw ... 11

Why Ada is (Still) My Favorite Data Structures Language,-
Michael B. Feldman 17

Ada in the University: Data Structures with Ada - Gertrude Levine 31

Ada and Data Structures: "The Medium is the Message" -
M elinda M oran .. 37

A Healthy Marriage: Ada and Data Structures - Harold Youtzy, Jr 59

Teaching Old Dogs New Tricks - Tina Kuhr 65

Process Control Training for a Software Engineering Team - Ed Yodis,
Sue LeGrand, Ann Reedy ... 73

Ada Training At Keesler Air Force Base r Roger Beauman 87

Integrating Ada into the University Curriculum: Academia and Industry:
Joint Responsibility - Kathleen Warner, Russell Plain, K. Warner 99

Making the Case for Tasking Through Comparative Study of Concurrent
Languages - Michael B. Feldman .. III

Teaching the Ada Tasking Model to Experienced Programmers:
Lessons Learned - John Kelly, Susan Murphy 121

Ada: Helping Executives Understand the Issues - David A. Umphress.. 135

vii

TABLE OF CONTENTS
(continued)

Thursday, June 15, 1989

The Pedagogy and Pragmatics of Teaching Ada as a Software
Engineering Tool - Melinda Moran, Charles Engle 147

Incorporating Ada Into a Traditional Software Engineering Course -
Albert L. Crawford .. 161

Motivation and Retention Issues in Teach Ada: How Will Students Learn
Software Engineering When Their Only Goal is Ada on their Resume? -
Mary Wall, Barbara Koedel .. 171

Use of Programs and Projects to Enhance a Software Engineering
Using Ada Course - Robert C. Mers .. 177

Software Design with Ada: A Vehicle for Ada Instruction -
O rville E. W heeler ... 181

Transitioning to Engineered Ada in the Small Liberal Arts College -
Ronald H . Klausewitz ... 191

A HyperCard Prototype of a CASE Tool in Support of Teaching the
Berard Method of Object Oriented Development in an Undergraduate
Course - Frances L. VanScoy .. 195

A uthors Index .. 215

viii

.1.-

MESSAGE FROM THE ADA SOFTWARE ENGINEERING
EDUCATION AND TRAINING (ASEET) TEAM CHAIR

Major Doug Samuels, USAF

It gives me great pleasure to welcome all of you to this year's ASEET symposium. The
team has worked very hard to make this fourth symposium our best. This year's competition for
papers was very fierce. We received many more papers than we had time to present. They were
all very good and the selection was tough. I'm sure you will find the papers and panels stimulating
and thought provoking. The papers represent a broad spectrum of government, industry, and
academia. Interaction and a forum for exchange of ideas is essential for the successful
instantiation of Ada in these domains. I believe you'll find this symposium an excellent
opportunity to accomplish these goals. We are privileged this year to have one of the language
developers as our keynote speaker, Dr Robert Firth. He will bring true meaning to the phrase
"instantiation of Ada in these domains." Our exhibitors bring you education and training tools that
will facilitate your move to Ada. Please take the time to examine their wares. I hope you all attend
the outstanding reception they provide on Wednesday night.

In order to constantly improve the symposium, we have placed critique forms through out
the symposium. Please take the time to fill these out. Again, let me welcome you to the Fourth
Annual ASEET Symposium. Thank you.

Software Maintenance Exercises
for a

Software Engineering Project Course

Charles B. Engle, Jr.
Gary Ford

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Tim Korson

Clemson University
Computer Science Department

Clemson, SC 29634-1906

Abstract: Software maintenance is an important task in the software industry and thus an
important part of the education of a software engineer. It has been neglected in education,
partly because of the difficulty of acquiring and/or preparing a software system upon which
maintenance can be performed. This paper describes a report released by the Software Engi-
neering Institute (SEI) that provides an operational software system of approximately 10,000
source lines of code written in Ada and several exercises based on that system. Concepts such
as configuration management, regression testing, code reviews, and stepwise abstraction can be
taught with these exercises. This paper describes how the Documented Ada Style Checker
(DASC) is presented to the instructor and how it may be used in a project based course.

Introduction

Because many if not most computer science majors go on to careers involving software development, a
project-oriented course in software engineering can be very valuable in the curriculum. One of the goals of
the Undergraduate Software Engineering Education Project at the SEI is to provide instructors and students
with guidelines and materials for such a course.

Toward that end, in 1987 the SEI published the technical report Teaching a Project-Intensive Introduction to
Software Engineering [Tomayko87b]. This report identified four different models for such a course and
then presented detailed guidelines for one of them, the large project team model. This model requires 10 to
20 students organized as a software project team, with different students playing different roles (e.g.,
principal architect, project administrator, configuration manager, quality assurance manager, test and
evaluation engineer, documentation specialist, and maintenance engineer). The instructor plays the role of
project manager. The student roles are defined in Appendix I.

3

With such a course structure, not every student writes code; in fact, very few of the students write code.
Instead, the students expo. .ence directly or indirectly all the aspects of a software development project, and
that is what makes '-.h a course a software engineering course rather than simply an advanced pro-
gramming or grou'- programming course.

A long-standing difficulty with such a course is that there is almost never enough time to develop a piece of
softw.re from scratch and then have the students do some maintenance on it. Many instructors are unaware
of the importance and methods of software maintenance, and they often do not even include the subject in
their course syllabus. Even instructors who do want to teach maintenance often cannot devote the time to
finding or developing a system for the students to maintain. Since software maintenance is a fact of life in
the software industry, it is important for students to have experienced it and learned some of the known
techniques.

The intent of this paper is to describe how a recent SEI education report can make teaching software
maintenance more feasible in a software engineering project course. The SEI report provides an operational
software system, called the Documented Ada Style Checker, (described below); a reasonable set of
documentation for the system; and specific exercises with guidelines for the instructor. Altogether, the
materials could be the basis for a semester-long course. Individual exercises might be assigned as part of
other courses, including a project course based primarily on new development.

The software system is written in Ada. For instructors and students new to Ada, there is a great advantage
in designing a course around maintenance rather than new development. Students are able to work on a
much larger system, and thus experience many more Ada constructs, than would be the case if they had to
learn the language in parallel with developing code. In general, analysis is easier than synthesis in
engineering.

This paper will explain what is to be found in the education report for DASC and how it might be used. For
a more complete understanding of the discussion points, readers are referred to the SEI education report
[Engle891.

Software Maintenance

The term software maintenance is generally used to mean changing a program in order to correct errors,
improve performance, adapt to a changing environment, or provide new capabilities. Some consider this to
be an abuse of the term maintenance and suggest other terminology, including software evolution and post-
deployment software support. However, the term maintenance is widely used and understood, so we will
use it here also. In simple models of software development, such as the common waterfall model,
maintenance is considered to be an activity separate and different from development. From a software
ergineering standpoint, however, it is better to view maintenance as involving the same activities as those of
development (such as requirements analysis and specification, design, implementation, and testing) but
performed with different constraints. The most significant of those constraints is the existence of a body of
code and documentation that must be incorporated into the new version of the system. Usually the cost of
modifying the existing system is less than that of creating an entirely new system with the desired new
functionality. This is the fundamental justification fzr software maintenance. However, it is the
responsibility of the software project manager to recognize when this is not the case and that the existing
system should be retired and a new system produced. Swanson defines three categories of software
maintenance [Swanson76]:

4

" Perfective: modifications requested by the user (usually because of changing or new requirements)
or by the programmer (usually because of the discovery of a better way to implement part of the
system).

" Adaptive: modifications necessitated by changes in the environment in which the program
operates (including transporting the program to a different computer system).

" Corrective: modifications to correct previously undiscovered errors in the program.

The exercises in the Report include some in each of these categories. There are relatively few techniques or
methods specifically for software maintenance as compared to new software development. There are,
however, a few software engineering techniques whose usefulness can be demonstrated especially well
through maintenance efforts. Four that we recommend to instructors and students are:

" Software Configuration Management
" Regression Testing
* Code Reviews
" Stepwise Abstraction

Software configuration management encompasses the disciplines and techniques of initiating, evaluating,
and controlling change to so:tware products during and after the development process. The students should
be required to develop and :, 'here to software configuration management plan as part of the course. The
software system described in Lhe Report consists of approximately 10,000 lines of code (in 63 separately
compilable program units) and nine documents. When the students are working on the changes to both
program and documentation, especially when different students are working on different changes, careful
configuration management is essential to the project. Therefore one of the first recommended exercises is
the development of the configuration management plan. Additional information on configuration
management may be found in tTomayko86] and [Tomayko87al.

Regression testing is defined as "selective retesting to detect faults introduced during modification of a
system or system component, to verify that modifications have not caused unintended adverse effects, or to
verify that a modified system or system component still meets its specified requirements" [IEEE831. Some
of the exercises require major changes to the software system and therefore call for substantial retesting,
perhaps involving the entire test suite. Other exercises require rather minor changes, and a single, simple
retest may be sufficient. One of the first recommended exercises is the development of regression test plans.
Additional information on regression testing may be found in [Collofello88b].

Code reviews offer an opportunity for software developers to discover errors or inefficiencies in their code
earlier in the development process. Their use is an application of a fundamental principle of engineering: it
is almost always less costly to find and correct an error early in the process rather than late. They are
becoming increasingly common in industry, so students should learn at least one form of review in a
software engineering course. Reviews can be conducted in a number of different ways; a good introduction
for the instructor may be found in [Collofello88aI.

Stepwise abstraction is a technique pioneered by IBM Federal Systems Division (now Systems Integration
Division). It is used to recover the high level design of a system in the absence of design documentation.
The design can then be used to plan program changes. Britcher and Craig describe the process as follows
[Britcher86]:

"From the source code, the designer abstracted the module design and recorded it using PDL
[Process Design Language]. Choosing the level of abstraction based on the module, the designer
determined the change required. Often this was an iterative process; the designer abstracted a
detailed design from the code, then generated another less detailed (yet still precise) abstraction from
that design. The iteration continued until the designer was comfortable with the level of
abstraction."

5

Some of the exercises in the Report can take advantage of this technique. For the DASC system, which is
reasonably well structured and makes good use of Ada packages, this abstraction is quite straightforward.
However, because it is a powerful and useful technique, we strongly recommend using it. The instructor
may want to lead a classroom discussion to introduce the process.

The Documented Ada Style Checker (DASC)

Background. In 1987, Professor Jim Tomayko produced a technical report entitled Teaching a Project-
Intensive ntroduction to Software Engineering [Tomayko87b] that detailed his experiences in teaching such
courses at Carnegie Mellon University and at Wichita State University. He included in his report, as
appendices (but provided separately), the documents that he provided to the students and some of the reports
that were produced by his students.

Using Professor Tomayko's technical report as a guideline, Professor Linda Rising of Indiana University -
Purdue University at Fort Wayne (IPFW) taught a project course at IPFW designed to teach software
engineering. In order to impress upon her students that this was not just an advanced programming course,
she created a course that taught the principles of software engineering without writing any code. She did
this by selecting an artifact, an Ada Style Checker, from the Ada Software Repository (SIMTEL20) and
providing it to the students. The students were then charged with creating the requirements documents,
design documents, test plans, maintenance plans, etc. When her course was finished, Professor Rising
donated all of the materials produced by her students to the SEI Education Program. Since the Ada Style
Checker now included documentation, its name was changed to the Documented Ada Style Checker or
DASC.

When the members of the SEI Education Program received this material they tried to decide how to best use
what Professor Rising had provided. They, notably Gary Ford, conceived of the idea of providing small
artifacts with specific exercises for use in project courses. Dr. Ford asked a visiting scientist, Professor Tim
Korson from Clemson University, to develop some exercises based upon the IPFW materials.

Dr. Korson conceived of the idea of providing maintenance exercises for the IPFW material and produced a
series of such exercises that could be sensibly built from Professor Rising's students' work. He also ported
the software system from the DEC VAX, on which it was provided, to a PC using the Alsys PC AT Ada
compiler.

Chuck Engle, an Army Resident Affiliate to the Education Program at the SEI, then ported the system to the
Ultrix operating system using the Verdix Ada compiler. Additional maintenance exercises were added by
Gary Ford and Chuck Engle.

A final educational material report was issued for the DASC by the SEI in February 1989 [Engle89]. The
DASC system has since been ported to the PC using the Meridian AdaVantage compiler.

Description of the DASC. The Documented Ada Style Checker (DASC) software system examines
syntactically correct Ada programs and reports on their adherence to predefined style conventions.
Examples of the style conventions examined are:

• Case of characters in reserved words and object identifiers

" Consistency of indentation to show program control structures
" Use of blank lines to set off program blocks
" Subprograms too short or too long
" Control structures or packages nested too deeply

6

* Use or lack of use of Ada-specific features

The style checker produces two kinds of reports, called aflaw report and a style re ort. The former iden-
tifies specific statements in the program that violate style conventions, and the latter is a quantitative
summary of the program's style.

The DASC consists of an operational piece of software of about 10,000 lines of Ada code and its associated
documentation. The documentation is student generated, as detailed above, and consists of the following
documents:

1. Requirements Document
2. Preliminary Design

3. Detailed Design
4. Documentation Standards and Guidelines
5. Coding Standards
6. Quality Assurance Plan
7. Test Plan
8. Configuration Management Plan
9. User Manual

The requirements and design documents (items 1-3), having been produced from the source code, clearly
are not as complete as one would expect in a real software development project. However, they do provide
a starting point for maintenance exercises, including maintenance of the documents themselves.

The documentation and coding standards and the three plan documents (items 4-8) were used by Prof.
Rising and her students to guide their project. These documents reflect both development and maintenance
activities. Some of the first exercises (described below) suggested in the SEI Report involve updating these
documents to reflect new maintenance activities.

The DASC is not presented as a model of good coding style, design, or documentation. In fact, if the style
checker is run on itself, it reports many problems. There are some fairly obvious design improvements that
could be made. The documentation is reasonable although not complete, and no formal analysis, design, or
documentation technique is used.

In summary, one might say that this artifact seems to be a fairly representative example of existing software
systems. This is not necessarily bad, because a valid educational objective might be to expose students to
"the real world."

Use of the DASC Materials

Introduction. The SEI Report is a description of the DASC packaged with a series of suggested main-
tenance exercises. Discrepancy reports and change requests are provided that suggest a graduated level of
difficulty in the maintenance exercises. A description of how to conduct a code review, including references
to modules in the DASC that are particularly well suited for this exercise, are also suggested. Finally, the
Report includes a suggested exercise for the development of regression test plans, which could lead the
instructor into, a discussion of the use of regression testing in maintenance.

Discrepancy Reports. The Report includes five discrepancy reports that describe known discrepan-
cies in the DASC. These are designed to be given to the students to demonstrate corrective maintenance.
The students should present the discrepancy reports to the configuration control board of the project team for

7

a determination of what is needed to correct the problems. The Report provides the instructor with a
complete description of the discrepancy as well as full information as to what is causing the problem, where
the error is to be found, and suggested ways of correcting the discrepancy. The instructor is then free to
choose how much, if any, of this information to share with the students. An on-line copy of a blank
discrepancy request is provided so that the instructor may modify the form to suit his or her specific needs.

Change Requests. There are seven change requests included in the Report. The purpose of the
change request is to suggest improvements or modifications to the system that the students may perform,
thereby affording the student the opportunity to conduct perfective maintenance. The change requests are
provided in a format similar to the discrepancy reports with a copy of a filled-in change request for each of
the suggested changes. The instructor is, .ce again provided with a description of why the change is
needed and some tips on how the change may be accomplished. An on-line copy of a blank change request
is provided so that the instructor may make changes in the format of the form if desired.

Code Reviews. In conjunction with one of the change requests, the Report describes a portion of the
DASC that is suitable for conducting a code review, i.e., it illustrates some of the principles of a code review
and demonstrates its effectiveness. The instructor is referred to two other SE documents, [Collofello88]
and [Cross88], for the details of how to conduct a code review.

Suggested Course Ideas. The materials in the Report may be used in a semester long course on
software maintenance or may be included in lesser amounts as part of other courses. The idea behind the
Report is that the instructor can start his or her course with a medium sized piece of code that is probably
beyond the capabilities of his or her students to completely understand in detail. This forces the students to
work in teams and to be cognizant of the human factors in group dynamics. In addition, it rapidly
demonstrates the need for configuration management and for planning. The interested instructor is referred
to [Tomayko87b] for a detailed discussion of the manner in which to conduct such a course.

Summary

The SEI Report on the DASC describes a self-contained artifact, associated documentation, and a series of
exercises that can impart to the student the skills needed for software maintenance in all of its various forms.
It provides the instructor with a tool that has long been missing from the college curriculum; an artifact large
enough to use to teach software engineering (not advanced programming), yet small enough to be used on a
PC. The DASC can be used to teach students the fundamentals of software maintenance, including
regression testing and code reviews. Perhaps more importantly, by providing a system too large for one
student to completely master in a normal academic session (semester or quarter), the DASC can be used to
establish the cognitive dissonance necessary to make students want to develop these skills.

References

[Britcher86] Britcher, Robert N., and James J. Craig. "Using Modem Design Practices to Upgrade
Aging Software Systems." IEEE Software 3, 3 (May 1986), pp. 16-24.

[Collofello88a] Collofello, James S. The Software Technical Review Process. Curriculum Module
SEI-CM-3-1.5, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa., 1988.

8

[Collofello88b] Collofello, James S. Introduction to Software Verification and Validation. Curriculum
Module SEI-CM-13-1. 1, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa., 1988.

[Cross88] Cross, John A., editor. Support Materials for The Software Technical Review
Process. Support Materials SEI-SM-3-1.0, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., 1988.

[Engle891 Engle, Charles B., Jr., Gary Ford, and Tim Korson. Software Maintenance Exercises
for a Software Engineering Project Course. Educational Materials CMU/SEI-89-EM- 1,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa., 1989.

[IEEE83] IEEE. Standard Glossary of Software Engineering Terminology. ANSIIIEEE Std
829-1983, Institute of Electrical and Electronics Engineers, 1983.

[Swanson76] Swanson, E. B. "Mhe Dimensions of Maintenance." Proc. 2nd International
Conference on Software Engineering, IEEE Computer Society, 1976, pp. 492-497.

[Tomayko86] Tomayko, James E. Support Materials for Software Cotrfiguration Management.
Support Materials SEI-SM-4-1.0, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., 1986.

[Tomayko87a] Tomayko, James E. Software Configuration Management. Curriculum Module SEI-
CM-4-1.3, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pa., 1987.

[Tomayko87b] Tomayko, James E. Teaching a Project-Intensive Introduction to Software
Engineering. Technical Report CMU/SEI-87-TR-20, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., 1987.

L -

Appendix 1. Project Team Roles

Principal Architect: Responsible for the creation of the software product. Primary responsibilities include
authoring the requirements document and specification document, advising on overall design, and
supervising implementation and testing.

Project Administrator: Responsible for resource allocation and tracking. Primary responsibilities are cost
analysis and control, computer and human resource acquisition and supervision. Collects data and issues
weekly cost/manpower consumption reports and the final report.

Configuration Manager: Responsible for change control. Primary responsibilities include writing the
configuration management plan, tracking change requests and discrepancy reports, calling and conducting
change control board meetings, archiving, and preparing product releases.

Quality Assurance Manager: Responsible for the overall quality of the released product. Primary
responsibilities include preparing the quality assurance plan, calling and conducting review-s and code
inspections, evaluating documents and tests.

Test and Evaluation Engineer: Responsible for testing and evaluating individual modules and subsystems
and for preparing the appropriate test plans.

Designer: Primary responsibility is developing aspects of the design as specified by the architect. During
the pre-design stage, this person could assist in a literature search to explore similar products or problems.

Implementor: Primary responsibility is to implement the individual modules of the design and serve as the
technical specialist for a particular language and operating system. During the requirements specification
and design stages, the implementors could develop tools and experiment with new language constructs
expected to be needed in the product.

Documentation Specialist: Responsible for the appearance and clarity of all documentation and for the
creation of user manuals.

Verification and Validation Engineer: Responsible for creating and executing test plans to verify and validate
the software as it develops, including tracing requirements through specification, design, coding, and
testing. Also responsible for code inspections. Acts as a member of an independent group.

Maintenance Engineer: Primary responsibility is creating a guide to the maintenance of the delivered
product.

10

The Software Engineering and Ada Database (SEAD)

Dr. Morris M. Liaw
University of Houston at Clear Lake

INTRODUCTION

The University of Houston/Clear Lake (UH/CL) and
NASA/Johnson Space Center have cooperated on a project to
increase the availability of information about Software
Engineering and Ada. The result of this project is the
Software Engineering and Ada Database (SEAD), an on-line
relational database. SEAD was funded by NASA/JSC and
developed at UH/CL. SEAD is currently available to NASA
personnel and Contractors via the NASA/JSC Center
Information Network (CIN).

REQUIREMENTS

SEAD was conceived as an information resource for NASA and
NASA Contractors, containing information about Ada-based
resources and activities which are available or underway
either in NASA or elsewhere in the worldwide Ada community.
The sharing of this information will reduce duplication of
effort while improving quality in the development of future
software systems.

To be successful, the information on SEAD must be readily
available to potential users, thus SEAD required on-line
access.

Since SEAD will serve users from a variety of backgrounds,
located in all parts of the United States, a primary
requirement was that the database be easy to use, with ample
on-line help docamentation.

To decrease maintenance costs, NASA required that all
development be done using commercially available, well
supported, and widely used tools for the database management
system, menu manager, etc.

SEAD would contain information of interest to and available
from the Software Engineering Ada community. It would need
to be continuously updated.

DEVELOPMENT

11

To meet these requirements, the database structure was
developed using the ORACLE Relational DBMS, running in a
VM/CMS environment.

connectivity to the NASA/JSC Center Information Network
(CIN).

The user interface, which is completely menu driven, was
built with the ISPF Dialogue Management Server (DMS) and
ORACLE's SQL*Forms.

A help-line will soon become available for users.
Additional documentation is also available, such as the SEAD
Administration Guide, User's Manual, SEAD Brochure, Quick
Reference Chart, etc.

History

Development began in June, 1986 with the study of what
information was available related to software engineering
and Ada. Data items were identified, analyzed and grouped.
A logical data base was constructed, then the physical data
base was created. An on-line interactive retrieval system
was developed to query the database. In October, 1986, a
prototype demonstration was given at UH/CL. Based on the
results of the demonstration, several changes were made
during the next three months.

In January 1987, SEAD was installed at NASA and Alpha
testing was conducted through the end of February 1987.
Actual data was gathered and loaded as the system was
refined. In April 1987, the first release of SEAD was
finalized and released.

However, additional data is still being collected, and
feedback from users is being analyzed for future
improvements. The changes to be included in that release
were approved in August 1987. The second release was
available in January, 1988.

FEATURES

Making SEAD easy to use involved two main features: menus
and on-line help. Once a user is connected to the network,
he is automatically taken to the SEAD Main Menu, from which
he can select which general topic he is interested in. At
this point he can also get general information about the
database and the use of special function keys. After the
Main Menu, another level of menus, arranged hierarchically,

12

bring the user to the SQL*Forms panels where the data can be
retrieved and displayed.

Each menu is visible on a single screen, so users can see
all the selections at the same time. Also, each menu has a
help selection with information about the menu and how to
use it.

At the bottom level, SQL*Forms requires the use of special
function keys (or sequences of keys) to enter queries and
browse the data. There are too many data elements for each
item to be displayed on one screen, so the elements were
grouped logically, and the user can browse them one screen
at a time. Help at this level includes: how to construct
and enter simple queries, how to use the function keys to
move from one screen to another, and a description and
complete attributes of any element on any screen.

Since on-line updates can be made in any part of the
database anytime the system in running, users may have
access to the updates immediately.

In order to maintain the integrity of the database, key
constraints, domain constraints, and data consistency are
supported. The system enforces key constraints by not
allowing null or duplicated primary key values. The system
can validate the range and format of a field value at the
time it is entered to enforce domain constraints. Deletion
or insertion a record that will violate the consistency of
the database is prevented by the system, and key changes are
propagated automatically through triggers.

Security at the system level is handled by the use of
passwords which prevent visibility of and access to other
applications on the system. Users have read-only access to
the database, so all updates to the data are controlled by
the Data Administrator. Changes to the structure of the
database must be approved by NASA management through formal
change control procedures.

CONTENT

The information in the SEAD is organized into five main
areas:

I) Education and Training
2) Publications and Conferences
3) Projects
4) Compilers and Other Products
5) Reusable Software Components.

Additional services include a bulletin board for
announcements and information about meetings, and cross

13

referencing of information about projects publications,
compilers, projects and reusable packages.

SEAD is not intended to contain full information about these
items. Rather it serves as a resource, showing what is
available or in progress and where to obtain more
information. For example, we do not include "Lessons
Learned" information on projects, but we do include the name
and address of a contact person or organization wherever
possible.

ENHANCEMENTS

In the next release, scheduled for March 1989, changes will
be made to the organization of the menu, add a few data
elements to some screens, and include some additional
services. The organizational changes will mainly consist of
breaking compilers out as a separate category from other
projects, and regrouping the other categories into the
following areas: Additional data items will include such
things as a field for contact persons' electronic mail
address and the validation data and version for compilers.

UH/CL specific information from SERC, the High Technology
Laboratory Library, SEPEC, RICIS will also be available from
SEAD.

AdaNet is a national network supported by NASA Otice of
Technology Utilization, the Department of Defence Ada Joint
Program Office, the U.S. Dept. of Commerce, etc.

The AdaNet contract is managed for NASA by UH/CL. The
experience gained by the SEAD project prepared the
University personnel for the task of managing a national
resource such as AdaNet.

An AdaNet prototype was just released. SEAD may become
available as a menu item on the AdaNet prototype.

RESEARCH PROBLEMS

Most of the problems encountered in developing the SEAD were
associated with trying to adapt commercial applications to
an on-line system for a broad base of users. For example,
the lack of text processing capabilities in ORACLE limited
the size of data items to the width of the screen. Many
technical papers have titles longer than that. In addition,
SQL*Form's reliance on special function keys made the user
interface difficult for users with terminals that do not
have the special keys or whose function keys do not produce
the expected sequence of characters.

V"

Another issue arose from having the database located on the
NASA/JSC network. The SEAD must be accessible to everyone
who has a need for information about Software Engineering
and Ada. In contrast, to maintain the security of their
network, NASA has limiting access by requiring that
passwords must be requested in writing and cannot be
provided on-line.

It seems that the best solution to this problem will be to
move the SEAD to a system at the UH/CL campus.

We also see the desirability of investigating other data
models, such as Object-Oriented data model, for large
database systems.

CONCLUSIONS

The Software Engineering and Ada Database was modeled, built
to requirements, and delivered on schedule. The goal of
providing access to information on Software Engineering and
Ada has been met.

15

WHY Ada IS (STILL)
MY FAVORITE DATA STRUCTURES LANGUAGE

Michael B. Feldman
Professor

Department of Electrical Engineering and Computer Science
School of Engineering and Applied Science

The George Washington University
Washington, DC 20052

(202) 994-5253
MFELDMAN@GWUSUN.GWU.EDU

INTRODUCTION

The purpose of this paper is to present the case for Ada as a language for teaching
data abstraction and data structures in an undergraduate computer science
curriculum.

The choice of a programming language for this or that curricular subject must be
made on the basis of a number of factors, many of which are different from those
important in an industrial setting. In the case of Ada in particular, industry (or at
least that segment that develops software for defense needs) operates under a
mandate to use the language. Government policy decrees that Ada will be used.
Absent a reversal of policy, industry has little choice: he who pays the piper has the
right to call the tune. The "competition" is then one between vendors of Ada
compilers and environments.

In the academic world, the situation is altogether different. The American college
environment is subject to only minimal control and standardization, even in
technical fields. Faculties are notoriously contentious; decisions are often made by
committee, not by management; budgets are always stretched thin and costs cannot
easily be passed on to the "consumer." Since no government mandate exists for its
use in the university setting, Ada must be justified on the merits, in the face of a
faculty's own unique brand of inertia. Ada proponents-including compiler
vendors-must realize that the competition is between Ada and other languages,
not between Ada vendors X and Y.

THE GWU EXPERIENCE

CSci 159, Programming and Data Structures is an undergraduate course in the
George Washington University Department of Electrical Engineering and Computer

17

Science, required for undergraduate majors in computer science and computer
engineering. The course is also populated by would-be graduate computer science
majors who have a weak background in modern data structures, and by graduate
students from other fields. Typical enrollment is in the neighborhood of 100-150
students per year.

Ada has been the primary language taught in CSci 159 since academic year 1983-84;
since AY 1985-86 all students have coded in Ada as well. Compilers used include
Verdix VADS under Unix and VMS, TeleSoft TeleGen2 under VMS and VM/CMS,
and Meridian AdaVantage under PC-DOS. The primary text is this writer's Data
Structures with Ada [Reston/Prentice Hall 1985]; various Ada language textbooks
have been used as collateral reading.

Six years of experience, with perhaps 600 students involved, confirms our view that
in the family of widely-available procedural languages, Ada embodies by far the
most effective collection of features to facilitate the teaching of data structures. We
shall present this view with reference to other candidate languages, specifically
standard (ANSI) Pascal, Turbo Pascal1 , Modula-2, and C.

STRENGTHS OF Ada FOR TEACHING DATA STRUCTURES

The course in question fits into our curriculum at about the sophomore level; the
students have typically had a semester or two of Pascal. The emphasis in the first
two courses is necessarily on program control and algorithm development, and the
whole complex of issues we call "structured programming." The primary focus in a
third course should be on data abstraction.

Ada supports data abstraction far better than "the competition" in a number of ways.
Chief among them are

* functions can return structured objects, not just scalars;
* packages impose a separation of specification and body;
• private types exist and there is no restriction on the type classes which can be

made private;
arrays can be "conformant" (to use Pascal terminology) in all dimensions.

1 A serious question of principle is whether, in this age of portability concerns,
a single compiler vendor should be able to define the de facto standard for a
programming language. This is, of course, a matter of taste; our own position is that
it should not. Using, for example, Turbo Pascal sends a message to our students that
portability and standardization play second fiddle to bells and whistles. We discuss
Turbo Pascal in this paper because it is, unfortunately, so popular.

Function result types: Ada. That a function may return a value in any type class,
including specifically a record or array, is a feature about which little fuss is made in
the Ada literature. But it makes a big difference. Consider the standard example of a
rational type:

type Rational is record
Numerator: Integer;
Denominator: Positive;

end record;

Each object of this type is a record. In languages with unrestricted function return
values, one can define operations of the form

function Add(left, right: Rational) return Rational;
function Mult(left, right: Rational) return Rational;

and given four objects RI, R2, R3, R4, of type Rational, one can write
statements of the form

R1 := Add(R2,R3);

or even use functional composition, say,

R4 := Mult(R1,Add(R2,R3);

The advantage of this functional notation and composition should not be
underestimated: many applications require manipulation of programmer-defined
mathematical structures and the notation used by programmers should model as
closely as possible the notation used by mathematicians and engineers. If Ada did
not allow functions to return structured types, our operations would have to be
procedures, e.g.

procedure Add(Result: out Rational; left, right: Rational);
procedure Mult (Result: out Rational; left, right: Rational);

and a use of the operation would be written as a procedure call, which cannot be
compose'd. Our nice composed expression above would have to be written

Add(TemporaryResult, R2, R3);
Mult (RI, TemporaryResult);

which surely does not look mathematical.

A work-around in Pascal and Modula-2 is to pass pointers to the structured objects
as function arguments and results. This technique creates problems such as aliasing
and dynamic allocation. Such excessive use of pointers is poor software
engineering; it is also difficult to explain to students why it should be necessary.

19

We note that Ada also provides for operator symbol overloading, so that e.g.

function "+" (left, right: Rational) return Rational;
function "*"(left, right: Rational) return Rational;

is permitted, with corresponding use

R4 := R1 * (R2 + R3);

making for a very mathematical-looking expression. This feature falls into the
category of convenient "syntactic sugar;" we think it is less fundamental or
necessary than the unrestricted function return value.

Ada also allows array objects to be returned from functions, so that one can write
and use vector and matrix operations very conveniently and intuitively. This is
related to the general Ada array capabilities, about which more below.

Function result types: the Competition. Standara Pascal does not permit records or
arrays to be returned from functions. Neither do the Pascal derivatives Turbo
Pascal and Modula-2. The proposed C standard allows records-but not arrays-to
be returned. In the present example, C would allow the rational type but not the
vector or matrix.

Ada's unrestricted function return values makes Ada compilers undoubtedly more
difficult to implement; we think the price is worth paying.

Packages: Ada. The separate package specification introduces the student to the idea
of a "contract with the user." Students trained in (standard) Pascal tend to focus on
"getting an answer" rather than "building a product." Using packages encourages a
student to design a software component and carefully implement this contractual
relationship with the component's user. The contract idea is reinforced by the
separation of specification and body into separate files, separately compiled: students
can see clearly that if something is not written in the spec, it's not visible to a client.
Separate compilation means that programs dependent on a package need not be re-
compiled if only the body, not the spec, is changed.

In CSci 159, programming assignments often require just the building of a package,
with no client program at all except a test driver to validate the package. This is
often not easy for students whose intuition drives them to focus on pretty interfaces
and getting an answer, as opposed to developing a component intended for use by
another programmer and not an end user. The grading system for projects must
place heavy weight on the contractual relationship: the contract must describe how
a package is to be used, not the details of what it does. CSci 159 allocates 30% of the
grade to the quality of the package specification and its supporting user document.

21)

Packages: the Competition. Standard (ISO or ANSI) Pascal has, of course, no notion
of a package. Turbo Pascal provides a package-like structure called the "unit"
(borrowed from UCSD Pascal), but the interface (specification) and implementation
(body) must be in a single file. This diminishes the abstraction value-the student
does not see the two sections as physically distinct-and also requires recompilation
of dependent program segments every time something is changed, even if the
change is only a detail in the implementation. A disadvantage of Turbo Pascal in
general is that it is not available on Unix and other shared machines, and also that,
at least until now, version k+1 has differed significantly from version k. And the
IBM-PC and Macintosh versions are not even compatible: even if one ignores
special operations for graphics, etc., there are syntactic differences between the two.

Modula-2 provides the library module, with definition (specification) and
implementation (body) modules (files), separately compiled. This capability is quite
similar to Ada, in spite of differences in the way import and export directives are
written. Compilers are widely and inexpensively available and support a (generally)
common language. A serious liability is the treatment of private types (see below).

C provides only a very rough equivalent to packages, namely the separation of
groups of subprograms and type declarations into different files. Compilers are
legion; the language supported is reasonably standard. Enforcement of interfaces,
however, is strongly compiler-dependent. 2

Private types: Ada. The private type, with its hidden implementation, is of course
intimately related to the package. Ada allows any type to be made private or limited
private; in particular, structured types can be private, and this forms the basis for an
abstract data type scheme.

The software-component philosophy embodied in the package and the private type
pays off handsomely in more advanced courses, even if the student goes on to
develop programs in other languages. Private types are an important subject in
CSci 159; we see anecdotal evidence that CSci 159 graduates who choose to use C, for
example, in senior projects, write better C because of their Ada exposure.

Private types: the Competition. Standard Pascal provides no private types. Turbo
Pascal allows a unit to export a type, but its internal structure is visible to clients.
One could hide, e.g., the fraction record type definition in a unit whose existence is
not advertised, then make the fraction type itself a pointer to the hidden record type.
This dodge is unsatisfying : it requires an extra unit, spreading the code for a single
abstract type into two units, and carries along all the disadvantages of pointers.

2 C++, the recently-developed extension to C, provides an object-oriented
programming language more similar to Smalltalk than to Ada. C++ may become
an important competitor, but is not yet widely available. A disadvantage for
students is the less-than-obvious syntax.

I 1

Modula-2 improves the situation, but only a bit. A private type may be declared in
a definition module, but its type is required to be a pointer to another type declared
in the implementation module. At least the code for a single abstraction appears in
a single library module, but the pointer difficulties persist.

C provides no notion of a private type. A work-around similar to the one described
for Turbo Pascal could be invented, but it would surely be cumbersome.

An important consequence of the generality of function results and private types is
that access types (pointers) are unnecessary except to implement linked
structures.We believe that it is inappropriate to have to trade the niceness of
functional notation for the forced clumsiness of pointers, solely because of a
language limitation.

Array handling: Ada. Ada provides the "unconstrained array type" for an arbitrary
number of dimensions. While the number of dimensions of an array must be
specified in the type declaration, the bounds may be left unspecified until variables
are declared. Further, unconstrained array types may be used in subprograms as
formal parameters and function results. This facilitates a very natural
implementation of vector and matrix packages, an important application often
studied in data structures courses. For example, consider a package exporting a
matrix type

package Matrices is

type Matrix is
array(Integer range <>, -- bounds left open

Integer range <>) -- till variable
of Float; -- is declared

function "+" (left,right: Matrix) return Matrix;

Conformability_Error: exception;

end Matrices;

Here we have combined many of the capabilities of Ada: the package, the
unconstrained array type, overloaded operator symbols, unrestricted function result
types, and the definition of application-dependent exceptions. In the package body,
below, the code for the addition operator is given. Nute the use of the attribute
functions First, Last, and Range, which give the low bound, high bound, and
bounds range, respectively, for the two dimensions. The subprogram can simply ask
its actual parameters what their bounds are, then operate accordingly-in the event,
create a temporary matrix sized according to the bounds of the inputs, fill it with
values, then return this new matrix to its caller. Given three matrix objects

22

L -_

M1, M2, M3: Matrix(-5..5);

then the statement

M1 := M2 + M3;

can be written in the natural mathematical style. Note in the body of the addition
operator that Conformability_Error is raised if the addition of the two matrices
would be mathematically meaningless.

package body Matrices is

function "+"(left,right: Matrix) return Matrix is

Temp: Matrix(left'range(l), left'range(2));
-- size of result gotten from size of input

begin

if left'First(l) /= right'First(l) or
left'Last(l) /= right'Last(l) or
left'First(2) /= right'First(2) or
left'Last(2) /= right'Last(2

then
raise ConformabilityError;

end if;

for row in left'range(l) loop
for col in left'range(2) loop

temp(row,col) := left(row,col) + right(row,col);
end loop;

end loop;

return temp; -- array!

end "+";
end Matrices;

Array handling: the Competition. Neither Standard Pascal nor Turbo Pascal nor
C has any equivalent at all to the unconstrained array type (which actually
resembles a feature in PL/1). Modula-2 provides the "open array parameter" for
subprograms, in which a one-dimensional array parameter may be passed without
knowing its bounds; there is a rough equivalent to the attribute functions in this
case. But this is permitted only for one-dimensional arrays, so the ability to create a
general matrix package in a natural way is severely limited.

23

L__

COMMENTS

Following the body of this paper is a chart comparing, in summary form, the
various features we have discussed here. Also attached is a sample syllabus for CSci
159, some sample projects, and grading guidelines.

We have concentrated here on a selected few Ada features we believe are especially
useful in teaching data abstraction. We have not paid particular attention to linked
data structures, as these are essentially the same in all modern languages. For
brevity we have not included a discussion of generics; this subject warrants a paper
in its own right.

Our undergraduate curriculum encourages students to learn a number of
programming languages, because we believe that multilingual graduates are more
openminded and accepting of change than those steeped in a single language with
only the most superficial exposure to others.

Recently we have made the syntactic transition to Ada a bit easier by distributing a
diskette of about fifty "small" Ada programs which cover the inner syntax of the
language and the intricacies of the input/output libraries. Some of these programs
are "booby-trapped" with deliberate compilation errors. The students are asked to
compile and try these programs; if they can understand them all, including the
reasons for the various errors, they know the rudiments of the Ada "Pascal subset"
and are ready to dive into writing packages. These small programs also serve as
templates for writing other programs, especially those using various kinds of input
loops.

Our students grumble a bit, at first, about being required to learn a new language for
CSci 159, but they take readily to Ada once they begin to sense its power for building
systems. Once students have picked up the rudiments, they often comment that
syntactically, Ada is easier than Pascal; we tend to agree. And increasingly they
choose Ada for upper-division projects where they are given a choice of language.
Ada is at GWU to stay.

24

L

(J0 0

(0 0

Cf Cfl

IzI-

ts ca~
.4- .4-

IZ fj e4 U
4z.

tn 14 0

250

THE GEORGE WASHINGTON UNIVERSITIY
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science

CSci 159 - Programming and Data Structures
Prof. M. B. Feldman
COURSE OUTLINE

WEEK LECTURE SUBJECT READINGS

1 Introduction; Abstraction Chap. 1
2 Abstract Data Types
3 Performance Prediction; "big 0" Chap. 2
4 Arrays and their representation Chap. 3
5 Sparse Arrays
6 Linked Lists Chap. 4
7 MIDTERM EXAMINATION

Stacks and Queues Chap. 5
8 Graphs Chap.6
9 Midterm exam post-mortem; Trees Chap. 7
10 Trees continued
11 Hash Table Methods Chap. 8
12 Sorting Chap. 9
13 Sorting (continued) Chap. 10
14 Review
15 FINAL EXAMINATION

26

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science

CSci 159 - Programming and Data Structures
Prof. M. B. Feldman

GENERAL ORGANIZATION OF COURSE

CSci 159 is organized around readings, lectures, programs, and examinations.

The readings in this course are, it is hoped, interesting and useful. The readings

use Ada. The basic syntax of Ada is very similar to Pascal; the more interesting Ada

concepts will be taught in this class. If you don't know any Pascal, you can probably

skip the intermediate step and go directly to Ada, but you'll have to do a lot of

reading on the side.

Attendance at lectures is, in principle, required, but you do not need special

permission to be absent. However, you are responsible for whatever happens in

class, so it's in your interest to come regularly. Little sympathy will be shown to a

student who finds him(her)self in trouble after having routinely cut class!

There will be three (perhaps four) programming assignments. Details will be

given to you separately, but, in summary, they will be written in Ada. In principle

you will use the GWU computing facilities. You may also use a computer at home

or at work. If you have an IBM PC or compatible and wish to purchase an Ada

compiler (about $100. direct from the vendor), I can supply you with information.

Programs must represent the results of your own work. I cannot prevent your

speaking with friends to sketch out a solution. But if you collaborate on the detailed

design or coding, or copy a program from an acquaintance, then submit the results

as your own work, I will charge you with plagiarism, and I will win.

Programs submitted by 6 PM, one week following the due date, will be deemed to

be on time. This is a "grace period" to allow for unexpected computer problems,
illness, etc. You do not need special permission to turn a program in late.

However, programs turned in after the grace period will be subject to a grade

penalty of 20% per week. This policy is to encourage you to spread your time
commitment and your demands on the computer evenly over the semester, and

will be enforced.

There will be two examinations. The midterm exam will be 1-1/4 hours long; the

final exam will be 2-1/2 or 3 hours long. Examinations are open book.

Your grade in the course is based on these weighting factors: midterm exam 25%;
final exam 45%; programming projects 30%. Conversion from numerical to letter

grades is done only when final grades are to be assigned. Grades are usually
adjusted to the overall performance of the class.

27

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Department of Electrical Engineering and Computer Science

CSci 159 - Programming and Data Structures
Prof. M. B. Feldman

GUIDELINES FOR REPORT PREPARATION

Each programming assignment is graded on the basis of 0-10 points: four points for
correctness of program and test results; three points for internal coding style,
comments, etc.; three points for user documentation.

The grader will ask the following questions, in this order: (1) What capabilities are
promised in the user guide? (2) Do the test results show that the program delivers
on all its promises? (3) Is the source code well-organized and appropriately and
courteously documented?

Test Results: Your tests are required to demonstrate convincingly that your
programs perform as advertised. Your test program does not need to produce
elaborate or beautiful output; annotation by hand is acceptable. But your test
results must be self-contained; you cannot get full credit if the reader has to look at
your source programs to interpret them.

Program listings and Internal Code Style : Follow the style guidelines you've
learned in the past for program layout; these are probably acceptable. Use plenty of
white space, particularly to set off one subprogram from the next. Try not to have a
subprogram broken in the middle over two printed pages (some compilers make
this difficult, but do the best you can). It is much easier to read a program when it's
all on one page. In the Feldman book, great care was taken in the layout of the
programs; the book can serve as a good example for you. Functional comments are
important, but should not be over-used.

User Guide and other external documentation:: Abstraction and information-
hiding are important principles in this course. The user of your program needs to
know what it does, not how it works! If the project is a package, a brief but complete
description of the interface to ach routine is what the user needs. Do not write too
much, or reveal detail that the user does not need to know, or you will lose points!

General Format: Use an editor or word-processor. You will lose points for a report
which is hard to read! Get laser-printer output if you can. Submit everything in a
letter-size (8.5" x 11") report cover, preferably a simple, lightweight, and inexpensive
one.

Last words: An important part of any real-world programming project is the quality
of the packaging and the thoroughness of the testing. If you're careful, follow these
guidelines, and don't leave your documentation until the very end, you will have
no problems with the grades you get.

CSci 159 - Programming and Data Structures
Sample Programming Projects

Project 1- Sets.

Chapter 1 of the Feldman book describes a package to handle the abstract data type
NaturalSets. Your programming assignment is to implement, in Ada, a package
to handle sets drawn from the universe 'A' .. 'Z', using the bit-map approach
which represents a set as an array of booleans.

You will need to write and test all the necessary functions and procedures for
dealing with sets. You will also need to design a test program whose only purpose
is to show that the various routines in your package "deliver on what they
promise." Please take care to design a thorough and effective set of tests for your
package. In this first assignment, many students end up with lowered grades
because their tests are inadequately thought out. Often test cases are chosen
arbitrarily or too many identical tests are chosen. Be prepared to justify why you
chose each test case! Also, your test output must be "self contained" - the grader will
not read your source code in order to understand your tests. Your test run may be
annotated by hand, but it must be annotated. If the grader cannot understand your
test without reading your source code, your grade will be lowered.

Your package also needs a user guide, which consists of a brief description of each
user-callable function or procedure, and some discussion of how the user is to create
sets. Do not reveal to the user any information intended only for the maintainer!

Project 2 - Graphs and Linked Lists.

In this project you will develop a package for directed graphs. Figure 6-8 of the
Feldman book suggests an implementation using linked lists; your task is to design,
code, and test a package to do graph operations using this scheme. Among the
operations should be:

* initialize a directed graph (let the node names be positive integers)
• insert an edge into a graph
* delete an edge from a graph
* determine whether there is an edge from node x to node y
* traverse a graph using DepthFirstSearch (Figure 6-13, where Visit simply

prints out the name of the node visited)
traverse a graph using BreadthFirstSearcn (Figure 6-15)

Note that BreadthFirstSearch requires the use of a queue; you should build a
package to work with queues and then import it. Figure 5-9 gives you a start on this.

Note also that both traversals require the use of sets. Funny thing: you built a

29

package for sets in project 1! Just modify it to work with the right kind of set

elements (essentially go back to NaturalSets).

Project 3-Benchmarking sort algorithms.

This project involves benchmarking three sort algorithms to compare their
theoretical big 0 running time with their actual times as measured on the Sun, the
Vax, or the IBM PC. Procedures for Bubble Sort (O(N2)) and Heap Sort (O(NlogN))
can be found in Chapter 9. We will give you files containing these sorts; your task is
to prepare a third sort procedure implementing Shaker Sort (2-way Bubble Sort),
then compare the actual running times of all three for different array sizes.

Each of the three procedures is to be run on arrays of size 2K where K runs from 4
(i.e. array size 16) to 10 (i.e. array size 1024). Three arrays of integers will be used: one
in upward-sorted order, one in downward-sorted order, and one in random order.
You will be given a random 1024-element array; note that you can copy "slices" of
this array to use in your sort procedures. For the sorted arrays, use the subscripts
themselves as values, i.e. if the array has N elements, use A(i)=i for the upward
sorted case and A(i)=N-(i-i) for the downward sorted case.

How you organize your driver program to do all the sorting runs is up to you; ,ute
that there will be a total of 63 sorts performed: 7 sizes x 3 array orderings x 3 sort
procedures. To save on machine overhead, try to combine a number of sort runs
into a single run of your program (perhaps all 21 runs of a given sort procedure, for
example). The coding for the project is very easy. A large part of the project is the
way in which the results are presented. Present your results in tabular form (the
table does not have to be produced by your program) and as a set of appropriately
designed graphs.

The Ada standard provides for "time of day" operations but not for CPU-time
operations, so on a multi-user machine one needs a separate package to measure
CPU times. We will provide code and documentation for this package. On the PC,
since it is a single-user machine, the built-in Ada timing operations could be used,
but we will supply a package for the purpose, for compatibility with the other
systems.

30

ADA IN THE UNIVERSITY
DATA STRUCTURES WITH ADA

Gertrude Levine
Assistant Professor

Fairleigh Dickinson University
Teaneck, New Jersey

1. INTRODUCTION

The choice and implementation of data structures are
critical for the clarity, correctness, and effectiveness of
algorithm design. A course in Data Structures is therefore
fundamental to most Computer Science programs. The programming
language Ada is particularly effective for the presentation of
such material.

Many Computer Science curriculums have adopted Pascal as
their introductory programming language. The set of facilities
provided by Pascal is relatively small, and the language's
unity of design and structure are helpful to beginning
programmers. Pascal's control structures are adequate for
algorithmic expression. In addition, Pascal compilers and
support systems are relatively inexpensive, and many students
are able to explore and experiment with concepts at home.

Once Pascal is mastered, many of its features, such as
scope rules and pointers, are so similar to Ada's that the
transition from a freshman's Pascal to a sophmore's Ada is
relatively painless. Thus the material contained in a course
in Data Structures can be presented using the Ada language,
which is more appropriate for the implementation of abstract
data types.

2. ADA FOR DATA STRUCTURES

Ada's package construct is a powerful facility for the
encapsulation of a data type. A package may contain a type
definition, constants or variables of the type, operations on
the type (represented by functions and procedures), and
conditions under which the operations and/or the implementation
fail (representated by exceptions) in a specification unit that
is visible to other program units. The specification provides
an interface to users, so that they can manipulate objects of
the data type by the operations supplied. If the data type is
declared to be private or limited private, then users of the
package are restricted in their mdnipulations of any objects of
the defined type. A separate package unit, called a body,
contains the implementation of the specification. All
information that is not essential to users (excluding the
implementation of a private type) can be hidden in the body

The purchase of an Ada environment was made possible by a grant
from the New Jersey Department of Higher Education Technical/
Engineering Education Grant Program.

31

promoting the integrity of the encapsulation mechanism. Such
packages can be readily made available to others, providing
reusable software components. (The author placed packages in a
directory available to students, who studied and used these
packages for their programs.)

Pascal's failings in this area are clear. Separate
compilation is not standard. It is difficult to physically
group entities of data types, and to hide implementations. Type
definitions and operations frequently clutter and obscure
programs, as they are placed far from the code that calls them.
(In how many students' Pascal programs have you requested that
modules supplying operations for one type be grouped together?)

Generic packages and unconstrained array types are
particularly effective in allowing generalizations of
operations for similar structures. (Most texts introduce
generics rather late in the material. The author's initial
assignment was a generic package supplying operations such as
square roots or exponentiation for a user defined float type.
By the time stacks and linked lists were assigned, students
used generics comfortably.)

The closest facility to generics in Pascal is supplied by
variant records. Although uniform operations can be defined
for structures with different component types, these types must
be supplied at compilation time. Similarly, fixed bounds for
each array type usually result in overly large amounts of
storage allocated to objects, with the a -ual size recorded and
passed as a parameter for array manipulation.

Names of operations and enumeration types can be
overloaded in Ada. Thus infix operators and readable names can
be used to denote operations and data values as they are
commonly known. (Students coded real exponentiation operators,
and complex, vector and matrix arithmetic operators, as well as
arithmetic operators for their own NATURAL type.)

Ada's exception facility is particularly effective in
handling error conditions with clarity and uniformity.
Operations on abstract types, such as Integer division by 0,
may fail. Operations may also fail because of limitations of
an implementation, such as numeric overflow following Integer
multiplication. The occurrence of s)scein defined or user
defined exceptions are assumed to be errors and therefore
handled analagously at the end of operations, where they do not
obscure the code. (For each data type implemented, students
were required to define exceptions for error conditions.
Exception handlers at the end of the operations continued to
raise the exceptions, with the final handlers supplied by the
package user. A driver program with several named blocks was
used to test both normal and exceptional runs.)

Pascal, of course, has no such facility. Checking and
handling all possible errors frequently clutters up more than
half of a procedure's code. Nor does Pascal supply any
structured way to distinguish between the handling of errors
and the handling of boundary conditions.

A few students had programming backgrounds in C instead of
Pascal. Again, the switch to Ada did not appear to be

JL

difficult, with one student commenting that Ada forced him to
program the way his instructors had taught him to program.

3. INSTANTIATION

The author considers packages, generics, and exception
handling to be fundamental concepts necessary for the
implementation of an abstract data type. These concepts were
presented during the first few weeks, so that they could be
continuously reinforced during the semester. Originally, their
use required considerable correction. (One student used an
exception handler to recursively call the containing module.
"It works," he said.) By the middle of the semester, most
students handled these constructs easily.

The author presented a generic template for the study of
abstract data types, which was instantiated for both abstract
data types and their implementations.

DATA TYPE

VALUES:

COMPONENT STRUCTURE: (default to void for scalar types)

OPERATIONS:

EXCEPTIONS: (default to void)

BOUNDARY CONDITIONS: (default to void)

Examples of instantiations included:

INTEGER of package STANDARD

VALUES: implementation dependent
-32768 .. 32767 for 16 bit 2's complement

representation

OPERATIONS: +, -, *, /, mod, rem, **, abs
relational operations
creation, destruction, copy
I/O available from TEXT IO.INTEGER IO
conversion to/from any numeric type
attribute qualification
additional operations supplied by users

EXCEPTIONS: NUMERIC ERROR (division by 0, numeric overflow)
CONSTRAINTERROR (assignment of an out-of-range

value)

33

abstract type STACK

SAMPLE STRUCTURE WITH VALUES: b <--top

OPERATIONS: creation, destruction
pop, push, test if empty

EXCEPTIONS: attempt to pop from an empty stack
attempt to push onto a full stack

LINEARLY LINKED LIST (programmer defined)

SAMPLE STRUCTURE WITH VALUES:

a b

SAMPLE OPERATION:
INSERT after 2nd element

z

SAMPLE EXCEPTIONS:
Remove from an empty list.
STORAGEERROR is raised during INSERT if storage is
exhausted (heap or array implementation)

SAMPLE BOUNDARY CONDITION:
INSERT, at the beginning of the list.

34

4. SUGGESTED ASSIGNMENTS

1) Code and instantiate a package that provides additional
numeric operations on a programmer-defined numeric type.
Exceptions are to be propagated by the package and handled by
the calling routine. A sample operation would be real
exponentiation, overloading the "**" operator. This operation
requires handling those values that cause Overflow.

GOALS: Understanding the difference between an abstract data
type and its implementation.

Introduction to generics.
Introduction to programmer-defined numeric types.
Introduction to exception handling.
Introduction to Ada.

2) Code and instantiate packages for stacks, queues or lists.

GOALS: Introduction to above types of data structures.
Introduction to information hiding, i.e.,
defining a type so that its components are either

a) completely available,
b) restricted in their use (with the private

definition), or
c) completely hidden in the package.

Documentation, with stress on specifications.

3) Provide a dynamic storage allocation package using the stack
package of example 2.

GOALS: Understanding dynamic storage allocation
Reusing software components previously defined.

4) Implement a LONG NATURAL NUMBER type providing arithmetic
operations on long natural numbers, using the list package of
assignment #2.

GOALS: Reusing software components
Numerics as composite not scalar types
Efficiency as an issue.

5) Implement a sort procedure using tasks.

GOAL: Introduction to tasking.

5.CONCLUSION

The author suggests that Ada be used at the sophmore level
for a course in data structures, if not earlier. There are
valid arguments for introductory material to be taught in
Pascal, but the transition from Pascal to Ada in not difficult.
Furthermore, Ada is clearly more effective for the presentation
of the concept of an abstract data type, and for the secure,
modifiable, and reusable implementation of this material.

(

Ada and Data Structures:
"The Medium Is the Message'

Melinda L. Moran
LCDR USN

NARDAC Washington
Washington, D.C. 20374

(202)475-7681

moranI @ajpo.sel.cmu.edu

Shakespeare did not HAVE to write In old English. Consider RQmond
Juliet in Latin. Rembrandt did not HAVE to paint in oils. Consider "Night
Watch" in pastel water colours. A data structures course does not HAVE
to be taught in Ada . but there Is definitely "a message In the medium" a
craftsman chooses.

Idealistically, a data structures course should be taught Independent
of any particular programming language. Realistically, some language
must be chosen as the language of illustration by the instructor and the
language of implementation by the student. Ada is not the only language
which can be chosen. It is, however, one of the best, (if not the best),
languages for Illustrating and implementing the constructs central to a
data structures course. These constructs must remain the focus of the
course; the language must NOT predominate the focus but the language
chosen can facilitate or frustrate the students' learning of these
constructs. Ada most certainly facilitates.

Abstract Data Tyves

One of the most important constructs introduced In a data structures
course Is that of the "abstract data type (ADT)." The construct of an ADT

37

and the study of specific ADTs pervade the course. An abstract data type
is the definition of a type of object and its associated values as well as
the operations defined for objects of that type. Several ideas are central
to teaching this construct. They are: 1) abstraction and modeling reality,
2) implementation, 3) information hiding, and 4) reliability.

Ada's package unit is ideally suited for illustrating and implementing
abstract data types. The separation of package specification and package
body clearly parallels the separation of abstraction and implementation
students are being taught. Exercises can be easily created by the
instructor where the student is given the abstraction (specification) for
an ADT and is required to substitute a different implementation (body) and
observe the minimal effects on program units which make use of the ADT.
The exercise used by this instructor was that of having students change
the implementation of a queue used as a supporting data structure in a
larger project of simulating an airport. (Details of this project are
included at the end of this paper.)

Further, the separation of specification and body allows the student
to focus first on the functionality (i.e. the abstraction) of a new ADT
before becoming Immured and overwhelmed with the Implementation
details. The student can see, in practice, the utility of Information hiding.
(S)he is not forced to immediately focus on the implementation details
which are carefully hidden away in the body of the package. (S)he first
uses the specification to access the services of the package before
becoming concerned with how these services are provided.

The exercise used by this Instructor to illustrate the constructs of
Information hiding and levels of abstraction was that of Implementing a
"long integers" package, where a long integer was defined to be a
non-negative integer with an unlimited number of digits. Students were
given a generic stack package and instructed in how to Instantiate to
create a stack package for integers. They then used this package to create
their long Integers package. In being given the stack package and in
learning how to use its specification to access the services of the
package, students were able to study the abstraction of a stack and learn
about Its utility as a data structure In helping them to solve the higher
level or layer of the problem they were working on, that of creating a long

33

integers package. The second step was to have students focus on the
lower level of the problem, that of analyzing (and perhaps changing) the
implementation of the stack ADT. (Details of the long integer project are
included at the end of this paper.)

In conjunction with Ada's packaging feature, the ability to create
user-defined types and to define subtypes greatly facilitates the ability to
model reality when creating a package to embody an ADT, Being able to
create user-defined types and define subtypes allows the imposition of
constraints upon objects of those types, constraints which clearly mirror
the real world objects which they model. A favorite exercise of this
instructor in teaching the construct of modeling reality was to bring a
collection of familiar objects (such as cans of various types of soda pop)
to class and guide students In creating the specification of a package to
embody the ADT representing that collection of objects. Students can
readily see how the use of user-defined types and subtypes can make a
program more readable/understandable if it closely models the real world.
(Two such sample specifications are Included at the end of this paper.)

Ada's exception handling feature plays a very supportive role in
teaching students to create ADTs which are reliable. By the time they
reach a data structures course, most students have already completed an
introductory computer science course and are well acquainted with the
reality of fatal programming errors. They realize the elaborate checking
that must be built into the code of programs written In languages such as
Pascal and BASIC to attempt to capture these errors, and, they realize that
certain errors are simply impossible to catch. Ada's exception handling
feature offers a welcome relief, a relatively painless way to plan for and
capture fatal errors.

Ada's tasking facility further supports teaching students to develop
ADTs which are reliable. Ada Is one of very few languages with the
construct for concurrency built Into the syntax and semantics of the
language Itself, yet, concurrency is an Issue which certainly must be
considered In developing a reliable ADT. More and more our students,
perhaps more so than ourselves, will have to deal with the issues of
concurrency as architectures underlying their software become
Increasingly parallel. In Ada, It Is a simple exercise to have students

39

create a program with multiple tasks all accessing the same data
structure. And, again, because of the separation of abstraction and
implementation, it is easy for the student to change the body of a stack
package, for example, and observe what happens when multiple tasks
access a "sequential" stack as opposed to a "concurrent" stack.

Reuse and Building Software Systems

Moving beyond the construct of ADTs, Ada affords the data structures
instructor significant support in introducing another construct which, In
this Instructor's opinion, should certainly be a central part of any data
structures course. This is the construct of software reuse.

Students of modern data structures courses must be taught to "build"
software systems from existing units, not to "code" them from the ground
up. The increasing demand for software today and the lack of productivity
in the latter approach makes it infeasible. Further, the increasing
intelligence found in modern compilers obviates the need for concern over
the inefficiencies introduced in reusing software units. Good compilers
are quite capable of optimizing away unused resources in a reusable unit.

The introduction of procedures and functions could be viewed as one
of the first steps in the evolution of software reuse. Procedures and
functions are the creation of reusable modules within a program. Ada's
package and Modula 2's module could be viewed as the next step up this
evolutionary chain of reuse. Both allow the encapsulation of related
resources for reuse within other units of a software system. Ada's
generics feature Is yet another step up the chain. Generic packages and
subprograms allow the introduction of abstraction at yet a higher level.
They provide the facility for creating potentially parameterized templates
which extract the essence of multiple specific Instances of packages and
subprograms.

Libraries of generic units which embody the various ADTs and
algorithms discussed In data structures courses are becoming Increasingly
available commercially and easy to acquire at reasonable prices. Their use
can facilitate tremendously the amount which students can learn in a data
structures course.

One way in which the use of libraries of generic units can facilitate
student learning was mentioned earlier. By instantiating a generic unit
and giving a student access to the specification (but not the body) of a
particular ADT or algorithm, experience can be gained by the student in the
functionality of the unit. The student, for example, can be given easy
access to multiple sorting algorithms in the library. (S)he can "play" with
these algorithms as applied to a variety of data sets and get a sort of
"intuitive feel" for the circumstances under which each algorithm
performs optimally. After this top level functionality has been studied,
the student can then either be given the Implementation details In the unit
body for analysis and, perhaps, modification or be asked to synthesize that
unit body based on his earlier experience. The student is not so caught In
panic over the low level details of Implementation that (s)he fails to glean
any functional knowledge about the performance characteristics of the
algorithm. Both levels of knowledge must be acquired in a data structures
course but with undergraduates it is a very real concern that
"implementation anxiety" often Impedes other learning.

The second way in which the use of libraries of generic units can
facilitate student learning Is also by reducing the focus on coding and
freeing the student to focus on higher level concerns in building a system
such as the efficiency of choosing a particular data structure or algorithm.
With the availability of libraries of generic units, It Is feasible for
instructors to require larger projects which are much more like real
software systems the student will encounter after graduation. Without
the provision of such libraries, instructors in the past have been
constrained simply by available time as to the size of a project students
could reasonably be expected to complete. And students, in the past, have
been so focused on simply coding fast enough to finish a project that they
have not always had the flexibility to do any comparative analysis of
different implementations. The exercise used by this instructor In
teaching students to consider the efficiencies of choosing data structures
in a large system was to have students create a system to simulate the
software In a video rental store. (Details of this project are included at
the end of this paper.)

A final way In which the support provided by libraries of generic
units can facilitate student learning in a data structures course is In the
use of generic units representing certain ADTs to create other generic

41

units representing related ADTs. Two specific examples of this are 1) the
creation of a generic package representing the stack ADT and 2) the
creation of a generic package representing the queue ADT both from a
generic package representing the list ADT. It is always pointed out that
the stack ADT and the queue ADT are simply the list ADT with more
strligent constraints applied. Using a generic library unit for a list ADT
and the renames clause it Is simplistic to create these new constrained
ADTs. Students can very clearly see the relationships and learn to quickly
create new ADTs by constraining existing ones. (Specific examples of
these "derived" ADTs are included at the end of this paper.)

Ada is not the only language suitable for Illustration and
implementation of constructs in a data structures course, but the
facilities Ada provides certainly make it one of the best languages
currently available. The features of packaging, separate compilation of
specification and body, user-defined types, exception handling, and
concurrency support the instructor's illustration of and facilitate the
students' understanding and implementation of ADTs. The feature of
generics supports the illustration and Implementation of software reuse
and allows both the data structures Instructor and student to shift their
focus from low-level coding concerns to higher level analysis of ADTs and
algorithms. In short, Ada as a medium for Illustrating and implementing
data structures constructs facilitates both effective teaching and learning
of these constructs.

,1,2

Si301 Data Structures
Project #1

I. Problem Statement: You need to add or multiply two HUGE
non-negative integer numbers. Let's call these numbers "long
integers." Long integers may contain an unlimited number of
digits.

Example:

984576541479974245654378945563894329865321277421985375429876547
X 890808734521879539987025436780932876087769211394985543766885418

(There is no particular pattern or meaning to the numbers in the
example. They were generated arbitrarily as examples.)

II. Assignment - Part 1 - due beginning of class 29 AUG 1988

A. Requirements Analysis - Read the problem carefully
and answer the following questions.
1. Exactly WHAT is the task defined by the problem?
2. What are the constraints in the problem?
3. What other questions would you like to ask about the

problem?
4. What alternatives exist in solving the problem?

(Be sure to consider "non-computer" solutions.)
Briefly describe why each considered solution is
or is not viable (achievable).

5. For a "computer" solution, what resources are
available that might be useful and where might
you look for them?

III. Assignment - Part 2 - due beginning of class 31 AUG 1988

A. Design - It is determined that a "computer" solution
best fits the problem. You are going to create the
package defined below. BEFORE you leap into the
"code and pray" mode, answer the following questions.
1. What data structure are you going to use to represent

a long integer object?
2. Describe in simple English phrases how you plan to

implement each requirement defined for the package.
Draw pictures if it will help you explain but
do NOT WRITE CODE!! (Be cautious! Don't let your
partner pressure you here. (S)he may be suffering
from WAYWACY (Why Aren't You Writing Any Code Yet).
DESIGN IS IMPORTANT...MORE THAN CODING!!

3. For each requirement defined in the package list
the exceptions you will need to plan for in that
routine and what action you will take for each.
(i.e. What errors is it possible might occur in your
algorithm or might be introduced by the user of your
package?)

43

IV. Assignment - Part 3 - due on computer by 0800 07 SEP 1988

Code and compile the SPECIFICATION for a package called
Long Integers which allows a user to do the following:

1) declare multiple objects of the type Long-Integer
2) assign a value to an object of type LongInteger
3) add two objects of type LongInteger using infix

notation (i.e. L3 := Ll + L2;)
4) multiply an object of type LongInteger by a natural

number (0, 1, 2, ...) using infix notation
(i.e. L2 := N * L1;)

5) multiply twG objects of type LongInteger using infix
notation (i.e. L3 := Ll * L2;)

6) print a long integer object on the screen

The specification must be in a file called
olocated somewhere in your directory
y 080 on e date.

V. Assignment - Part 4 - due on computer by 0800 09 SEP 1988

Code and compile the BODY for the LongIntegers package
and then code, compile, link, and execute a test procedure
to test the correctness of your LongIntegers package.

The body must be in a file called Long_Integer.ada located
somewhere in your directory by 0800 on the due date. Your
test procedure will not be graded for this project.

44

Si3o Data Structures
Project #2

I. Problem Statement:
You want to simulate an airport landing and takeoff

pattern. The airport has 3 runways, runway 1, runway 2, and
runway 3. There are two landing holding patterns for each
runway. As a plane arrives it must enter at the end one of these
landing holding patterns. All landing holding patterns should be
kept as equal in size as is possible.

Each runway also has one takeoff pattern. Each plane
desiring to takeoff must enter at the end one of these takeoff
patterns. All three takeoff patterns should be kept as equal ii,
size as is possible.

Planes entering the landing holding patterns each possess an
integer ID number and an integer indicating how many fuel units
(same as flying time units) they have left. This value decreases
by one at each time interval in the simulation.

At each time interval 0 - 3 planes may arrive at the airport
ready to enter the landing holding patterns and 0 - 3 planes may
be ready to enter the takeoff patterns. Each runway can handle
one takeoff or one landing at each time interval. Planes in the
landing holding patterns whose remaining fuel has reached zero
must be given priority to land over other planes taking off or
landing. Lengths of landing and takeoff patterns should not be
allowed to grow excessively.

Neither landing nor takeoff patterns may be sorted. Planes
must be entered intc the patterns AT THE END of the existing
pattern. With the exception of zero fuel emergencies planes
entering the pattern first must leave the pattern first.

Input to the simulation will be from a text file. There
will be a pair of lines for each time interval in the simulation.
The first line will contain the number of planes desiring to
enter the landing holding patterns followed by the appropriate
number of pairs of id number - remaining fuel unit pairs. The
sp:ond line will contain the number of planes desiring to enter
the takeoff patterns followed by the appropriate number of id
numbers.

Example:

3 197 45 200 30 458 14
2 187 479

There are 3 planes desiring to land. Their ID numbers are 197,
200, and 458. Plane 197 has 45 remaining fuel units; plane 200
has 30 temaining fuel units and plane 458 has 14 remaining fuel
units. There are 2 planes desiring to takeoff. Their ID numbers
are 187 and 479.

"5

-. r m I

Required output from the simulation is a report at each
time interval indicating which planes landed (and what their
remaining fuel units were) and which planes took off. At each
fifth time interval a summary report must also be produced
indicating the average takeoff waiting time for all planes that
have taken off so far, the average remaining fuel units for all
planes that have landed so far, the number of emergency landings
so far, the average waiting time for all planes that have landed
so far, and the current contents of each pattern in terms of
first plane's ID number to last plane's ID number. Output should
be well labeled and organized into an easily read report.

II. Assignment - Part 1 - due beginning of class 12 SEP 1988

A. Requirements Analysis - Read the problem carefully
and answer the following questions.
1. Exactly WHAT is the task defined by the problem?
2. What are the constraints in the problem?
3. What other questions would you like to ask about

the problem?
4. What alternatives exist in solving the problem?
5. For a "computer" solution, what resources are

available that might be useful and where might
you look for them?

III. Assignment - Part 2 - due beginning of class 14 SEP 1988

A. Design - It is determined that a "computer" solution
best fits the problem. BEFORE you leap into "code and
pray" mode, answer the following questions.
1. What are the objects defined in the problem?
2. What are the operations that will be performed by

and on each object?
3. What data structure are you going to use t,

represent a landing or takeoff pattern?
4. What data structure are you going to use to

represent a plane?
5. What packages are you going to need in your system? '

6. What is your report going to look like? How will
it be formatted?

7. For each package, describe in simple English
phrases the objects and routines that will be included.
Draw pictures if it will help but do NOT WRITE
CODE!

8. For each routine in a package list the exceptions
you will need to plan for in that routine and what
action you plan to take for each.

IV. Assignment - Part 3 - due on computer by 0800 19 SEP 1988

Code and compile the specification(s) for the package(s) you
determined you will need. Additionally, using the editor,
create a file called FILENAMES.DAT somewhere under your
account. In this file list the name of each package

C. ,

spec you created. The name of the file that a spec is
located in must be the name of the package plus a
trailing underscore. For example, if you create a package
spec for a package called DOODLE then that spec must be
located in a file called DOODLE_.ada located somewhere
under your account.

Code and compile the main procedure that will drive your
simulation. The main procedure must be called BWI and must
be placed in a file called BWI.ada located somewhere under
your account.

You obviously cannot link or execute your main procedure
yet because the bodies of your packages have not been
completed.

V. Assignment - Part 4 - due on computer by 0800 23 SEP 1988

Code and compile the bodies for your package(s). Code,
compile, link, and execute the main procedure for your
system. Test until you are convinced it works correctly.
You will need to use the editor to create a file of test
input data as defined in the problem statement. This
test data must be placed in a file called BWI.dat located
somewhere under your account. Your package bodies must
be located in files whose names are the same as those of
the specs but without the trailing underscore. For
example, the body for package DOODLE would be in a file
called DOODLE.ada located somewhere under your account.

VI. Assignment - Part 5 - due on computer by 0800 30 SEP 1988

Change the underlying implmentation of the queue package
from that of a singly linked linear list to that of a
singly linked circular list. The specification for the
queue package will remain the same. A copy is attached.
You will create a new package body with the same routines
but where the list implementing the queue structure is
fircularly linked.

Code and compile and test the new package body. Do NOT
recompile any other component of your airport simulation
system.

Relink and rerun your main procedure. No visible changes
should occur between the original and this changed version
since the implementation of the queue should not affect
the upper levels of abstraction in your system.

47

Si301 Data Structures
Project #3

I. Problem Statement: It is the year 1990. Every midshipman
now has a VCR installed in their room. The midshipman store has
decided to go into the video tape rental business. You are an
Ensign assigned to help the midshipman store develop the software
system necessary to manage the midshipman accounts and the
inventory of tapes.

Specifically the system must:

A) load the initial inventory of movies contained in
the text file located at sys$courses:[si3Ol]movies.dat
into a binary search tree ordered on movie title.

8) load the initial inventory of midshipmen members
contained in the text file located at
sys$courses:[si3Ol]mids.dat into a data structure
of your choice.

C) allow the addition of new movies to the inventory.
Information about each movie stored wi;l include
(at minimum) its title, its rating (General (G),
Parental Guidance (PG), Restricted (R), Non-Rated (NR)),
its length in minutes, its category (Classic (CL),
Comedy (CO), Drama (DR), Mystery (MY), Musical (MU),
Adventure (AD), Science Fiction (SF)), its year of
release, and its unique bar code number.

D) allow the addition of new members to the club.
Information about each member will include their
name, a unique card number (a natural number between
I and natural'last generated by your system),
their company, and major.

E) allow a member to check out and return movies. There is
no limit on the number of movies a member may check out.
There is only one tape of each movie available, however,
so a member cannot check out a movie which has
previously been checked out by another member.

F) be capable of producing the following on-screen reports:
I) a report of which movies are currently checked out by

a SPECIFIC member. Report to include all info on
each movie.

2) a report of all movies currently checked out listed in
order from most recently checked out down to least
recently checked out.

II. Assignment - Part I - due beginning of class Monday,
17 OCT 1988

A. Requirements Analysis - Read the problem carefully
and answer the following questions.
1. Exactly WHAT is the task defined by the problem?
2. What are the constraints in the problem?

(13

3. What other questions would you like to ask about the
problem?

4. What alternatives exist in solving the problem?

(Be sure to consider "non-computer" solutions.)
Briefly describe why each considered solution is
or is not viable (achievable).

5. For a "computern solution, what resources are
available that might be useful and where might
you look for them?

III. Assignment - Part 2 - due beginning of class 21 OCT 1988

A. Design - It is determined that a "computer" solution

best fits the problem. You are going to create the
package defined below. BEFORE you leap into the
.code and pray" mode, answer the following questions.
1. What objects can you identify in the problem?
2. What operations are performed by and/or suffered

by each object?
3. What data structure are you going to use to

reoresent each object?
4. What packages are you going to need in your system?
5. Describe in simple English phrases how you plan to

satisfy each requirement defined in the problem.
Draw pictures if it will help you explain but
do NOT WRITE CODE!! (Be cautious! Don't let your
partner pressure you here. (S)he may be suffering
from WAYWACY (Why Aren't You Writing Any Code Yet).
DESIGN IS IMPORTANT...MORE THAN CODING!!

6. For each requirement defi-.ed in the problem list
the exceptions you will need to plan for in the
routine that will address that requirement and what
action you will take for each.
(i.e. What errors is it possible might occur in your
algorithm or might be introduced by the user of your
package?)

IV. Assignment - Part 3 - due on computer by 0800 31 OCT 1988

Code and compile the specification(s) for the package(s) you
determined you will need. Additionally, using the editor,
create a file called FILENAMES.DAT somewhere under your
account. In this file list the name of each package
spec you created. The name of the file that a spec is
located in must be the name of the package plus a
trailing underscore. For example, if you create a package
spec for a package called DOODLE then that spec must be
located in a file called DOODLE_.ada located somewhere
under your account.

Code and compile the main procedure that will drive your
system. This procedure must be called EROLS and must be
in a file called EROLS.ada located somewhere under your
account. Your program must consist of a loop which
contains a menu of choices consisting of items C-F from
Part I.

49

You obviously cannot link or execute your main procedure
yet because the bodies of your packages have not been
completed.

Your objective is to get as clean and modular a design
as possible and choose as efficient data structures as
you can to optimize performance of your program. You
may use any package you have been given so far and you
may request a copy of any package mentioned in the Booch
Software Components with Ada. To request a copy of a
package merely send mail with its name to your instructor.

V. Assignment - Part 4 - due on computer by 0800 14 NOV 1988

Code and compile the bodies for your package(s). Code,
compile, link, and execute the main procedure for your
system. Program bodies must be placed in files whose
names are the same as the file names of their corresponding
specs except the final underscore will NOT be present.
Test until you are convinced it works correctly.
You will need to use the editor to create a file of test
input data as defined in the problem statement.

50

-- Module: Soft Drinks
-- Author: LCDR MORAN
-- Date: 14 SEP 1987
-- Function: Allows the user to declare and operate on variables of type
-- SODA (i.e. a soft drink model.)

package SoftDrinks is

type FlavourType is (cherry, grape, orange, black_cherry, cola,

chocolate-fudge, none);

type BrandType is (Shasta, Canfields, SevenUp, CocaCola, none);
type Ounces is range 0 .. 20;
type PriceType is digits 2 range 0.0 .. 0.75;

type ContainerType is (bottle, can, none);

type Soda is
record

Flavour : FlavourType := none;
Brand : BrandType : none;
Diet : boolean : false;
Container : ContainerType := none;
ContainerSize : Ounces := 0;
ContentsRemaining: Ounces := 0;
Open : boolean : false;

Price : PriceType := 0.0;
end record;

procedure OpenSoda(TheSoda : in out Soda);

-- used to indicate TheSoda has been opened

procedure DrinkSoda(TheSoda : in out Soda; GulpSize : in Ounces);

-- decreases contents remaining in TheSoda by GulpSize

procedure ThrowAwaySoda(TheSoda : in out Soda);
-- used to indicate TheSoda has been disposed of

function Flavour(TheSoda : Soda) return FlavourType;
-- return the flavour of the soda (cherry, grape, orange, etc.)

function Brand(TheSoda : Soda) return BrandType;
-- return the brand of the soda (Shasta, CocaCola, etc.)

function IsDiet(TheSoda : Soda) return boolean;
-- return TRUE if the soda is a diet soda, FALSE otherwise

function ContainerSize(TheSoda : Soda) return Ounces;

-- return the number of ounces in the soda

function Container(TheSoda : Soda) return ContainerType;
-- return the type of container the soda is in (i.e. bottle, can, etc.

function Price(TheSoda : Soda) return PriceType;
-- return the price of the soda

function ContentsRemaining(TheSoda I Soda) return Ounces;
-- return the number of ounces remaining in the soda

function IsOpen(TheSoda : Soda) return boolean;
-- return TRUE if the soda is open, FALSE otherwise

end SoftDrinks;

52

package Cars is

type Make is (Porsche, Honda, Mercedes_Benz, RollsRoyce);
subtype Year is integer range 1950..2000;
subtype Price is float range 0.0..999999.99;
type Colour is (white, black, red, silver, blue, green);
subtype NumofCylinders is integer range 4..10;

type Car is private;

function CreateCarObject(Description : in Make;
ModelYear : in Year;
Cost : in Price;
PaintJob : in Colour;
Cylinders : in NumOfCylinders;
Stereo : in boolean)
return Car;

function GetPrice(TheCar : in Car) return Price;

function GetDescription(TheCar : in Car) return Make;

-- other GET functions for each field of the car object --

procedure Repaint (TheCar : in out CAR; NewPaint : in Colour);

procedure UpThePrice(TheCar : in out CAR; PriceIncrease in Price

procedure LowerThePrice(TheCar : in out CAR; PriceDrop in Price)

procedure InstallStereo(TheCar : in out CAR);

procedure StereoStolen(TheCar : in out CAR);

-- other procedures to update fields of the car object --

private

type CAR is record
Descr : Make Porsche;
YrMade : Year 1989;
Cost : Price 150000.00;
Stereo : boolean true;
PaintJob : Colour silver;
Cylinders : NumOfCylinders 6;

end record;

end Cars;

53

generic
type Item is private;

package ListSingle_Unbounded_Unmanaged is

type List is private;

NullList : constant List;

procedure Copy (From The List : in List;
To The List : in out List);

procedure Clear (The-List : in out List);
procedure Construct (The Item : in Item;

And The List : in out List);
procedure SetHead (Of The List : in out List*

To-The-Item : in Item);
procedure SwapTail (OfTheList : in out List;

And_The_List : in out List);

function IsEqual (Left : in List;
Right : in List) return Boolean;

function Length Of (The List : in List) return Natural;
function Is Null (The-List in List) return Boolean;
function HeadOf (The-List in List) return Item;
function TailOf (TheList in List) return List;

Overflow : exception;
ListIsNull exception;

private
type Node;
type List is access Node;
Null List : constant List := null;

end ListSingleUnboundedUnmanaged;

/

54

with List_SingleUnboundedUnmanaged;
generic

type Item is private;
package Stacks is

package Lizt is new List_SingleUnboundedUnmanaged(item=>item);

subtype Stack is Lizt.List;

procedure Copy (FromThe Stack : in Stack;
To_The_Stack : in out Stack)

RENAMES LIZT.COPY;

procedure Clear (The_Stack : in out Stack)
RENAMES LIZT.CLEAR;

procedure Push (TheItem : in Item;
On The Stack : in out Stack)

RENAMES LIZT.CONSTRUCT;

procedure Pop (TheStack : in out Stack);

function IsEqual (Left : in Stack;
Right : in Stack) return Boolean

RENAMES LIZT.ISEQUAL;

function DepthOf (The_Stack : in Stack) return Natural
RENAMES LIZT.LENGTHOF;

function Is Empty (TheStack : in Stack) return Boolean
RENAMES LIZT.IS NULL;

function TopOf (TheStack : in Stack) return Item
RENAMES LIZT.HEADOF;

Overflow Exception RENAMES LIZT.OVERFLOW;
Underflow Exception RENAMES LIZT.LISTIS NULL;

end Stacks;

package body Stacks is

procedure Pop (TheStack : in out Stack) is

begin
if IsEmpty(The_Stack) then

raise Underflow;
else

TheStack := LIZT.TAILOF(TheStack);
end if;

end Pop;

end Stacks;

55

-Module :Lists
-Author :LCDR MORAN
-Date : 29 SEP 1987
-Function : Implements basic operations on a singly linked list.

ge neric
type Item is private;
type KeyType is private;

with function Key(Anltem : Item) return KeyType;
with function LE(Keyl, Key2 :KeyType) return boolean;
with function EQ(Keyl, Key2 :KeyType) return boolean;

package Lists is

subtype Count is natural;

type ListPointer is private;

procedure Copy(PointerToOriginalList :in ListPointer;
PointerToCopyList :out ListPointer);

procedure Clear(PointerToTheList :in out ListPointer);

procedure Share (PointerTooriginalList,
PointerToSharingList : in out ListPointer);

procedure InsertAtHeadOfList(PointerToTheList :in out ListPointer;
TheltemToBelnserted :in Item);

procedure InsertAtTailOfList(PointerToTheList :in out ListPointer;
TheltemToBelnserted :in Item);

procedure InsertlnOrderlnList(PointerToTheList :in out ListPointer;
TheltemToBelnserted :in Item);

procedure RemoveFromHeadOfList(PointerToTheList :in out ListPointer;
RemovedItem :out Item);

procedure RemoveFromTailOfList(PointerToTheList :in out ListPointer;
RemovedItem :out Item);

procedure RemoveByKeyFromList(PointerToTheList :in out ListPointer;
RemovedItem :out Item;
KeyValue :in KeyType);

function AreEqual(PointerToLl, PointerToL2 :ListPointer) return boolean;

function IsEmpty(PointerToL ListPointer) return boolean;

function LengthOf(PointerToL ListPointer) return Count;

function Predecessor(PointerToAList, PointerToANode : ListPointer)
return ListPointer;

function Successor(PointerToAList, PointerToANode : ListPointer)
return ListPointer;

function GetData(PointerToANode :ListPointer) return Item;

EmptyList :exception;
5

private
type ListNode;
type Listpointer is access ListNode;

and Lists;

57

Vith Lists;
generic

type Item is privae;
package Queues is

function Key(Anltem : Item) return Item;

function IZ(Xeyl, Key2 : Ite") return boolean;
function ZQ(Keyl, Xey2 : Ite") return boolean;

package Q is now Lists(Item->Item, KeyType->Item,

]Key->Key, LZ->LZ, EQ->EQ);

subtype Queue is Q.ListPointer;

procedure Copy (Q1 in Queue; Q2 : out Queue)
RUMAIS Q. COPY;

procedure Clear(Ql in out Queue)
W'AZS Q.- CLEAR;

procedure Insert (Qi in out Queue; Anltem : in Iten)
WZANES Q. INSZRTATAIWOFLIST;

procedure Remove(Ql : in out Queue; AnIltem : out Item)
REIWIKS Q . RDUOVFRMIZADOPLIST;

UNDERLUI : Exception RDIANES Q. UPYLIST;

end Queues;

A Healthy Marriage : Ada and Data Structures

Harold Youtzy, Jr.
Department of Mathematics and Computer Science

Briar Cliff College
Sioux City, Iowa 51104

Introduction. In an earlier paper [], I proposed introducing
Ada after the first and second course in computer science. Since
then, I have followed that advice and have twice taught Data
Structures using Ada. The first experience yielded results far
inferior to what was hoped for. However, the second time around
has borne the type of results from which encouragement is
derived! In this paper, I plan to reflect on those two
experiences, the changes that were made, and the resulting
effects upon our curriculum.

The Setting. Briar Cliff College is a small, Catholic, liberal
arts college with an enrollment of 1200 students, two thirds of
whom are full time. The computer science major was introduced in
1985. Following the national trend, the number of majors has yet
to reach what was anticipated, although it has been steady.

Chapter One. With high expectations following our initial
contact with Ada, Data Structures was taught using Ada for the
first time in 1987/88. Pascal is the primary language in the CS1
and CS2 courses, and had always been used in the Data Structures
course as well. Introducing Ada here was thus the first look at
the language by the students. Unfortunately, many left hoping it
would also be their last!

Numerous pitfalls led to the failure of that first attempt.
My own lack of adequate preparation, and failure to anticipate
the types of problems (and complaints) that would arise from the
students admittedly played a major role. It is not in vogue to
acknowledge our part in failure, and though it may be easier to
pawn it off on other contributing factors, I must stand up to
face my share of the music for its demise. Having taught Ada as
a programming language in the previous year, I had uncovered many
of the organizational problems of introducing a new language. As
such I felt adequately prepared to use Ada within the Data
Structures course. But teaching it as a language and using it as
a tool for data structures are two different approaches, and one
approach does not necessarily prepare y a for the second. For
example when teaching it as a language, a Pascal-like procedural
approach was followed in writing the programs, but when using it
as a tool for data structures, the emphasis was placed on
defining the data structure and its operations within packages.

39

Additionally, the set of available textbooks is limited.
This gave way to two deficiencies. First, Booch's text, Software
Components With Ada [2], was selected, in part, due to the large
amount of code that was included in the text. The preface of the
text highlights Data Structures as one of its intended uses and
presumes a basic understanding in a high-order language such as
Pascal. With no prior exposure to Ada, it seemed reasonable that
an abundance of code would assist the students in grasping the
syntax of the language. And given its flavor for reusable
software components, the book seemed to be a perfect match.
Unfortunately, it seems that compilation errors play a far more
memorable role in teaching syntax than does cursory examination
of code in a textbook. The students were able to grasp the "big
picture" but grew weary of crossing their t's and dotting their
i's. It was also apparent that "deskchecking" has been relegated
to an interactive activity. They had become accustomed to quick
compilation with Pascal, and as fast as the Pascal compiler would
flag an error, they could correct it. It seemed inappropriate to
check your programs beforehand when the compiler could do it for
you. As such, the students unwittingly contributed to their slow
compilation speed by having a substantial number of syntax errors
in their programs. At times, it appeared that the compilation
speed was exponentially proportional to the number of syntax
errors within the program.

Second, with regard to textbook selection, the principal
theory behind the individual data structures was not as
pronounced as n other books devoted strictly to data structures.
This factor, combined with my aforementioned failure, left
woefully inadequate the repetition that is sorely needed by the
students when learning new principles. It thus appeared to the
students that theory had been traded for code.

Observing the difficulties confronting the students my
attempt to solve the problem, or at lease ease their discomfort,
only served to fuel the fire that had by now reached at least two
alarm statusl Instead of providing them with the additional
repetition, more time was spent studying the language itself.
Since the language had now become their major source of
frustration, sessions devoted to teaching the essential elements
of Ada often became opportunities for the students to berate the
language. All of this, was, of course, distracting us from the
objectives of the course. In retrospect, I may have been able to
salvage the class at this point had I provided more theory and a
closer examination of the reasoning behind the development of the
code found in Booch's text. Unfortunately, neither action was
taken, nor was the class salvaged.

Lastly, the steamroller effect was also a participant.
Almost everyone entered the course enthusiastically The
prospect of acquiring a feel for Ada in addition to learning the
normal data structures material was considered a plus. In terms
of academic ability, they were unquestioningly one of the better
classes to enter the course. However, when they began to

60

recognize that their own natural high expectations for the course
were not going to be realized, their hopes diminished as did
their excitement about becoming familiar with the language. As
the morale of the troops deteriorated, so too did the morale of
their leader. The checkered flag, also known as the end of the
course, waved vigorously in the thoughts of all involved as we
sped to our disastrous conclusion.

Chapter Two. Having learned the lessons from the previous year
all too well, a second adventure into using Ada in data
structures began with much more thought and preparation. With
the stories of Ada filtering their way (or should I say
ballooning their way?) to the next class of students, there was
no doubt more trepidition than excitement in most of their minds.

As a starter, new books were introduced to the class.
Feldman's text, Data Structures with Ada [3] was selected as a
required text. Ada as a Second Language [4], by Cohen, was
adopted as a recommended text. Although a simple change in texts
rarely produces a resounding difference, it stands as one of the
most influential factors in the outcome of the course. Feldman
does a good job of combining theory with practice. An ample
supply of examples written in Ada provided the students with the
chance to view the theoretical principles in coded form. I also
made certain to underscore these principles as we progressed
through the book. How unfortunate that so much of our learning
has to take place through failurel

The addition of Cohen's text also made an impact. In the
previous year, questions regarding the language itself had to be
answered from the language manual. Although that idea is sound,
we all know how difficult it is to search any language manual,
let alone Ada's, to answer a question about the language. So in
our current year, questions of syntax and semantics were
relegated to Cohen's text. Its 800+ pages provide discussion for
all the topics addressed by students in this class regarding the
language. And though it was a recommended text, all the students
soon recognized its value, and none went through the course
without it. The only complaint voiced by the students with
regard to Cohen's text was the fact the he introduces a BasicIO
package at the beginning of the text which he uses throughout.
The students felt it would be better to stick with the predefined
input output packages provided by Ada. Nonetheless, Cohen's text
was a more beneficial reference tool than was the standard
language reference manual.

A second major factor was influenced somewhat by what was
just mentioned. In my first attempt to teach the course, a
disproportionate amount of time was spent on the language. It
was very easy to get caught up in teaching Ada as a langauge
instead of a tool to implement the structures being studied. In
my second approach, I paid careful attention to provide
instruction to the students with only that portion of the

t
langauge necessary to successfully implement the details of the
theory into their programming assignments, homework, and daily
reading. As such, the course stayed within its objectives at ail
times. In fact, rather than lagging behind in the syllabus, we
completed Feldman's book with time still remaining at the end of
the course. At no time in the course did I feel that we were
rushing through the text. The coverage of the principles and
theories seemed well balanced, and though the academic ability of
the second class was not exceptional, as was the first, most of
the students came away with a greater comprehension of the course
material.

Thirdly, given the horror stories provided by the previous
class, the second class of students were more earnest in doing
"deskchecking." A VAX 11/750 services the needs of the students
in most of the programming courses, and although the VAX is
overworked at times, turn-around time for the students never
reached the epidemic level it had in the previous year. Once or
twice in the prior year, an overnight turn-around time was
experienced. In the present year, seldom did it go beyond a half
hour. (All programs were run via batch mode.) Students, on their
own, brought hand-written code in to be screened before
submitting it to the compilerl And when they experienced
compilation errors, tiley often went first to Cohen's text to
resolve their errors. Performance for the TeleSoft Ada compiler
has improved over the past year, but its improvement paled in
comparison to the students' improved performance in screening the
programs before submitting their code. Hence, the students
recognized the value of' deskchecking their programming
assignments, and were benefitted, in return, by much faster
compilation turn-around time.

Additionally, just as the steamroller effect can be
negative, it can, in like manner, be positive. The students'
trepidition at the beginning of class slowly faded as they saw
the changes in outcome from the previous year. A clearer
perspective, and a year of experience, allowed me to be better
prepared for the problems sure to arise from the students. They
more eaily baw the benefits of using Ada rather than Pascal.
Although to some degree this was because they didn't face the
problems with Ada that was true of the previous class, I would
also like to believe that by unveiling only portions of the
language, they never got caught up in the immensity of Ada. I
believe students in the prior class sometimes felt overwhelmed by
its size, to the degree that perhaps they felt it insurmountable.
Without taking time to fix leaks in the dam, more time was spent
doing repetition, giving students a better understanding of how
to arrive at the necessary solutions. The fact that they were
more comfortable with their understanding of the material
contributed immeasurably to the steamroller effect. As such,
their leader was better able to cry "charge" rather than
"retreats "

6 2

Lastly, also related to what was just mentioned, some
improvement was mnde because my own expections of the academic
ability of the class were not as great. In the first class I
recognized their excellent academic ability and left much of the
teaching on their shoulders. Instead, I should have increased
the level of my own teaching. The second time around I paid
stricter attenticn to what I was teaching and how I was teaching,
making sure that I was communicating effectively with all the
students in the class.

Chapter Three. Where do we go from here? Many would assume the
next step would be to incorporate Ada as the primary language.
However, we remain firmly commmitted to Pascal, especially with
regard to CSl. "Safety in numbers" is an easy excuse to keep
rascal as the primary language. The vast majority of colleges
and universities continue to use Pascal as their principal
language. But for us, the availability of resources serves as
the major stumbling block. As resources for Ada become
increasingly accessible, consideration to such a move becomes
more plausible. Additionally, most students taking data
structures are serious about computer science as a major or
minor. Conversely, most students taking CSl and CS2 (especially
CS1) do so as a -equirement for their major or minor, and the
added tools that Ada offers is of little consequence to those who
will use mostly menus when interacting with a computer beyond
their college days.

Our most realistic assessment is to possibly introduce Ada
in our Software Engineering course and our Operating Systems
course. The software engineering principles inherent In Ada prod
us to use it in the Software Engineering course. However we
frequently try to employ real-world projects from our community
into this course, and we have yet to find such an Ada based
project. (Sioux City, Iowa, has little need for Ada programs or
programmers.) The language resources for software engineering
are well established for this move, and we shall be easily swayed
when such a project from the community comes to our attention.

The more feasible alternative is to use Ada in the Operating
Systems course (which is our current plan for 89/90). Given a
prior exposure to Ada in data structures, it is quite reasonable
to expand on their developed resources and incorporate them into
the principles of operating systems. Queues, buses, interrupts,
coprocessors, etc. are all easily addressed oy Ada. By reusing
some of the code written more than just a month or two ago,
students will gain a better perspective on the joy in
maintenance! As larger projects are tackled, some as team
efforts, the concept of working as a software team can also be
employed and demonstrated. But it is essential that Ada remain
as a tool source, and not be addressed as just another language
whose syntax needs to be learned.

63

Epilogue. Some valuable lessons have been learned from this
teaching experience. As easy as it is to teach Pascal in CSI and
CS2 instead of problem solving techniques, it is even easier to
attempt to teach Ada as a language rather than as a tool for data
structures. But when the focus is maintained on the underlying
principles of data structures, the tools that Ada has to offer
avail themselves quite naturally to the students. Success is
very enjoyable when Ada has been correctly incorporated into the
Data Structures course. But warning must be given of the
pitfalls that await those who are not fully prepared when
entering into this arena.

References

[1] Harold Youtzy, Jr., "Teaching Ada in a Small College
Environment," Proceedings of the Third Annual Eastern Small
College Computing Conference, (October 1987), pp. 101-107.

[2] Grady Booch, Software Components With Ada,
Benjamin/Cummings Publishing Company, Menlo Park, Ca.,
(1987).

[31 Michael B. Feldman, Data Structures With Ada,
Reston Publishing Company, Reston, Virginia, (1985).

[4] Norman H. Cohen, Ada as a Second Language,
McGraw-Hill Book Company, New York, (1986).

64

TEACHING OLD DOGS NEW rRICKS

Tina Kuhn~

z,17 Ca-Lvir Lare

-is Laver aescrl oes tne co.mon nro:,;aris s: uaerts -Ave -earrSIrn
P-~ca witn r'egavcs to their Lackgrcuni0 0. FGCR7RPN. Pascal. or
LOWU ex oarience. "ri 67= inr Rcxvz lioe. Yd. we~ nave an, r.-nctASe
i ntrocU~t21 r tD ina course. Current ly, over W'S ero ineers have
ta-icr tn two weeK class. Ll erqireers entering~ tie- cass -ave
som~e experien-ce in anot ier nign~-criner larir~uage. As an~ irstrAct.:,r

zci ' C-a ca SS -.1n, tie stur-erts learn tie ccorceots in 0Ad rt
as a f0irct .cr of now smart they are Out by the Mackpr.:ur they
oave -

i~St U Ce!rts S aZ- a -St. C acor rO 7iave t Ie easi est tia me
.earria i~oa ojeca'jse -ascai is ore cf *;he t.eacse iar-quagecs cf rPda.
Yet even tneb-e it uderts firc man ica 9:eat LreS rCe;-J ar:C, 01 F-FICUI-
'0 Use: examo jes a rci l-tu the corcept s OF Pacs~agl r;S eXCePt1 or1S,
or avat e tymes, aria gerjeriL.-' ro ncar;Ie a1 reV. he sr :4Ocerts witn a
real-tiwe mackqcuro. orimari~lv '=-0RTRA1%. C. Pascal exoerier .'ez
Lcri 1 i eer s, usua 7~ 1 a t tie corceDt ' 'L , I -- taH i n g e asy
.rerSt aria Out hard t-o use !:ecaLuse c' Ftre ~r"tr1 ;s
rat Ure? Ci tas"4.s. ne st udents witi oriv a CE'O... oackgronro hiave
the mo-:st 01i~ffc,±Ltv o:-2krng up the 1:da C0:r-CertS, r, , ,rv ~e~ = _Se

tnte extir-ere ci ffe-rences oetweer thie . arrquAges arc- because .)
ern ireer usAaliv have rot done real -ti1 e or-ogrann i rig that in
lel-ul in Wearnring tasizing 7rq he ?CWTIN ana C omcorammrevs qave

cne most oifficuity in the area cf st~typingc whici is i-creigr-
ir 0ctil -arngaes. Tme strorg typing car. ne a source or ext:rerie
frustrat ion for these er~ieevs. Below is a i 505551 cr: cf thie
Wina specific features ard how teachier, Crn t a I ':r A-I
I rtrc-cuct icr:, to P C3a co ur se to meet the neecs of the st urdet s.
Masec cr- th-eir nc~ru-5

PACKA~GING

~igi reers urcerstara the corceot of oackaq r~ riVs easil :Wt
f ard t nat C1ec 1C '-r qWI-at t o ou-t :krit C. a Q 0(2k a ge is :ar r11.:re
cifficult. indeed. tnis is a wesior issue ard the suo'ect of
rlar bocoks arid papers. Packagirg is a cr1itical Dart c--f desz.tcrirq
a orcrgraw triat is; reaoanle. reliac.le. iartaiaozie, ::ortaoleq ard
reusao ie. Pack'age cesiqnr smc.Ait no a :zArt cf any trdct1rt:.
1 oa ccOUYSe. st ucents. in gereral * are no, woleageacK e ancst
sof-tware ergcineerin rporiciples. In *r C Ler t:- tecn oackagi±ri.
arid w 3r the st udents over to 0 Aa. tne stwaeerigireera n
or rci oies . aostract icr. in fcriat :CM hidiang, !WdcIarity.
'eusaoiltv. Dortanitv, Verfa::ijt,:rj,7 ze resco

aCCeot ec by .he st ucert s. The an 20'uroa.res3e-

the lonocest t im~e to start trunkinri In pta. he 'ZOBC:._ rc

nave difficulty Wi3,t.- t Me czcrceot cf mo.a~vw*:1e~ st,_:fTS
with other, nackarouncua co. nct. COBOL Orir~~steroc. to be 18Cr
with few uii t s, cr s~tocrc-rams. In acci7t ion.ri t; ere 13
anaijocous to a funict ion ir COBOL.

STRONG TYPING

Stronq tvoirg is trie may-cast feat ure to use for st: uder,:s;
a Pascal loacKcr-ournd. Tvoirla e rrors orocd uce rio0st t. the
cornoi lat ior errors aria cars te ver-v -r rust-at :rig for Z- ~ P ar~c
era ineers. Sever-al o tne most corior m-oberr:s are .

be I o w.

1) In tne eariiv stanes of ieavLrc. Aaa. ore of th-e mnost c-~
miistakes is a st Uaert trirain to utse A user-oefirie= tvrie as a
vari 1at)I e. For examole:

orocedurse TEST is
type LIGHr is RED, GREEN, YELLOW);

o e i n
LIGHT := RED, -- il.lega..

end TEST:

2) A second mroblei is a st udent tryl rig to mix ob jects ta; arL
or different types but that otherwise have the 5 -.r L
characterist ics. Cornooun i rig hi Is oroo Iem' iS t t.e S t UC P'.t T

falilure to araso the differ-erce between base types anrd subt,'eS.
and the ooerat ions that can, be clone to-- each. -rexarn: Le:

oroceaure TEST is
type BASE INT is new integer range .25

suntype SUB_ INT is integer rarce .15
1N~f I : rteget, -rnge 1.. 10;
INT 7 . nteger, rane 5.* 15:
sum: injtecer; -
SUB_ INTl : SUB_ INT:
SUB_ XNT2 :SUB- INTr;
BASE : BASE_ INT:

beg ir
sum INTl + INT2;
sum INT1 + BASE: illegal
DASE :INTI + INT2 -- Illena
SUM1 SUB_ 1NII + SUB ITL?
BASE SUB_ INTl +4 SUB INT21 ilga:

era:

Protner exampole i11 .iustratia the momIlern of 'Aus nQo ~n i.n r at ib. e

tyioes is the folicowing:

66

tvce wdRRY f is ar.'ay of craacner:
type ARNAV 1 is arrav k, it".o crianracte,

).11 I u & 1:4

era:;

SPECIFICATION/BODY

Soe cc e o't c.f a soec! 71C at Icr CO1 -at zrs oe Ltsec: arc ccoj,:., i arj
seoarately from rm-e ocay of tne coe ta~'es awrll Mia ~r- stucents
to graso. Tie nca rot neirsg viEsiole to t -e e.-<te -naj. soi-rces.
and the iniformiat ion hia :ro that goces along Wt:4 Z;is. seems t-
MaKE s't cents awnike to inrcor ooraT e into tni esignrs. E
10DL. programm~ers nave th~e mos~t t rocle rnCerst arC ric so
or wcay ania soecificat icr. COBOL crc'prams tenC toz ne a~
structures with all varianies Dional. Visio.jtv, aric r:'t

rilcinri issues oJreserted ar-e ccommietel v fore ign to We cic.
exoerierncea erip Irieers. In ~d ci it io ri the FORTRFPN arnc,
nrograsriers, esoeciaaiy~ tncose W71c nave freauant iv usec ccoorco,
MOiCK~S. find It ci fficiuit to understand why the cncepts a.
infrm~rat ion n ic ir arnd anstract ion are gooo. arc hence also0 nave
orca ieriis with tnie corncept :if soeci ficat ,ora versus odv.

VISIBILITY

The whiol e ccorcect of navirc to "Witnv irn code in oCM-er to se5t
access is different in Pisca thn ir other larauages. in 0G7R
every oroceoure linkec intco the eXecUtab1E- 25, visiole 7,-- ;:vP-v
,-trier orocea ure. In othier larnguages. the COrOIiler' d-oeu li-
cnecx the irterfaces with ctner oieces cF coce, Tvie r-j'FRZN ana
C croaranriers. af ter .earnirio a00oct the "with" arid the 'use"
clIause, t end t o 1w ith' andc use" evervtnirc avaia:De 7,.
ci rcumverit goodi visibility Dract ices. in additionr, the Cci,,cept
art ocerator rnot oeirog V.IS3aZie :s a side effect cof the v~ii
ruies. Art examle :if the ronvisinility cf anM _oerator ti~s

oac!4aae rY_Pr G is
type MV _TYPE is rarge 1

end MY _P"A3;

with My _'RG:
orciceojure TEST is

QJ:MY' PK-G. MY__TYPE:
'1 OLEN

Y =P) Q~; i s not recognized.
end:

67

Fne 11' must be exmiicitly ammorteca usin tne 'use' clause, fully
cual iried (i.e. Y := MYPKG. "Y(P, C). orl reniamied. The concept
T.Mat an operato~r cannrot be used witricout doing somneth~ing saec,-ai
is 'Anfari Liar to most programmers.

PRIVATE TYPES

Private types reauare a soecia type of desicr. that is foreign
to any Procramirer cf' another language. 1 he stucents pick up the
syn~tax of orivate tvoes Out have a harder time seeing why they
are 13000 to use. ana an evel hardler ti:me knowing whers a type
snOUiC be made oravate. To the FORTRAN or- C orc-Cr'arnrner using~ a
Drivate type aDoes not seem worth the troutle. The l imitat ions on
trie use orf a orivate type often frustrates the er~irseers.

ACCESS TYPES

Trie C arca Pascal orogramtmers f ini the concept of access tvoes
very easy. but the R OR TRPN ania COBOL porarriiiers firid it very
a ff Icu-iT. This is onie of several areas whMer e a teachier should
iearrn the DacsQorouna of the stucerts to:: avoid eitriet boring cr-
corfUSia the stude*ts. Access types neeas to oe exolaired to C
arca Pascal orocrammers MeCaUse of the su~bt le Ci ffererces between
thei r base langquage aria Ada: u t the coniceot Carl oe taucht
cuic . v moving lito- More Complex exaicles. ;Fc:, the COPOi- aria

-- ±' roaramnmer. however this is a oraro new to: ic tnat must
oe -auCnt siowiv ard carefully. The Concept of 1ir.-ea list-, way
---.i sc Le riew arca cc'rfusia. For this lessor, utsiriq igrm anc
wqa. v i. rQS 1c-W IV thir -,u q examio~es seemis to help. Some c.f the
: -:oi.eris are:

J) I sa ans ircorolete type t oo ear:ly before the cornoete
oel-iritiDr, of the access type and noce;
L) Zmxiriq uo the Qointer aria tne noce typce; arco
--) Proolems with t he c if ference metweer, assigning the access
value verses assi arana tne va-ues inEsioe the tyoe. -or example:

tyce POINTER is access A:
Ai.Ai :POINTER :=.........z

P1 := Pa; assigning the ocarter,
AI~~aii ;= as:7,ininq the valu-es Linside the type

erd :

GENERICS

M.':st prograi-rners c ot acuire a goca tircerstaricing cof oerierics
untit il after mui-ch experience with the lariguage. iYhe syntax o:f
-nstaritaatio; is Dacwec u.1C easily r tut t he r e a s,- r be-a3rid the
inrst ant i at i on usual ly tawes awn: e c. fu± ly urcerstaria. TE.
narcest oart of ::ereric-s t o 0 ras S :s tn e 3 istant i at i on of a

68

g~eneric witn- a si-toa0rafr., es~ecia- iy a/io 1CDOe.t~r.. Tnis is touc_-
n~o matter wnat the student' s rjackgYOroud.

~roce~ureINT SOIRT is new S_-ORT '(ELEMAYE)ITGR

L.IST TY DE)IN'T _PRRAV.

TASKS

irs ali other langauages, concurrency is corne thr1ougn calls roace to
systeril routinies orov iced by the omerat irg systemn. Tasking is a
new corceot fcor al ± st uaersts. but the st ucerits with exoerience ir
real-t ime orograiming fina taskina easier. Ta- n ocrec

aria asyncl-irorOUS co::nceots are uIsualIly pi cked uID easi ly by
FORTRAN~. Pascal. and C Dromrarimers since most o-f the enioaneers
nave done some Kir o orf asyn~chronous process inrg Using systemn
ro uti1nes. Vaskir is deceotively com~lex with many underiyirg
IssUes. ,Task ino is nondeterririst ic and inr manyv cases. the
r es ui ts are m1ach inre arid cornealer deper~ent. orexariile, miost
st ud ensts assumne tmie selectiave waits with several cOler
a-ternatives wii... De serviced in t...rn. This is rot. the case,
sne 1 states the selectiaon is arbitrary, not fair.

se ± ect
acceot.........

acceot.........

enc: select
ena looo:

r the aoove examoie. if ail the alternatives are ooen every tame
t nro uo a i Me 10 0 . ore coroi Ler- may se Iect the last acceot
_tateer. eachi time while arotner, coTiier' W111 Select the first
aCCeQ!: statement. in both cases, thie otoher o~en alternat ives are
st arvec.

Fne eval uat ion .o:f guarcs ir a select statem.,ent al. So seems to be a
very elrro-r orone oart of tasving. Guaros are eval Uated at theL
cE Err) a se.Lect stat em-ent eachi t ime tnrough trie loo. If all -ne
0 Uaroas are c.L osea ariad1 there is ro "else" part t.o- the Select
st:ateerit *c a pr': aram error, wil 0I occur .

H thiro orouiem area is arOu-nd t as i. t erm irat ±i,:. Unhand' Lea
exceot ions in tnie boay o:f a task. cars ca!use a tas < t silent lv a ae
ieAvirc Ethier' taSKS Waltar:q tOr calls froroi the rianging terminated
t as x. as 1.s ~n 1 1 Orarv cooe t hat 0do ro,:t (lave a terrmirtzte
alternative may hanic thle oroprarn. esmecialvy if th e task is
wait anz at a se--ect statemserst triat will never :e executed.

6n

EXCEPTIONS

E xce t 3. rns arc: eXCE-tl~ r ..., ~rag A t C. ayle new cc~nccs .z v
er. ni1 eers a I a. bac k ar!. rc . iMicst lcnaua es use ret urn -itatAE~E-i
ror tne 3*1:oa cat 1oy ov f 9v-rcrs uswarda :rt a prC-:rarm. t ,e concep-
of except ions is ~c N.e d JD eAs . I nv ricst st ud ert S h e
except icns -:are USULA_ Lv r)'ZT iri7L)._=er~e1d as efliciternT i' as t--'zv
colUO be. many timres except ions are Lt--ed as Gil".-G. Exeeot :-..
arnc exceot i r rcaatir ren seem~ co. .e evenlyv tistri butet
arm'c~na the st,_,cen~s. zIne oa'r":n f -,e st ucents CSntec
tc C. e re i evant. ~ xcent icOn _-rooaqat lon, es~ecialv y
co'aiat Lcn cv except ions fromi a i iorary maekage, seems to C a!5
a 'ot roCcrarnmirir erro~rs nt,,:t Lt ur i rg cor':2a at i on ano a rr

I mre. ine stucerics r .pe t "tc! out in excemt ic-rt bnav-coers c
except ions Drco~amated i'frm .. DrarlV r ntes. n~ 8Ci C t:I-D!
St ucerts have a mare~ t ime oeciirc: _0w to C ac a an eX C'- 0. 1iy 1
i . e. tc opropagate it unZWardCS agairn, T..: =a,-tire it aridoe-
sonle work. orto mrooarcate it upwarrds andi Derfcsrr oo~p. wcq'ro.

MI SCELLANEOUS PROBLEMS

,) St uoierts inevitab- aty try tc, write to. in marameters. .rreac
from out paramieters. rin C020L arid FORT.,RAN, cararleters are always
oassea as in out. in I- they are aiways : assea as in.

a.) Stucerts f ina the tiac. mlark (I) CZnfulsirii MecaAse it- is Asec
as noctr a cuAlifier arid for an attr:ttte:

Dackao3e TES - is
tyoe ."-AG is (RE.D. WHIT~rE. iL)
type LIG3HT is (rkED. YE-LLOW. GREEN):
Doceaure ty'Y_.--R0C (COLOR : n i LAG)
orocedlure M~Y_ P::OC (COLOR :r AI3HT

erd TEST:

wi3.t.'i T ESG: use TEST:
oroceC Lre x i s

beg i n
INT := my ar-av' last:- tic., mna-rk usea wktn an

-- attridute
MY_ PROC(COLOR =) FAG' (RED)): -tlCK~ Mat-. U-SeCl as a

MY_-'ROC(COLON => L-GHT' (RED)):
ena iIN;

.3) Attributes such as 5000. PRED. POS, VAL mnay ne ao-31i er to
suctvaes. Olut the resu.I.t s arle iciertical t,: aop Iy . n t ,a
attraD'Jtes to the base types.

procedu're TEST is
t V F_ DAYS i s GMCN, 7UES., ED, THURS, %._I SA~T, SuN)

Suty'De Ar jS-% is DP-YS r-ars::e m:ON. R 1

tr Y_DH DYS

-DA WEK S.'Er' (w 1 L~ eo t-~w a OA'
end

SUMMARY

*rh e StUcnt s w It -1 & -'asca I baC~<grcturd nave tne easi.est tirlIe
co'rvertinc to. Ada follo.:wed, in - :roer oi f !i f fic. C , 1 v 1.V tyStudents
with backarourdcs in L, arid CL.

Anothier- fact.or- ir, t each irno t 1-1e Ad a I anc u a ce to ex,:-eris-rcec
erinieer~s is tne nummer, or . years exoerierice t7,ey nave in tneir
oase lanouaoe. Cyoica>l.v. the oreEr arn ercireer- -as neern
WC-r'Kari[in one lariua ce, the ric-re resistance rmere -,s 'o onace-
7me end irw: ers wr :- have scert conrsi1deraole t re US .I n1 On~e
jLarcUaoe are tyoicE, .v "GLIRUs' in tne language arid -'o start a.I _
Over, and i ose triat "f ame "is di fficult. Muc CICarle a.nc
sersit ivitv reeds to ne taken or, tne Dart of the injstructor t-:
ease the ermc 1 eers t rans it icrn toC t!Ii s new aric f rea Ltent I V
overwnei ro ri 1 arCuLaie.

71 i-

Process Control Training for a
Software Engineering Team

Sue LeGrand, Ann Reedy, Ed Yodis
Planning Research Corporation

Introduction

In the traditional computer science curriculum, students have been
taught programming-in-the-small. The standard industry complaint
with this approach has been that graduating students lack experience
and understanding of what the Software Engineering Institute (SEI) has
begun to call the software process [1, 2]. In particular, students are
not well acquainted with software life cycle concepts and standards
and are inexperienced with a team approach to software development.
They lack experience in the application of software engineering
concepts and principles within a large project environment. Lately,
there has been an effort in the universities to introduce the software
engineering disciplines in conjunction with the introduction of Ada.
Ada highlights the needs for these disciplines by directly supporting
software engineering techniques and by forcing more attention to
design issues. The concept of the Ada Programming Support
Environment (APSE) also focuses attention on software engineering
environments. However, it continues to be difficult to provide large
project exposure within the constraints of the university setting. This
paper will discuss an approach to offering education and training in the
management of software process activities. Some suggestions for the
content of courses will be presented as well as an example of an
automated software process control system that could be used to
assist in the teaching of software process and software engineering
concepts.

Students need exposure to the issues and problems of programming-in-
the-large (sometimes also referred to as programming-in-the-many).
These issues and problems are best seen in the worst case scenario of
a large government project with multiple segments; a prime contractor
and multiple, geographically dispersed subcontractors per segment; and
a system integration contractor or activity. These projects involve
hundreds of people; difficult communications across geographic and
organizational boundaries and company cultures; and large numbers of

change requests. Further, such projects frequently have challenging
performance and reliability requirements as well as requirements for
an extended operati,.ns and maintenance activities that include new
technology insertion. Students need an appreciation of the disciplines
and effort necessary to collect and collate project, product and process
management information within and across projects of this kind.
Furthermore, students must experience the difficulties involved with
the integration of activities into a disciplined engineering process
within a large team or large project. Students should learn how efforts
by various teams and subgroups must be coordinated, and how they
should be managed throughout the software life cycle.

While students are currently taught about various software life cycle
activities in isolation from the rest of the life cycle and about
methods, techniques, and generic types of tools to support these
activities, they are typically not exposed to the various ways these
activities can be combined into a complete life cycle. The students are
also not exposed to the disciplines that do not belong to a single life
cycle phase or activity, but which stretch across the entire life cycle.
These disciplines involve the control and coordination of the life cycle
activities, the enforcement of methods, procedures, and standards, and
the (logistics) management of the large amounts of product,
management, and auxiliary data generated by a large project. Finally,
students need to learn about the automation of the software process.
This paper will stress a process control approach that has proven
useful in real world projects and that may prove useful in an academic
environment both as an example of process automation and as a vehicle
for providing students better experience with programming-in-the-
large issues.

The following paragraphs will discuss the software process issues and
the automation issues that need to be addressed in education and
training. An example of the type of case study needed to motivate many
of these programming-in-the-large issues will also be provided.

Software Process Issues

Students need exposure to the entire software life cycle from a
process point of view. They need to see the software process as a team
effort and as an engineering effort requiring the applications of
discipline and sound planning and management techniques. This view is
necessary to counteract the impression of software development as a
handicraft that is given by teaching programming-in-the-small. Many
computer science or software engineering students enter courses

74

thinking that the software process consists solely of the
implementation phase of the life cycle (i.e., "programming"). They need
to be exposed both early and often to the software process conceptsdiscussed below.

Students need to learn the concept of the software life cycle. The
software process includes many interrelated activities. There are the
basic phases of the life cycle, including requirements analysis, design,
implementation, testing, operations, and maintenance. Students need
to be exposed to the various ways these phase activities can be
combined together to form a life cycle model. Examples include the
classic waterfall model, the waterfall with prototyping, and the spiral
model. Figure 1 shows a classic waterfall model skeleton where the
software life cycle is contained within the system life cycle. Figure 2
shows a different view of the software life cycle that emphasizes test
and evaluation, auditing, and verification and validation (V&V)
activities within each phase and views maintenance and changes as
additional passes through the original life cycle. Students need to
aware that there are various standards for life cycles.

When viewing the software life cycle from a process point of view, the
students must be focused on those activities and functions that stretch
across the entire life cycle or that result from the combination of the
phase oriented activities into an integrated whole. These activities or
functions include software configuration management (SCM); quality
assurance and engineering (QA); status tracking and reporting;
management planning, control, and coordination; and logistics support.

Students need to be introduced to SCM, both in terms of its
subdisciplines (configuration identification, change control,
configuration status accounting, and configuration auditing) and in
terms of the separation between policy (i.e., the number and structure
of control boards, etc.) and enforcement. The view of SCM should not be
restricted to studying the formal baselines required by standard life
cycles but should include the integration of SCM into the software
process.

In their introduction to QA, students, again, must not be restricted to
studying the formal reviews required by some standard life cycle but
must include the verification and validation activities required within
each phase of the life cycle to insure that quality is 'built-in." (Figure
2 illustrates these activities.) Students must learn to separate QA
policy issues (requirements for test plans, regression testing, etc.)
from enforcement or test management issues (i.e., ensuring that all

45r

L $ -wn 16 a. 5W L - I. . in N
N rCMALE Lm am C m. meb o w -

LINICYCZE
STACM

QA

CM
TRACiG

&

Figure 1: Waterfall System Life Cycle

SYSTEM I -------
CHANGEs

CONTROL S/W W SW
SRAGUD ARCH. DETAILED IN

ANALYSIS DESIGN DESIGN IM1PLEMEOIT

TOOUTOT

v&V v&V NV SPECIFI
0 FUNCTIONAL

CONFIGURATION
liii 5W DEALDAUDITII I H RELEASE

91W GENE AL DESIGN lv l& HSIA CONTROL
Eua. DUESCNFGUNTO

*SOTWAR1 PRELIMINARY CA A *TEST INSPECTION

SPECIFICATION DESIGN DESIGN REAOINESS 0 ACCEPTANCE
REVIEW REVIEW REVIEW REVIEW _ REVIEW

Figure 2: A View of the Software fe Cycle

76

required tests are performed, regression testing is performed, etc.).
Students must be exposed to the interrelationships among the various
life cycle wide activities. For example, the QA policy with respect to
testing will impact the SCM function since test baselines will need to
be managed for each test procedure.

Among the life cycle wide activities, the management activities of
tracking and reporting and the functions of planning and logistics are
among the most important and among the least understood in the
industry today. Figure 3 illustrates the range of topics that must be
covered by management planning for the software process. It is a
management responsibility to perform the planning for the entire
software process and to lay out in detail how the process is to be
carried out. This task includes not only the classic management
functions of personnel planning, task definition, and scheduling but also
the function of setting policy (i.e., for SCM,QA, etc.), standards and
procedures (i.e., enforcement mechanisms), as well as methods and
tools. It is a management responsibility, for example, to ensure that
there are smooth transitons between the methods chosen for the life
cycle phases.

Management is also respor-ible for insuring that the software process
that has been planning can be effectively executed. The logistics
support required for proper SCM, QA, and software development method
implementation is high, and this cost usually means that automation
must be used. If this is the case, then management is also responsible
for insuring that the automation tools and techniques selected properly
support the desired activities or functions and that these tools are
properly integrated. Students must be made aware of these
management responsibilities, especially since failure in these
management areas is currently a frequent cause of problems in
industry.

Case Study Example

The Space Station Freedom Program provides a good example of a case
study. This NASA program has all the characteristics mentioned above
for a large government project in which the software is a critical
component. In this case, there are four prime Work Package
contractors, each with multiple subcontractors. Each prime contractor
is being managed by a different NASA Center, and the resultant
software products are being integrated at Johnson Space Center. The
Space Station Freedom Program is unusual in that it contains the full
range of types of software applications, ranging from embedded, real-

77

MANAGEMENT E CONTRL

AND RESOURCE SECURrT MANA ,EMENT

CONTROL TASKING. SCHEDULING. STATUS REPORTING
CONFIGURATION MANAGEMENT

QUALITY RE IEWS AND AUDITS
CONTROL/REVIEW TRACEABILITY

T&I CONTROL UNIT, COMPONENT, SUBSYSTEM. SYSTEM LEVELS
TECH. CONTROL DEVELOPMENT M ,ETHODS STANDARDS. TOOLS USEENFORCEMENT

PHASED UFE CYCLE OF SOFTWARE
TECHNICAL PREA PRELMNARY DETAED SYSTEM DEPLOY. POST-
ACTIVITIES S AE FEQrrS CI DESIGN AN UNIJTEGr & STING I oENT D -

_cEvELpcwr ANALYSIS TESTING ITESTING SUPPORT
LOGISTICS SUPP'T TRAINING. OPERATIONS. MAINTENANCE PLANNINGIEXECUTION

Figure 3: Software Process Planning Requirements

Status
Reporting

C. 0
Planned N 0R 0

Schedule T L E
R A MSV

Actual N TN G T

N P

Activity Engineers

Managers Direction

Management Software
Tools Tools

Figure 4: Process Control

77

time, life and property critical systems to information systems. The
Space Station Freedom is an example of a "never, ending system" since
it has a very long planned life cycle during which it will continue to be
modified and expanded. Since future requirements cannot be fully
anticipated, few assumptions can be built in to the system design
regarding limits on memory and processing power. The system will be
multi-vendor, and, as technology evolves, it must be possible to replace
both original hardware and software with items from different vendors
or contractors. The system will be maintained by yet other contractors
or vendors.

The study of the requirements for programs like the Space Station
Freedom Program can give students the background necessary to
understand why software development and maintenance must be treated
as a disciplined engineering process. In the context of case studies,
the need for layered software architectures, standards, and carefully
designed interfaces becomes clear.

Automation Issues

The software engineering student needs experience both in working
within a disciplined environment and in working in a team and project
oriented environment. The disciplined environment should reinforce the
rigorous and systematic approach to software development that the
student is trying to learn. This environment should also reinforce
professional attitudes and behavior. The environment should provide
rapid feedback to the student. This feedback can sometimes be
supplied by tools that support a specific method but feedback in the
academic setting is usually supplied by the instructor. In project
oriented classes, this feedback is frequently restricted to the final
grade on the student's project, since logistics issues make it too
difficult for the instructor to perform many in depth intermediate
checks on the student's progress without seriously impacting the
student's work. In courses where a small team approach is used, the
instructor has difficulty in distinguishing the contributions of
individual students and the student- spend much of their time in trying
to coordinate their activities.

Students need to learn the concepts of software engineering
environments and need expos're to at least one working software
engineering environment. These environments are becoming more and
more common in the software industry. Automated software
engineering environments are becoming a requirement in many
government requests for proposals. A software engineering

environment based on automated process control is in place to support
the Space Station Freedom Program (SSFPO) [5], and similar
environments are being investigated by such organizations as the Air
Force Space Command and the Space Defense Initiative Office (SDIO)
[3].

The needs of students are also shared by many entry level employees in
industry who are undergoing on-the-job-training in company or project
specific methods ard tecnniques and who require the same typp.q of
fast feedback and positive reinforcement as academic students. In the
hardware engineering world, an apprentice style relationship is
frequently set up between a senior engineer and a new junior engineer.
The designs prepared by the junior engineer must receive the review
and signature of the senior engineer, who reviews them for adherence
to standard practice and project requirements, before the plans are
forwarded for configuration management and additional quality review.
Unfortunately, this approach does not seem to be used within the
software industry. The nearest equivalent would be peer reviews or
walkthroughs, but in too many cases, even this type of detailed review
is lacking.

The approach to a software engineering environment described in the
next few paragraphs is based on a process control approach to the
software process. The approach described has been used successfully
on working projects and has been successful in helping new employees
become productive rapidly in project despite their lack of familiarity
with the programming languages, methods, standards, and the
environment itself. This process control approach also meets many of
itie needs of academia.

Process Control

The process control approach to a software engineering environment
that has been implemented at Planning Research Corporation (PRC) is
based on a separation ot concerns between the functionality of the
environment framework and the functionality of software development
tools. The rramework provides the control and coordination for
activities; the enforcement of standards and policies; and a repository
for support information as well as the software products. The
framework automates the labor intensive overhead and administrative
functions of the process. The tools assist the project members in the
actual creation or modification of the prcducts (software and
associated documentation, i.e., software in all its representations).

This approach can best be understood by analogy with a manufacturing
shop floor control system. The control system manages and controls
the manufacturing process as the product components (in this case
software modules and documentation) move about the shop floor from
toolstand to toolstand. In manufacturing, retooling is often necessary
if the organization wishes to remain competitive. This retooling may
take the form of replacing the tools available at one toolstand with
other tools, or it may take the form of a major recur:figuration of the
shop floor and the process flow. In software development, this
retooling is also necessary to take advantage of improvements in
automated tools, methodologies, techniques, and computer hardware.
The control system can be configured for the initial shop floor
configuration and later reconfigured as part of the retooling process.

Figure 4 illustrates the approach. Managers develop project plans using
available management tools and load the life cycle phases, products,
schedules and low level tasks into the system (i.e., they configure the
control system). A potential project configuration is illustrated in
Figure 2. The deveiopers (i.e., analysts, designers, implementors)
develop product parts in response to their tasking, using the available
tools. Testers (i.e, quality assurance, verification and validation,
configuration management, or formal integration and test personnel)
perform V&V and testing tasks in response to their tasking. The
control system captures their products and status as part of the
natural flow of their worK (i.e., as they check in and check out product
parts, build test beds, post test results, etc.). The actual progress of
the project is available in real-time for review by the managers and
comparison against the project plans. When discrepancies occur or
change requests are approved, then the managers can adjust the plans.

Benefits

This approach enforces a disciplined project or team view of software
development. Planning must be done before the framework can be
configured. Since the framework manages the product configuration
and nolds the offical copy, there is less of a tendency for a programmer
to view a program as his. Testing (or V&V) is required for all products,
and the framework enforces the configured test plans and procedures.

Figure 5 shnws some example tests or verification and validation
procedures thaL have been applied in a PRC project. In the PRC
implementation, there are three required types of testing: component
level testing (for static testing and standards enforcement);
integration level testing (for functionality in code or content in

Preliminary Design
Component Level Tests

• Correctness of Notation
* Adherence to Method, Procedures, and Standards
* Appropriate Degree of Completeness
* Consistency with Referenced Design Components (Compilation)
• Traceability to and Consistency with Requirements
* Performance Requirements Documented or Suballocated
• Correct Use of Specified Tools

Component
Testing Integration Testing System Integration Testing

1 2 34 19 11 1121 19

• Adherence to Detailed Design Specifications
" Traceability to Detailed Design Specifications and

Called/Calling/Imported Modules
" Adherence to Coding Standards, Implementation Methods,

and Procedures
• Consistency (Compilable)
" Completeness (Executable with Appropriate Stubs and Drivers)
" Correctness of Functionality
" Performance Acceptabie with respect to Performan- ,el

Implementation
Component Level Tests

Figure 5: Example Tests for Methods and Standards

documents); and system level testing (for performance and stress
testing in code and final review in documents). This testing is
performed by a specialized organization in large projects and is
distinct from the unit testing that the individual developer performs.
The control framework ensures that all product parts undergo the
required testing. Feedback from the testing process is rapid. The
framework coordinates the activities, removing the need for direct
person to person coordination meetings. The newly developed or
corrected product part is made available for formal testing as soon as
it is checked in. The tester can track its progress and readiness
through real-time, on-line reports. Thus, ego-less programming or
writing is encouraged. Since all team members can review the project
progress reports on line, there is more incentive to work toward
project goals.

Figure 6 illustrates the types of management status and reporting
information available on-line from the process control framework.
This figure also illustrates how the process control framework
supports the life cycle wide disciplines of configuration management
and quality assurance. The framework allows all types of managers to
track the progress of the project without interrupting the workers. In
an academic environment, this same approach can be used to allow the
instructor to track progress in a classroom project and to pinpoint
those students who are creating bottlenecks (i.e., who are impacting
the work of others by being behind schedule on their particular tasks)
without using classroom time on status meetings. This type of process
control framework would also allow students to act as mandgers of
different types (i.e., project managers, configuration managers, or
quality managers), while the instructor took the role of client or end
user of the developed system.

This framework supports the entire software process since the life
cycle paradigm used views changes and maintenance as additional
passes through the configured phased activities. The framework stores
the products, their traceability, and their history, so that the
information needed to perform impact assessments and begin planning
for changes or maintenance fixes. This approach could be an advantage
for academia as it is for industry. If the framework is used to control
a product set, then one class can easily pick up where the last class
left off and continue enhancement of a software product set. This type
of approach is useful in giving software engineering student experience
in the type of maintenance projects that are usually encountered in

RM
TEST

REW-TS
SYSTEM REPORTS

INTEGRATION
COMPLETENESS END T

I PRODUCTREWWIOWFIK

PROJECT PROOLICTREWORK PRODUCT FEW0RK VERSION
INITIATION PRODUCT OESCRII NON

INTEGRATION D

PRODUCT PRODUCT

STATIJS
COMPLETENESS

COMPLETENESS

REPORTS 00CUMENTS

DOCUMENT PROGRAMS
17- 1, M
APPLICATION PRODUCTS SECTIONS

TESTSTATUS

AuDiTTRALS
REVIEW

TRACEABILITY

MISSING

BUILDS

(.ACC0U-A.8lLrrY GENERATION INTEGRATON VERSIONS

v

BUILDS

IT TRAILS VERSION BASELINES -WJF-
r.fvjTwv

LJ

POST RETURN
RESULTS FOR TEST

BUILD CHECK
TEST CUT

Figure 6: Integrated Management Functions

industry. More details on the functionality of the PRC implementation

will appear in [4].

Architectural Issues

In order to be useful in either academia or in industry, a process
control framework must be implemented using the same architectural
principles that it will be used to enforce. That is, it must be based on
a layered architecture that allows full exploitation of existing
hardware and software resources. The framework architecture must
permit distribution of functions, accommodate heterogeneous hardware
configurations, and exploit available communication facilities. The
control framework must be easiiy transportable to new hardware and
operating systems at reasonable cost. The environment database,
including the life cycle products and their relationships and attributes,
must be easily moved between framework implementations. There
must be no performance penalties for using the framework. It must
cooperate at some level with existing systems to take advantage of
their security and performance features. Finally, the framework must
allow the use of existing software tools and allow flexibility for
retooling as necessary. The framework architecture can itself be used
as a case study. At PRC, the framework prototype was used to develop
the production version, and the framework is used to control and
maintain itself.

Summary and Recommendations

There is an urgent need to teach software engineering students,
computer science students, and software management students about
the software process and programming-in-the-large. This need has
been highlighted by the advent of Ada. The use of the language has
forced projects to spend more time and effort in the up-front design
and planning stages of the project. The use of Ada also punishes sloppy
or poor configuration management with large recompilation penalties.
The advent of Ada has also fostered the automation of the software
process and the introduction of the concept of a sc:tware engineering
environment.

The need for a structured software process and software engineering
disciplines should be motivated by the use of case studies at all level
of software engineering education. The concept of the software
process should be introduced in a required introductory overview class.
The use of a process control framework based environment to control
all classroom project activities will reinforce the discipline that the

student is currently studying while giving the students the experience
of working in a orderly professional manner. There should be an upper
division/master's level graduate course devoted to detailed study of
the software process and the concepts of software engineering
environments. This course should address the role of life cycle wide
disciplines such as configuration and quality management within the
software process and the concepts of process control.

The software process must be taught with other software engineering
concepts in university curricula in order to provide complete life cycle
software engineering education to support the never ending systems
required by NASA and other organizations building large, complex,
distributed systems.

References

1. Humphrey, W.S. "Characterizing the Software Process: A maturity
Framework. IEEE Software, March 1988, 73-79.

2. LeGrand, S., G. Freedman, L. Svabek. A Report on NASA Software
Engineering and Ada Training Requirements. Research Institute for
Computing and Information Systems, University of Houston at Clear
Lake: November 15, 1987.

3. LeGrand, S., A. Reedy, F.C. Blumberg. "Process Control of a Complex
Computerized System". Presented to the Joint Applications in
Instrumentation Process and Computer Control Symposium: March 23,
1989.

4. Reedy, A., F.C. Blumberg, D. Stephenson, & E. Dudar. "Software
Configuration in the Maintenance of Ada Software Systems". To appear
in Proceedings of the Conference on Software Maintenance- 1989. IEEE-
CS Press.

5. System Concept Document: Space Station Software Support
Environment Revision 2.1. NASA Johnson Space Center: July 7, 1988.

ADA TRAINING AT KEESLER AIR FORCE BASE
Captain Roger D. Beauman

3390th Technical Training Group
Software Engineering Branch
Keesler Air Force Base, MS

Abstract:

The government, academia and industry have established many education and training programs to
teach Ada and software engineering. The Software Engineering Training Branch at Keesler Air
Force Base has been providing Ada training throughout the federal government since 1984. This
paper outlines the progression of that training through the years, from early methods to our current
training program. It also includes a discussion on how we conduct our courses, how we train our
students, how we assure quality of our courses and instructors, and who we teach. In addition,
this paper brings to light some of the unique problems our instructors encounter in a mobile
training environment.

Background:

With the mandating of the Ada Programming Language for governmeni systems in the early
1980s, the Air Force Air Training Command (ATC) initiated actions to obtain funding for
manpower and equipment to develop an Ada training program for the Air Force. Funds were
obtained from a large Department of Defense (DOD) command and control project called
Worldwide Military Command and Control Systems (WWMCCS) Information System (WIS) for
the initial equipment to support what was then known (late 1983) as the Ada Training Section. As
the need for Ada training increased among the serviccG, 'TC took the lead in providing that
training. They fully funded our Ada training effort and supported our course enhancements to
include a strong emphasis on software engineering within each course. Today, our Software
Engineering Training Branch provides a product recognized throughout the DOD as some of the
best Ada software engineering training within the federal government. With more requests for our
courses than we can handle, we are working to expand the availability of this training throughout
the government by working hand-in-hand with several agencies; training their trainers, and helping
them establish their own Ada Software Engineering training programs.

What We Teach At Keesler Air Force Base:

Our early mission was to indoctrinate our students on the need for Ada and the fact that Ada was
not just another programming language [1]. We believed our job was to provide different levels of
education/training depending on the level of student. We focused on; (1) a familiarization of the
language and concepts targeted for executives; (2) an overall introduction to the language,
including coding constructs, for high-level software managers and support personnel; (3) an
introduction to the fundamentals of the language for program managers and supervising software
engineers; and (4) detailed language training targeted to the needs of programmers. We strongly
believed all personnel who dealt with software should be educated for the DOD Ada transition
effort to succeed.

Our familiarization training, "Ada Executive Orientation", concentrated on the need for technology
to solve what was coined "the DOD Software Crisis" [2]. We discussed software engineering, the
history of Ada's development, and the need for an Ada Programming Support Environment
(APSE). In addition, we amassed a list of ongoing activities within the Ada community to show
the ever-growing emphasis on the language within the DOD. The purpose for providing an
orientation to executives was to generate top-down support for the Ada transition.

87

We recognized most decisions on software projects rested with software managers and their
support staff. An "Ada Managers Orientation" course was developed which expanded our
executive course to include specific details of language constructs along with their support for the
goals and principles of software engineering [2].

Our "Ada Project Manager" course was an 80-hour training session allowing managers to
experience Ada programming and Object Oriented Design as described by Grady Booch [2]. It
presented a high-level overview of the major language constructs, and dedicated over 40 hours to
hands-on lab time. This allowed project managers a chance to sample the language.

Finally, our "Ada Apr ications Programmer" Course (6-weeks in length) was devoted to training
programmers in all aspects of the language and details within the Language Reference Manual
(LRM). It was also designed with over 50% hands-on lab time, allowing the programmer to
explore the language and develop an appreciation for it's power.

Our early view (1984) of presenting Ada was very successful and well received, but our emphasis
was on the language as a means, instead of as a tool for productivity. It was hard to present
anything other than a syntax course.

Through a continual review process, our emphasis and our training philosophy changed drastically
from our initial courses in 1984. Then, we saw our job as selling the Ada Programming
Language. Our discussion of software engineering was superficial at best. In addition, our
programmer course was too long (6 weeks); it's length dictated by the slow hardware and subset
compiler we originally used. However, we continued to revise our courses to match the needs of
our students and we obtained funding to upgrade our hardware and purchase validated compilers.
By 1986 our courses were extensively revised. We concentrated on the need for software
engineering and the support Ada's constructs provided for implementing system designs, instead
of emphasizing the history behind the development of the language. Our orientation courses
stressed the management issues of an Ada transition and, thanks to the new hardware and
compilers, we reduced our programmer course to four weeks. Both application courses evolved
into well-designed, intense offerings and were accredited through the Community College of the
Air Force (CCAF) at 3 and 5 semester hours respectively. We began to see a dramatic increase in
requests for our training.

Today, we offer only one crientation course, a 2-day course, "Orientation to Ada Software
Engineering", designed to address management concerns on the risks and benefits of transitioning
to Ada. Both of our application courses now devote almost 60% of course time to hands-on
coding projects. In addition, we stress software engineering throughout as the means to increase
productivity. (A course description and outline of each is in Appendix A.) As our training
matured, we received more and more requests for our courses. During fiscal year 1988 (October
1987 through September 1988) we taught 768 students. This year (fiscal year 1989) we expect to
train 1400 students.

How We Conduct Our Courses:

We conduct our courses in one of two forms; either resident or through the Mobile Training Team
(MIT) concept. Resident courses are much the same as courses taught on a college campus.
Students from throughout the country (and sometimes throughout the world) come to Keesler Air
Force Base, Biloxi, Mississippi to attend class at our Computer Training Center. The students
either reside in Keesler's temporary lodging facilities or at near-by motels. In our training center,

88

we have both formal classrooms and complete labs to support our courses. We differ from a
campus approach, however, in our class format.

Unlike college students, our students are full-time employees of the federal government. The
longer we keep them in class, the longer they are away from their primary job. Because of this,
we teach on an 8-hour day, 5-days-per-week schedule. Our class size is limited to 12 students.
Teaching in this environment puts great pressure on the instructor to constantly assess the level of
achievement each student attains. Typically, because of the volume of information we present in
our courses, our instructors spend 8-12 hours overtime per week working with those students who
have problems assimilating the material.

While bringing students to Keesler AFB to attend our courses in residence removes them from
their daily distractions and increases concentration in the class, it's more cost effective for the
government to send one instructor to teach 12 students on-location. Courses taught by Keesler
instructors at locations requesting training are considered MT" deployments. Because of the
obvious cost savings of an M'TT class, most of our instructors travel from 50-65 percent of the
year. It becomes a full time job maintaining the deployment schedule and keeping in contact with
deployed instructors to assure each class receives the same quality training as it would on a resident
basis. However, M"TT deployments also create unique problems for the instructor.

When you teach courses in your own classroom and lab, you become intimately familiar with your
lab computer, editor, and compiler. Most individuals in this field know how annoying it is to
transition between one computer system to another, not to mention learning to use a new editor.
When you're a mobile training instructor however, you learn first hand that a compiler validation
certificate does not ensure quality; compilers are not born equal. From cryptic error messages to
implementation of language features that just don't work, compilers at each class location provide
unique challenges. In addition, our instructors may not have experience with the compiler and
editor available to support the class (there are well over 150 validated compilers on the market). In
many cases, they spend the first few days of each course learning the system and comp.,er along
with the students.

Problems also exist with the hardware reserved for our classes. With the advent of several Ada
compilers for PCs, many offices who purchased PCs to host an Ada compiler failed to realize a
math co-processor may be required to support operations for floating point calculations. MTT
instructors must often adapt lab exercises to use other than Float, a job not always as easy as it
appears. Whatever it takes, it's the instructor's job to satisfy the objectives of each course.

When we send an instructor to teach an MTT course, we require the host location to provide
administrative support, a classroom, and a separate terminal per student to support the course.
However, in real life, the location of classroom and lab may be separated by miles, computer
resources may only be available during evening hours, lighting conditions in the classroom may
not be conducive to the use of 35mm slides (our course material is in 35mm slide format). Also,
administrative support may not be up-to-par causing our mobile instructors to become teacher and
clerk. Other influences such as illness combine to make mobile training a unique experience.

Of all the headaches associated with software and hardware, none is more difficult to cope with
than teaching students who don't possess the prerequisites for the course.

How We Train Our Students:

Our courses are not basic programming courses. To accomplish all we've programmed for each
class, wc require our students to be experienced programmers. Since we can't enforce these

89

prerequisites, many times we encounter.the exact opposite. These students have difficulty coping
with our courses because of the pace of the class.

How we teach is best described as a fire-hose approach, introducing a consistent flow of new
material throughout a compressed training schedule. This places a great responsibility on the
student to learn the material. Because of the amount of information we convey in the short amount
of time, we do everything possible to assist our students in assimilating the material. (Ultimately,
we need to reap the most return per training dollar spent.)

Our courses are slide-intensive. We rely heavily on examples to reinforce the basic concepts
taught. To reduce the time necessary for note-taking. we provide our students a copy of all our
slides in a student handout. We reinforce the concepts we teach with hands-on application
projects. This becomes the primary evaluation tool for our instructors to assess each student's
progress and understanding.

Lacking experience in PASCAL or other high-order languages doesn't mean a student can't pass
our courses. Of all the classes we've taught, our drop-out rate is less than 10% and our failure rate
is less than 1%. However, some classes are more demanding than others.

A challenging assignment is teaching a class of assembler programmers. A class of assembler
programmers almost assuredly means many hours of overtime and student counseling because our
instructors end up teaching basic data structures along with the advanced Ada concepts our courses
are designed to teach. We also have difficulty teaching some experienced COBOL programmers.
Understanding the concept of strong typing gives many COBOL programmers headaches. But the
most difficult job is training students with little or no programming background.

You'll notice in Appendix A, both our 9-day and 4-week courses require students to have
previously learned programming skills, ranging from a fundamental knowledge of programming
concepts, to definitive requirements for a working knowledge and recent experience in a high-order
language. Yet our instructors teach many students that don't meet these requirements. As in any
industry, organizations with inexperienced staff are sometimes tasked to develop software
systems. For these classes, our instructors litei,. go out of their way to assure success. Our low
drop-out and fauare rates attest to their ability.

Since over 80 percent of our students are trained through the MTI' concept, how we develop and
control our courses, and how we train our instructors is extremely important. Our goal is to assure
the same quality of training is achieved regardless of the training site.

Our Assurance of Quality Training and Instruction:

All of our courses are developed using the United States Air Force Instructional Systems
Development (ISD) Process [31. This is a 5-step process:

1. Analyze system requirements
2. Define education/training requirements
3. Develop objectives and tests
4. Plan, develop and validate instruction
5. Conduct and evaluate instruction

For course control and continuity of instruction, we place heavy emphasis on steps 4 and 5. Since
we operate primarily in a mobile environment, validating our courses and evaluating our instructors
is the only way we can control the quality of our Ada Software Engineering training. We stress

90

02-06/90 10:32 1&1 ;03 820 9680 I [DA - -V

development of lesson plans and rigorously control all student handouts and visual aids. In
addition, when we put a new version of our course on-line, we follow a thorough review and
critique process to evaluate the effectiveness of the course. Students are also required to critique
each class which further helps us assess our training and identify areas of needed improvement.
It's this ISD process which has helped us mold our courses into the products we provide today.

Our method of course development not only assures the quality of our courses, but also assists us
in assuring the quality of our instructors. The best course in any subject is only as good as the
instructor presenting the material. We're extremely proud of our instructors and believe their
quality is a direct result of our own rigorous instructor training program and cour'e critique
process.

All new instructors assigned to Keesler AFB take a 5-week Technical Training Instructor Course
(TTIC) designed to teach a person the skills necessary to teach. During this course, instructors
learn how to construct lesson plans, how to counsel students, and in many cases, how to speak in
front of a classroom. They must complete this course before being assigned a teaching job.

Typically, most new instructors are also new to the Air Force. Our needs for experienced data
professioi.,z are offset by the competing needs of other Air Force organizations. Consequently,
we become the training ground for young officers with little-' -no actual on-the-job experience.
Fortunately, most new instructors have studied several langu-ges in college and can achieve a
smooth transition to Ada. Unfortunately, relating to software engineering is more diff-cult.

As we've revised our courses, we've also revised our instructor training program to nitalize on
efficiency. During our first attempt at Ada trairing, we concentrated on teachin6 each new
instructor the management implications of developing Ada systems. This approach required an
extensive reading and individual study program, however it developed an instructor with the broad
background necessary to field questions from senior management on Ada transition issues. It also
took 8-12 months following TfIC to produce an instructor that could teach both orientation and
application courses. This wasn't a problem in the beginning because our efforts were concentrated
on educating management on the benefits of the language. But as requests for application training
exceeded the need for orientation courses, the requirement to expedite our instructor training
program magnified.

Today, because of our high course demand, we need our instructors productive as soon as
possible. We've slashed that 8-12 month training period by concentrating on developing language
skills first. Each new instructor attends both of our application courses as a student trainee. We
then assign an experienced instructor to work with the trainee to answer any questions and to help
assess that trainee's potential. After going through our courses as a student, trainees are assigned
supplemental coding projects designed to fully acquaint each with the nuances of the language. In
addition, we try to schedule new instructors for software engineering s,,minars and tutorials to
further enhance their background of program development issues. When tue trainer is satisfied the
new instructor has a grasp on the language, he directs the instructor's effort in building a
personalized lesson plan. It's at this stage we begin to assure continuity for our courses.

As the trainee develops the lesson plan, the trainer conveys the purpose of each lesson, reviews all
visual aids with the trainee, and discusses the purpose for each 35mm slide. Each new instructor
must understand the essence of each lesson in order to preserve course continuity in a mobile
environment. But to ensure that understanding, all new instructors teach their first MTT course
with an experienced instructor monitoring the class. Each evening, the trainer discusses the day's
lesson and provides the trainee with constructive feedback, developing the confidence needed to
teach that first mobile course - alone. Even after the instructor is qualified to teach, periodically we

91

_ .1

02.06,,90 10:34 5'1 703 820 9680 IDA CSED 003

formally evaluate our instructors and course critiques to assure overall quality is maintained. This
is the final link toward ensuring course continuity.

Through this approach, we've refined our instructor training program so that once an instructor is
assigned to us after TTIC, he's ready to teach in 3-4 months. This means we add a new instructor
to our staff in less than half the time it previously took, and we reap a 20% increase in instructor
productivity over a normal 4-year assignment. In addition, we've found after the instructor teaches
several application courses, learning to teach our orientation course becomes an easy transition.

Who Are Our Students:

We're extremely proud of our staff and courses. Over the past s -veral years, other services and
government agencies have used our courses as the basis for establishing their own Ada training.
The Air Force Strategic Air Command (SAC) used our Ada Application's Programmer course as
the basis for establishing their own in-house training program. The United States Marines
requested more courses than we could provide. Instead, we trained their staff so they could
establish their own Ada training curriculum at their Computer Science School in Quantico,
V .rinia. We continue to support the United States Army training effort and have scheduled thi -e
additional courses this summer. We are in the process of providing training to the Federal Aviation
Administration (FAA) and also provide the United States Navy with needed support. Additionally,
we've provided two courses to the German Air Force to assist them in establishing their own Ada
training and have received contracts to provide training to the North Atlantic Treaty Organization
(NATO) in Bruxssels, Belgium as soon as they procure the needed computer support.

Throughout our short history, we've accomplished our training mission with a staff of 15
dedicated instructors. We've consistently applied what we've learned about how to train, hov to
cope with equipment and software problems, and how to maximize student learning toward
increasing the efficiency and effectiveness of our small staff. We expect to continue revising our
courses to meet the needs of the Air Force; but with only 15 instructors authorized, and with the
ever increasing requirements for Ada training within the federal government, our efforts seem best
spent in a "train the trainer" role.

92

.• "+ " '="N-w

Appendix A:

NAME: ORIENTATION TO Ada SOFTWARE ENGINEERING

DURATION: 2 Days

LOCATION: User's site using Mobile Training Team (MT7)

OBJECTIVE: Training familiarizes managers with issues affecting the transition to Ada. The role
of software engineering, to include the goals and principles of software engineering, is looked at
with respect to the life-cycle implications of software in the DOD today. The language features that
set Ada apart as a programming language are addressed with their relation to software engineering.
Functional design methodologies are compared to Object Oriented Design for use with Ada
systems. Discussion of DOD policies and standards will familiarize managers with issues
surrounding the current integration of Ada within the DOD. Other issues covered include the need
for management commitment, training issues, compiler issues, software reuse, hardware concerns,
and configuration management issues. The manager will understand and appreciate the
advantages, as well as risks, involved with the transition to Ada within the DOD.

PREREQUISITES: None

RECOMMENDED FOR:

Senior Executives
Mid to Upper Level Managers
Project Managers

SYLLABUS: Impact of the Software Crisis on the DOD
Relationship of Software Engineering and Ada
Design Methodologies
DOD Standard Considerations
Managing the Transition to Ada
Management/Training Issues
Software/Hardware Issues
Highlight Risks and Benefits

93

NAME: FUNDAMENTALS OF Ada PROGRAMMING/SOFIWARE ENGINEERING

DURATION: 9 Days

LOCATION: Keesler Technical Training Center or MTr at Users Site

OBJECTIVE: Training familiarizes programmers and managers with the fundamentals and
benefits of the Ada programming language. Heavy emphasis is placed throughout this course on
how Ada supports the goals and principles of software engineering and how students can apply
sound software engineering techniques. Over 50% of the course is dedicated to hands-on
programming using the fundamentals of each of the Ada language concepts. The use of an
appropriate design for Ada is stressed throughout the course and students are given exercises to
practice these design techniques. Software engineering, design, and coding principles are brought
together and applied in a comprehensive final project. Graduates will be able to design and code
simple Ada systems on their own and evaluate Ada code written by others.

PREREQUISITES: Students must have a fundamental knowledge of programming concepts.
MTT requires a host site to have a validated Ada compiler with one terminal
per student. Class size is limited to 8-12 students.

RECOMMENDED Project Managers
FOR: System Configuration Managers

Design Consultants
Programmers

CCAF Credit: 3 Hrs

SYLLABUS: Fundamentals of Ada Systems
Software Engineering
Language Features
Program Library
Simple Control Structures
Simple Input/Output

Basic Ada Types
Purpose of Typing
Type Declarations
Classes of Ada Types

Control Structures
Structured Programming
Sequential/Conditional

Subprograms
Procedures
Functions

Packages
Specifications
Body
Private Types
Applications

Exceptions
Generics

94

Formal Parameters
Purpose
Declarations/,nstaniations

asks
Program Design Using Ada

Design Process
Informal Strategy
Ada Program Design Language

Develop Software Using Ada

95

NAME: Ada APPLICATION PROGRAMMER

DURATION: Four (4) Weeks

LOCATION: Keesler Technical Training Center or MTT at Users Site

OBJECTIVE: The course concentrates on the software engineer's use of the entire Ada language
in designing and implementing Ada systems. The benefits of proper design techniques and good
software engineering practices are emphasized. All aspects of the language are covered in depth.
Over 50% of the course consists of hands-on programming practice. Object Oriented Design is
taught and practiced in the course. Design and coding principles are brought together and applied
in a comprehensive final project. Graduates will be able to design and code complex Ada systems
and evaluate those written by others.

PREREQUISITES: This is not a basic programming course. Students are expected to have a
working, fundamental knowledge of good programming concepts and recent
experience. in a high-order language. MTT re, iuires a host site to have a
validated Ada compiler with one terminal pet sident. Class si lindtod to 8-
12 students.

RECOMMENDED Programmers
FOR: Software Engineers

CCAF Credit: 5 His

SYLLABUS: Block I: Fundamentals of Ada Software Engineering
Fundamentals of Ada Systems

Software Engineering
Language Concepts
Program Unit Structures
Ada Input/Output
Parameter Passing
Data Encapsulation
Scalar Types
Object Declarations
Discrete/Real Types

Control Structures
Sequential/Conditionalllterative

Composite Types
Arrays/Records

Subprograms
Procedures/Functions

Block II Advanced Ada Software Engineering
Packages
Specification/Body
Context/Use Clause
Application

Exceptions
Defining/Raising/Handling

96

Propagation
Private Types
Abstract Data Types
Private/Limited Private Types

Derived Types
Declaration/Usage
Derivable Operations

Access Types
Declaration/Allocators

Unchecked Deallocation
Generics
Declaration/instantiationlApplication

Ada Input/Output
Text/Sequential/Direct 1/0

Tasks
Ada Tasking Model
Dependencies/Communication/Feature

Low-Level Features
Representation Clauses
Interrupts
Pragmas

Block 11 Designing with Ada
Object Oriented Design
Software Design in Ada
Ada Program Design Language
Application Project

97

Bibliography:

1. Sammet, J., "Why Ada is Not Just Another Programming Language", Communications of
the ACM, 29,8, pps. 722-733, Aug. 1986.

2. Booch, G., Software Engineering with Ada, Benjamin Cummings Publishing Company,
Inc., Menlo Park, California, 1983.

3. Air Force Manual 50-2, Instructional System Development, 15 July 1986.

98

"Integrating Ada into the University Curriculum:
Academia and Industry - Joint Responsibility"

Kathleen Warner, Marshall University
Russell Plain and Kenneth Warner, Strictly Business

Introduction:
There is a well documented need for qualified Software
Engineers able to work with Ada. This need far exceeds the
current supply and demonstrates no signs of abatement.
Industry needs personnel who have knowledge of the syntax,
semantics, and uses of Ada and have been educated and trained
within the Software Engineering discipline. In West Virginia
and other states attempting to expand employment opportunities
in the technical sector, the critical shortage of adequately
trained personnel constrains development efforts.

Current undergraduate programs in Computer Science are
insufficient :o meet the demand for trained personnel in :he
Software Engineering industry. However, the demand must be met
if the United States is to remain a leader in information
tecnology. The education and training of individuals able to
fill entry-level and advanced positions in the Software
Engineering field must be understood to be a joint
responsziit.y between the academic and industrial sectors.

Academic Requirements

As Computer Science has evolved as an academic discipline, the
education of programmers, systems analysts, and other computer
persontnel has been primarily performed within colleges and
universities. Academic programs in Computer Science
necessarily serve :he dual function of preparing students for
entry into the workplace and alternately, for continued study
on the graduate level. Academic institutions must maintain a
careful balance in meeting these dual responsibilities.

Graduates seeking entry to a variety of professional fields in
the software development industry must possess the necessary
skills which meet basic industry needs. Preparation for entry
into the workforce entails training in specific skill areas.

Students who will continue their education through advanced
technical or graduate studies must have both depth and breadth
in their undergraduate preparations. They must be
knowledgeable over a broad range of topics encompassed within
the discipline of Computer Science and possess the tools which
are essential for continued research and development.

Academic Constraints

These dual responsibilities must concurrently meet internal
curriculum guidelines and conform to minimal curriculum
requirements defined by external accrediting boards. Standards
and guidelines for academic programs are necessary but limit
flexibility in modifying programs to meet changing conditions.
Academic curriculum changes are accomplished slowly.

Planned modifications to curriculum may take as long as two
years to implement. Approval for curriculum changes must be
officially sanctioned through approval at the department,
college, and university level. Students become aware of new
programs and course offerings when the changes are officially
published in the college catalog. Academic programs in
Computer Science and Software Engineering are not evolving as
rapidly as the Software Engineering industry.

Other constraints limit changes to existing academic programs.
These include the availability of faculty and the cost of
change. The hardware, software, and tools to support
curricuium changes are often unavailable.

Industry Needs in Ada and Software Engineering

Existing industry needs for Software Engineers are not being
met (Gerhardt, 1988) through undergraduate programs. An
industry standard for preparing Software Engineers does not
exist. in academic programs, most courses address software
development issues as separate topics. The result may be
graduates who have written many small (less than 1000 lines of
code) programs which fail to exemplify the size and complexity
of real world applications which can exceed one million lines
of code. Future trends in software development are towards
programs that are degrees of magnitude larger (Blumberg, et al,
1988). System intra-dependence and synthesis issues can often
be the most complex aspect of real world implementation.

Addressing Deficiencies in Recently Hired Graduates

Industry must attempt to supplement the knowledge and skills of
recently hired graduates to get them to a production level.
Many different approaches are utilized to address these
knowledge deficiencies.

Internal Training:
Many companies have internal training programs. These programs
require an immense investment of resources and time. Trainees

1(P

are not productive until the vast majority of their training is
completed. In addition, the tremendous costs often impact on
the allocation of resources given to internal training,
resulting in underfunded and overpaced programs. Since no two
companies do internal training exactly the same way,
inconsistencies in Software Engineering knowledge arise
throughout the industry and even within a single corporation.

Consultants:
Corporations may attempt to quickiy infuse technical
proficiency by hiring consultants to provide expertise. For
limited applications, such as training on a single package of
software, consultants can be an effective solution. However,
this approach is always very expensive and, unfortunately, not
always effective.

Consultants, unfamiliar with the informal structure of an
organization, will not provide training through osmosis.
Software Engineers develop their skills through many hours of
study, analysis and practice. It can take months to attain
Software Engineering proficiency (Brownsword, 1988).

Remote Training:
Remote training is provided by outside vendors. Expensive on a
per capita basis, this approach is not always effective. The
traIning 4S brief and its application may not immediately
follcw. A corporation loses the Software Engineer's
produc:ivity for zhe duration of the course. Finally, courses
are usually Inregrated to the vendor's environment and the
results are not always transferable to the production
environment.

On the Job Training:
Many corporations only provide informal training. Self taught
students will have to do things the wrong way at least once.
Constant project rescheduling and frequent program revisions to
overcome ignorant oversights makes this the most costly and
least effective training approach.

Night School:
Frequently, local colleges may provide an alternative source of
training. However, there are many drawbacks. The available
courses may be of inconsistent quality, class materials are not
always relevant to the Software Engineer's application at work,
and it can take months or even years to complete. Most
importantly, this approach taxes the physical and mental
stamina of full-time workers. Since this approach is often
voluntary, total commitment and participation is rarely
achieved.

i01

Ignore the Problem:
Since most entry level graduates do not have sufficient
Software Engineering knowledge, ignoring the problem can be
disastrous. The size and complexity of present software
development present challenges to even the best trained
Software Engineers. Undertrained staff assigned to complex
projects quickly become dissatisfied and unproductive. As a
result, they may leave the project or company.

Training unprepared Computer Science graduates costs money and
time. Very few companies are investing what it takes to
develop' well trained Software Engineers. When an organization
has co train new employees, stress results for those being
trained and others around them.

The Academic Response - New Courses and New Programs

The impetus for change in academic programs in the computing
sciences is often external to academia. The realization that
chanaes are necessary may result from dialog concerning
programming practices. Dijkstra's 1968 letter to the editor of
the Communications of :he ACM, "Go To Statement Considered
Harmful" spurred reaction but ultimately, made the Computer
Science community aware of the need for structured, reliable,
programs. Since the early 1970's, Computer Scientists and
programmers have followed a body of programming methods and
techniques called "structured programming".

Recognition of the "Software Crisis" directly led to the
development and evolution of Software Engineering as branch
of Computer Science concerned with the techniques of producing
and maintaining large software systems. The focus of attention
has shifted from basic language concepts, systems and their
implementation to the construction of systems from discrete
program modules (Haberman, 1986, p.29).

Ada was developed and evolved in conjuction with the discipline
of Software Engineering. Ada stands apart from other
programming languages in its support of Software Engineering
principles, its standardization and compiler validation, and
its ability to create portable code (Samnatt 1986). The use of
Ada can lead to the realization of the software development
goals of readability, clarity, reliability, efficiency,
modifiability, and portability of software products.

Sammett (1986) observed that "one of the key aspects of Ada is
its usefulness for new types of software education." She
remarked that Ada has been successfully used in teaching

102

specialized courses in numerics, concurrent Orocessing, data
structures and can be successfully used as a first class in
programming (1986).

Universities. and industry alike are keenly aware that selected
sectors of computer and software development industries will be
directly affected by the existence of Ada in much the same way
that sponsorship of COBOL influenced programming practices and
course offerings over the previous twenty-five years. Ada
language and Software Engineering classes are slowly being
integrated into Computer Science curriculum offerings. Ada is
often introduced in specialized courses such as Software Design
or through a Software Engineering principles class (Buro,
1986).

New course offerings in the Ada programming language or
Software Engineering principles may first be introduced as
seminars, specai 7opics, or experimental classes. The
development of "mal classes evolve from the rerinement of
these special top- classes.

Software Engineering at Marshall University

P rcarams sf stuay in one cmoutino sciences must be
periaacai-y rev:ewed tc maintain currency wath ACM and 1EEE
:nc.e .curricu,_, recommerications. The Comouter and Informaticn
Science _oeart:nent faculty have recently completed a program
revIew :cr one . a-eichlo of Science orcram. offered --n Computer
Science. The course content of existlno clases was revisec

and addiional courses were added to the orogram cf souay. The
restructured curriculum stresses a Software Enolneerino
approach rrom 7z-e first class in programmina :etfhoaoicgy.

Sc ware Enaineering was introduced as a separate class through
-wo semester sequence of special topic classes. The first

class covered concepts and principles of Software Engineering
and the Ada programming language. Packages, modules, data
typing and generic units were the primary focus of study.
:nstantiation was taught through use of standard I/O
proceaures. he required texts included Sincovec and Weiner,
"Software Engineering with Ada an1 Modula-2" and Booch,
'Software Engineering woth Ada", with DEC Vax/Ada Language
reference manuals used as lab supplements.

In the second special topics class, Software Engineering
principles were emphasized and applied within the context of
the Ada programming language. More attention was given to
separate compilation units, exception nandling, program
libraries, and the concept of reusable code.

To create an appreciation and understanding of the usefulness
of generic units, students wrote generic packages for the
creation of familiar data structures. Other lab assignments
includet the completion of a simple Math package and a
Statistical package. Package and procedure specifications were
provided for these assignments.

Programming assignments were completed using the VAX/Ada
compiler supported by WVNET. Watt, Wichmann, and Findlay, "Ada
Language and Methodology" was used as a required text.
Supplementary materials included Booch, "Software Engineering
with Ada" and Vax/Ada language reference manuals.

Princioles of Software Engineering evolved from these special
topics classes and has been incorporated into the restructured
CS curriculum. Between its inception and its implementation,
the course has undergone a number of unexpected changes. In
contrast to Sammett's recommendation that "... Ada has been
and should be used as a vehicle for teaching soft;:are
engineering principles in both academic and industrial
settings" (1986, p. 129), the course description was modified
to remove Ada as the designated language to allow instructors
to choose from Ada, Modula-2 or C. In the revised curriculum,
thos class is now elective rather than required.

The oriainal course description proposed strong prerequisites.
Students could enroll only after completing a three semester
sequence that included Pascal, Data Structures, Algorithms and
Verification Techniues, introduction to Language Processors,

ana Qperating System Concepts. However, relaxed prerequisites
could allow underprepared students to enroll. Thus, the large
scale projects wnich cover the principles of software
engineering may not be familiar tn students.

Requirements and Training at Strictly Business

To -nsure a basic level of knowledge in recently hired
graduates, Strictly Business Computer Systems addresses four
aspects of Software Engineering training.

Basic Requirements:
Strictly Business hires new entry level Software Engineers who
nave completed at least a Bachelors degree in Computer Science
or a related discipline. They must be fluent in multiple
languages including Pascal (or Modula-2 and/or Ada) . They must
possess knowledge of operating systems, compilers, program
design,. and computing theory. A specialty area such as
graphics, database design, or communications is essential.
Finally, they should possess good speaking, writing and

i 14

self-management skills. Satisfying these stringent criteria,
the employee is ready to begin training.

Establish Production Level Capabilities:
This three month process takes about 480 porson-hours to
complete and is divided into three cumulative, evolutionary
steps to broaden the Software Engineer's mind and skills. The
first segment addresses Ada syntax and examination of all
aspects of the language. Exposure to Software Engineering
fundamentals follows, reviewing Ada from a Software Engineering
viewpoint (See Appendix A) . The focus becomes what is to be
done rather than how it will be done (Weiner and Sincovec,
1984). Finally, Software Engineering tools are discussed,
including integrated programming support environments ana
computer aided Software Engineering design.

Riaorous Hands-On Quality Control:
Throughout the training, automated tutorials and lectures are
supported with assignments of homework, outside readings, lab
projects, ana structured walkthroughs of developed software.
In addition, verbal examinations help the instructor assess the
rate of material osorption. Peer review and group problem
solving sessions stimulate interest and serve as
self-perpetuating quality controls.

Known Problems with this Approach:
Even a training approach -f this depth has shortcomings. The
duration of exposure to Ada and Software Engineering princzples
is nct long enough. Yet, this three month raining period is
very expensive, particularly for small companies. Both
trainees and trainer must make a strong personal and
professional commitment to the training process. This aspect
of the training is difficult. Not all trainees will succeed.
Employees may be anxious that their positions depend on
successful completion of the training. This training should be
addressed within undergraduate Computer Science programs, so
that companies hiring new graduates would only need to provide
training to fine tune skills to their particular requirements.

The Team Effort

Only a team effort between academia and industry will provide
a solution to the Software Engineering demands and requirements
of the 1990's. This effort must involve continuous
communication. College programs raust be sensitive to the
changing needs of the software development market, providing
research, courseware and graduates that satisfy current and
future demands. Businesses must provide direct feedback in
response to the efforts of higher education. In this way, both
universities and industry will become better informed. Some

103

suggestions to facilitate this process are offered. These
opportunities for practical, real world experience with
Software Engineering using Ada ensure that courseware satisfies
academic requirements.

Team Teaching:
Marshall University CIS faculty and the Strictly Business
Software Engineering Team have agreed to team teach a pilot
offering of Principles of Software Engineering in the spring of
1990. The difficulty of teaching students how to "program in
the large" with small scale, textbook examples will be
countered with lectures and demonstrations from real world
examples presented by practicing Software Engineers. Students
benefit from actual examples of current industry applications.
CIS faculty will maintain responsibility for assignments,
tests, grading, and lecture quality.

Co-Oip and Internship Programs:
During summer break or semester intersessions, students work as
software engineers and could receive course credit. This
option requires rigorous feedback mechanisms to insure
uniformity in the work assigned and how the work is judged.
The employer providing access to the Internship or Co-Op
program must be involved in the grading process - the student
should not receive a "Pass" grade for mere participation in
these programs. Additionally, the student should be protected
from internships that misuse the program's intention -
corporations must provide assignments appropriate to Software
Engineering training.

Scholarships and Grants:
Industry should donate funds to advance Software Engineering
curriculum development. Funds might be used for development of
Software Engineering courses, to obtain instructional
materials, or to expand and enhance an existing program.

Recommendation

New directions in undergraduate programs preparing students for
entry into the software development industry must be taken. We
propose the development of undergraduate courseware which
parallels the model curriculum of the Master's Degree program
in Software Engineering at National University, California.
Existing programs in Computer Science could be modified to
include a Software Engineering specialization or universities
might choose to implement Software Engineering as a separate,
and distinct academic program. Academics and industry leaders
should carefully examine and consider these proposals. Joint
industry and academic efforts must start now - we are already
late in starting.

1 ti

Appendix A

A Sample Ada and Software Engineering Syllabus

A. Types
1. Unconstrained Types
2. Unconstrained Record Types
3. Attributes and Membership
4. Real Types

B. Statements
i. If versus Case
2. Exceptions

C. Subprograms
i. Parameter Passing Mechanisms
2. Overloading

D. Packages
1. Specification versys Bodies
2. Scope and Names
3. Building an Abstraction

E. Code Review
1. Walkthrough
2. -Techniques

F. Private Types
1. Operations on Private Types
2. Limited Types
3. Building an Abstraction

G. Generic Units
.. Subprograms
2. Formal Parameters
3. Packages
4. Instantiation
5. Building a Generic

H. Tasking
1. Synchronous Communication
2. Entries
3. Accepts
4. Types

I. Program Library - Configuration Management
1. Library Units
2. Compilation Units
3. Dependencies

107

J. kda Design
1. Problem to Solution Mapping
2. Minimizing Unit Dependencies
3. Maximizing Reuse Potential
4. Ada Shortcomings and Traps

K. Design Review
1. Walkthrough
2. Quality Issues

L. Round Table Discussion
1. Course Summary
2. Issue Discussion
3. Further Readings - Extended Bibliography

109

References
Blumberg, F., et al, "NASA Software Support Environment:

Configuring An Environment for Ada Design",
Ada Europe Proceedings, 1988, pp. 3-16.

Brownsword, L., "Practical Methods for Introducing Software
Engineering and Ada into an Actual Project",
Ada Europe Proceedings, 1988, pp. 132-140.

Booch, G., Software Engineering with Ada, Benjamin Cummings
Publishing Company, Inc., Menlo Park, California,
1987.

Burd, B., Teaching Ada to Beginning Programmers, Proceedings
of the ACM, 1986.

Gerhardt, M. "The Real Transition Problem or Don't Blame Ada",
Tri-Ada '88 Proceedings, pp. 620-645.

Haberman, A. N., Technological Advances in Software
Engineering, Proceedings of the ACM, 1986.

Sammet, J., "Why Ada is Not Just Another Programming
Language", Communications of the ACM, 29,8,
pp.772-733, Aug. 1986.

Watt, D., B. Wichmann, and W. Findlay, Ada Language and
Methodology, Prentice-Hall International,
Engiewood Cliffs, N.J., 1987.

Weiner, R., and R. Sincovec, Software Engineering with
Modula-2 and Ada, John Wiley and Sons, Inc,
New York, 1984.

1or /i

MAKING THE CASE FOR TASKING
THROUGH COMPARATIVE STUDY OF CONCURRENT LANGUAGES

Michael B. Feldman
Department of Electrical Engineering and Computer Science

The George Washington University
Washington, DC 20052

(202) 994-5253
MFELDMAN@GWUSUN.GWU.EDU

Lt. Col. Frederick C. Hathorn
Information Systems Software Center

United States Army
Fort Belvoir, VA 22060

(703) 355-7025

INTRODUCTION

Support for concurrent programming, traditionally provided to the programmer by
means of calls to operating system services, has received considerable attention from
language designers in recent years. The goal of this effort has been to raise the level
of abstraction of concurrent programming, providing ever more powerful language
primitives, transferring responsibility for the details from the programmer to the
compiler implementer. Indeed, what is happening now in concurrent
programming echoes what happened in sequential "structured programming"
perhaps fifteen years ago.

The study of concurrency has historically been a part of courses in operating systems.
This view is a bit too narrow. In the current programming era, almost any
interesting program embodies some aspect of concurrency, and so the issue should
no longer be relegated to the relatively narrow application area of developing
system kernels.

This paper describes a graduate course at The George Washington University
entitled Concurrency in Programming Languages. Concurrent programming is
taught from a comparative point of view, taking the student through the historical
development through direct contact with languages implementing the various
language primitives, and emphasizing language design and raising the level of
abstraction rather than any particular applications.

Ada is the major unit of study; in a sense, the case is made for a tasking model at
Ada's level through study of other languages with weaker tasking support.

Also presented in the paper is a brief description of Small-Ada, a personal-
computer-based courseware package for the teaching of Ada tasking.

111

COURSE CONTENT

The course consists of lectures and language tutorials, a programming project in
which four languages are compared, a student-selected term project, and an
examination. Weights are 20% for the comparative project, 20% for the
examination, 60% for the term project.

LECTURE MATERIAL

The lectures cover the basic formalisms, terminology, and application of concurrent
programming, using as a starting point the excellent text by Ben-Ari [Ben-Ari 82].
Tutorials of one or several lectures each are given on the four languages covered
comparatively, namely Co-Pascal, Modula-2, Ada, and Concurrent C.

Throughout the lectures, the emphasis is on the usefulness of concurrent
programming as a framework for modeling the world, not just as an esoteric issue
in operating systems or real-time applications. The world of modelled objects is a
concurrent one. Historically, we have tended to try to model such a concurrent
world with sequential programs, chiefly because our languages have grown up from
the (von Neumann) computer toward the application domain, and not down from
the domain to whatever computer is available for implementation. Recent concern
for concurrency in languages has focused on better modelling of the world, together
with the increased reliability that derives from abstraction and information hiding.

LANGUAGES STUDIED COMPARATIVELY

The comparative language study covers Co-Pascal, Modula-2, Ada, and Concurrent
C. Each language introduces different notions of concurrent programming, as seen
in the following brief survey. In each case a brief description of the relevant features
is given. We also comment on the available implementations, emphasizing our
commitment to make a wide range of compilers available, including some very
inexpensive--or free-versions for students' use on their own personal computers.

Co-Pascal. Co-Pascal, an offshoot of Wirth's Pascal-S, is introduced in the Ben-Ari
book. Source code for a compiler and P-code interpreter are given in the book
appendix. Co-Pascal provides a very nice implementation of nondeterministic
logical concurrency, but little in the way of structures for other abstraction,
encapsulation, or inter-process communication.

Co-Pascal uses COBEGIN and COEND to create and activate processes; a
process is any Pascal-like procedure, including parameters; the same
procedure can be spawned as multiple processes.

11-

* Synchronization is implemented using signals with SEND and WAIT
operations; no other communication or abstraction mechanisms are
provided.

* The P-code interpreter "time-slices" process execution, with pseudo-time
measured in pseudo-instructions executed. A quantum is a random number
of instructions; the dispatcher schedules next process randomly. There is,
within the limited capacity of the system, a nice nondeterminacy that
illustrates empirically the justification for mutual exclusion.

* We use a public-domain IBM-PC implementation by Charles Schoening
[Schoening 861, who ported compiler from VAX to Turbo Pascal as a Drew
University project.

* Since source code is readily available, ports and enhancements make good
term projects: we are developing a Macintosh version, and a Sun
implementation has been done at another college.

Modula-2. Modula-2 is Niklaus Wirth's systems programming language of early
'80's vintage [Wirth 1985, Ford 1985]. Designed essentially for workstations with
multiple tasks but a single human user, Modula-2 embodies primitive (co-routine)
support for concurrency, leaving it to the user to construct true process managers on
top of this primitive support. Modula-2 provides good abstraction and
encapsulation structures, but only low-level primitives for concurrency.

* Modula-2 provides good support for building systems of components (library
modules with separately compiled interface and implementation files)

* There is usefully primitive support for logical concurrency (i.e. interleaved
on a single processor): the pseudo-module "system" exports primitives for

Pafing (which are just co-routines) and transferring between co-
routines

* A parameterless procedure can be turned into a co-routine (perhaps many
identical co-routines) by a call to NEWPROCESS.

* Some implementations provide for priorities and I/O interrupts, but no other
scheduling, synchronization, or mutual exclusion is provided; this is
precisely the virtue: students can experiment with building higher-level
concurrency control and process managers.

* We illustrate several process managers: the one suggested by Wirth, a simpler
one originally distributed with a now-defunct implementation and adapted
by the author, and a very complete one incorporating time-slicing, developed
at the University of Texas by Brumfield [Brumfield 87].

113

Modula-2 is widely available at low cost: we give out a good $35. shareware
compiler (FST) for IBM PC, and a decent Macintosh compiler (MacMeth) with
permission of ETH Zurich. We have reasonably good and inexpensive (or
free) implementations for Vax-VMS (University of Hamburg), VM/CMS
(Berlin) and Sun/Unix (Karlsruhe).

Ada. We assume that the reader is reasonably familiar with Ada; we include this
brief summary so the reader will understand the Ada philosophy as we present it to
students.

Designed as a general-purpose programming language for the complex defense-
related systems of the '80's and '90's, Ada embodies, by design, very sophisticated
mechanisms for concurrency, abstraction, and encapsulation [DoD 83, Gehani 84].

" The package provides good system-building capabilities: separately-compiled
interface and implementation files, private types whose implementation is
hidden from client programs, etc.

* Support for concurrency is intended to be high-level and independent of the
operating system, using the extended rendezvous and "select" statement for
synchronization and communication, and providing for timeouts, queued
message-passing, and mutual exclusion without semaphores and signals.

* Processes are started by a mechanism similar to COBEGIN, and terminated by
a fairly complex mechanism which tries to ensure that termination follows
block structure and doesn't leave "orphaned" processes running.

* Ada is more standard than most languages, because of government-enforced
compiler testing and validation; validated compilers are readily available for
most computers, including two for the MS-DOS family for $99.00.

" We use Meridian AdaVantage on IBM AT and PS-2 microcomputers. We
also have TeleSoft and Verdix compilers on VAX/VMS, Sun/Unix, and IBM
VM/CMS.

* We have developed a PC-based compiler as an adaptation of Co-Pascal, which
supports the Ada tasking model with some educational features like user-
selectable scheduling disciplines, enhanced task priority, process monitoring,
etc. This courseware is presented in a bit more detail later in the paper.

Concurrent C. This is a C superset (also compatible with C++) developed at AT&T
Bell Labs (Murray Hill) by Narain Gehani and colleagues (Gehani 891.

Concurrent C consists of a preprocessor generating standard C (or C++),
together with a run-time system supporting the process control.

114

The Ada concurrency model is essentially grafted onto C, and extended to
allow dynamic priority-setting, priority queues in addition to FIFO for
message-passing, and, recently, asynchronous message passing in addition to
the Ada synchronous model.

Concurrent C serves as a good vehicle for studying what an improved Ada
could look like, since most of Gehani's changes could be added upward-
compatibly to Ada.

The system is currently available to universities through Bell Labs: Sun and
AT&T 3B implementations are distributed.

To summarize, this set of four languages serves as a broad survey of concurrency
features. With the exception of Concurrent C, all languages are readily available for
use on personal computers, so that students with their own machines can use them
conveniently, and also continue with the languages after the course is over.

With the growing interest in true parallel processors, we have begun to incorporate
some material on the occan language into the course as well.

A PROGRAMMING PROJECT IN COMPARATIVE LANGUAGES

The students are required to do a comparative exercise, to familiarize themselves
with the languages under study, and to have some close-up experience with their
concurrency and encapsulation mechanisms. Two important aspects of the
comparative exercise are code modification and algorithm animation.

Code Modification. Unless they have had jobs in industry, students often get little
experience in re-using other peoples' code, perhaps adapting it to new uses; they
need this experience. First, in practice much program "maintenance" (read
enhancement) is done in industry; second, programs are too often - in school and
industry as well - written from scratch for each new application, with little
attention paid to development of rich libraries and re-usability of programs.

In this project series, students write relatively little code ex nihilo. They are given
listings and machine-readable files of pre-existing modules and directed to use
them, perhaps after some enhancement work. Several sort programs, a terminal
driver, a window manager, and a task dispatcher are all adapted, or translated from
language to language, during the course of the project.

Code adaptation fosters a positive attitude toward re-use; one builds on the work of
others instead of competing with it or re-inventing it.

115

Algorithm Animation. Projects like that at Brown University (Brown P5l are
developing schemes for dynamic algorithm visualization on high-resolution
workstations. Animation is fun and helps to hold students' interest, and - within
limits - it can be done "cheaply" with 24x80 "dumb terminals." The advantage of
the cheap approach is that it can be done portably.

A very good way to understand the interaction of concurrent programs is to have
them dynamically display - animate - their state. We have encouraged this idea
through the vehicle of animated sort algorithms. Sorts are easy to work with:
students understand them well and can therefore pay attention to the animation
and the concurrency rather than to the algorithm being animated.

Racing Sorts. Four files are provided: three are procedures, each implementing one
well-known sorting algorithm for arrays of up to 64 characters, for example
BubbleSort, LinearInsertionSort, HeapSort. The fourth file contains a module for a
miniature terminal driver, exporting ClearScreen and SetCursorAt operations. A
demonstration file is distributed, in which a single sort procedure displays its array
of characters on a single row of the display, then posts the changes to the array as the
sort proceeds.

The requirements of the project are-for each of the four languages-to turn each of
the three sort procedures into a process, then start the three processes in a
simulation of a "race" to completion. The screen is a shared resource (at least
conceptually), to which all sorts must write; further, ANSI terminal control requires
several characters of overhead to position the cursor. In order to guarantee that a
"transaction" to the screen is completed successfully, then, the synchronization and
communication primitives of each language must be used to build a monitor or
other mutual-exclusion mechanism.

A typical initial screen display is given in Figure 1. Execution of the program gives
the visual effect of animation as values are interchanged. Indeed, depending on the
implementation, the animation may be too rapid for the eye to perceive, so the
student must slow the action down with a delay of some kind.

For the student wishing to experiment a bit with methods of displaying text in
different windows, the source code for a simple window manager is distributed. An
example of the window manager in operation is shown in Figure 2. This window
manager does not have any mutual-exclusion code; the student must build it in.

• • • -- da I illilila • i I~ 11 C l

SORT RACE

BUBBLE SORT
aZAzbYBycXCxdWDweVEvfuFugTtGhSHs iRI r

LINEAR INSERTION
aZzYycXCxdWDweVEvfUFugTtGhSHs iRlr

HEAP SORT
aZAzbYBycXCxdWDweVEvfUFugTtGhSHs iRIr

PRESS RETURN TO BEGIN THE RACE

Figure 1. Initial Screen for Sort Race.

I am now wr:1
iting in thi
is window. the quick
Notice how Ibonfox

~~brown
the text wr$

_ _ _ _

eeis the text appearing iiI the third window,

Figure 2. Example of a simple window manager.

TERM PROJECr

An important part of the course is the term project, which the student selects,proposes, implements, and reports on in a public (class-wide) forum. Following is asummary of the project structure.

11

* Projects are generally individual, but may be done with small team or
"double-credited" to two project courses.

* Oral proposals (5 mins.) are given in class; peer review is often interesting
and useful.

* Progress reports (15 mins.) are given during the last two classes.

* Projects are due at the final exam - sometimes "incompletes" allow extra time
for completion of particularly good projects

Typical Projects. Here are a few examples of interesting student projects:

* Develop an interesting process manager for Modula-2; demonstrate with
interesting example.

* Simulate a graphical monitor for a multi-computer network using Meridian
Ada and PC graphics.

* Build an asynchronous mouse interface to Meridian Ada and demonstrate
with an interesting example.

* Develop a video game with game actors as processes.

• Interface the Sun graphics library to Ada, making an Ada-callable library;
develop an animated cartoon of dining philosophers (2-person project).

* Build a new high-level PC graphics library and use it for an interesting multi-
process animation in Modula-2 (double credit with graphics course).

" Develop a multi-process implementation of an AI-oriented game-winning
strategy (double credit with Al course).

" Compare and contrast recursive and concurrent implementations of divide-
and-conquer algorithms.

* Study parallelism; benchmark serial and parallel versions of an algorithm on
a supercomputer.

Small-Ada: COURSEWARE FOR TEACHING Ada TASKING

Tasking is a particularly interesting aspect of Ada; it is also less well-understood
than most of the sequential features of the language. In addition, the Ada Language
Reference Manual leaves many tasking details unspecified, preferring to delegate a

113

great deal to the implementor. Important examples of implementor choices are the
number of task priorities, the task-scheduling strategy (e.g. presence or absence of
time-slicing) and the details of the arbitrary selection called for in the select
statement.

The typical commercial Ada compiler, including those we have available, embodies
a set of design choices in the tasking model which are not always well-documented
and are, in any case, not alterable by the user. To foster effective study of the tasking
model, with specific reference to the portability of programs in the presence of
different implementor choices in the tasking model, it is helpful to have available
an implementation whose tasking model can be controlled at compilation time, or
at least whose run time system is accessible so that it can be re-coded if necessary.

To provide the wherewithal for comparative study of tasking implementations, we
have developed a system for personal computers called Small-Ada. Coded in Turbo
Pascal, Small-Ada supports an approximately full Ada tasking model but relatively
little of the sequential language (e.g. packages, generics, access types, etc., are not
supported).

The compiler produces a variant of P-code, which is executei under control of an
interpreter. Since the entire system is relatively simple (we have emphasized the
tasking model without carrying the translator baggage of full sequential Ada) it can
be modified with relative ease as a student project. Since it is written in Turbo
Pascal, students can take it to their personal computers and work in quiet comfort.

As the system has evolved, we have built in an increasing number of user-selectable
tasking options. Currently the user can choose time-slicing or not (and if so, the size
of the quantum); random vs. deterministic selection of the next-to-be-scheduled
task; standard Ada static priorities vs. dynamic priorities (as is under consideration
in the Ada9x project); implementation of the select statement including priority
inheritance. User choices are implemented as pragmas, to maintain standard Ada
syntax.

A recent enhancement incorporates a considerable degree of system monitoring,
with each task's state, and parts of its source code, shown in its own window.
Implementing the target machine as a pseudo-machine has made it possible to do
interesting task-state monitoring without influencing the tasks' timing, since we can
"stop the clock" while the instrumentation does its work.

We have also developed a Macintosh version of this system. Plans for the future
are to improve the user interfaces, monitoring capabilities, and tasking options of
both systems. The IBM-PC version is available from the authors; the Mac not yet.

CONCLUSIONS AND CLOSING COMMENTS.

In university courses comparative study is a traditional and very effective way of
organizing knowledge. In the academic setting we believe very strongly that the best
way to understand a design is to compare it with alternative designs; this
comparative approach is also a classical engineering methodology. Computer
science students are best served when they have been exposed to alternative
strategies for the solution of a problem, including, in the present case, alternative
language-design models.

We have found that learning the languages, per se, is not a large problem.
Students with reasonable Pascal or C background can learn the rudiments of several
derivative languages in a single course, given a "code modification" approach and
care and guidance from the teacher.

Students emerge from CSci 358 with an understanding of the strengths and
weaknesses of Ada's high-level tasking model compared with other models, and for
those working in the Ada-related industry this is an important contribution to their
professionalism.

REFERENCES

[Ben-Ari 821 Ben-Ari, M. Principles of Concurrent Programming,
Prentice-Hall, 1982.

[Brumfield 87] Brumfield, J. A Modula-2 Process Manager. unpublished.

[Brown 851 Brown, M.H., and R. Sedgewick, "Techniques for Algorithm
Animation," IEEE Software, Vol. 2, No. 1, January 1985, pp. 28-39.

[DoD 83] U.S. Department of Defense. Reference Manual for the Ada
Programming Language. ANSI/MIL-STD 1815A, 1983.

(Ford 851 Ford, G.A., and R.S. Wiener, Modula-2: A Software Development
Approach. John Wiley and Sons, 1985.

[Gehani 841 Gehani, N. Ada: Concurrent Programming, Prentice-Hall, 1984.

(Gehani 891 Gehani, N. and W.D. Roome. Concurrent C. Silicon Press, 1989.

[Schoening 861 Schoening, C.B. "Concurrent Programming in Co-Pascal,"
Computer Language, September 1986, p. 32-37.

[Wirth 851 Wirth, N. Programming in Modula-2, 3rd corrected edition.
Springer Verlag, 1985.

120

Teaching the Ada Tasking Model
to Experienced Programmers:

Lessons Learned

John P. J. Kelly Susan C. Murphy
Dept. of Electrical & Computer Engineering

University of California, Santa Barbara, USA

1. Introduction

What can go wrong when 18 graduate students implement their first Ada program? What if the
application involves extensive use of concurrent communicating tasks? And what if those
programs are generated from multiple formal specifications? We learned many lessons during an
experiment performed at UCSB to investigate software engineering techniques for distributed
systems with very high reliability requirements. One important motivation for the project was to
investigate the problems encountered in building complex concurrent processing applications in
Ada. We are involved in building fault-tolerant software for dependable systems and so are
particularly interested in understanding the faults that occur in complex systems: the types of faults,
their underlying cause, and their effect on an operational system [KEL 881. By understanding the
faults that commonly occur, we can better train our programmers to reduce faults and also build
software systems that can tolerate the faults that remain. Since specification defects have been
pinpointed as a major source of faults [AVK 84], we are evaluating the benefits and difficulties
encountered in implementing a concurrent application from formal specifications. Our analysis
addresses several issues:

- Use of Diverse Formal Specifications
• Use of Ada for Distributed Applications
- Analysis of Specification, Design, and Implementation Faults

2. The Diverse Protocol Specification Experiment

2.1 The Application

In our experiment, multiple independent versions of a distributed application were implemented in
Ada from three diverse specifications written in different formal specification languages. The
application is a communication protocol based on the Open Systems Interconnection (OSI) layered-
model adopted by the ISO [ISO 841. A communication protocol describes a set of rules for
interaction between end-users on different computing systems that allows them to exchange
information. The OSI model provides a reference for the design of standardized communication
protocols. The specification languages, Estelle [ISO 87], LOTOS [ISO 87a], and SDL [CCI 88],
represent international standards for specifying OSI communication protocols [ISO 84]. The three
specifications were independently developed by experts. They describe an OSI Transport Protocol
which is a relatively complex application [ISO 88]. The transport protocol allows different
computing systems to exchange information by synchronizing and controlling the transfer of data
between two machines. Such a protocol involves a significant amount of concurrency and
synchronization among cooperating tasks. In the experiment, the protocol implementations were
developed independently and then underwent a carefully controlled validation process involving
extensive testing and debugging. We used an automated test procedure called back-to-back testing
in which the outputs were compared to detect errors [KM 89a]. The details of our research work,
the experimental paradigm and test environment, and the results have been described elsewhere
[KM 89b].

2.2 The Programmers

The programmers were graduate students in Computer Engineering enrolled in a seminar class. All
were experienced Pascal or C programmers, although only one student had experience using Ada
to implement a concurrent program. None of the programmers had extensive knowledge of
communication protocols or of the formal specification languages. So far, the experiment has
comprised two stages. During the first pilot stage, performed last year in which six
implementations were completed and tested, we focused on improving our methodology,
correcting specification defects discovered by the programmers, and analyzing the programming
errors. The second stage of the experiment has just been completed with nine implementations.

2.3 Initial Results

We learned a great deal during the pilot stage, not only from the programmers' questions and
problems, but also from an analysis of the faults discovered in their programs. Many of the
problems were related to defects in the specifications, but there were also many difficulties related
to the semantics of the Ada tasking model and the complexity of concurrent programming. The
programmers were not able to comprehend all of the possible parallelism in the system and did not
appreciate (at least initially) the problems associated with concurrent execution of the multiple
tasks. Of course, just being aware of the need to analyze the concurrency in a system is not
enough; determining all of the actions that can occur in parallel is usually very difficult. In
general, the most difficult faults to find and correct were those related to synchronization, typically
caused by incorrect assumptions about what was going on elsewhere in the system.

2.3.1 The Ada Tasking Model

In Ada, tasks communicate via the rendezvous in which the sending task issues an entry call to the
receiving task and the receiving task accepts the call for that entry. The first task arriving at the
rendezvous point is suspended until the other task arrives. The rendezvous represents a
synchronous communication model in which the sender is not released until the receiver has
accepted and processed the message. A different model is represented in asynchronous
communication in which the sender is allowed to proceed immediately and the messages queued
for delivery to an autonomous receiver. Since both communication models were important in our
application, the lack of asynchronous facilities in Ada meant that the programmers had to devise
their own methods of providing asynchronous (i.e., non-blocking) inter-task communication. A
simple mechanism for achieving asynchronous communication between two tasks is to introduce
an 'agent' task between them (also called 'mailboxes') [BLW 871. While this approach works well
in some cases, in the protocol implementations the inter-task interactions were complex and
asynchrony more difficult to achieve. The programmers' misuse of the synchronization
mechanism in the form of the rendezvous resulted in deadlock, a common system failure in the
experiment. Deadlock occurs when synchronizing tasks are suspended waiting for a rendezvous
which will never occur. In practice, this was a potential problem whenever a task had to function
as both a sender and a receiver, thereby mixing entry calls with accept statements. Since the Ada
rendezvous blocks the caller until the receiver is ready to accept the call, deadlock can ensue in
such cases.

Although our programmers were warned about the possibilities of deadlock, few appreciated the
problem until their programs actually deadlocked in operation and they were forced to find the
offending fault. The deadlock errors were the most difficult to detect and correct and also had the
most severe consequences since system failure was the usual result. Trying to correct program
errors related to deadlock was particularly difficult late in the development process (for example,
during testing) since correction often required extensive redesign. Several problem areas for the
programmers included:

L22

" When the transmitting task sent a mcssage over the communication medium, it set a timer
(usually implemented as a separate task) to signal time-outs for receipt of acknowledgements
from the receiving site. If the timer task tried to signal a time-out to the transmitter task at the
same time the transmitter task was trying to send a reset signal to the timer task, deadlock
occurred

" When the buffers in the transmitting task were filled, the transmitter blocked further transfer of
data. If the programmer was not careful the transmitter task was no longer open to accept
acknowledgements from the receiver (which was the only means to free buffer space!),
resulting in a deadlock

" When the transmitter task sent data, it had to set a timer at the same time. If the data was sent
before the timer was set, sensitive timing failures occurred if an acknowledgement was
received and cancellation of a possibly non-existent timer was attempted

Probably the most frustrating problems in the first stage of the experiment were caused by compiler
bugs that forced programmers to redesign their semantically correct code to avoid the faults in the
compiler. In the second stage, we switched to a different, more mature compiler which worked
(almost) all of the time.

2.3.2 Mapping Formal Specifications into Ada

In analyzing the deadlock faults in the programs from the first stage, we discovered that the
problems often stemmed from trying to map the formal specification, written in a language with its
own semantics for communicating processes, into an implementation in Ada, a language with its
own (and different) semantic model. Although we knew that the specification languages have their
own concurrency models and that the Ada language has its own semantics for concurrency, we did
not realize how the often subtle mismatch could cause programming errors. In fact, none of the
specifications was concerned with the potential deadlock problems that can arise in an
implementation. However, the specification languages were very implementation-oriented and the
protocol specifications were, in fact, design specifications of the system. This misled the
programmers who often assumed the specification design could (and should) be mapped directly
into Ada. Although the programmers tried, none of the specifications could be mapped directly
into Ada because of semantic differences, particularly with respect to the synchronization in
interprocess communication. In the first stage in particular, the programmers had great difficulty in
understanding what went wrong. The design documents the programmers submitted early in the
design phase differed from their final design documents, and most of the redesigned sections of
their documents had to do with avoiding deadlock problems.

The programmers complained that the specifications were not helpful for understanding the
dynamic concurrency in the system and, furthermore, that the specifications' partitioning of the
system into multiple processes encouraged the use of tasks more than was necessary for the
application. For example, the specifications assumed the existence of an autonomous timer for
signaling time-outs in the protocol, implying the need for a separate task to implement the timer. In
fact, this was not the case, a separate timer task was not the only way to implement a time-out, and
yet all but one programmer implemented the timers as separate (usually multiple) tasks. The timers
were a common source of deadlock. In general, methods devised for avoiding deadlock in the
protocol implementations usually involved the use of timed 'polling' loops in existing tasks or the
creation of new tasks (which may also have polling loops in them) to handle the communication
causing the deadlock. Of course, both solutions have their drawback. With timed polling,
program execution is very sensitive to the delay time in the polling loop, degrading performance
and making it difficult to predict the expected behavior. On the other hand, when the number of
tasks in a system is increased, performance tends to decrease, correctness becomes more difficult
to assure, and deadlock is harder to avoid.

i. ,...

An analysis of the programmers' difficulties gave us some surprising insights into the problems of
implementing communication protocols in Ada and pinpointed errors in previously published work
in the use of Ada for implementing communication protocols [CDG 88]. All three formal
specifications had numerous defects which caused implementation errors. It became clear that
programmers are not the only ones who have difficulty with concurrent applications -- specification
writers and compiler writers have an equally difficult time. Distributed software engineering in
Ada poses many new and challenging problems for software development, not only in the
implementation phase, but also in specifying the application requirements and in testing the final
implementations.

3. Teaching Ada

During the experiment, we provided four weeks of Ada training, emphasizing Ada's special
features such as packages, generics, exceptions, compilation, and tasks. In presenting tasks, we
focused on the semantics of the tasking model, its constructs for synchronization and
communication, and the potential for deadlock between communicating tasks. Our teaching
approach was different from what we would have taken if the goal had been to teach software
engineering using Ada; in fact, since the goal was to study the faults experienced programmers
make when working independently, we did not want to dilute the diversity in results by presenting
a particular approach to Ada software development.

3.1 Lessons Learned

Learning from our initial experience, our Ada training efforts during the second stage were geared
to getting the message across early about potential problems relating to synchronization and
concurrency and to mapping formal specifications into Ada. We knew that just explaining the
problem would not be enough; allowing the programmers to discover it themselves with a 'hands-
on' practice exercise was an important reinforcement to the training sessions. Thus, in the second
stage, we assigned the programmers a simple specification of two communicating processes to be
implemented in Ada. The example protocol specification, which seems to have a straightforward
implementation, will result in deadlock if the specification is mapped directly into Ada without
careful consideration being given to the different semantics of the languages. The programmers
tried to do just that and had deadlock. Several of the programmers insisted that the protocol was
wrong. Implementing the example in Ada gave the programmers a clear understanding of the
problems they faced and, as a consequence, they were better prepared for their more complex
protocol specification. As a result, in the second stage the programmers had considered deadlock
avoidance in their initial protocol design. However, analysis of the faults in their implementations
indicates that while part of the problem was solved with the practice exercise, a few of the
programmers still had difficulty understanding the task interactions and the finer points of the
rendezvous.

From our experience, we suggest that a training program include the use of a dynamic model, (we
prefer a petri net model that allows dynamic simulation of the task interaction behavior), to explain
the operational semantics of the rendezvous construct. Our analysis makes it clear that the
programmer must have an understanding, not only of the basic semantics of the tasking model, but
also of its operational effect in a concurrent program. More time should also be spent explaining
the run-time implementation of tasks and the rendezvous. Just as recursion is made more clear by
exposing the underlying stack implementation model, so too can tasking be explained by
describing its implementation.

The remainder of this paper presents the sample specification, several programmers' solutions and
their errors. This presentation provides insight into the problems associated with mapping a formal
specification into Ada and the difficulties involved in comprehending a system (even a simple one)

2 4

with multiple task interaction, particularly when the communicating tasks must be prepared to send
and receive messages.

4. Training with a Practice Exercise
4.1 The Sample Specification

The goals of this sample training exercise include familiarizing the programmer with the problems
that arise in developing concurrent applications and in mapping a formal design specification into
Ada. The example assumes that there are two communicating tasks in the system, each following
the same behavior specification. The two tasks periodically send and receive messages from each
other, verifying that each is still alive. When a task receives a message, it must respond by
immediately sending an acknowledgement to the sending task. If one task has not heard from the
other (i.e., either received a message or an acknowledgement) within the past 20 seconds, it sends
a message. After sending a message, the sending task should receive an acknowledgement within
3 seconds, if the receiving task does not communicate within 3 seconds, it is assumed to be dead
and the sending task should also terminate. The programmer must implement and test this system
of communicating tasks according to the formal specification. We have included two sample
specifications of these informal requirements: one a simple state transition diagram with no formal
specification language used (Fig. 1) and the other written in SDL, a formal description technique
for communication protocols used in our experiment (Fig. 2). The SDL specification illustrates
how an explicit timer is used to specify the time-out requirement. This example emphasizes
experience with programming from formal design specifications, the use of real-time constraints,
mutually communicating tasks, and potential deadlock. It also requires that the programmer design
a test driver and test cases to test the communication behavior to ensure conformance with the
specification.

task type TX:
accept Msg/ sendACK

accept.ACK / - acceptMsg / sendACK

420-sec timeout / senMsg Wat 3-sec timeout / Qi

Figure 1. State Transition Diagram for Communicating Task

125

process TX: I
setTIMER

(NO W+20)>

receive-Ack <receive MsgTIE

stTMRsend-Ack sn s

receive) >AckdMs

Fiur . D SeifctinofM mnctg TaskE

126I Rse

4.2 Programmers' Solutions

The following represents several programmers' solutions to the practice specifications. The two
communicating tasks are named TX_A and TXB. Only sketches of the solutions are provided.

Solution 1: This proposed solution was attempted initially by most programmers and represents
a close mapping to the state transition diagram (Fig. 1). It results in deadlock quickly and led
some programmers to assume that the specification must be in error. Note that delay
statements are used to implement the time-outs instead of a separate timer task. Separate timer
tasks only exascerbates the deadlock problem (as illustrated in solution 2 below).

task body TXA is
type STATE is (READY, WAIT);
STATE: STATETYPE:= READY;
type MSGTYPE is ...
begin
loop

select
accept MSG (M: in MSGTYPE) do

-- read & process M
end accept;
TXB.ACK;

or
accept ACK;
STATE :=READY;

or

when STATE = READY =>
delay 20.0;
-- prepare message M for delivery
TXB.MSG (M);
STATE:= WAIT,

or

when STATE = WAIT =>
delay 3.0;
exit:

end select;
end loop;

end TX_A;

What goes wrong? The deadlock arises because the other task in the system, TXB, will
eventually try to send a message to TX_A at about the same time TX_A tries to send a message
to TX_B. Each programmer came to realize quickly that deadlock avoidance was up to them
and was not handled in the specification. The SDL specification language assumes an
asynchronous communication model in which the sender of a message is not blocked.
However, problems are not eliminated by simply switching to a programming language with an
asynchronous model. Asynchrony leads to other timing problems: task B may not get around
to accepting a message from A in time to send an acknowledgement within the 3 second time-
out and A may (incorrectly) assume that B has died and thus terminate itself. In an
asynchronous model, assumptions have to be made about the maximum time necessary for
message receipt.

127

* Solution 2: This solution is similar to the first case except that a separate timer task is used to
implement the time-out. This solution represents a close mapping firom the SDL specification (Fig.
2).

task body TIMER is
TIMEDELAY: DURATION;

begin
loop

select
accept SET (DELAYPERIOD: DURATION) do

TIMEDELAY := DELAYPERIOD;
end SET;

ordelay TIMEDELAY;

TX_A.TIMEOUT;
end select;

end loop;
end TIMER;

task body TXA is
type STATE is (READY, WAIT;
STATE : STATETYPE:= READY;
type MSGTYPE is ...;
DELAY-PERIOD: DURATION := 20.0;
begin
TIMER.SET (DELAY_PERIOD),
loop

select
accept MSG (M: in MSG-TYPE) do

-- read & process M
end accept;
TXB.ACK;
TIMER.SET (DELAYPERIOD);

or
accept ACK;
DELAY_PERIOD := 20.0;
TIMER.SET (DELAY-PERIOD);
STATE := READY;

or
when STATE = READY =>
accept TIMEOUT;
if STATE = WAIT then

exit;
end if;
-- prepare message M for delivery
TXB.MSG (M);
DELAYPERIOD := 3.0;
TIMER.SET (DELAY-PERIOD);
STATE := WAIT;

end select;
end loop;

end TXA;

A timer task similar to this had been proposed for use in communication protocols in Ada [CDG

86]. A similar timer task was tried by several of our programmers in their protocol
implementations but with no success. The failure was caused by deadlock which ensues

whenever the TIMER task attempts to rendezvous with the TXA task (because it has timed out

128

and is executing the TIMEOUT call) at the same time the TXA task is trying to rendezvous with
the TIMER at the SET entry (because it has heard from TXB and is trying to reset the timer).
Since each task is waiting at different rendezvous points for the other, deadlock will occur.

Solution 3: The first example of a solution for deadlock avoidance is to provide message
forwarding tasks to implement an asynchronous (non-blocking) send. The forwarding task
accepts a message from the TXA task and passes it on to TXB, avoiding the blocking of
TXA. This solution results in two additional tasks; a forwarding task for each of the two TX
tasks. The TXA task above would be modified slightly to send messages to TX_B via an
entry call to the TXAFORWARD task which accepts messages and forwards them on to
TX_B as follows:

task body TX_AFORWARD is
MESSAGE: MSGTYPE;

begin
loop

select
accept SEND-MSG (M : in MSG_TYPE) do

MESSAGE := M;
end accept;
TXB.MSG (MESSAGE);

or
accept SENDACK;
TX_B.ACK;

end select;
end loop;

end TX_AFORWARD;

The duplication of tasks for message transmittal will lead to substantial overhead in a more
complex system. Also this example's restrictions on the sending of acknowledgements and
messages (only one message and one acknowledgement is sent in a 20 second interval) makes
the solution simpler than if transmittal of multiple messages and acknowledgements was
possible (as in the transport protocol).

12C

Solution 4: In this solution, the programmer avoided deadlock by a timed selective polling
approach. The implementation is similar to the first solution except that additional state variables
are added to determine if the task was blocked sending a message. When a task wants to send a
message or an acknowledgement, then a new state variable, TRYINGTOSENDMSG' or
TRYINGTOSENDACK', is set to true and a short delay time for polling is assigned. The
task tries to send the message or acknowledgement with a select/delay alternative as follows:

task body TXA is
POLL_TIME : CONSTANT DURATION:= ...; -- small delay time

-- ... declarations similar to solution 1
loop

select
accept...

-- .similar to solution 1 with the following additional alternatives
or

when TRYINGTOSENDMSG =>
delay POLL_TIIE;
select

TXB.MSG (M);
STATE := WAIT;
TRYINGTO SENDMSG := FALSE;

or
delay POLLTIME;

end select;

or
when TRYINGTOSENDACK =>
delay POLL_TIME;
select

TXB.ACK;
TRYINGTOSENDACK := FALSE;

or
delay POLLTIME;

end select;
end select;

end loop;

Situations such as this example, in which a task needs to be open to make entry calls and to accept
calls from other tasks, leads to polling as a solution. The polling approach is expensive, requiring
frequent execution of the select alternative. Of course the most natural approach requires the
select statement in Ada to allow both entry calls and accept statements (of course, this is not an
option). This solution represents an optimistic approach in that it can be efficient if the receiver
task is usually ready to accept the call and the need to poll is rare.

13 0

Solution 5: In this solution, the programmer avoided deadlock by implementing a single buffer
task which acted as a passive depository (or mailbox) for all messages. The buffer task acts as a
synchronizing agent for the TX tasks, accepting calls from the two TX tasks to add messages to
the buffer or remove them from the buffer. The TX tasks only make entry calls to the buffer
task and do not contain any accept statements themselves. While this approach avoids many
difficulties, it isn't the most natural approach since it requires that the TX tasks reverse their
roles, with each making entry calls to receive messages. This solution represents a pessimistic
approach which works more efficiently if the receiver task is often busy and the buffering of
messages frees the sender task from explicit polling (as in solution 4 above). The body of task
TXA is sketched below. The buffer task is not shown; it simply accepts calls from TX tasks
with requests to either enqueue or dequeue messages.

task body TXA is
type STATE is (READY, WAIT);
STATE: STATETYPE :=READY;
DELAYPERIOD : DURATION := 20.0;

begin
loop

select
BUFFER.AGET (KIND:MKIND; M : MSGTYPE);
-- retrieve message M from buffer (if buffer not empty)
-- process and take action on M

if KIND = ACK then
DELAYPERIOD := 20.0;
STATE := READY;

elsif KIND = MSG then
-- deposit acknowledgement into buffer for later retrieval by TXB
BUFFER.ASEND_ACK;

end if;
or

delay DELAYPERIOD;
if STATE = WAIT then

exit;
end if;
-- prepare message M for delivery
-- deposit message M in buffer for later retrieval by TX_B
BUFFER.A_SEND_MSG (M);
DELAYPERIOD:= 3.0;
STATE:= WAIT;

end select;
end loop;

131

Solution 6: This is really not a solution (it didn't work), but it is interesting in understanding the
error in logic. Several programmers used this approach, based on the use of a semaphore.
Typically, semaphores are used for allowing two processes to update shared data without
interference or for allowing one process to block itself to wait for a certain event and then to be
awakened by another process when the event occurs. The programmers assumed that if each
TX task were to use a semaphore before and after an entry call to the other TX task that they
would be guaranteed that only one process would be trying to make an entry call at the same
time and deadlock would not occur.

task body SEMO is -- task implementing set/reset of semaphore variable
ISRESET: BOOLEAN:= TRUE;
begin
loop

select
when IS-RESET =>
accept SET do

ISRESET := FALSE;
end SET;

or
accept RESET do

ISRESET := TRUE;
end RESET;

end select;
end loop;

end SEMO;

task body TXA is

-- similar to solution I
loop

select
accept MSG (M: in MSG-TYPE) do

-- read & process M
end accept;
SEMO.SET:
TXB.ACK;
SEMO.RESET;

or
accept ACK;
STATE := READY;

or
when STATE = READY =>
delay 20.0;
SEMO.SET;
TXB.MSG (M);
SEMO.RESET;
STATE := WAIT;

or
when STATE = WAIT =>
delay 3.0;
exit;

end select
end loop;

end TX_A;

132

This program leads to deadlock; the programmers did not understand that the semaphores, while
they synchronize the processes' calls to each other, do not avoid simultaneous attempts to make an
entry call if both tasks reach a 'SEMO.SET statement at the same time. In this case, one task will
grab the semaphore and try to call the other one, but that task will never be ready to accept the call
since it is waiting at the 'SEMO.SET' statement, resulting in deadlock.

The study of these problems is interesting for several reasons. First, it indicates the caution to be
taken when mapping a formal specification into an implementation; it's never as straightforward as
it looks. Second, the diversity of solutions was surprising; in fact, the programmers' solutions
covered the spectrum of possibilities suggested in various references for implementing
asynchronous communication in Ada (BLW 87]. While the programmers found the tasking
construct easy to grasp, they also found it was very easy to make subtle and hard-to-fix errors.
The problem areas suggest certain points that should be emphasized in training for concurrent
programming in Ada: the role of tasks in program design, the rendezvous as a synchronous
communication model, methods for achieving asynchronous communication, the polling bias of
the task construct, an explanation of the run-time implementation of tasks, models for
understanding the dynamic concurrency in a system, and methods to avoid and detect deadlock.

4. Conclusion

This paper has presented lessons learned in teaching the Ada tasking model to experienced
programmers in a distributed software experiment. Concurrent programming in the context of the
Ada task proved to be a challenging exercise for the programmers, although all were enthusiastic
about the Ada language when the experiment finished. We discovered many pitfalls for the
unwary programmer in mapping formal design specifications into Ada implementations. A hands-
on practice exercise in implementing a concurrent program from formal specifications was
particularly helpful in pinpointing problem areas, although a dynamic model (such as petri nets)
would have been beneficial in explaining the operational semantics of the rendezvous. The diverse
approaches in implementing the practice exercise was surprising, and some interesting
programming errors were discovered. It is clear that clever well-trained programmers will be
important in extending software engineering into the distributed and concurrent programming
domain.

I I I

Bibliography

(AVK 841 A. Avizienis and !.P.J. Kelly, "Fault Tolerance by Design Diversity: Concepts
and Experiments," Computer, Vol 17 No 8, August 1984.

[BLW 87] A. Burns, A. Lister, and A. Wellings, Lecture Notes in Computer Science: A
Review of Ada Tasking, Springer-Verlag, New York 1987.

[CCI 88] CCIT, "SDL, Specification and Description Language," (Blue Book) Z.100,
International Consultative Committee for Telephony and Telegraphy, Geneva,
March 1988.

[CDG 86] R. Castanet, A. Dupeux, and P. Guitton, "Ada - A Well Suited Language for the
Specification and Implementation of Protocols," IFIP Workshop on Protocol
Specification, Testing and Verification, edited by M. Diaz, Elsevier Science
Publishers (North-Holland), 1986.

[ISO 841 ISO 7498, "Basic Reference Model for Open Systems Interconnection,
International Standard, ISO 7498, Geneva 1984, also CCITT Recommendation
X.200.

[ISO 86] ISO/TC 97/SC 21, "OSI Conformance Testing Methodology and Framework,"
ISO DP 9646, edited by D. Rayner, Egham, September 1986.

[ISO 87] ISO/DIS 9074, "Estelle: a Formal Description Technique based on an Extended
State Transition Model," ISO DIS 9074, 1987.

[ISO 87a] ISO/DIS 8807, "Information Processing Systems - OSI - LOTOS - A Formal
Description Technique for the Temporal Ordering of Observational Behavior,"
ISO Draft International Standard 8807, October 1987.

[ISO 881 ISO, "Guidelines for the Application of Estelle, LOTOS and SDL," Project ISO/
TC 97 / SC 21, edited by K. Turner, Stirling, January 1988.

[KEL 881 J.P.J. Kelly, D. E. Eckhardt, A. Caglayan, J. C. Knight, D. F. McAllister, M.
A. Vouk, "A Large Scale Second Generation Experiment in Multi-Version
Software: Description and Early Results," 18th Annual International Symposium
on Fault-Tolerant Computing, June 1988.

[KIM 89a] J.P.J. Kelly and S.C. Murphy, "Achieving Dependability Throughout the
Development Process: A Distributed Software Experiment," Submitted for
publication. 1989.

[KIM 89b] J.P.J. Kelly and S.C. Murphy, "Applying Design Diversity During System
Development: An Experiment using Back-to-Back Testing," Submitted for
publication, 1989.

134

Ada: Helping Executives Understand the Issues

David A. Umphress
Department of Mathematics and Computer Science

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

April 26, 1989

1 Introduction

In today's Air Force, we find an interesting dichotomy: junior officers at the
grass roots of software development and senior officers making major software-
related issues are Ada advocates; middle managers have been reluctant to accept
Ada. The reasons provide an equally interesting view into corporate sociology.
Junior officers are coming increasingly from computer science backgrounds and
can appreciate Ada's software engineering features. Senior decision makers,even
though they don't have a computer background, see standardization and inter-
operability as beneficial to large scale weapons systems development. Middle
managers, on the other hand, typically grew up in the "slide rule" era, aren't
always totally comfortable with computers, and often are reluctant to embrace
new technology.

This paper describes experiences in helping Air Force middle managers un-
derstand the issues raised by Ada, both from a managerial and technical stand-
point. The paper is divided into three major parts. The first part describes the
material taught to a group of middle managers. The second part outlines the
feedback from the group. Lessons learned in teaching the class are included in
the third part.

2 CCSES

The Communications-Computer Systems Executive Seminar (CCSES) is a course
held eight times a year at Maxwell AFB, Alabama, to acquaint upper-level mid-
dle managers with communications and computer issues in the military. Stu-
dents in the class are Air Force Colonels and Lieutenant Colonels, or civilian
equivalents, who are qualifying as directors of information systems. The course
is two weeks long and features guest lecturers from within the Air Force and

135

i I~- I I

Department of Defense. Of relevance here is the one hour session entitled "Ada:
issues for executives."

The purpose of the lecture is heighten the awareness of students to the
managerial issues of software development, in general, and Ada, specifically.
Plainly, little real instruction can be accomplished in one hour. However, the
time i used to point. oit the complexity of software and how LhaL complexity
is affected by using Ada.

Before the class, the students are furnished a copy of [Sammet 1986], DoD
Directives 3405.2 and 3405.1, and a copy of the briefing slides used during the
lecture. The lecture itself is divided into four major topics: background, fea-
tures, issues, and technology assessment. The charts for the lecture are included
at the end of this paper. Listed below is a brief description of each chart.

2.1 Background.

In the background portion, the students are given a working definition of soft-
ware engineering. They learn that software development is a complexity man-
agement problem and efforts must be made to effectively minimize the impacts
of human inability to deal with intensely intricate problems. They hear that em-
bedded systems consume a majority percentage of software efforts in the DoD.
They are then reminded that Ada was developed specifically to deal with em-
bedded software. The rationale behind this discussion is to point out that Ada
did not simply evolve, but was created consciously from a set of requirements.

* Chart 1. The objective of this slide is to show that there is a team
devoted to software engineering with Ada and that the team is part of
a recognized DoD agency. Many students are surprised to know of the
organizational structure behind Ada. Many feel Ada 'died off" long ago.

* Chart 3. This is a gentle introduction to the idea that software is decep-
tively difficult to develop. The term software crisis is, by now, a buzzword
to all Air Force personnel involved with computers. This slide reminds the
students that software development is an immature field and is fraught
with problems. The last phrase, "[the electronic industry] has created the
problem of using its product," always gets a few nods from even the most
inexperienced people in the audience

e Chart 4. This slide was taken, in part, from the introductory Ada course
taught at Keesler Air Force Base. The point made here is that the items
under the "why" bullet are really symptoms. The real problem is that of
managing complexity, both technically and managerially.

* Chart 5. Understandably, the term software engineering means different
things to different people in the class. When this lecture was first offered,
the official IEEE definition of software engineering (see IEEE 1987] was

136

used. The definition was vilified by the students as "techno-speak" and
was subsequently dropped. This chart gives a definition with which the
audience can identify. It points out that software engineering is a process
to solve problems, i,ot just a means to produce software.

" Chart 6. This is a "motherhood and apple pie" slide intended to point
out that Ada was developed to fit a need in the DoD.

" Chart 7. As little time as possible is spent on this chart. While it
presents some interesting milestones in history, it is generally well-known
information. The points brought out by the slide are first, that Ada was
developed in response to a valid need; second, that some attempt was made
by the government to mandate the use of Ada in two DoD directives; and
third, that compilers undergo a validation process.

2.2 Features.

In the features portion of the lecture, the students learn that Ada has charac-
teristics that stretch beyond codification. The idea here is to emphasize that
Ada embraces a systemic development philosophy of not only code, but software
environments and methodologies as well.

" Chart 8. This slide points out that Ada has many of the same features as
more 'traditional" languages such as FORTRAN and Pascal. It also serves
to illustrate that Ada isn't an entirely foreign programming language.

* Chart 9. The unique aspects of Ada are depicted here. Interestingly, this
is as technical as the lecture gets and yet many of the students complain
about the "high technical content" of the period.

* Chart 10. The objective of this slide is to point out that the potential,
albeit currently unrealized, for software life cycle support is what should
key managers to taking a closer look at Ada.

2.3 Issues.

The issues part of the hour is mainstay of the hour. It is here that the technical
features of Ada as they relate to managerial control are discussed. Issues in-
clude design support, effects of code reusability, software performance criteria,
hardware support, training, and configuration management.

* Chart 11. At this point in the lecture, the audience has warmed up and
given a few Ada "horror stories." It is here that it becomes necessary to
point out that problems exist, but they aren't always technical problems.

137

" Chart 12. The goal of this slide is to help the students understand that
"armchair" Ada experts are easy to find. However, if they want the "real
thing', they need to allow their programmers (and managers) to experi-
ence Ada - in a structured software engineering education environment,
for best results.

" Chart 13. This chart is used to illustrate that Ada has an impact on
the managerial aspects of software development. The difficult point to get

across is that mangers don't need to become intimately involved in the
syntax of the language; they need to know the philosophy of the language
and how to manage technical aspects.

" Chart 14. This chart generally receives the most attention. The objective
is to discuss compiler reliability and tool availability. It is pointed out
that compilers have matured greatly in the past years. Bugs, while still
present, are moderately rare - much more so than with FORTRAN at the
same point in its development. It is also necessary to point out that code
produced by Ada is larger and potentially slower than that produced by
other language compilers. However, on the other hand, a lot of run-time
error checks are made that may not be available with other languages.
Finally, tools are relatively scarce and expensive.

" Chart 15. Since the previous slide focused on the negative aspects of Ada,
this chart attempts to address the potential long-term payoff features of
the language. This information comes from [Foreman and Goodenough
19881. Again, the emphasis is on the idea that there are no "quick fixes"
to the software problems; long-term solutions must be examined.

2.4 Technology Assessment.

The last part of the period is devoted to a frank assessment of the current state
of Ada.

" Chart 16. This chart illustrates some of the good and bad aspects of
Ada with which managers should be aware.

" Chart 17. The bullets on this slide briefly summarize the briefing.

" Chart 18. This is a "let's part on good terms" slide that pokes fun at
the skeptics while emphasizing the mandate that Ada be used.

3 Feedback

The Ada lecture itself occupies little more than one percent of the course. How-
ever, it frequently turns out to be the most controversial and memorable topic

138,

presented during the two weeks. Feedback in the class and on end-of-course
critiques reveals a fascinating insight into what effort will be required to utilize
fully Ada in the workplace:

* Few middle managers have had actually experience with Ada. They feel
that Ada is just another programming language.

" They come to class with a preconceived notion that Ada is being foisted
on them - and they resent the language because of it.

" They believe literature on Ada only when it attests to a purported project
failures. They have "heard," mostly through informal channels, that Ada
is inherently slow, cumbersome, and only useful for embedded weapons
systems.

" They often associate project failure with the Ada language itself, not pos-
sible managerial faults.

" Many feel they must know the syntax of the language in order to oversee
projects effectively.

" Many do not believe that software engineering affects software develop-
ment in a positive manner.

Whether or not these impressions are an accurate assessment of reality is
not important. They represent concerns that middle managers have in working
with Ada.

4 Lessons Learned
The lecture was originally based on {Murtagh 19881. However, in over a year of
presentation, the format and content of the material has changed dramatically.
Lessons learned in teaching the class have been hard-earned:

" Middle managers do not want nor necessarily need to learn about specific
language features. At best, general features of the language that support
widely accepted software engineering principles should be presented.

" Ada should not be "sold." Managers are, more often than not, astute
students. They want objective facts. They expect to see not only good
aspects of Ada but also the negative points as well.

* The "Ada story," though often repetitious to many, is necessary to build-
ing the proper framework from which positive gains of the language are
attained. Managers understand requirements; they can appreciate a lan-
guage that was developed from predefined requirements.

139

L -i i

* Managerial issues should be taught by someone who is a manager. Middle
managers often resent being told about the managerial issues of Ada from
technical people. They are afraid of "techno-speak."

5 Conclusion

The CCSES class has provided a rich insight into a realm of Ada that is not
easily addressed by reference manuals and other technical information. However,
the managerial issues of Ada are, and will continue to be, the front on which
major battles in the use of Ada are won or lost. Much work must be done to
address the concerns of the middle manager.

6 References

" Foreman, John, and John Goodenough. 1987. Ada Adoption Handbook:
A Program Vanager's Guide. CMU/SEI- 87-TR-9. Software Engineering
Institute, Pittsburgh, PA.

" IEEE. 1987. Software Engineering Standards. Institute of Electrical and
Electronics Engineers, Inc., NY.

* Murtagh, Jeanne L. 1988. Presentation at Third Annual ASEET Sympo-
sium (Denver, CO, June 1988).

* Sammet, Jean E. 1986. Why Ada is not just another programming lan-
guage. Communications of the ACM 29, 8, 723-731.

. " " -- -. . . - ,, . m = "=.. =,.. i i m l i .m == i t n

00
>2 -

a5 0

2 : .Q r-- r- r _

r- =

c~Z Z U-Z

0 00

'0 c

- 04 Qt5d 16, R ,E ~ u i
0 43

wt
I

00 cl0

0 w

:C :

con 0

00c

0

dn u

co~c 0 co>
oH E

(D 6m - -0)O 00 L

W~ CnC =
0 2 0.

E

L-O l co rI O

L QL7

I! 4:

00

4)
0~ 0 WIo 0

00 * E '0.~ ~ CIOQ <a)

> LO :

C- (Y)6

c--

0 C2

00

Q)

.0 u5~m0

to 0

0O 03

U)J

0,0 00
0) 0CD 0

3 C5

C-l

0 0

a) 8
- a o-

j S- t

60 0Q -C)

'02

0 0

00

00

-E 0 0

0 0 Q)

Q))

c-a 0

a)> c-- r0)

In

CD a)
7a C)

~~Q)

Q) Q) - L.

C, -6
7o2 _

u)AZ
cn1.

'0 - aa) O)
Q) -~E.

* 0

The Pedagogy and Pragmatics of Teaching Ada
as a Software Engineering Tool

LCdr Melinda L. MORAN MAJ Charles B. ENGLE, Jr.
NARDAC Washington Software Engineering institute
Washington, D.C. 20374 Pittsburgh, PA
morani@ajpo.sei.cmu.edu engle@sel.cmu.edu
(202)475-7681 (412) 268-6525

Among the decisions currently facing many computer science
departments is the choice of a primary language of illustration and
implementation. This decision is being couched in the context of a much
larger environment of change being proposed by a joint ACM/IEEE-CS
Curriculum Task Force. The changes being proposed by this task force are
pervasive and, at this point, still subject to review and revision. One
point which is clear, however, is that the thrust of the proposed changes
is to shift the focus away from "computer science as programming" to
"computer science as a much broader discipline." In the same vein,
although many elements of this paper focus on the pedagogy and
pragmatics of teaching Ada, the language, by far the more important focus
is on teaching Ada, the software engineering tool.

A Tool for Programming-in-the-Large

One of the most important pedagogical points to be made about
teaching Ada as a tool for software engineering is that it is imperative
that the language be Introduced in the context of
programming-in-the-large with emphasis on the semantic constructs of
the language, NOT In the context of programming-in-the-small with
emphasis on the syntactic constructs of the language. A "need" for the
language must be developed in the student before any true appreciation of
the language can be gained. (This need would be called by psychologists a
"cognitive dissonance.") Without a perceived need the student is less

1,17

motivated to learn and extend what (s)he has been taught to the solution of
new problems.

Among computer science students, even in a CS1 class, it is
increasingly impossible to find anyone without some prior exposure to a
computer and/or some programming language. Almost all students enter
the curriculum with functional mastery of at least one computer language,
normally BASIC and/or Pascal. The instructor who attempts to introduce
the Ada language to students using the traditional "toy" programs used in
prior years in introducing BASIC and Pascal is doomed to failure. (S)he is
immediately met with resistance from students asking "Why should I
worry about learning how to do this In Ada when I can already program this
in BASIC or Pascal?" There is validity in this question. If the semantics
of BASIC or Pascal are simply translated Into the syntax of Ada students
have gained nothing. Indeed, "...a software crisis has not been caused by a
lack of syntactic knowledge. The problem lies in the scope of our
SEMANTIC knowledge and our ability to apply It. The goal of software
engineering is to expand knowledge of the semantics of software
development." [PRE87]

How then do we create a "need" for Ada within the student? The
pedagogy is simple and will be elaborated on first. The pragmatics,
unfortunately, are weighty and so we defer a discussion of them until
later.

One of the major semantic differences Ada introduces is a significant
emphasis on modularity. The package construct facilitates the
construction of software systems composed of many modules. The package
is a masterful tool for embodying the use of layers of abstraction and
Information hiding within a system. It illustrates clearly to students the
logical separation and encapsulation of related resources.

This massive modularity (a very real part of most actual systems) is
usually entirely foreign to most introductory students. Not having a
program complete in one module makes most students highly
uncomfortable. (Good! Cognitive dissonancel) The first project presented

to introduce students to Ada (and to software engineering) should be a
large-scoped one requiring MANY modules and a great deal of coding. The
instructor should guide students through the design phase initially leaving
them with the impression that tney will be actually coding the
implementation of each module. Panic will ensue almost Immediately.
Students will be unable to cope with the level of complexity and that will
be immediately apparent to the vast majority of them. Before outright
rebellion occurs, however, the instructor should step in and provide
students access to functional versions (but not necessarily source code) of
all required modules except the main driver module. The main driver
module should require minimal coding; it is likely to be simply a routine
which utilizes the resources encapsulated In the provided modules.
Students are now back at the level of "coding in the small" but have gained
an appreciation of building systems "in the large" because they can see the
larger picture of how their module and all the others comprise the larger
system. Further, they realize the lack of constructs in Pascal and BASIC
to modularize easily on such a large scale. They have an appreciation for
one of the major SEMANTIC extensions in Ada and are not locked in the
emotional resistance engendered in simply teaching Ada as a syntactic
transition from Pascal and/or BASIC.

The Taboo of Teaching by Analogy

As an example of the problems which can be encountered when Ada is
not taught in this manner, consider the experience of one Ada instructor
with whom the authors are familiar. This instructor was new to Ada when
Ada was also new and decidea to teach Ada as just another programming
language. He employed the technique of teaching by analogy using the
programming language Pascal as the basis for his analogies. Starting at
the lexical level, he had completed his instruction in Ada's typing
mechanisms and control structures and had just about finished a
description of subprograms when the student's first programming
assignment was handed out. Given the limits on what the students had
been taught, the assignment was designed to be an Ada (main) procedure
which made use of several embedded procedures. The structure of this
style of programming, naturally, resembles a Pascal program. Not

! ,.1

surprisingly, the students had little or no difficulty in completing this
first assignment properly.

The instructor then began a detailed discussion of the Ada package
and why it was both important and necessary for
programming-In-the-large. After several class discussions on packages
and their uses, a second assignment was given to the students with the
stipulation that a package was required for the solution. One student
turned into the instructor a complete assignment in which the package
specification listed all of the subprograms needed for the solution to the
programming problem. In the body of the package all of the subprograms
were correctly implemented. However, the student had developed his
entire algorithm for the problem solution between the begin-end block of
the package body, !.e., in the portion of the package body which Is designed
for initialization. The statements listed in this part included input/output
calls for interactive dialogs with the program user, declare blocks with
generic instantlations, and many other features which are not
traditionally thought of as being appropriate for the "initialization"
portion of the package body. When the student had completed compiling
this package, he had tried to link it. Of course, it could not be linked and
the compiler output some cryptic message to the effect that the package
was a "passive" entity and could not be linked in this manner. After
consultation with another student, the student that wrote this package
discovered that he needed to have a subprogram as the "driver" and that he
needed to "with" the package he wrote in this subprogram. He therefore
wrote a procedure with a body that had a single statement, namely null.
When he compiled and linked this procedure and then ran it, his solution to
the programming problem worked perfectly. it seems that since his null
procedure "with"ed the package, the package was elaborated at run time.
Elaboration includes the execution of any statements in the "initialization"
portion of the package body. Since the student had implemented his entire
algorithm at that point, he naturally got the "effect" of program execution,
although in reality his program never executed, it mer ely elaboratedl This
led to several lectures devoted to explaining what had happened and why a
programmer would not want to program in this manner. Needless to say,
many students never did understand what the difference was, nor what had
happened in this case.

1 5')

The cause of all of this confusion was the instructor's approach to
teaching the language. The student knew Pascal and by analogy tried to
convert Ada into Pascal. The result was "Adacal"; the student was
thinking in Pascal but coding In Ada. The moral: Never start teaching
Ada "bottom-up." Ada embodies an entirely new approach to
programming and must be taught in an entirely new way to break old habits
early. The need for the package and its role in modularizing large
programming solutions MUST be the first thing taught to students. Lower
level features can then be added in a coordinated manner as discussed in
the rest of this paper.

Creating Courseware

The pragmatics of Introducing Ada In this "top-down"
programming-in-the-large manner are weighty. The instructor must
design a large project and then make many of the requisite project
modules avaiiable to the students. Obviously the Instructor must somehow
create the modules which are given to the students. The project must be
large enough that a student could not conceivably create all the required
modules in the allotted time. This demands a great many modules, with
the actual number dependent upon the abilities of the student population.
A good deal of time must be invested by the instructor in creating these
modules. This time should not be trivialized. To create well-styled,
well-documented, robust modules takes a great deal of effort. Certainly
the Increasing availability of commercial libraries of generic units, the
growing number of bulletin board sources, etc. helps in reducing this
creation time somewhat, but the instructor must still invest time
integrating and testing acquired units.

In an effort to assist instructors in this endeavor, the Software
Engineering Institute (SEI), a federally funded research and development
center at Carnegie Mellon University, is attempting to provide artifacts to
be used for instruction. These artifacts are currently all written in Ada
and are available for the cost of reproduction (generally less than $10).
They are between 10,000 and 20,000 lines of code, depending on how a lIne
of code Is counted. Each artifact is self-contained and consists of the

J161

source code for the artifact, all of the documentation for the design and
development of the artifact, a test suite, and some tools to make the
instructor's use of the artifact less difficult, such as compilation order
listings. Examples of the documentation which come with each artifact
are the user's manual, the test plan, the configuration management plan,
the requirements document, preliminary and detailed design documents,
quality assurance plan, coding standards, and documentation standards.

This effort by the SEI Education Program was undertaken specifically
to address the need by instructors for large project courseware. The
provision of this courseware allows students to concentrate on those
aspects of learning that the instructor is trying to impart and frees them
from the intellectually less stimulating busy-work of Implementing
modules needed to execute the modules of interest for a specific lesson.
It prevents students from becoming immersed in minutiae and focuses
their attention on the important instructional points. Students can
concentrate on "building" the program and not on erecting the scaffolding
needed to build the program.

Library Managers

Having courseware available, however, is not enough. There must be
some mechanism for affording students access to the functional
implementations of the modules. If a mainframe environment is being
used, most library managers provide some mechanism for students to
simply enter a pointer to the appropriate object modules rather than
requiring each to maintain their own copy of the module. If a
microcomputer environment Is being used, some mechanism must be
developed to allow students to copy the provided modules Into their own
storage area.

Another pragmatic consideration in Introducing students to Ada in the
aforementioned manner is that of finding a textbook which supports this
pedagogy. First, finding a textbook which focuses on the constructs
important in CSI and secondarily uses Ada as a tool to introduce and

illustrate those constructs is impossible. One does not yet exist.
Currently there are CSI books and there are Ada language books and the
selection of one approach or the other is an exclusive-or situation. Let us
make the optimistic assumption that student economics are such that this
problem is solved by having students purchase two books, an Idealistic
assumption certainly. Even finding an Ada language book which begins at
the level of packages and introduces the syntax secondarily by having
students program in the small to complete small parts of much larger
systems is difficult. Most Ada language books begin at the syntactic level
focusing on the lower end of the language. Many even Introduce syntactic
constructs by juxtaposition with their Pascal counterparts. These books,
in these authors' opinions, teach students to think in Pascal semantics and
write Ada syntax (Adacal?), a worthless accomplishment.

The lack of a supportive textbook, again, is not an insurmountable
problem, but certainly one meriting attention. Many textbooks can be
made suitable by conscious reordering of the material by the instructor in
assignments. In resequencing material, however, careful attention must
be paid to contextual dependencies inherent to the author's original
ordering. Beginning students, unfortunately, tend to be easily panicked by
encountering unfamiliar constructs OTHER than the one they are supposed
to be learning in a specific lesson and are easily distracted from the
primary focus of the lesson.

Another problem in finding an appropriate textbook is, again, lodged in
finding a book which is not simply a cv.,version effort from a previous
language. Beyond teaching Ada syntax coupled with an older language's
semantics, most of these books also centre almost entirely around a
functional decomposition approach to design. Creating software systems
written in Ada is certainly not Incompatible with this method of design,
but the use of object-oriented design is decidely more effective in
creating modular well-designed systems.

Finally, on a more minor scale problem, finding a textbook which
introduces the richness of Ada's user-defined types and subtypes and then
continues to use these types in examples throughout the book is difficult.
A number of books exist which introduce these types early and espouse the

i..7

virtues of utilizing them to create good abstraction and model reality.
Almost all of these books Immediately revert to the use of standard
predefined types in all subsequent examples. Another case of the authors'
conversionism showing through?!

Modularity and the Demand for a Decent Environment

Another pedagogical point deserving careful attention when
introducing Ada also stems from the significant emphasis on modularity
facilitated by Ada (and good software engineering practices.) Students
must be Introduced to the concept of a library and to the concept of
compilation dependencies. Often, depending upon their background,
students must also be Introduced to the idea that compilation, linkage,
and execution are distinct processes. Many students coming from BASIC
and/or Pascal backgrounds are oblivious to this Idea; they are familiar
only with choosing the RUN option and having compilation, linkage, and
execution all occur Instantly. This classic use of "Information hiding" by
many environments interferes with a student's comprehension of
compilation dependencies unless the information hiding is dispelled.

There are a number of points worth making about introducing
students to the concept of libraries and compilation dependencies. The
first is that an easily navigable library manager and a good environment
which displays compilation dependencies can be very helpful to students
learning this construct; the environment may even provide an automatic
recompilation facility which takes these dependencies into account. The
second is that the environment should provide an editor with a multiple
windowing capability to facilitate modular program development. The
student should be able to easily call up and view other program units
while concurrently developing a dependent unit. Having to endlessly flip
flop back and forth between files in the editor is tremendously
frustrating to beginning students and introduces a hostility which is
misdirected at the language itself. From a pedagogical view these two
points are important. From a pragmatic view they are not so easily
realized. Validated compilers are now plentiful and a number of
affordable student versions exist for microcomputers as well. Well
developed environments which encapsulate a "student-friendly,

154

student-fast" editor and compiler are much sparser and, those that do
exist, are not yet "student-affordable." This situation is changing
daily, however, and should be constantly reevaluated in deciding to shift
to Ada as a primary language.

What is needed is an environment which Is integrated. It should be
possible for the student to create a module in the editor, send It to the
compiler, and, upon an unsuccessful compilation, be placed immediately
back in the editor positioned at the point of the error. Similarly, upon
successful compilation, the student should be able to link and execute the
module all within some enclosing framework. In addition, this framework
should be able to construct, from source code, the compilation
dependencies. The student should be able to play "what if" games in seeing
the effects of re-compilation on the rest of the modules In the set needed
for program execution. An automatic recompilation capability should also
be included. All of these features, and more, are currently available on
most mainframe Implementations of Ada. To date, some microcomputer
implementations of Ada have started to make some, even most, of these
capabilities available with their compilation systems. Instructors should
seek out these implementations and give them preference in the selection
of a compiler for the student use.

The Wisdom in Avoiding Use o? "Use" Clauses

A final pedagogical point also needs to be made on the introduction of
students to massively modular Ada programs beyond the demands
introduced for a decent environment. This pedagogical consideration is
the timing involved in introducing students to the use of the "use" clause.
Introducing students early-on to the use of the "use" clause can be as
crippling a mistake as choosing a poor environment. Requiring students to
use expanded dot notation in Identifying the source package of each
resource used In a program Is highly recommended for at least the first
half of a CSI course. Students are unfamiliar with the massive modularity
introduced in Ada programs. The ambiguity added by allowing them to
utilize the "use" clause early-on In their experience with Ada compounds
their problems in clarifying the interdependencies of units. When

155

compilation errors occur It compounds their difficulties in identifying

where to look to resolve these errors.

Generics and I/0

Moving from the focus on modularity, there is another pedagogical
consideration which must be addressed early in teaching Ada. That is the
Issue of teaching students how to do I/0 in Ada.

There are a number of schools of thought on the most effective (and
least painful) way of introducing students to how to do I/0 in Ada. One
school supports the creation of a Basic-lO package by the instructor which
is then provided to the students at the beginning of the course. In
Basic-lO are all the instantiations necessary to provide Get's and Put's for
all predefined data types. The students then simply "with" this package
and "automagically" have the ability to do I/0. A second school supports
simply mechanically instructing students on how to write the statements
necessary to instantiate and"use" an I/0 package. In this method, total
information hiding is employed as to what generics is and what
instantiation does.

Having been badly burned as a follower of the first school of thought,
one of these authors Is heartily against providing students with a Basic-lO
package. Such a package loses its utility very quickly in the curriculum,
as soon as user-defined types are introduced. (And these should be
introduced, for purposes of good abstraction, VERY early.) Further, giving
students a Basic-lO package is providing a crutch which Is almost
impossible to wrest away later in the curriculum. Experience has shown
this author that the second school, modified with a minimal and concrete
analogy of what generics Is and what instantlation does, Is Infinitely
preferrable in teaching students how to do I/0 in Ada.

Economic and Inertial Forces In Teaching Ada

Two final points merit mention in deciding whether to select Ada as
primary language of Illustration and Implementation in an undergraduate

computer science curriculum. Both are pragmatic considerations. One Is a
very transitory consideration which must be constantly re-evaluated. The
other is a very weighty consideration rooted in the nature of human beings.

The economic demands placed on students in deciding to transition a
curriculum to Ada should not be ignored. Ada compilers for
microcomputers currently require a hard disk and 640K to function
effectively. (Some will indeed function without a hard disk but the disk
swapping involved to accomodate this is unacceptable.) Hard disks and
additional memory are non-trivial investments for students. Unless
sufficient capacity and easy access exists to support students In the use
of a mainframe, these costs must be considered. These costs, however,
are constantly decreasing and should be continuously re-evaluated.

The institutional inertia exhibited by many faculty members in
changing the status-quo must also be considered in determining whether
to transition a curriculum to Ada. This resistance to change and learning
something new is very reall It has roots in the time vested by established
instructors in existing lesson plans and courseware. It is a major
impediment to overcome! It must be carefully considered in determining
whether a successful transition to Ada can be made and/or will be
accepted by a computer science faculty.

Conclusions

A myriad of factors, both pedagogical and pragmatic, must be
considered in transitioning an undergraduate computer science curriculum
to Ada as the language of Illustration and implementation. There are many
positives to be gained on the side of student learning. Students learn the
benefits of packaging in creating systems which embody layers of
abstraction and exhibit modularity which makes them very modifiable and
maintainable. They learn the benefits of user-defined types and subtypes
in modeling reality and creating systems which are therefore more
understandable. They learn the benefits of exception handlers In creating
fault-tolerant systems. They learn to function in an environment of
programming-in-the-large, one such as they will undoubtedly encounter
upon graduation into the "real" world of software development. These

157

benefits, in these authors' opinions far outweigh any negatives introduced
on the pragmatic side.

Further, it Is these authors' opinion that adequate awareness and
preparation on the part of most computer science instructors can
successfully avoid most, if not all, of the impediments recounted In this
paper. The moral of this paper might Indeed be summed up In the phrase:
"Learning Ada is easy; teaching Ada effectively is very demanding."

153

References

[PPE87] Pressman, Roger S., Software E17gneering: A Practitioners
Approach, 2ed., McGraw-Hill, 1987.

Incorporating Ada Into a Traditional
Software Engineering Course

Albert L. Crawford
Department of Computer Science,

Southern Illinois University, Carbondale, Illinois 62901

The Course

Student background

The students in CS435, Software Design and Implementation, at SIU are seniors or

first year graduate students. They all know Pascal and several other languages. Among

the most common languages that the students know are FORTRAN, COBOL, C, LISP,

and Modula-2. The students have a good grasp of basic programming techniques for

programming "in the small." They have been well versed in structured programming, top-

down design, basic file handling and documentation of program code.

Many of the students have had some work experience involving program

development through summer jobs or part-time jobs. Most of these jobs, however, were

for small organizations whose programming needs were very limited. These jobs

frequently involve programming of microcomputers using Lotus 1-2-3, Dbase III, or other

similar software tools. In no case does the job experience of the student involve the

development of large software systems.

The largest project that any student has worked with is usually under 5,000 source

lines of code. Students have had little or no experience working within a programming

team. The concept of 20 or more people working on the development of a software system

for a few years is beyond what most of the students have ever considered.

Course objectives and structure

It is the primary purpose of this course to present to the students some of the

concepts involved in the development of large software systems. The students develop of a

software system of about 10.000 source lines of code to achieve this goal. Each phase of

the software lifecvcle through implementation is emphasized. The lectures include the

testing and maintenance phases, however these phases are not stressed within the project

itself.

The first phase is to development a program definition. A group of selected students

write the program definition that the class uses during the semester. If enough graduate

students are available. they form this definition team. Otherwise, the definition team

consists of a group of undergraduates who have previously demonstrated superior skills.

This definition team works with the instructor to develop a program definition suitable for

the class. The rest of the students in class individually write a program definition of their

own

In the second phase, each member of the definition team chairs a system analysis

team. A random selection determines the membership of each analysis team. Each team

performs the design and analysis of the problem assigned using the program definition

developed during phase I. Each team performs the systems analysis using the object-

oriented design paradigm . It is a requirement that the analysis teams define a system in

such a way that independent implementation of each module according to specification

guarantees that the integrated system would execute without error. The best of these

system designs is chosen for use in phase III.

In the third phase, the winning system design team forms the management group for

the implementation of their system. Added to this management team are two or three

other class members. The rest of the class are then put onto implementation teams that

implement individual modules of the system. Each team completes their implementations.

The entire project is integrated and executed.

It is an objective of the course to study a single paradigm for the development of a

large software system. The sttidents have the experience of developing a system as a group

162

instead of as individuals. hle management skills and the coinnunications skills required

for such group interaction are the most important concepts presented in this course.

Language Requirements

Necessary language features

The language used in a software engineering projects course should have several

rather obvious qualities. The first, and most important, of these is the support that the

language gives for modular programming. The language should explicitly support modular

design. These modules should be separately compiled. The interfaces between the

modules should be well defined and enforced by the language.

The second, and related, feature that is necessary for the course language is the

support for information hiding and data abstraction. The use of object oriented

programming requires the softmare engineer to define data abstractions on the objects of

the problem.

These first two features are necessary to support the independent implementation of

the modules. The conipletion of a relatively large software project to execution within a

single semester requires the language to help the students with the modules independence.

Otherwise the integration ol lhe projec' wotld become impossible.

If the language is not a prerequisite for the course its presentation within the course

must occur without interfering with the objectives of the course. The language should be

similar to the languages already known by the students. Its teaching must compliment the

primary course objectives. Students must feel that the language is a tool for the course but

not an objective of the course.

Current possible languages

There are several languages that are satisfactory for the teaching of software

engineering. Indeed. almost any language cold be used with success if the instructor

u763

wished. This author feels there are four languages now available that meet the course

requirements. These are Modula-2, Turbo Pascal (versions 4 and above), C+ +, and Ada.

Modula-2 is an excellent language for software engineering. It supports well defined

modules and provides for data abstraction through its opaque types. In addition there are

several low-priced Modula-2 compilers no%% a~ailable. There is also a large amount of

instructional material available for Modula-2. Since Modula-2 is very similar to Pascal.

the students learn it very quickly.

The latest versions of Turbo Pascal support a programming unit similar to an Ada

package. This provides an e\cellent interface bet%%een modules. Turbo Pascal provides an

excellent programming en ironment that is erx User friendly. Turbo Pascal also provides

graphics commands that allo. tile studentsto jazz up' their programs. Since the students

already know Pascal. and man\ of them kno%% Turbo Pascal. teaching is no problem.

C-,- uses classes for its modular de\elopment. These classes provide features such

as inheritance that in some \%a\s is superior to the other languages. However, only a

limited amount of literature e\ists for C - Furthermore. manx of the students do no-

know the language C -o the teaching ofC- \\ould be more difficult than the languages

in the Pascal family.

Ada has come into its o\\n in the past t\\o \ears. There are now available low-cost

Ada compilers. The primar\ dra\\back of Ada is the lack of material designed for the

university classroom.

Other languages are feaible for a >oftt\are engineering course. Ho\kever. the other

languages lack some of The mot desired features. FORTRAN and COBOL have separate

compilation but tile intertaces are mdetined \\ithiin the language. The separate

compilation units in C .ire idequate. but the compilers w ill not enforce the proper use of

Tle interfaces. Standard Pacil does ioti suipport -eparte compilation.

Reasons for choosing Ada

Ada has several features that make it superior to the other languages for a software

engineering class. The exception handling features of Ada are easy for the students to

learn and to use. This allows them to insert error detection routines within their code

without undue difficulty. This helps the students to develop modules that are reasonably

reliable.

The private types of Ada are superior to the opaque types of Modula-2. This

provides a much better tool for the introduction of data abstractions within the project.

The use of Ada and the classroom presentations act together to reenforce the important

software design concepts.

As a side benefit, the ise of Ada increases the students' marketability when he/she

graduates. Several students iave reported that they were offered jobs because of their

knowledge of Ada. While pedagogic considerations should be the primary reasons for the

design of a university lee c Course, it is alwavs good if the pedagogic and economic goals

produce the same result.

Ada Within the Classroom

Introduction to Ada

The introduction of \da to the students occurs in two stages. The first stage is the

presentation of a Pascal-like subset of Ada. This usually takes about two class periods. A

very quick coverage of the sntax of Ada is the focal point of the lectures. In addition, the

students learn the concept of a package from the client viewpoint. How to read a package

specification, the WITH statement, the USE statement and the instantiation of a generic

package are topics covered in this first stage. The package TEXT_10 is presented. The

students write a simple program to become familiar with Ada and the Ada compiler (we

now use the Janus Ada compiler.) This program uses the basic Ada statements as well as

text file operations.

The second stage of classroom presentation occurs about three weeks after the first.

The focus of this stage are the concepts of package development and exceptions. This

requires only one class for Ada itself. However, the discussion of packages and exceptions

occurs along with a discussion of data abstraction and information hiding. The total

discussion usually requires about three class meetings. The students implement a simple

data abstraction package, which includes package defined exceptions. This usually

involves a stack or a queue package for which the students are given the package

specification. The students write their own driver for the package for purposes of testing

the package. The class teaching assistant also writes a driver for the package, which the

students will not see until after the lab is due. The TA grades the lab by running both the

student's driver and his own driver linked with the students implementation of the

package.

The students will not be exposed to either tasking or generic packages within the

class itself.

The use of Ada on the project

Phase I of the project, the problem definition, is programming language

independent. The students do not depend on the style or constructs of any language to

form the definition.

After the completion of the class project definition the instructor randomly divides

the students into groups with about 5 members each. Each group does an initial system

analysis using the object oriented design paradigm. The analysis team selects the objects

of the project definition. Tile teams construct an Ada package specification for each

object and its operations. Those objects for which multiple occurrences exist in the

problem are implemented as abstract data types.

Each group is to complete a compilable set of package specifications along with a

compilable main program. All entries in the specifications are defined by documentation

so if they are implemented as defined the program system is guaranteed to execute

166

properly. In addition each team prepares bubble diagrams of the system. To assure

themselves of the correctness of the specifications the students perform structured walk

throughs of the system.

The group leader maintains a log of each meeting of the group. The instructor uses

peer evaluations, the quality of the finished system design and the log for determining each

individual students grade for the system analysis.

After the winning design has been chosen the students are then reorganized into
groups. This time the entire class works on implementing the winning design. The leader

of the winning design team is the overall project manager. The instructor and the project

manager select an assistant manager from among other design team leaders. These two

then oversee the individual groups during the implementation of the modules. They keep

logs of their meetings as %elI as a paper trail of all specification changes that were

necessary during implementation.

As the student version of 1,1us .\da \ ill ot all the linking of the entire project, we

port the system to the Sequent Balance in the departinent. This machine uses the Verdix

Ada compiler. Since the Sudent version of .Janus Ada supports only standard Ada

packages, the porting takes place \\itli absolutely no problems. Integration is usually

reasonable quick. It normally takes three tour hour sessions with the team leaders to

accomplish the integration of the system. The first session finds the major problems of the

system. The second session uncovers a le\\ minor bugs. The last session results in an

executable prototype of the project goal.

The Presentation of Tasking and Generic Packages

The formal presentation

The Ada concepts of generic units and of tasks are n)t presented in the classroom.

These concepts are not needed for the student project and to spend class time on the

concepts would intrude into the basic goals of the course. However, the students should

~~~I - 7 P'



have the opportunity to learn these concepts. It is important that they are encouraged to

develop a more complete understanding of Ada. Therefore, optional seminars on each

subject present to the students the concepts of generics and tasking.

The first seminar is on tasking. This session includes the standard tasking concepts

of tasks, task types, and rendezvous. Also presented are the rules of task declarations, task

parents and task termination. The students get a simple lab requiring the declarations of

several tasks. This lab mlav be done by the students for extra credit in the software

engineering course.

The second seminar, on generics, covers the basic concepts of generics with the

emphasis on generic packages. The seminar covers generic formal parameters detail. The

students already know how to instantiate the generic packages such as INTEGER_[0 and

FLOAT_10. The second seminar presents a more comprehensive coverage of this

concept. Again. a simple lab is assigned \% hich may be done for extra credit.

The student response

About 70% to 80% of the students attend the seminars. Most are very eager to learn

about tasking. Since the concept of generic programming comes up in other courses, most

are willing to attend the seminar on generics.

However, very few students actually do the extra credit labs. Only about 3 or 4 do

one of the labs each semester. I have vet to ha\e a student do both of the extra credit labs.

The primary reason for this is probabl\ that the extra credit labs are assigned toward the

end of the semester. At this time the project is well under way. The semester project

requires a a large amount of each student's time.

Conclusions

One of the biggest problems with the course is the lack of a textbook that fully

supplements the course. Ada books seldom contain the software concepts necessary. On

the other hand, software engineering textbooks contain too much theory for this course.



Even the popular textbook "Software Engineering with Ada," by Grady Booch, has its

shortcomings.

The suitability of the Ada programming language to software engineering is obvious.

However, it is difficult to include Ada into a course without interfering with the primary

purposes of the course. Many of the complexities of the language must be omitted. The

complex typing system is presented in a simplified manner. As previously discussed,

generics and tasking are not used within the class. Ada proponents not withstanding, Ada

is a more complex language than are most languages.

Even by presenting Ada in an incomplete form, however, the flavor of Ada still

comes strongly through. If the instructor is careful, Ada can be used by the students

without undue interference with the primary purposes of the course. The full benefit of

Ada can be realized along with the objectives of this project oriented course. Ada is

indeed the language of choice for software engineering.

. . . . __ _ l_ l~i i l i i l l I H i Um ! l(>i



Wall and Koedel

MOTIVATION AND RETENTION ISSUES IN TEACHING ADA
or

How Will Students Learn Software Engineering When
Their Only Goal is Ada on their Resume?

ABSTRACT:
Every teacher must consider motivation and retention issues
whatever the subject. This is especially true in teaching Ada
because until now most Ada students have been programmers
trained in other languages(FORTRAN, COBOL, Assembler) who have
experienced success using ad hoc design methods. Teachers must
therefore consider not only how to present new material but
also how to overcome old habits. This paper will discuss how we
addressed these issues at Atlantic Community College.

BACKGROUND:
Atlantic Community College is located in Mays Landing, New
Jersey, near the FAA Experimental Center. In response to
community demand we decided to explore teaching Ada as a credit
course in the CIS curriculum. We immersed ourselves in Ada
material before attending the "Software Engineering in Ada"
workshop at the Air Force Academy in July of 1988.

After the workshop, when we discussed the idea of implementing
a course in Ada, we realized that motivation and retention
issues must be addressed in the planning stage. Most of our
students are programmers who wish to upgrade their skills ("I
want Ada on my resume " was a typical response when we asked
the reason for taking the course). These students worked all
day and then would come to class for three hours. We planned
from the beginning how to motivate these students and retain
them throughout the course while still insisting on valid Ada
training.

Our initial course in Fall of 1988 had full enrollment of
thirty students, twenty-seven of whom successfully completed
the course. Ten of the students wished to immediately continue
with Advanced Ada and so in Spring of 1989 we had another full
section of Ada 1 (in fact we had an overload) and a section of
Ada 2.

We have learned from these experiences what works and what
does not.

CURRICULUM DESIGN:
We began by asking ourselves questions. We would like to
explore in this presentation our answers. The following is a
brief outline of our questions and responses.

r~~~~ ~~~~~~~~~ 7 '. a~amlm a~nmi



Wall and Koedel

1. What teaching style should we use?
ISSUE: We believed in teaching Ada using the concepts of
software engineering. What teaching style would allow us to
deal with theoretical considerations without putting our
students to sleep?

RESPONSES: We decided that a team teaching style was most
appropriate. We had experienced team teaching as students
during the Air Force class and during an ASEET workshops and we
felt that the interaction between teachers was one means of
keeping student interest.

2. How should the course be structured?
ISSUE: How could we give students frequent feedback and secure
feedback for ourselves?

RESPONSES: We give detailed handouts with behavioral objectives
so students know exactly what is demanded of them. We also give

* weekly quizzes, each of which contains a programming part and a
theory part.

3. How could we get students to do valid programs?
ISSUE: Most of our students programmed ail day long. They were
resistant to doing more for school, yet we knew from our own
experience that unless they wrote programs they would not learn
Ada.

RESPONSES: We had most success in incorporating
simulations into our assignments. We had students translate
Morse Code and play hands of bridge in Ada. These were not the
type of programs they did at work -- they were "fun". We copy
the best programs and distribute them to the class for
discussion.

4. How can we stress software engineering concepts?
ISSUE: We want students to use the tools in Ada that support
software engineering, not just "Code a FORTRAN program in
Ada".

RESPONSES: Use the weekly quizzes to test concepts, and
use the program assignments to test application. During the
Fall of 1988 we gave five separate programming assignments,
but during the Spring of 1989 we give five related
assignments in which each part builds on the previous part.
We also purchased the Ada repository and make use of the
libraries.

5. How can the teachers serve as role models?
ISSUE: We do not want to preach what we don't practice.
RESPONSES: We do every assignment we expect from students. We
have also set ourselves the task of working on a large
assignment cooperatively to expand our software engineering
skills.



ATLANTIC COMMUNITY COLLEGE
Course and Faculty Evaluation

WRITTEN SEGMENT

All written answers will be typewritten before being
reviewed by the instructor at the end of the semester.

1. List the things you like most about this course.
Appropriate subject matter to job.
Good student participation.
Overhead audio visual use.
Availability of compiler (to purchase reasonably).
Instructors - prepared, good directions.
Weekly quizzes.
Multitude of examples.
Assigned programs.
Handouts.
Two instructors - good idea.

2. List the things you like least about this course.
Text - errors.
Only one computer available in lab.
Opportunity to correct and resubmit tests.

\Alice\fultime.evl



.. . . .~jt I.Ifirtrt .rn ..U .i~ .... , a

y~ 4

.!. . .. ..

. a.... . lh ll r1~

.E i; ........... iE v ]* i i

71



Study Guide for Chapter 5

After you have finished this chapter, you should be able to
answer the following questions:

1. What is data abstraction? What is the advantage of using
an abstraction?

2. Scalar types describe objects which can be expressed by
a single value. What are two scalar types in Ada?

3. How are composite types different from scalar types?

4. When a type is declared, no object is created until the
object is declared and given a name, What does this mean?

5. INTEGER is a predefined type in package STANDARD. This
covers a lot of whole numbers from -32768 to +32767.
How can you limit the range of an object type INTEGER?

6. What is explicit type conversion? Why would you need to

do this?

7. What are the two categories of real types in Ada?

8. Why should a programmer declare a specific floating
point type?

9. What are the attributes of floating point types?

10. ENUMERATION types are wonderful -- unique to Ada in the
many ways they can be used. What can be used as values
of ENUMERATION type?

11. What are the attributes of ENUMERATION types?

12. Special Input/Output templates may be used to create
new I/O packages for special types you can create. Pay
special attention to procedure COMPUTEDAYNUMBER, page 181,
to see how these work.

13. What is a subtype? Is it a new type? How are they useful?

14. An array is a composite type. What is meant by
constrained array types?

15. Procedure INVESTIGATEMEASUREMENTS, page 189, shows how
to load an array, do calculations with the components
and display particular components of the array. Be sure
you can trace each statement of this procedure.

16. What is an array aggregate? How do you initialize array
variables? When are they declared? Procedure LCLETTER,
page 196, is a good example of this.:7



Programming in Ada

Quiz #1

1. What makes the Ada programming language different from
other high level languages?

2. Write a procedure that will display the following on the
screen.

I'm sick and tired of this machine;
I wish I could sell it.
It never does what I want,
But only what I tell it.

Quiz #7

1. What is an unconstrained array? Give an example. Why are
unconstrained arrays an asset in data abstraction?

2. Write a procedure to set up an array with an index of
colors: RED, GREEN, BLUE, YELLOW, ORANGE, and PURPLE.
Step through the array and assign an appropriate flower
to each color component.

1TC



PSE OF P'D,RA' -4ND FOJECT' TO EI4HDNCE

SOPT, sPE ENGINEERING ING C 'OUPSE

Dr. Robert C. Mers
,ep.rtmenr of Ma thematics and CoDimputer Sclience
Nort. C r.1 irn r .a T, State Unj,.k)ersi ty

Greensboro, NC 27411

. INTRODUCTION:

The author h as tauont a .ottware Engireer 'no Ada. anquaae course at
North Carol na k. & T. State Un ,',ers' t- e-erv semester since 1985.
Luring thi- time the course has evolved friom an Frooirammino in Ada

.ourse -oi th a complete Pascal proorammino course as a prereaui si t to an
upper di - iust on underor aduate Software Engineeri no Us i no Ada course wi th

,otn H-.Scal and ,a.tak Structures courses as prerequisites. The

,ruironriment has moroved iramatical 1 y rom seueral vers. ions of the New
fork 'niversit- tda Ed Compiler to the current procuct ion level D'gitel
*''x Hd Compi Ien. Se,,er.l prooratms ar,d team prlect emodvino major

-ott 'are en,:ineeron 9 rainciples are required in this upgoraded course.
he p r 'marv purpo=es ct th, = ipper are 1 to demorstrate hcgj the

pr-nrammino .4.sqnments but ld upon each other and are used to teach

sottware en,-ineerinq a.nd r,,da Lanouo..e features .nd i2) to llustrate
Ucessuli- completed project- An their use of soft.,are endineertno

Dr n,: , I es , In ado i t i on , i ssues such as the use of+ tex tboov and
resour-es. =vi atb , and the en, i ronmen t are discussed.

* I . 'IC"TExT . ElK I F:0lI'IENT, * [C' .ES ..0P CES

Sl omt{are Ennreer'n Li51no c;a course 's prirrar i v t.ven by

e ior ::muter soece anors i- s a -:mputer science elective. Most ot
;he =tudents :r.fcuate and are emoloyed in government and industrv within

; ear :,t tv in the ::,ur se, ni -orie are doino Ada I ancuage work for
emplolers such .s Hone-,el I, DoD, and IBM. Therefore, emphasis is Qven
.o prepar inQ these stucent +or the employment env ironment. The

:nstrc tor aissumes h.at these studients have the matur it . to alapt to a
new i anouaoe anc de,,elop r-nitrl ial proor arts.

e enironment is the production level Digi tal .' ,A 4da System.

Beca.u he, the need ,cover the major features of Ada and software

eniPlneer no n one seme=ter , such features as run time libraries,
I br..r,,ar , mancement, lhe Li.uanoo :rsi t,ie Edi tor, and the debugger are

nct emonasized. Ho.eer, students are encoursoed to explore and use

these teature
= 

:n their team pro.jects if they" so desire.

The author 4eel.s that a teatboo loe= not exiSt that adeQuatel,

c.-,r=-: both soetware engineer inc teatures and Ada Lannguage features, and
that Poth an HOC s.nt..x teaot and a software encineer ing teyt are needed.
But a .t a . minor, t ch'o l such 3s !lortn Car, I in A. & T, ,t , -ener.ll'

true itat students cannot afford more than one te, tbook per course.
Theresor. e, oni one te,t per course is required. For seeral years the

ext , Introdutn to Hda by .I. I, ,un I) ,.= used, and the author



still feels that this is the best Ada text from the viewpoint of
completeness, readability, and quality of applications.

However, the issue remains as to whether it is better to have a
complete Ada Language text and supplement it with lecture notes on
software engineering, or to have a complete software engineering text
and supplement it with notes on syntax? Since standards and software
engineering principles are so strongly emphasized in the work
environment, and syntax is so much easier to absorb than software
engi netr ing ideas, the author strongly supports the second alternative
and has recently adopted the text Software Engineering with Ada by
Grady Booch [I]. Despite its diffculty for first time Ada students,
those completing the course have reaj.ted favorably to this text once
the l ot comfortable with Ada syntax. In 4all 1988 the Watt text [6)
was used. The author felt that it was well written from the viewpoint
of design and methodology but did not explicitly emphasize software
engineering. The students overwhelmingly disliked this text,

In addition, students are encouraged to use the Ada Language
Reference Manual [5) and are given the opportunity to purchase or
Oorrow copies.

ill. USE OF PROGRAMMING ASSIGNMENTS:

Use of programming assignments is the key methodology used to teach
software engineering principles and Ada Language features in depth.
Even at a senior level, students need this hands-on experience.
However, the students are at the level of maturity that a few (3 or 4)
non-trivial programs with multiple objectives is preferable to many
short more shallow programs. Even so, the programs are dependent on
cac other, and reusability, abstraction, and modular design are
emphasized to more easily modify and upgrade code.

Objectives of the first program assignment are familiarity with (1)
the major features of TEXT_10. including necessary instantiations; (2)
subprograms in top down design; (3) the major control structures of the
language: and i4) the scalar types of the language. Use of instructor's
nackages, requirement of student designed packages, and no package
requirement have all been tried for program 1. The best students have
no trouble designing their own packages, but the slower ones have
trouble, In any case, user-defined packages are required in the second
programming assignment.

The second programming assignment builds on the first, but also

requires use of arrays created at run time and simple records. An
external sort procedure using array attributes is needed to sort an
array of records on a field such as name or income. Students must work
with a minimum of four compilation units (a package specification,
peckage nody, main procedure, and sort).

Effective use of generics and exception handling are objectives of
the third programming exercise. Here user interface and interactive 10
are emphasized, for this will be needed in the team project. From

L?



Zr, tuf riT rj.,n Sm ne nn r 'c 7i h r :oF.l Ia ine tt'e
or~1'~ iae ro-mots xnd exr c.ri handi~lera to anttcot erro,-r ti

,- n clut 7 Fj;.r ts a.re on c en o, tD mroc he re s: n otpoo-m2
- E~O~r 71c.,nu art an otF -ct ion, ru : mnre r t he number c:-

7m'o eat t unts. r rpr i

e or a re I pie LeY 1 e GOr adus te ;o-r dniderunad , HoursPassed,
hor h-,ar tml d'-~ort reomn 1r ooor am 1,the s tudent

c Dmi-ir ed re 3OF' C I Pa F SO . JF, SF> artd P roi-batto n S,"t atus --- oolcan
-~~~~ h1 i c, I The- e 5t 2'IE z d Ft n atbu 1 *a r + or m r,

r' rr 'ie at tr -ted a- anlr unon s tr Aflned a 3rr . e rc ord a Sn d
--r I amii u i r, - er arc emern t a mner, t on n, a ,; 7Dove . he ort

S3- ' r :..Mn The orontra;mmer Drowses-- menu nir ''en ooti n
r t enac, I e the user to c o c. c e acr t c I d. Als'ot o r or- a;mm er

-; Dn i~L ,>D f nrdmers or e r-nec;us rou it o: -a t a so tt ecui on

7-.hE -EH4 PROJEiCT

c, ou t one nro rth t, te the trm r en d the l ud en t a- re4 n '4cr Vi i
or cu + :' toor three a tam c)r o jc,-t .The nrt' nt ha

a.: St to , cQaot as aL orooCr am as a ," i r enen t . Thje ,r o.i cc tr nuct il-,l -Ao
- cseuse. :4 sot-tlma,3re enor neer 'no or ncrole suic h a s j- t a

r, t r act on and n +cra oir r, d inf-c, modulai r i anrd -e oar at e cc'm p i I a ion,
nlt"eEant: ccti :n h an:' no. Th e oroject must -he tIemoinstrated

er ~ ~ ~ ~ ~ ~ ~ ~~~- -c -etr; -- r Z e n,~e cm tc ie u er -4 r i en I
-, Dui - n too, :s su bje ct to :, n instructor a

~C i 15 ~:n r =n s-at ree toes sr j, *h:nc:' raoet

~r "e oro ~ ,--e ac, aesre not emo F n7h1rora

* -5 rnne *n~j a5 -
''ar e4 tr rr " re z-rr emratonc;, abtrc dat n r m

:IjO as r, ore 'Z~S rcs n ot? o clrv mhnls

-~~~~~ ~~ ro noou c, ar tet maex Iooci no an : ume n a n maaes

-~~ D tt 7 o :t ec t ~ hp3 5at a r ii c: u e the - 1 --w t ,

1 a ,- 1r 4 r ior a Sm;?; Rum tun Icino, arc oeraton

-rr:0 Ers - r c-corda wit a t attr iute an Dcr t in:

- ti te T 'n z - the tpo cD L) the mnost ou ta=t a nd i r, no, orct
ir;o ae ant ' rj t 'as r ceented as aatude-n t oer athe

.e tuen m boi'ec (2].

75e :r :, c ucme e, 7cord teet' :tarect ant

* -r"r +c 'qu re ac'ertecra a+ uotated
p oc rZ'~i~r T Th :4.m1 :r* iet oro f



that Prompts the user to input a parenthesized expression. Messages are
given ridlicating invalid expressions, and valid ones are computed.

4) Triangle Solver. This progiram uses a Math Library and solves
all Possible triangles, finding the 3unknown quantities wheni user
inputs 3 :f the .o possible values for sides and angiles. Exceptions are
raised +or unsolvable triangles, and multiple solutions are handled.

(5) Generic Numerical Analysis Packagie. This project uses such
methods as Bisection, Newton's Method, and Linear Interpolation to find
roots of iunctions and handles exceptions for no root in an interval and
the alo:.ori thin failing to converge to a root.

iONC:LLUSI1 ON :

The author continues to upgrade and improve this course. This
Paper is in a sense a continuation of curriculum design in Ada and
cofttware Engineering Education described in [3) and 141. Future
endeavors will include strongier emphasis on object-oriented design and
Parallel Processing. High qualitv support courseware, especially
economical nands-on Ada syntax instruction, would greatly enhance
nstruction. as would reusabile components such as those by Booch. These

would -he ontained when the University's resources permit it. Poss ibly
an adnuanced course emphasizingi Direct and Sequential 10, in depth
oarallel processinci, machine dependent features, application of reusable
components and libraries, and various design methodologies, having the
current --curse as a prerequisite, will be developed.

REFEREN'CES:

1,r rAdjy Boocr,. So - ware Encli neer ino w ith Ada , 2nd edition, Benjamin
'.ummingis. 1P86.

%J7 Tony Brcx enbor ough and M ike ElI I is, Use of Sofware Eng ineer ing
Principles in a File Management System for a Furniture Company",
P-oceedings of the 3rd Annual North Carolina A. Ac T. ACM Conference
1989.

C 3 1 oie rt 1-. ler s, Exper ience s of PascalI Tra3Lined ':-tuden ts. i n an
Introo.:uctory Ada Course", Proceedings of the 4th 4nnual Conference on
Hda; Technlog , 19,

(4] Robert C. Mers, "Teaching Software Engineering Principles in a ;:irst
.4ca Fourse". Proceedin.as of the 2nd Annual ASEET Symposium , 1987.

[F) ie~arence Manual 4or the Ada Programming Lanquacie , Department of
Detense, 1983.

L,-, David W~att, Bri an Wichmann, -nrd il li am Find a-y, Ada Lanclauacie and
lle~hodolocl , Prentice Hall International, 1987.

SJ. foung, AnIritroducioni to Ada , 2nd Edition, John ile,1984.



Software Design with Ada

A Vehicle for Ada Instruction

Orville E. Wheeler
Herff College of Engineering
Memphis State University

The Ada programming language is being introduced in the Electrical
Engineering Department at Memphis State University through a course
incorporating both the language and some generic design concepts. The intent
of combining the two is to provide motivation for mastering the details of the
language within a context that illustrates practical applications rather than
a typical textbook setting of elementary programming tasks. This paper
examines the setting for the course offering in terms of student profile,
available equipment, available software, available text resources, and goals.
It presents the choices made among the resources and the rationale for them.

The Environment

Memphis State UniverzLty is a comprehensive university in an urban
setting. It is Tennessee's second largest university and enrolls over 20,000
students each term, with about 15,000 FTE. It is located in the largest city
and metropolitan area of the region which is a center of agri-business and
transportation. The University is the descendant of the West Tennessee Normal
School (founded in 1912) and for the first half of its life (until about 1950)
focused on producing teachers for the public schools of West Tennessee. It
was designated a university in 1957 and has been broadening its scope since
then. The Herff College of Engineering is a relatively new (25 years)
engineering program that in 1987 added the Ph.D. degree to its offerings.
Even though there is not an abundance of high technology industry in the
immediate area to provide high visibility for engineering as a career, the
population concentration results in a stable and moderate enrollment of about
1800 students, or roughly 1100 FTE. The College offers baccalaureate,
master's, and doctoral programs in Civil, Electrical, and Mechanical Engineer-
ing along with a baccalaureate program in Engineering Technology, a master's
program in Industrial and Systems Engineering, and a master's and doctoral
program in Biomedical Engineering. As with most engineering institutions, the
EE's have the largest enrollments. The circumstances and characteristics of
the institution are readily recognizable.

While there has been a modest level of research and interaction with
various research funding agencies for over a decade, intense interaction,
particularly with the Department of Defense and some of its primary con-
tractors, began only about five years ago through the efforts of three members
of the Electrical Eng:-eering Department. Those efforts have raised the level
of awareness in the Coi~ege of the need to provide our students with the
opportunity to become acquainted with Ada, and, along with a growing recog-
nition of the importance of Ada outside of the government procurement system,
convinced us that Ada must be included in our curriculum. The Computer
Science degree program at Memphis State is housed in the Mathematical Sciences
Department, and the only course offering in their curriculum which touches on
Ada is a comparative course contrasting Pascal, Ada, and C. It was felt that
a course in the Electrical Engineering Department, which offers a number of



other computer hardware and software courses, was an appropriate vehicle for
introduc-ing Ada into the curriculum in the College.

The target students for this course, at least initially, were electrical
engineering seniors (although other engineering majors and computer science
majors are expected to enroll in subsequent offerings). These students (the
EE's) have all had an introductory course in Pascal with some exposure to
Fortran, and they have had a matrix computer methods course that requires ex-
tensive programming in Fortran. Some have had a course utilizing Unix and C
as an elective in addition. They are not neophytes, and their level of
sophistication concerning computer hardware and software is good.

The Specification

The Accrediting Board for Engineering and Technology (ABET), the
accrediting agency for engineering programs, has a uniform requirement of one
half year of instruction in design for all engineering programs. Design is
very hard to teach, and any opportunity to include some design content in an
upper division course is usually seized. This results in courses being
credited with some portion of the total credit being allocated to the design
requirement whenever it is appropriate. Courses taught for the purpose of
introducing the student to a programming language are considered skills
courses and receive little regard from ABET, particularly at the senior level.
In formulating the first Ada course in our college, I felt it was essential to
include a design focus to make it attractive as an elective that would be
recommended by faculty advisors to our students. This, along with the Ada's
facility for large system design, made a course titled "Software Design with
Ada," a natural choice. The intent was that the course cover design proce-
dures with the student learning to work in Ada as the instrument for embodying
design decisions. The primary goal of the course is to develop the ability in
the student to successfully attack a software design task using Ada. This
requires, probably more than other languages, the ability to use a large and
diverse body of reference material.

A secondary goal of the course was to develop the capacity in the student
to work effectively in the computer environment rather than relying exclusive-
ly on paper. An unusual aspect of this course (at least for us) was that it
was conducted entirely in electronic media, including quizzes and exams.
Paper was a secondary medium and students were not allowed to submit v
material on paper.

The Tools

The resources necessary for teaching Ada, or any other computer language,
can be grouped into four categories: faculty, hardware, software, and computer
time. The last is the easiest to acquire at Memphis State: c-puter time and
access to the mainframe is provided at no cost to students enrolled in a
course in which it can be used. There are also several (three in the College)
microcomputer labs that are open to all students and many, though by no means
all, of our students own their own computers. Faculty is a little more
difficult; Ada is not widely known among tie faculty and there is little
motivation to learn and use anything but Fortran. Some of the EE faculty have
picked up C and they use Pascal for instruction, but, as in most engineering



environments, Fortran is the computer mother tongue. I was self selected to
teach the first section because I believe it is important. I have studied the
language for several years, and since I acquired a compiler a few years ago
and have been using it, I was the only faculty member in the College who had
programmed in Ada.

Hardware is not a major problem at Memphis State either. Equipment
available for this course at the time it was planned included a broad array of
processors and operating systems, ranging from Zenith 159's (IBM PC-XT
compatibles) running MS-DOS, through AT&T 3B2-400's running Unix, and a Prime
750 minicomputer running Primos, to a Univac 1100/82 running the current
version of the EXEC operating system. The hardware was not a constraining
factor. (Since the initial class started, a VAX-8820, with VMS, has come up
and is available to students.)

At the time the first section of the course was being planned and
scheduled, equipment and software vendors were surveyed to determine what was
available for instruction in Ada. Three vendors were identified for validated
Ada compilers on the micros: Meridian, Alsys, and R&R Software (Janus/Ada).
Bell Labs has a validated Ada compiler for the 3B2-400 and Prime has a
validated Ada compiler for some of its newer Series 50 products. The Univac
system was scheduled for replacement so the price of the Ada compiler for a
short time use was prohibitive. The VAX had been selected as a replacement
for the Univac and of course, DEC has a VAX Ada compiler running under VMS on
its systems. There are several of the AT&T 3B2 machines available in the
Electrical Engineering Department with several terminals attached to each, so
they were a strong candidate for selection. I pursued acquisition of the AT&T
Ada compiler, first through the local AT&T representative, then the regional
representative and finally directly with Bell Labs personnel. No one short of
the Labs could even get any information on the AT&T Ada compiler. The person
I spoke with at Bell Labs acknowledged that they had the validated compiler
but would not sell or lease it. The argument was that that one belonged to
the government and they were working on another one which they would
eventually market. It was clear that we were not going to get their compiler.

Prime has a validated compiler for its Series 50 machines but they have
not validated it on the Prime 750 since it is a discontinued machine. They
suggested that we upgrade to one of their newer machines and buy the compiler
for it. That left the Univac, which was to be replaced, the VAX, which was
not yet on the scene, and the micros. I had been using the Alsys compiler for
MS-DOS machines for some time and was familiar with it. I had used the un-
validated Janus/Ada compiler also but I had not used the Meridian compiler.
RR Software had succeeded in getting their compiler validated so I bought a
copy of their validated ED-PAK and worked with it for a while. I felt the
Janus/Ada ED-PAK was satisfactory, and the price was certainly right, so it
was selected for use on our campus. (The unrestricted site license for the
Janus/Ada ED-PAK cost approximately what one copy of the Alsys compiler costs.
One should note that the Alsys compiler came with a required add-in board with
four megabytes of additional memory.) Meridian lost out tu what we considered
to be a commodity price for the Janus/Ada system, without even a cursory
review. Thus we came to the use of the Zenith 159 computer, our lab machines,
with the Janus/Ada ED-PAK'.



Having the hardware and software selected, the next task was the selec-
tion of a textbook and related reference materials. About a dozen books were
considered as a primary text, ranging all the way from one intended to be an
introduction to programming2, to lengthy comprehensive language treatments3.
(Only those based on the 1983 ANSI/MIL Standard were seriously considered.
There are still a surprising number based on draft versions of that standard,
e.g., Habermann4). Software Engineering with Ada by Grady Booch5, was
selected on the basis of its mix of Ada instruction with object oriented
design guidelines. Of the books reviewed, this is probably not the best book
on the language, but it does fit the intent of the course well. (My personal
choice for the best book on the language is Cohen's Ada as a Second
Language3.) Additional material on the language, including the ANSI/MIL-
STD-1815A6 , is used to supplement this text, along with some of the extensive
literature on software engineering and design by people like Boehm 7, Yourdan8 ,
and Brooks9 , and more recent work like that of Pressman 0 and Somerville11.
Reference material on design in general relies on published work such as
Alexander's Notes on the Synthesis of Form 2 , the works of Archer 3 , Rittel'4 ,
and particularly Bazjanac's'5 idea of design as a learning process in Basic
Questions of Design Theory16 .

The Implementation

The course is organized to cover all of the primary features of Ada in
about three quarters of the semester with design lectures mixed in. It
happened that the course was taught for the first time with a Tuesday-
Thursday schedule with 85 minute lecture periods each day. The coverage of
the material in Booch's book, which is reasonably complete if sometimes brief,
along with several lectures on design and three quizzes, occupied 21 lecture
periods. The remaining six meetings were devoted to designing, developing,
and implementing a solution to a particular design problem as a group project,
with the teacher as a participant. It should be noted that the course intent
is software design, not software engineering. That is, system specification
on one end of the life cycle and extensive testing and maintenance on the
other end are mentioned only briefly in establishing the context in which the
software design and implementation occur. Since it is evident that one learns
a language, computer or otherwise, by using it, a heavy schedule of outside
programming assignments accompanied the reading assignments, 14 in all in
addition to the project.

The general design content of the course relied on the following defini-
tion:

"Design is the economical allocation of available resources to meet a
perceived need."

The presentation developed generic design ideas following historical
lines in this very brief form. (This material follows the paper by Bazjanac
to some extent.) Many people, including Booch, use a direct linear model for
the design process. Since this model (a linear series of steps beginning with
problem identification) has been around so long (it was implicitly in the work

of Vitruvius) it is ingrained in the literature on design. It has been the
accepted model of design until the last half of this century. Even now, some

contemporary models are based on it. This system, sequential steps in a



predetermined process, forms the basis of what are called "first generation"
design theories. The precise steps to be taken are varied from model to model
but the basic idea of a linear sequence, and since World War II, the inclusion
of operational research techniques under the title of optimization, remains
fairly static.

One modified form of it (popularized by Alexander 12) calls for two basic
steps which he labels "analysis" and "synthesis." The first is an analysis of
the problem to be solved by the design and the second, the formulation of the
solution. The key point is the separation of the understanding of the problem
from the development of the solution. First one, then the other. This
appeals very much to the systematic orderly mind of an engineer. At the time
Alexander published his book, he believed that design problems could be
defined in a hierarchical way, and that they could be broken down into simpler
subproblems for solution. This is the same presumption built into the idea of
top down structured program development which is relatively popular now in
software design. It is an independent version of the formulation made popular
by Dijkstra 7 .

Another relatively recent (1963) formulation, by Archer13 , broadened this
a little to include three phases: Analytical, consisting of observation,
measurement, and inductive reasoning (define the problem); Creative, consist-
ing of evaluation, judgment, deductive reasoning and decision-making
(synthesize the solution); and Executive, consisting of description, trans-
lation and transmission (communicate the solution). This last phase goes
beyond many author's last step by also listing communication after implementa-
tion as part of design. Archer also modified the model by noting that
feedback occurred between steps. This can be seen in software development
literature in the work of Boehm in describing the software life cycle.

Even this model with its single step feedback isn't adequate for many
design tasks and the reason is that many design problems are in a class
defined by Rittel1 4 and subsequently labeled as "wicked" by another writer.
Wicked problems have eleven properties which set them apart from well formed
design problems. Unfortunately, many, if not most, software design problems
have some or all of these properties. The eleven need not be elaborated here
but a quick summary shows the significance for software design. They are:

1. Wicked problems have no definitive formulation.
2. Every formulation of the wicked problem corresponds to the formulation of
the solution (and vice versa).
3. Wicked problems have no stopping rule.
4. Solutions to a wicked problem cannot be correct or incorrect. They can
only be "good" or "bad."
5. In solving a wicked problem there is no exhaustive list of admissible
operations. Anything is permissible in finding a solution and nothing is
mandatory.
6. For every wicked problem there is more than one solution. The selection
of an appropriate solution depends on one's point of view.
7. Every wicked problem is a symptom of another "higher level" problem.
8. No wicked problem and no solution has a definitive test. No matter how
one tests, another set of input may cause failure.
9. Each wicked problem is a one shot operation. There is no room for trial
and error, and there is no possibil'ty of experimentation.



10. Every wicked problem is unique.
11. The wicked problem solver has no right to be wrong. It must be right the
first time.

These properties invalidate the linear sequence of decision models. It
is clear that some other paradigm of design is necessary for them. (Note that
small programming tasks, such as those usually used in teaching programming
and programming languages, indeed that are looked at in any way in instruc-
tion, are nearly invariably well formed. Large problems are highly unlikely
to be though.)

Rittel proposed a model to attack wicked problems which is too lengthy to
present here but is summarized in Bazjanac's paper. Rittel's formulation is
general enough that there can be, indeed must be, feedback from all steps to
all others. The context changes the model which changes the performance, etc.
The model interacts with the context so that some features are important in
one model and not in another, etc. He describes the process as:

"...The designer is arguing toward a solution with himself and with other
parties involved in the project. He builds a case leading to a better under-
standing of what is to be accomplished."

He also says "designing means thinking before acting."

The final installment of this long passage is the idea of design as a
learning process, which was put forward by Bazjanac himself. Bazjanac says
that the crucial point is to recognize that one may determine a formulation of
the problem and work on its solution while all the time keeping in mind that
the problem formulation is not final, that it is subject to change. At any
time the designer is working on the best solution he can based on the knowl-
edge he has of the problem at that point. As the solution becomes more and
more definite, the problem statement will change to reflect the designer's
increased knowledge of the problem. As the designer learns more about the
problem, he recycles the loop of analysis and synthesis. If he really learned
something significant, the solution will change; if not, it will stay the
same. Note that this process provides an automatic stopping rule even for
wicked problems. When nothing significant changes in a cycle, it's time to
stop. Usually, however, the stopping rule turns out to be elapsed time.

This concept of design provides one explanation of why design is so hard
to teach. The ability to design, in this view, depends very heavily on the
accumulated experience of the designer. The things he does in learning about
a particular design problem make use of the things he has done before and the
insights gained in previous design efforts. There are many things he can do
because "I've done it before and it works." This is not communicable in a
rote learning context. It is an often repeated statement, but it is true,
you learn to design by designing; it is of necessity on-the-job training.
(Note that this reduces well formed design problems to something less than
"real" design problems.)

The material used to present the semantics and syntax of Ada are no
different thdn that used by many other people so the remaining point of
interest is the class project. (It might be noted in passing that teaching
Ada is a wicked problem in the sense of the characteristics enumerated above.)

':36



The selection of a design project was made after discussions with several
members of the EE faculty and an extended discussion with the students in the
class. It was felt that a single project with different parts being developed
by different students and then the whole integrated would be possible and
instructive. It was felt that something with utility beyond this class was to
be preferred. The problem finally adopted was taken from the current research
work of a doctoral student in the management sciences program in the College
of Business. His work provides an independent check on the results and may be
extended through expansion of the work done on this project.

The object of study was a network with nodes made up of servers with
queues. The project was to design and implement a simulation of this system
in Ada which could be used for expansion to more complicated networks (in this
project, the queue was provided but the queue length was one for simplicity).
The model was to have an infinite population that provided transactions
entering the system at an exponentially distributed random time interval with
a mean time lambda. These transactions were to be served at the first node,
again with an exponentially distributed random time but with a mean time mu.
After being served at node one, the transaction moves to node two, if it 4
not busy, or node three if two is busy, or waits if both are busy. While a
transaction is waiting or being served at node one, any other arriving trans-
action is blocked and balks out of the system. A transaction arriving at node
two or node three is served, as in node one, with an exponentially distributed
random time with mean time mu, and then moved out of the system. The
objective of the simulation is to gather statistics on the network performance
including: the probability of any single transaction balking, the probability
of there being zero, one, two, or three transactions in the system at any
given time, the average number of transaction in the syst,.1 at any time, and
the transit and wait time for an average transaction. The probabilities that
are the principal interest in this investigation are functions of the ratio of
lambda to mu.

The tasking facility of Ada is a natural framework for this kind of
problem. After a lecture from one of our management sciences professors to
introduce the students to the idea of the network and the necessary probabil-
ity and statistics, Booch's standard litany of design steps was followed with
various students selecting various parts of the problem to attack. In two and
a half weeks, a system, containing 13 user packages, three containing tasks,
was producing answers, slightly incorrect, but answers nevertheless. One of
the packages, a random number generator, was taken from the Ada Software
Repository distributed by Advanced Software Technology, Inc., and slightly
modified to make it run correctly on a sixteen bit machine. A generic queue
package was adapted from Software Components with Ada by Boochle. I wrote two
small and one substantive package (none of the tasking), and the balance and
all of the documentation were written by the students.

The Results

The first offering of this course has been completed and some obser-
vations can be made. The objectives of the course are certainly within reach
when the students have had a moderate exposure to higher level languages.
Seven students initially registered in the course and six successfully
completed it. One (a nominally good student with a 3.25 GPA) dropped the
course after missing several lectures and apparently deciding the work load

r) /



exceeded the benefit he would derive from it. This small class is, of course,
a luxury when introducing a new course that requires some experimenting to
establish lecture content and assignment work loads.

Janus/Ada and an acceptable full screen editor were loaded on every
machine in one of our labs containing Zenith 159's, and there was never any
waiting to get at a keyboard. (I went to all this trouble before I knew how

many people would register for the course.) This level of computing power is
low however, and the students in the class, without exception, moved very
quickly to the VAX when it became available about six weeks into the course.
The rules for turning in material and giving quizzes were not changed though,
and all material was brought back to micros and turned in on floppy disks.
All quizzes and the final exam were conducted on the micros. This makes a
strong statement about the relative attractiveness of working with Ada on the
micros and the VAX because there was absolutely no help given to the students
on the VAX. The accounts were opened and the students had to learn enough
about VMS and running Ada on the VAX on their own to do the work. It is true
that students refer to each other and to preceding classes for this sort of
thing very effectively, but in this case there was no preceding class; the
VAX, VMS, and Ada, were new to our campus.

During the project phase of the term, the students were talking and
thinking about the problem and not about the features of Ada required to
implement it. This indicates that the basic semantics and syntax of the
language were in hand as a result of the heavy outside assignments. The only
feature of Ada to get a lot of discussion at this time was tasking.

Student comments, solicited in an informal office session, at the end of
the project phase, provided some recommendations for the next offering of the
course. Booch's book was criticized for not having enough small examples that
highlight specific aspects of the language. Those familiar with the book will
recall that it relies on a few relatively large (for instruction) systems,
each of which contains many previously unused features of the language. The
inadequacy of the index in Booch's book was also noted. A search for a better
book that meets the universal student's ideal for textbooks, both short and
absolutely complete, was recommended. Adherence to the use of the micro in
the face of the clear superiority of the VAX was very unpopular.
Surprisingly, the difficulty of the project did not result in criticism. I
have long felt that we do not challenge our students enough in our curriculum,
but I believe this project did stretch their capabilities, and they recognized
it. Two of the students continued to work on the model after the semester
ended.

My reflections on the course are a little different. I think this first
effort has been successful but can be improved. A more careful selection of
the class project might be made to expose more of the facility of Ada. Some
use of generics and access variables might have been more productive than so
much work with tasking. I am convinced, although none of my faculty col-
leagues are, that Ada can be used for an introductory course in programming
with the students in our college, with exactly the same benefits as Pascal.
It would not be possible to cover everything in the language but at least as
much as is covered in a course in Pascal could be presented. At the senior
level, it would be impossible to devote enough time to one course for the
instructor to grade and debug for the typical class of 25 to 30 as deeply as



was possible with this class of six. One senior EE faculty member sat in on
the course so there will be more faculty available in the future.

I enjoyed the course very much and I expect Ada to spread in our College.

References

[1] Stock, D. L., et al, JANUS/Ada Compiler User Manual, RR Software, Inc.,
Madison, WI, 1988.

[2] Mayoh, B., Problem Solving with Ada, John Wiley & Sons, New York, NY,
1982.

[3] Cohen, N. H., Ada as a Second Language, McGraw-Hill Book Company, New
York, NY, 1986.

[4] Habermann, A. N. and Perry, D. E., Ada for Experienced Programmers,
Addison-Wesley Publishing Company, Reading, MA, 1983.

[5] Booch, G., Software Engineering with Ada, Second Edition, The
Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1986.

[6] ------ , Reference Manual for the Ada Programming Language, United States
Department of Defense, ANSI/MIL-STD-1815A, 1983.

[7] Boehm, B. W., "Software Engineering," IEEE Transactions on Software
Engineering, January 1977, Vol. SE-3, No. 1, Reprinted in Classics in Software
Engineering, E. N. Yourdan, ed. Yourdan Press, New York, NY, 1979.

[8] Yourdan, E. N., ed., Classics in Software Engineering, Yourdan Press, New
York, NY, 1979.

[9] Brooks, F. P., Jr., The Mythical Man-Month Essays on Software
Engineering, Addison-Wesley Publishing Company, Reading, MA, 1975, Reprinted
with corrections, 1982.

[10] Pressman, R. S., Software Engineering A Practitioner's Approach, McGraw-
Hill Book Company, New York, NY, 1982.

[11] Sommerville, I. and Morrison, R., Software Development with Ada,
Addison-Wesley Publishing Company, Reading, MA, 1987.

[12] Alexander, C., Notes on the Synthesis of Form, Harvard University Press,
Cambridge, MA, 1964.

[13] Archer, L. B., "Systematic Method for Designers," Design No. 172-188,
1963.

[14] Rittel, H. W. J., "Some Principles for the Design of an Educational
System for Design," Journal of Architectural Education, Vol. XXVI, 1971.



[15] BazJanac, V., "Architectural Design Theory: Models of the Design
Process," in Basic Questions of Design Theory, W. R. Spillers, ed., American
Elsevier Publishing Co. Inc., New York, NY, 1974.

[16] Spillers, W. R., ed., Basic Questions of Design Theory, American
Elsevier Publishing Co. Inc., New York, NY, 1974.

[17] Dijkstra, E., "Programming Considered as a Human Activity," Proceedings
of the 1965 IFIP Congress, North-Holland Publishing Co., 1965, Reprinted in
Classics in Software Engineering, E. N. Yourdan, ed., Yourdan Press, New York,
NY, 1979.

[18] Booch, G., Software Components with Ada: Structures, Tools. and
Subsystems, The Benjamin/Cumings Publishing Company, Ixc., Merlno Park, CA,
1987.

190



TRANSITIONING TO ENGINEERED Ada IN THE

SMALL LIBERAL ARTS COLLEGE

Ronald H. Klausewitz

West Virginia Wesleyan College

INTRODUCTION

West Virginia Wesleyan College has an enrollment of about
1400 students. About 40 are computer science majors. The
curriculum was introduced in 1975 under the ACM and IEEE
guidelines. It was decided by the faculty in 1987 that a
transition would be made from the Pascal language foundation to
an Ada foundation to take place over a period of three years.
The process was deliberately slow with options for bailout at any
point along the line until the conversion of the CSC 1 course was
complete. The, reasons for that conversion and its results to
date are the subjects of discussion for the rest of this paper.

THE DECISION

Any kind of transition makes extra work. Pascal is block
structured and allows us to teach good programming techniques.
Instructors have all chosen our favorite texts (from many
available) and have class notes, tests, syllabi, and overheads
that are tried and tested. Why change?

The problem, for one thing, is that Pascal has never really
been accepted by the real world. Students who take jobs in the
D.C. area (which is the majority of our graduates) are coming
back with reports that interviewers are asking for Ada
credentials early in the process. It seems much better to train
students in a language that they can actually use than to train
them in one they should use as a template or example.

Secondly, we are located in an area of West Virginia that
Senator Byrd is trying to convert from a depleted resource-
extraction base to less destructive and more lucrati'e hi-tech.
The backbone of that project is the teaching of the Ada
programming language in the colleges of West Virginia.

The last reason involves the quality of the Ada language
itself. Through the initial rain of criticism there is emerging
an opinion that Ada does have some fine qualities. In the areas
of syntactic orthogonality, machine independence, extensibility,
abstraction and encapsulation, and adoption of software
engineering techniques Ada compares favorably with Modula-2 [2].



Enter Engineering

The topic of software engineering brings up a question as
to what students are really being taught in first-year
programming courses. They are given a lot of programming
exercises to do which they hastily throw together to look just
good enough and work just well enough to get the grade. Then
the programs are thrown into the trash and the process begins
again. How can engineered features such as modularity or
reliability be taught in programs that are one-time, run and
discard? In contrast Ada is the essence of building-block
programming. Carefully thought out exercises would let the
student build a simple module, then use it to construct a more
complex module and so forth. By the end of the semester all of
his/her sins or virtues are there (working or not) in a huge
project.

There can be no argument to the importance of software
engineering in a curriculum. Denning [3] has included it as one
of the nine factors in a definition matrix for the discipline.
To become part of the students thinking it must be stressed from
the beginning forward.

IMPLEMENTATION

First, a word of warning. There is a reason that small
colleges can compete with large universities, Teaching is done
on a more personal basis made possible by smaller classes. So my
disclaimer is that the specifics which follow may not be
universally applicable. I will be grateful if they even work at
Wesleyan.

The Time-line

Our agenda in chronological order follows below. Year
1) Teach Ada on a trial basis for the experience 1
2) Identify courses which must change 1
3) Train instructors 1
4) Select books 1
5) Write syllabi 1
6) Convert CS 1 2
7) Convert CS 2 3

Trial Teaching

For Wesleyan, the trial teaching was easily accommodated.
We have a January short term that is set up for just this kind of
experiment. The Ada course was a great success. It turned into
a lecture/lab combination at the request of the students. Their
reasoning was that when you are stuck with a diagnostic in Ada it
is more difficult to diagnose and correct the problem than in
other languages. This led to frustration if quality help was not
available. The lesson was not lost for designing the CS 1
course.

r..... . - - - m m - ,''-, N



U)x
M"CISIFlD F/C 12/5 I.



1111 1.0
.... liuI i~i - *6~ 3. 111L26



The Courses

The higher level courses, operating systems, programming
languages, numerical methods, database systems, and data
structures are generally language independent. It is in CS 1 and
CS 2 that most of the changes happen. I will consider these
separately.

CS 1
Ada is generally expected to require a prerequisite. The

structures and concepts in Ada may be very difficult for a first
language. The recognized prerequisite is Pascal. There is,
however, some controversy in this. Since Pascal is so close to
Ada in many areas there is a definite potential for confusion
when both are introduced back-to-back. There may be a better
transition from other languages. Regardless of the answer to
this question, we have no room in our curriculum for another
course. The prerequisite question then must be dealt with in
other ways.

THere is another consideration. Wesleyan, like most
institutions, has seen a decline in Computer Science freshmen
over the past couple of years, but it has been accompanied by a
greater staying power in the students who do enroll. These
students have been exposed in high school to enough programming
and computer experience to dissolve a lot of the romance and to
give the program entrants a good background. But, that can not
be accepted on a blanket basis. We have got to go on a
case-by-case basis. And this is where the "SMALL COLLEGE" part
comes in. We ask declared majors to fill out a background form.
Further, we will be giving an entrance test for CS 1. I have
used a similar test every year for about six years in the first
language courses, BASIC and FORTRAN. We will be supplying
support people, faculty or seniors on workstudy, to work one-on-
one with people targeted by the test. Another very important
part of the process will be a large semantics section at the
beginning of the class just trying to get to the point where
instruction can begin on a more even footing.

CS 2
It will be difficult in this course to find a book that

successfully covers the classic CS 2 as it should [4]. A brief
description of our CSC 2 course follows.

1. An intense coverage of the Ada language including the
following items:

Ada PACKAGES
GENERIC PACKAGES
SEQUENTIAL FILE I/O
DIRECT FILE I/O
DATA STRUCTURES
SORT AND MERGE CONCEPTS

"~ ~ ~ ~ ~~~~~~~~~ - -mammmim m NK~



2. A good introduction into the concepts of logic and logic
circuit combinations including:

LOGIC CIRCUITS
BASIC CIRCUITRY FOR GATES AND STORAGE
STATE MACHINES
BOOLEAN LOGIC
LOGIC REDUCTION
INTRODUCTION TO ARCHITECTURE

3. Instead of 'throw-away" programs we will use a "build-
up" concept where early exercises are used as work already
done and useable in later projects.

4. Exercises that tie hardware and software together will
be used throughout the course. For example, a program that
could do simple logic reduction has been an exercise that has
been used in CS 2 for years.

Book Selection

Over thirty-five books were screened in an attempt to find a
book for the CS 1 course that was complete and self-explanatory.
I highly recommend the AdaIC packets [l] as a place to begin. It
contains (among other very useful items) a current review with
comment of all Ada textbooks in print. Best of all, it is free.

For the CS 2 course there were no contenders. Hopefully the
future holds a good book for this course, but for now we will be
using an advanced Ada text with handouts for the logic topics.

CONCLUSIONS

I have presented here a condensed version of many
discussions that led up to a decision to transition to the Ada
language in the computer science curriculum at West Virginia
Wesleyan College. I have additionally discussed the changes, as
we see them, that must be made to specific courses to accommodate
that change. Without a deliberate and thought-out transition it
is very obvious to me that severe problems could be encountered.

REFERENCES

1. AdaIC, General Information, Historical, and Educational
Packets., AdaIC, 3D139 (1211 S. Fern, C-107), The Pentagon,
Washington, D.C 20301-3081, (703) 685-1477

2. Belkhouche, B., Lawrence, L., and Thadani, M. A Methodical
Comparison of Ada and Modula-2. Journal of Pascal, Ada &
Modula-2, 7 (July/August 1988), 13 - 24.

3. Denning, P.J., et. al., Computing as a Discipline.
Communications of the ACM. 32 (Jan 1989), 9-23.

4. Denning, P., What is computer science? Am. Sci. 73(Jan-
Feb. 1985) , 16-19.



A HyperCard Prototype of a CASE Tool
in Support of Teaching

the Berard Method of Object-Oriented Development
in an Undergraduate Course

Frances L. Van Scoy
Department of Statistics and Computer Science

West Virginia University
Morgantown, West Virginia 26505

vanscoy@a.cs.wvu.wvnet.edu

Background

Pascal GENIE, a programming er,,ironment targeted at freshman students
learning Pascal, has been developed and used at Carnegie Mellon University
since 1986 (Chandhok, 1989). This integrated environment is implemented
on Macintosh computers and supports procedural abstraction, data
abstraction, program assertions, and visualizations.

Now a similar environment for freshman stud, nts learning Ada is being
developed by an expanded version of the original team, including members
from Carnegie Mellon University and West Virginia University. One task
within the new project is the design and implementation of student-
strength CASE (Computer-Aided Software Engineering) tools, integrated
within the environment, which encourage gcod software engineering
practice in Ada. This paper describes early woik on a prototype for one
tool which might be included in the Ada GENIE.

Ed Berard, a prominent Ada software developer ard trainer, has often said,
"Ada without a methodology is trash." In agreerient with this statement,
we intend to provide tools which will encourace the teaching (at the
undergraduate level) of one or more software de"elopment methods such
as OOD (Object-Oriented Development) (Booch, 987b; Berard, 1985) or
PAMELA2 (Pictorial Ada Method for Every Larjle Application) (Cherry,
1988).

Part of our strategy in developing such tools is to build a prototype tool in
support of OOD. We have tested it at WVU, duri'g spring semester, 1989.
We intend to modify the prototype, again test it during fall semester,



1989, with students in an Ada-based CS 1 course, and then develop the
requirements and specifications for one of the tools to be built as part of
the integrated environment during academic year 1989-1990. We will
also investigate other tools in support of COD and PAMELA2.

Overview of Object-Oriented Development

Booch (1987b) writes, "Simply stated, object-oriented development is an
approach to software design and implementation in which the
decomposition of a system is based upon the concept of an object. An
object is an entity whose behavior is characterized by the operations that
it suffers and that it requires of other objects. By suffers an operation,
we mean that the given operation can legally be performed upon the
object."

Two strategies of applying COD have been published. Grady Booch (1983)
described a method that begins with the writing of an English paragraph of
five to nine sentences which states a solution to the problem. The noun
phrases of the paragraph become the objects, and the verb phrases become
the operations in the software solution. Ed Berard (1985) refined and
formalized this method. We will refer to this way of doing COD as the
Berard method throughout the remainder of this paper.

Booch (1987b) has also described a method for COD that begins with
identifying inputs and outputs of a system and drawing a data flow
diagram for the system. We will refer to this as the Booch method.

Modified Berard Method of OOD

At West Virginia University, we teach a modified version of Berard's
method of COD. The tool described in this paper is designed to support
this modified version.

The steps of the modified Berard method are:

1. Write one English sentence which describes the problem to be solved.

2. Gather, analyze, and organize the information needed to solve the
problem.

3. Write one English paragraph which describes a solution to the problem.

4. Identify the objects.

i I



a. Select noun and pronoun phrases in the paragraph.
b. Complete the entries in the Object Table (noun phrase, problem space
versus solution space, Ada identifier for the object, and indication of
which objects are closely related).
c. Identify the attributes of each object (actor, server, or agent; type
versus object; and phrase or sentence describing purpose of object).

5. Identify the operations.
a. Select verb phrases in the paragraph.
b. Complete the entries in the Operation Table (verb phrase, problem space
versus solution space, major object associated with the operation, Ada
identifier for the operation).
c. Identify the attributes of each operation (constructor, selector, or
iterator; function or procedure; phrase or sentence describing purpose of
operation; error conditions).

6. Identify the program units.
a. Group objecis, types, and operations.
b. Identify the high-level Ada program units (generally library units) and
specify their interfaces.
c. Draw a Bocch diagram to show the dependencies among program units.

7. Implement the Ada program units.
a. Write the Ada unit specifications and compile them.
b. Write the Ada unit bodies and compile, link, and test them.

8. Repeat the process as necessary: iteratively to correct mistakes,
recursively to refine the solution.

Need for the CASE Tool

In practice, COD is both an iterative and a recursive method. As
development progresses, errors in the design are observed and the process
iterated to make corrections. After a top-level design has been completed
and package specifications written, the process is applied recursively to
develop the system at lower levels.

Students often become frustrated as they iterate to correct errors in the
design. For example at step 5b a student may observe that an additional
operation not suggested by the verbs found in step 5a is needed. Adding a
sentence with that verb means a change in the paragraph written at step 3
and likely causes a change in the list of noun phrases of steps 4a, 4b, and

n7



4c. The result of making changes and repeating steps is that students are
continually either copying large amounts of material with only a few
changes or making small modifications and hoping that all implied changes
have been made.

To encourage students to use the method properly, we would like a tool
which will autcmatically copy information from step to step, will keep all
information in the system consistent, and will prompt students at each
step of the process to enter the needed additional information.

Strategy in Building the CASE Tool

HyperCard was chosen as the system with which to build the prototype
tool because it provides a friendly user interface and because HyperCard
stacks are easily modified. This ease of modification is helpful in at
feast two respects. The designer of the tool can easily make changes as
the need for them becomes apparent. Also, students who are fluent at
using HyperCard stacks will begin using HyperCard features for added
functionality. If we can capture the HyperCard shortcuts used by
students, we can then add the appropriate functionality to our tool.

Essentially, a HyperCard "program" consists of one or more stacks of
cards. Each card may have several fields and several buttons. A field may
contain text or graphics. A button has associated with it a script which is
executed when the mouse is clicked while pointing to the button. Scripts
can be copied from the many sample cards and stacks provided with the
HyperCard system. More complex scripts can be written in the HyperTalk
language. Danny Goodman has written several books which are useful for
HyperCard stack designers and implementers (Goodman, 1987, 1988a,
1988b).

Functionality of our CASE Tool

Our tool assists the student in following the Berard method of OOD. First
the student is prompted to enter the required information for steps 1, 2,
and 3. Next (step 4a) the student uses the mouse to select noun phrases
from the paragraph written in step 3. These phrases are displayed in a
skeleton Object Table whose entries the student can then complete (step
4b). The tool builds a stack of cards, one for each object, with all
information available from the Object Table. The student can then travel
through this Object Stack and add additional attributes for each object
(step 4c). Steps 5a, 5b, and 5c are followed in a similar fashion. At the
start of step 6a the tool sorts the objects and operations identified



earlier into collections of related objects, types, and operations and
allows the student to confirm or edit these groupings. The information
approved in step 6a is then used by the tool in step 6b to request visibility
information. (Step 6c should draw a Booch diagram for the system but is
not fully implemented.) The tool then provides partial Ada unit
specifications and bodies in steps 7a and 7b for editing by the student.

Example of Ada System Design using Our Tool

The use of our tool is shown by the following example which is taken from
an exercise used in a junior-level elective during spring semester, 1989,
at WVU.

Statement of Problem

A few times each year I need to bake a certain number of cookies for
a meeting or reception. I'd like to use more than one recipe for the
sake of variety.

I'd like a software system which allows me

(1) to record information about each of my cookie recipes.

This information must include:

(a) yield (the number of cookies produced by one batch of this
recipe)

(b) a list of ingredients with quantity needed of each

(c) the oven temperature required by this recipe

(2) to select some of the recipes I have recorded and generate a
report. The report should contain:

(a) a list of the chosen recipes

(b) the total number of cookies produced by preparing these
recipes

(c) the total amount of each ingredient needed

! nG



(d) an order for baking the cookies (I want to bake the cookies
requiring the lowest temperature first, and the ones requiring
the highest temperature last.)

Some issues:

(1) The amount of an ingredient may be expressed in various units:
ex. 1 pound, 1 stick, 1/2 cup, or 2 tablespoons of buffer

(2) Some ingredients do not have units of measure attached to them.
ex. 3 eggs

(3) The recorded recipes must persist between uses of the system.

(4) I want the ability to add more recipes at a later date.

(5) During a "baking planning session" I want to be able to choose
some recipes, view the report, and then add and/or delete recipes
from the list of chosen ones.

The first three cards, not shown here, display a welcome message and
prompt the user for a single sentence statement of the system to be
developed and for references to information needed to solve the problem.

In step 3, the user is asked to enter a paragraph describing a solution to
the problem. An example of such a paragraph is shown below.

3. Write one English paragraph which describes a
solution to the problem.

Enter recipes into a recipe box. Select several recipes from the recipe
box. For this collection of selected recipes determine the total number
of cookies to be baked and the total amount of each ingredient.

Step 2 Step 4a Prepare Design Report Print Design



In step 4a, the user is given a copy of the paragraph written in step 3. The
user repeatedly selects a noun or pronoun phrase and then clicks on the
"Select Noun Phrase" button. The script for this button copies the
selected phrase into the first column of the Object Table on the card for
step 4b and changes all lower case letters in the selected phrase to upper
case in the text field on the card for step 4a. When satisfied that all noun
and pronoun phrases in the paragraph have been selected, the user clicks
on the "Step 4b" button.

4. Identifg the objects.
4.a- Select noun and pronoun phrases in the paragraph.

Enter RECIPES into A RECIPE BOX. Select SEVERAL RECIPES from THE
RECIPE BOX. For THIS COLLECTION of SELECTED RECIPES determine the
TOTAL NUMBER of COOKIES to be baked and THE TOTAL AMOUNT of EACH
INGREDIENT.

Select Noun Phrase

Step 3 Step 4b-) Prepare Design ReportPrint Design

In step 4b the user is given a copy of the Object Table with the Noun
column filled with the noun and pronoun phrases selected in the previous
step and the Space column filled with "Solution." The user may use the
"Change Space" button to change a selected "Solution" entry to "Problem"
to indicate that the corresponding noun phrase appears in the statement of
the problem to be solved but will not be represented by an Ada type or
object in the software solution to the problem. In the third column, the
user completes each row of the table by entering an Ada identifier which
will be used in the software system being developed. In the final column
of the table the user enters an indication of which rows of the table are
closely related.



In this example, the student has recognized that "several recipes," "this
collection," and "selected recipes" all refer to the same set of recipes,
those identified during the baking planning sessions as the ones to be
prepared. The student has also decided that "Recipe" and
"Number Of Cookies" are Ada identifiers which are closely related and
should be implemented in the same Ada unit. Also, the student has
recognized that the software solution will not have an Ada identifier
which directly implements the concept of "cookies."

4.b. Complete the entries in the Object Table.

Object Tb-

Nounl% Space Ada Identfier object

recipes Solution Recipe Recipe
a recipe box Solution Recipe-Box Recipe-Box
several recipes Solution Selected-Recipes Planning-Session
the recipe box Solution Recipe-Box Recipe-Box
this collection Solution Selected-Recipes Planning-Session
selected recipes Solution Selected-Recipes Planning-Session
total number Solution NumberOfCookies Recipe
cookies Problem
the total amount Solution Amount_0fIngredient Ingredient
each ingredient Solution Ingredient Ingredient

Step 4 S t e p 4Tc (P repare Design Report) Print 0esi gn

In step 4c, the user is shown a stack of cards, the Object Stack. The user
may travel through this stack and add additional information for each
object. This information consists of an indication of whether the object
will be implemented as a type, an indication of whether the object is an

"II

- 1 1~ III 

I I

III nIIII

I- I

i I



t

agent. a server, or an actor, and a comment giving other information about
the object. (S. e Glossary for definitions of agent, server, and actor.)

4.c. Identify the attributes of each object.

Noun the total amount

Space Solution Object Ingredient

identifier AmountOfIngredient

Type or Object? Type

iAgent, Server, or Actor? Server

Comment Associated wth each Ingredient is an amount of that
ingredient, with dimensions. The system should be able
to compute 1/'2 cup plus 4 tablespoons giving 3/4 cup.

Step 4b re ueous Ne ( Step 5a (Prepare Des ign Repor,

Steps 5a, 5b, and 5c are similar but deal with verb phrases and their
mplementation as operations.

5. Identifg the operations.
5.a. Select verb phrases in the paragraph.

ENTER recipes into a recipe box. SELECT several recipes from the recipe
box. For this collection of selected recipes DETERMINE the total number
of cookies TO BE BAKED and the total amount of each ingredient.

Q Select Verb Phrase

Step 4b Prepare Design Report Print Design



5. b. Complete the entries in the Operation Table.

Operation Table
(Change Space_

Verb Space Objecl Ad& Identfier
Enter Solution Recipe.-Box Enter-Recipe
Select Solution Planning-Session Select-Recipe
determine Solution Planning-Session Determine
to be baked Problem ...

Step 5Step Q5cIPrepare Design Report)C Print Design

Step 5c is implemented by the Operation Stack, a stack consisting of one
card for each operation in the system under development. The additional
information requested for each operation in the Operation Stack at step 5c
is an indication of whether the operation will be implemented as a
procedure or a function, an indication oT whether the operation is a
constructor, an iterator, or a selector, conditions under which the
operation will not behave properly (for example, attempting to delete a
nonexistent component from a data structure), and a comment giving
other information. (See Glossary for definitions of constructor, iterator,
and selector.)

On the background shared by all cards representing step 5c, the scripts for
buttons "Procedure or Function?" and "Constructor, Iterator, or Selector?"
give the user the appropriate two or three choices from which to select,
helping to insure that only reasonable values are entered into the
corresponding fields. The "Comment" and "Error" fields are scrolling



fields to allow the user to enter rather lengthy text which will become
Ada comments in the system being developed. The "Verb," "Space,"
"Object," and "Identifier" fields were automatically filled by the software
tool from the Operation Table built in step 5b.

5-c. Identify the attributes of each operation-

Verb Select

Space Solution Procedure or Function?l Procedure

Object PlanningSession

Identifier Select-Recipe

Constructor, Iterator, or Selector? Constructor

Comment SelectRecipe selects a Recipe from the
Recipe_3ox and adds it to Selected-Recipes.

It is an error if the indicated Recipe is not in the
RecipeBox.

Step 5b e uious N Step 6ae

Step 6a allows the user to travel through the cards in another stack, the
Unit Stack. This stack is built by the tool by sorting the Object Table and
the Operation Table by their Object columns For each distinct Object
column entry in either the Object Table of step 4b or the Operation Table
of step 4c a card is created in the Unit Stack. Every object from the
Object Table with a particular entry in its Object column will be entered
in the Types field or Objects field of the card, and every operation from
the Operation Table with that entry in its Operation column will be
entered in the Operations field of the card. The "with" field of the card
remains empty for the time being. Each card of this stack will be
implemented by an Ada package. No activity by the user is requested at
this step other than reviewing the stack 'o determine whether the
information presented is reasonable.

In the example, the Object Table entry for object "SelectedRecipes" and
the Operation Table entries for operations "SelectRecipe" and
"Determine" have all indicated that these items should be implemented as
part of one Ada unit, "PlanningSession."



6. Identify the program units.
6.a. Group objects, types, and operations.

Package Planning-Session

Types Operations
Select-Recipe
Determine

Objects
Selected-Recipes

with

In Step 6b the user is shown a "Unit List," with one entry for each card in
the Unit Stack. The user selects an entry in the Unit List, clicks the
"Choose Unit" button, selects another entry in the Unit List, and clicks the
"Choose Needed Unit" button.

In the current example, a user might first choose "RecipeBox" and then
choose "Recipe," indicating that the package implementing "Recipe Box"
needs resources provided by the package implementing "Recipe."

After each sequence of selections, the tool updates the "with" field of the
appropriate card in the Unit Stack. Whenever the user chooses the "Update
Visibility List" button on the current card, the tool examines the cards of
the Unit Stack and produces in the "Visibility List" field of the current
card a list of all units with an indented list under each one listing the
other units to which that unit needs access.

206



In the example, both "Recipe" and "Ingredient" are indented when they
appear under "RecipeBox" to show that "RecipeBox" depends on resources
provided by "Recipe" and "Ingredient."

6.b. Identify the high-level fAda program units
and specify their interfaces.

Unit List Choe nt Choose Needed Unit

PlanningSession 0 Unit Recipe-Box needs unit Ingredient

Recipe-Box - Visibility List Update Uisibility List)
Recipe [ Planning-Session
Ingredient Recipe-Box

Recipe..
Ingredient

Recipe-Box
Recipe
Ingredient

Recipe
Ingredient

( Step 6a Step 6c )(Update Design Report)( Print Report

In step 7a the user is presented with a scrolling field containing Ada
package specifications to review, and in steo 7b, with a scrolling field
containing Ada package bodies to review. At each of these steps a user
can click on the "Edit/Print Specifications" button or the "Edit/Print
Bodies" to enter Microsoft Word for editing, saving, or printing the
contents of either field.

The package specifications produced by the tool at Step 7a are:

2q7



with Recipe-Box;
with Recipe;
with Ingredient;
package PlanningSession is

SelectedRecipes: ToBeDetermined;
-- This object used as a(n) Server
procedure Select-Recipe;
-- This operation used as a(n) Constructor
-- SelectRecipe selects a Recipe from the
-- Recipe-Box and adds it to SelectedRecipes.
--Error Conditions:

-- It is an error if the indicated Recipe is not in the Recipe-Box.
procedure Determine;
-- This operation used as a(n) Constructor
-- Determine examines all Recipes in SelectedRecipes and computes
-- the sum of the NumberOfCookies produced by each and
-- the amount of each Ingredient needed.

end PlanningSession;

with Recipe;
with Ingredient;
package Recipe-Box is

RecipeBox: ToBeDetermined;
-- This object used as a(n) Server
-- Recipes are stored in Recipe-Box.
procedure Enter-Recipe;
-- This operation used as a(n) Constructor
-- EnterRecipe places a Recipe in the Recipe-Box.
--Error Conditions:

-- It is an error to try to Enter a Recipe into a full RecipeBox.
end Recipe-Box;

package Recipe is
type Recipe is private;
-- Objects of this type are Servers
-- Each Ingredient consists of the name of the ingredient
-- and the quantity of that ingredient required for the
-- given recipe or collection of recipes.
NumberOfCookies: Recipe;
-- This object used as a(n) Server

private
type Recipe is ToBeDetermined;

end Recipe;

203



package Ingredient is
type AmountOfIngredient is private;
-- Objects of this type are Servers
-- Associated with each Ingredient is an amount of that
-- ingredient, with dimensions. The system should be able
-- to compute 1/2 cup plus 4 tablespoons giving 3/4 cup.
type Ingredient is private;
-- Objects of this type are Servers

private
type AmountOfIngredient is ToBeDetermined;
type Ingredient is ToBeDetermined;

end Ingredient;

The Ada package todies produced by the tool are:

package body PlanningSession is
procedure SelectRecipe is

separate;
-- SelectRecipe selects a Recipe from the
-- Recipe-Box and adds it to SelectedRecipes.

-- It is an error if the indicated Recipe is not in the
-- RecipeBox.

procedure Determine is
separate;

-- Determine examines all Recipes in SelectedRecipes and computes
-- the sum of the NumberOfCookies produced by each and
-- the amount of each Ingredient needed.

end Planning-Session;

package body RecipeBox is
procedure EnterRecipe is

separate;
-- Constructor places a Recipe in the RecipeBox.

-- It is an error to try to Enter a Recipe into a full Recipe-Box.
end RecipeBox;

package body Recipe is
end Recipe;

package body Ingredient is
end Ingredient;

-'(V.'



The Ada packages produced at this stage by the tool are not adequate for
implementing the entire system. The student needs to repeat the process
adding new objects and operations to the system.

HyperCard Structure of Our Tool

As described previously, the prototype tool is implemented by four
HyperCard stacks, one stack for each of steps 4c (one card per object), 5c
(one card per operation), 6a (one card per object or group of related
objects, that is, one card per Ada unit), and one stack for the overall
system (one card per method step). The cards for steps 4b and 5b (the
Object Table and the Operation Table) use multiple scrolling fields and are
based heavily on Danny Goodman's (1988b) LaborLog stack.

Some Technical HyperCard Issues

Several technical issues in building the prototype tool were related to the
use of HyperCard.

First, there was a need for some text fields to hold arbitrarily long
strings. Scrolling fields were an obvious choice, but only the visible
portion of these fields is printed when the command "Print Card" is chosen
from within HyperCard. To add the ability to print the complete design,
most cards were given buttons "Prepare Design Report" and "Print Design."
Clicking the "Prepare Design Report" button causes a report based on the
fields on this card and the cards for all previous steps to be written into a
file. Clicking the "Print Design" button opens the file using Microsoft
Word. From within Word the user can then edit, save, and print the file.

Secondly, for ease in examining the cards that refer to major steps in the
method, the cards representing individual objects, operations, or units
were placed in stacks other than the stack which implements the main
path through the method. This design choice has caused the tool to
execute more slowly than would otherwise be the case because of
continued movement between stacks in some of the button scripts. Speed
has been improved somewhat by copying frequently used fields of cards in
one stack into local variables of a script so there are fewer switches
between stacks.

210



Status of Project

We currently have a prototype version of the tool for the Berard method of
OOD which is being tested in a junior-level Ada course this semester.

From testing the stack, we observe that a production version of the tool
should safeguard the internal consistency of the development. For
example, if in step 4b a student adds a new entry to the Object Table a
note should be entered on the card for step 3 indicating the need for a new
sentence with that object. Similarly, when an object or operation (which
is not a duplication) is deleted, a note should be entered on the card for
step 3.

Also, the ability to add a new sentence to the paragraph in step 3 and then
repeat steps 4 and 5 to process any new noun or verb phrases without
disturbing those already found should be added. (Currently users are using
their knowledge of HyperCard to do this.)

Perhaps more importantly, the tool should provide assistance in adding
and modifying parameter lists for subprograms in order to maintain
consistency between package specifications and bodies.

Future Work

We hope that a version of the tool described in this paper will eventually
be implemented in a high-level language as a collection of structure
editors which share a data bass. Design of a similar tool for the Booch
method of OOD is underway. Future plans include tools to support
software development using PAMELA2 and enhanced versions of both OOD
tools. The enhanced tools will assist in designing systems which include
generic units, packages which export private or limited private types, and
tasks (as suggested in Booch (1987b, p. 23)).

Some ideas from Richard Ladden's paper (1989) may also influence the
development of the OOD tools.

Notes:

HyperCard, HyperTalk, and Macintosh are trademarks of Apple Computer,
Inc.

Microsoft is a registered trademark of Microsoft Corporation.

21



PAMELA2 is a trademark of George W. Cherry, Thought**Tools, Inc.

References:

Berard, E. V. (1985) An Obiect Oriented Design Handbook for Ada aoftware.
EVB Software Engineering, Inc.

Booch, Grady (1983). Software Engineering with Ada. Benjamin/Cummings.

Booch, Grady (1987a). Software Engineering with Ada, second edition.
Benjamin/Cummings.

Gooch, Grady (1987b). Software Components with Ada: Structures. Tools.
and Subsystems. Benjamin/Cummings.

Chandhok, R. and Miller, P. (1989) "The Design and Implementation of the
Pascal Genie." ACM Computer Science Conference, Louisville, KY, February
1989.

Cherry, George W. (1988). PAMELA2: An Ada-Based, Obiect-Oriented,
2167A-Compliant Design Method. Thought**Tools, Inc., Reston, Virginia.

Goodman, Danny (1987). The Complete HyperCard Handbook. Bantam
Computer Books.

Goodman, Danny (1988a). Danny Goodman's HvoerCard Develooer's Guide.
Bantam Computer Books.

Goodman, Danny (1988b). The HyperCard Handbook 1.2 Upgrade Kit. Bantam
Computer Books.

Ladden, Richard M. (1989) "A Survey of Issues to be Considered in the
Development of an Object-Oriented Development Methodology for Ada." Ada
Letters, volume IX, number 2, March/April, 1989, pages 78-89.

Glossary (from Booch, 1987b):

Actor. An object that suffers no operations but that operates upon other
objects.

Agent. An object that serves to perform some operation on the behalf of
another object and that in turn can operate upon another object.

.1. -



Constructor. An operation that alters the state of an object.

Iterator. An operation that permits all parts of an object to be visited.

Selector. An operation that evaluates the current object state.

Server. An object that suffers operations but cannot operate upon other
objects.

State. The value and/or object denoted by a name.



AUTHORS INDEX

A

B
Beauman, Roger 87

C
Crawford, Albert L. 161

D

E
Engle, Charles B. 3, 147

F
Feldman, Michael B. 17, 111
Ford, Gary 3

G

H
It

K
Kelly, John 121
Klausewitz, Orville E. 191
Koedel, Barbara 171
Korson, Tim 3
Kuhn, Tina 65

215



L
LeGrand, Sue 73

Levine, Gertrude 31
Liaw, Morris 11

M
Mers, Robert C. 177
Moran, Melinda 37, 147
Murphy, Susan 121

N

0

P
Plain, Russell 99

Q

R
Reedy, Ann 73

S Samuels, Doug I

T

U
Umphress, David A. 135

V
VanScoy, Frances L. 195

w
Wall, Mary 171
Warner, Kathleen 99
Warner, K. 99
Wheeler, Orville E. 181

x

216



Yodis, Ed 73
Youtzy, Harold 59

217



NO0TE S

218


